“Lalhoun

Institutional Archive of the Naval Pastgraduate School

Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1990-12

Discrete cosine transform implementation in VHDL

Hu, Ta-Hsiang.

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/27602

‘: D U DLEY Calhoun is a project of the Dudley Knox Library at MPS, furthering the precepts and
ﬂ‘“ goals of open government and government transparency. All information contained

KN D}(herein has been approved for release by the NP5 Public Affairs Officer.
LIBRARY

Dudley Knox Library / MNaval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

hitp://www.nps.edu/library

NAVAL POSTGRADUATE SCHOOL @

Monterey, California

AD-A245 791
LT

DISCRETE COSINE TRANSFORM IMPLEMENTATION
IN VHDL
by
Ta-Hsiang Hu
December 1990
Thesis Advisor: Chin-Hwa Lee
Thesis Co-Advisor: Chyan Yang

Approved for public release; distribution is unlimited.

92-0329
il '!N'I’!flflti'lfill'

Unclassified

Sccunty Classification of this page

REPORT DOCUMENTATION PAGE

la Report Security Classification Unclassified 1b Restrictive Markings
2a Security Classification Authority 3 Distribution Availability of Report
2b Declassification/Downgrading Schedule Approved for public release; distribution is unlimited.
4 Performing Organization Report Number(s) 5__Monitoring Organization Report Number(s)
6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization
Naval Postgraduate School 62 Naval Postgraduate School
6¢ Address (city, state, and ZIP code) 7b Address (city, state, and ZIP code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a Namc of Funding/Sponsoring Organization | 8b Office Symbol 9 Procurement Instrument Identification Number

(If Applicable)
8¢ Address (ciry, state, and ZIP code) 10 Source of Funding Numbers

Program Element Number | Project No | Task No | Work Unit Accession No

11 Title (Include Security Classification) DISCRETE COSINE TRANSFORM IMPLEMENTATION IN VHDL
12 Personal Author(s) Ta-Hsiang Hu
13a Type of Report 13b Time Covered 14 Date of Report (year, month,day) 15 Page Count
Master's Thesis From To December 1990 166

16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the officia’
policy or position of the Department of Defense or the U.S. Government.

17 Cosati Codes 18 Subject Terms (continue on reverse if necessary and identify by block number)

Fieid | Group Subgroup FFT SYSTEM, DCT SYSTEM IMPLEMENTATION

19 Absuacl (continue on reverse if necessary and identify by block number

Several different hardware structures for Fast Fourier Transform(FFT) are discussed in this thesis. VHDL
was used in providing a simulation. Various costs and performance comparisons of different FFT structures are
revealed. The FFT system leads to a design of Discrete Cosine Transform(DCT). VHDL allows the hierarchical
description of a system in structural and behavioral description. In the structural description, a component is
described in terms of an interconnection of more primitive components. However, in the behavioral description, a
component is described by defining its input/output response in terms of a procedure. In this thesis, the lowest
hierarchy level is'chip-level. In modeling of the floating point unit AMD29325 behavior, several basic functions
or procedures are involved. A number of AMD29325 chips were used in the different structures of the FFT
butterfly. The full pipline structure of the FFT butterfly, controller, and address sequence generator are simulated
in VHDL. Finally, two methods of implementation of the DCT system are discussed.

20 Distribution/Availability of Abstract 21 Abstract Security Classification
@ unclassified/unlimited D same as repon D DTIC users Unclassified
224 Name of Responsible Individual 22b Telephone (Include Area code) 22c¢ Office Symbol
Chin-Hwa Lee (408) 655-0242 EC/Le
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted security classification of this puge

All other editions are obsolete Unclassified

Approved for public release; distribution is unlimited.

Discrete Cosine Transform Implementation In VHDL

by

Ta-Hsiang Hu
Captain, Republic of China Army
B.S., Chung-Cheng Institute Of Technology, 1984

Submitted in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE IN ELECTRICAL
ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1990

Autho}:

TafHsiang Hu

Approved by:

an
Michael A. lorgan, !airman

Department of Electrical and Computer Engineering

ABSTRACT

Several different hardware structures for Fast Fourier
Transform(FFT) are discussed in this thesis. VHDL was used in
providing a simulation. Various costs and performance
comparisons of different FFT structures are revealed. The FFT
system leads to a design of Discrete Cosine Transform(DCT).
VHDL allows the hierarchical description of a system in
structural and behavioral description. In the structural
description, a component is described in terms of an
interconnection of more primitive components. However, in the
behavioral domain, a component is described by defining its
input/output response in terms of a procedure. In this thesis,
the lowest hierarchy level is chip-level. In modeling of the
floating point unit AMD29325 behavior, several basic functions
or pfocedures are involved. A number of AMD29325 chips were
used in the different structures of the FFT butterfly. The
full pipeline structure of the FFT butterfly, controller, and
address sequence generator are simulated in VHDL. Finally, two

methods of implementation of the DCT system are discussed.

Acoession For
NTIS GRAX%I

DTIC TA 0
Unannounced 3
Justificaticn

By
k!ig}ribu;lon/' o
Avallability Coades
TTTiAven) rndger
iii Dist Speaial

o rmand

rnnl

]

0000

TABLE OF CONTENTS

I. INTRODUCTION .+ « « v v v o o v e e e e e e e oo 1
A. VHDL HARDWARE DESCRIPTION LANGUAGE 1 .
B. OVERVIEW OF THE THESIS . « « « « & « « « « + . 2

II. FLOATING POINT UNIT .« « & & o o o o o o o o o o . 5)

A. OVERVIEW OF THE IEEE FLOATING POINT STANDARD
FORMAT s e e e e s e s e e s e e e e e e e e s 5
B. INTRODUCTION TO FLOATING POINT UNIT CHIP
AMD29325 e e e e e e e e e e e e e e e e e e 9
C. BASIC MODELING FUNCTIONS OF AMD29325 e e e e . 10
1. THE ELEMENT FUNCTIONS ASSOCIATED WITH THE
ARITHMETICAL OPERATION OF AMD29325 10

2. THE TOP FUNCTIONS ASSOCIATED WITH THE

ARITHMETICAL OPERATIONS OF AMD29325 14
a. Addition Operation Function 14
b. Subtraction Operation Function 15
c. Multiplication Operation Function . . 15 ’
d. Division Operation Function 15

3. BEHAVIORAL DESCRIPTION OF THE AMD29325 CHIP 16
III. THE DATA FLOW DESIGN OF THE FAST FOURIFR TRANSFORM 21
A. OVERVIEW OF THE FAST FOURIER TRANSFORM . e e 21

1. DECIMATION IN TIME(DIT) « . . . 21

iv

IV.

D.

2.

DECIMATION IN FREQUENCY(DIF)

COMPARISON OF SEVERAL DATA FLOW CONFIGURATIONS

OF THE FAST FOURIER TRANSFORM

STKRJCTURE 1 OF DIF BUTTERFLY
STRUCTURE 2 OF DIF BUTTERFLY e e e e e s
STRUCTURE 3 OF DIF BUTTERFLY o o e e e .
STRUCTURE 4 OF DIF BUTTERFLY
STRUCTURE 5 OF DIF BUTTERFLY

STRUCTURE 6 OF DIF BUTTERFLY

SOME VHDL BEHAVIORAL MODELS

FULL PIPELINE DIF BUTTERFLY STRUCTURE . .
CONTROLLER FOR THE BUTTERFLY STRUCTURE . .
ADDRESS SEQUENCE GENERATOR

RAM . . . ¢ & ¢ v o ¢ v o o o« o o o o s

SIMULATION OF THE DATA FLOW DESIGN OF FFT .

THE DATA FLOW DESIGN OF THE DISCRETE COSINE

TRANSFORM ¢ ¢ ¢ o 4 o o o s o o« o =« =

A. INTRODUCTION TO DISCRETE COSINE TRANSFORM(DCT)
B. THE DISCRETE COSINE TRANSFORM SYSTEM
IMPLEMENTATION e e e e e e e e e e e e e e
CONCLUSION e e e e e e e e e e e e e e e e e
A. CONCLUSION e e e e e e e 4 e e o e e s e w s
B. IMPROVEMENTS AND FUTURE RESEARCH c e e e e s

1.

TO IMPLEMENT THREE ADDITIONAL PRECISION

FORMATS TO IMPROVE THE ARITHMETIC ACCURACY.

22

24

26

32

33

40

43

46

50

50

51

52

59

60

68

68

70

76

76

77

78

2. TO ADD SEVERAL OTHER FUNCTIONS ASSOCIATED
WITH THE AMD29325 OPERATION
3. TO PERFORM THE RADIX 4 FAST FOURIER TRANSFORM
IN DIT OR DIF ALGORITHMS. . . . « « .« « .+ .
4. TO IMPROVE THE ADDRESSING SEQUENCE GENERATOR
TO REDUCE FETCHING IDENTICAL WEIGHT FACTORS.
5. TO BUILD THE FAST FOURIER TRANSFORM USING
SPECIAL "COMPLEX VECTOR PROCESSOR (CVP)"
CHIP. . & ¢« ¢ o o o o o o o o o s o o o =
APPENDIX A: THE ELEMENT FUNCTIONS OF THE FPU
APPENDIX B: THE TOP FUNCTIONS AND BEHAVIOR OF THE FPU .
A. THE TOP FUNCTIONS OF THE FPU e e s e e e e e e
B. THE BEHAVIOR FUNCTIONS OF THE FPU
APPENDIX C: THE SOURCE FILE OF THE FPU CHIP AMD29325
APPENDIX D: THE SIMPLIFIED I/0 PORT OF THE FPU CHIP
AMD29325 . . . 4 v i e e e e e e e e e e e e e
APPENDIX E: THE PIPELINE STRUCTURE OF THE FFT
BUTTERFLY e e 4 e a4 e s e s e e s e e s e . s
APPENDIX F: THE ADDRESS SEQUENCE GENERATOR AND
CONTROLLER . . ¢ ¢ ¢ o o o o o o o o o o o o o =
APPENDIX G: THE BEHAVIOR OF RAM « « « + «
APPENDIX H: THE SOURCE FILE OF THE FFT SYSTEM
APPENDIX I: THE ACCESSORY FILES s e e e e e s e e
A. THE SOURCE FILE ASSOCIATED WITH DATA READ . .
B. THE SOURCE FILE OF THE CONVERSION BETWEEN
FP_NUMBER AND IEEE FORMAT e o e s s e a e e

vi

78

78

81

81

82

92

92

103

105

107

109

116

126

130

148

148

150

LIST OF REFERENCES ¢ ¢ ¢ o ¢ o o o o o o o & 152

INITIAL DISTRIBUTION LIST . . &+ ¢ « o o o o o« o o o = 153

vii

TABLE

TABLE

TABLE

TABLE

TABLE

TABLE

TABLE

TABLE

Time space
Time space
Time space
Time space
Time space
Time space
Comparison

Comparison

function and this

TABLE 5.1 The comparison of total number of arithmetic

LIST OF TABLES

diagram of
diagram of
diagram of
diagram of
diagram of

diagram of

of 6 DIF butterfly structures.

