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ABSTRACT

Several different hardware structures for Fast Fourier

Transform(FFT) are discussed in this thesis. VHDL was used in

providing a simulation. Various costs and performance

comparisons of different FFT structures are revealed. The FFT

system leads to a design of Discrete Cosine Transform(DCT).

VHDL allows the hierarchical description of a system in

structural and behavioral description. In the structural

description, a component is described in terms of an

interconnection of more primitive components. However, in the

behavioral domain, a component is described by defining its

input/output. response in terms of a procedure. In this thesis,

the lowest hierarchy level is chip-level. In modeling of the

floating point unit AMD29325 behavior, several basic functions

or procedures are involved. A number of AMD29325 chips were

used in the different structures of the FFT butterfly. The

full pipeline structure of the FFT butterfly, controller, and

address sequence generator are simulated in VHDL. Finally, two

methods of implementation of the DCT system are discussed.
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I. INTRODUCTION

A. VHDL HARDWARE DESCRIPTION LANGUAGE

VHDL stands for VHSIC Hardware Description Language. "It

is a new hardware description language developed and

standardized by the U.S. Department of Defense for

documentation and specification of CAD microelectronics

design" [Ref. 1]. "The language was develoned to

address a number of recurrent problems in the design cycles,

exchange of design information, and documentation of digital

hardware. VHDL is technology independent and is not tied to a

particular simulator or logic value set. Also it does not

force a design methodology on a designer" [Ref. 2].

Many existing hardware description languages can operate at

the logic and gate level. Consequently, they are low-level

logic design simulators. While VHDL is perfectly suited to

this level of description, it can be extended beyond this to

higher behavioral levels. For example, it can extend from the

level of gate, register, chip, up to the desired system level.

VHDL allows hierarchy implementation in two domains,

structural and behavioral domains, by digital designers

[Ref. 3]. In the structural domain, a component is

described in terms of an interconnection of more primitive

components. However, in the behavioral domain, a component is

1



described by defining the input/output response in terms of a

procedure. In this thesis, the lowest hierarchy level is at

the chip-level. Modeling the behavior at the chip-level is the

first task. Then, various structures of FFT system are

designed using these primitives, i.e. chips. In order to model

these chips accurately Time-delay and hold-up-time as VHDL

generic are introduced. Different structures were studied here

to compare system performance and costs. The structural

modeling and behavioral modeling in VHDL are the main subjects

in this thesis. In other words, VHDL is the main language tool

to allow for capturing and verifying all the design details.

In this thesis, VHDL was used to model at the chip level, a

floating point unit, a Discrete Fourier Transform system, and

a Discrete Cosine Transform system.

B. OVERVIEW OF THE THESIS

This thesis is divided into five chapters. Chapter I gives

a general introduction. Several element functions, four basic

operations of the floating point unit AMD29325, and a

simplified version A29325 are created in Chapter II. Chapter

III includes the designs of the butterfly of a Fast Fourier

Transform(FFT) in DIF algorithm, six different kinds of data

flow configurations, VHDL RAM models, controller, address

sequence generator, and integrated models of the FFT system.

Furthermore, in Chapter IV a Discrete Cosine Transform(DCT) is

implemented based on the extension of the universal controller

2



of the FFT system. Finally, Chapter V gives the conclusions

and suggestions of possible future research. The hierarchy of

the design units created in this thesis can be summarized in

a tree shown in Figure 1.1. The efforts start at the bottom of

the tree, and end at the top. Various nodes in the tree will

be explained in detail in the following chapters.

3



DCT - Egstern

FFT - Syste m-1

Address Sequence Generator A 2 93 2 ontroller

AMD29325

FFp - Addition F~-Sbstraction Fp - Mlultiplication Fp - Division

Element Functions

FIGURE 1.1 The design tree of this thesis.
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II. FLOATING POINT UNIT

A. OVERVIEW OF THE IEEE FLOATING POINT STANDARD FORMAT

Sometimes applications require numbers with large

numerical range that can not be stored as integers. In these

situations, there may also be a need to represent NAN( not a

number ) or infinite number. Fixed point number representation

is not sufficient to support these needs. In this situation,

a floating point number is used. There are several formats for

representing floating point numbers.

Any floating point format usually includes three parts, a

sign bit, an exponential bit pattern, and a mantissa bit

pattern. Different computer systems such as CDC 7600, DEC,

VAXII, HONEYWELL 8200, IBM 3303 might use different floating

point formats. The variations occur in the number of bits

allocated for the exponent and mantissa patterns, how rounding

is carried out, and the actions taken while underflow and

overflow occur. Therefore, there is a need for a standard

floating point format to allow the interchange of floating

point data easily.

Usually, the value of a floating point format is

(sign)Mantissa * 2 exponent (2.1)

5



Storage Locationl (recister or rmerncr/)

LExponentMnis

Sign Bite Exponent Bits L Hidden Sit (if used) L Mantissa Bits-'_

FIGURE 2. 1 The IEEE single precision f loating point f ormat.
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In Figure 2.1 [Ref. 4), the IEEE single precision

floating point format is shown with the sign bit, exponent

bits and mantissa bits. The IEEE single precision floating

format contains 32 bits: 1 for the sign, 8 for the exponent,

and 23 for the mantissa. There is an important fact that 1 bit

is hidden in the mantissa. Consequently, the actual size of

fraction is 24. In other words, the actual number of bits of

the fraction is that of the mantissa value, from the 22th bit

down to the zero bit in Figure 2.1, added by 1. In this case

the actual value of the fraction is

1.0 < actual fraction < 2.0 (2.2)

The IEEE floating point format supports not only single

precision but also other precision formats. The other

precision formats are shown in Figure 2.2 [Ref. 5].

Single Single extended Double Double extended

p (bits of precision) 24 ? 32 53 a 64

Emu 127 2 1023 1023 16383

Era, -126 s -1022 -1022 5-16382

Exponent bias 127 1023

FIGURE 2.2 Format parameter for the IEEE 754
floating point standard.
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In the simulation programs of this thesis, only single

precision is used.

The last row in Figure 2.2 shows the concept of exponent

bias. This indicates the implied range of the exponent of

floating number is no longer strictly positive. For example,

if single precision with exponent bias of 127 is adapted, a

floating point value with exponent bits "100000012", 129 10,

would be (129-127)2 = 22. Accordingly, if e is the value of the

exponent, f is the value of the fraction, and s is the sign of

bit, the floating point number is represented as

(-1)s  * f * 2 e'exponent -bias (2.3)

The sign bit s indicates the sign of the floating point

number. The positive number has a sign bit of 0, and, the

negative number has a sign bit of 1. In a single precision

system, the magnitude range is

0 < magnitude < 1.999999910 * 2127 (2.4)

Several special cases can occur from arithmetic

operations. The first case is called "overflow" when the

magnitude is greater than the upper limit of the equation

(2.4). The second case is when the magnitude is less than 2126

i.e.

8



0 < magnitude < 2 "126  (2.5)

and this is called "underflow". The third situation is how to

represent zero, NAN (not a number), and infinity. In the IEEE

standard format, the zero is defined as a number with the

exponent minimum value and the mantissa zero. The NAN is

defined as a number with the exponent being 255. If the single

precision is adopted, and the mantissa is not equal to zero,

overflow and underflow occurred when the result of an

arithmetic operation is beyond or below the representable

range [Ref. 6]. However, in the AMD29325 chip only the

zero format is the same as that of the IEEE standard. The NAN

in the AMD29325 is 7FA11111 16, the infinity is 7FA000001 6. In

this thesis, for reasons of convenience, if all exponent bits

are 0, irrespective of the mantissa value, this represents a

number 010* If all bits of a floating point number become 0,

it would be the representation of underflow. On the other

hand, if all bits except the sign bit are set to 1, it is the

representation of infinity.

B. INTRODUCTION TO FLOATING POINT UNIT CHIP AMD29325

The AMD29325 chip is a high speed floating point processor

unit. It performs 32 bits single precision floating point

addition, substraction, multiplication operations in VLSI

circuit. It can use the IEEE floating point standard format.

The DEC single precision floating point format is also

9



supported. It includes operations of convers: i among 32-bit

integer format, floating point format, and IEEE floating point

format and DEC floating point format. There re six flags

which monitor the status of operations: invalid operation,

inexact result, zero, not-a-number(NAN), overflow, and

underflow.

The AMD29325 chip has three buses in 32-bit architecture,

two input buses and one output bus. All buses are registered

with a clock enable. Input and output registers can be made

transparent independently. Figure 2.3 shows the block diagram

of the AMD29325. Its pin diagram is shown in Figure 2.4.

Selection to perform an arithmetic operation on chip AMD29325

is via the 3 pins I0, I,, and 12. All selected functions are

listed in Figure 2.5.

C. BASIC MODELING FUNCTIONS OF AMD29325

i. THE ELEMENT FUNCTIONS ASSOCIATED WITH THE ARITHMETICAL

OPERATION OF AMD29325

In order to simulate the features of AMD29325, several

basic functions had been created before modeling the behavior

of the AMD29325. In Figure 2.5, pin I0, I,, and 12 can choose

eight different functions. In this thesis, only four

arithmetic operations necessary for simulation program had

been created; floating point addition, floating point

subtraction, floating point multiplication, and floating point

division. Although the division function is not used in the

10



Y Y
~ ITER

I STATUS

CVK D FLOATI.G.POINT FLGALU G [ATr

SELECT to OTF N;As

ANO ENASLE C>
uNP S

*L

• EGISTES
RSCISTR . USTATUS FLAG

FZTER

WEXIACT

INVAUO

OVERFLOW

,_>UMOERFLOW

C ZERO

FIGURE 2.3 AMD29325 block diagram (adopted form AMD data
book).

actual simulation of the AMD29325, it still included in the

model of the AMD29325.

The following is a brief description of those element

functions associated with the modeling of AMD29325. These

element functions are listed in Appendix A.

• BITSARRAY TO FP: to convert the mantissa bits pattern
into its corresponding floating point value.

• FP TO BITSARRAY: to do the inverse conversion from
floating point value into its corresponding mantissa bits
pattern.

• INT TO BITSARRAY: to transfer an integer value into its
corresponding bits pattern. Usually, it is used when the
exponent value is converted to its corresponding IEEE
exponent format.

11



[R0R31F 0 -F3 1

32
SC-S31 INEXACT

CLK INVALID

NAN

ENS OVERFLOW

EN "--UNDERFLOW

-4 FTFT ZERO

IEEEfDEC

ONEBUS

RND 0 .RND 1

FIGURE 2.4 AMD29325 pin diagram (adopted from the AMD
data book).

" UNHIDDEN BIT: to recover the hidden bit in the IEEE
standard format.

* SHIFL TO R: to shift the bit pattern from left to right,
and the most significant bit is assigned as 0.

" ISOVERFLOW: to test the bit pattern of an input
parameter to see whether it is overflowed or not.

" IS UNDERFLOW: to check the bit pattern of an input
parameter to see whether it is underflowed or not.

" ISZERO: to test the bit pattern of an input parameter to
see whether it is a zero or not.

• IS NAN: to check the bit pattern of an input parameter to
see whether it is a NAN expression or not.

" BECOME ZERO: to set the result to zero before the actual
arithmetic operation occurs. This is a situation of
multiplication by zero.

12



12 10 1 Operation Output Equation
0 0 0 Floating-point additon (R PLUS S) F - R+ S

0 0 1 Floating-pont subtacton (" MINUS S) F-R- S

0 1 0 Fioating-point multoiiction (R TIMES S) F -R S

0 1 1 Wicating-pornt constant subtraction F - 2 - S

(2 MINUS S)

1 0 0 Integer- o-tlotaing.pont conversion F (floating-point) - R (integer)

(INT-TO-FP)
1 0 1 Fioating-point.to-integer conversion P (nteger) - R (floating-Doint)

(FP-TO-INT)

1 1 0 IEEE-TO-DEC format conversion F (DEC format) - R (IEEE format)
(IEE E-TO-OEC)

1 1 DEC-TO-IEEE format conversion F (IEEE format) - R (OtC forrnat)
(CEr-TO.IEEE)

FIGURE 2.5 AMD29325 operation select (adapted from ?'I'D
data book).

• BECOME-NAN! to set the result of an operation to be
infinity before the actual operation occurs. This is a
situation of division by zero.

* SETFLAG: to verify that the input parameter is located
in the representation range which is between the upper
limit and lower limit. Otherwise, give it some proper flag
if it is not.

* INCREMENT: to generate a bit pattern which is greater
than input bit pattern by one, For example, output bit
pattern is "000111" when the input pattern is "000110"

. DECREMENT: to do the inverse as the previous element
function.

. BACK TO BITARRAY: to convert a given floating point
number into the corresponding IEEE standard bit format.

13



2. THE TOP FUNCTIONS ASSOCIATED WITH THE ARITHMETICAL

OPERATIONS OF AMD29325

Four important features of the AMD29325 are created in

this thesis. These are the addition function, subtraction

function, multiplication function, and division function. The

algorithms o. these arithmetic functions are described below.

These arithmetic functions will call those element functions

mentioned previously. A.ll of the VHDL source programs of the

arithmetic functions are attached in Appendix B.

a. Addition Operation Function

Since the operands are in the IEEE standard format,

before the addition operation can occur, conversion from IEEE

standard bit pattern into a floating point value is necessary.

Immediately after the result of this ac Ation operation is

generated, conversion of the floating point value back into

the IEEE standard format will be done. In the following, the

key steps of floating point addition operation are described.

Let e, and si be used as the exponent and mantissa value of a

floating point ai. The basic procedure for adding two floating

point number al and a2 is very straight forward and involves

four steps.

(1) if el is less than or equal to e 2 , find the distance
d between el and e 2 . This means d is equal to e2 minus el.

(2) shift sI by d places to t~e right, now it become sI'

(3) find the sum of s2 and si'.

14



(4) determine the sign from a2, since the absolute value

of a2 is greater than al.

b. Subtraction Operation Function

Similar to the addition operation function as

mentioned above, the substraction operation function can be

performed by calling the addition operation function after the

sign of the minuend has been changed to its inverse.

c. Multiplication Operation Function

As mentioned previously, the operands are in the

IEEE standard format. Therefor, before this operation function

can occur, they are converted into floating point value. Once

the result of this multiplication operation is obtained, it is

converted back into the IEEE standard format. In the following

steps the product of two floating numbers is calculated. Let

pi and e, be the value of mantissa and exponent of a.

respectively. The method for multiplication of two floating

numbers al and a2 is similar to integer number multiplication.

(1) find the sum of el and e2, and adjust it. If single
precision is adopted in the system, the normalized action is
the subtraction of 127 from the exponent value.

(2) find the product of p, and p , and adjust it to the
range shown in equation (2.2) and modify the adjusted sum of
the exponent at the same time.

d. Division Operation Function

As mentioned previously, the conversion of the IEEE

standard format into floating point format is necessary. When

the quotient is generated, it would be converted back into the

IEEE standard format. In the following steps the floating

15



point number division operation is described. Let p, and ei be

the mantissa and exponent of ai. Assume that the dividend and

divisor are al and a2 respectively.

(1) find out the distance d between el and e2 and then
denormalize it. As previous examples, the action of
denormalizing means that the distance d is added to 127.

(2) find out the quotient of the division operation. Then
adjust it into the proper range in equation (2.2), and at
same time modify the quotient.

3. BEHAVIORAL DESCRIPTION OF THE AMD29325 CHIP

As shown in Figure 2.6, an entity of a full adder with

port and generic is declared. Generic provides a channel to

pass a parameter of constant timing to a component from its

environment, and port supports a signal list which is an

interface to its environment. 'In' and 'Out' are used to

indicate the direction of the signal data flow. In the VHDL

language, there are three levels of abstraction possible to

entity FULLADDER is
generic( del_1 : TIME := 10 ns ;

del 2 TIME := 20 ns ) ;

port( X, Y, Cin : in BIT
Sum, Cout : out BIT ) ;

end entity FULLADDER ;

FIGURE 2.6 The entity of a FULLADDER.

16



Behavioral Constructs
architecture hehav'oral view of full adder is
begin
process
variable N: integer ;

constant sum vector : bit-vector( 0 to 3):="0101";
constant carry_vector: bit-vector( 0 to 3):="0011";

begin
wait on X, Y, Cin ;
N := 0 ;
if X = 'I' then N := N+l; end if ;
if Y = 'I' then N := N+l; end if ;
if Cin = 'I' then N := N+l ; end if ;
Sum <= sum vector after del 1 ;
Cout <= carry_vector after del_2 ;

end process ;
end behavioralview;

Data Flow Constructs
architecture dataflow-view of full adder is
signal S: bit ;
begin
S <= X xor Y after del_1 ;
Sum <= S xor Cin after del_1 ;

Cout <= (X and Y) or (S and Cin) after del_2;
end dataflow view;

Structural Constructs
architecture structureview of fulladder is
component half adder

generic( delay : time := 0 ns ) ;
port(ll, 12:in bit;

C, S: out bit ); end component ;
component or_gate

generic( delay : time := 0 ns ) ;
port(ll, 12:in bit;

0: out bit ); end component ;
signal a,b,c :bit ;
begin

Ul: halfadder generic( delay => del_1 );
port map( X,Y,a,b );

U2: halfadder generic( delay => del_l );
port map( b,Cin,c,Sum );

U3: or-gate generic( delay => del_2 );
port map( a,c,Cout ) ;

end structure-view ;

FIGURE 2.7 Three constructs in VHDL language (adopted from
[Ref. 4]).
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PIN DESCRIPTION

R0 -R 31  R Operand Bus (Input) 14 Register R inout Select (Input)
F is the leas:-sgniicant b,. A LOW on 1,. seiects R0 -P31 as the inrut to register R. A

So - S3I S Operand Bus (Input) HIGH selects 'he ALU F port as the input to re;s!er R.

S, is the least-significant bit. IEEE/DEC IEEE/DEC Mode Select (Input)
F0 - F31 F Operand Bus (Output) ',Vhen IECEic- - is HIGH, IEEE mode is selected. When

F 0 is the leas-s eadcant bt. IEEE/DE- is LOW. DEC mode is selected.

CLK Clock (Input) S16/32 16- or 322-Bit I/O Mode Select (Input)
For tne internai registers. A LOW on S16/32 selects the 32-b0 IO moce: a HIGH

selects the 16-cit I/0 mode. In 32-bLt mode. Input and

ENR Register R Clock Enable (Input; Active LOW) outout buses are 32 bits ,ide. In 16-bt mode. inout and
When r is LOW, register R is clocked on the LOW-to- cutout buses are 16 bits w,:e. with the least- and most-
HIGH transition of CLK. V;en it s HIGH. register R signifcant portions of the 32-bit inout and output words
retains the previous contents being placed on the buses during the HIGH and LOW

ENS Register S Clock Enable (Input; Active LOW) portions ot CLK. respeciveiy.
When E is LOW, register S is clocked on the LOW-to- RNDO , RND 1  Rounding Mode Selects (Input)
HIGH transition of CLK. When E is HIGH. register S NDO0 and RNO1 select one of tour rounding modes. See
retains the previous contents. Table 5 for a list of rounding modes and the corresponding

ENT Register F Clock Enable (Input; Active LOW) control codes.
When - is LOW. register F is clocked on the LOW-to- PROJ/A-- Projective/Atfine Mode Select (Input)
HIGH transition of CLK. When ENT is HIGH. register F Choice of prolective or aMine mode determines the way in
retains the previous contents. which infinities are handled in IEEE mode A LOW on

U' Output Enable (Input; Active LOW) PROJ/AT selects affine mode: a HIGH selects projective
When U is LOW. the contents of register F are placed on mode.
F0 - F3 1 When M is HIGH, F0 - F3 1 assume a high- OVERFLOW Overflow Flag (Output; Active HIGH)
imoedance state. A HIGH indicates that the last operation produced a final

ONEBUS Input Bus Configuration Control (Input) result that overflowed the floating-point format.
A LOW on ONEBUS configures the input bus circuitry for JNDERFLOW Underflow Flag (Output; Active HIGH)
two-input. bus operation. A HIGH on ONEBUS configures A HIGH indicates that the last operation produced a
the input bus circuitry for single-input bus operation. rounded result that underftowed the floating-point format.

FTO  Input Register Feedthrough Control (Input; ZERO Zero Flag (Output; Active HIGH)
Active HIGH) A HIGH indicates that the last operation produced a final

When FT0 is HIGH, registers and S are transparent. result of zero.

FT 1  Output Register Feedtfiough Control (Input; NAN Not-a-Number Flag (Output; Active HIGH)
Active HIGH) A HIGH indicates that the nfal result prcdiuced by the last

When FT1 is HIGH. register F and the status flag register operation s not to be interpreted as a number. The output in
are transparent, such cases is either an IEEE Not-a-Number (NAN) or a

10- 12 Operation Select Lines (input) DEC-reserved operand.

Used to select the operation to be performed by the ALU. INVALID Invalid Operation Flag (Output; Active
See Table I for a list of operations and the corresponding HIGH)
codes. A HIGH indicates thal the last operation performed was

13 ALU S Port Input Select (Input) invalid; e.g., " times 0.

A LOW on 13 selects register S as the input to the ALU S INEXACT Inexact Result Flag (Output; Active HIGH)
port A HIGH on 13 selects register F as the input to the ALU A HIGH indicates that the final result of the last operation
S port. was not infinitely precise, due to rounding.

