

Calhoun: The NPS Institutional Archive

# Optimal configuration of digital communication network 

Hwang, Yong Goo.

Monterey, California: Naval Postgraduate School
http://hdl.handle.net/10945/27604


Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943


## THESIS

## OPTIMAL CONFIGURATION OF DIGITAL COMMCNICATION NETWORK

by
Hwang, Yong Goo
December 1990

Approved for public release; distribution is unlimited.

## Unciassified

security classinication of this oage


19 Abstract (connnue on reverse if necessary and idensify by block numoer:
As the costs for maintaining computer communication networks are rapidly rising, it is particularly important to design the network efficiently. The objective of this thesis is to model the minimum cost design of digital communication networks and propose a heuristical solution approach to the formulated model.

The minimum cost design has been modeled as a zero-one integer programming problem. The Lagrangian relaxation method and subgradient optimization procedure have been used to find reasonably good feasible solutions.

Although the reliability requirement for computer communication networks is as important as the cost factor, only the cost factor is considered in the context of this thesis.

| 2C Distrioution Avaliadinty oi ibstrac: unclassinted unlimued $\quad$ same as rebor: $\quad$ DTIC users | 21 Abstract Security Classincation Unclassified |  |
| :---: | :---: | :---: |
| 22a , \ame of Responsiole inavidual Misung W. Suh | $\|$220 Terephone inctuae srea coae: <br> 14081 646-2637 | 122c Office Symbo: |

Approved for public release; distribution is unlimited.

Optimal Configuration of Digital Communication Network
by

Hwang, Yong Goo
Major, Republic of Korean Army
B.S., Dong Kook university, 1987

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
December 1990



#### Abstract

As the costs for maintaining computer communication networks are rapidly rising, it is particularly important to design the network efficiently. The objective of this thesis is to model the minimum cost design of digital communication networks and propose a heuristical solution approach to the formulated model.

The minimum cost design has been modeled as a zero-one integer programming problem. The Lagrangian relaxation method and subgradient optimization procedure have been used to find reasonably good feasible solutions.

Although the reliability requirement for computer communication networks is as important as the cost factor, only the cost factor is considered in the context of this thesis.


;

- 1a.1.iv - ofo

い" re

## TABLE OF CONTENTS

I. INTRODUCTION ..... 1
II. DIGITAL TRANSMISSION FACILITIES ..... 3
A. OVERVIEW OF DIGITAL TRANSMISSION ..... 3
B. TI SYSTEM ..... 4

1. WHAT IS T1? ..... 4
2. Tl FRAME FORMAT ..... 5
3. T1 NETWORKS ..... 9
(A) Tl Interface ..... 9
(B) Digital Cross-Connect System (DCS) ..... 10
(C) Tl Networking ..... 11
C. T3 SY'STEM ..... 13
4. WHAT IS T3? ..... 13
5. T3 FRAME FORMAT ..... 13
(A) M13 Format ..... 14
(B) Syntran ..... 15
(C) Sonet ..... 15
6. T-3 NETWORKS ..... 16
III. MODEL FORMULATION AND SOLUTION ..... 18
A. MATHEMATICAL FORMULATION ..... 18
B. LAGRANGIAN RELAXATION ..... 20
C. SUBGRADIENT OPTIMIZATION PROCEDURE ..... 22
D. SOLVING THE LAGRANGIAN PROBLEM ..... 24
E. IMPLEMENTATION PROCEDURE ..... 26
7. SYSTEM FLOW ..... 26
8. HEURISTIC ..... 28
IV. COMPUTATIONAL RESULTS ..... 30
A. COMPUTATIONAL EXPERIMENTS ..... 30
B. SUMMARY OF COMPUTATIONAL RESULTS ..... 30
V. CONCLUSION ..... 35
APPENDIX A: SOURCE CODE ..... 36
A. DATA STRUCTURE DESCRIPTION ..... 36
B. DATA GENERATION PROCEDURE ..... 38
C. SOLVING LAGRANGIAN PROBLEM PROCEDURE ..... 42
D. REPORT PROCEDURE ..... 55
APPENDIX B: SAMPLE INPUT DATA FILE ..... 61
A. PAIR INFORMATION ..... 61
B. CIRCUIT INFORMATION ..... 62
APPENDIX C: SAMPLE OUTPUT DATA ..... 65
LIST OF REFERENCES ..... 66
INITIAL DISTRIBUTION LIST ..... 68

## ACKNOWLEDGEMENTS

I thank God for our health and patience. I am very greatful to a number of people for their help and encouragement.

Most of all. I would like to express my sincere appreciation to my thesis advisor. Professor Myung W. Suh. for his enthusiastic guidance and support. Without his help, this thesis could not have been completed. I also would like to say thanks to my second reader. Professor Richard W. Hamming, for his helpful comments and his kindness.

I have to thank to my wife, Gui-Hyang Byun, and my son. Hoil Hwang for their help and encouragement.

## I. INTRRODUCTION

Computer communication networks are becomming a vital part of today's industrial, govermental, financial, and service organizations. The efficiency and quality of their internal operations and external services depends upon how effective their computer communication networks are. Design of computer communication networks requires the consideration of a number of factors such as performance constraints, reliability constraints, and costs. As the costs for maintaining computer communication networks are rapidiy rising, it is particularly important to design the network efficiently: i.e., the emphasis on keeping the costs low in the design of networks is becoming evident.

Due to the inherent complexity of network design problems, the comprehensive optimal design of efficient networks is usually infeasible except for very simple networks. The objective of this thesis is to model the minimum cost design of digizal communication networks and propose a heuristical solution approach to the formulated model.

It is assumed that node locations are fixed by the required placement of terminals and network facilities. Therefore network design is predominately a question of where to put links and what their data carrying capacities should be. For a given set of $n$ nodes, there are $n(n-1) / 2$ possible links. It is seldom necessary for them to be fully connected. Consequently, there is an inherent design tradeoff between equipment simplicity and low cost with fewer links. Although the reliability requirement for computer communication networks is as important as the cost factor, only the cost factor is considered in the context of this thesis.

The minimum cost design has been modeled as a zero-one integer programming problem. The Lagrangian relaxation method and subgradient optimization procedure have been used to find reasonably good feasible solutions.

The organization of this thesis is as follows: Chapter II is an overview of digital transmission facilities and describes $\mathrm{T} 1, \mathrm{~T} 3$ circuits and digital cross-connect systems.

Chapter III formulates a model of the minimum cost design problem and introduces a Lagrangian relaxation method along with a subgradient optimization procedure. How to implement this technique in network design is also described. Chapter IV presents the results of computational tests. Finally, conclusion and recommendations for further research are offered in Chapter V.

## II. DIGITAL TRANSMISSION FACILITIES

## A. Overview of Digital Transmission

Digital transmission techniques were introduced in the Bell System in the early 1960s for efficient transport of voice signals. At that time, data for computer communications accounteci for a small percentage of network traffic. Therefore, the basic digital transmission structure was centered around human voice communication.

Although a plot of amplitude versus time for a speech sample shows significant high-frequency components, a successful telephone conversation requires less than 4 KHz of audio bandwidth. After being processed by a low-pass filter, a speech sample loses its high-frequency components and is ready to be digitized.

Since the maximum analog frequency to be reproduced is 4 KHz , an $8 \mathrm{Kbit} / \mathrm{s}$ sampling rate was adopted according to the Nyquist theorem. By sampling the voice signal every 125 microseconds, its essential information is extracted from the ana$\log$ format and is ready for digital encoding. This pulse-amplitude modulated(PAIM) signal contains all the information in the original signal up to approximately 4 KHz .

The modulation scheme that was chosen for the early digital transmission standards is the easiest to implement. The pulse code modulation(PCM) is currently used worldwide for a standard voice communication. Figure 1 shows how the voice signal is encoded to digital signal. The pulse amplitude modulation(PAM) signal is quantized by mapping into discrete amplitude levels, each with a unique binary code. Naturally, additional discrete mappings reduce the quantization error and improve the fidelity of the coded signal. The analog voice signal is sampled 8000 times per second with each sample measuring the amplitude of the signal, and sampled amplitude is encoded into an 8 -bit digital code. By creating 8 -bit codes 8000 times per second, the rate of a digitized voice signal is 8 multiplied by 8000 , or $64 \mathrm{Kbit} / \mathrm{s}$. This forms the basic $64 \mathrm{Kbit} / \mathrm{s}$ channel that is the foundation of the digital network. Such a digital channel is often referred to as a DS-0(digital signal level 0 ).


Figure 1: Pulse Code Modulation
The original deploymant of digital transmission was driven by a desire to conserve copper pairs outside telephone offices. Each analog voice signal in the existing telephone network consumed a physical pair of copper wires from a subscriber location to a telephone central office. Once the basic block was digital, it became feasible to multiplex the digital signals together into a higher-order digital signal. The timedivision multiplexing led to defining the next level of the digital hierarchy as being equivalent to 24 DS-0 signals. This level is referred to as DS-1 or T1. [Ref.13]

The multiplexing function that created a DS-1 signal was originally handled by 3 network element known as a digital channel bank or D-bank. Numerous devices, of course, offer T 1 interfaces at these days.

## B. T1 System

1. What is T1?

The Tl system has become one of the most widely used high-capacity systems for transmission of voice and data. Originally conceived as voice transmission
technology in the early 1960s, it has evolved into a cost-effective and highly flexible means of transmitting both voice and data.

T 1 is based on time-division multiplexing (TDM) 24 users onto one physical circuit. It usually involves a digital service unit(DSU) and a channel service unit(CSU) to accomplish the analog-to-digital conversion and the multiplexing. At the inception of T 1 , it was known that solid copper cable was capable of providing frequencies about 100 KHz . Consequently, the earlier frequency division multiplexed(FDM) telephone system multiplexed 24 users onto one copper wire. Each user was assigned a different $4-\mathrm{KHz}$ frequency band. The composite of 24 -voice channels totalled 96 KHz , which was within the capacity of twisted pair wires. [Ref.11]

The T 1 system is designed around a $1.544 \mathrm{Mbit} / \mathrm{s}$ rate, which was about the highest rate that could be supported across twisted pair for a distance of approximately one mile.

T1 has several advantages. The economic incentive to use T1 can be enormous despite the apparent high initial cost cf equipment and the continuing costs for leased lines. An investment in a new network based on T1, however, can break even within one year. The end user organization operating a private Tl network enjoys the diagnostic power to identify and isolate faults and the ability to set up and change connections between points on the network at will. Another advantage is that Tl technology simplifies, and thereby improves corporate communications. Combining multiple voice and data channels over a single high-speed digital circuit eliminates many separate networks and many forms of network management. Therefore, T1 makes network control more practical and improves reliability. With the availability of large amounts of bandwidth, under immediate control, the network operator is able to offer the corporation new services that were not practical in the past. Additional circuits are readily available through reconfiguration. [Ref.11]

## 2. T1 Frame Format

The majority of T 1 offerings digitise the voice signal through PCM or adaptive differential pulse code modulation(ADPCM). Whatever the encoding technique used,


Figure 2: The T1 Based Frame
once the analog images are translated to digital bit streams, many T systems then time-division multiplex voice and data together in 24 or 44 user slots within each frame.

This section introduces the concept that the carriers transmit 24 voice or data channels together with TDM frames. The T1 carrier system provides multiplexing by sampling the 24 channels at a combined rate of 192.000 times per second. Figure 2 shows how the 24 channels are multiplexed into a frame. The frame contains one sample from each channel, plus an additional bit for frame synchronization. Thus, the complete frame contains 193 bits ( 8 bits per channel $\times 24$ channels +1 sync. bit $=193$ bits). In addition. each of the 24 channels requires a $64 \mathrm{Kbit} / \mathrm{s}$ rate ( 8000 samples $/ \mathrm{s} \times \delta \mathrm{bit} / \mathrm{sample}=64 \mathrm{Kbjit} / \mathrm{s})$.