of the FFT result using the MATLAB

DIF

DIF

DIF

DIF

DIF

DIF

structure 1.
structure 2.
structure 3.
structure 4.
structure 5.

structure 6.

simulated FFT system. . .

operations needed in Radix 2 and Radix 4 . .

viii

30

35

39

42

45

48

49

65

80

LIST OF FIGURES

FIGURE 1.1 The designed tree of this thesis 4
FIGURE 2.1 The IEEE single precision floating point
format . . ¢ ¢ ¢ i e e e i e e e e e e e e e e 6
FIGURE 2.2 Format parameter for the IEEE 754 floating
point standard ¢ ¢ ¢ ¢ 4 4 e e e e e e e 7
FIGURE 2.3 AMD29325 block diagram (adapted from AMD data
book) O N
FIGURE 2.4 AMD29325 pin diagram (adapted from the AMD data
DOOK) & v v ¢ ¢ & 6 6 e s e e e e e e e e e e e e 12
FIGURE 2.5 AMD29325 operation select (adapted from AMD data
T Y). < T 13
FIGURE 2.6 The entity of a FULL ADDER 16
FIGURE 2.7 Three constructs in VHDL language (adopted from
[REF. 4]) + v v v v v v o e e e e e e e e e e e e e 1T
FIGUﬁE 2.8 AMD29325 pin description (adapted from the AMD
data book) . & ¢ ¢ i et bt i e e e e e e e e e e 18
FIGURE 3.1 Signal flow graph and the shorthand
representation of DIT butterfly 22
FIGURE 3.2 8 point FFT using DIT butterfly 23
FIGURE 3.3 Signal flow graph and shorthand representation
in DIF butterfly . . . ¢ . . ¢« ¢ ¢ v ¢ ¢« o o o o 24

FIGURE 3.4 8 point FFT using DIF butterfly 25

ix

FIGURE 3.5 8 point FFT with DIF butterfly in non-bit-
reversal algorithm ¢« « « « + . o . .
FIGURE 3.6 Two different basic butterfl.es and their
arithmetic operations . . « « « ¢ o ¢ ¢ « o « « &+
FIGURE 3.7 Butterfly implementation in pipeline
structure « ¢« ¢ ¢ ¢ e o e e e . e e e s
FIGURE 3.8 Butterfly implementation in structure 2 . .
FIGURE 3.9 Butterfly implementation in structure 3 . .
FIGURE 3.10 Butterfly implementation in structure 4
FIGURE 3.11 Butterfly implementation in structure 4 .
FIGURE 3.12 Butterfly implementation in structure 6
FIGURE 3.13 Controller flow chart and its logical symbol
FIGURE 3.14 The block diagram of address sequence
generator and controller+ .+ o . .
FIGURE 3.15 Address sequence generator flow chart
FIGURE 3.16 Timing of read cycle and write cycle
(adopted from National CMOS RAM data book)
FIGURE 3.17 The original data flow system of FFT . . .
FIGURE 3.18 The revised data flow system of FFT . . .
FIGURE 3.19 The flow chart of the universal
controller . . . ¢ i ¢ 4 e e e s e 4 e e o a4 e
FIGURE 4.1 Full pipeline structure to implement the DCT
system, the input data come from the FFT system
output. e e e e 4 s e e s s e e e« s e s e e e
FIGURE 4.2 Block diagram of the universal controller

and the FFT system.

26

27

29

34

38

41

44

47

53

55

56

61

62

66

67

73

74

FIGURE 4.3 Modified flow chart of the universal
controller . . ¢ 4« e e e o e o o s s e e o e o 75
FIGURE 5.1 Butterfly in Radix 4, top is the DIT

algorithm, bottom is the DIF algorithm. 79

xi

ACKNOWLEDGMENTS

I wish to express my thanks to my Thesis Advisor, Prof.
Chin-Hwa Lee, for his understanding, infinite patience, and
guidanca. I would like to thank my Thesis Co-Advisor, Prof.
Chyan Yang who provided a lot of help and enthusiasm when it
was greatly needed. Finally, I would like to extend deep
appreciation to my family and friends who gave their total

support throughout the entire project.

xii

I. INTRODUCTION

A. VHDL HARDWARE DESCRIPTION LANGUAGE

VHDL stands for VHSIC Hardware Description Language. "It
is a new hardware description language developed and
standardized by the U.S. Department of Defense for
documentation and specification of CAD microelectronics
design" [Ref. 1]. "The language was develoned to
address a number of recurrent problems in the design cycles,
exchange of design information, and documentation of digital
hardware. VHDL is technology independent and is not tied to a
particular simulator or logic value set. Also it does not
force a design methodology on a designer" [Ref. 2].
Many existing hardware description languages can operate at
the %ogic and gate level. Consequently, they are low-level
logic design simulators. While VHDL is perfectly suited to
this level of description, it can be extended beyond this to
higher behavioral levels. For example, it can extend from the
level of gate, register, chip, up to the desired system level.
VHDL allows hierarchy implementation in two domains,
structural and behavioral domains, by digital designers
{Ref. 3]. In the structural domain, a component is
described in terms of an interconnection of more primitive

components. However, in the behavioral domain, a component is

described by defining the input/output response in terms of a
procedure. In this thesis, the lowest hierarchy level is at
the chip-level. Modeling the behavior at the chip-level is the
first task. Then, various structures of FFT system are
designed using these primitives, i.e. chips. In order to model
these chips accurately Time-delay and hold-up-time as VHDL
generic are introduced. Different structures were studied here
to compare system performance and costs. The structural
modeling and behavioral modeling in VHDL are the main subjects
in this thesis. In other words, VHDL is the main language tool
to allow for capturing and verifying all the design details.
In this thesis, VHDL was used to model at the chip level, a
floating point unit, a Discrete Fourier Transform system, and

a Discrete Cosine Transform system.

B. OVERVIEW OF THE THESIS

This thesis is divided into five chapters. Chapter I gives
& general introduction. Several element functions, four basic
operations of the floating point unit AMD29325, and a
simplified version A29325 are created in Chapter II. Chapter
ITII includes the designs of the butterfly of a Fast Fourier
Transform(FFT) in DIF algorithm, six different kinds of data
flow configurations, VHDL RAM models, controller, address
sequence generator, and integrated models of the FFT system.
Furthermore, in Chapter IV a Discrete Cosine Transform(DCT) is

implemented based on the extension of the universal controller

of the FFT system. Finally, Chapter V gives the conclusions
and suggestions of possible futur2 research. The hierarchy of
the design units created in this thesis can be summarized in
a tree shown in Figure 1.1. The efforts start at the bottom of
the tree, and end at the top. Various nodes in the tree will

be explained in detail in the following chapters.

_ -

DCT - Syztem

FFT - System

i S

Address Sequence Generator AZ3325

FFT - Controtler

RAM

AMD2932S

Fp - Addition

Fp - Substraction Fp - Multiplication

Fp - Division

-—

Element Functions

FIGURE 1.1 The design tree of this thesis.

II. FLOATING POINT UNIT

A. OVERVIEW OF THE IEEE FLOATING POINT STANDARD FORMAT

Sometimes applications require numbers with large
numerical range that can not be stored as integers. In these
situations, there may also be a need to represent NAN(not a
number) or infinite number. Fixed point number representation
is not sufficient to support these needs. In this situation,
a floating point number is used. There are several formats for
representing floating point numbers.

Any floating point format usually includes three parts, a
sign bit, an exponential bit pattern, and a mantissa bit
pattern. Different computer systems such as CDC 7600, DEC,
VAXII, HONEYWELL 8200, IBM 3303 might use different floating
point formats. The variations occur in the number of bits
alloéated for the exponent and mantissa patterns, how rounding
is carried out, and the actions taken while underflow and
overflow occur. Therefore, there is a need for a standard
floating point format to allow the interchange of floating
point data easily.

Usually, the value of a floating point format is

(sign)Mantissa * 2°xponent (2.1)

Siorage Location (register or memery)

L25|25.24y23 T, 21 Zﬂlfgiﬂvfl', VG‘IS(NKIJ, 124100, 9 8, T, 8,5 4.2 ’21_1’c ;

| Exponent " ‘Mantissa
! i [[N VS B W S A S S S

i i1

—{c

Sign Bt Exponent Bitsl [— Hidden Bit (if used) LMamissa Bits

FIGURE 2.1 - The IEEE single precision floating point format.

In Figure 2.1 [Ref. 4], the IEEE single precision
floating point format is shown with the sign bit, exponent
bits and mantissa bits. The IEEE single precision floating
format contains 32 bits: 1 for the sign, 8 for the exponent,
and 23 for the mantissa. There is an important fact that 1 bit
is hidden in the mantissa. Consequently, the actual size of
fraction is 24. In other words, the actual number of bits of
the fraction is that of the mantissa value, from the 22th bit
down to the zero bit in Figure 2.1, added by 1. In this case

the actual value of the fraction is

1.0 < actual fraction < 2.0 (2.2)

The IEEE floating point format supports not only single

precision but also other precision formats. The other

precision formats are shown in Figure 2.2 [Ref. 5].