FIGURE 2.8 AMD29325 pin description (adopted from the AMD
data book).
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describe specific circuits [r'ef. 7]. In Figure 2.7,

examples use three different levels to depict the same full

adder as shown. The first way is the behavioral level

description, which uses a conditional branch structure in the

process. The second way is the data flow level description,

which uses the signal assignment statement to express the

relationship between input and output. The final way is the

structural level description which instantiates several

components to build the adder circuit. There are differences

among these three levels. Usually, there is a mixed situation

where more than one level of abstraction is used in the

simulation model. In the program attached in the Appendix, you

can find mixed constructs there.

The VHDL simulation program of the chip AMD29325 is

attached in Appendix C. In this program, there are four

arithmetic functions implemented, floating point addition,

floating point substraction, floating point multiplication,

and floating point division. Four flags are checked: not a

number(NAN), zero, underf low, and overflow. In order to better

understand the usage of the chip pins, the AMD29325 pin

description is listed in Figure 2.8. Since many functions of

this chip are not required in the simulation for this thesis,

those pins are only listed in the port declaration of the

AMD29325. A simplified entity A29325 is created, which is

attached in the Appendix D. Generally speaking, only those

pins of input and output signals, operation functions, clock,
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and chip enable necessary for simulation are included in the

port declaration of the AMD29325.

When the model is called by the other top level

environment, the two input signal buses must be driven and the

chip enable signal must be active low. When the clock comes

with the positive rising edge, the floating point unit is

triggered to execute the selected operation function. Data on

the output bus will change after a constant time delay. Since

the constant time delay is the VHDL inertial delay, the

desired output data will be preempted and not shown on the

data bus, this is the situation when the period of the clock

is less than the constant delay of the selected operation.

When the floating point unit AMD29325 is employed in a system

design, it is necessary to be sure that the period of the

clock is greater than the constant delay of the chip.

Otherwise, undesired output data signals may appear on the

output data bus.

All element functions, arithmetic functions, and the total

behavior of the AMD29325 have been introduced in this chapter.

In the next chapter, the subject will focus on the system

configuration.
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III. THE DATA FLOW DESIGN OF THE FAST FOURIER TRANSFORM

A. OVERVIEW OF THE FAST FOURIER TRANSFORM

The Fourier Transform is usually used to change time

domain data into frequency domain data for spectral analysis.

For some problems the analysis in the frequency domain is

simpler than that in the time domain. For Discrete Fourier

Transform(DFT), the operations are performed on a sequence of

data. Assume that the total number of input data is N, which

is an integer of power of 2. For a limited sequence x(n), the

Discrete Fourier transform formula is,

N-1

X(k)= x(n)e -j 22n/ for k=0 .. N-1 (3.1)
n-0

In the following a brief description of two data flow designs

of Fast Fourier Transform are presented. They are the methods

of decimation in time and decimation in frequency.

1. DECIMATION IN TIME(DIT)

In this method, it is possible to divide x(n) into two

half series. One with odd sequence number, and the other with

even sequence number. Through a well known derivation of

steps, the butterfly operation for the DIT fast fourier

transform can be represented graphically in Figure 3.1

[Ref. 8]. The complete signal flow of an 8-point FFT is shown

in Figure 3.2 [Ref. 1). Note that in this figure the input
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A 1 1 C A C

r or
\< Wk

B Dk B D

C = A+B

D = (A-B)Wk

FIGURE 3.1 Signal flow graph and the shorthand
representation of DIT butterfly.

data is arranged in bit reversal order according to the needs

of decimation. This arrangement has the property that the

output will turn out to be in the natural order.

2. DECIMATION IN FREQUENCY(DIF)

Another way to decompose the calculation of the

Discrete Fourier Transform(DFT) is known as the decimation in

frequency. This idea is similar to the idea of the decimation

in time. In DIT, the time sequence was partitioned into two

subsequences having even and odd indices. An alternative is to

partition the time sequence x(n) into first and second halves.

The signal data flow of the butterfly is shown in Figure 3.3

[Ref. 1]. And the completed signal data flow of an 8-point FFT

in DIF algorithm is shown in Figure 3.4 (Ref. 1). Figure 3.4

is similar to Figure 3.2, except that bit reversal ordering
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FIGURE 3.2 8 points FFT using DIT butterfly.

occurred in the output. In both Figure 3.2 and Figure 3.4, two

data values are used as a pair inputs to a butterfly

calcUlation. The output can be put back into the same storage

locations that hold the initial input values because they are

no longer needed for any subsequent computations. As a

consequence of this characteristic, the FFT shown in Figure

3.2 and 3.3 are called in-place algorithm. Another arrangement

is to have both the input and the output data in the normal

order. Figure 3.5 shows a non-bit-reversal algorithm. Notice

that this is no longer an in-place algorithm. In this thesis,

in order to keep normal order for both the input and the

output data, the non-in-place algorithm is adopted.
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A1 C A C

r or
S-1 D B Wk D

C = A + BWk

D= A -BWk

FIGURE 3.3 Signal flow graph and shorthand representation
in DIF butterfly.

B. COMPARISON OF SEVERAL DATA FLOW CONFIGURATIONS OF THE FAST

FOURIER TRANSFORM

The objective is to consider several data flow structures

to find an optimum implementation of the Fast Fourier

Transform. Figure 3.6 shows the basic butterfly structures of

both the DIT and the DIF Fast Fourier Transform. There are two

inputs, complex numbers A and B. They are combined together

with a complex weight factor, W, to form two outputs C and D.

Inspection of the formula shows that a single butterfly

calculation requires one complex addition, one complex

subtraction, and one complex multiplication. Additionally,

five complex memory access are required; three reads for A,B

and Wk, and two writes for C and D. Figure 3.6 shows the total
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FIGURE 3.4 8 points FFT using DIF butterfly.

number of floating point operations, data read, data write,

and coefficient read required.

From the above analysis it is known that if all operations

take equal time, the throughput is limited by the memory

access requirement. In order to ease this bottleneck, two ways

were adopted. Firstly, the real and the imaginary parts of the

input complex data are accessed simultaneously. Secondly, it

is noted that the multiplications are performed between the

data and a coefficient. If the coefficients are stored in a

separate memory, they may be accessed concurrently. Several

different structures associated with a non-in-place algorithm

of the butterfly in the DIF are discussed below.

25



2 2

3

4 4

5 5

6 6

7

FIGURE 3.5 8 points FFT with DIF butterfly in non-bit-
reversal algorithm.

1. STRUCTURE 1 OF DIF BUTTERFLY

It is known that the total number of required

arithmetic operations for real data is 10, which includes four

multiplications and six adfitions/subtractions. In order to

reduce the execution steps, a full pipeline structure can be

adopted. In this full pipeline structure shown in Figure 3.7,

each arithmetic operation uses a processor. Therefore, for a

total number of 10 arithmetic operations, it needs 10

processors. The data flow configuration is shown in Figure

3.7. There are three layers of arithmetic processors shown.

There is one layer for data read, and one layer for data write

not shown in Figure 3.7. The time space diagram for this
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A C A C

r or
Wk

r orw k  D B D

C = A + BWk C = A+B

D= A-BWk D = (A-B)Wk

1. 8W k = 4* 1. A+B=2+

I+ 4*

1- -00 3+ 2. A-B =2-

2. A+BWk = 2 + 3. (A-B)Wk = 4*

3- I+

3. A-BWk = 2- -
4 Data Reads
4 Data Writes
2 Coeff Reads

FIGURE 3.6 Two different basic butterflies and their
arithmetic operations.
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structure is listed in Table 3.1. For data sample A(n), B(n),

and Wk(n) the complete butterfly operation needs 5 time steps.

These steps are shown in shaded boxes in Table 3.1. At the Nth

time step the input 'ata A, B, and Wk are fetched. In the next

3 time steps, the output data C and D are generated. At the

time step N+4, C and D are stored back to memory. Four steps

of data flow execution can be overlapped with the execution of

the previous data. Since in this thesis single precision IEEE

floating point format (32 bits) is used, the total size of the

input data and output data buses are 192 and 128 respectively

which are shown in Figure 3.7. This structure requires input

and output buses concurrently. Therefore, time multiplexed

buses by input and output are not usable in this structure.

Because input and output buses are always busy, the bus

utility of this structure is 100% as shown in Table 3.1. Every

processor in this structure is always busy, therefore, the

average efficiency of processors is 100%. The average

efficiency of processors is defined as the percentage of

processors used in one completec cycle of the arithmetic time

space table. For example, in structure 1, since all 10

processes are busy in one row of the time space table, the
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S 0 1 1st row ALU's 2nd row ALU's 3rd row
t U n oper. for +" oper. for "*" LU's
e t p & ''oper.
P p u for +"&

U t t

t
B

B U
U S
S

B(n) Cr(n-1) -- R2r(n-2) =Dr(n-3) =
C (n-4) W(n) Ar(n-1)+Br(n-1) Rlr(n-2)*Wr(n-2) R2r(n-3)-

A(n) R3r(n-3)
N D(n-4) Rlr(n-1) =R2i(n-2) =

r(n-1)-Br(n-1) Rlr(n-2)*Wi(n-2) Di(n-3) =
R2i(n-3) +

Ci(n-1) - R3r(n-2) = R3i(n-3)
Ai(n-1)+Bi(n-1) Rli(n-2)*Wi(n-2)

Rli(n-1) = R3i(n-2) =
Ai(n-1)-Bi(n-1) Rli(n-2)*Wr(n-2)

B(n+1) Cr(n) = R2r(n-1) = Dr(n-2) =
C(n-3) W(n+1) Ar(n)+Br(n) Rlr(n-1)*Wr(n-1) R2r(n-2) -

A(n+l) R~r(n-2)
N D(n-3) Rlr(n) =R2i(n-1) =
+ Ar(n)-Br(n) Rlr(n-1)*Wi(n-1) Di(n-2) =
1 R2i(n-2) +

Ci(n) =R3r(n-1) =R3i(n-2)

Ai(n)+Bi(n) Rli(n-i) *Wi (n-i)

11i(n) = R3i(n-1) =
Ai(n)-Bi(n) Rli(n-1)*Wr(n-1)

B(n+2) Cr(n+1) = 2r(n) =Dr(n-1) =
C(n-2) W(n+2) Ar(n+1)+Br(n+1) Rlr(n)*Wr(n) R2r(n-1)-

N A(n+2) R3r(n-1)
+ D(n-2) Rlr(n+1) = 2i(n) =
2 r(n+1)-Bz n+1) Rlr(n)*Wi(n) Di(n-1) =

R2i(n-1) +
Ci(n+1) = R3r(n) =R3i(n-1)

Ai(n+1)+Bi(n+1) Rli(n)*Wi(n)

li(n+i) = R3i(n) =
______~~ ___i(n+1) -Bi (n+1) Rli (n) *Wr (n) _____

TABLE 3.1 Time space diagram of DIF structure 1.
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B(n+3) Cr(n+2) = R2r(n+l) =- Dr (n) =
C(n-l) (n+3) Ar(n+2)+Br(n+2) Rlr (n+1) *Wr (n+1) R2r(n) -

N (n+3) R3r (n)
+ D(n-l) Rlr(n+2) =R2i(n+l) =
3 r(n+2)-Br(n+2) Rlr(n+)*Wi(nI-) Di(n) =

R2i(n) +
Ci(n+2) = 3r(n+l) = 3i(n)
Ai(n+2)+Bi(n+2) Rli(n+1)*Wi(n+l)

Rli(n+2) = R3i(n+l) =
Ai(n+2) -Bi (n+2) Rli(n+l) *Wr(n+l)

B(n+4) Cr(n+3) =R2r(n+2) - Dr(n+1) =
C(n) W(n+4) Ar(n+3)+Br(n+3) Rlr(n+2)*Wr(n+2) R2r(n+1)-

N A(n+4) R3r(n+l)
+ D(n) Rlr(n+3) =R2i(n+2) =
4 Ar(n+3)-Br(n+3) Rlr(n+2)*Wi(n+2) Di(n+l) =

R2i(n+1) +
Ci(n+3) -R3r(n+2) =- R3i(n+1)
i(n+3)+Bi(n+3) Rli(rl+2)*Wi(n+2)

Rli(n+3) = R3i(n+2) =
Ai(n+3)-Bi(n+3) Rli(n+2)*Wr(n+2)

B(n+5) Cr(n+4) =R2r(n+3) =- Dr(n+2)=
C(n+l) W(n+5) Ar(n+4) +Br (n+4) Rlr(n+3)*Wr(n+3) R2r(n+2)-

N A(n+5) R3r(n+2)
+ D(n+l) lr(n+4) =R2i(n+3) =
5 Ar(n+4)-Br(n+4) Rlr(n+3)*Wi(n+3) Di(n+2)=

R2i(n+2) +
Ci(n+4) = 3r(n+3) =- R3i(n+2)
Ai(n+4)+Bi(n+4) Rli(n+3)*Wi(n+3)

li(n+4) = R3i(n+3) =
i(n+4)-Bi(n+4) Rli(n+3)*Wr(n+3)

input bus size = 192 bits; output bus size =128 bits

# of execution steps per data sample = 5

# of overlapped steps in two adjacent data samples = 4

average efficiency of processors = 100%

bus utility = 100 %

TABLE 3.1. Time space diagram of DIP structure 1(continued).
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average efficiency of the processors in this structure is

100%.

2. STRUCTURE 2 OF DIF BUTTERFLY

For structure 1, the disadvantage is that the number

of input and output data buses is too large. Here, in

structure 2 the number of I/O data lines required is reduced.

6 processors are used to implement a butterfly structure in

Figure 3.8, 2 for substraction or addition and 4 for

multiplication. Due to the time multiplexing, the sizes of the

input and output buses are decreased to 128. An overlap time

space diagram is listed in Table 3.2. In Figure 3.8, R2i, R3i,

R2r and R3r are fed back to the first row processors through

the selectors controlled by the selection signal S1.

Therefore, the data flow sequence controller of this structure

will be more complicated than that of structure 1. In Figure

3.8, .extra registers are used to stored the previous input

data A(n). When the current data A(n+l) is read, the

processors need to get the previous input data A(n), B(n) and

W(n) for the arithmetic operations concurrently. Therefore, a

second pair of registers is used here as a buffer to save the

previous input data A. The number of time steps for a data

sample is 6, while in structure 1 only 5 were required. The

number of overlap time steps for two adjacent data samples is

3. In Table 3.2, the number of rows for one cycle of

arithmetic operation in the time space is 3, which means that
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all of the arithmetic operations will be repeated at every 3

time steps. From step N to N+2, there are 6 times space boxes

and only 4 boxes are used by processors. The multiplication is

performed in 1 of every 3 steps. The operations for the

multiplier in the box is 4. The total number of operations in

those 6 boxes should be 18, but only 10 operations are

executed. Therefore, the average efficiency of processors is

56%.

Although the number of data bus lines is reduced, the data

bus utility, which is 83%, is decreased by 17% compared with

that of structure 1. This results from the fact that from step

N to N+2 the time space boxes associated with data buses are

6, and only 5 boxes were used to convey data. Here, it is not

allowed to use time multiplexed buses for both input and

output, because the input bus is always busy.

3. STRUCTURE 3 OF DIF BUTTERFLY

In structure 2, the average efficiency of processors

was 56% which is lower than that of structure 1. In structure

3, the emphasis is to increase the processor operation

efficiency. There are four processors arranged to perform

different arithmetic operations at different times in

structure 3. The performance of this structure is better than

that of the structure 2. In Figure 3.9, more selectors than

that of structure 2 are used. The input data is fed at the

proper time to the floating point unit(FPU) by selection
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signals Si and S2. However, the method for generating the

S Output Input 1st row ALU's oper. 2nd row
t
e Bus Bus for +"&-"Multipliers

p __ _ _ __ _ _ _ _ _ _ _ _ _ _

N A(n) Cr(n-i)= R2r(n-1)
Ar(n-l)+Br(n-1) Rlr(n-l)*Wr(n-1)

Ci(n-1)= R2i(n-1) =
Ai(n-l)+Bi(n-1) Rlr(n-l)*Wi(n-1)

R3r(n-l) =
Rli(n-i) *Wi (n-i)

R3i=
________________________Rli(n-l) *Wr(n-l)

N C(n-l) B(n) Dr(n-l)=
+ R2 r(n-1) -R3 r(n- 1)
1

Di(n-l)
________R2i (n-i) +R3i (n-i)

N D(n-l) W(n) Rlr(n) =
+ Ar(n)-Br(n)
2

Rli(n)
____ ___ ____ ___ Ai(n)-Bi(n) _ _ _ _ _ _ _ _ _

N A(n+l) Cr(n) = Ar(n)+Br(n) R2r(n)=
+ Rlr(n) *Wr(n)

3 Ci(n) = Ai(n)+Bi(n)
R2i(n)-
Rlr(n) *Wi(n)

R3r(n)=
Rli(n) *Wi(n)

* R3i(n)-
___ ___ ___ ___ ___ ___ ___ ___ ___ Rli(n) * Wr(n)

N C(n) B(n+i) Dr(n) =
+ R2r(n) - R3r(n)
4

Di(n) =
______ _____R2i(n) + R3i(n) _________

TABLE 3.2 Time space diagram of DIP structure 2.
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N D (n) W (n+ 1) Rlr(n+l) =
+ Ar(n+l) - Br(n+l)
5

Rli(n+l) =
Ai(n+l) - Bi(n+l)

N A(n+2) Cr(n+1) = R2r(n+l)=
+ Ar(n+l)+Br(n+l) Rlr(fl+l)*Wr(fl+l)
6

Ci(n+l) -R2i(n+l)=

Ai(n+l)+Bi(n+l) Rlr(n+l) *Wi(n+l)

R3r(n+1) =

Rli (n+1) *Wi (n+1)

R3i(n+l)=
_______ ~ ~ ~ ~ ~ R ____ ____ _____Ri(n+l1) *Wr (n+l1)

input bus size =64 bits

output bus size =64 bits

# of execution steps per data sample =6

# of overlap steps for two adjacent data samples = 3

average efficiency of processors = 56%

bus utility = 83 %

TABLE 3.2 Time space diagram of DIP structure 2(continued).
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selection signals and which functional signals F1 through F5

should be generated in this structure are important issues. In

Table 3.3, the input data samples A(n), B(n), and W(n) to be

manipulated are shadowed in this table. The functional signals

Fl through F5 are used to change the processors to the correct

arithmetic function at the right time.

The processor average efficiency of this structure is

higher than that of structure 2. It still has the same 2 empty

time space boxes as structure 2 in row N to N+2 as shown in

Table 3.3. However, the number of operations associated with

the boxes in this structure is 1. The complete cycle of

butterfly operations is 3. The number of arithmetic operations

in 3 rows should be 12, but the number of actual operations is

10. Therefore, the average of efficiency of the processors is

83%. It is higher than that of structure 2, but is still lower

than that of structure 1. As a matter of fact, the size of

data bus lines, execution steps, and bus utility are the same

as those of structure 2. From Table 3.3 and 3.2, it is clear

that the environmental support to processors in structure 3 is

about the same as that of structure 2, except that a different

number of processors are used. Hence, although fewer

processors are used than the previous structure, it always

keep these processors busy.
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S Output Input Processor Processor Processor Processor
t Bus Bus #1 # 2 #3 #4
e

C(n-l) A(n) R2r(n-l)= R2i(n-l)= Rlr(n-l)= Rli(n-1)
N Rlr(n-l)* Rlr(n-l)* Rli(n-l)* =

Wr(n-l) Wi(n-l) Wi(n-l) Rli(n-1)
_____ _ ___ _____*Wr (n-i)

B(n) Dr(n-l)= Di(n-)=
N R2r(n-l)- Rli(n-l)+
+ Rlr(n-l) R2i(n-l)

D(n-l) W(n) lCr(n) = Ci(n)= Rlr(n)= Rli(n) =
N Ar(n) + Ai(n)+ Ar(n)- Ai(n)-
+ Br(n) Bi(n) Br(n) Bi(n)
21_____ _____

C(n) A(n+1) R2r(n) = R2i(n) =Rlr(n) =Rli(n) =
N Rlr(n) * Rlr(n)* Rli(n)* Rli(n)*
+ Wr(n) Wi(n) Wi(n) Wr(n)

B(n+l) Dr(n) = Di(n)=
N R2r(n) - Rli(n)+
+ Rlr(ra) R2i(n)
41_____

D(n) W(n+l) Cr(n+1) =Ci(n+l) =Rlr(n+1)= Rli(n+l1)
N .Ar(n+l)+ Ai(n+l)+ Ar(n+l)- -

+ Br(n+l) Bi(n+l) Br(n+1) Ai(n+i)-
5 Bi (n+1)

C(n+1) A(n+2) R2r(n+l)= R2i(n+l)= Rlr(n+l)= Rli(n+1)
N Rlr(n+l)* Rlr(n+l)* Rli(n+l)*=
+ Wr(n+l) Wi(n+l) Wi(n+l) Rli(n+l)*

input bus size = 64 bits; output bus size = 64 bits

# of execution steps per data sample =6

# of overlapped steps in two adjacent data samples = 3

average efficiency of processors = 83%; bus utility = 83%

TABLE 3.3 Time space diagram of DIP structure 3.
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4. STRUCTURE 4 OF DIF BUTTERFLY

In the previous structure, not every processor is busy

all the times. If it is desired to keep the processors busy as

in structure 1, and to use fewer processors than in of

structure 1, what can be done? In structure 4. Only two

processors are used as shown in Figure 3.10. A special device

"1:4 DMUX" are i.sed to route the output of the ALU to

different buffers. The time space diagram is shown in Table

3.4. In Table 3.4, two processors are always busy. In other

words, the average efficiency of processors is 100%, the same

as that of structure 1. 8 steps are needed for completing one

butterfly operation, and the number of overlapped steps is 3

for two adjacpnt data samples. The sizes of the input and

output data ouses are still 64. It is noted that in this

structure the bus time space usage repeats every 5 time steps.