The basic Tl frame consist of 24 eight-bit slots and a framing bit. The details of Tl frame format are characterized by the following concepts:

- Alternate Mark Inversion (AMI)
- ls density requirements
- Bit robbing
- Binary 7 zero substitution ( B 7 ZS )


Figure 3: Format errors Due to Bipolar Code Violation

- Framing bit


## Alternate Mark Inversion

The AMI concept is shown in Figure 3(a). The user may recognize this code as bipolar coding. The T1 system requires that a 1 pulse must be sent as an opposite polarity from the preceding 1 pulse, regardless of the number of $0 s$ in between the two 1s. This bipolar code performs well because it has no direct current component and therefore can be coupled with transformers. The scheme also makes efficient use of bandwidth.

## 1s Density Requirements

T1 provides no separate clocking signal. The timing or clocking information is embedded in the data stream. At the receiving end, the clock is recovered from the data stream by the detection of 1 pulse. If the T 1 data stream has insufficient 1 pulses embedded, the receiver can no longer produce reliable timing out.

To overcome this problem, a certain number of 1 s must be present to ensure proper timing. This concept is called 1 s density. The T 1 facilities require that no more than 15 consecutive 0 s shall be present in the frame. An additional requirement is that there must be at least three ls in every 24 bits.

Due to noise, mechanical failures, etc., the bits may become distorted, which can cause a violation of the AMI rule. Bipolar violations or excessive errors are known as format errors because the errors are not in conformance with the required Tl format. A bit distortion may not cause a format error. As Figure 3(b) through 3(e) show, the nature of the error determines if the bipolar violation is detected. The bipolar signal is altered with errors of omission or errors of commission.

## Bit Robbing

The least significant bit of every time slot in the 'signalling frames' is overwritten to encode the control signals. This concept is called bit robbing.

For the transmission of data, the 8 th bit is unavailable. Consequently, the majority of T1 and related systems use a $56 \mathrm{Kbit} / \mathrm{s}$ transmission rate instead of the $64 \mathrm{Kbit} / \mathrm{s}$ rate actually available.

## Binary 7 Zero Substitution

To establish 1 s density in the T 1 signal, a technique called B 7 zero code suppression is used. As previously discussed, a 1 is substituted in a Tl frame to prevent an occurrence of more than 15 consecutive 0 s . It is possible that this substitution can occur with any bit in the frame. A voice channel can tolerate the loss of the 7th bit to B7 substitution. However, a data channel cannot operate with this arrangement.
lt is not necessary to rob bits in a data channel since there is no telephone signal. However, it is quite possible to have all 0 s in a data channel. Therefore, the data could be corrupted by the B7 zero code suppression technique. The insertion does

## T-1 Facility Termination



Figure 4: T1 Facility Termination
not affect the voice channel, but it certainly affects a data channel. To prevent this problem, a data channel generally only uses 7 bits and any 1 substitution can be placed into the 8 th bit. This prevents the B 7 zero code suppression from corrupting the data channel.

## Framing Bit

To decode the incoming data stream, a receiver must be able to associate each sample with the proper channel. At a minimum, the begining and ending of the frame must be recognized. The function of the framing bit provides this requirement. This bit is located in the 193rd bit of each frame. It is not part of user's information, but added by the system for framing. The use of framing bit varies significantly depending on the type of T 1 and of the technology. [Ref.17]

## 3. T1 Networks

(A) T1 Interface

Figure 4 shows T 1 facility termination. The T 1 facility termination enters the users premises as two wire pairs for data. There may be additional wires for loopback control and testing of unframed lines. The channel service unit (CSU)


Figure 5: Digital Cross-Connect System
provides loopbacks to the network and is the last regeneration point for incoming signals. DSX-1 as an interface is well defined in terms of electrical and mechanical features. A digital service unit (DSU) matches various terminal interfaces to the DSX-1 standard and usually is part of the user's terminal equipment: multiplexer, bandwidth manager, PBX, computer, etc.[Ref.11]
(B) Digital Cross-Connect Systems

Digital cross-connect systems (DCS) are electronic switches able to take bit streams out of the T1-carrier and route them to a given output line. DCS allow remote access to and cross-connection of large bandwidth circuits. Figure 5 shows DCS. DCS can be divided into three primary subsystems.

At the core of the DCS is the Matrix Subsystem where the actual channel level (DS-0) cross-connections take place. DCS systems are controlled by the

## Data Bypass



Figure 6: Data Bypass

Administrative Subsystem, where high-level processors manage the oveiall system functions. Other common elements such as system synchronization and user interface/control port access reside within this subsystem. Finally, there is the Interface Subsystem, which terminates DS-1 or higher facilities. Interface subsystems are organized into growth increments, or units, which accommodate anywhere from 28 to 32 slot positions each. Aside from facility terminations, these slot positions can be used to accommodate features such as sub-rate date multiplexing and bridging of digital services.

Figure 6 shows data bypass based on DCS. Data bypass resembles the drop and insert function of the voice channel bank. What distinguishes the two is that data bypass offers variable bandwidth allocation and additional flexibility in routing connection among many more T 1 links.[Ref.11]

## (C) T1 Networking

Lower cost for digital lines and for customer premises equipment have made all-digital networking not only possible, but attractive. Every location is on the digital backbone, through small sites may be served by $56 \mathrm{Kbit} / \mathrm{s}$ or other data


Figure 7: T1 Networking
link speed less than a full T 1 .
The T1 networking are shown in Figure 7. There are two main benefits in Tl networking. Trends in tariffed costs are up for analog facilities and down for digital facilities. As time goes on, it takes fewer analog lines to justify a digital line. Currently, as few as 3 or 4 leased voice grade lines cost as much as a $56 \mathrm{kbit} / \mathrm{s}$ digital service. As few as two or three 56 K lines cost as much as a T1. The result is that we can cost-justify digital service in more and more locations. Although there exist various types of nodes with a common network management system, everything can be brought under one network management system because T 1 networking is all-digital. [Ref.11]

## C. T3 SYSTEM

## 1. What is T3?

Many corporate managers are administering T1 networks that are growing rapidly with new users asking for more and more bandwidth. Increasingly, data communications managers are eyeing T3 network as a solution to the problems raised by this expansion.

T3 refers to a digital transmission facility running at DS-3 data rate of $44.736 \mathrm{Mbit} / \mathrm{s}$. It is equivalent of 28 Tls , and is more economical than a much less number of T1s. For a distance of less than 50 miles, only four T1s are required to break even.

T3 circuits usually use microwave and optical fiber as transmission media. Optical fiber has a much higher transmission capacity than digital microwave. Digital microwave has some problems. First, the electromagnetic spectrum is strictly licensed by the Federal Communications Commission. Second, strict spectrum allocations imply that digital microwave cannot be readily upgraded in bandwidth. While a $45 \mathrm{Mbit} / \mathrm{s}$ optical fiber can be readily converted to $565 \mathrm{Mbit} / \mathrm{s}$, a $45 \mathrm{Mbit} / \mathrm{s}$ digital microwave setup is probably destined to remain at $45 \mathrm{Mbit} / \mathrm{s}$. Finally, digital microwave devices are inherently limited to line-of-sight distance.

Many T3 networks mix optical fiber and digital microwave. The optical fiber can be used in high-density areas, with microwave hops to lower-density remote locations. Alternatively, the main network can be placed entirely on fiber, with T3 microwave used for emergency restoration in the event of a cable cut. Dual-media transmission is especially attractive to service-critical networks such as banks, airlines, and other on-line transaction-processing companies.

T3 was originally designed to be used as interexchange trunk within the public telephone network.[Ref.13]

## 2. T3 Format

By the end of the 1970s, a way around the limitations of the copper pair was on the horizon. Transmission technologies based on the nearly limitless band-
width of optical fiber were emerging from the laboratory, and a new layer of the digital hierarchy seemed appropriate. Based on technology available at the time, an asynchronous DS-3 rate was defined as the combination of seven DS-2 signals of $6.176 \mathrm{Mbit} / \mathrm{s}$. Framing and stuffing bits, as well as rudimentary error checking and internal communications, were added to the DS-2 tributaries to generate an aggregate bit rate of $44.736 \mathrm{Mbit} / \mathrm{s}$.

Notice that the information content, or payload, of a DS-3 is equal to 672 times $64 \mathrm{Kbit} / \mathrm{s}=43.008 \mathrm{Mbit} / \mathrm{s}$. The additional $1.728 \mathrm{Mbit} / \mathrm{s}$ of overhead represents the sum of the DS-1 framing bit, the DS-2 framing and stuffing bits, and the variety of DS-3 overhead bits. In terms of network efficieny, the DS-3 format devotes 96 percent of the transmission bandwidth to payload, with approximately 4 percent overhead. [Ref.13]

Although the DS-3 was designed to be created from multiple DS-2 signals, there was an obvious inefficiency in using two separate devices for the DS-1-to-DS-2 and DS-2-to-DS-3 multiplexing functions.

There are few choices when it comes to T3 formats. The long established standard in the public network is now called M13. But for technical reasons there are new proposals for formats called Syntran and SONET.
(A) M13 Format

The name M13 comes from the fact that this multiplexer connects the DS-1 to the DS-3 level. One DS- 3 contains 28 DS-1s. They are combined in two steps. The M13 process first joins four DS-1 lines into DS-2 bit stream at 6.312Mbit/s. This step is more than a streight time division multiplexer function. M12 bit-interleaves the four inputs, but it also adds $136 \mathrm{Kbit} / \mathrm{s}$ of overhead and justification or bit stuffing.

The second step within M13 combines seven DS-2 streams into one DS-3. Like M12, the M23 process is bit-interleaved, with justification. That is, the DS-3 clock need not be synchronized with any DS-2 or DS-1 line speed. M13 overruns the DS-2 clock, and bit stuffs or adds extra bits to fill out the DS-3 rate of $44.736 \mathrm{Mbit} / \mathrm{s}$.

Whatever the original reasons for the two-step multiplexing, it creats a
problem for us today. There is no reliable way to tell where a given DS-0 is located within the DS-3 bit stream. This makes it very difficult to extract just one DS-0 because it will have no definite location within the DS-3 frame.

To get at an individual channel you must typically reverse the two step and demux the DS-3 down to individual DS-1s. The need for a DS-3 digital access and cross-connect system(DACS) is clear. To get simple switching capability among DS-3 lines, a better format is required. [Ref.11]
(B) Syntran

The Syntran has been proposed by Bellcore. Syntran describes how to multiplex DS-0 and DS-1 signals into a DS-3, in a fully synchronous format.

The resulting bit stream has the same rate as the standard. Syntran offers two important features.

- Synchronous format allows easy DACS switching of DS-0 and DS-1 channels among DS-3 ports.
- The aggregate bit rate is compatible with the large number of existing DS-3 transmission facilities installed in North America.

Unfortunately for the global network, DS-3 is seldom found outside of North America. And while M13 and Syntran are defined as electrical interfaces, the new installations of facilities near that speed are mostly optical fiber.[Ref.13]
(C) SONET

SONET(Synchronous Optical Network) is much more than DS-3. The goal is a standard for interconnection of different national networks at speeds from about $150 \mathrm{Mbit} / \mathrm{s}$ up to several gigabits/s. The DS-3 level is only one portion of the standard, intended for network access from customer premises.