Single Single extended Double Double extended
p (bits of precision) 24 232 33 264
Emax 127 21023 1023 2 16383
Eqn ~126 $-1022 -1022 < -16382
Exponent bias 127 1023

FIGURE 2.2 Format parameter for the IEEE 754
floating point standard.

In the simulation programs of this thesis, only single
precision is used.

The last row in Figure 2.2 shows the concept of exponent
bias. This indicates the implied range of the exponent of
floating number is no longer strictly positive. For example,
if single precision with exponent bias of 127 is adapted, a
floating point value with exponent bits "10000001,", 129,,,
would be (129-127)2 = 22. Accordingly, if e is the value of the
exponent, f is the value of the fraction, and s is the sign of

bit, the floating point number is represented as

(_1)5 * £ * 2e-exponent_bias (2.3)

The sign bit s indicates the sign of the floating point
number. The positive number has a sign bit of 0, and, the
negative number has a sign bit of 1. In a single precision

system, the magnitude range is

0 < magnitude < 1.9999999,, * 2'¥ (2.4)

Several special <cases <can occur from arithmetic
operations. The first case is called "overflow" when the
magnitude is greater than the upper limit of the equation
(2.4). The second case is when the magnitude is less than 27'%

, i.e.

0 < magnitude < 2°1% (2.5)

and this is called "underflow". The third situation is how to
represent zero, NAN (not a number), and infinity. In the IEEE
standard format, the zero is defined as a number with the
exponent minimum value and the mantissa zero. The NAN is
defined as a number with the exponent being 255. If the single
precision is adopted, and the mantissa is not equal to zero,
overflow and underflow occurred when the result of an
arithmetic operation is beyond or below the representable
range [Ref. 6]. However, in the AMD29325 chip only the
zero format is the same as that of the IEEE standard. The NAN
in the AMD29325 is 7FA11111,,, the infinity is 7FA00000,,. In
this thesis, for reasons of convenience, if all exponent bits
are 0, irrespective of the mantissa value, this represents a
number 0,,. If all bits of a floating point number become 0,
it would be the representation of underflow. On the other
hand, if all bits except the sign bit are set to 1, it is the

representation of infinity.

B. INTRODUCTION TO FLOATING POINT UNIT CHIP AMD29325

The AMD29325 chip is a high speed floating point processor
unit. It performs 32 bits single precision floating point
addition, substraction, multiplication operations in VLSI
circuit. It can use the IEEE floating point standard format.

The DEC single precision floating point format is also

supported. It includes operations of convers:i: 1 among 32-bit
integer format, floating point format, and IEEE floating point
format and DEC floating point format. There -"re six flags
which monitor the status of operations: invalid operation,
inexact result, zero, not-a-number(NAN), overflow, and
underflow.

The AMD29325 chip has three buses in 32-bit architecture,
two input buses and one output bus. All buses are registered
with a clock enable. Input and output registers can be made
transparent independently. Figure 2.3 shows the block diagram
of the AMD29325. Its pin diagram is shown in Figure 2.4.
Selection to perform an arithmetic operation on chip AMD29325
is via the 3 pins I,, I,, and I,. All selected functions are

listed in Figure 2.5.

C. BASIC MODELING FUNCTIONS OF AMD29325
1. THE ELEMENT FUNCTIONS ASSOCIATED WITH THE ARITHMETICAL
OPERATION OF AMD29325
In order to simulate the features of AMD29325, several
basic functions had been created before modeling the behavior
of the AMD29325. In Figure 2.5, pin I,, I,, and I, can choose
eight different functions. In this thesis, only four
arithmetic operations necessary for simulation program had
been created; floating point addition, floating point
subtraction, floating point multiplication, and floating point

division. Although the division function is not used in the

10

i

PORT R PORT §
1 STATUS
e D - . FLOATING.POINT LAG
ALy GInEaATOA
SELECT "
Ano EnasLE [>—— roar*
UNES '

AECISTER STATUS FLAG

4 AECISTER

l—D INEXACT
[s14 " INVALIO
NAN
OVERFLOW
[
o UNDERFLOW
"> zeR0

FIGURE 2.3 AMD29325 block diagram (adopted form AMD data
book) .

actual simulation of the AMD29325, it still included in the
model of the AMD29325.

The following is a brief description of those element
functions associated with the modeling of AMD29325. These
element functions are listed in Appendix A.

- BITSARRAY TO_FP: to convert the mantissa bits pattern
into its corresponding floating point value.

« FP_TO_BITSARRAY: to do the inverse conversion from
floating point value into its corresponding mantissa bits
pattern.

« INT_TO_BITSARRAY: to transfer an integer value into its
corresponding bits pattern. Usually, it is used when the
exponent value is converted to its corresponding IEEE
exponent format.

11

32 32
yap LEW o [/7>
32
;t:>35%‘ INEXACT s
cLX INVALID f—»
— NAN
— ENR —
ENS OVERFLOW ——s
o ENF UNDERFLOW |———
2 ZEROf——
< FTo.FT
s
20
——— IESSDEC
— 38
——»{ ONEBUS
——»{ PROWAFF
2 t—s1 ANDQ.RND,
p——

FIGURE 2.4 AMD29325 pin diagram (adopted from the AMD
data book).

+ UNHIDDEN_BIT: to recover the hidden bit in the IEEE
standard format.

+ SHIFL_TO_R: to shift the bit pattern from left to right,
and the most significant bit is assigned as 0.

+ IS_OVERFLOW: to test the bit pattern of an input
parameter to see whether it is overflowed or not.

« IS_UNDERFLOW: to check the bit pattern of an input
parameter to see whether it is underflowed or not.

+ IS_ZERO: to test the bit pattern of an input parameter to
see whether it is a zero or not.

« IS_NAN: to check the bit pattern of an input parameter to
see whether it is a NAN expression or not.

+ BECOME_ZERO: to set the result to zero before the actual

arithmetic operation occurs. This 1is a situation of
multiplication by zero.

12

Operstion I Output Equation J
0 s} 0 Fioaung-point additon (R PLUS S) FuR+S]
0 [/ 1 Floating-point subtraction (7 MINUS S) F=R-S
[o] 1 0 Floating-point mutipiication (R TIMES S) "IF=R
0 1 1 Ficating-point constant subtraction F=2-8§
(2 MINUS S;
i .
1 0 [¢] Integer-ta-tloating-point conversion F (fioatin int) i
. - =R te
(INT-TO-FP) §rpeny nicgen
| 1 [1 Floaung-pomt-lo-imeger conversion F (integer) = R (tloating-oaint)
(FP-TO-INT)
1 1 0 IEEE-TO-DEC format conversion F (DEC tormat) = R (IEES format)
(IEZZ-TO-DEC)
}] 1] DEC-TO-IEEE tormat conversion F (IZEE tormal) = R (DeC tnrmat)
(OE"-TO-IEEE)

FIGURE 2.5 1AMD2932S operation select (adapted from %D
data book).

* BECOME_NAN: to set the result of an operation to be
infinity before the actual operation occurs. This is a
situation of division by zero.

+ SET_FLAG: to verify that the input parameter is located
in the representation range which is between the upper
limit and lower limit. Otherwise, give it some proper flag
if it is not.

* INCREMENT: to generate a bit pattern which is greater
than input bit pattern by one, For example, output bit
pattern is "000111" when the input pattern is "000110"

* DECREMENT: to do the inverse as the previous element
function.

* BACK_TO_BITARRAY: to convert a given floating point
number into the corresponding 1EEE standard bit format.

13

2. THE TOP FUNCTIONS ASSOCIATED WITH THE ARITHMETICAL
OPERATIONS OF AMD29325
Four important features of the AMD29325 are created in
this thesis. These are the addition function, subtraction
function, multiplication function, and division function. The
algorithms o: these arithmetic functions are described below.
These arithmetic functions will call those element functions
mentioned previously. A.l of the VHDL source programs of the
arithmetic functions are attached in Appendix B.
a. Addition Operation Function
Since the operands are in the IEEE standard format,
before the addition operation can occur, conversion from IEEE
standard bit pattern into a floating point value is necessary.
Immediately after the result of this ac .ition operation is
generated, conversion of the floating point value back into
the IEEE standard format will be done. In the following, the
key steps of floating point addition operation are described.
Let e; and s; be used as the exponent and mantissa value of a
floating point a,. The basic procedure for adding two floating
point number a, and a, is very straight forward and involves

four steps.

(1) if e, is less than or equal to e, , find the distance
d between e, and e,. This means d is equal to e, minus e,.
(2) shift s, by d places to t! =2 right, now it become s,'.
(3) find the sum of s, and s,'.

14

(4) determine the sign from a,, since the absolute value
of a, is greater than a,.

b. Subtraction Operation Function
Similar to the addition operation function as
mentioned above, the substraction operation function can be
performed by calling the addition operation function after the
sign of the minuend has been changed to its inverse.
c. Multiplication Operation Function
As mentioned previously, the operands are in the
IEEE standard format. Therefor, before this operation function
can occur, they are converted into floating point value. Once
the result of this multiplication operation is obtained, it is
converted back into the IEEE standard format. In the following
steps the product of two floating numbers is calculated. Let
p; and e; be the value of mantissa and exponent of a,
respectively. The method for multiplication of two floating
numbers a, and a, is similar to integer number multiplication.
(1) find the sum of e, and e,, and adjust it. If single
precision is adopted in the system, the normalized action is
the subtraction of 127 from the exponent value.
(2) find the product of and and adjust it to the

range shown in equation (2. 2) and moélfy the adjusted sum of
the exponent at the same time.

d. Division Operation Function
As mentioned previously, the conversion of the IEEE
standard format into floating point format is necessary. When
the quotient is generated, it would be converted back into the

IEEE standard format. In the following steps the floating

15

point number division operation is described. Let p; and e; be
the mantissa and exponent of a;. Assume that the dividend and
divisor are a, and a, respectively.