There is only about 50% usages from step N+3 to step N+7. This

situation can be improved using the time multiplexed bus for

input and output to achieve a higher bus utility. In this

situation, the controller and address sequence generator for

this structure would be more complicated than that of the

former structures.
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Step Output Input Processor #1 Processor W2
Bus Bus__ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _

N A(n) R3r(n-1)= R3i(n-1)
Rli(n-1)* Rli(n-1)*Wr(n-1)

____ ___ Wi (n-i) _ _ _ _ _ _ _ _ _ _

N+l B(n) Dr(n-1)= Di(n-1)-
R2r(n-1)- R2i(n-1)+R3i(n-1)

___ ___ R3r (n-i)_ _ _ _ _ _ _ _ _

N+2 D(n-1) Cr(n)= Ci(n) C

____Ar(n)+Br(n) Ai(n)+Bi(n)

N+3 C(n) W(n) Rlr(n)- Rli(n)=
Ar(n)-Br(n) Ai(n)-Bi(n)

N+4 R2r(n)= R2i(n)=
____ _____ _____Rlr(n)*Wr(n) Rlr(n)*Wi(n)

N+5 A(n+l) R3r(n)= R3i(n)=
____ ____________Rli(n)*Wi(n) Rli(n) *Wr(n)

N+6 B(n+l) Dr(n)= Di(n)=
____R2r(n)-R3r(n) R2i(n)+R3i(n)

N+7 ')(n) Cr(n+l)= Ci(n+1)=-

____ ___Ar(n+l)+Br(n+l) Ai(n+l)+Bi(n+1)

N+8 C (n-l1) W(n+l) IRlr(n+1)= Rli(n+l):=
____ ______Ar(n+l)-Br(n+l) Ai (n+l)-Bi(n+l)

input bus size =64 bits

output bus size =64 bits

W of execution steps per data sample = 8

# of overlapped steps in two adjacent data samples =3

average efficiency of processors = 100%

bus utility = 100%

Table 3.4 Time space diagram of DIF structure 4.
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5. STRUCTURE 5 OF DIF BUTTERFLY

If only a single processor is allowed in the butterfly

structure, what would happen? In the following, the emphasis

is on using a single processor in the butterfly structure. In

DIF Figure 3.5 the total number of arithmetic operation is 10,

4 for multiplication, 6 for additions or subtractions.

Additionally, the input data must be fetched and the output

data must be stored. An alternative configuration is shown in

Figure 3.11 where input data is selected for the FPU, and the

output data from FPU is stored to registers selected by the

control signals Sl thruogh S6. The selection signals depend on

activities shadowed in Table 3.5. In Table 3.5, the total

number of steps needed for one butterfly cycle is 13. From

step N to step N+12, it still needs a data size of 64 in both

input and output buses. However, it is true that the bus

utility of 25% is lower than any of the previous structures.

The bus activities cycles every 10 steps. From step N+4 to

N+13, the total number of time step boxes is 20, but only 5

boxes are used. In order to increase the bus utility, it is

necessary to use a time multiplexed bus. One of the

disadvantages in this structure is that the real part and the

imaginary part of the data can not be manipulated in a single

processor simultaneously. Therefore, the imaginary part of the

input data must wait until the real part manipulation has been

completed.
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Step output bus input bus processor

N ______ A(n) Dr(n-1)= R2r(n-1)-R3r(n-1)

N+1 _____ B(n) Di(n-1)= R2i(n-l)+R3i(n-1)

N+2 Cr(n)= Ar(n)+Br(n)

N+3 ______Ci(n)= Ai(n)+Bi(n)

N+4 C(n) Rlr(n)= Ar(n)-Br(n)

N+5 ______ W(n) Rli (n) = Ai (n) -Bi (n)

N+6 ______R2r(n)= Rlr(n) *Wr(n)

N+7 ______R3r(n)= Rli(n)*Wi(n)

N+8 _____ ______R21(n)= Rlr(n)*Wi(n)

N+9 ______R3i(n)= Rli(n)*Wr(n)

N+10 _____ A(n+1) Dr(n)= R2r(n)-R3r(n)

N+11 ______ B(n+1) Di(n)= R2i(n)+R3i(n)

N+12 D(n) ______Cr(n+1)= Ar(n+l)+Br(n+1)

N+1 3 Ci(n+1)= Ai(n+1)+Bi(n+1)

N+14 C x1) Rlr(n+1)= Ar(n+1)-Br(n+1)

N+15 ______ W(n+1) Rli(n+1)= Ai (n+1) -Bi (n+1)

N+16 _____ ____ __R2r(n+1)= Rlr(n+1) *Wr(n+l)

N+17 ______R3r(n+1)= Rli(n+1)*Wi(n+1)

N+18 _____ ____ __R2i(n+1)= Rlr(n+l)*Wi(n+1)

N+19 ______R3i(n+1)= Rli(n+1)*Wr(n+1)_

N+20 A(n+2) Dr(n+1)= R2r(n+1)-R3r(n+l)

N+21 ____ __ B(n+2) Di(n+1)= R2i(n+1)+R3i(n+ll)

input bus size = 64 bits; output bus size = 64 bits

# of execution steps per data sample = 13

# of overlapped steps in two adjacent data samples = 3

average efficiency of processors = 100%; bus utility = 25%

TABLE 3.5 Time space diagram of DIP structure 5.
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6. STRUCTURE 6 OF DIF BUTTERFLY

This structure is a modified version of structure 5

shown in Figure 3.12. The time space diagram is shown in Table

3.6. The bus utility calculation is similar to the previous

approach, with only 9 boxes used for every 20 boxes of

input/output data. The bus utility is 45% in this structure,

which is higher than the previous one. In Table 3.6, it is

obvious that the size of the input and output buses are

decreased to 32 respectively. The bus utility of this

structure is still much lower than that of the structure 1,

which was 100%. The bus utility of structure 2 and 3 were 83%.

Increase of the buses utility by time multiplexing is achieved

at the expense of more complicated controller and address

sequence generator. The controller must know whether the

current data on bus is input data or output data.

. All 6 structures have been introduced, and the

comparison is listed in Table 3.7. In this thesis, only the

address sequence generator and controller of structure 1 are

implemented. In the following section, a design of a

controller and addressing sequencer of structure 1 will be

presented.
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Step Output Bus Input Bus processor

N ______ Ar(n) Dr(n-l)= R2r(n-1)-R3r(n-l)

N+1 ______ Br(n) Di(n-l)= R2i(n-,-l)+R3i(n-1)

N+2 Ai(n) Cr(n-l)= Ar(n-l)+Br(n-1)

N+3 Cr(n) Bi(n) Rlr(n-1)= Ar(n-l)-Br(n-l)

N+4 ___________Ci(n)= Ai(n)+Bi(n)

N+5 Ci(n) Wr(n) Rli(n)= Ai(n)-Bi(n)

N+6 ______ Wi(n) R2r(n)= Rlr(n)*Wr(n)

N+7 ______ ______R3r(n)- Rli(n)*Wi(n)

N-IB______ R2i(n)= Rli(n)*Wr(n)

N+9 ___________R3i(n)= Rlr(n)*Wi(n)

N+10 _____ Ar(n+l) Dr(ri)= R2r(n)-R3r(n)

N+11 Dr(n) Br(n+1) Di(n)= R2i(n)+R3i(n)

N+12 Di(n) ______Cr(n+l)= Ar(n+1)+Br(n+1)

N+ 13 Cr(n+1) Ai(ns-) Rlr(n+1)= Ar(n+1)-Br(n+1)

N+14 Bi(n~l) Ci(n+l)= Ai(n+l)+Bi(n+1)

N+15 Ci(n+1) Wr(n+1) Rli(n+1)= Ai(n+l)-Bi(n+1)

N+-16 Wi(n+l) R2r(n+1)= Rlr(n+1)*Wr(n+1)

FN+17 R3r(n+l)= Rli(n+l)*Wi(n+l)

N+l8 _________ __R2i(n+1)= Rli(n+1)*Wr(n+1)

N+l9 _________ __R3i(n+l)= Rlr(n+l)*Wi(n+1)

N+20 ____ __ Ar(n+2) Dr(n+l)= R2r(n+l)-R3r(n-l)

input bus size = 32 bits; output bus size = 32 bit;

# of execution steps per data sample = 13

# of overlapped steps in two adjacent data samples = 3

average efficiency of processors = 100%; bus utility = 45%

TABLE 3.6 Overlap time space diagram of DII' structure 6.
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DIFi1 DIF 2 DIF 3 DIF 4 DIF 5 DIF 6

# of FPU 10 6 4 2 1 1
chips (AMD29325)
needed ____ ___ ___

data bus size 320 128 128 128 128 64
(bits) _ _ _ _ _ _ _ _ _ ___

# of executed 5 6 6 8 13 13
* ~steps_______

average efficiency 100% 56% 83% 100% 100% 100%

# of overlap steps 4 3 3 3 3 3

bus utility 100% 83% 83% 50% 25% 45%

total # of 516 1539 15390 26530 51230 51240
executed steps for *10 *10
1024 real data =5160 =15390
points I _ __ I _ _ _ I _ _ _ I _ __ I _ _ _ I_ _

TABLE 3.7 Comparison of 6 DIP butterfly structures
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C. SOME VHDL BEHAVIORAL MODELS

The objective of this section is to describe a VHDL

modeling effort to verify an FFT system design and show the

benefit of VHDL simulation at the data flow level. Only

structure 1 mentioned previously is used.

1. FULL PIPELINE DIF BUTTERFLY STRUCTURE

The structure 1 mentioned in the previous section is

a full pipeline structure. Figure 3.7 shows 10 processors and

several internal registers holding previous partial results.

There are some other registers used to hold weight

coefficients and output data produced by this butterfly

structure. There are no multiplexed buses for input and output

data.

In order to reduce the response time of this butterfly

structure, two different triggers are employed. Floating point

processors are positive edge triggered. The registers are

negative edge triggered. In this way, only three and a half

clock periods are needed to complete one butterfly operation.

Otherwise, it would require 7 clock periods if either positive

or negative edge is employed alone. To avoid undesirable

signal data entering into this butterfly structure, and

undesirable output data generated out of it, enable signals,

IE, OE, and ENABLE are needed. In this structure butterfly,

the signal IE is used for input register enable, the signal OE

for output register enable, and the signal ENABLE for
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processor enable. How to generate those enable signals IE, OE,

and ENABLE with appropriate timing is discussed in the

following VHDL model.

2. CONTROLLER FOR THE BUTTERFLY STRUCTURE

This controller is designed to produce not only the

enable signal for the butterfly but also requests for input to

FFT butterfly and output to be stored. Figure 3.13 shows the

flow chart of the controller and its logical symbol. The

controller communicate with its environment via seven signals,

2 for input and 5 for output. INR is an output signal used

for input data request. OUTA is an output signal used to show

output data available on the output bus. INE is an input

signal showing that the input data fetched has been completed.

OUTE is an input signal showing that the output data has been

stored. Both signals INR and OUTA are generated by the

controller, while signal INE and OUTE are produced by the

address sequence generator. Signals IE, OE, and ENABLE, which

were mentioned in previous section, are generated by this

controller which was needed to manipulate the butterfly

structure. CNT is an internal counter in this controller. In

this thesis, the action of "set a signal" means that a signal

is set 1, while "clear a signal" means that a signal is set to

0. The flow chart shows the activities as below:

• Initially, it is triggered by IN_E and OUTE generated by
the address sequence generator.
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" It will initiate IE and ENABLE to activate the butterfly.
It also sets INR, clears OUTA, and asks for data fed
from RAM into butterfly.

* At the proper time, the output of the butterfly would be
available by setting OE. When data becomes available at
the output, this controller ask its environment to store
the output data by setting OUT-A.

" When INE is set meaning that the input data is fetched to
the end of the input data set, the controller would stop
input data fetching by clearing INR, and close the
imports of the butterfly by clearing IE.

• Finally, when OUTE is set due to finishing the data set,
the controller would close the output port of the
butterfly immediately by clearing OE, and then clear
OUTA.

The input data is going to be fed into the butterfly

by setting the INR. However, in the above description it did

not mention clearly when the output port of the butterfly

structure would be open. Table 3.1 shows that 5 steps occur

between fetching the data from RAM to producing output on the

data bus. The internal counter, CNT, is used to detect the 5th

cloc' period after the controller initiated the butterfly and

the first input data was fed into the butterfly. When the

number in CNT is 5, the controller would automatically set the

OUTA to indicate that the output data on output bus is

available.

3. ADDRESS SEQUENCE GENERATOR

According to Figure 3.5, there is a need to obtain

data from memory and feed it to butterfly to achieve the

calculation of an eight point FFT. Hence, the main functions
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FIGURE 3.13 Controller flow chart and its logical symbol.
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of this generator are to produce the input and output

addresses for memory access, real/write signals, and memory

chip enable signals. In this thesis, the non-bit-reversal

algorithm is implemented. The input and output addresses

associated with the butterfly are generated according to

Figure 3.5. In Figure 3.14, these signals for data bus

addresses include ADD1, ADD2, and ADD3. Memory enable signals

contain chips enable OEl, OE2, and OE3. Memory read/write

signals Rl/Wl, R2/W2, and R3/W3 are also required. Since it is

necessary to fetch input data A, B, Wk concurrently, three RAM

modules are used. The signal OE3, R3/W3, ADDR3 are used to

fetch the weight coefficient Wk from RAM. Signals OE2, R2/W2,

and ADDR2 and signals OEl, RI/WI, and ADDR1 are used to access

memory RAM 0 and RAM 1 respectively. The connection of RAM and

butterfly is shown in Figure 3.17. ADD1, ADD2, and ADD3 are

shown with bold signal lines representing a bus.

Another function of this generator is to cooperate with

the controller. They cooperate via four signals INE, OUTE,

INR, and OUT_A which were mentioned in the previous section.

Figure 3.15 is the flow chart of the address sequence

generator. State 5 and state 6 of Figure 3.15 occur when the

predetermined 2N value has been reached. ZN is the number of

data samples of the FFT. The address sequence generator also

cooperates with the universal controller at a higher level of

hierarchy. The interface includes input signals CHE, LEN, and

ISTO, and output signals STAGE_CNT, OSTO and FFTCMP. CHE
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FIGURE 3.14 The block diagram of address sequence generator
and controller.

represents chip enable. LEN represents the input data length.

ISTO represents a pointer signal of the initial input data in

the RAM. STAGECNT represents stage counter number in the FFT

algorithm. OSTO represents a pointer signal of the output data

in the RAM. FFTCMP represents the FFT completion. Before the

beginning of the FFT data flow, the universal controller loads

N number of pairs of input data, and sets N on the signal LEN.

It uses the signal ISTO to indicate which of the two RAM, RAM

0 or RAM 1, the input data is stored. For example, in Figure

3.18 if the input data is stored in RAM 1, the signal ISTO

would be set to 1. The universal controller uses signal CHE to

start the address sequence generator. The signal STAGECNT

keeps a number to tell the external universal controller which
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FIGURE 3.15 Address sequence generator flow chart.
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stage of the FFT is executed currently in the butterfly. For

example, if the number of pairs of data to the FFT is 4, which

is an 8-point FFT shown in Figure 3.5, the total executable

stage is 3, which results from the iog2(8). The number in the

STAGECNT would count from 0 to 2. As shown in Figure 3.15,

once the signal STAGECNT reaches 3, the signal FFTCMP would

be set. This represents the FFT completion. The signal OSTO is

used to indicate where the output data is available from the

two RAMs.

Selection signals S1 and S2 are used to control the "3 to

1" selector, shown in Figure 3.18. There is another way for

memory access to provide data to the universal ccntroller.

Before the universal controller starts the FFT, it would store

the input data set into one of the two RAMs using those memory

access signals drawn at the bottom of Figure 3.17 and 3.18.

Those signals drawn at the bottom of Figure 3.17 and 3.18

include the signals of memory access OCHI, OCH2, OCH3,

ORI/OWI, OR2/OW2, OR3/OW3, CADDI, CADD2, and CADD3, selection

signal Cl, C2, and output enable BE. Those signals provide a

way that the universal controller can use to fetch input data

and store the results of the FFT. For example, for a complete

8-point FFT, which are initially stored in RAM 1 shown in

Figure 3.18, the universal controller would set N to 4 on

signal LEN and use selection signals Cl. C2, and one group of

memory access signals OCH 1, CADD 1, and ORl/OWl. It will

indicate where the input data is stored by setting ISTO to 1.
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Then it activates the address sequence generator by setting

CHE. In the execution process of the FFT, the signal STAGECNT

would tell the universal controller which stage of FFT is

active. Using S1 and S2 and two groups of memory access

signals, the address sequence generator selects the input data

from RAM, and stores the output data of the FFT butterfly back

to RAM. When the FFT is done, the address sequence generator

responds to the universal controller by setting signal

FFTCMP. Signal OSTO, in this case being 0 at the end of the

FFT, would indicate where the results of the FFT are stored.

According to the pointer OSTO, the universal controller would

fetch the results of the FFT from RAM 0 via CADD2, -2/OW2,

OCH2 and BE.

In the following, the activities of the address sequence

generator can be summarized. Let RCNT and WCNT be the

internal counters of read and write operations. The source

program of tPie address sequence generator and the controller

are attached in Appendix E.

" First, clear FFT CMP and STAGECNT. Load N with
predetermined number of pairs of data to be transformed.

" Second, clear RCNT, WCNT, INE and OUTE.

* Third, check the status of INR and OUTA generated by the
controller in the following.

1. When both IN R and OUTR are clear, the controller
is not ready, so the address sequence generator would
wait until INR is set.

2. When the INR is set, the controller is ready, and
the butterfly needs to be fed with data. The number
stored in RCNT is incremented by 1.
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3. When OUT A is set, the controller had opened the
output port-of the butterfly, and the data on the
output data bus is available. The number stored in
W_CNT is incremented by 1.

4. When both IN R and OUTA are set, the butterfly
needs to be fed with data, and the output data coming
from it are available on the output data bus. The
number stored in RCNT and WCNT are incremented by 1.

* Fourth, check the number of R CNT and W CNT, if the
predetermined number is reached for each counter, the stop
signals IN E and OUT E would be transmitted to the
controller. For example, when the data read is complete,
the INE would be set.

* Finally. Once the IN E and OUTE are set. The address
sequence generator would increase the STAGE CNT and
compare it with the total stage number required. If they
are not yet the same do the next stage again. For example
if the total number of pairs of data is 4, the execution
stages should be 3. If the number in the STAGECNT has
counted to this execution stage number, the address
sequence generator would set the signal FFTCMP,
indicating that the FFT operation is completed.

4. RAN

Since there is memory storage required in this

structure, a random access memory model is necessary for the

VHDL simulation. In order to reduce the complexity of the

signal timing in RAM and simplify the model of the RAM, only

static RAM, having a separate input and output data bus was

implemented. The size of the RAM is 256 by 32, because input

is a 32-bit floating point number. Several parameters, for

example, date set up time and access time associated with the

read cycle and the write cycle are shown in Figure 3.16. The

RAM VHDL model is attached in Appendix F. As mention above,
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only a few timings are concerned in this model program. If

someone needs a larger sized RAM, he can change the size of

the local variable DATAMATRIX to increase the storage of the

RAM.

D. SIMULATION OF THE DATA FLOW DESIGN OF FFT

Right now, several VHDL models which are associated with

the data flow of the FFT system were built. In order to reduce

the total size of the FFT design, and have a faster

simulation, several elements are left out, The 2 to 1

selectors, registers, and buffers were not modeled at the chip

level. Their behavior is described in the data flow design of

the FFT for simulation.

Shown in Figure 3.17 is an original description, where 6

pairs of RAMs with 256 by 32 bits are required to read and

write data. Three 2 to 1 selectors are used to decide where

input data is to be fetched from and where output data is to

be stored. In Figure 3.17, the universal controller uses

signal C1 and memory access signals of RAM 1 or RAM 2 to

select data on the input bus and store it into RAM 1 or RAM 2

respectively. In this situation, each RAM module contains

three blocks of RAM for storing A, B, and coefficient Wk.