SONET operates at multiples of T3 bandwidth. Initially, products will be offered at the following bit rates (OC stands for Optical Carrier): OC-1, $51.84 \mathrm{Mbit} / \mathrm{s}$; OC-3, 155.52Mbit/s; OC-12, $622.08 \mathrm{Mbit} / \mathrm{s} ; \mathrm{OC}-48,2.49 \mathrm{Gbit} / \mathrm{s}$.

As a synchronous standard, SONET is well-suited for switching tributary signals within a higher bandwidth pipe. Initially, switching will be limited to Tl and DS-0 signals, but other service offerings will be defined in the future.

SONET is fully backward-compatible with the ANSI synchronous T3 format; it is partially backward-compatible with order asynchronous T3 equipment such as M13s. It does not affect users of digital microwave radio, since there is little need for a synchronous standard higher than T 3 for these applications. [Ref.13]

## 3. T3 Networks

Implementing a T3 corporate backbone provides users with a measure of flexibility and control over the network. At the low-speed end, circuits may be either $56 \mathrm{Kbit} / \mathrm{s}$ or $64 \mathrm{Kbit} / \mathrm{s}[$ Ref.13]. These may be used for voice or data services.

The capability to switch the variety of circuits allows the user to put up and take down circuits of differing rates on the T3 backbone as requirements change, without having to work through an external network provider. This can take the form of reducing lead time for a circuit order, time-of-day circuit changes, or quick response to a temporary overload condition in some part of the network.

T3 networks are based on one or more of the following types of DCS's.

1. Point to point terminals: M13 multiplexers with 28 T 1 s in and one DS-3 out.
2. Multiple M13 multiplexers in a single chassis: something like a 48 -port D4 channel bank that followed the 24 -port D3.
3. Networking of multiple DS-3 lines into one hub with the ability to crossconnect DS-1s and even DS-0s within that hub.

Level 3 generally is possible only with one of the synchronous formats, not with classic M13. Devices with this performance are installed at operating companies.

Network topologies for T3 backbones will evolve from point to point up to the partial mesh or interlocking rings familiar from T 1 nets. There will be many
fewer sites that can cost-justify multiple DS-3s than there will be Tl hubs. The combination likely to be most common is a sparse DS-3 backbone surrounded by a T1 network. [Ref.11]

## III. MODEL FORMULATION AND SOLUTION

This chapter discusses how to formulate the minimum cost design of $\mathrm{T} / \mathrm{T} 3$ networks, and explains the heuristic procedure for optimal solutions based on the Lagrangian relaxation method.

## A. MATHEMATICAL FORMULATION

In order to model the minimum cost design of a network, we consider several things. The amount of traffic between each node and every other node is given and we define the set of circuit types each of which is a mix of $\mathrm{T} 1, \mathrm{~T} 3$ and fractional T 1 . If a network contains $n$ nodes, there would be $n(n-2) / 2$ rommunicating source-destination pairs that select routes from sets containing from a few thousand to hundreds of thousands of candidate routes, leading to very large problem sizes. Therefore, to simplify the computation, we assume that the maximum length of the path for each pair is less than a specified number of hops. For example, the network designer may specify that routes between two nodes should pass through no more than two additional nodes.

We introduce the following notations to present the mathematical formulation of the problem.
$P:$ The index set of the communicating source-destination pairs
$R_{p}$ : The index set of candidate routes for the source-destination pair $p \in P$. The set of candidate routes is generated by a route generation algorithm. A route is characterized by the ordered set of links from source to destination node.
$L:$ The index set of candidate links in the T1/T3 network.
$T$ : The index set of circuit types.
$X_{p r}$ : A decision variable which is one if the source-destination pair $p$ takes the route $r$ and zero otherwise.
$Z_{l t}:$ A decision variable which is one if the link $l$ is supported by the circuit type $t$ and zero otherwise.
$Q_{t}:$ The number of DS-0 channels that can be carried over a circuit type $t$.
$a_{p}$ : The number of DS-0 channels demanded by the source-destination pair $p$.
$C_{l t}$ : The costs for leasing a circuit type $t$ on link $l$.
$I_{r l}:$ An indicator function which is one if link $l$ is used in route $r$ and zero otherwise.

Using the above notations, we formulate the minimum cost design problem as iollows:

Problem P:

$$
\begin{equation*}
Z_{P}=\min \sum_{l \in L} \sum_{t \in T} C_{l t} Z_{l t} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{array}{rlr}
\sum_{r \in R_{p}} X_{p r}=1 & \forall p \in P \\
\sum_{p \in P} \sum_{r \in R_{p}} a_{p} I_{r l} X_{p r} \leq \sum_{t \in T} Q_{t} Z_{l t} & \forall l \in L \\
\sum_{t \in T} Z_{l t} \leq 1 & \forall l \in L \\
0 \leq X_{p r} \leq 1, & 0 \leq Z_{l t} \leq 1 & \text { integer } \tag{5}
\end{array}
$$

The constraint (2) ensures that each source-destination pair selects exactiy one route for transmission. The constraint (3) ensures that the number of DS-0 channels on each link does not exceed its capacity. The selection of at most one circuit type for each link is ensured by constraint (4). Problem $P$ is a linear zero-one integer programming problem which can be shown to be NP-hard.

Based on the current status of the computational ability, the idea of solving Problem $P$ optimally is rejected. The idea of using piecewise linearization of the objective function and solving the linear programming problem is also rejected for
the reason that the linear relaxation of Problem $P$ is very large and its optimal solution requires a significant conrutational effort and may generate a fractional solution.

## B. LAGRANGIAN RELAXATION

, 山e of the most computationally useful ideas of the 1970s is the observation that many hard problems can be viewed as easy problems complicated by a relatively small set of side constraints. Dualizing the side constraints produces a Lagrangian problem that is easy to solve and whose optimal value is a lower bound for minimization problems on the optimal value of the original problem. The Lagrangian problem can thus be used in place of a linear programming relaxation to provide bounds in a branch and bound algorithm. The Lagrangian approach offers a number of important advantages over linear relaxation.

Lagrangian methods had gained considerable currency by the 1974 when Geoffrion coined the perfect name for this approach - Lagrangian relaxation. Since then the list of applications of Lagrangian relaxation has grown to include over a dozen of the most infamous combinatorial optimization problems. For most of these problems, Lagrangian relaxation has provided the best existing algorithm and has enabled the solution of problems of practical size. [Ref.3]

In the previous section, we already made a mathematical formulation for minimum cost design problem. We know that there are two natural Lagrangian relaxation for Problem P. The first is obtained by multipling the constraint (3) by a vector of positive Lagrange multipliers, $U_{l}, l \in L$, and adding them to the objective function.

Problem $D_{1}$ :

$$
\begin{align*}
Z_{D_{1}}(U) & =\min \sum_{l \in L} \sum_{t \in T} C_{l t} Z_{l t}+\sum_{l \in L} U_{l}\left[\sum_{p \in P} \sum_{r \in R_{p}} a_{p} I_{r l} X_{p r}-\sum_{t \in T} Q_{t} Z_{l t}\right] \\
& =\min \sum_{l \in L} \sum_{t \in T}\left(C_{l t}-U_{l} Q_{t}\right) Z_{l t}+\sum_{l \in L} \sum_{p \in P} \sum_{r \in R_{p}} U_{l} a_{p} I_{r l} X_{p r} \tag{6}
\end{align*}
$$

subject to

$$
\begin{aligned}
& \sum_{r \in R_{p}} X_{p r}=1 \quad \forall p \in P \\
& \sum_{t \in T} Z_{l t} \leq 1 \quad \forall l \in L \\
& 0 \leq X_{p r} \leq 1, 0 \leq Z_{l t} \leq 1 \quad \text { integer }
\end{aligned}
$$

The set of feasible solutions for Problem $P$ is a subset of the set of feasible solutions for the Lagrangian relaxation $D_{1}$. The positivity of $U$ ensures that in any feasible solution for Problem $P$, the expression

$$
\sum_{l \in L} U_{l}\left[\sum_{p \in P} \sum_{r \in R_{p}} a_{p} I_{r l} X_{p r}-\sum_{t \in T} Q_{t} Z_{l t}\right]
$$

is nonpositive, and thus, the value of the objective function in (6) is never greater than the value of the objective function in Problem P. Thus, whenever Problem $P$ has a feasible solution, $Z_{D_{1}}(U)$ is less than or equal to $Z_{P}$. For each vector of multipliers $U, Z_{D_{1}}(U)$ is a lower bound for $Z_{P}$.

The second relaxation is obtained by dualizing constraint (2) with nonpositive Lagrange multipliers, $V_{p}, p \in P$.

Problem $D_{2}$ :

$$
\begin{equation*}
Z_{D 2}(V)=\min \sum_{l \in L} \sum_{t \in T} C_{l t} Z_{l t}+\sum_{p \in P} V_{p}\left[\sum_{r \in R_{p}} X_{p r}-1\right] \tag{7}
\end{equation*}
$$

subject to

$$
\begin{aligned}
\sum_{p \in P} \sum_{r \in R_{p}} a_{p} I_{r l} X_{p r} \leq \sum_{t \in T} Q_{t} Z_{l t} & \forall l \in L \\
\sum_{t \in T} Z_{l t} \leq 1 & \forall l \in L \\
0 \leq X_{p r} \leq 1, & 0 \leq Z_{l t} \leq 1
\end{aligned} \quad \text { integer }
$$

Comparing above two Lagrangian relaxations, we see that the second relaxation is harder to solve but might provide better bounds. This thesis uses the first Lagrangian
relaxation for implementation and computational results.

## C. SUBGRADIENT OPTIMIZATION PROCEDURE

Several methods have been suggested in the literature for computing a vector of optimal Lagrange multipliers. These include various versions of the simplex method implemented using column generation procedures, dual ascent and multiplier adjustment procedures, and a subgradient optimization procedure[Ref.3]. Subgradient optimization methods have been shown to be very effective in a variety of combinatorial optimization problems such as the traveling salesman problem, topological design of computer communication systems, and lot-sizing algorithms for complex product structures[Ref.1]. Therefore, we decided to employ subgradient optimization techniques.

The subgradient method is a brazen adaptation of the gradient method in which gradients are replaced by subgradients.

Let ( $\left.X_{p r}(U), Z_{1 t}(U)\right)$ be the optimal solution to the Lagrangian problem $D_{1}$ for a fixed vector $U$. A subgradient is the vector with coordinates

$$
\gamma_{l}(U)=\sum_{p \in P} \sum_{r \in R_{p}} a_{p} I_{r l} X_{p r}(U)-\sum_{i \in T} Q_{t} Z_{i t}(U) \quad \forall l \in L
$$

Given an initial value $U^{0}$, a sequence $U^{k}$ is generated by the iterative formula

$$
U_{l}^{k+1}=U_{l}^{k}+t_{k} \gamma_{l}^{k}
$$

where $t_{k}$ is a positive scalar stepsize. It is known that $U_{l}^{k}$ converges to the optimal Lagrange multiplier $U^{*}$ provided that $t_{k}$ converges to 0 and $\sum t_{k}$ diverges. The stepsize most commonly used in practice is

$$
t_{k}=\frac{\lambda_{k}\left[\hat{Z}_{P}-Z_{D 1}\left(U^{k}\right)\right]}{\left\|\gamma_{i}^{k}\right\|^{2}}
$$

where $\lambda_{k}$ is a scalar satisfying $0<\lambda_{k} \leq 2$ and $\hat{Z}_{P}$ is an upper bound on $Z_{D 1}(U)$, frequently obtained by applying a heuristic to Problem $P$. Often the sequence $\lambda_{k}$ is determined by setting $\lambda_{0}=2$ and halving $\lambda_{k}$ whenever $Z_{D_{1}}(U)$ has failed to increase
in some fixed number of iterations. This rule has performed well empirically, even though it is not guaranteed to satisfy the sufficient condition given above for optimal convergence.