(1) find out the distance d between e, and e, and then

denormalize it. As previous examples, the action of

denormalizing means that the distance 4 is added to 127.

(2) find out the quotient of the division operation. Then

adjust it into the proper range in equation (2.2), and at

same time modify the quotient.

3. BEHAVIORAL DESCRIPTION OF THE AMD29325 CHIP
As shown in Figure 2.6, an entity of a full adder with

port and generic is declared. Generic provides a channel to
pass a parameter of constant timing to a component from its
environment, and port supports a signal list which is an
interface to its environment. 'In' and 'Out' are used to

indicate the direction of the signal data flow. In the VHDL

language, there are three levels of abstraction possible to

entity FULL_ADDER is
generic(del_1 : TIME := 10 ns ;
del 2 : TIME := 20 ns)

port(X, Y, Cin : in BIT ;
Sum, Cout : out BIT) ;

end entity FULL_ADDER ;

FIGURE 2.6 The entity of a FULL_ADDER.

16

Behavioral Constructs
architecture hehav:oral_view of full adder is
begin
process
variable N: integer ;
constant sum_vector : bit_vector(0 to 3):="0101";
constant carry_vector: bit_vector(0 to 3):="0011";

begin

wait on X, Y, Cin ;

N := 0 ;

if X = '1' then N := N+1; end if ;
if Y = '1' then N := N+1; end if ;

if Ccin = '1' then N := N+1 ; end if ;
Sum <= sum_vector after del_1 ;

Cout <= carry_vector after del_2 ;
end process ;
end behavioral_view;

Data Flow Constructs

architecture dataflow_view of full adder is
signal S: bit
begin

S <= X xor Y after del_1 ;

Sum <= S xor Cin after del_1 ;
Cout <= (X and Y) or (S and Cin) after del_2;
end dataflow_view;

S8tructural Constructs
architecture structure_view of full adder is
component half adder
generic(delay : time := 0 ns) ;
port (11, 12:in bit;
C, S: out bit); end component ;
component or_gate
generic(delay : time := 0 ns) ;
port(ll, 12:in bit;
0: out bit); end component ;
signal a,b,c :bit ;
begin
Ul: half_adder generic(delay => del 1);
port map(X,Y,a,b):
U2: half_adder generic(delay => del 1);
port map(b,Cin,c,Sum);
U3: or_gate generic(delay => del_2):
port map(a,c,Cout) ;
end structure_view ;

FIGURE 2.7 Three constructs in VADL language (adopted from
[Ref. 4]).

17

PIN DESCRIPTION

Rg-R3y R Operand Bus (Input)
Aq s the least-sigruiicant bt

Sg-S31 S Operand Bus (Input)
Sq is the least-signiticant bit.

Fg-F31 F Operand Bus (Qutput)
Fg 1s the least-sigrificant tit.
CLK Clock (Input)
For the internal reg:sters.
ENR Register R Clock Enadle (Input; Active LOW)

When ENA 15 LOW. register R 1s clocked on the LOW-to-
KIGH transition ot CLK. when ENA s MIGH, register R
retains the previous contents.

ENS Register 5 Clock Enabie (Input; Active LOW)
when ENJ 1s LOW, reqister S I1s clocked on the LOW-to-
MIGH transiton of CLK. When ENS is HIGH. register S
retains the previous contents.

ENF Register F Clock Enadle (Input; Active LOW)
When SivF 1s LOW, register F s clocked on the LOW-to-
HIGH transition of CLK. When ENF s HIGH, register F
retains the previous contents.

CE utput Enable (Input: Active LOW)
whnen OF is LOW, the contents of register F are piaced on
Fo-Fay. Wnen OF is HIGH, Fo-Fg3y assume a high-
imoedance state.

ONEBUS Input Bus Contiguration Control (Input)
A LOW on ONEBUS conhgures the input bus circuitry for
two-input. bus operauon. A HIGH on ONEBUS contigures
the input bus circuiry for single-input bus operaton.

FTo Input Register Feedthrough Controi (Input;
" Active HiGH)
When FTg is HIGH, registers
FT1 Output Register Feedthrough Controi (Input;
Active HIGH)
When FT, is HIGH, register F and the status flag register
are transparent.

- and S are transparent.

ig~12 Operation Select Lines {Input)
Used to select the operation to be pertormed by the ALU.
See Tabie 1 for a list of operations and the corresponding
codes.

ALU S Port Input Select (Input)
A LOW on I3 selects register S as the input to the ALU S
port. A HIGH on |3 seiects register F as the input to the ALU
S pont.

I3

Register R {nput Seiect {Input)
A LOW on i seiects Rg - R31 as the incut to register R A
HIGH selects the ALU F port as the input to register A.

IEEE/DEC IEEE/DEC Mode Select {Input)
ihen (EEE/DEC 15 HIGH, IEES modsa 1s selected. When
CtC 15 LOW, DEC moce s selectac.

$16/32 16- or 32-Bit I/0 Mode Select {Input)

A LOW on S16/32 selects ite 32-bit IO moce; a HIGH
selects the 16-cit /O mega. in 32-bit mode. input ardg
outout buses are 32 bits ~c2. In 16-bit mede, nout and
Qutput buses are 16 bits wiZe, with the l2ast- and most-
signiticant poruons of the 32-bit nput and output worcs
being placed on the buses Qurnng the HIGH and LOW
poruons of CLK, respectivery.

RNDg, RNDy Rounding Mode Seiects (Input)
RNDOg and AND, seiect one of four rgunding modes. See
Table 5 for a hist of rounaing moges and the corresponding
contro! codes.

PROJ/AFF Projective/Affine Mode Select (Input)
Choice of projective or atine mode determines the way in
which inhmties are handled in 1EEE moge A LOW on
PROJ/AFT selects affine mode; a HIGH selects projective
mode.

QVERFLOW Qvertlow Flag (Output; Active HIGH)

A HIGH indicatas that the last pperation produced a final
rgsull that overtiowed the tloatng-point format.

UNDERFLOW Underfiow flag (Output; Active HIGH)
A HIGH indicates that the iast operation produced a
rounded result that underflowed the floating-point format

2ERO Zero Filag (Output; Active HIGH)
A HIGH indicates that the last operation produced a final
result of zero.

NAN Not-a-Number Flag {Output; Active HIGH)
A HIGH indicates that the ! nal resuit prcduced by he last
operation is not to be interpreted as a numbver. The output in
such cases is either an IECE Not-a-Number (NAN) or a
DEC-reserved operand.

INVALID Invalid Operation Fiag (Output, Active
HIGH)
A HIGH indicates that the last operation pertormed was
invahd: e.g., ® tmes 0.
INEXACYT inexact Resuit Flag (Output; Active HIGH)
A HIGH incicates that the finai resuit of the {ast aperation
was not infinitely precise, due to rounding.

1a

FIGURE 2.8 AMD29325 pin description (adopted from the AMD
data book).

18

describe specific <circuits [“ef. 7]. In Figure 2.7,
examples use three different levels to depict the same full
adder as shown. The first way is the behavioral level
description, which uses a conditional branch structure in the
process. The second way is the data flow level description,
which uses the signal assignment statement to express the
relationship between input and output. The final way is the
structural 1level description which instantiates several
components to build the adder circuit. There are differences
among these three levels. Usually, there is a mixed situation
where more than one level of abstraction is used in the
simulation model. In the program attached in the Appendix, you
can find mixed constructs there.

The VHDL simulation program of the chip AMD29325 is
attached in Appendix C. In this program, there are four
arithmetic functions implemented, floating point addition,
floaéing point substraction, floating point multiplication,
and floating point division. Four flags are checked: not a
number (NAN) , zero, underflow, and overflow. In order to better
understand the usage of the chip pins, the AMD29325 pin
description is listed in Figure 2.8. Since many functions of
this chip are not required in the simulation for this thesis,
those pins are only listed in the port declaration of the
AMD29325. A simplified entity A29325 is created, which is
attached in the Appendix D. Generally speaking, only those

pins of input and output signals, operation functions, clock,

19

and chip enable necessary for simulation are included in the
port declaration of the AMD29325.

When the model 1is called by the other top level
environment, the two input signal buses must be driven and the
chip enable signal must be active low. When the clock comes
with the positive rising edge, the floating point unit is
triggered to execute the selected operation function. Data on
the output bus will change after a constant time delay. Since
the constant time delay is the VHDL inertial delay, the
desired output data will be preempted and not shown on the
data bus, this is the situation when the period of the clock
is less than the constant delay of the selected operation.
When the floating point unit AMD29325 is employed in a system
design, it is necessary to be sure that the period of the
clock 1is greater than the constant delay of the chip.
Otherwise, undesired output data signals may appear on the
output data bus.

All element functions, arithmetic functions, and the total
behavior of the AMD29325 have been introduced in this chapter.
In the next chapter, the subject will focus on the system

configuration.

20

III. THE DATA FLOW DESIGN OF THE FAST FOURIER TRANSFORM

A. OVERVIEW OF THE FAST FOURIER TRANSFORM

The Fourier Transform is usually used to change time
domain data into frequency domain data for spectral analysis.
For some problems the analysis in the frequency domain is
simpler than that in the time domain. For Discrete Fourier
Transform(DFT), the operations are performed on a sequence of
data. Assume that the total number of input data is N, which
is an integer of power of 2. For a limited sequence x(n), the

Discrete Fourier transform formula is,

N-1
X(k) =Y x(n) @-32xak/¥ for k=0 .. N-1 (3.1)

n=0

In the following a brief description of two data flow designs
of Fast Fourier Transform are presented. They are the methods
of decimation in time and decimation in frequency.

1. DECIMATION IN TIME(DIT)

In this method, it is possible to divide x(n) into two
half series. One with odd sequence number, and the other with
even sequence number. Through a well known derivation of
steps, the butterfly operation for the DIT fast fourier
transform can be represented graphically in Figure 3.1
(Ref. 8]. The complete signal flow of an 8-point FFT is shown

in Figure 3.2 [Ref. 1). Note that in this figure the input

21

C
1 1 C A
ror
wk
l.Jk
Y B D
C = A+B
D= (A-B)WX
FIGURE 3.1 signal flow graph and the shorthand

representation of DIT butterfly.

data is arranged in bit reversal order according to the needs
of decimation. This arrangement has the property that the
output will turn out to be in the natural order.