Assuming that the initial input data is stored in RAM 1, the

universal controller would load the length of the input data

pairs on signal LEN. It then indicates where the input data is

by setting signal ISTO. The universal controller also uses CHE

60



READ CYCLE TIMING

tc(rd)
VIH

ADDRESS A ADDRESS VALID
VIL

VIH ,
CHIPr
SELECT S

VIL-I tds S(S)

OUTPUT VIH

DATA Q t '

?V

WRITE CYCLE TIMING

VIH

ADDRESS A ADDRESS VALID
VIL

"-t i" 1 -isu( A ) -t,, I - h( A

WRITE VIH s (A

ENABLE W tw(
VIL

VIH

CHIP
SELECT L  t ( s )"

INPUT V L A Esu
,  D

DATA D V OO T C VALID

VIH

OUTPUT Q HI-Z
VL

FIGURE 3.16 Timing of read cycle and write cycle (adopted
from National CMOS RAM data book).

61



1 _

=

A A

liii --

z2

p "j l I 
- : :

22 .IA"'L..- 
-.

I __C L -C d

-t1 e

- I- Ci

FIGURE 3.17 The original data flow system of FFT.

62

~ 
0



to trigger the address sequence generator. The address

sequence generator would generate access signals OEl, Ri/WI,

and ADD1 to fetch the first input data to the FFT butterfly

after the controller has been initiated by the signal INE and

OUTA. Since the universal controller stores the input data in

RAM 1, it will store output data from the butterfly of the

first stage to RAM 2 via the selector enable S1. As shown in

Figure 3.5, the output data of the first stage would then be

of the input data of the second stage. The output data of the

second stage FFT would again be stored back to RAM 1, and so

on and so forth. If the input data number is 8, as shown in

Figure 3.5, the total number of execution stages is 3. In the

manipulation of the data flow, the signal STAGECNT always

reveals to the universal controller which stage is being

executed. At the end of the FFT operation, the address

sequence generator would indicate to the universal controller

about where the final output data is stored via the pointer

signal OSTO. The completion flag is then set on the signal

FFTCMP.

Since the original FFT design in Figure 3.17 is too large

to be accommodated in the VAX VMS 4.5 operating system, the

revised version of the design is created in Figure 3.18. In

Figure 3.18, all the data flow operations are similar to what

was mentioned earlier with the exception of the number of

selectors, RAM size, and internal data buses used are reduced.

The size of the internal bus lines was reduced from 128 to 64.

63



In Figure 3.18, the output data bus of the FFT butterfly

contains C and D outputs. It is split into two separable data

buses of size 64 and multiplexed into RAM. The two registers

A and B shown in Figure 3.17 are triggered at different edges

of the clock, because the output data of RAM with size 64 can

not convey two complex numbers, which requires a size of 128.

The complex data, therefore, needs to be multiplexed onto the

two registers. This design was successfully simulated on the

VMS 4.5 operating system. In Table 3.8, a successful example

of the simulation result of the revised FFT system is shown.

The flow chart of the universal controller is shown in Figure

3.19.

In this chapter the data flow models of a FFT system was

discussed. This is a full pipeline structure that requires

several VHDL models. In the next chapter, using of the created

FFT system for a Discrete Cosine Transform is discussed.
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input data have 8 complex number
-2.0 - 1.Oj , 2.0 + l.Oj
-3.0 + 2.Oj , 1 .0 -2.Oj
4.0 - 2.Oj , 1.0 - 5.Oj
3.0 - 2.Oj , 3.0 + l.Oj

output data using HATLAB function
9.0 - 8.Oj
2.2426407 + 14.0710678j

- 1.0 - 2.Oj
*-10.0 - 10.6568542j

- 5.0 + 2.Oj
-6.2426407 - 0.0710678j
5.0 - 4.Oj

-10.0 + 0.6568542j

output data using simulated program
9.0 - 8.Oj
2.2426407 + 14.0710677j

-1.0 - 2.Oj
-10.0 - 10.6568542j
-5.0 + 2.Oj
-6.2426407 - 0.0710602j
5.0 - 4.Oj

-10.0 + 0.6568532j

TA&BLE 3.8 comparison of the FYT result of using the MATLAB
function and this simulated FFT system.
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FIGUR.E 3.19 The flow chart of the universal controller.
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IV. THE DATA FLOW DESIGN OF THF DISCRETE COSINE TRANSFORM

A. INTRODUCTION TO DISCRETE COSINE TRANSFORM(DCT)

In the previous chapter, the Fast Fourier Transform

implementation was discussed. In this chapter, the discussion

is focused on the DCT using the system designeL for FFT.

Applications of the DCT include image data compression,

coding, and storage.

Before the structure of DCT system is designed, it is

necessary to know the difference between the formula of

Discrete Cosine Transform, and the formula of Fast Fourier

Transform. The one-dimensional DCT for a limited sequence

(u(n), 0<=n<=N-l) is define as

N-1

V(K) = a (K) u(n) cos ( (2n+l) k/2N)) (4.1)
n-0

a(0) = V/7/N for K =0 (4.2)

a(K) = V2- for K= 1I... N-1 (4,3)

From the equation (4.1), the relationship between DCT and

FFT is derived as,
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V(K) = Re[ a (K) e-jk 2 N*U(K) (4.4)

N-1

U(K) = u(n) e -j2z /N  (4.5)
n-0

The total number of input sequence N must be an integer

number of power of 2 [Ref. 9]. From the equation (4.4)

conversion of the FFT to the DCT can be done in 3 steps, a

complex multiplication, a scale multiplication, and taking the

real part of the data. This requires two real multiplication,

one addition, and one scale multiplication when floating point

operations are counted.

The scale factor a(K) and the FFT weight factor Wk/2 can be

merged, which can be written as

Hk/ 2 (k) = a(K) *WK 2  (4.6)

In this way, it is possible to reduce the number of

multiplications from 3 to 2. Prior to calculating the DCT, the

data from the FFT calculation and scale weight factor Hk/2(K)

must be stored in RAM. Then, two real data multiplications and

one addition will yield the result.
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B. THE DISCRETE COSINE TRANSFORM SYSTEM IMPLEMENTATION

Two methods to implement a DCT system are discussed here.

One is to use the full pipeline structure, the other is to

modify the universal controller of the FFT system discussed in

the previous chapter.

In Figure 4.1, a full pipeline structure uses 3 additional

processors, 2 for multiplication and 1 for addition. In other

words, once the output data from the FFT system is stored in

memory, additional circuitry is used to perform two

multiplications and one addition to obtain the Discrete Cosine

Transform. In addition, this requires the memory address

sequence generator to access data stored in RAM.

Figure 4.2 shows the block diagram of the FFT and the

external universal controller. The interface signals include

three groups signals. The first group of signals shown at the

bottom of the Figure 3.18, Cl, C2, ORI/OWl, OR2/OW2, OR3/OW3,

OCH1, OCH2, OCH3, CADDI, CADD2, CADD3 and BE, are associated

with memory access in the FFT system, The second group of

signals, shown at the lower hand corner in Figure 3.18,

include LEN, CHE, and ISTO which are used to initiate the

address sequence generator in the FFT system. The third group

of signals, OSTO, FFT_CMP, and STAGECNT, are the status

signals from the FFT system.

A second method of implementing the DCT is shown in Figure

4.3. The universal controller discussed in the previous
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chapter is modified to complete the Discrete Cosine Transform

of the input data. In the Figure 3.3, the butterfly structure

of DIF non-bit-reversal algorithm was shown where the input

and output have the following relationship.

C = A + B (4.7)

D = (A - B)*Wk (4.8)

A, B, and Wk are input data, whereas C and D are output

data. Based on equation (4.7) and equation (4.8), let Wk be

a(K)*e jik/ZN, A be U(K), and B be 0. In this way the same

butterfly can yield another output D. For Discrete Cosine

Transform, only the real part of D is kept. After the complete

output data of FFT is generated, the result of DCT is needed

to go through the butterfly for one more cycle. The real part

of the output data is the result of the Discrete Cosine

Transform. It is straight forward to modify the flow chart of

the universal controller of Figure 3.19. After the complete

output data is generated from the FFT butterfly, one more

cycle through the butterfly is needed if we want to do DCT for

original input data.

If the first method is used, it is necessary to build

additional circuitry, with 3 processors and a local memory

access sequence generator. If it is undesirable to build any

additional circuitry, method two can be adopted. This approach

will complicate the universal controller. Therefore, there is

a trade off between these two methods.
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The idea of how to get a Discrete Cosine Transform result

using an FFT structure is discussed here. In the next chapter,

the improvement and future research of this thesis will be

discussed
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V. CONCLUSION

A. CONCLUSION

Although this thesis modeled the floating point arithmetic

processor "AMD29325", data flow FFT systems, and the DCT

system, the methodology can be applied to other digital signal

processing systems. Many signal processing algorithms require

sum-of-product operations that are well suited to designs

discussed in this thesis.

In this thesis, the data flow design of FFT in the full

pipeline butterfly structure has been built and the model has

been verified. The result is shown in the Table 3.8. Due to

limitation of time the data flow design of DCT is not fully

simulated. Many problems had been encountered in the study. A

few problems were easy to solve such as the syntax errors, but

many problems were difficult to overcome. A "trial and error"

approach was often taken. There are still unresolved problems.

One problem is related to the source programs created under

VHDL version 1.5 that can not run under VHDL version 2.0. This

problem developed due to the software version change. In the

Intermatrix VHDL version 1.5, there are several internal

problems. For example, it can not print a negative value in

the report file. It can not generate a triggered pulse

waveform in the interactive simulation mode. When the "BLOCK"
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is used in the VHDL source program, it would generate some

unexpected sice effects.

The very important experience here is how to deal with

system design in top-down design methodology and how to use

VHDL simulation to analyze systems to get an optimum design.

Hierarchical design is an important approach that allows step

by step solution to circuit design.

B. IMPROVEMENTS AND FUTURE RESEARCH

The data flow designs of a Radix 2 FFT in DIF algorithm

and the data flow designs of a DCT had been discussed and

implemented in this thesis. However, several areas in this

thesis can be improved. For example, in Chapter III the

original FFT design does not run on the VMS 4.5 operating

system because of the size and complexity of the design used

in the source program. It is replaced by the revised program

which is shown in Figure 3.18. In Table 3.8 there are still

some errors in rows !, 6, and 8 of the output data from the

FFT system simulation. These errors were caused by truncation.

In this thesis truncation was used to deal with the large

values generated when the length of mantissa size exceeded 23

bit of the IEEE mantissa size pattern. For further improvement

a rounding method should be used. Several directions are

listed in the following for future research.
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1. TO IMPLEMENT THREE ADDITIONAL PRECISION FORMATS TO

IMPROVE THE ARITHMETIC ACCURACY

Only single precision is employed in this thesis.

There are three other precision formats: single extended

precision, double precision, and double extended precision.

These formats are shown in Figure 2.2.

2. TO ADD SEVERAL OTHER FUNCTIONS ASSOCIATED WITH THE

AMD29325 OPERATION

In this thesis, only four floating point arithmetic

operations are implemented. There are other functions shown in

Figure 2.5 associated with the AMD29325 operation including

the floating-point constant substraction, integer to floating-

point conversion, floating-point to integer conversion, IEEE

to DEC format conversion, and DEC to IEEE format conversion.

3. TO "ERFORM THE RADIX 4 FAST FOURIER TRANSFORM IN DIT

OR DIF ALGORITHMS

It is possible to further reduce the number of

calculations required to perform the FFT by using a radix 4

algorithm provided that the number of input data is an integer

power of 4. Two basic signal data flows in DIT and DIF

algorithm for radix 4 are shown in Figure 5.1. As shown in

Table 5.1, the advantage of the radix 4 algorithm is to reduce

the number of multiplications by 25% [Ref. 10].
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XO -- XO = X0O+ Xl1 + X2 + X<3
xo , X - xo - x -x 2 + x3 ) w

X1 K x I = (xO - Ix I - X'+ JX3) *W

X2 2K X2 = (X - X1 + X2 -xX 3 ) • W2k

X3  -- X3 = (x0 + IxI - x 2 - x3) ° W3k

X0 C - X 0 = Xo+ X, Wk+ X2 •W2k + X3  w3k

X1 K X, = Xo - Jx1 Wk - x 2 Vj2k + jx 3 * W3k

X2 2 j K X )X2 =x 0 - x, * Wk+ X2 * W2k - X3  w3k

X3 KX 3  X0 + iX1 " Wk - X2 , W2k- Jx 3 W3k

FIGURE 5.1 Butterfly in Radix 4, top is the DIT algorithm,
bottom is the DIP algorithm.
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Radix 2 Radix 4

N (N) (+) (*) (+)

64 192 384 144 384
256 1024 2048 768 2048

1024 5120 10240 3840 10240

TABLE 5.1 The comparison of total number of arithmetic

operations needed in Radix 2 and Radix 4.
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4. TO IMPROVE THE ADDRESSING SEQUENCE GENERATOR TO REDUCE

FETCHING IDENTICAL WEIGHT FACTORS

In Figure 3.5, the total number of weight factors

needed for an 8-point fast fourier transform is 12. The number

of fetches for the weight factor is also 12. In fact, only 4

weight factors are different, i,e. k = 0, 1/4, 1/2, and 3/4.

If the address sequence generator is modified to recogniz, the

identical weight factors, the memory needed to stored weight

factors can be reduced.

5. TO BUILD THE FAST FOURIER TRANSFORM USING A SPECIAL

"COMPLEX VECTOR PROCESSOR (CVP)" CHIP

In order to increase the speed of the FFT simulation

program, one special chip for FFT operation called "CVP"

(Ref. 11] can be used. The CVP implements a full 32

bit complex multiplication on chip in a single clock cycle. In

addition it provides four 40 bit programmable complex

accumulators to facilitate operations in radix-2 and radix-4

algorithms.
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APPENDIX A: THE ELEMENT FUNCTIONS OF THE FPU

--these element functions associated with FPU(floating point
unit)

library std ;
use std.standard.all;
package refer is
type BITARRAY is array( integer range<> ) of BIT;
type BITMATRIX is array( integer range<> ) of BITARRAY(31
downto 0) ;
type FLAG is

record
ovf bit:BIT;
unf bit:BIT;
nan bit:BIT;
zero bit:BIT;

end record;
type LOGICLEVEL is ('1','0','X','Z);
type LOGICARRAY is array( integer range<> ) of LOGIC LEVEL ;
type LOGICMATRIX is array( integer range<> ) of LOGIC ARRAY(
31 downto 0)
constant dprecision: integer := 64;
constant sprecision: integer := 32;

funbtion BITSARRAYTOFP( bits: BITARRAY)
return REAL ;

function FP TO BITSARRAY( fp: RLAL; length: NATURAL)
return BITARRAY ;

function INTTOBITSARRAY( int,length: NATURAL)
return BITARRAY;

function BITSARRAYTO INT( bits: BITARRAY)
return NATURAL;

function UNHIDDEN BIT( bits: BITARRAY)
return BITARRAY;

function SHIFL TOR( bits: BITARRAY ; times :integer)
return BIT_ARRAY;

function ISOVERFLOW( expbits: BITARRAY;
precision:INTEGER)
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return BOOLEAN;

function ISUN ERFLOW( exp_bits: BITARRAY;
precision: INTEGER)

return BOOLEAN;

function ISZERO( bits: BITARRAY)
return BOOLEAN;

function ISNAN( exp bits: BITARRAY)

return BOOLEAN;

function BECOME ZERO( bits: BIT-ARRAY)
return BITARRAY;

function BECOMENAN( bits: BITARRAY)
return BIT_ARRAY;

function SET_FLAG( bits,exp_bits: BIT ARRAY;
precision: INTEGER)

return FUAG;

function ADD(signa:BIT; bits a: B.LTARRAY; sign_b:BIT;
bitsb: BITARRAY)

return REAL;

function INCREASEMENT(bits:BITARRAY; precision:INTEGER)
return BITARRAY;

function DECREASEMENT(bits:BITARRAY; precision:INTEGER)
return BITARRAY ;

function BACKTOBITSARRAY(expbits:BITARRAY;
fp:REAL; precision:INTEGER)

return BITARRAY;

end refer ;

package body refer is

function BITSARRAYTOFP( bits:BITARRAY)
return REAL is
variable result :REAL := 0.0;
variable index :REAL := 0.5;

begin
for i in bits'range loop

if bits(i) = 'I' then
result := result + index ;

end if ;
index := index*0.5; .5 = 2**(-l)
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end loop;
return result;

end BITSARRAYTOFP;

function FP TO BITSARRAY( fp: REAL; length: NATURAL)
return BITARRAY is
variable local: REAL;
variable result: BITARRAY( length-i downto 0);
begin

local := fp ;
for i in result'range loop

local := local*2.0 ;

if local >= 1.0 then
local := local-l.0;
result(i) := '1';

else
result(i) := '0';

end if
end loop ;

return result ;
end FPTOBITSARRAY

function INT TO BITSARRAY( int,length: NATURAL)
return BITARRAY is
variable digit:NATURAL := 2**(length-1);
variable local:NATURAL ;
variable result:BITARRAY(length-l downto 0);
begin

local := int ;
for i in result'range loop

if local/digit >= 1 then
result(i) := '1';
local := local - digit;

else
result(i) := '0';

end if;
digit := digit/2;

end loop;
return result;

end INTTOBITSARRAY;

function BITSARRAYTOINT( bits: BITARRAY)
return NATURAL is
variable result :NATURAL := 0;
begin

for i in bits'range loop
result := result*2;
if bits(i) = 'I' then
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result := result + 1;
end if;

end loop ;
return result ;

end BITSARRAYTOINT;

function UNHIDDEN BIT( bits: BITARRAY)
return BITARRAY is
variable result : BITARRAY(bits'length downto 0);
begin

for i in bits'range loop
result(i) := bits(i);

end loop;
result(bits'length) := '1'; ---- IEEE format
return result;

end UNHIDDENBIT;

function SHIFL TO R( bits: BITARRAY; times :integer)
return BITARRAY is
variable number:integer := times;
variable result : BITARRAY(bits'length-1 downto 0);
begin

for i in bits'range loop
result(i) := '0';

end loop;
while number <= bits'length-i loop

result(number-times) :- bits(number);
number := number+l ;

end loop;
return result;

end SHIFLTOR;

function ISOVERFLOW( expbits: BITARRAY;
precision: INTEGER)

return BOOLEAN is
variable result: BOOLEAN ;
begin
case precision is

when 32 => ----- single precision
if exp bits =B"11111111" then

result := TRUE;
else

result := FALSE;
end if;

when others => ------ double precision
if exp bits =B"l1111111111" then

result := TRUE;
else

result := FALSE;
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end if;
end case;
return result;

end ISOVERFLOW;

function ISUNDERFLOW( exp_bits: BITARRAY;
precision: INTEGER)

return BOOLEAN is
variable result: BOOLEAN ;
begin
case precision is

when 32 => ----- single precision
if expbits =B"00000000" then

result := TRUE;
else

result := FALSE;
end if;

when others => ---- double precision
if exp bits =B"00000000000" then

result := TRUE;
else

result := FALSE;
end if;

end case;
return result;

end ISUNDERFLOW;

function ISZERO( bits: BITARRAY)
return BOOLEAN is
variable result: BOOLEAN ;
begin

for i in bits'range loop
if bits(i) /= '0' then
result := FALSE;
return result ;

end if;
end loop ;
result := TRUE
return result;

end ISZERO;
mf

function ISNAN( expbits: BITARRAY )
return BOOLEAN is
variable result: BOOLEAN ;
begin

for i in expbits'range loop
if expbits(i) /= 'I' then
result := FALSE;
return result ;
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end if
end loop ;
result := TRUE
return result;

end ISNAN ;

function BECOMEZERO( bits: BITARRAY)
return BIT ARRAY is
variable result: BITARRAY(bits'left downto bits'right);
begin

for i in bits'range loop
result(i) := '0';

end loop ;
return result;

end BECOME ZERO;

function BECOME NAN( bits: BITARRAY)
return BIT ARRAY is
variable result: BITARRAY(bits'left downto bits'right);
begin

for i in bits'range loop
result(i) := '1';

end loop ;
return result;

end BECOMENAN;

function SETFLAG( bits,exp_bits: BITARRAY ;
precision: INTEGER)

return FLAG is
variable result: FLAG ;
begin

result.ovf bit :='o';
result.nan bit := '0';
result.zero bit := '0';
result.unf bit := '0';
if ISOVERFLOW( expbits, precision) then

result.ovf bit := '1';
result.nan bit := '1';

elsif ISUNDERFLOW( expbits, precision) then
result.unf bit := '1';
if ISZERO( bits) then

result.zero bit := '1';
end if;

end if;
return result ;

end SETFLAG;

function ADD(signa:BIT; bitsa: BITARRAY; signb:BIT;
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bitsb : BITARRAY)
return REAL is
variable result: REAL;
variable fra a: REAL;
variable fra b: REAL;
variable siga: REAL;
variable sig_b: REAL;
variable xbuff: BITARRAY( 0 to 1);
begin
xbuff := signa&signb;
case xbuff is
when "00" =>

sig-a := 1.0;
sig-b := 1.0;

when 101"1 =>
sig-a := 1.0;
sigb :=-1.0;