The steps involved in the subgradient optimization procedure are as follows.

## 1. Initialization:

(a) Using a heuristic, compute an overestimate $\hat{Z}_{P}$ of $Z_{P}$ or set $\hat{Z}_{P}$ to an arbitrarily large value.
(b) Select an initial set of multipliers $U^{0}$; and set $K$, the iteration counter, to 0 , and the improvement counter to 0 ; and $\lambda$ a parameter for adjusting the stepsize to $\lambda^{0}$ (an arbitrary positive initial value, e.g., 2).
2. Solving the Lagrangian problem:
(a) Increment the improvement and iteration counters by 1.
(b) Solve the Lagrangian problem using $U^{k}$ as the Lagrange multipliers. Thus, obtain $Z_{D 1}\left(U^{k}\right)$ and $X_{p r}^{K}, Z_{l t}^{k}$.
3. Testing and updating parameters:
(a) If $Z_{D_{1}}\left(U^{k}\right)$ is greater than the current best value of $Z_{D_{1}}(U)$ then replace the current best value of $Z_{D_{1}}(U)$ by $Z_{D_{1}}\left(U^{k}\right)$ and set $U^{*}$ to $U^{k}$. Also reset the improvement counter to -1 .
(b) If $X_{p r}^{k}$ and $Z_{l t}^{k}$ are feasible for Problem $P$, compute the value of its associated objective function for Problem $P$. If this value is less than the current value of $\hat{Z}_{P}$, then set $\hat{Z}_{P}$ to this value.
(c) If the improvement counter has reached a prespecified upper limit, then set $\lambda$ to $\lambda / 2, \boldsymbol{U}^{k}$ to $U^{*}$, the improvement counter to 0 and go to $2(\mathrm{a})$.
(d) If the iteration counter has exceeded a prespecified limit, if $\lambda$ is less than a prespecified limit, if $t_{k}$ is less than a prespecified limit, or if $\left(\hat{Z}_{P}-\right.$ $\left.Z_{D 1}\left(U^{*}\right)\right) / Z_{D 1}\left(U^{*}\right)$ is less than a prespecified error tolerance, then stop.
4. Updating the multipliers :
(a) Compute a new subgradient.

$$
\gamma_{l}^{k}=\sum_{p \in P} \sum_{r \in R_{p}} a_{p} I_{r l} X_{p r}^{k}-\sum_{t \in T} Q_{t} Z_{l t}^{k} \quad \forall l \in L
$$

(b) Compute the new stepsize.

$$
t_{k}=\frac{\lambda\left[\hat{Z}_{P}-Z_{D_{1}}\left(U^{k}\right)\right]}{\left\|\gamma_{l}^{k}\right\|^{2}}
$$

(c) Compute the new multipliers.

$$
U_{l}^{k+1}=U_{l}^{k}+t_{k} \gamma_{l}^{k} \quad \forall l \in L
$$

(d) set $k$ to $k+1$.
5. Go to 2.

## D. SOLVING THE LAGRANGIAN PROBLEM

The computational efficiency of the subgradient optimization procedure depends on our ability to solve efficiently the Lagrangian problem which is generated in step 2(b) of the subgradient optimization procedure. Fortunately, for a fixed set of multipliers, the Lagrangian problem is separable into subproblems which are readily solved.

Since there are no coupling constraints between the $X_{p r}$, and $Z_{l t}$ variables, the Lagrangian problem $D_{1}$ can be decomposed into two subproblems as $Z_{D 1}(U)=$ $Z_{D 11}(U)+Z_{D 12}(U)$ where

Subproblem $D_{11}$ :

$$
\begin{equation*}
Z_{D 11}(U)=\min \sum_{l \in L} \sum_{p \in P} \sum_{r \in R_{p}} U_{l} a_{p} I_{r l} X_{p r} \tag{8}
\end{equation*}
$$

subject to

$$
\begin{array}{ll} 
& \sum_{r \in R_{p}} X_{p r}=1
\end{array} \quad \forall p \in P
$$

and
Subproblem $D_{12}$ :

$$
\begin{equation*}
Z_{D 12}(U)=\min \sum_{l \in L} \sum_{t \in T}\left(C_{l t}-U_{l} Q_{t}\right) Z_{l t} \tag{9}
\end{equation*}
$$

subject to

$$
\begin{array}{ll}
\sum_{t \in T} Z_{l t} \leq 1 \\
\text { integer }
\end{array} \quad \forall l \in L
$$

Subproblem $D_{11}$ can be separated into $|P|$ subproblems, one for each pair, where the subproblem associated with the $p^{t h}$ pair is

$$
Z_{D 11}^{p}(U)=\min a_{p} \sum_{r \in R_{p}}\left[\sum_{l \in L} U_{l} I_{r l}\right] X_{p r}
$$

subject to

$$
\begin{aligned}
& \sum_{r \in R_{p}} X_{p r}=1 \\
& 0 \leq X_{p r} \leq 1 \text { integer }
\end{aligned}
$$

and then $Z_{D 11}(U)=\sum_{p \in P} Z_{D 11}^{p}(U)$.
Subproblem $D_{12}$ can also be separated into $|L|$ subproblems, one for each link, where the subproblem associated with the $l^{\text {th }}$ link is

$$
Z_{D 12}^{l}(U)=\min \sum_{t \in T}\left(C_{l t}-U_{l} Q_{t}\right) Z_{l t}
$$

subject to

$$
0 \leq Z_{l t} \leq 1 \quad \sum_{\substack{t \in T \\ \text { integer }}} Z_{l t} \leq 1
$$

and then $Z_{D 12}(U)=\sum_{t \in T} Z_{D 12}^{\prime}(U)$.

## E. IMPLEMENTATION PROCEDURE

To test the applicability of the subgradient optimization procedure to network design problems and to obtain estimates on the quality of bounds and solutions generated, this thesis implemented the procedure proposed in previous section in turbo Pascal on IBM PC computer.

## 1. System Flow

The program consists of two main parts. The first is data generation, and the second is problem solving. Figure 8 shows the system flow. The program is initiated by entering the number of nodes. It then creates data file with source-destination node pairs, and their distance and amount of data traffic. The user is then prompted to enter a number that he/she wantsa to generate a set of candidate routes. Next, the user is prompted to specify a number of subgradient parameters.

Two types of iterations, major and minor, are defined in the program. A major iteration consists of many minor iterations, each of which is an evaluation of the current value of the objective function, a choice of subgradient direction and modification of the value of $U$. The minor iterations terminate when one of the stopping conditions is satisfied such as the difference between the best feasible solution and the lower bound based on the Lagrangian dual is small, the subgradient is small or an upper limit on the number of iterations has been reached.

Throughout the optimization process, the program updates the Lagrangian value, the multipliers generated in each major iterations and the best feasible solution yet generated.

Based on the output generated after a major iteration, the user may terminate or reenter the subgradient optimization procedure by changing the number of routes, iteration counter or improvement counter. This iterative process continues until the solution does not get improved.


Figure 8: System Chart

## 2. Heuristic

The subgradient optimization procedure requires an overestimate $\hat{Z}_{I P}$ on $Z_{D 1}\left(U^{*}\right)$ used to update the Lagrange multipliers. This overestimate can be a feasible solution generated by a heuristic. Figure 9 shows the heuristic that has been used in this thesis to generate good feasible solutions.

In each minor iteration of the subgradient optimization procedure, dual solution $X_{p r}^{k}$ and $Z_{l t}^{k}$ are obtained. These solutions might be infeasible because a set of capacity constraint (3) was relaxed. This constraint, therefore, may be violated by the dual solution $X_{p r}^{k}$ and $Z_{l t}^{k}$,

$$
\sum_{p \in P} \sum_{r \in R_{p}} a_{p} I_{r l} X_{p r}>\sum_{i \in T} Q_{t} Z_{l t} \quad \exists l \in L
$$

By correcting this infeasibility situation for all $l$ which has been violated,

$$
\sum_{p \in P} \sum_{r \in R_{p}} a_{p} I_{r l} X_{p r} \leq \sum_{t \in T} Q_{t} Z_{l t} \quad \forall l \in L
$$

the solution becomes feasible.
If this feasible solution is smaller than previous best feasible solution which is upper bound, it replaces the previous solution and becomes the new best feasible solution.
INPUT : Infeasible Dual Solution $X_{p r}^{k}$ and $Z_{l t}^{k}$OUTPUT: Feasible Solution
BEGIN
OBJECTIVE :=0;
FOR each Link l
BEGIN
$\mathrm{t}:=0 ;$
WHILE $a_{p} I_{r l} X_{p r}>Q_{t}$ DO
$\mathrm{t}:=\mathrm{t}+\mathrm{l} ;$
$Z_{l i}^{k}:=\mathrm{t} ;$
OBJECTIVE $:=$ OBJECTIVE $+C_{l t} Z_{l t}$
END; ( FOR LOOP )
IF OBJECTIVE < UPPER-BOUND THEN
UPPER-BOUND := OBJECTIVE;
END. ( HEURISTIC )

Figure 9: Heuristic

## IV. COMPUTATIONAL RESULTS

The solution approach proposed in Chapter III has been tested using network design problems.

## A. Computational Experiments

The procedure was tested under two situations: Under one situation [case A], the cost of T 3 circuit was 9 times of cost of T1. The other situation [case B ] was such that the cost of T3 circuit was 5 times of T1. Under each situation, we have tested several networks that have different number of nodes. To find better feasible solutions, we have tested this procedure several times changing the number of candidate routes $8,12,16$ and 20 candidate routes.

The distance and amount of traffic for each of source-destination node pairs and circuits information were randomly generated by the random number generation procedure. Figure 10 shows one of sample data used.

The procedure has the number of subgradient parameters. For the test, we initially set $\lambda^{0}$ to 0.5 and $U^{0}$ to 0 . The stopping criteria parameters are set as follows: stepsize limit to 0.0001 , error limit to 0.005 , and iteration limit to 100 .

## B. Summary of Computational Results

The results of the computational tests on the five randomly generated problems are summarized in the Table 1 and 2. The values shown in the tables represent the feasible solutions for network with $6,10,15,20$ and 25 nodes. The asterisk means that the previous feasible solution is not improved.

While testing the procedure, we had some problems with the size of main memory and the processing times. One of the problems was memory overflow error when we were trying to enlarge the number of node, the number of candidate route of each pair, and/or the number of circuit. Since it takes $O\left(n^{n-2}\right)$ times to locate all candidate


Figure 10: Sample Input Data


Figure 11: Graph of Time Complexity
routes, we limited the maximum number of hops of candidate routes to 4 and the maximum number of nodes to 25 . Figure 11 shows how much time is required as the number of nodes increases.