2. DECIMATION IN FREQUENCY (DIF)

Another way to decompose the calculation of the
Discrete Fourier Transform(DFT) is known as the decimation in
frequency. This idea is similar to the idea of the decimation
in time. In DIT, the time sequence was partitioned into two
subsequences having even and odd indices. An alternative is to
partition the time sequence x(n) into first and second halves.
The signal data flow of the butterfly is shown in Figure 3.3
[Ref. 1]. And the completed signal data flow of an 8-point FFT
in DIF algorithm is shown in Figure 3.4 (Ref. 1). Figure 3.4

is similar to Figure 3.2, except that bit reversal ordering

22

\
s

&
XL
0

\
y

FIGURE 3.2 8 points FFT using DIT butterfly.

occurred in the output. In both Figure 3.2 and Figure 3.4, two
data values are used as a pair inputs to a butterfly
calculation. The output can be put back into the same storage
locations that hold the initial input values because they are
no longer needed for ahy subsequent computations. As a
consequence of this characteristic, the FFT shown in Figure
3.2 and 3.3 are called in-place algorithm. Another arrangement
is to have both the input and the output data in the normal
order. Figure 3.5 shows a non-bit-reversal algorithm. Notice
that this is no longer an in-place algorithm. In this thesis,
in order to keep normal order for both the input and the

output data, the non-in-place algorithm is adopted.

8]

3

C= A+Bwk

D= A -BwkK

FIGURE 3.3 Signal flow graph and shorthand representation
in DIF butterfly.

B. COMPARISON OF SEVERAL DATA FLOW CONFIGURATIONS OF THE FAST
FOURIER TRANSFORM

The objective is to consider several data flow structures
to find an optimum implementation of the Fast Fourier
Tranéform. Figure 3.6 shows the basic butterfly structures of
both the DIT and the DIF Fast Fourier Transform. There are two
inputs, complex numbers A and B. They are combiﬁed together
with a complex weight factor, ¥¢, to form two outputs C and D.
Inspection of the formula shows that a single butterfly
calculation requires one complex addition, one complex
subtraction, and one complex multiplication. Additionally,
five complex memory access are required; three reads for A,B

and WY, and two writes for C and D. Figure 3.6 shows the total

24

%
o

5
%
%
%

| 9%
G
o

FIGURE 3.4 8 points FFT using DIF butterfly.

number of floating point operations, data read, data write,
and coefficient read required.

From the above analysis it is known that if all operations
take equal time, the throughput is limited by the memory
access requirement. In order to ease this bottleneck, two ways
were adopted. Firstly, the real and the imaginary parts of the
input complex data are accessed simultaneously. Secondly, it
is noted that the multiplications are performed between the
data and a coefficient. If the coefficients are stored in a
separate memory, they may be accessed concurrently. Several
different structures associated with a non-in-place algorithm

of the butterfly in the DIF are discussed below.

25

FIGURE 3.5 8 points FFT with DIF butterfly in non-bit-
reversal algorithm.

1. BTRUCTURE 1 OF DIF BUTTERFLY

It is known that the total number of required
arithmetic operations for real data is 10, which includes four
multiplications and six adZlitions/subtractions. In order to
reduce the execution steps, a full pipeline structure can be
adopted. In this full pipeline structure shown in Figure 3.7,
each arithmetic operation uses a processor. Therefore, for a
total number of 10 arithmetic operations, it needs 10
processors. The data flow configuration is shown in Figure
3.7. There are three layers of arithmctic processors shown.
There is one layer for data read, and one layer for data write

not shown in Figure 3.7. The time space diagram for this

26

A C A C
r or
Wk
I or
Wk D B D
C= A+Bw C = AB
D= A-Bwk D = (A-B)wk
1. Bwk = 4= 1. A+Bz=2+
1+ 4 *
! - 2. A-B=2-
> 3+ 4
2. A+BWK = 2+ 3. (A-Bywk = 4 >
3- T+
3. A-Bwk = 2 - -

4 Data Reads
4 Data Writes
2 Coeff Reads

-

FIGURE 3.6 Two different basic butterflies and their
arithmetic operations.

27

structure is listed in Table 3.1. For data sample A(n), B(n),
and W¥(n) the complete butterfly operation needs 5 time steps.
These steps are shown in shaded boxes in Table 3.1. At the Nth
time step the input ‘ata A, B, and WX are fetched. In the next
3 time steps, the output data C and D are generated. At the
time step N+4, C and D are stored back to memory. Four steps
of data flow execution can be overlapped with the execution of
the previous data. Since in this thesis single precision IEEE
floating point format (32 bits) is used, the total size of the
input data and output data buses are 192 and 128 respectively
which are shown in Figure 3.7. This structure requires input
and output buses concurrently. Therefore, time multiplexed
buses by input and output are not usable in this structure.
Because input and output buses are always busy, the bus
utility of this structure is 100% as shown in Table 3.1. Every
processor in this structure is always busy, therefore, the
average efficiency of processors is 100%. The average
efficiency of processors is defined as the percentage of
processors used in one completec cycle of the arithmetic time
space table. For example, in structure 1, since all 10

processes are busy in one row of the time space table, the

28

JI0VHI 30 31 A7)

X1 LRI LR M)
A X1

ip \h&ﬂ ITY Iy

Z
71

4y
A3

3avH) ®1)

&

jhml 1)

ET4
SNY 1nding

—

’

410 40 144

tructure.

ine s

1

in pipe

29

FIGURE 3.7 Butterfly implementation

Ai(n+1)+Bi(n+1)

R1i(n+1)

Ai(n+1)-Bi(n+1)

R1i(n)*Wi(n)

R3i(n)

R1i(n)*Wr(n)

S| O I 1st row ALU's 2nd row ALU's 3rd row
tl u n oper. for "+" oper. for "“*" ALU's
el t o) & n-n oper.
Pl p u for "+" &
u t non
t
B
B u
u s
s
B(n) Cr(n-1) = R2r(n-2) = Dr(n-3) =
C(n-4) W(n) |Ar(n-1)+Br(n-1) [Rlr(n-2)*Wr(n-2) |R2r(n-3) -
A (n) R3r(n-3)
N|D(n-4) R1r (n-1) = R2i(n-2) =
Ar (n-1) -Br(n-1) |R1lr(n-2)*Wi(n-2) [pDi(n-3) =
R2i(n-3) +
Ci(n-1) = R3r(n-2) = R3i(n-3)
Ai(n-1)+Bi(n-1) |R1i(n-2)*Wi(n-2)
R1i(n-1) = R3i(n-2) =
Ai(n-1)-Bi(n-1) [R1i(n-2)*Wr(n-2)
B(n+l){Cr(n) = R2r(n-1) = Dr(n-2) =
C(n-3) W(n+1) Ar(n)+Br(n) R1r (n-1) *Wr(n-1) |[R2r(n-2) -
A(n+1) R3r(n-2)
N|D(n=3) R1r(n) = R21i(n-1) =
+ Ar(n)-Br(n) R1r (n-1)*Wi(n-1) |[Di(n-2) =
1 R2i(n-2) +
Ci(n) = R3r(n-1) = R3i(n-2)
Ai(n)+Bi(n) R1i(n=-1)*Wi(n-1)
R1i(n) = R3i(n-1) =
Ai(n)-Bi(n) R1i(n-1) *Wr(n-1)
B(n+2) [Cr(n+l) = R2r (n) = Dr(n-1) =
C(n-2) W(n+2) |Ar (n+1)+Br(n+1) [R1r(n) *Wr(n) R2r(n-1) -
N A (n+2) ’ R3r(n-1)
+|D(n-2) Rlr (n+l) = 2i(n) =
2 Ar (n+1)-B: n+l) [R1r(n)*wWi(n) Di(n-1) =
R2i(n-1) +
Ci(n+l) = R3r(n) = R3i(n-1)

TABLE 3.1 Time space diagram of DIF structure 1.

30

W+ 2

Cr(n+2) =
Ar (n+2)+Br (n+2)

R1r (n+2) =
Ar (n+2) -Br (n+2)

lci(n+2) =
Ai(n+2)+Bi(n+2)

R1i(n+2) =
Ai(n+2)-Bi(n+2)

R2r (n+l1) =
R1r (n+1) *Wr (n+1)

R2i(n+l) =
R1r (n+1) *Wi(n+1)

R3r(n+l) =
R1i(n+1)*Wi(n+1)

R3i(n+l) =
R1i (n+1) *Wr (n+1)

Dr(n)
R2r(n) -

R3r (n)

Di(n)
R2i(n) +

R3i(n)

4 2

Cr(n+3) =
Ar (n+3)+Br(n+3)

R1r(n+3) =
Ar (n+3)-Br(n+3)

Ci(n+3) =
Ai(n+3)+Bi(n+3)

R1i(n+3) =
Ai(n+3)-Bi(n+3)

R2r (n+2) =
R1r (n+2) *Wr (n+2)

R2i(n+2) =
R1r (n+2) *Wi (n+2)

R3r(n+2) =
R1i(n+2)*Wi (n+2)

R3i(n+2) =
R1li(n+2) *Wr(n+2)

Dr(n+1)
R2r (n+1) -
R3r(n+1)

Di(n+l1l) =

R2i(n+1) +

R31i(n+1)

Cr(n+4) =
Ar (n+4)+Br(n+4)

R1r(n+4) =
Ar (n+4)-Br(n+4)

Ci(n+4) =
Ai(n+4)+Bi(n+4)

R1i(n+4) =
Al (n+4)~-Bi(n+4)

R2r(n+3) =
R1r (n+3) *Wr (n+3)

R2i(n+3) =
R1r (n+3) *Wi (n+3)

R3r(n+3) =
R1i(n+3) *Wi (n+3)

R3i(n+3) =
R1i(n+3) *Wr(n+3)

Dr(n+2)=
R2r(n+2) -
R3r (n+2)

Di(n+2) =
R2i(n+2) +
R31i(n+2)

input bus size = 192 bits; output bus size = 128 bits
of execution steps per data sample = 5
of overlapped steps in two adjacent data samples = 4

average efficiency of processors = 100 %

bus utility = 100 %
TABLE 3.1 Time space diagram of DIF structure 1(continued).