when "10" =>
sig-a := -1.0;
sig-b := 1.0;

when "I1" =>
sig-a :=-1.0;
sig-b :=-1.0;

end case;
fraa := BITSARRAYTOFP(bitsa);
frab := BITSARRAYTOFP(bitsb);
result := abs(siga*fraa + sigb*frab)
return result;
end ADD;

function INCREASEMENT(bits: BITARRAY; precision: INTEGER)
return BITARRAY is
variable result : BIT ARRAY( bits'length-i downto 0 );
variable length : INTEGER := bits'length ;
variable buf : BITARRAY( 0 to 1 );
variable carry : BIT := '1'; -- initial condition C(0)=1
variable bit num :integer := 0;
begin

if ISOVERFLOW( bits,precision ) then
result := bits ;
return result;

end if;
while bit num <= length-l loop

buf := bits(bitnum) & carry ;
case buf is
when "00" =>

carry := '0';
result(bit_num) :='0';

when "01" =>
carry := '0';
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result(bit_num) := '1';
wh-n "10" =>

carry := '0';result(bit-num) :-,it;

when 'll" =>
carry := '1';
resul4-(bit-num) :- 101;

end case;
bit num := bit num + 1;

end loop;
return result;

end INCREASEMENT

function DECREASEMENT(bits:BITARRAY; precision:INTEGER)
return BIT ARRAY is
variable result : BIT ARRAY( bits'length-i downto 0 );
variable length : INTEGER := bits'length ;
variable buf : BIT ARRAY( 0 to 1 );
variable borrow:BIT := '1'; --initial condition C(O) = 1
variable bit num :integer := 0;
begin

if ISUNDERFLOW( bits,precision ) then
result := bits ;
return result;

end if;
while bit num <= length-l loop

buf := bits(bit-num) & borrow;
case buf is
when "00" =>

borrow := '0';
result(bit_num) :='O';

when "01" =>
borrow := '1';
result(bitnum) := '1';

when "10" =>
borrow := '0';
result(bit_num) :='l';

when "I1" =>
borrow := '0';
result(bitnum) := '0';

end case;
bit num := bit num + 1;

end loop;
return result;

end DECREASEMENT

function BACKTOBITSARRAY(expbits:BITARRAY;
fp:REAL; precision:INTEGER)

return BITARRAY is
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variable length:INTEGER := precision-i;
variable result: BIT ARRAY(length-l downto 0)
variable bitsbuf: BITARRAY(length-l-expbits'length

downto 0)
variable fra value: REAL;
variable fp_buf :REAL := fp;
variable expbits buf :BIT ARRAY( expbits'length-1

downto 0) := exp_bits;
---be careful input prarmeter must be positive real value --

begin
if fp = 0.0 then

result := BECOME_ZERO( result );
return result;

end if ;
if( fp>l.0 and ISOVERFLOW( exp_bits , precision)) then

result := BECOMENAN( result ) ;
return result ;

end if ;
if ( fp<l.0 and ISUNDERFLOW( exp bits,precision)) then

result := BECOME_ZERO( result );
return result;

else
while abs( fp-buf-l.5 ) > 0.5 loop

if fp_buf > 2.0 then
fp_buf := fp_buf / 2.0;
expbitsbuf

:= INCREASEMENT( expbits buf,precision);
if ISOVERFLOW( expbits_bufprecision) then
exit when( fp_buf <= 2.0 and fpbuf >= 1.0);
bitsbuf := BECOMEZERO( bits buf);

--set the fra bits
result := exp_bits_but & bits buf;

-- become 0.
return result;

end if;

elsif fpbuf < 1.0 then
fp-buf := fp-buf * 2.0;
expbitsbuf :-

DECREASEMENT( expbitsbuf,precision);
if underflow condition occurred

if ISUNDERFLOW( expbits buf,precision) then
bits buf := FP TOBITSARRAY(

fpbuf,bits buf'length );
result := expbits_buf & bitsbuf ;
return result;

end if
end if;

end loop; -- it produces value over between 1 an 2
fra value := fp_buf - 1.0;
if fra value = 1.0 then
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if IS_-OVERFLOW( exp bits buf,precision) then
bits -buf := BECOME_ZEROC bits-buf);

else
exp bits-buf :

INCREASEMENT( exp bits buf,precision);
bits buf :=BECOME_ZER~O( bits-buf);

end if;
elsif fra value =0.0 then

bits-buf :=BECOME_ZERO( bits-buf);
else

bits buf :
FPT ;O_-BITSARRAY( fra-value,bits_buf'length )

* end if,
result := exp bits buf & bits-buf;

end if;
return result;
end BACKTOBITSARRAY;

end refer;
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APPENDIX B: THE TOP FUNCTIONS AND BEHAVIOR OF THE FPU

A. THE TOP FUNCTIONS OF THE FPU

- Floating Point Addition

library fpu;
use fpu.refer.all;
package FPADDER is

function ADDER(signa:BIT; bits a: BIT ARRAY; signb:BIT;
bits b : BITARRAY ; expdiff: INTEGER)
return REAL;

function ADD2( bits a: BITARRAY ; bits b: BITARRAY;
exp_length,mantissalength,precision: INTEGER )

return BITARRAY ;

end FPADDER ;

package body FPADDER is

function ADDER(sign_a:BIT; bits a: BIT ARRAY; signb:BIT;
bitsb : BITARRAY ; expdiff :INTEGER)

return REAL is
variable result: REAL;
variable fra a: REAL;
variable fra-b: REAL;
variable sig-a: REAL;
variable sigb: REAL;
variable xbuff: BITARRAY( 0 to 1);
begin
xbuff := signa&sign-b;
case xbuff is
when "00" =>

sig_a.= 1.0;
sig b -= 1.0;

when "01" =>
sig-a := 1.0;
sig-b := -1.0;

when "10" =>
sig-a :=-1.0;
sig-b := 1.0;

when "I1" =>
sig-a := -1.0;
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sigb := -1.0;
end case;
if expdiff >=0 then

fra a := BITSARRAY TO FP(bitsa);
fra b BITSARRAYTOFP(SHIFLTOR(bits_b,expdiff));

else
fra a BITSARRAYTOFP

(SHIFLTO R(bits_a,abs(exp_diff)));
fra b := BITSARRAYTOFP(bitsb);

end if
result := abs(siga*fraa + sig_b*frab) ;
return result;
end ADDER;

function ADD2( bits a: BIT ARRAY ; bits b: BIT-ARRAY;
explength,mantissalength,precision: INTEGER )

return BITARRAY is
variable a is nan :BOOLEAN;
variable b is nan :BOOLEAN;
variable a is zero :BOOLEAN;
variable b is zero :BOOLEAN;
variable a is underflow :BOOLEAN;
variable b is underflow :BOOLEAN;
variable expa :INTEGER;
variable expb :INTEGER;
variable expdiff :INTEGER ;
variable bitslength :INTEGER := bits a'length;
variable sign bita : BIT := bits_a(bitsa'left);
variable exp bitsa : BITARRAY(bits_a'left-l downto

bits a'left-explength);
variable mantissaa : BITARRAY(mantissalength downto

bits a'right);
variable sign bitb : BIT := bits b(bits b'left);
variable exp-bits-b : BITARRAY(bits-b'left-l downto

bits b'left-explength);
variable mantissab : BITARRAY(mantissalength downto

bits b'right);
variable bitsc: BITARRAY(bits_a'left downto

bits a'right);
variable sign-bit-c : BIT ;
variable expbitsc:BIT ARRAY(bitsa'left-i downto

bits a'left-explength);
variable buf bits c :BIT ARRAY( bitsa'left-l downto

bits a'right);
variable fra c : REAL ;

begin
expbits_a := bitsa(bits_a'left-l downto

bits_a'left-explength);
exp bits_b bitsb(bits b'left-l downto

bitsb'left-explength);
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a is nan := ISOVERFLOW( expbits_a, precision) ;
b is nan := ISOVERFLOW( expbitsb, precision) ;
a is underflow-:= ISUNDERFLOW( expbitsa, precision) ;
b is underflow := IS_UNDERFLOW( expbitsb, precision) ;
a is zero := ISZERO( bitsa );
b is zero := ISZERO( bitsb );
if a is zero then
bits c := bitsb;
return bits c;

elsif b is zero then
bits c := bitsa;
return bits c ;

end if ;
case ( aisnan or b-is-nan ) is
when TRUE =>

if ( a is nan and a is nan ) then
bits c := bits a;

elsif b is nan then
bits c := bits b;

else
bits c bits-a;

end if;
when FALSE =>
expa := BITSARRAY TO INT(expbitsa);
expb := BITSARRAY TO INT(expbits b);
expdiff := exp_a - exp b

if exp-diff >= 24 then
bits c := bitsa;
return bits c ;

elsif abs(exp diff) >= 24 then
bits c := bitsb;
return bitsc;

end if ;
if expdiff > 0 then

expbitsc := exp bits_a ;
signbit c := signbit_a

elsif( expdiff < 0 ) then
expbitsc := expbits_b ;
signbit c signbit_b ;

end if;
if ( a is underflow or b is underflow ) then
if a is underflow then

---in the underformat there is not unhidden bit exitent

mantissa a := '0' & bits a( mantissa length-i downto
bits-a'right);

elsif b is underflow then
mantissab :='0' & bitsb( mantissa_length-i

downto bits b'right);
end if;
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else
mantissaa :=UNHIDDENBIT(bits_a( mantissalength-i

downto bits_a'right));
mantissab :=UNHIDDENBIT(bits-b( mantissa_length-I

downto bits b'right));
end if ;

if( expdiff = 0 and ( mantissa a >= mantissab )) then
expbitsc := exp bits-a ;
sign bit c := sign bita ;

elsif( exp-diff = 0 and ( mantissab > mantissa_a ))
then

expbits_c := exp bitsb ;
sign-bitc := sign-bit-b ;

end if

fra c :=2.0 * ADDER( sign_bit_a, mantissa a,
signbit_b, mantissa_b,expdiff);

if fra c = 0.0 then
bits c := BECOMEZERO( bits_a

else
bufbitsc := BACKTOBITSARRAY( exp_bits_c,

frac,precision );
bits c := sign bit c & buf bitsc ;

end if
end case;

return bits c
end ADD2;

end FPADDER ;
I

Floating Point Subtraction----------------

library fpu;
use fpu.refer.all;
use fpu.fpadder.all;
package FPSUBER is

function SUB2( bits a: BIT ARRAY ; bits b: BIT ARRAY;
explength, mantissa_length, precision: INTEGER )

return BITARRAY ;

end FPSUBER
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package body FPSUBER is

function SUB2( bits a: BITARRAY ; bits b: BITARRAY;
explength, mantissalength, precision: INTEGER )

return BITARRAY is

variable bufbitsb : BITARRAY(bits b'left downto
bits-b'right)

:= bits b ;
variable bitsc : BITARRAY(bits b'left downto

beginbits-bright);begin

if bit;_b(bits-b'left) = 'I' then
butbitsb( bits_b'left) :='0';

else
bufbitsb( bits_bleft' :='Il';

end if;
bits c := ADD2(bits_a, buf bits-b, explength,

mantissalength , precision );
return bits c ;

end SUB2 ;
end FPSUBER

------ -Floating Point Multoplication------------

library fpu;
use fpu.refer.all;
package FPMULTIER is

fufiction MULTI2( bits-a: BITARRAY ; bits b: BITARRAY;
explength,mantissa lengthprecision: INTEGER

return BITARRAY ;

end FPMULTIER ;

package body FPMULTIER is

function MULTI2( bits-a: BITARRAY ; bits b: BITARRAY;
explength,mantissalength,precision: INTEGER )

return BIT ARRAY is
variable a is zero :BOOLEAN;
variable b is zero :BOOLEAN;
variable a is nan :BOOLEAN;
variable b is nan :BOOLEAN;
variable a is underflow :BOOLEAN;
variable b-is-underflow :BOOL£AN;
variable expa :INTEGER,
variable expb :INTEGER;
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variablq expsum :INTEGER ;
variable bitslength :INTEGER := bits a'length;
variable sign bit a : BIT := bits a(bits-a'left);
variable expbits-a : BITARRAY(bits_a'left-l downto

bits-a'left-explength);
variable mantissa a : BITARRAY(mantissa_length downtobits a'right);

variable signbit b : BIT := bits b(bits b'left);
variable expbits-b : BIT ARRAY(bits_b'left-l downto

bits b'left-explength);
variable mantissab : BITARRAY(mantissalength downto

bits b'right);
variable bitsc: BITARRAY(bits_a'left downto

bitsa'right);
variable signbit c : BIT ;
variable expbits-c:BIT ARRAY(bitsa'left-i downto

bits-a'left-exp length);
variable bufbits c :BITARRAY( bits_a'left-l downto

bits a'right);
variable fra c : REAL ;

begin
signbitc := sign bit a xor signbit b ;
expbits a := bitsa(bits_a'left-l downto

bits_a'left-explength);

expbits_b := bits b(bits b'left-i downto
bitsb'left-explength);

a is zero := IS ZERO( exp bits a );
b is zero IS-ZERO( expbits-b);
if (a is zero or b is-zero) then

bits c := BECOMEZERO( bits_c );
bitsc( bits_c'length-l ):= sign bit_c ;

else
a_isnan := IS_OVERFLOW( expbitsa, precision) ;
b is nan := ISOVERFLOW( expbits-b, precision) ;
a is underflow:= ISUNDERFLOW( expbits_a,precision);
b is underflow:= ISUNDERFLOW( expbitsb,precision);
case ( a is nan or b is nan ) is
when TRUE =>

if a is nan then
bitsc := BECOME NAN( bits_a );
bits-c( bits_c'length-l ):= sign bit_c ;

else
bitsc := BECOME NAN( bits_b );
bitsc( bits_c'length-l ):= signbit_c ;

end if;
when FALSE =>

exp-a := BITSARRAYTOINT(expbits_a);
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exp_b := BITSARRAYTOINT(exp bits_b);

if( a -is Iunderfiow or b is underfiow )then
if a-is-underfiow then

-in underf low formate there is not unhidden bit existing

mantissa a :=10O & bits a (mantissa length-i downto
bits-a'right);

elsif b is underfiow then
mantissa-b :='O' & bits-b( mantissa_length-i downto

bits-b'right);
end if;

else
mantissa-a :=UNHIDDENBIT(bitsa( mantissa_length-l

downto bits_a'right));

mantissa-b :=UNHIDDENBIT(bits-b( mantissa length-i
downto bits-b'right));

end if;
fra-c :=4.0 * BITSARRAYTOFP( mantissa a)*

BITSARRAYTO-FP( mantissa-b

exp-sum := expa + exp,b;

if precision =32 then--------single precision
exp sum exp_sum - 127; ---- IEEE EXP FORMAT
if exp -sum >= 255 then

bits c :=BECOME-NAN( bitsc)
---overflow

bitsc( bits c'length-l ):= sign bit-c;
elsif exp sum < 0 then

if (exp sum < -1) or ( exp sum = -1 and
bits -c < 2.0) then

bits c := BECOME-ZERO( bits_c);
--- underf low

bits_c( bits_c'length-l ):= sign bit-c;
return bits-c ;

elsif ( exp sum = -1 and fra-c >= 2.0)
then
fra c := fra c/2.0
exp :bits_c :=B1000000001;

end if

else
exp bits c :=INTTOBITSARRAY( exp sum

,exp length);
end if;

else
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expsum := exp_sum - 1023;
---the other case is 64(double precision);

if exp sum >= 2047 then
bits c := BECOMENAN( bitsc ) ;

overflow

bitsc( bits_c'length-l ):= signbit-c
elsif expsum < 0 then

if (expsum < -1) or ( expsum = -1 and
frac < 2.0) then

bits c := BECOMEZERO( bitsc ) ;
---underflow

bitsc( bits_c'length-l ):= signbit-c
return bits c ;

elsif ( exp sum = -1 and frac >= 2.0 )
then

fra c := fra c/2.0
expIbitsc := B"00000000000" ;

end if

else
exp bits c := INTTOBITSARRAY( expsum

,exp length)

end if;
end if ;
bufbitsc := BACKTOBITSARRAY( expbits_c,

fra_c, precision );

bitsc := signbitc & buf bits c ;

end case;
end if;
return bits c ;

end MULTI2;
end FPMULTIER

Floating Point Divider----------------

library fpu;
use fpu.refer.all;
package FPDIVIDER is

function DIVIDE2( bits-a: BIT ARRAY ; bits b: BITARRAY;
explength,mantissa_length,precision: INTEGER )

return BITARRAY ;
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function DIV( bitsa,bits b : MITARRAY ;explength
,precision INTE.GER
return BITARRAY ;

end FPDIVIDER ;

package body FPDIVIDER is

function DIV( bitsa,bits b : BIT ARRAY ; explength
,precision : INTEGER)
return BITARRAY is

variable length : INTEGER := bits_a'length
variable diff_expvalue : INTEGER ;
variable expbits a value : INTEGER ;
variable expbits b value : INTEGER ;
variable fra bits_b_value : REAL ;
variable fra-bits a value : REAL ;
variable fra-bits c value : REAL ;
variable bits value : REAL ;
variable sign bits a :BIT := bitsa( bits a'left );
variable sign bits-b :BIT : bitsb( bits b'left );
variable sign bits-c :BIT ;
variable bits c : BITARRAY( bits a'left downto

bits a'right ) ;
variable buf bits c : BITARRAY( bits a'left -1 downto

bits a'right) ;
variable expbitsb : BITARRAY( bits b'left-l downto

bits_b'left-explength )
:= bits-b( bits b'left-i downto

bits b'left-explength ) ;
variable expbitsa : BIT ARRAY( bits_a'left-i downto

bitsa'left-explength )
:- bits-a( bits a'left-1 downto

bits_a'left-explength ) ;

variable expbitsbuf : BIT ARRAY( bitsa'left-i
downto bits_a'left-exp length ) ;

begin
sign bits c := sign bits a xor sign bitsb;
expbitsbvalue := BITSARRAYTOINT( expbits_b );

expbits_a_value := BITSARRAYTO_INT( expbitsa );

if ( ISUNDERFLOW( expbitsa,precision ))
or ( ISOVERFLOW( exp_bitsb,precision )) then

buf bitsc := BECOME_ZERO( buf bits_c )
bits c := sign-bits c & buf bits_c ;
return bits c ;
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elsif ( IS_OVERFLOW( exp bits a,precision )
or ( ISUNDERFLOW( exp bits b,precision ))then

buf-bits-c := BECOME_NAN( buf bits-c);
bits -c := sign bitsc & buf bits-c;
return bits-c;

else
fra -bits Ia value :=BITSARRAYTO_FP(

UNHI6DDENBIT(bitsa( bits -a'left
- exp length-i downto bits_a'right));

fra bits-b-value :=BITSARRAYTOFP(
UNHIDDEN -BIT(bits b( bits b'left

-exp length-i downto bits-b'right))

end if;

fra bits-c-value := fra-bits-a-value/
fra-bits-b-value;

if precision = 32 then --single precision
diffexp-value := exp_bits -a -value -

exp bits_b-value + 127;

if (diff exp value > 255 or
(diff_exp value = 255 and

fra bits c value >= 1.0)) then
buf -bits-c := BECOMENAN( buf bitsc)
bits -c := sign -bits-c & buf-bits c;
return bits c;

elsif( diff exp-value < 0 or
diff exp value = 0 and

fra-bits-c-value <= 1.0)) then
buf -bitsc := BECOMEZERO( buf bits-c )
bits -c := sign bits-c & buf-bits-c;
return bits c;

else
exp bits -buf:= INTTOBITSARRAY(

diff exp value, exp length);
end if;

else
diffexp-value := exp bits -a -value -

exp_bits-b-value + 1023;
---- double precision

if (diff exp value > 2147 or
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(diff exp value = 2047 and fra -bits-c-value
>= 1.0)) then

buf -bits-c := BECOMENAN( buf bitsc)
bits -c := sign bits-c &buf bits c;
return bits-c;

elsif( diff exp_value < 0 or
(diff exp_value =0 and
fra bits c value <= 1.0)) then

buf -bits-c := BECOME_ZERO( buf bits_c
bits -c := sign -bits-c & buf-bits-c;
return bits-c;

else
exp bits buf:= INTTOBITSARRAY(

diff-exp_value, exp length);
end if;

end if

buf bits c :=BACKTOBITSARRAY(
exp bits-buf, fra-bits-c-value,precision )

bits-c := sign-bits-c & buf bits c;
return bits c;

end DIV *

function DIVIDE2( bits -a: BIT ARRAY ; bits b: BITARRAY;
explength,mantissa lengtii,precision: INTEGER)

return BITARRAY is
variable a is zero :BOOLEAN;
variable b is zero :BOOLEAN;
variable a is nan :BOOLEAN;
variable b is nan :BOOLEAN;
variable inv_b;its-b: BITARRAY(bits_b'left downto

bits b'right);
variable bitsc: BITARRAY(bits_a'left downto

variable sign bitc: BIT ;
variable exp bits-a:BITARRAY(bits a'left-l downto

bits -a'left-exp length)
:=bits -a(bits-a'left-l downto

bits-a'left-exp length);
v riable ex-p bits-b:BITARRAY(bits b'left-l downto

bits-b' left-exp length)
:=bits-b(bits-b'left-l downto

bits-b'left-exp length);

begin
a -is -zero ISZERO( exp bits a )
b-is-zero :=IS-ZERO( expbits-b
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if a is zero then
bits c := BECOMEZERO( bits a );

elsif ( not( a_is_zero) and b is zero ) then
bitsc := BECOMENAN( bits-a );

else
a is nan := IS OVERFLOW( expbitsa, precision) ;
b is nan := IS-OVERFLOW( expbitsb, precision) ;
case ( aisnan or b is nan ) is
when TRUE =>

if b is nan then
bitsc := BECOMEZERO( bitsa );

else
bits c := bits a ;

end if;
when FALSE =>

bitsc := DIV( bitsa, bitsb, explength,
precision);

end case;
end if;
return bits c ;

end DIVIDE2;
end FPDIVIDER ;