Table 1 and 2 summarized the results obtained for networks with the different candidate routes. In most of cases, the feasible solution improve when the number of candidate routes increases.

| Ni | Nic | 1 | 2 | 3 | 4 | 5 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 6 | 8 | 180175 | 253761 | 242297 | 185416 | 221353 |
|  | 12 | 178883 | $*$ | 238662 | 185119 | $*$ |
|  | 16 | $*$ | $*$ | $*$ | $*$ | $*$ |
|  | 20 | 178001 | 253413 | $*$ | 183249 | $*$ |
| 10 | 8 | 629591 | 505213 | 530912 | 613584 | 569267 |
|  | 12 | $*$ | 486110 | 530421 | $*$ | $*$ |
|  | 16 | 622310 | 449811 | 522941 | 577069 | 568054 |
|  | 20 | 621037 | $*$ | $*$ | $*$ | 547983 |
| 15 | 8 | 1415404 | 1678792 | 1110691 | 1453550 | 1373344 |
|  | 12 | 1414896 | 1605410 | 1060431 | 1398207 | 1291821 |
|  | 16 | 1388078 | 1474272 | 1048101 | 1382763 |  |
|  | 20 | 1343018 | $*$ | $*$ | 1355496 | 1240806 |
| 20 | 8 | 2262668 | 2278370 | 2501282 | 2645749 | 2226695 |
|  | 12 | 2162049 | 2227108 | 2468560 | 2578408 | 2148869 |
|  | 16 | 2114736 | 2176106 | $*$ | 2542664 | 2098762 |
|  | 20 | $*$ | $*$ | 2460715 | 2509654 |  |
| 25 | 8 | 3701524 | 3482153 | 3497099 | 3724747 | 4357936 |
|  | 12 | 3595955 | 3474732 | 3302242 | 3712604 | 4258339 |
|  | $*$ | $*$ | 3382492 | $*$ | 3685839 |  |
|  | 16 | $*$ | $*$ | $*$ | $*$ | 4176299 |
|  | 20 | $*$ |  |  | $*$ |  |

$N_{1}$ : Number of nodes
$N_{c}$ : Number of candidate routes for each node pair

* : Indication for nonimprovement

Table 1: Summary of Feasible Solutions: Case A

| Ni | Nc | 1 | 2 | 3 | 4 | 5 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 6 | 8 | 127895 | 185711 | 138250 | 171362 | 129688 |
|  | 12 | $*$ | $*$ | $*$ | $*$ | $*$ |
|  | 16 | 125755 | $*$ | 136375 | $*$ | $*$ |
|  | 20 | $*$ | 178148 | 134125 | 171363 | $*$ |
| 10 | 8 | 436919 | 378817 | 378229 | 438411 | 437988 |
|  | 12 | $*$ | 348660 | $*$ | 417009 | 410846 |
|  | 16 | 428966 | $*$ | $*$ | 377508 | $*$ |
|  | 20 | $*$ | 326292 | 361724 | $*$ | $*$ |
| 15 | 8 | 1015946 | 1184250 | 770354 | 1000964 | 954370 |
|  | 12 | 979128 | 1156759 | $*$ | $*$ | 909834 |
|  | 16 | $*$ | $*$ | 751964 | 973137 | $*$ |
|  | 20 | 944654 | 1055800 | $*$ | 947506 | 894031 |
| 20 | 8 | 1610162 | 1682611 | 1859701 | 1888310 | 1744943 |
|  | 12 | 1500080 | 1496639 | 1771325 | 1749449 | 1507031 |
|  | 16 | $*$ | $*$ | 1682985 | $*$ | $*$ |
|  | 20 | $*$ | $*$ | $*$ | 1708854 | 1495353 |
| 25 | 8 | 2730969 | 2678297 | 2645483 | 2628391 | 3166161 |
|  | 12 | 2613587 | 2578349 | 2408956 | $*$ | 3048471 |
|  | 16 | 2438277 | 2508159 | 2391261 | $*$ | 2985384 |
|  | $*$ | $*$ | $*$ | 2522723 |  |  |
|  | 20 | $*$ |  |  |  | $*$ |

Table 2: Summary of Feasible Solutions : Case B

## V. CONCLUSION

We have made a mathematical formulation for minimum cost design of digital communication network. This thesis used the Lagrangian relaxation and the subgradient optimization procedure to obtain lower bounds and feasible solutions in minimizing the cost of network design with given node location and traffic of each node pairs. Computational experience indicates that this procedure is effective in most instances. The quality of bound generated depends to a large extent on the limits set on the improvement and iteration counters. Low settings terminate the procedure before it reaches a good feasible solution, while high settings consume excessive computing resources. Good settings of these parameters require careful balancing between these two consideration.

The difference between upper bound and lower bound was fifty to seventy percent in our experiments. Our conjecture is that the other constraint relaxation is required to get a better bound. This thesis did not explore that constraint relaxation.

Our model can be extended by considering reliability constraints, which is left for future research.

## A. DATA STRUCTURE DESCRIPTION

```
{***t**************************************************)
{* TITLE : Minimum Cost Design of Network * HOTHOR : Hwang, Yong GOo *
(* DATE : 13 June 1990 *)
{* REVISE : 15 NOV. 1990 * }
{ DESCRIPTION : This program is to get best * }
(* feasible solution for minimum cost design of *)
{ network. It has been implemented in Turbo * }
{ Pascal and run on IBM PC computer. * }
{* System flow is as follows: *)
{* 1. Generate data and store it to 'net.dat' *}
                file.
                *)
                    - node pairs information *)
                    - circuit information *}
            2. Get data from 'net.dat' file * }
                    - make route table *}
            3. Solve the problem * }
```



```
PROGRAM NETWORK_DESIGN;
```

USES CRT, GRAPH;

## CONST

VIARGE $=1 \mathrm{e} 20$;
MAX_I = 20; ( maximum No. of nodes )
MAX_P $=190$;
$\mathrm{MAX}^{-} \mathbf{R}=6000$;
MAX_T $=$ 200; ( maximum size of circuit \}
$m^{-} n c=20 ; \quad$ ( maximum No. of candidate routes )
F_NAME $=$ 'net. dat';
FIIE_NAME = 'out.dat';

## TYPE

NODE $=1 .$. MAX_I; $^{\text {I }}$
PAIR $=0 . . \mathrm{MAX}^{2}$;
CNFG $=0 . . \mathrm{MAX}^{T} \mathrm{~T} ;$
POINT $=\operatorname{ARRAY[1..100]~OF~INTEGER;~}$

```
    CIRCUTE = RECORD
        FTT1 : INTEGER;
        T_1 : INTEGER;
        T 3 : INTEGER;
        CAPACITY: INTEGER;
        COST : INTEGER;
    END;
    CIRCUTE_TABLE = ARRAY[0..MAX_T] OF CIRCUTE;
    SD_PAIR = RECORD
        S : INTEGER;
        D : INTEGER
    END;
    PAIR_TABLE = ARRAY[1..MAX_P] OF SD_PAIR;
VAR
    i: NODE;
    p: PAIR;
    t: CNFG;
    r,ni,np,nr,nt,nc : INTEGER;
    ORGN,DSTN: array[1..MAX_P] of NODE;
    DISTANCE,TRAFFIC: array[1..MAX_P] of REAL;
    CAPA,RATE: array[0..MAX_T] Of REAL;
    ROUTE: array[0..MAX_R,I..4] of PAIR;
    px,dx: array[1..MAX_P] of 0..MAX_R;
    pz,dz: array[O..MAX_P] of CNFG;
    ITRCTR,ITRLIM,IMPCTR,IMPLIM: INTEGER;
    UPPBND,LOWBND, pobj,dobj: REAL;
    NORM,ERRORLIM, LAMBDA,LAMBDALIM,STEPSIZE: REAL;
    ALPHA,BEST_ALPHA,SUBGRAD: array[O..MAX_P] of REAL;
    OPTIMAL,TERMINATED,FRAGI: BOOLEAN;
    DATA FILE : TEXT;
    POINT X, POINT Y : POINT;
    T_TAB\overline{LE : CIRCUTTE_TABLE;}
    S_D_PAIR : PAIR_TABLE;
    ANNSI : CHAR;
```



## PROCEDURE GENERATE_DATA;

VAR

```
    t : INTEGER;
```

    \{********************************************
    PROCEDURE T_TABLE_GENERATION;
    VAR
        i, j, k : INTEGER;
        BEGIN
        nt \(:=0\);
        FOR \(i:=0\) TO 2 DO
            FOR \(j:=0\) TO 9 DO
            FOR \(k:=0\) TO 3 DO
            BEGIN
                T_TABLE[nt].FT_1 :=k;
                T_TABLE[nt].T_I \(:=j\);
                T_TABLE[nt].T-3 \(:=1\);
                T_TABLE[nt].CĀPACITY : \(=k * 6+j * 24+i * 672 ;\)
                    CASE \(k\) OF
                            1 : T_TABLE[nt].COST := \(10+j * 21+i * 219 ;\)
                                2 : T_TABLE[nt].COST := \(15+j * 21+i * 219 ;\)
                                3 : T_TABLE[nt].COST : \(=19+j * 21+i * 219 ;\)
                    ELSE
    ```
                        T_TABLE[nt].COST := j*21 + i*219;
    END;
    nt := nt + 1;
END;
```

END;
\{********************************************
FUNCTION RANDINT (MIN,MAX : INTEGER): INTEGER;
\{* The RANDINT function suppliers a random integer within the range of the specified arguments min and max. For example, RANDINT $(10,20)$ gives a random integer between 10 and 20. *)
CONST
MININT $=-5000$;
VAR
RANDRANGE : INTEGER;
BEGIN
IF (MIN < MININT) THEN
MIN : = MININT;
RANDRANGE : = MAX - MIN + 1;
RANDINT := RANDOM(RANDRANGE) + MIN;
END;
\{*************************
PROCEDURE NODE_GENERATION;
VAR
$n$ : INTEGER;
BEGIN

```
FOR n := 1 TO ni DO
    BEGIN
        POINT_X[n] := RANDINT(50,1000);
        POINT_Y[n] := RANDINT(30,800);
    END;
```


## END:

## \{*************************

PROCEDURE PAIR_GENERATION;

## VAR

j, $k, m, p: I N T E G E R ;$
DISTANCES : REAL;
TRAFFIC_VOLUNN, TEMP_TRAFFIC_VOLUMN : INTEGER; X, Y : $\bar{R} E A L ;$

BEGIN

```
p:= 0;
FOR j := 1 TO (ni - 1) DO
        BEGIN
            m:= j + 1;
            FOR k := m TO ni DO
                BEGIN
                    p := p + 1;
                    S_D_PAIR[p].S := j;
                            S_D_PAIR[P].D := k;
                            X:= POINT_X[j] - TIINT_X[k];
                    Y := POINT_Y[j] - POI'IT_Y[k];
                    DISTANCES : == SQRT((X * \overline{X})+(Y * Y));
                    TEMP_TRAFFIC_VOLUMN := RANDINT(-30,100);
                    IF (TTEMP_TRAFFIC_VOLUMN < 0) THEN
                    TRAFFIC_VOLUMN
                    ELSE
                    TRAFFIC_VOLUMN := TEMP_TRAFFIC VOLUMN;
                    WRITELN(DATA_FILE, j:5, k:5, DISTA
                        TRAFFIC_VOLUMN:10);
            END;
    END;
```

END;
\{* main part of data generation *\}
BEGIN
ASSIGN (DATA_FILE, F_NAME);
REWRITE(DATA_FILE);
RANDOMIZE;
WRITELN(' Enter number of NODEs? ');

READLN(ni);
np := ni*(ni-1) DIV 2;
T_TABLE_GENERATION;
\{ ${ }^{\text {* }}$ WRITELN(DATA_FILE, ni:5, np:5, nt-1:5); *\}
NODE_GENERATION;
PAIR_GENERATION;
FOR $\mathrm{t}:=1$ TO (nt-1) DO
WRITELN(DATA_FILE, T_TABLE[t].CAPACITY:6,
CLOSE(DATA_FILE);
END;

## C. SOLVING LAGRANGIAN PROBLEM PROCEDURE

```
{******************************************************)
{* TITLE : Generate source-destination pair *}
{* AUTHOR : Hwang, Yong Goo *}
{* DATE 18 July 1990 *)
{* REVISE : 18 July 1990 *)
{* DESCRIPTION : This function provides a node pair *)
{****************************************************** }
FUNCTION p_(i,j: NODE): PAIR;
VAR
    O,d : NODE;
    p : INTEGER;
```


## BEGIN