31

average efficiency of the processors in this structure is
100%.
2. STRUCTURE 2 OF DIF BUTTERFLY

For structure 1, the disadvantage is that the number
of input and output data buses is too 1large. Here, in
structure 2 the number of I/0 data lines required is reduced.
6 processors are used to implement a butterfly structure in
Figure 3.8, 2 for substraction or addition and 4 for
multiplication. Due to the time multiplexing, the sizes of the
input and output buses are decreased to 128. An overlap time
space diagram is listed in Table 3.2. In Figure 3.8, R2i, R3i,
R2r and R3r are fed back to the first row processors through
the selectors controlled by the selection signal S1.
Therefore, the data flow sequence controller of this structure
will be more complicated than that of structure 1. In Figure
3.8, extra registers are used to stored the previous input
data A(n). When the current data A(n+l) is read, the
processors need to get the previous input data A(n), B(n) and
W(n) for the arithmetic operations concurrently. Therefore, a
second pair of registers is used here as a buffer to save the
previous input data A. The number of time steps for a data
sample is 6, while in structure 1 only 5 were required. The
number of overlap time steps for two adjacent data samples is
3. In Table 3.2, the number of rows for one cycle of

arithmetic operation in the time space is 3, which means that

32

all of the arithmetic operations will be repeated at every 3
time steps. From step N to N+2, there are 6 times space boxes
and only 4 boxes are used by processors. The multiplication is
performed in 1 of every 3 steps. The operations for the
multiplier in the box is 4. The total number of operations in
those 6 boxes should be 18, but only 10 operations are
executed. Therefore, the average efficiency of processors is
56%.

Although the number of data bus lines is reduced, the data
bus utility, which is 83%, is decreased by 17% compared with
that of structure 1. This results from the fact that from step
N to N+2 the time space boxes associated with data buses are
6, and only 5 boxes were used to convey data. Here, it is not
allowed to use time multiplexed buses for both input and
output, because the input bus is always busy.

3. BTRUCTURE 3 OF DIF BUTTERFLY

In structure 2, the average efficiency of processors
was 56% which is lower than that of structure 1. In structure
3, the emphasis is to increase the processor operation
efficiency. There are four processors arranged to perform
different arithmetic operations at different times 1in
structure 3. The performance of this structure is better than
that of the structure 2. In Figure 3.9, more selectors than
that of structure 2 are used. The input data is fed at the

proper time to the floating point unit(FPU) by selection

33

My

s 30)

A Nl AR

N3 L XD

17 S T R N N A

L 1s]
€| M gy

I8
Hig g

L)
g I

1S pe—1ty
w e 'y

1S fe—— 18
[4% B2 SSU T

7] VT femeizy

¢ 410 40

4l

PALEATR
tlh.l
v9 A
Lo
1) 9
Lo
1) v

134

ve'
(@3x341 408 Ini1 ISNB 1ngn]

Butterfly implementation in structure 2.

FIGURE 3.8

34

signals S1 and S2. However, the method for generating the

S | Output | Input 1st row ALU's oper. 2nd row
t
e | Bus Bus for "4n g n-w Multipliers
P
N A(n) Cr(n-1)= R2r(n-1) =
Ar(n-1)+Br(n-1) Rlr(n-1)*Wr(n-1)
Ci(n-1)= R2i(n-1) =
Ai(n-1)+Bi(n-1) Rlr(n-1) *Wi(n-1)
R3r(n-1) =
Rli (n-1) *Wi(n-1)
R3i =
R1li(n-1)*Wr (n-1)
N | C(n-1) | B(n) Dr(n-1) =
+ R2r (n-1)-R3r(n-1)
1l
Di(n-1) =
R2i(n-1)+R31i(n-1)
N | D(n-1) | W(n) Rlr(n) =
+ Ar(n)-Br(n)
2
Rli(n) =
Ai(n)-Bi(n)
N A(n+1) Cr(n) = Ar(n)+Br(n) | R2r(n) =
+ Rlr(n) * Wr(n)
3 Ci(n) = Ai(n)+Bi(n)
R2i(n) =
Rlr(n) * Wi(n)
R3r(n) =
Rli(n) * Wi(n)
R3i(n) =
R1li(n) * Wr(n)
N | C(n) B(n+1) Dr(n) =
+ R2r(n) - R3r(n)
4
Di(n) =
R2i(n) + R3i(n)

TABLE 3.2 Time space diagram of DIF structure 2.

"+ 2

D(n) W(n+1)

Rlr(n+l) =
Ar(n+l) - Br(n+l)

Rli(n+1) =
Ai(n+l) - Bi(n+1l)

o+ 2

A(n+2)

Cr(n+l) =
Ar(n+1)+Br(n+1)

Ci(n+l) =
Ai(n+1)+Bi(n+1)

R2r(n+l) =
Rlr (n+1) *Wr(n+l)

R2i(n+1) =
Rlr(n+1l) *Wi (n+1)

R3r(n+l) =
R1li(n+1) *Wi (n+1)

R3i(n+l) =
R1li (n+1) *Wr(n+1)

input bus size = 64 bits

output bus size = 64 bits

of execution steps per data sample = 6

of overlap steps for two adjacent data samples = 3
average efficiency of processors = 56 %

bus utility = 83 %

TABLE 3.2 Time space diagram of DIF structure 2(continued).

36

selection signals and which functional signals F1 through F5
should be generated in this structure are important issues. In
Table 3.3, the input data samples A(n), B(n), and W(n) to be
manipulated are shadowed in this table. The functional signals
F1 through F5 are used to change the processors to the correct
arithmetic function at the right time.

The processor average efficiency of this structure is
higher than that of structure 2. It still has the same 2 empty
time space boxes as structure 2 in row N to N+2 as shown in
Table 3.3. However, the number of operations associated with
the boxes in this structure is 1. The complete cycle of
butterfly operations is 3. The number of arithmetic operations
in 3 rows should be 12, but the number of actual operations is
10. Therefore, the average of efficiency of the processors is
83%. It is higher than that of structure 2, but is still lower
than that of structure 1. As a matter of fact, the size of
data.bus lines, execution steps, and bus utility are the same
as those of structure 2. From Table 3.3 and 3.2, it is clear
that the environmental support to processors in structure 3 is
about the same as that of structure 2, except that a different
number of processors are used. Hence, although fewer
processors are used than the previous structure, it always

keep these processors busy.

37

30 0300 M3 25 0S Si ¥4 €4 24 44 ¥V .
ya 11S ‘J-
|1
18
y HS ey iy
i faﬁl;
s IB] Si1¥Y)
302 412 L] s ba
_ hlLlf EArT) LA S
19
g 5662 [.
i . n |
o | 1 1"y
TR - FAFRATR
0 A1) s .| steoz
) ? ARG nv Nm__
i | T
—lﬁ _ G _J_L 135 Ty A
. - 11 e \\mn (I3 'a
o b m_;c s2(6¢ =g ®122u1 8
7 Ino . Y ny _
L ol __ _F v
[RL] rl.'_c 'y > ! v
IT B TRRANS T
s - L1 Al 1y L g T
) _ | oseeee [3 R Y
7 e ‘ nv ’ .
« o« rNc 4y ¢« (03X31411700 3R11)SNB INANT
s [
V4 "
\Nﬂ (Y '8
L
. il Y
sng IAJIND —ukmnl _uw =y . ¢ 410 40 144
Ilh‘

tructure 3.

in s

«

implementation

Butterfly

FIGURE 3.9

38

S|Output |Input Processor |Processor |Processor |Processor
t |Bus Bus #1 # 2 #3 #4
e
P
C(n-1) |A(n) R2r(n-1)= |[R2i(n-1)= |R1lr(n-1)= |[R1li(n-1)
N Rlr(n-1)* |Rlr(n-1)* |[R1li(n-1)* |=
Wr(n-1) Wi(n-1) Wi(n-1) R1i(n-1)
*Wr(n-1)
B(n) Dr(n-1)= Di(n-)=
N R2r(n-1)- |Rli(n-1)+
+ Rlr(n-1) R2i(n-1)
1
D(n-1) [W(n) Cr(n) = Ci(n)= Rir(n)= Rli(n) =
N Ar(n) + Ai(n)+ Ar(n) - Ai(n)-
+ Br(n) Bi(n) Br(n) Bi(n)
2
C(n) A(n+l) |[R2r(n) = R2i(n) = |Rlr(n) = |Rli(n) =
N Rlr(n) * |Rlr(n)* |Rli(n)* [R1i(n)*
+ Wr(n) Wi(n) Wi(n) Wr(n)
3
B(n+1) Dr(n) = Di(n) =
N R2r(n) - Rli(n)+
+ Rlr(n) R2i(n)
4
D(n) |W(n+l) [Cr(n+l) = |Ci(n+l) = |Rlr(n+l1l)= |R1li(n+1)
N . Ar(n+1)+ Ai(n+l)+ |Ar(n+l)- |=
+ Br(n+1) Bi(n+1) Br(n+1l) Ai(n+1l)-
5 Bi(n+1)
C(n+l) (A(n+2) R2r(n+l)= |R2i(n+1l)= |Rlr(n+l)= |[R1li(n+1)
N Rlr(n+l)* |Rlr(n+1)* |[R1i(n+1)* [=
+ Wr (n+l) Wi(n+1l) Wi(n+l) Rli(n+1)*
6 Wr (n+1)
input bus size 64 bits; output bus size = 64 bits

of execution steps per data sample

= 6

of overlapped steps in two adjacent data samples = 3

average efficiency of processors =

TABLE 3.3

39

83%:

bus utility =

83%

Time space diagram of DIF structure 3.