B. THE BEHAVIOR FUNCTIONS OF THE FPU

library fpu;
use fpu.refer.all, fpu.fp_adder.all, fpu.fpsuber.all,
fpu.fpmultier.all,
fpu.fpdivider.all;
package utilityl is

function FPUNIT( bits_a,bits b: BIT ARRAY;
precision,choice :INTEGER ) return BITARRAY

end utilityl ;

package body utilityl is

function FPUNIT( bits_a,bits b: BIT ARRAY;
precision,choice :INTEGER) return BITARRAY is

variable explength : INTEGER ;
variable mantissalength : INTEGER ;
variable buf c :BITARRAY( bitsa'left downto

bits a'right );
begin
if precision = 32 then

explength := 8;
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mantissa length := 23 ;
else

explength := 11; ----double precision
mantissalength := 52;

end if;
case choice is
when 1 =>
buf c := ADD2( bitsa , bits_b , exp length,

mantissa-length, precision);
when 2 =>
buf c := SUB2( bitsa , bits b , exp length,

mantissalength, precision);
when 3 =>
bufc := MULTI2( bits a , bitsb , exp length,

mantissa-length, precision);
when others =>
bufrc := DIVIDE2( bits a , bitsb , exp length,

mantissa_length, precision);
end case ;
return buf c;

end FPUNIT;

end utilityl
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APPENDIX C: THE SOURCE FILE OF THE FPU CHIP AMD29325

library fpu;
use fpu.refer.all, fpu.utilityl.all;

----- it is designed with single precision and
only 4

arithmetic operations built in AMD29325

entity AM29325 is
generic( D_FPUT : time := ll0ns );
port( R,S : in BITARRAY( 31 downto 0)

B"00000000000000000000000000000000";
ENR,ENS,ENY,ONEBUS,FTO,FT1,CLK : in BIT

10';
OE : in BOOLEAN := false ;
10_12 : in BITARRAY( 2 downto 0)

:= B"000" ;
13_14 : in BITARRAY( 1 downto 0)

:= B"00"
IEEEORDEC : in BIT-- '1' ;

S16_OR S32, PROJ OR AFF : in BIT
:= '00 0

RNDORNDI: in BITARRAY( 1 downto 0)
:= B"00" ;

F : out BITARRAY( 31 downto 0)
:= B"00000000000000000000000000000000"

ovf, unf, zero, nan, invd, inet : out BIT
'0' ) ;

end AM29325

library fpu;
use fpu.refer.all, fpu.utilityl.all, fpu.write file.all;
architecture behavioral of AM29325 is

begin
process(CLK,OE)
variable precision : INTEGER := R'length ;
variable BUFF : BITARRAY( 31 downto 0)
variable BUFF FLAG : FLAG ;
variable choice : INTEGER ;
constant ADD : INTEGER := 1;
constant SUB : INTEGER := 2;
constant MULTI : INTEGER := 3;
constant DIV : INTEGER := 4;
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begin
if ( OE and (CLK'EVENT and CLK Ill' ) then
case 10_12 is

when Bi"000"1 =>
choice := ADD

when B"O001" =>
choice SUBSUB

when B11O1O" =>
choice := MULTI;

when others =>
choice := DIV;

end case ;
BUF -F :=FP_-UNIT(R,S,precision,choice)
F <= BUF Fafter DFPU T;
BUFFFLAG := SET FLAG(BUF F, BUFF(30 downto

23) ,precision);
ovf <= BUFFFLAG.ovf bit after DFPUT
unf <= BUFFFL&AG.unf -bit after DFPUT;
zero<= BUFFFLAG.zero bit after DFPUT;
nan <= BUFFFLAG.nan-bit after DFPUT;

end if;
end process;

end behavioral;
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THE APPENDIX D: THE SIMPLIFIED I/O PORT OF THE FPU CHIP
AMD29325

library fpu, fft
use fpu.refer.all, fft.AM29325

--- this program is created for simplifing
--- AM29325 entity.

entity A29325 is

generic ( D FPU T : TIME := 110 ns );
port( inl,in2 :-in BITARRAY( 31 downto 0)

-- inl, in2 input signal
B'00000000000000000000000000000000";

clock in BIT := 'I' ;
option in INTEGER 1 ;
enable in BOOLEAN FALSE
outl out BIT ARRAY( 31 downto 0)

= B"0000000000000000000000000000000"
-- output of fft

end A29325

library fpu ,fft;
use fpu.refer.all, fft.am29325

architecture simple of A29325 is

component AM29325
generic( D_FPUT : time := l0ns );
port( R,S : in BITARRAY( 31 downto 0)

:= B"00000000000000000000000000000000";
ENR,ENS,ENY,ONEBUS,FTO,FT1,CLK : in BIT

• 10';

OE : in BOOLEAN := false ;
10_12 : in BITARRAY( 2 downto 0)

:= B"000" ;
13_14 : in BIT ARRAY( 1 downto 0)

:= B"00" ;
IEEE OR DEC : in BIT

- T
S16_ORS32, PROJORAFF : in BIT

'0 ,

RNDORND1: in BIT_ARRAY( 1 downto 0)
:= B"00" ;
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F :out BITARRAY( 31 downto 0)
:BlOOOOOOOOO000000000000000000000000

ovf, unf, zero, nan, invd, mnet : out BIT
'0' 0)

end component ;

for Fl AM29325 use entity fft.AM29325( behavioral);

signal ENR,ENS,ENY,ONEBUS,FTO,FT1,CLK BIT :='0';
signal 13_14 : BITARRAY( 1 downto 0) B11001;
signal IEEE_-OR_-DEC : BIT e1l ;
signal S16_-ORS32, PROJORAFF :BIT '0' ;
signal RNDO_-RNDl: BITA RRAkY( 1 downto 0) B"100"
signal ovf, unf, zero, nan, invd, mnet BIT 0
signal func :BITARRAY( 2 DOWNTO 0) := 000" ;

begin

process( option)
begin

if ( option =1) then
func <= "1000"1 ;

elsif( option = 2) then
func <= "1001"1

elsif( option = 3) then
func <= 11010"1

elsif( option = 4) then
func <= "101111

end if;
ehd process;

Fl: AM29325
generic map( D_FPU_-T => li0ns)
port map( inl, in2, ENR, ENS, ENY, ONEBUS, FTO, FT1,

clock, enable, func, 13_I4, IEEE_OR_-DEC,
S16_-or_-S32, PROJ_ORAFF, ENDO_RND1, OUTi, ovf,
unf, zero, nan, invdi, met);

end simple
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APPENDIX E: THE PIPELINE STRUCTURE OF THE FFT BUTTERFLY

library fpu,fft;
use fpu.refer.all, fft.A29325, fft.basic.all

-it designed for single precision

entity FFT_CELL is
generic ( DFPU T TIME := 110 ns );
port( a_real,aimg in LOGICARRAY( 31 downto 0);

-- a is the input signal.
b_real,bimg in LOGICARRAY( 31 downto 0);

-- b is the input signal.
w_real,w img in LOGICARRAY( 31 downto 0);

-- w is the weight signal.
clock in BIT :='1' ;
enable in BOOLEAN := false ;

-- chip enable for am29325
ie : in BOOLEAN : FALSE ;

-- input enable for final stage
-- output

oe : in BOOLEAN : FALSE ;
-- output enable for first stage

-- input
c_real,c_img : out LOGICARRAY( 31 downto 0) ;

-- c is the output signal.

d_real,dimg : out LOGIC ARRALY( 31 downto 0));
-- d is the
-- output signal.

end FFTCELL ;

library fpu, fft;
use fpu.refer.all, fft.A29325, fft.basic.all
architecture structural of FFTCELL is

component A29325
generic ( DFPU T : TIME := 110 ns );
port( inl,in2 :in BITARRAY( 31 downto 0) -- inl, in2 is the
input signal

B'00000000000000000000000000000000";
clock in BIT := '1' ;

rising edge trigger
option in INTEGER ;
enable : in BOOLEAN := FALSE ;
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-- chip enable for am29325
outi out BITARRAY( 31 downto 0) );

-- output of f ft

end component ;

for ALL : A29325 use entity fft.A29325( simple);

signal buf-a-real :BIT_-ARRAY( 31 DOWNTO 0)
:B"lIO00OOO000000O0O0000000"1

signal buf-b-real :BITARRAY( 31 DOWNTO 0)
:BlOO000000000000000000000000000000"1

signal buf-w-real :BITARRAY( 31 DOWNTO 0)
:Bl'OOOOOOOO0000000000000000000"1

signal buf-a_img :BITARRAY( 31 DOWNTO 0)
*Bl"OOOOOOOO0000000000000000000000000

signal buf-b_img :BITARRAY( 31 DOWNTO 0)
*BOOOOOOOOOOOO000000O00000000000000"1

signal buf-w-img :BIT_-ARRAY( 31 DOWNTO 0)
*B"000O00000000000000000000000000000"1

signal reg-lreal :BITARRAY' 31 DOWNTO 0)
:- r"czOOOOO~ooooooooooooooooooooooooo"

signal reglimg BIT_'ARRAY( 31 DOWNTO 0)
*B"0000000000000000000000000000000011

signal reg-2 real :BI1_eRPAY' '? DOWNTO 0)
*B"000000000000000000O00000000000000"1

signal reg_2img :BIT_-ARRAY( 31 DOWNTO 0)
:B"0000000000000000000000000000000011

sigjnal reg_3 real :BITIARRAY( 31 DOWNTO 0)
:- B"OOOO000000000000000000000000000"

signal reg_3img :BITARRAY( 31 DOWNTO 0)
*B'060000000000000000000000000000000"I

signal reg c'L real :BITARRAY( 31 DOWNTO 0)
:B"'O000000000000000000000000000000"1

signal regclimg :BIT_-ARRAY( 31 DOWNTO 0)
:B"0000000000000000000000000000000011

signal regc2_real :BIT_'ARRAY( 31 DOWNTO 0)
:B"00000000000000000000000000000000"1

signal regc2_img :BITIARRAY( 31 DOWNTO 0)
:B"00000000000000000000000000000000"1

signal regc3 real :BIT_-ARRAY( 31 DOWNTO 0)
:B"00000000000000000000000000000000"I

signal regc3_img :BITIARRAY( 31 DOWNTO 0)
:B"00000000000000000000000000000000" ;

signal regc4 real :BITIARRAY( 31 DOWNTO 0)
*B"00&000000000000000000000000000000"1

signal regc4_img :BITIARRAY( 31 DOWNTO 0)
:B"0O0000000000000O000O000000000"
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signal reg-wlreal : BITARRAY( 31 DOWNTO 0)
: B"0000000000000000000000000000000"

signal regwl img : BITARRAY( 31 DOWNTO 0)
:= B"OOOOO0000000000000000000000000"

signal regw2 real : BIT ARRAY( 31 DOWNTO 0)
= B"0000000000000000000000000000000"

signal regw2_img : BIT ARRAY( 31 DOWNTO 0)
: B"00000000000000000000000000000000"

signal xlreal : BITARRAY( 31 DOWNTO 0)
:= B"00000000000000000000000000000000"

signal xl-img : BITARRAY( 31 DOWNTO 0)
:= B"00000000000000000000000000000000"

signal x2_real : BIT ARRAY( 31 DOWNTO 0)
:= B"00000000000000000000000000000000"

signal x2_img : BITARRAY( 31 DOWNTO 0)
:= B"00000000000000000000000000000000"

signal x3_real : BIT ARRAY( 31 DOWNTO 0)
:= B"00000000000000000000000000000000"

signal x3_img : BIT ARRAY( 31 DOWNTO 0)
:= B"00000000000000000000000000000000"

signal x4_real : BITARRAY( 31 DOWNTO 0)
:= B"00000000000000000000000000000000"

signal x4_img : BITARRAY( 31 DOWNTO 0)
:= B"00000000000000000000000000000000"

signal xclreal : BIT ARRAY( 31 DOWNTO 0)
:= B"00000000000000000000000000000000" ;

signal xclimg : BITARRAY( 31 DOWNTO 0)
:= B"00000000000000000000000000000000"

signal div : INTEGER := 4 ; --- division
signal mult : INTEGER := 3 ; --- multiplication
signal sub : INTEGER := 2 ; --- subtraction
signal add : INTEGER := 1 ; addition

constant DELTi : time 10 ns ;

constant DELT2 : time := 110 ns ;

begin

begin at stage 1
simply discribe D-FF behavior --

process( clock, ie
begin
if ( clock'event and ( clock ='0' )and ( ie = true)) then

buf_a_real <= LOGIC TO BIT( a_real ) after DEL_Ti;
buf a img <= LOGIC TO BIT( aimg) after DEL_Ti;
buf_b_real <= LOGICTO BIT( b_real ) after DEL_Ti;

111



buf b img <= LOGIC_TOBIT( bimg ) after DEL_Ti;
buf w real <= LOGICTOBIT( wreal ) after DEL_Ti;
bufw img <= LOGIC-_TO-BIT( w~img ) after DEL-TI;

end if ;
end process;

-------- end of stage 1-----------------------------

-begin at stage 2

Al : A29325
generic map ( DFPU T =>110 ns)
port map ( buf-a_real, buf_b-real, clock, sub,

enable, xl_real );

A2 : A29325
generic map ( D_FPUT =>110 ns)
port map ( buf_a_img, buf_b-img, clock, sub,
enable, xl img );

A3 : A29325
generic map ( D_FPUT =>110 ns)
port map ( buf_a_real, buf_b_real, clock, add,
enable, xcl_real );

A4 : A29325
generic map ( DFPUT =>110 ns)
port map ( bufa_img, buf_b-img, clock, add,
enable, xcl_img );

--- delay time at input weight factor
process( clock )
begin
if ( clock'event and ( clock ='1' )) then

reg_wl_real <= buf_w_real after DEL_T2;
reg_wl_img <= bufrw_img after DELT2;

end if ;
end process ;

-end of stage 2

-begin at stage 3
simply discribe D-FF behavior
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process( clock)
begin
if ( clock'event and ( clock =101 )) then
reg_1_real <= x1 real after DELTi;
regilimg <= xl 1mg after DELTi;
reg_ci_real <= xci real after DELTi;
regclimg <= xci 1mg after DEL_-Ti;
reg-w2_real <= reg Wi real after DELTi;
regy2_img <= regylimg after DELTi;

end if;
end process

------end of stage 3-----------------

-----begin at stage 4 ---

B1 : A29325
generic map ( DFPUT =>110 ns)
port map ( regilreal, reg_w2_real, clock, muit,
enable, x2_real )

B2 : A29325
generic map ( DFPUT =>110 ns)
port map ( reglimg, regwy2_real, clock, muit,
enable, x2_img )

B3 :A29325
generic map ( DFPUT =>110 ns)
port map ( regilimg, regy2_img, clock, mult,
enable, x3_real )

B4 : A29325
generic map ( DFPUT =>110 ns)
port map ( reg_1_real, regwv2_img, clock, mult,
enable, x3_img )

--delay time at input weight factor
process( clock)
beg.
if ( clock'event and ( clock =11' )) then

reg_c2_real <= reg ci real after DELT2;
reg_c2_1mg <= reg cji mg after DELT2;

end if;
end process;

--- - - -end of stage 4- - - - - - - - - -

113



-----begin at stage 5 ---
---simply discribe D-FF behavior -

process( clock)
begin
if ( clocklevent and ( clock =101 )) then
reg-2_real <= x2_-real after DELTi;
reg_2img <= x2-img after DELT1;
reg_3_real <= x3_-real after DELTi;
reg_3img <= x3 -img after DELTi;
regc3_real <= reg_ c2_real after DELTi;
regc3_img <= regc2_img after DELTi;

end if;
end process;

------end of stage 5----------------

-----begin at stage6 ---

ClI A29325
generic map ( DFPUT =>110 ns)
port map ( reg_2_real, reg_3_real, clock, sub,
enable, x4_real )

C2 :A29325
generic map ( DFPUT =>110 ns)
port map ( reg_2img, reg_3img, clock, add,
enable, x4_img );

--delay time at input weight factor
process( clock)
begin
if ( clocklevent and ( clock ='11 )) then
regc4_real <- reg c3_real after DELT2;
regc4_img <= regc3_img after DELT2;

end if;
end process

--- - - -end of stage 6- - - - - - - - - -
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------------- begin at stage 7 ---
---simply discribe D-FF behavior -

process( clock, ce
begin
if ( ciock'event and ( clock =101 ) and (oe = true))
then

c-real <= BITTOLOGIC( regc4_real )after DELTi;
c-img <= BITTOLOGIC( regc4_img )after DELT1;
d-real <= BITTOLOGIC( x4_real )after DELTi;
d-img <= BITTOLOGIC( X4_img )after DELTI;

* end if ;
end process;

--------------- end of stage 7----------------

end structural;
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APPENDIX F: THE ADDRESS SEQUENCE GENERATOR AND CONTROLLER

library fpu, fft;
use fpu.refer.all, fft.basic.all, fft.ram_256,
fft.convert.all ;
entity SEQ_CONT is

generic( test-number : positive := 2 ) ;--- from 1 to 6 ---
end

library fpu, fft;
use fpu.refer.all, fft.basic.all, fft.ram_256,
fft.convert.all ;
architecture simple of SEQ_CONT is

function RESOLVE( bits_1, bits 2: LOGICARRAY)
return LOGIC ARRAY is

variable result :LOGIC ARRAY( bits_1'left downto
bits_l'right) ;

variable testl : BOOLEAN ;
variable test2 : BOOLEAN ;
begin

testl := IS_HiZOR-X( bits_1 )
test2 := ISHiZOR X( bits_2 ) ;
if( testl and test2 ) then

for i in bits l'range loop
result(i):= 'X'

end loop ;
elsif( testi ) then

result := bits_2 ;
elsif( test2) then

result := bits_1 ;
else

assert( testl and test2
report " bus can not resolve any one input signal
severity error ;

end if ;
return result ;

end RESOLVE ;

function TABLE1( bits: BITARRAY) return INTEGER is
variable result :integer := 0 ;
begin

result := 2**( BITSARRAYTOINT( bits)+ 1)
return result ;

end TABLE1
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function TABLE2( N: INTEGER) return INTEGER is
variable result :integer := 0 ;
begin

while 2**( result) < N loop
result := result + 1 ;

end loop ;
return result ;

end TABLE2

constant chssetupt : TIME := 200 ns ;

constant wrtsetup-t : TIME := 200 ns ;

signal LEN : BITARRAY( 2 DOWNTO 0 ) "000" ;

signal ISTO : BIT := '1'
signal CHE : BIT := '1'
signal IN R : BIT : '0' ;
signal OUT_A : BIT : '0' ;

signal INE : BIT := '1'
signal OUTE : BIT := '1'
signal FFTCMP : BIT := '0'
signal STAGECNT : INTEGER := -1 ;
signal OSTO : BIT := '1'
signal TRIG : BIT := '0'
signal EN : BIT := 'I'
signal SO : BIT := '0'
signal Sl : BIT := '0'
signal ADDR_0 : LOGICARRAY( 7 downto 0)

:= "ZZZZZZZZ";
signal CHS_0 : BIT := '1'
signal RW 0 : BIT := '1'
signal ADDRWC : LOGICARRAY( 7 downto 0)

:= "ZZZZZZZZ";
signal CHS WC : BIT := '1'
signal RWWC : BIT := '1'
signal ADDR_1 : LOGIC ARRAY( 7 downto 0)

"ZZZZZZZZ";
signal CHS_1 : BIT := '1'
signal RW_1 : BIT := '1'

signal TRIGRD_0 : BIT := '0' ;
signal TRIGWR_0 : BIT := '0' ;
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signal TRIGRD_1 : BIT := 01
signal TRIGWR_1 : BIT := 0'
signal RDADDR_0 : LOGICARRAY( 7 DOWNTO 0)

:= ZZZZZZZZ"I ;
signal RDADDR_1 LOGICARRAY( 7 DOWNTO 0)

:= ZZZiZZZZ" ;
signal WRADDR_0 :LOGICARRAY( 7 DOWNTO 0)

:"ZZZZZZZZ"
signal WRADDR_1 LOGICARRAY( 7 DOWNTO 0)