```
IF i < j THEN
    BEGIN
            O:=1;
            d:=j;
        END
ELSE
        BEGIN
            o:=j;
            d:=i;
        END;
    p:=0;
REPEAT
    p:=p+1;
UNTIL (ORGN[P] = 0) and (DSTN[p] = d);
p_:=p;
```

END:

```
{******************************************************)
{* TITLE : Get data and Make route table *)
{* AUTHOR : Hwang, Yong Goo *}
{* DATE 18 July 1990 *)
{* REVISE : 12 Oct. }1990\mathrm{ * *)
```

```
(* DESCRIPTION : This procedure make route table
```

PROCEDURE GET_DATA;

```

VAR
p: PAIR;
t: CNFG;
datf: text;
\{************************
PROCEDURE BUILD_ROUTE_TABLE;
TYPE
rte \(=\) RECORD
11,12,13,14: PAIR;
ds: REAL;
END;
ptr = ^rte;
VAR
i,j,k: NODE;
p,lkl,lk2,1k3,1k4: PAIR;
c: INTEGER;
dists: REAL;
ptrs: ARRAY[1..max_nc] of ptr;
aptr: ptr;
nset: SET OF NODE;
LONGER: BOOLEAN;
\{********************************
PROCEDURE REVISE_PTRS (k: INTEGER);
VAR
c: INTEGER;
BEGIN
```

IF k < nc THEN
IF dists < ptrs[k]^.ds THEN
BEGIN
dispose(ptrs[nc-1]);
FOR c:= nc-1 downto k+1 do
ptrs[c]:=ptrs[c-1];

```
```

            new(aptr);
            with aptr^ do
                    BEGIN
                11:=1k1; 12:=1k2; 13:=1k3; 14:=1k4;
                    ds:=dists;
            END;
            ptrs[k]:=aptr;
        END
    ELSE
    BEGIN
        REVISE_PTRS (k+1);
        END
    ELSE
LONGER:=true;

```
END;
\(\begin{array}{lll}\text { BEGIN } & \text { (* main of build route table } & \text { *) } \\ & \text { (* create number of nc shortest routes } & \text { *) } \\ \text { (* - with the shortest being the direct link. } & \text { *) }\end{array}\)
WRITEIN(" Wait a moment !! ');
FOR p:=1 to np do
    BEGIN
        FOR \(c:=1\) to nc-1 do
        BEGIN
            new (aptr);
            aptr^.ds:=VIARGE*10;
            ptrs [C]:=aptr;
            END;
        nset:=[1..ni];
        nset:=nset-[ORGN[p]];
        nset:=nset-[DSTN[p]];
        FOR i:=1 to ni do
            IF \(i\) in nset THEN
                BEGIN
                lk1:=p_(ORGN[p],i);
                1k2:=p_(i,DSTN[p]):
                1k3: =0;
                lk4: =0;
                dists:=DISTANCE[1k1]+DISTANCE [1k2];
                LONGER:=false;
                    REVISE_PTRS (1):
                        IF LONḠER = false THEN
                        FOR j:=1 to ni do

\section*{IF \(j\) in nset-[i] THEN}

\section*{BEGIN}
lk2:=p_(i,j);
lk3:=p_(j, DSTN[p]);
lk4: = 0;
dists:=DISTANCE[lkl]+DISTANCE[lk2]
+DISTANCE[1k3];
REVISE_PTRS (1);
IF LONGER = false THEN FOR \(k:=1\) to ni do

IF \(k\) in (nset-[i])-[j] THEN BEGIN
lk3:=p_(j,k);
lk4: =p_(k, DSTN[p]);
dists:=DISTANCE[lkl]+DISTANCE[1k2]
+DISTANCE[lk3]+DISTANCE[lk4];
REVISE_PTRS (1):
END;
END;
END:
\(\operatorname{ROUTE}[(p-1) * n c, 1]:=p ;\)
\(\operatorname{ROUTE}[(p-1) * n c, 2]:=0 ;\)
\(\operatorname{ROUTE}[(p-1) * n c, 3]:=0\);
\(\operatorname{ROUTE}[(p-1) * n c, 4]:=0\);
FOR c:=1 to nc-1 do
BEGIN
ROUTE [ ( \(p-1\) )*nc+c, 1]:=ptrs[c]^.11;
ROUTE \([(p-1) * n c+c, 2]:=p t r s[c] \wedge .12 ;\)
\(\operatorname{ROUTE}[(\mathrm{p}-1) \star \mathrm{nc}+\mathrm{c}, 3]:=\mathrm{ptrs}[\mathrm{c}] \wedge\) ^.13;
ROUTE[(p-1)*nc+c, 4]:=ptrs[c]^.14;
END;
END; \{* FOR p *\}
FOR c:=1 to nc-1 do
BEGIN
dispose(ptrs[c]);
ptrs[c]:=nil;
END;
END; \(\quad\) * end of build route table *

BEGIN \{* main of get data *\}
```

ASSIGN(datf,F_NAME);
RESET(datf);
FOR p:=1 to np do
READLN(datf,ORGN[p],DSTN[p],DISTANCE[p],TRAFFIC[p]);
WRITELN(' Enter the No. of Candidate routes for each Pair :');
READLN(nc);
CAPA[0]:=0;
RATE[0]:=0;
FOR t:=1 to nt do
READLN(datf,CAPA[t],RATE[t]);
BUILD_ROUTE_TABLE;
END;

```
```

{********************************************************
{* TITLE : Find initial feasible solution *}
{* AUTHOR : Hwang, Yong Goo *}
{* DATE : 2 Aug. 1990 *}
{* REVISE : 15 Aug. 1990 *}
{* DESCRIPTION : This procedure gives us initial *}
{* feasible solution for problem. This *}
{* solution may be fully connected network. *}

```

PROCEDURE FIND_INITIAL_FEASIBLE_SOLUTION:
VAR
    p: PAIR;
    t: CNFG;

BEGIN
pobj: =0;
FOR p:=1 to np do BEGIN
```

    t:=0;
    IF TRAFFIC[p] > 0 THEN
        BEGIN
        REPEAT
                t:=t+1;
        UNTII TRAFFIC[p] <= CAPA[t];
        END;
    px[p]:=(p-1)*nc;
    pz[p]:=t;
    pobj:=pobj+DISTANCE[p]*RATE[t];
    END:
    UPPBND:=pobj;
    ```

\section*{END;}

```

PROCEDURE PREP_FOR_SUBGRADIENT_ITERATION;

```
VAR
    \(\mathrm{p}:\) PAIR;
    ANS : CHAR;
BEGIN
    IF FRAG1 THEN
        BEGIN
            LAMBDA: \(=0.5 ;\)
            IMPLIM: \(=25\);
            ITRLIM: =100;
            ERRORLIM: \(=0.0050\);
            LAMBDALIM: \(=0.0001\);
            ITRCTR: \(=0\);
            IMPCTR: \(=0\);
```

    LOWBND:=0;
    FOR p:=0 to np do
                            ALPHA[P]:=0;
        FRAG1 := FALSE;
        END
    ELSE
BEGIN
WRITELN('Do you want to change some subgradient parameters? ');
READLN (ANS):
IF (ANS = 'Y') OR (ANS = 'Y') THEN
BEGIN
WRITELN(' IAMBDA : ', LAMBDA :4:2);
WRITEIN(" Enter the LAMBDA? ');
READLN (IAMBDA):
WRITELN(" IMPROVEMENT COUNTER LIMIT : ', IMPLIM : 4);
WRITELN(" Enter the IMPROVEMENT COUNTER LIMIT? ');
READLN(IMPLIM);
WRITEIN(" IAMBDA LIMIT : ', LAMBDALIM :4:6);
WRITEIN(" Enter the LAMBDA LIMIT? ');
READLN (IAMBDALIM);
WRITELN(' ITERATION COUNTER LIMIT : ', ITRIIM :4);
WRITELN(" Enter the ITERATION COUNTER LIMIT? ');
READIN(ITRLIM);
END
ELSE
BEGIN
IAMBDA:= 0.5;
IMPLIM:= 25;
ITRLIM:=100;
LAMBDALIM:=0.0001;
END;
ERRORLIM:=0.0050;
ITRCTR:=0;
IMPCTR:=0;
LOWBND:=0;
FOR p:=0 to np do
ALPHA[P]:=0;
END:

```
END;
\{******************************************************)
\{* TITLE : Solve the Lagrangian dual
* \(\}\)
```

{* AUTHOR : Hwang, Yong Goo *}
(* DATE : 21 Sep. 1990 *}
(* REVISE : 11 Nov. 1990
{* DESCRIPTION : This procedure computes *}
{* a Lagrangian dual. *}
{********************************************************
PROCEDURE SOLVE_IAGRANGIAN_DUAL;
VAR
p: PAIR;
t: CNFG;
r: INTEGER;
sum,min: REAL;
BEGIN
dobj:=0;
FOR p:=1 to np do
BEGIN
min:=VLARGE;
FOR r:=(p-1)*nc to p*nc-1 do
BEGIN
sum:=ALPHA[ROUTE[r,1]]+ALPHA[ROUTE[r,2]]
+ALPHA[ROUTE[r,3]]+ALPHA[ROUTE[r,4]];
IF sum < min THEN
BEGIN
min:=sum;
dx[p]:=r;
END;
END;
dobj:=dobj+TRAFFIC[p]*min;
END;
FOR p:=1 to np do
BEGIN
min:=0;
dz[p]:=0;
FOR t:=1 to nt do
BEGIN
IF DISTANCE[p]*RATE[t]-ALPHA[p]*CAPA[t] < min THEN
BEGIN
min:=DISTANCE[p]*RATE[t]-ALPHA[p]*CAPA[t];
dz[p]:=t;
END;
END;

```
dobj:=dobj+min;
END:
END;


PROCEDURE PERTURB_FOR_FEASIBLE_SOLUTIONS;
VAR
p: PAIR;
t: CNFG;
Obj: REAL;
flag: BOOLEAN;
BEGIN
```

obj: $=0$;
FOR p:=1 to np do
BEGIN
flag:=false;
$t:=0$;
IF SUBGRAD $[p]+C A P A[d z[p]]>0$ THEN
BEGIN
REPEAT
IF $t+1$ <= nt THEN
$t:=t+1$
ELSE
flag:=true;
UNTIL flag or (SUBGRAD[p]+CAPA[dz[p]] <= CAPA[t]);
END:
IF flag THEN
obj: =VLARGE
ELSE
BEGIN
dz[p]:=t;

```
```

                    obj:=Obj+DISTANCE[p]*RATE[t];
            END;
        END;
    IF Obj < UPPBND THEN
BEGIN
UPPBND:=Obj;
pz:=dz;
px:=dx;
END;
END;

```


\section*{PROCEDURE CHECK_IMPRO_COUNTER;}

BEGIN
```

IF IMPCTR > IMPLIM THEN
BEGIN
IAMBDA:=IAMBDA/2.0;
IMPCTR:=1;
END;

```

END;
(*************************)
PROCEDURE TEST_TERMINATION;
BEGIN
```

IF (LOWBND > 0) and (UPPBND-LOWBND > 0)
and ((UPPBND-LOWBND)/LOWBND < ERRORLIM) THEN
TERMINATED:=true
ELSE
IF LAMBDA < LAMBDALIM THEN

```
```

        TERMINATED:=true
    ELSE
IF ITRCTR >= ITRLIM THEN
TERMINATED:=true
ELSE
TERMINATED:=false;

```
END;

PROCEDURE UPDATE_LAGRANGE_MULTIPLIERS;
VARp: PAIR;
BEGIN
```

STEPSIZE:=LAMBDA* (UPPBND-dobj)/NORM;
FOR p:=1 to np do
BEGIN
ALPHA[p]:=ALPHA[p]+STEPSIZE*SUBGRAD[p];
IF ALPHA[p] < le-4 THEN
ALPHA[p]:=0;
IF ALPHA[p] >= VLARGE THEN
BEGIN
WRITELN('WARNING: MULTIPLIER TOO LARGE');
WRITEIN(dobj:10:2,NORM:10:0,STEPSIZE:10:2,SUBGRAD[P]:10:2);
READLN;
END;
END;

```
END;
```

{******************************************************)
{* TITLE : Solve problem *}
{* AUTHOR : Hwang, Yong Goo *)
(* DATE : 7 Oct. 1990 *)
{* REVISE : 16 Nov. 1990 *}
(* DESCRIPTION : This procedure make a best *)
feasible solution using above all subproc- *)
edure.