4. BTRUCTURE 4 OF DIF BUTTERFLY

In the previous structure, not every processor is busy
all the times. If it is desired to keep the processors busy as
in structure 1, and to use fewer processors than in of
structure 1, what can be done? In structure 4. Only two
processors are used as shown in Figure 3.10. A special device
"1:4 DMUX" are used to route the output of the ALU to
different buffers. The time space diagram is shown in Table
3.4. In Table 3.4, two processors are always busy. In other
words, the average efficiency of processors is 100%, the same
as that of structure 1. 8 steps are needed for completing one
butterfly operation, and the number of overlapped steps is 3
for two adjacent data samples. The sizes of the input and
output data puses are still 64. It is noted that in this
structure the bus time space usage repeats every 5 time steps.
There is only about 50% usages from step N+3 to step N+7. This
situation can be improved using the time multiplexed bus for
input and output to achieve a higher bus utility. In this
situation, the controller and addre§§ sequence generator for
this structure would be more complicated than that of the

former structures.

40

) A

_ _ vS €5
) h NIZIVIND)
4 1 —-
—~7$ hl _ _
. . XORQ
el . ,LQN.T
- A% =<_
g 2—
H

-

-
L=
|

tructure 4.

in s

ion

lementat
41

imp

10 Ii T H ?J A—’l_[
]
_ [l xno crter |
- — 0 VI oo 5 73 T S S S S U IV VA AR S
. TV - _ | e |||||l~.‘
——— e L — o
AR iof — *9
L | (
e L. S .
“a i \4_:_ '9
©oh- {G3x3d1 3 Inll)SNQ Ingul

]

||
RN TI I\iwﬂufﬁ voJ H g J40 144

Butterfly

FIGURE 3.10

Output | Input Processor #1 Processor #2
Step Bus Bus
N A(n) R3r(n-1)= R3i(n-1) =

Rli(n-1)* R1li(n-1)*Wr(n-1)
Wi(n-1)

N+1 B(n) Dr(n-1)= Di(n-1) =
R2r(n~1)- R21i(n-1)+R3i(n-1)
R3r(n-1)

N+2 | D(n-1) Cr(n)= Ci(n) =
Ar(n)+Br(n) Ai(n)+Bi(n)

N+3 | C(n) W(n) Rlr(n)= Rli(n) =
Ar (n)-Br(n) Ai(n)-Bi(n)

N+4 R2r(n)= R2i(n)=
Rlr(n) *Wr{n) Rlr(n)*Wi(n)

N+5 A(n+l) | R3r(n)= R3i(n)=
R1i(n) *Wi(n) R1i(n) *Wr(n)

N+6 B(n+1) Dr(n)= Di(n)=
R2r (n)=-R3r(n) R2i(n)+R3i(n)

N+7 | D(n) Cr(n+l)= Ci(n+l)=
Ar(n+1)+Br(n+l1) | 2i(n+1)+Bi(n+1)

N+8 | C(n+1l) | W(n+l) [Rlr(n+l)= Rli(n+1l)=
Ar(n+1)-Br(n+1) | Ai(n+1)-Bi(n+1)

inpuf bus size = 64 bits

output bus size =

64 bits

of execution steps per data sample =

of overlapped steps in two adjacent data samples = 3

average efficiency of processors =

bus utility = 100 %

Table 3.4

42

100 %

Time space diagram of DIF structure 4.

S. STRUCTURE 5 OF DIF BUTTERFLY

If only a single processor is allowed in the butterfly
structure, what would happen? In the following, the emphasis
is on using a single processor in the butterfly structure. In
DIF Figure 3.5 the total number of arithmetic operation is 10,
4 for multiplication, 6 for additions or subtractions.
Additionally, the input data must be fetched and the output
data must be stored. An alternative configuration is shown in
Figure 3.11 where input data is selected for the FPU, and the
output data from FPU is stored to registers selected by the
control signals S1 thruogh S6. The selection signals depend on
activities shadowed in Table 3.5. In Table 3.5, the total
number of steps needed for one butterfly cycle is 13. From
step N to step N+12, it still needs a data size of 64 in both
input and output buses. However, it is true that the bus
utility of 25% is lower than any of the previous structures.
The gus activities cycles every 10 steps. From step N+4 to
N+13, the total number of time step boxes is 20, but only 5
boxes are used. In order to increase the bus utility, it is
necessary to use a time multiplexed bus. One of the
disadvantages in this structure is that the real part and the
imaginary part of the data can not be manipulated in a single
processor simultaneously. Therefore, the imaginary part of the
input data must wait until the real part manipulation has been

completed.

43

N) 302 30 95 SS ¢S €S IS 45 I 13 X121V 1
302 %12
: £5251S
Jﬁ*,:
ey 1y
: ity
. n
.1\\.*; 95 G5 ¢S L T
s
uol— (A% 7 1g 1
. _ _ _ ™
* 1 ‘D 1 zmt LI%12 'g
1o ~ _ ~ ‘8
. 4
TS :i 7t] [.
. xnna & §I(6e
gl E&TS Ny
f-— 124
1 ft—— 2 Y
~_{m . e— iy
T R e "1
:L REANE) iy
o p— 1y
T (i ey
£ .;
1oy ~
Sty (041016 enE S 41¢ 40

XU

144

9

o218 (03x311 0 INELISNO 1Ddn

Butterfly implementation in structure 5.

FIGURE 3.11

44

Step | output bus input bus processor

N A{(n) Dr(n-1)= R2r(n-1)-R3r(n-1)

N+1 B(n) Di(n-1)= R2i(n-1)+R3i(n-1)

N+2 Cr(n)= Ar(n)+Br(n)

N+3 Ci(n)= Ai(n)+Bi(n)

N+4 C(n) Rlr(n)= Ar(n)-Br(n)

N+5 W(n) Rli(n)= Ai(n)-Bi(n)

N+6 R2r(n)= R1lr(n)*Wr(n)

N+7 R3r(n)= Rli(n)*Wi(n)

N+8 R2i(n)= R1lr(n)*Wi(n)

N+9 R3i(n)= R1li(n)*Wr(n)
N+10 A(n+1) Dr(n)= R2r(n)-R3r(n)
N+11 B(n+1) Di(n)= R2i(n)+R3i(n)
N+12 D(n) Cr(n+l)= Ar(n+l)+Br(n+l)
N+13 Ci(n+1l)= Ai(n+1)+Bi(n+1)
N+14 C. n+l1) Rlr(n+l)= Ar(n+l)-Br(n+l)
N+15 W(n+l) | R1li(n+1)= Ai(n+1)~-Bi(n+1)
N+16 R2r (n+1)= R1r(n+1) *Wr (n+1)
N+17 R3r(n+l)= Rli(n+1)*Wi(n+1l)
N+18 R2i(n+1)= R1r(n+1)*Wi(n+1)
N+19 R3i(n+1)= R1li(n+1)*Wr(n+1)
N+20 A(n+2) Dr(n+l)= R2r(n+l)-R3r(n+l)
N+21 B(n+2) | Di(n+1)= R2i(n+1)+R3i(n+1)
input bus size = 64 bits; output bus size = 64 bits

of execution steps per data sample = 13
of overlapped steps in two adjacent data samples = 3

average efficiency of processors = 100%; bus utility = 25%

TABLE 3.5 Time space diagram of DIF structure 5.

45

6. STRUCTURE 6 OF DIF BUTTERFLY

This structure is a modified version of structure 5
shown in Figure 3.12. The time space diagram is shown in Table
3.6. The bus utility calculation is similar to the previous
approach, with only 9 boxes used for every 20 boxes of
input/output data. The bus utility is 45% in this structure,
which is higher than the previous one. In Table 3.6, it is
obvious that the size of the input and output buses are
decreased to 32 respectively. The bus utility of this
structure is still much lower than that of the structure 1,
which was 100%. The bus utility of structure 2 and 3 were 83%.
Increase of the buses utility by time multiplexing is achieved
at the expense of more complicated controller and address
sequence dgenerator. The controller must know whether the
current data on bus is input data or output data.

All 6 structures have been introduced, and the
comparison is listed in Table 3.7. In this thesis, only the
address sequence generator and controller of structure 1 are
implemented. In the following section, a design of a
controller and addressing sequencer of structure 1 will be

presented.

46

:_ Jo 303 LS 9§ SS 1S €S IS
(s Juaxd
n [
w |
Fear
,Jim] __._.,l_ /]
1A LU AT R N
by 9565 1S
i |1
[D EFRVETE
“th.n!;m. . —I._ _ _
. xnno b o sic6L
_ #] ' 7 ny
-7 I X4
4 —‘—
Snu 1ndiny A

Q_N_f_m

— 1y

— iy

14

18 .
19 A
1y 3

10

—.: s
: 12y
e— 27y
— 51y
ws [T .._.u
18 v.z
—
-—

9 410 30 144

Butterfly implementation in structure 6.

FIGURE 3.12

47

Step Output Bus | Input Bus processor
N Ar(n) Dr(n-1)= R2r(n-1)-R3r(n-1)
N+1 Br(n) | Di(n-1)= R2i(n-1)+R3i(n-1)
N+2 Ai(n) | Cr(n-1)= Ar(n-1)+Br(n-1)
N+3 Cr(n) Bi(n) | Rlr(n-1)= Ar(n-1)-Br(n-1)
N+4 Ci(n)= Ai(n)+Bi(n)
N+5 Ci(n) Wr(n) | Rli(n)= Ai(n)-Bi(n)
N+6 Wi(n) | R2r(n)= Rlr(n)*Wr(n)
N+7 R3r(n)= R1li(n)*Wi(n)
N+8 R2i(n)= Rli(n)*Wr(n)
N+9 R3i(n)= R1lr(n)*Wi(n)
N+10 Ar(n+1l) Dr(n)= R2r(n)-R3r(n)
N+11 Dr(n) Br(n+1) { Di(n)= R2i(n)+R3i(n)
N+12 Di(n) Cr(n+l)= Ar(n+1)+Br(n+1)
N+13 Cr(n+1l) Ai(n+1) Rlr(n+l)= Ar(n+l)-Br(n+1l)
N+14 Bi(n+1) | Ci{n+1)= Ai(n+1)+Bi(n+1)
N+15 Ci (n+1) Wr(n+l) {Rli(n+l)= Ai(n+1)-Bi(n+1)
N+16 Wi(n+1l) | R2r(n+l)= Rlr(n+l) *Wr(n+1)
N+17 R3r(n+l)= R1li(n+1)*Wi(n+1)
N+18 R2i(n+1)= R1li(n+l)*Wr(n+1l)
N+19 R3i(n+1)= R1r(n+1)*Wi(n+1)
=N+2° Ar(n+2) Dr(n+1;:;32r(n+1)-R3r(n-1)
input bus size = 32 bits; output bus size = 32 bit;

of execution steps per data sample = 13
of overlapped steps in two adjacent data samples = 3
average efficiency of processors = 100%; bus utility = 45%

TABLE 3.6 Overlap time space diagram of DIF structure 6.