:= ZZZZZZZZ"I ;

signal IE :BOOLEAN :=FALSE ;
signal OE :BOOLEAN :=FALSE ;
signal ENABLE :BOOLEAN :=FALSE ;
signal STATE :INTEGER :=0;

begin

-------------- FFT controller--------------------------
process( CLOCK, IN_-E, OUTE )
variable CNT :INTEGER := 0;
begin

if ( (IN E='O' and INE'event ) and
( OUTE='O'and OUTE'event ))then

CNT := 0;
INR <= '1';
OUTA <='O'
IE <= TRUE;
ENABLE <= TRUE

elsif(( CLOCK'event and CLODCK = 0')) then
CNT := CNT + 1;
if( CNT = 4 ) then

OE <= TRUE ;
elsif( CNT = 5 ) then

OUTA <= I1'
end if

elsif( (CNT >=4) and (OUT-E = 11) and (CLOCK'event))
then

OUTA <= '0'
ENABLE <= FALSE;
OE <= FALSE after 500 ns

elsif( (CNT >=4) and ( INE ='11) ) then
INR <= '0'
IE <= FALSE;

end if

end process;
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-address sequencer------------------------------------

generate step by step signal ---
process( CLOCK, LEN, CHE, STATE, IN -R, OUT-A
variable RCNT :INTEGER :=0
variable WCNT :INTEGER :=0
variable N :INTEGER :=0;
variable PTR :BIT :- 0'
variable COEBUF :

LOGICARRAY( 7 downto 0)
:= 00000000" ;

variable F :INTEGER := 0
begin

if ((CHE = '0' )then
if ((STATE = 0) and ( CLOCK'event and

CLOCK = 11) )then

---------find out actural length ---
N :=TABLE1( LEN);

F TABLE2( TABLE1( LEN)

---- do state 0---------
STAGECNT <= 0 ;
COEBUF := "100000000"1
PTR := ISTO;
FFT CMP <= Ill
STATE <- 1;

elsif ( (STATE =1) and ( CLOCKlevent and
CLOCK = 1') )then

---do state 1 which is initization state --

INE <= '0'
OUTE <= '0'
RCNT :=0
WCNT :=0
EN <= '0'1

if( (IN-R = 1') ) then
-- gen. next addr

STATE <= 3;
else

STATE <= 7
end if;
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elsif( (2 <= STATE) and (STATE <= 4))
then

---do state 2, 3, or 4

---- ----- read -----------------

if( (INR = I1' and RCNT < 2*N and
CLOCKlevent )) then

if( PTR = '0' )then
--when RAM_0 is read --

if (( CLOCK = '0')) then

ADDR_0 <= RDADDR 0
TRIGRD_0 <= not( TRIG_RD_0 )

--generate rext addr --
ADDR -WC <= COEBUF
CHSWC <= '1',

'0' after 1 ns
I1l after chs-setup~t

RWWC <= Ill'
COEBUF := INC( COE_BUF

elsif ( CLOCK = '1')then
ADDR_0 <= RDADDRl 1

TRIGRD_1 <= not( TRIGRD_1 )
-- generate next addr -----

end if
CHS_0 <= 11,

'0' after 1 ns
I1' after chs-setup~t

RW_0 <= Il1'

elsif( PTR = I1' )then
-when RAM_1 is read--

if (( CLOCK = '0')) then

ADDR_1 <= RDADDR_0
TRIG RD 0 <= not( TRIG RD 0 )

-generate next addr--

ADDRWC <= COEBUF
CHSWfC <= I1',-
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'0' after 1 ns
I1l after chssetupt;

RWWC <= Il1'
COEBUF := INC( COE_-BUF

elsif (CLOCK = '1')then
ADDR-1 <= RDADDR_1

TRIGRD_1 <= not( TRIGRD_1 )

-- generate next addr --
end if

CHS_1 <= 1',
'0' after i ns,

Ill after chs setup-t;
RW_1 <= '1'

end if

RCNT R RCNT + 1
STATE <= 3 ;-
TRIG <= not(TRIG) after del-t;

elsif( R-CNT = 2*N ) then
INE <= '1'
EN <= I1'

end if

------------ writing-----------
if( ( OUT_-A = I1' and W_-CNT < 2*N

and CLOCK'event)
or (OUTA'event and OUT A = 11)) then

if( PTR = '0' ) then
if( CLOCK = '0') then

ADDR-1 <= WR-ADDRO0
TRIGWR_0 <= not( TRIGWR_0);

* elsif( CELOCK = I1' ) then
ADDR 1 <= WR ADDR 1;

TRIG_-WR_1 <= not( TRIGWR_1);
end if;

CHS_1 <= 11',
'0' after 30 ns
I1' after chs_setup~t

RW_1 <= '11,
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'01 after 30 ns,
Il' after wrt-setup~t

elsif( PTR = 1') then
if( CLOCK = 0') then
ADDRO0 <= WR ADDRO0

TRIGWR_0O <= not( TRIGWR_0)

elsif( CLOCK = Ill ) then
ADDR-O <= WR-ADDR1l

TRIGWR_1 <= not( TRIGWR1 )
end if

CHS_0 <= '11,
'0' after 30 ns

'1' after chs setup-t;
RW_0 <= Ill',

'0' after 30 ns,
Ill after wrtsetupt;

end if;

if( CLOCK = '0') then
Si <= '0'
SO <= 1'

elsif( CLOCK = 1') then
Si <= '1,
SO <= '0'

end if ;

W_-CNT :=WCNT + 1
STATE <= 2;

elsif( W-CNT =2,*N ) then
OUT E <= I1' ;
Si <= '0' after 500 ns;
SO <= '0' after 500 ns;

end if ;

if((W_CNT = 2*N) and (RCNT = 2*N)) then

STATE <= 7

end if;

-do state 7 , increment stage_counter
elsif (STATE =7 )then

if (IN E Ill1 and OUTE = 11') then
STAGECNT <= STAGE_CNT + 1
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PTR := NOT( PTR
STATE <= 8;

else
if( INE = '1'l then

STATE <= 2;
else

STATE <= 3;
end if;

TRIG_RD_0 <= not( TRIG_RD_0);
TRIG_ RD _1 <= not( TRIG_RD_1);
TRIGWR_-0 <= not( TRIG_-WR_0);
TRIG_WR_1 <= not( TRIGWR_1);

end if

-do state 8 which is final---
elsif CSTATE = 8 )then

if (STAGECNT =(F+l) )then
FFTCMP <= '0' after 500 ns;
OSTO <= PTR
STATE <= -1

elsif( STAGECNT <(F+1)) then
STATE <=1

end if

end if;

elsif( CHE = I1'l then
INE <= '1'
OUTE <= I1'
SO <= 0'

OSTO <= '0';
ADDR_0 <= "ZZZZZZZZ";
CHS_ <= '1'
RW_ <= '11';
ADDRWC<= "ZZZZZZZZ";
CHSWC <= Il1'
RWWVC <= 1';
ADDR_1 <= "ZZZZZZZZ";
CHS_1 <= '1'
RW_1 <= '31';
STATE <= 0;

end if;

end process;
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process(TRIGRD_0, TRIG WR 0, TRIGRDI, TRIGWR_1,
STAGE_CNT)

variable jum. _dis : INTEGER : 0 ;
variable addr dis : INTEGER : 1 ;
variable il : INTEGER : 0 ;
variable i2 : INTEGER :- 0 ;
variable kl : INTEGER : 0 ;
variable K2 : INTEGER : 0 ;
variable jl : INTEGER : 0 ;
variable j2 : INTEGER : 0 ;
variable L : INTEGER := 0 ;
begin

if( STAGE CNT'event and STAGE CNT >= 0 ) then
addr dis := TABLE1(LEN) / 2**( STAGECNT ) ;
jump-dis := TABLE1(LEN)*2 / 2**( STAGE_CNT) ;
il 0
i2 :=0
jl =0
j2 :=0
kl 0
k2 0
L TABLEI(LEN)

else

if( STAGECNT >= 0 and TRIGRDO'event) then
RDADDR_0 <=
BITTOLOGIC( INTTOBITSARRAY(((il mod addrdis) +

jl*jumpdis) ,8)) ;

if( ( (il+1) mod addrdis )= 0 ) then
ji j + 1

end if
il :=il + 1;

end if ;

if( STAGECNT >= 0 and TRIGRD l'event) then
RDADDR_1 <=
BITTO-LOGIC( INTTOBITSARRAY(((i2 mod addrdis )

+ addrdis + j2*jumpdis ) ,8))

if( ( (i2+1) mod addrdis )= 0 ) then
j2 j2 + 1

end if
i2 := i2 + 1;

end if ;

if( STAGE CNT >= 0 and TRIG WR 0'event) then
WRADDR_0<=BIT TOLOGIC( INT_TO_BITSARRAY( ki, 8 ) );
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ki ki + 1
end if

if( STAGE_-CNT >= 0 and TRIGWR 1'event) then
WRADDR_1 <= BITTOLOGIC( INTTOBITSARRAY((k2 +

L) ,8));
k2 k2 + 1

end if
end if

end process;
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APPENDIX G: THE BEHAVIOR OF RAM

library fpu, fft;
use fft.basic.all, fpu.refer.all;

------- the size of ram is 256 by 32
entity RAM_256 is
generic ( read cycle t : TIME := 300 ns ;-- read cycle time

writecycle t : TIME := 300 ns ;
-- write cycle time

datasetupt : TIME := 150 ns ;
-- data setup time

chssetupt : TIME := 150 ns ;
-- chip set up time

wrt pulse widtht : TIME := 150 ns ;
-- write pulse width

chsaccesst :TIME := 50 ns);
-- access time from chip select

port( addr lines : in LOGICARRAY( 7 downto 0 );
chs : in BIT ; --- it is chip select signal

rw en :in BIT ;
--- it is read/write enable

signal
i_datalines : in LOGIC ARRAY( 31 downto 0 );
odatalines : out LOGIC_ARRAY( 31 downto 0 ));

end RAM_256 ;

library fft,fpu;
use fpu.refer.all, fft.basic.all
architecture behavioral of RAM_256 is

signnl addr buf : LOGICARRAY( addrlines'left downto
addrlines'right );
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signal idatalinesbuf : LOGIC ARRAY( i data lines'left- - downto i data lines'right );

signal rwenbuf 
: BIT ;

signal chs_buf : BIT ;

begin

addr-buf <= addr-lines ;

i-datalinesbuf <= idata lines ;

rw en buf <= rw en

chs buf <= chs ;

when chip is enable

--- check for read cycle timing violation ---
process(rw_en, chs)
begin
if ( (rwen = '1') and (chs ='O') ) then
assert addr buf'delayed( read cyclet )'stable
report " read cycle time error "

severity error ;
end if ;

end process ;

--- check for write cycle time violation ---
process(rw_en, chs)
begin
if ( rw-en = '0' and chs -'0' ) then

assert addr-buf'delayed( writecyclet )'stable
report " write cycle time error "

severity error ;
end if ;

end process ;

--- check for write pules width violation ---
process(rw_en, chs)
begin
if ( rwen = '0' and chs ='0' ) then
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assert rw en buf'delayed( wrtpulsewidtht )'stable
report " read/write time error "
severity error ;

end if ;
end process ;

--- check for chip select setup time violation ---
process(rwen, chs)
begin
if ( rw en = '0' and chs ='0' ) then

assert chs buf'delayed( chs_setupt )'stable
report " chip select setup time error
severity error ;

end if ;
end process ;

--- check for data setup time violation ---
process(rwen, chs)
begin
if ( rw en = '0' and chs ='0' ) then

assert idata linesbuf'delayed( data_setup-t )'stable
report " data setup time error "
severity error ;

" end if ;
end process ;

process(rw en, chs)
variable cell num :INTEGER := 0 ;
variable data-buf : LOGICARRAY( idata lines'left

downto idataiines'right );
variable cell-matrix :

LOGICMATRIX( 0 to (2** addrlines'length - 1 ) )
begin

cellnum := BITSARRAYTOINT( LOGIC T OBIT( addrbuf)) ;

write mode
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if( (rw-en = '0') and ( chs'event and chs = '0'))
then

data -buf := i -data-lines-buf;
cell-matrix( cell-num ) := data-buf;

---read mode ------
elsif((rw-en = '11) and ( chs'event and chs = '0' 1
then
o-data-lines <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ",,
cell_matrix( cell-num ) after chs-access_t;

---chip disable-------
* else

o data lines <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ"
end if;

end process;

end behavioral;
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APPENDIX H: THE SOURCE FILE OF THE FFT SYSTEM

library fpu, fft;
use fpu.refer.all, fpu.readl file.all, fft.basic.all;
use fft.ram_256, fft.convert.all
entity sys2 is

generic( testnumber : POSITIVE := 2 ) ;
--- form 1 to 6 ---

end ;

library fpu, fft;
use fpu.refer.all, fpu.readl file.all, fft.basic.all;
use fft.ram 256, fft.convert.all
architecture simple of sys2 is

function RESOLVE( bits_1, bits_2: LOGICARRAY)
return LOGIC ARRAY is
variable result: LOGICARRAY( bits_1'left downto

bits l'right);
variable testl : BOOLEAN ;
variable test2 : BOOLEAN ;
begin

testl := IS HiZ ORX( bits_1 ) ;
test2 := IS-HiZ-OR X( bits 2 ) ;
if( testl and test2 ) then

for i in bits_l'range loop
result(i):= 'X'

end loop ;
elsif( testl ) then

result := bits_2 ;
elsif( test2) then

result := bits_1 ;
else

assert( testl and test2
report " bus can not resolve any one input signal

severity error ;
end if ;
return result ;

end RESOLVE ;

function TABLE1( bits: BIT ARRAY) return INTEGER is
variable result :integer := 0 ;
begin

result := 2**( BITSARRAYTOINT( bits)+ 1) ;
return result ;
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end TABLE1 ;

function TABLE2( N: INTEGER) return INTEGER is
variable result :integer := 0 ;
begin

while 2**( result) < N loop
result := result + 1 ;

end loop ;
return result ;

end TABLE2

type vectorset is array( positive range <> ) of
BITARRAY(2 downto 0) ;

function inputvector return vectorset is
begin
return( "000",

"001"
11010",
"011",
"I100",
"100" ) ;

end input-vector ;

component RAM_256
generic( read-cyclet : TIME := 300 ns ;

-- read cycle time
writecyclet : TIME := 300 ns ;

-- write cycle time
datasetupt : TIME := 150 ns ;

-- data setup time
chssetupt : TIME := 150 ns ;

-- chip set up time
wrt_pulse widtht : TIME := 150 ns;

-- write pulse width
chsaccesst : TIME := 50 ns);

-- access time from chip select

port( addrlines : in LOGIC ARRAY( 7 downto 0 );
chs : in BIT ;

--- active low chip select signal
rw en : in BIT ;

--- active low write/read enable signal
i datalines : in LOGICARRAY( 31 downto 0 );
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o_datalines : out LOGICARRAY( 31 downto 0 ));

end component ;

component FFT CELL
generic ( D FPU T : TIME := 110 ns );
port( a_rea,ai mg : in LOGICARRAY( 31 downto 0);

-- a is the input signal.
b-real,bimg : in LOGICARRAY( 31 downto 0);

-- b is the input signal.
w_real,w-img : in LOGICARRAY( 31 downto 0);

-- w is the weight signal.
clock : in BIT := "i' ;
enable : in BOOLEAN := false ;

-- chip enable for am29325
ie : in BOOLEAN := FALSE ;

-- input enable for final stage output
oe : in BOOLEAN := FALSE ;

-- output enable for first stage input
c_real,c_img : out LOGICARRAY( 31 downto 0) ;

-- c is the output signal.
d_real,dimg : out LOGICARRAY( 31 downto 0));

-- d is the output signal.

end component ;

for Fl:FFTCELL use entity fft.FFTCELL( structural );

for all :RAM_256 use entity fft.RAM_256( behavioral );

constant del t : TIME := 100 ns ;
constant chssetupt : TIME := 200 ns ;
constant wrt_setupt : TIME := 200 ns ;

signal LEN : BITARRAY( 2 DOWNTO 0 ) : "000" ;

signal ISTO : BIT := 'I'
signal CHE : BIT := 'I'
signal IN R : BIT := '0'
signal OUTA : BIT := '0'

signal IN E : BIT := 'I'
signal OUTE : BIT := 'I'
signal FFT CMP : BIT := '0'
signal STAGECNT : INTEGER := -1 ;
signal OSTO : BIT := 'I'
signal TRIG : BIT := '0'
signal EN : BIT := 'I'
signal SC : BIT := '0'
signal S1 : BIT := '0'
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signal ADDR_0 :LOGICARRAY( 7 downto 0)
:= ZZZiZZZZ";

signal :ZHS_0 :BIT := '1l
signal RW_0 BIT := '1'
signal ADDRWC :LOGICARRAY( 7 downto 0)

signal CHSWC :BIT Ill'1
signal RWWC :BIT Ill'1
signal ADDR_1 :LOGICARRAY ( 7 downto 0)

:="ZZZiZZZZ";
signal CHS_1 :BIT Il'1
signal RW_1 BIT Ill'1

signal TRIGRD_0 : BIT := 0' ;
signal TRIGWR_0 : BIT := 0' ;

*signal TRIGRD_1 : BIT := 0' ;
signal TRIGWR_1 : BIT := 0' ;
signal RDADDR_0 : LOGICARRAY( 7 DOWNTO 0)

:= ZZZiZZZZ" ;
signal RDADDR_1 LOGIC ,ARRAY( 7 DOWNTO 0)

:= ZZZZZZZ"
signal WRADDR_0 :LOGICARRAY( 7 DOWNTO 0)

"IZZZZZZZZ"I
signal WRADDR_1 LODGIC_,ARRAY( 7 DOWNTO 0)

:= ZZZiZZZZ";

signal CLOCK :BIT := Ill
signal times :integer :=0;

signal IE :BOOLEAN :=FALSE ;
signal OE :BOOLEAN :=FALSE ;
signal ENABLE :BOOLEAN :=FALSE ;
signal STATE :INTEGER :=0;

signal EADDR_0 :LOGICARRAY( 7 downto 0)
:"ZZZZZZZZ";

signal ECHS_0 :BIT Ill'1
signal ERW_0 :BIT Ill'1
signal EADDRWC LOGIC_,ARRAY( 7 downto 0)

:"ZZZiZZZZ";
signal ECHSWC :BIT Ill'1
signal ERWWC :BIT I=ll1
signal EADDR_1 :LOGIC_-ARRAY( 7 dcwnto 0)

:= ZZziZZZZ";
signal ECHS_1 :BIT Ill'1
signal ERW_1 : BIT Ill'1
signal S2 : BIT := 0'

signal CH_0 : BIT Ill1'
signal CH_1 : BIT Il'1
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signal CH_-W : BIT Ill1 ;
signal RWEN_0 : BIT Ill'1 ;
signal RWEN_1 : BIT Ill'1 ;
signal RWENW : BIT Ill'1 ;

signal ADDRLINES_0 :LOGIC_,ARRAY( 7 downto 0)
:= ~ZZiZZZZZZ" ;

signal ADDRLINES_1 :LOGIC_,ARRAY( 7 downto 0)
:= ~ZZiZZZZZZ" ;

signal ADDRLINESW :LOGICARRAY( 7 downto 0)
:- "zzzzzzzff ;

signal R-in-real :LOGICARRAY(31 downto 0)

signal R-in -img :LOGICARRAY(3l downto 0)
:=lzzzzzzzzzzzzzzzzl

signal RO-real :LOGICARRAY(31 downto 0)
It VVVVVYVVYYYYVYVVVVYYYVVVVVVVVVVY II;

signal RO -img :LOGICARRAY(31 downto 0)
'tvvYXXvvvvXvvvvYXvvvvXvvXvvXvvvvvY,,.

signal inl-real :LOGIC ARRAY(31 downto 0)

signal inl-img :LOGIC ,ARRAY(31 downto 0)

signal in2_real :LOGICARRAY(31 downto 0)

signal in2_img :LOGIC_,ARRAY(31 downto 0)

signal Rl-real :LOGIC_-ARRAY(31 downto 0)
- :- "XXXXXXXXXXXX)XXXXXXXXXXXXXXXXXXXX";

signal Rl-img :LOGICARRAY(31 downto 0)

signal W-real :LOGICARRAY(31 downto 0)
:- "XXXXXXXXXXXXkXXXXXXXXXXXXXXXXXXXX";

signal W-img :LOGICARRAY(31 downto 0)
:- "XXXXXXXXXXXXkxxxxxxxxxxxxxxxxxxx";

signal W-in -real :LOGICARRAY(31 downto 0)
:- "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"l;

signal W-in -img :LOGICARRAY(31 downto 0)
:-" xxxxxxxxXXXXXXXXXXXXXXXXXXXXXXXXX;

signal outl_img :LOGICARRAY(31 downto 0)
:- "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"I;

signal outl-real :LOGICARRAY(31 downto 0)
:=" XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"I;

signal out2_img :LOGICARRAY(31 downto 0)
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* ="XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"I;
signal out2_-real :LOGICARRAY(31 downto 0)

signal ex-img :LOGICARRAY(31 downto 0)
* ="XXXXXXXXXXXXkXXXXXXXXXXXXXXXXXXXX";

signal ex real :LOGICARRAY(31 downto 0)
* t"yyyVXyyxyyyyyyyyvyyVxyxyyVxyyyxyxt .