* }
* }

```

PROCEDURE SOLVE_PROBLEM;
BEGIN
```

REPEAT;
ITRCTR:=ITRCTR+1;
IMPCTR:=IMPCTRR+1;
CHECK_IMPRO_COUNTER;
SOLVE_IAGRANGIAN_DUAL;
WRITEIN(ITRCTR:4,' ',dobj:10:2,', ',UPPBND:10:2,' ',IAMBDA:10:4):
IF dobj > LOWBND THEN
BEGIN
IMPCTR:=0;
LOWBND:=dObj ;
BEST ALPHA:=ALPHA;
END;
SUBGRAD[0]:=0;
FOR p:=1 to np do
SUBGRAD[p]:=CAPA[dz[p]]*(-1);
FOR p:=1 to np do
BEGIN
SUBGRAD[ROUTE[dx[p], 1]]:=SUBGRAD[ROUTE [dx[p], 1]]+TRAFFIC[p];
SUBGRAD[ROUTE[dx[p],2]]:=SUBGRAD[ROUTE[dx[p], 2]]+TRAFFIC[p];
SUBGRAD[ROUTE [dx[p], 3]]:=SUBGRAD[ROUTE[dx[p],3]]+TRAFFIC[p];
SUBGRAD[ROUTE[dx[p],4]]:=SUBGRAD[ROUTE[dx[p],4]]+TRAFFIC[p];
END:
FOR p:=1 to np do
IF abs(SUBGRAD[p]) < le-4 THEN
SUBGRAD[p]:=0;

```
```

NORM: =0;
FOR p:=1 to np do
NORM:=NORM+SUBGRAD[p]*SUBGRAD[p];
OPTIMAL: =true;
FOR p:=1 to np do
IF SUBGRAD[p] > 0 THEN
OPTIMAL:=false;
IF OPTIMAL THEN
BEGIN
UPPBND:=dobj;
px:=dx;
pz:=dz;
END
ELSE
PERTURB_FOR_FEASIBLE_SOLUTIONS;
TEST_TERMINATION;
IF not TERMINATED THEN
UPDATE_LAGRANGE_MULTIPLIERS;
UNTIL TERMINATED;

```

END;

\section*{D. REPORT PROCEDURE}
```

{******************************************************}
{* TITLE : Make report *}
{* AUTHOR : Hwang, Yong GOo * }
{* : 3ATE Oct. 1990 *)
{* REVISE : 21 NOV. 1990 * }
{* DESCRIPTION : This procedure provides a report. *}
{******************************************************}
PROCEDURE DRAW_NETWORK;
CONST
MAXLENGTH = 250;
MAXHEIGHT = 150;
VAR
CENTER_X,
CENTER_Y : INTEGER;
i, j : INTEGER;
TEMP_FT_1, TEMP_T_1, TEMP_T_3 : INTEGER;
inkey : INTEGER;
ckey : char;
DRIVERVAR, MODEVAR : INTEGER;
{**************************************)
PROCEDURE GRAPHTITLE (INTITLE : STRING);
BEGIN
SETTEXTJUSTIFY(CENTEKTEXT, TOPTEXT);
SETTEXTSTYLE(TRIPLEXFONT, HORIZDIR,4);
OUTTEXTXY(GETMAXX DIV 2, 1, INTITLE);
END; {* END of graphtitle *}
{********************** }
PROCEDURE GRAPHCONTINUE;
CONST
messagel = 'CONTINUE? (Y/n)';

```
```

    MESSAGE2 = 'Enter the PAIR number!';
    BEGIN
SETTEXTJUSTIFY(CENTERTEXT, TOPTEXT);
SETTEXTSTYLE(GOTHICFONT, HORIZDIR,3);
OUTTEXTXY(GETMAXX DIV 2, GETMAXY - 40, MESSAGE1);
READLN (ckey);
IF (ckey <> 'N') AND (ckey <> 'n') THEN
BEGIN
SETTEXTJUSTIFY(CENTERTEXT, TOPTEXT);
SETTEXTSTYLE (GOTHICFONT, HORIZDIR,3);
OUTTEXTXY(GETMAXX DIV 2, GETMAXY - 50, MESSAGE2);
READLN(inkey);
END;
CLEARDEVICE;
END; {* END of graphcontinue *}
{*********************}
PROCEDURE DRAW_ROUTE;
VAR
i,j : INTEGER;
BEGIN
IINE(10,10,10,450);
LINE(10,450,getmaxx,450);
LINE (center_x,450,center_x,10);
LINE (getmaxx,10,10,10);
LINE (getmaxx,getmaxy,getmaxx,10);
FOR i := 1 TO ni DO
CIRCLE((POINT_X[i] DIV 3),(POINT_Y[i] DIV 3), 2);
FOR j := 1 TO np DO
IF (pz[j] <> 0) THEN
BEGIN
{* TEMP_FT_1 := T_TABLE[j].FT_1;
TEMP_T_1- := T_TABIE[j].T_1;
TEMP_T_3 := T_TABLE[j].T-3; *}
LINE(PO्INT_X[S_D_PAIR[j].\overline{S}] DIV 3,
POINT_Y[S_D_PAIR[J].S] DIV 3,
POINT_X[S_D_PAIR[j].D] DIV 3,
POINT_Y[S_D_PAIR[J].D] DIV 3);

```

END;
LINE (POINT_X[s_d_PAIR[ROUTE[px[inkey],1]].s] div 4 + center_x, POINT_Y[s_d_PAIR[ROUTE[px[inkey],1]].s] div 4,
POINT_X[s_d_PAIR[ROUTE[px[inkey],1]].d] div 4 + center_x,
POINT_Y[s_d_PAIR[ROUTE[px[inkey],1]].d] div 4);
IF ROUTE [ \(\mathrm{p} \bar{x}[\mathrm{in} \overline{\mathrm{k}} \overline{\mathrm{E}} \mathrm{y}], 2]>0\) THEN
LINE (POINT_X[s_d_PAIR[ROUTE[px[inkey],2]].s] div 4 + center_x, POINT_Y[s_d_PAIR[ROUTE[px[inkey],2]].s] div 4, POINT_X[s_d_PAIR[ROUTE[px[inkey],2]].d] div 4 + center_x, POINT_Y[s_d_PAIR[ROUTE[px[inkey],2]].d] div 4);
IF ROUTE[px[inkeỹ],3] > 0 THEN
LINE (POINT_X[s_d_PAIR[ROUTE[px[inkey],3]].s] div 4 + center_x, POINT_Y[s_d_PAIR[ROUTE[px[inkey],3]].s] div 4, POINT_X[s_d_PAIR[ROUTE[px[inkey], 3]].d] div 4 + center_x, POINT_Y[s_d_PAIR[ROUTE[px[inkey],3]].d] div 4);
IF ROUTE[px[inkey],4] > 0 THEN
IINE (POINT_X[s_d_PAIR[ROUTE[px[inkey], 4]].s] div 4 + center_x, POINT_Y[s_d_PAIR[ROUTE[px[inkey],4]].s] div 4, POINT_X[s_d_PAIR[ROUTE[px[inkey],4]].d] div 4 + center_x, POINT_Y[s_d_PAIR[ROUTE[px[inkey],4]].d] div 4);

END;

BEGIN \{* MAIN PART *\}
inkey :=0;
DRIVERVAR := detect;
INITGRAPH (DRIVERVAR, MODEVAR, '');
CENTER_X := GETMAXX DIV 2;
CENTER Y := GETMAXY DIV 2;
GRAPHTITTLE('NETWORK DESIGN'):
LINE (10,10,10,450);
LINE \((10,450,550,450)\);
LINE \((550,450,550,10)\);
LINE (550,10,10,10);
FOR i := 1 TO ni DO CIRCLE((POINT_X[i] DIV 2),(POINT_Y[i] DIV 2), 2):
FOR \(j:=1\) TO np DO
BEGIN
IF (pz[j] <> 0) THEN
BEGIN
\{* TEMP_FT_1 := T_TABLE[j].FT_1;
TEMP_T_1 : \(=\) T_TABLE[j].T_1;
TEMP_T_3 \(:=\mathrm{T}_{-}^{-}\)TABLE[j].T_3; *\}
```

            IINE(POINT_X[S_D_PAIR[j].S] DIV 2,
                        POINT_Y[S_D_PAIR[J].S] DIV 2,
                        POINT_X[S_D_PAIR[j].D] DIV 2,
                        POINT_Y[S_D_PAIR[J].D] DIV 2);
            END;
        END;
    REPEAT
graphcontinue;
IF (inkey <> 0) THEN
DRAW_ROUTE;
UNTIL (ckey ='N') or (ckey = 'n');
CLOSEGRAPH;
END;

```
```

{******************************************* }

```
{******************************************* }
PROCEDURE REPORT_BEST_FEASIBIE_SOLUTION;
PROCEDURE REPORT_BEST_FEASIBIE_SOLUTION;
VAR
VAR
    p: PAIR;
    p: PAIR;
    df: text;
    df: text;
    i: INTEGER;
    i: INTEGER;
BEGIN
BEGIN
    ASSIGN(df,FILE_NAME);
    ASSIGN(df,FILE_NAME);
    REWRITE(df);
    REWRITE(df);
    WRITELN(df);
    WRITELN(df);
    WRITEIN (df,'relative error bound: ',
    WRITEIN (df,'relative error bound: ',
                            ((UPPBND-LOWBND)/UPPBND)*100:7:4,' &');
                            ((UPPBND-LOWBND)/UPPBND)*100:7:4,' &');
WRITELN (dE,'LAMBDA: ',LAMBDA);
WRITELN (dE,'LAMBDA: ',LAMBDA);
WRITELN(dE);
WRITELN(dE);
WRITELN(df,'The best feasible solution: ',UPPBND:10:2);
WRITELN(df,'The best feasible solution: ',UPPBND:10:2);
FOR p:=1 to np do
FOR p:=1 to np do
    BEGIN
    BEGIN
        WRITE(df,p:2,' [',ORGN[p]:2,'-',DSTN[p]:2,'] : '
        WRITE(df,p:2,' [',ORGN[p]:2,'-',DSTN[p]:2,'] : '
                                    ,ROUTE[Px[p],1]:4);
                                    ,ROUTE[Px[p],1]:4);
    IF ROUTE[pX[p],2] > 0 THEN
    IF ROUTE[pX[p],2] > 0 THEN
                            WRITE(df,ROUTE[px[p],2]:4);
                            WRITE(df,ROUTE[px[p],2]:4);
    IF ROUTE[px[p],3]>0 THEN
    IF ROUTE[px[p],3]>0 THEN
                        WRITE(df,ROUTE[px[p], 3]:4);
                        WRITE(df,ROUTE[px[p], 3]:4);
        IF ROUTE[pX[p],4] > 0 THEN
        IF ROUTE[pX[p],4] > 0 THEN
            WRITE(df,ROUTE[px[p],4]:4);
            WRITE(df,ROUTE[px[p],4]:4);
        WRITELN(df);
```