signal exW-real :LOGICARRAY(31 downto 0)
:=t"vvvvXvvvvvvvvXvvvvvvvvvvvvvvvvvvI;

signal exW -img :LOGIC_-ARRAY(31 downto 0)
D =Xxx p xxxxx7xXX7XXX 7XXI,

signal FFT -img :LOGIC_-ARRAY(31 downto 0)
* ="IxxxxxxkxXXXXXXXXXXXXXXXXXXXXXXXXX;

signal FFT-real :LOGICARRAY(31 downto 0)
* ="yyyyyyyyyyyyyyvvvvvyyyvyyvvvvvvv" .

signal DONE :BOOLEAN
:=false;

signal F :INTEGER

signal N :INTEGER
0= 0

signal L :BITARRAY( 2 downto 0)
: GO' ;

begin

CLOCK <= NOT( CLOCK )after 500 ns;

times <= times + 1 after 1000 ns;

assert not( DONE)
report "this is enough -- good"
severity error;

--------------------------reovdsga----------------------

CHO0<= CHS 0and ECHSO 0---------active low
CH_1 <= CHS_1 and ECHS_1 --------- active low
CHW <= CHSWC and ECHS WC --------- active low
RW EN0<= RW 0and ERWOJ ;---------active low
RW ENl1<= RW-land ERW1 ;---------active low
RWENW <= RW_-WC and ERWWC ----------active low
ADDRLINES_0 <= RESOLVE( ADDR_0 , EADDRO 0
ADDRLINES 1 <= RESOLVE( ADDR_1 , EADDR71)
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ADDRLINESW <= RESOLVE( ADDR-WC , EADDRWC);

---- ------------ initialization----------------

L <= input vector( test_number)
N <= TABLE( L ) ;
F <= TABLE2( TABLE1( L

-- ---- import input data by universal controller -----
process (times, CLOCK)
variable data-r : PEAL_-MATRIX( 1 to 1000) ;
variable data_i : REAL_-MATRIX( 1 to 1000 ) ;
variable data-wr: REAL_-MATRIX( 1 to 1000 ) ;
variable data_wi: REALMATRIX( 1 to 1000 ) ;
variable i : NTEGER := 1;
begin

if( times =0) then
read -real( "rldat", datar);
read -real( "img.dat", data_i);
read -real( "wreal.dat", datawr );
read-real( "wimg.dat", data wi);

else
if( times <= N and (CLOCKlevent) ) then

ex -real <= BITTOLOGIC(convertl(datar(i))) ;
ex img <= BITToLOGIC(convertl(datai(i)));
exW -real <= BI!TTOLOGIC(convertl(data_wr(i))) ;
exw~img <= BIT_-TOLOGIC(convertl(datawi(i)));

elsif( times =( N+1 ) and (CLOCKlevent) ) then
exW -real <= BIT_-TO_LOGIC(convertl(datawr(i)));

- exW img <= BITTO_LOGIC(convertl(datawi(i)));
ex real <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
ex img <= "IZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";

elsif( times = (N*(F+1)/2+l) ) then
exW real <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
exW img <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";

end if;
i i +1

end if
end process

--generate addressing signal by universal controller -

process (times, CLOCK)
begin

if( times = 1 and (CLOCK'event and CLOCK='l') ) then
S2 <- Il1'
EADDR_0 <= "00000000";
EADDR WC<= "00000000";
ISTO W= '0'
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elsif ( times <= N and (CLOCK'event)) then
EADDR_0 <= INC( EADDRO0)
EADDRWC <= INC( EADDRWC);

elsif( times <= (N*(F+1)/2) and (CLOCK'evert)) '-1,en
EADDRWC <= INC( EADDRWC);

elsif( times = (N*(F+1)/2+1) ) then
EADDR 0 <= "IZZZZZZZZ";
EADDRWC <= "IZZZZZZZZ";
S2 <= '0'

end if;

if( times <= N and ( CLOCK'event ))then

ECHS_0 <= 11'
'0' after i ns,
I1' after chs_setupt

ERW_0 <= I1',
'0' after 1 ns
Ill after wrt_setup-t;

ECHSWC <= 11'
'0' after 1 ns,
'1' after chs_setupt ;

ERWWC <= 11',
'0' after 1 ns,
'1' after wrt-setupt ;

elsif ( times <= (N*(F+1)/2) and ( CLOCK'event )
then

ECHSWC <= '1',
'0' after 1 ns,
'1' after chs_setupt;

ERWWC <= Il1',
'0' after 1 ns
I1' after wrt_setupt;

else
ECHSWC <= 1';
ERWWiC <= '11';

end if*

if ( times < (N*(F+1)/2+1) ) then
CHE <= '1l'

elsif( times = (N*(F+1)/2+1) ) then
CHE <= 1'1, '0' after 10 ns;
LEN <= L;
ISTO <= '0';

end if;

---- ----end of program ---------------
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if ( (FFT CMP = '0' and FFTCMP'event)
and (times >= 1) ) then

CHE <= Il1'
DONE <= TRUE;

end if;
end process

------------- FFT controller-------------------------
process( CLOCK, IN_E, OUT_-E )
variable CNT :INTEGER :=0;
begin

if ( (IN E='0' and INE'event ) and
( OUTE='0'and OUTE'event ))then

CNT :=0;
INR <= 11';
OUTA <=10O
IE <= TRUE;
ENABLE <= TRUE

elsif(( CLOCK'event and CLOCK = 0')) then
CNT := CNT + 1;
if( CNT = 4 ) then

OE <= TRUE ;
elsif( CNT = 5 ) then

OUTA <= I1l
end if;

*!1sif( (CNT >=4) and (OUTE = 11) and (CLOCK'event))
then

OUTA <= '0'
ENABLE <= FALSE;
OE <= FALSE after 500 ns;

elsif( (CNT >=4) and ( IN-E ='11') ) then
IN R <= '0'
IE <= FALSE;

end if

end process;

-----address sequencer-----------------------------------

------ generate step by step signal ---
process( CLOCK, LEN, CHE, STATE, IN_R, OUTA)
variable RCNT : INTEGER 0
variable W_-CNT : INTEGER :=0

variable PTfR : BIT :- 0'
variable COEBUF :LOGIC_ARRAY( 7 downto 0)

:- 00000000" ;
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begin
if ((CHE = '0' ) )then

if ((STATE = 0) and ( CLOCK'event
and CLOCK = 11) )then

-------- find out actural length ---

---do state 0 ----
STAGECNT <= 0 ;
COEBUF := "100000000"1
PTR := ISTO;
FFTCMP <= '1'
STATE <=1;

elsif ( (STATE = 1) and

CLOCK'event and CLOCK= 11) )then

do state 1 which is initization state --

INE <= '0'
OUTE <= '01
RCNT :=0
WCNT :=0
EN <= '0'1

if( (INR 11') ) then
-- gen. next addr

STATE <= 3;
else

STATE <= 7;
end if;

elsif( (2 <= STATE) and (STATE <= 4)
then

---do state 2, 3, or 4

------ read -----------------

if( (IN-R = 'll and RCNT < 2*N and
CLOCK'event )) then

if( PTR = '0' )thien
--when RAM_0 is read
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if (( CLOCK = '0')) then

ADDR_0 <= RD ADDR_0
TRIGRD_0 <= not( TRIGRDO )

--generate next addr

ADDR WC <= COEBUF
CHSWiC <= '1',-

'01 after 1 ns,
I1l after chs setup-t;

RW_WC <= Il1'
COE BUF := INC( COE_-BUF

elsif (CLOCK = '1')then
ADDR_0 <= RDADDR_1

TRIGRD_1 <= not( TRIG RD1 )
--generat next addr

end if;
CHS_0 <= 11,

'0' after i ns,
I1' after chs-setup~t

RW_0 <= 11

elsif( PTR = I1l )then
-- when RAM_1 is read

if (( CLOCK = '0')) then

ADDR_1 <= RDADDR 0
TRIGRD_0 <= niot( TRIGRD_0 )

--generate next addr

ADDRWC <= COEBUF
CHSWFC <= '1',_

'0' after 1 ns
'1' after chs_setupt;

RWWC <= '1'
COE BUF := INC( COEBUF

elsif ( CLOCK = '1')then
ADDR 1 <= RD ADDR1 1

TRIGRD_1 <= not( TRIGRD_1 )
--generate next addr

end if;
CHS_1 <= '11,

'0' after 1 ns
'1' after chs-setupt;

RW1l <= 11

end if
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R CNT := RCNT+ 1
STATE <= 3 ;-
TRIG <= not(TRIG) after del-t;

elsif( R ZCNT =2*N ) then
INE < 1
EN4 <='1

end if

-------- writing ----------
if( ( OUT A Il'1 and WCNT < 2*N and

CLOCKlevent )or (OUTA'event and OUT A 11'))
then

if( PTR = '0' ) then
if( CLO0CK = '0') then
ADDR -1 <= WRADDRO-

TRIGIWR 10 <= not( TRIGWRO 0
elsif( CLOCK = I1' ) then
ADDR -1 <= WRADDRl-1

TRIG_-WR_11 <= not( TRIGWRi )
end if;

CHS_1 <= 11'
'0' after 30 ns

'1' after chs-setupt;

RW_1 <= 1',
'0' after 30 ns,

'1' after wrt-setupt;

elsif( PTR = 1') then
if( CLOCK = '0') then
ADDRO0 <= WR-ADDRO0

TRIGWR_0 <= not( TRIGWR-O)

elsif( CLOCK = I1' ) then
ADDRO0 <= WR-ADDR1l

TRIGWR_1 <= not( TRIGWR1 )
end if ;

CHS_0 <= 11',
'0' after 30 ns,

'1' after chs-setupt
RW_0 <= '11,

'0' after 30 ns,
Ill after wrt-setupt;

end if;
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if( CLOCK = '0') then
Si <= '0'
SO <= '1'

elsif( CLOCK = '1') then
SI <= '1'
SO <= '0'

end if ;

W CNT := W CNT + 1
STATE <= 2 ;

elsif( WCNT = 2*N ) then
OUT E <= 'I' ;
S1 <= '0' after 500 ns ;
SO <= '0' after 500 ns ;

end if ;

if((WCNT = 2*N) and ( RCNT = 2*N))
then

STATE <= 7 ;
end if ;

do state 7 , increment stage-counter

elsif ( STATE = 7 ) then
if ( IN E = '1' and OUTE = 1i) then

STAGECNT <= STAGE_CNT + 1 ;
PTR := NOT( PTR
STATE <= 8 ;

else
if( IN E = '1' ) then

STATE <= 2 ;
else

STATE <= 3 ;
end if ;

TRIGRD_0 <= not( TRIG_RD_0) ;
TRIGRD_1 <= not( TRIGRDI) ;
TRIGWR_0 <= not( TRIGWR_0) ;
TRIGWR_1 <= not( TRIGWRI) ;

end if ;

-do state 8 which is final

elsif ( STATE = 8 ) then

142



if ( STAGECNT = (F+l) )then
FFT CMP <= '0' after 500 ns;
osTo <= PTR
STATE <= -1;

elsif( STAGE CNT <(F+1)) then
STATE <=1;

end if

end if;

elsif( CHE = Ill then
INE <= I1l
OUTE <= '1';
SO <= '0'
SI. <= '0'
OSTO <= '0';
ADDR_160 <= "IZZZZZZZZ"I;
CHS_ <= I1l
RW_ <= '11';
ADDRWC<= I"ZZZZZZZZ";
CHSW <= I1l
RWW <= '1';
ADDR_-1 <= IIZZZZZZZZ";
CHS_ <= '1'
RW_ <= ''
STATE <= 0;

end if;

end process;

process(TRIGRD_0, TRIGWR_0, TRIG-RD 1,
TRIGWRi,1 STAGE_CNT)

variable jump_dis : INTEGER: 0;
variable addr dis : INTEGER :1
variable il INTEGER :=0;
variable i2 :INTEGER :=0;
variable ki INTEGER :=0;
variable K2 :INTEGER :0;
variable jl :INTEGER :0;
variable j2 :INTEGER :=0;
variable L :INTEGER :=0;
begin

if( STAGEICNT'event and STAGECNT >= 0 )then
addr-dis :=TABLE1(LEN) / 2**( STAGECNT ) ;
jump dis :=TABLE1(LEN)*2 I2**( STAGE_CNT);
il 0
i2 :=0
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ji "= 0
j2 0 ;
ki := 0;
k2 := 0

else

if( STAGECNT >= 0 and TRIGRDO'event) then
RD ADDR 0 <=
BITTOLOGIC( INTTOBITSARRAY(((il mod addr_dis) +

jl*jumpdis) ,8));

if( ( (il+l) mod addrdis )= 0 ) then
ji := ji + 1

end if
ii := ii + 1;

end if

if( STAGECNT >= 0 and TRIGRD_l'event) then
RD ADDR 1 <=
BIT TO-LOGIC( INTTOBITSARRAY(((i2 mod addr dis )
+ addrdis + j2*jumpdis ) ,8)) ;

if( ( (i2+1) mod addr dis )= 0 ) then
j2 := j2 + 1

end if
i2 := i2 + 1;

end if ;

if( STAGECNT >= 0 and TRIGWRO'event) then
WRADDR_0 <= BITTOLOGIC(INTTOBITSARRAY( k1, 8));

k1 := kl + 1
end if

if( STAGECNT >= 0 and TRIGWR 1'event) then
WRADDR_ 1<= BIT TO LOGIC(INT-TOBITSARRAY((k2+N),8));

k2 := k2 + 1
end if

end if ;

end process;

simply depict the behavioral of 4 to 1 switch --

process( out1 real, outl_img, out2_real, ovt2_img,
exreal, ex-img, SO, S1, S2 )

variable test : BITARRAY( 2 downto 0 ) : "000"
begin
test := SO&Sl&S2 ;
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case test is
when "'100"' =>

R in real <= outi-real ;
Rin-img <= outlimg;

when "010" 0
R-in -real <= out2_real ;
R in img <= out2_img;

when "001" 0
R in real <= ex-real ;
R~in-1img <= ex-img

when others =>
R-in-real <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
R -in img <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";

end case;

end process;

-- ----simple depict D FFT behavioral--------
process ( RO_REAL, RO_1MG, RiREAL, RliMG, W _real, W _img,
TRIG, EN)
begin

if( EN = '0' ) then
if ( TRIG = '1' and TRIG'EVENT )then

inl-real <= RESOLVE( RO-REAL, RiREAL);
inl-img <= RESOLVE( ROING, Ri_1MG)
W in real <= WREAL;
W in iing <= W 1-MG;

elsif( TRIG = '0' and TRIG'EVENT ) then
in2_real <= RESOLVE( RO_REAL, RiREAL);
in2_img <= RESOLVE( ROIMG, RlI1MG

end if
end if;

end process;

Fl:FFTCELL
generic map( DFPUT =>110 ns)
port map( inl_real, inlhimg,

in2_real, in2_img,
W_in_real, W_in_img,
clock, ENABLE, IE, OE, outi_real,
outlimg, out2_real, out2_img)
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RO-r:RAM_256 generic map( read cycle_t => 300 ns,
write -cycle t => 300 ns,
data-setupt => 150 ns ,
chs-setupt => 150 ns,
wrt-pulse -width -t => 150 ns,
chs access t => 50 ns)

port map(ADDRLINES_0, CH_0, RW_ENO,R, in-real,RO_real);

RO i:RAM_256 generic map( read cycle-t => 300 ns
write cycle-t => 300 ns,
data-setupt => 150 ns,
chs-setupt => 150 ns,
wrt-pulse -width -t => 150 ns,
chs -access-t => 50 ns)

port map( ADDRLINES_0, CH_0, RW-EN_0, R_in-img, RO_img )

Ri r:RAM_256 generic map( read cycle-t => 300 ns
write cycle t => 300 ns
data-setupt => 150 ns
chs_setupt => 150 ns
wrtypulse -width -t => 150 ns
chs-access-t => 50 ns)

port map( ADDRLINES_1, CH_1, RW-EN_1, R,_in-real, Ri_real);

Ri-i:RAM_256 generic map( read cycle_t => 300 ns,
writecycle-t => 300 ns,
data-setupt => 150 ns,
cbs-setupt => 150 ns,
wrtpulse -width -t => 150 ns,
cbs-access-t => 50 ns)

port map( ADDRLINES_1, CHi1, RW _EN_1, R-inimg,
Ri_img )

W-r:RAM-256 generic map( read cycle-t => 300 ns
write -cycle t => 300 ns ,
data-setupt => 150 ns ,
chs-setupt => 150 ns,
wrt-pulse -width -t => 150 ns,
cbs-access-t => 50 ns)

port map( ADDR_-LINES_-W, CHW, RW._ENW, exW-real,
W-real );

W-i:RAM 256 generic map( read-cycle-t => 300 ns
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write cy, e t => 300 ns,
data-set. _t => 150 ns ,
chs-setupt => 150 ns,
wrt-pulse -width t => 150 ns,
chs-access-t => 50 ns)

port map( ADDRLINES_W, CH-W, RW _ENW, exW-img,
W_img )

end simple;
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APPENDIX I: THE ACCESSORY FILES

A. THE SOURCE FILE ASSOCIATED WITH DATA READ

library fpu;
use STD.TEXTIO.all;
package READIFILE is

type REALMATRIX is array( integer range <> ) of real ;

procedure readreal(Fname:in STRING ;
dataarray:out REALMATRIX);

end READ1FILE ;

library fpu;
use STD.TEXTIO.all;
package body READIFILE is

procedure readreal(F_name:in string; data_array: out

REALMATRIX) is

--- this procedure is design for input real data

file F: text is in Fname;
variable temp: LINE;

- variable tempdata:real;
variable L flag: BOOLEAN := true;

variable count : INTEGER := 1;
begin

-- extract the real dataarray from data file.
while ( not endfile(F)) loop

readline(F, temp) ;
read(temptempdata);
data_array(count):= tempdata ;

count := count + 1;
end loop;

end read-real;

end READ1 FILE;
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library fpu;
use STD.TEXTIO.all,fpu.refer.all;
package READ FILE is

function bittype ( char : CHARACTER )
return BIT ;

procedure readdata(Fname:in STRING ; dataarray:out
BITMATRIX);
end READFILE ;

library fpu;
use STD.TEXTIO.all,fpu.refer.all;
package body READFILE is

function bittype( char : CHARACTER)
return BIT is

variable b: BIT ;
begin

if ( char = '1') then
b := '1';

elsif ( char = '0') then
b := '0';

end if
return b;

end bit-type ;

procedure read data(F name:in string;
dataarray:out BITMATRIX) is

--- this procedure is design for input data length 32 bits

file F: text is in F name;
variable temp: LINE;
variable tempchar:CHARACTER;
variable IO-temp: BITARRAY(1 to 32);
variable L flag: BOOLEAN := true;

variable count : INTEGER := 1;
variable i :integer := 2;

begin

cut out the unwanted space or portion.
while not endfile(F) loop

L_flag :-' true ;
i := 2

readline(Ftemp);
while L flag loop

read(temptempchar);
if(temp-char = 'I' or temp-char = '0') then
L_flag := false ;

end if;
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end loop

-- extract the bits array from data file.
10_temp(l) := BIT TYPE(temp char) ;

while (i <= 32) loop
read(temptempchar);

if( temp-char = '1' or temp-char = '0')
then
10_temp(i) := BIT TYPE(tempchar) ;

elsif( endfile(F) ) then
assert not (tempchar /= 'I' and tempchar /= '0')
report " reach down to the end of data file. ";

end if
i := i + 1;

end loop;

dataarray(count):= IOtemp ;
count := count + 1 ;

end loop;
end read-data;

end READFILE;

B. THE SOURCE FILE OF THE CONVERSION BETWEEN FPNUMBER AND
IEEE FORMAT

library fpu ;
use fpu.refer.all;
package CONVERT is

function CONVERT1( value : REAL )
return BITARRAY ;

end CONVERT ;

package body CONVERT is

--- convert fpnumber into IEEE standard format
- -procession = 32

function CONVERT1( value : REAL )
return BITARRAY is
variable result : BIT ARRAY( 31 downto 0 )

:= "OO000000000000000000000000000000" ;
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variable mantissa bits : BITARRAY( 22 downto 0 ) ;
variable exp_bits : BITARRAY( 7 downto 0 ) ;
variable sign : BIT ;
variable quot : INTEGER := 0 ;
variable local : REAL := 0.0 ;
begin

if( value > 0.0) then
sign := '0' ;

elsif( value < 0.0) then
sign := 'I' ;

elsif( value = 0.0 ) then
return result ;

end if ;

local := abs(value) ;

while (local >= 2.0) or ( local < 1.0) loop
if ( local >= 2.0 ) then

local := local * 0.5 ;
quot := quot + 1 ;

elsif( local < 1.0 ) then
local := local * 2.0 ;
quot := quot - 1

end if
end loop ;

mantissa bits
FPTO_BITSARRAY( (local-l.0),mantissabits'length);

expbits :=
INTTOBITSARRAY( (quot+127), expbits'length)

result := sign & expbits & mantissabits ;

return result ;

end CONVERT1 ;

end CONVERT ;
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