        WRITELN(df);
    ```
```

    END;
    i:=0;
FOR p:=1 to np do
BEGIN
IF i < 4 THEN
BEGIN
WRITE(df,'[',p:3,'] ',pz[p]:4);
i:=i+1;
END
ELSE
BEGIN
WRITE(dE,'[',p:3,'] ',pz[p]:4);
WRITELN(dE);
i:=0;
END;
END;
WRITEIN(df);
close(df);
DRAW_NETWORK;

```

END:


\section*{BEGIN}

FRAG1 := TRUE;
GENERATE_DATA;
REPEAT

GET_DATA:
FIND_INITIAL_FEASIBIE_SOLUTION;
PREP_FOR_SUBGRADIENT_ITERATION:
SOLVE_PROBLEM;
REPORT_BEST_FEASIBIE_SOLUTION;

\title{
WRITELN(" Try again? : (y/n) '): READIN (ANSI):
}

UNTIL (ANSI \(=\) 'N') OR (ANSI \(=\) ' \(\mathrm{n}^{\prime}\) );

END. (*** main PROCEDURE ***)
\{***********************************************)

\section*{APPENDIX B: SAMPLE INPUT DATA FILE}

\section*{A. PAIR INFORMATION}
pairs
\begin{tabular}{cccc} 
sour. dest. & distance & traffic \\
\hdashline 1 & 2 & 395 & 7 \\
1 & 3 & 339 & 98 \\
1 & 4 & 156 & 0 \\
1 & 5 & 261 & 64 \\
1 & 6 & 724 & 43 \\
1 & 7 & 516 & 23 \\
2 & 3 & 556 & 0 \\
2 & 4 & 448 & 38 \\
2 & 5 & 592 & 27 \\
2 & 6 & 674 & 0 \\
2 & 7 & 502 & 93 \\
3 & 4 & 491 & 62 \\
3 & 5 & 172 & 90 \\
3 & 6 & 469 & 28 \\
3 & 7 & 295 & 34 \\
4 & - & 385 & 53 \\
4 & 6 & 877 & 0 \\
4 & 7 & 668 & 87 \\
5 & 6 & 640 & 23 \\
5 & 7 & 459 & 0 \\
6 & 7 & 209 & 6
\end{tabular}

\section*{B. CIRCUIT INFORMATION}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{CIRCUIT} \\
\hline capa & cost \\
\hline 6 & 10 \\
\hline 12 & 15 \\
\hline 18 & 19 \\
\hline 24 & 21 \\
\hline 30 & 31 \\
\hline 36 & 36 \\
\hline 42 & 40 \\
\hline 48 & 42 \\
\hline 54 & 52 \\
\hline 60 & 57 \\
\hline 66 & 61 \\
\hline 72 & 63 \\
\hline 78 & 73 \\
\hline 84 & 78 \\
\hline 90 & 82 \\
\hline 96 & 84 \\
\hline 102 & 94 \\
\hline 108 & 99 \\
\hline 114 & 103 \\
\hline 120 & 105 \\
\hline 126 & 115 \\
\hline 132 & 120 \\
\hline 138 & 124 \\
\hline 144 & 126 \\
\hline 150 & 136 \\
\hline 156 & 141 \\
\hline 162 & 145 \\
\hline 168 & 147 \\
\hline 174 & 157 \\
\hline 180 & 162 \\
\hline 186 & 166 \\
\hline 192 & 168 \\
\hline 198 & 178 \\
\hline 204 & 183 \\
\hline 210 & 187 \\
\hline 216 & 189 \\
\hline 222 & 199 \\
\hline 228 & 204 \\
\hline 234 & 208 \\
\hline 672 & 2:9 \\
\hline 678 & 229 \\
\hline 684 & 234 \\
\hline
\end{tabular}
\begin{tabular}{rl}
690 & 238 \\
696 & 240 \\
702 & 250 \\
708 & 255 \\
714 & 259 \\
720 & 261 \\
726 & 271 \\
732 & 276 \\
738 & 280 \\
744 & 282 \\
750 & 292 \\
756 & 297 \\
762 & 301 \\
768 & 303 \\
774 & 313 \\
780 & 318 \\
786 & 322 \\
792 & 324 \\
798 & 334 \\
804 & 339 \\
810 & 343 \\
816 & 345 \\
822 & 355 \\
828 & 360 \\
834 & 364 \\
840 & 366 \\
846 & 376 \\
852 & 381 \\
858 & 385 \\
864 & 387 \\
870 & 397 \\
876 & 402 \\
882 & 406 \\
888 & 408 \\
894 & 418 \\
900 & 423 \\
906 & 427 \\
1344 & 438 \\
1350 & 448 \\
1356 & 453 \\
1362 & 457 \\
1368 & 459 \\
1374 & 469 \\
1380 & 474 \\
1386 & 478 \\
1392 & 480 \\
1398 & 490 \\
&
\end{tabular}
\(1404 \quad 495\) \(1410 \quad 499\) 1416501 1422511 1428516 1434520 1440522 1446532 \(1452 \quad 537\) 1458541 1464543 1470553 1476558 1482562 1488564 1494574 1500579 1506583 1512585 1518595 1524600 1530604 1536606 1542616 1548621 1554625 1560627 1566637 1572642 1578646

\section*{APPENDIX C: SAMPLE OUTPUT DATA FILE}
relative error bound: 63.5411 \%
LAMBDA: 2.5000000000E-01
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline The & best fe & asible & \multicolumn{7}{|l|}{solution: 274700.00} \\
\hline 1 [ & 1-2] & : 1 & & & & & & & \\
\hline 2 & 1-3] & 4 & 13 & & & & & & \\
\hline 3 [ & 1-4] & 3 & & & & & & & \\
\hline 4 & 1- 5] & 4 & & & & & & & \\
\hline 5 [ & 1-6] & : 4 & 13 & 14 & & & & & \\
\hline 6 [ & 1-7] & : 4 & 13 & 15 & & & & & \\
\hline 7 & 2-3] & 7 & & & & & & & \\
\hline 8 [ & 2-4] & 1 & 3 & & & & & & \\
\hline 9 [ & 2-5] & 1 & 4 & & & & & & \\
\hline 10 [ & 2-6] & 10 & & & & & & & \\
\hline 11 [ & 2-7] & 11 & & & & & & & \\
\hline 12 [ & 3-4] & 13 & 4 & 3 & & & & & \\
\hline 13 [ & 3-5] & 13 & & & & & & & \\
\hline 14 [ & 3-6] & 14 & & & & & & & \\
\hline 15 [ & 3-7] & : 15 & & & & & & & \\
\hline 16 [ & 4-5] & 3 & 4 & & & & & & \\
\hline 17 [ & 4-6] & 17 & & & & & & & \\
\hline 18 [ & 4-7] & 3 & 4 & 13 & 15 & & & & \\
\hline 19 [ & 5-6] & 13 & 14 & & & & & & \\
\hline 20 [ & 5-7] & 13 & 15 & & & & & & \\
\hline 21 [ & 6-7] & 21 & & & & & & & \\
\hline [ 1 & ] 12 [ & [ 2] & O[ & \(3]\) & 40 [ & & 40 [ & 5] & 0 \\
\hline [ 6 & ] 0 [ & [ 7 & O[ & 8] & O[ & \(9]\) & 0 [ & 10] & 0 \\
\hline [ 11 & ] 16 & [ 12] & \(0[\) & 13] & 40 [ & & 16[ & 15] & 24 \\
\hline [ 16 & & [ 17] & 0 [ & 18] & & 19] & 0 [ & \(20]\) & 0 \\
\hline [ 21 & ] 1 & & & & & & & & \\
\hline
\end{tabular}

\section*{LIST OF REFERENCES}
1. P. Afentakis and B. Gavish, "Optimal lot-sizing algorithms for complex product structures", Grad. School Management, University Rochester, Rochester, NY, 1983.
2. D.P. Bertsekas, "A class of optimal routing algorithms for communications networks", in Proc. 1980 Int. Conf. Circuits Comput., Atlanta, GA, Nov. 1980
3. M.L. Fisher, \({ }^{n}\) Lagrangean relaxation method for solving integer programming problems", Management Science, vol. 27, pp. 1-18, Jan. 1981.
4. M. Held, P. Wolfe, and H. Crowder, "Variation of subgradient optimization", Math. Program., vol. 6, pp. 62-88, 1974.
5. B. Gavish and S.L. Hantler, "An algorithm for optimal route selection in SNA networks", IEEE Trans. on Comm., vol.com-31, pp. 1154-1160, Oct. 1983.
6. M. Karnaugh, "A New Class of Algorithms for Multipoint Network Optimization", IEEE Transactions on Communications, vol. COM-24, pp. 500-505, May 1976.
7. L.G. Mitten, "Branch-and bound methods: General formulation and properties", Operations Research, vol. 18, pp 24-34, 1970.
8. E. Rosenberg, "A Nonlinear Programming Heuristic for Computing Optimal Link Capacities in a Multi-hour Alternate Routing Communications network", Operations Research, vci. 35, No. 3, pp. 354-364, May-June 1987.
9. D.N. Lee, K.T. Medhi and J.L. Strand, "Solving Large Telecommunications Network Loading Problems", AT T Technical Journal, pp. 48-56, May-June 1989.
10. W.J. Barksdale, Practical Computer Data Communications, Plenum Press, New York, 1986.
11. W.A. Flanagan, The Guide to T-1 Networking, Telecom Library Inc., 1988.
12. R. Sharma, "T-1 Network Design and Planning Made Easier", Data Communications, pp. 199-207, Sept. 1988.
13. S. Fleming, "Get Ready for T-3 Networking", Data Communications, pp. 82-94, Sept. 1989.
14. Udi Manber, Introduction to Algorithms, Addison-Wesley Publishing Co., July 1988.
15. David R. Anderson, Dennis J. Sweeney and Thomas A. Williams, An Introduction to Management Science, West Publishing Co., 1988.
16. Andrew S. Tanenbaum, Computer Networks, Prentice-Hall Inc., 1988.
17. Uyless Black, Data Networks, Prentice-Hall Inc., 1989.

\section*{INITIAL DISTRIBUTION LIST}
1. Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145
2. Library, Code 52 ..... 2
Naval Postgraduate School
Monterey, California 93943
3. Department Chairman, Code CS ..... 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943
4. Prof. Myung W. Suh, Code ASSU ..... 1
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943
5. Prof. Richard W. Hamming, Code CSHG ..... 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943
6. Prof. Mantak Shing, Code CSSH ..... 1
Department of Computer Science Naval Postgraduate School
Monterey, California 93943
7. Prof. Dong S. Kim, Code MEKM ..... 1
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, California 93943
8. Prof. Kyung C. Kim, Code ..... 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943
9. Army Central Library ..... 1
Army Headquarter, Bunam-Ri,
Duma-Myun, Nonsan-Gun, Chungcheong-Nam-Do, Republic of Korea, 320-919
10. Hwang; Yong Goo ..... 11
734-3, HwangGeum-Dong, SuSeong-Gu, Teagu, Seoul, Republic of Korea, 706-040
11. Song, II Youn ..... 1
SMC 2302 NPGS
Monterey, California 93943
12. Chung, Jae Du ..... 1
SMC 1504 NPGS
Monterey, California 93943
13. Park, Hyun Kyoo ..... 1
SMC 2820 NPGS
Monterey, California 93943
14. Choi, Nag Jung ..... 1
SMC 2853 NPGSMonterey, California 93943```