48

DIF 1 | DIF 2 DIF 3 DIF 4 DIF 5 DIF 6
of FPU 10 6 4 2 1 1
chips (AMD29325)
needed
data bus size 320 128 128 128 128 64
(bits)
of executed 5 6 6 8 13 13
steps
average efficiency | 100% 56% 83% 100% 100% 100%
of overlap steps | 4 3 3 3 3 3
bus utility 100% 83% 83% 50% 25% 45%
total # of 516 1539 15390 26530 51230 51240
executed steps for | *10 %10
1024 real data =5160 | =15390

points

TABLE 3.7

49

Comparison of 6 DIF butterfly structures

C. S8OME VHDL BEHAVIORAL MODELS

The objective of this section is to describe a VHDL
modeling effort to verify an FFT system design and show the
benefit of VHDL simulation at the data flow level. Only
structure 1 mentioned previously is used.

1. FULL PIPELINE DIF BUTTERFLY STRUCTURE

The structure 1 mentioned in the previous section is
a full pipeline structure. Figure 3.7 shows 10 processors and
several internal registers holding previous partial results.
There are some other registers used to hold weight
coefficients and output data produced by this butterfly
structure. There are no multiplexed buses for input and output
data.

In order to reduce the response time of this butterfly
structure, two different triggers are employed. Floating point
procéssors are positive edge triggered. The registers are
negative edge triggered. In this way, only three and a half
clock periods are needed to complete one butterfly operation.
Otherwise, it would require 7 clock periods if either positive
or negative edge is employed alone. To avoid undesirable
signal data entering into this butterfly structure, and
undesirable output data generated out of it, enable signals,
IE, OE, and ENABLE are needed. In this structure butterfly,
the signal IE is used for input register enable, the signal OE

for output register enable, and the signal ENABLE for

50

processor enable. How to generate those enable signals IE, OE,
and ENABLE with appropriate timing is discussed in the
following VHDL model.
2. CONTROLLER FOR THE BUTTERFLY 8TRUCTURE

This controller is designed to produce not only the
enable signal for the butterfly but also requests for input to
FFT butterfly and output to be stored. Figure 3.13 shows the
flow chart of the controller and its logical symbol. The
controller communicate with its environment via seven signals,
2 for input and 5 for output. IN R is an output signal used
for input data request. OUT_A is an output signal used to show
output data available on the output bus. IN_E is an input
signal showing that the input data fetched has been completed.
OUT_E is an input signal showing that the output data has been
stored. Both signals IN_R and OUT_A are generated by the
controller, while signal IN_E and OUT_E are produced by the
addr;ss sequence generator. Signals IE, OE, and ENABLE, which
were mentioned in previous section, are generated by this
controller which was needed to manipulate the butterfly
structure. CNT is an internal counter in this controller. In
this thesis, the action of "set a signal" means that a signal
is set 1, while "clear a signal™ means that a signal is set to
0. The flow chart shows the activities as below:

+ Initially, it is triggered by IN_E and OUT_E generated by
the address sequence generator.

51

- It will initiate IE and ENABLE to activate the butterfly.
It also sets IN_R, clears OUT_A, and asks for data fed
from RAM into butterfly.

+ At the proper time, the output of the butterfly would be
available by setting OE. When data becomes available at
the output, this controller ask its environment to store
the output data by setting OUT_A.

+ When IN_E is set meaning that the input data is fetched to
the end of the input data set, the controller would stop
input data fetching by clearing IN_R, and close the
imports of the butterfly by clearing IE.

* Finally, when OUT_E is set due to finishing the data set,
the controller would close the output port of the
butterfly immediately by clearing OE, and then clear
OUT_A.

The input data is going to be fed into the butterfly
by setting the IN_R. However, in the above description it did
not mention clearly when the output port of the butterfly
structure would be open. Table 3.1 shows that 5 steps occur
between fetching the data from RAM to producing output on the
data bus. The internal counter, CNT, is used to detect the 5th
clock period after the controller initiated the butterfly and
the first input data was fed into the butterfly. When the
number in CNT is 5, the controller would automatically set the
OUT_A to indicate that the output data on output bus is

available.

3. ADDRESS SEQUENCE GENERATOR
According to Figure 3.5, there is a need to obtain
data from memory and feed it to butterfly to achieve the

calculation of an eight point FFT. Hence, the main functions

52

cssl INCR — 1
.clezr CNT
cwrnen g & ENA

(AN -

>
m
=
r

<

.set CUTA
IN_E =1 2. increment CNT

N 3.wrnoff IE

1.s5et QUT_A

2. load Cata into Reg
3. increment CNT
4. twrnon CE

@_E=l)\'

1.clear QUT_A
2. trun of f OE & ENABLE

K]

END

\

FIGURE 3.13 Controller flow chart and its logical symbol.

53

of this generator are to produce the input and output
addresses for memory access, read/write signals, and memory
chip enable signals. In this thesis, the non-bit-reversal
algorithm is implemented. The input and output addresses
associated with the butterfly are generated according to
Figure 3.5. In Figure 3.14, these signals for data bus
addresses include ADD1, ADD2, and ADD3. Memory enable signals
contain chips enable OEl, OE2, and OE3. Memory read/write
signals R1/W1l, R2/W2, and R3/W3 are also required. Since it is
necessary to fetch input data A, B, WX concurrently, three RAM
modules are used. The signal OE3, R3/W3, ADDR3 are used to
fetch the weight coefficient WX from RAM. Signals OE2, R2/W2,
and ADDR2 and signals OEl1l, R1/W1l, and ADDR1 are used to access
memory RAM 0 and RAM 1 respectively. The connection of RAM and
butterfly is shown in Figure 3.17. ADD1, ADD2, and ADD3 are
shown with bold signal lines representing a bus.

Another function of this generator is to cooperate with
the controller. They cooperate via four signals IN_E, OUT_E,
IN_R, and OUT_A which were mentioned in the previous section.
Figure 3.15 is the flow chart of the address sequence
generator. State 5 and state 6 of Figure 3.15 occur when the
predetermined 2N value has been reached. IN is the number of
data samples of the FFT. The address sequence generator also
cooperates with the universal controller at a higher level of
hierarchy. The interface includes input signals CHE, LEN, and

ISTO, and output signals STAGE_CNT, OSTO and FFT_CMP. CHE

54

” - o =
A=l O U O O S T TNy l ;’
s K - [& 3!) s
w0 & o @z & ;L RS u 1% z
¢sro [.
q————““ ORI)
FET_CNP, CUT_A
CTA0T _CNT| N ! CCRTROLLER
———— e ——
cen ADDRISS SECUENCEIR GENIRATOR Qui_f |
e | L
1370 | 1
—_ezy
cre | ‘
———— e it
[LK

LK

FIGURE 3.14 The block diagram of address sequence generator
and controller.

represents chip enable. LEN represents the input data length.
ISTO represents a pointer signal of the initial input data in
the RAM. STAGE_CNT represents stage counter number in the FFT
algérithm. 0STO represents a pointer signal of the output data
in the RAM. FFT_CMP represents the FFT completion. Before the
beginning of the FFT data flow, the universal controller loads
N number of pairs of input data, and sets N on the signal LEN.
It uses the signal ISTO to indicate which of the two RAM, RAM
0 or RAM 1, the input data is stored. For example, in Figure
3.18 if the input data is stored in RAM 1, the signal ISTO
would be set to 1. The universal controller uses signal CHE to
start the address sequence generator. The signal STAGE_CNT

keeps a number to tell the external universal controller which

S5

G

w7
_loeg the gzta pawr N
2. clear FFTCHMP &

|
hd

Cctear ROONT & W_CNT
2. clesr IN_E & OUT_E

1. write gutput_dats
2.generate next W_ADK
S.increment W_CNT

3.
1.

read input_cdats

2. generate next R_ADR
3. increment R_CNT

|.read input_data

2. generste next R_ADR
3. increment R_CNT

4. write output_dats

S. generate next W_ADR
6. increment W_CNT

ey

IN_E =1
&
OUT_E = |

7

ENT=2D
s. ¢t v S. vy
1.set QUT_E CZ_CNT=2N ‘ 1. set IN_E
.___(__,.)——N
:
6. \ 24 v—
1. set IN_E R_CNT=2RD—
’ 6. 24
' 1.set OUT_E
Y y y Y A Y h 4
Y

Ll. increment STAGE_Chﬂ

Y

Y 8.

N — -
v ZSTAGE_CNT = LOG(2N) +C2i—P~

‘ set FFT_CMP !

FIGURE 3.15

56

Address sequence generator flow chart.

stage of the FFT is executed currently in the butterfly. For
example, if the number of pairs of data to the FFT is 4, which
is an 8-point FFT shown in Figure 3.5, the total executable
stage is 3, which results from the log,(8). The number in the
STAGE_CNT would count from 0 to 2. As shown in Figure 3.15,
once the signal STAGE_CNT reaches 3, the signal FFT_CMP would
be set. This represents the FFT completion. The signal OSTO is
used to indicate where the output data is available from the
two RAMs.

Selection signals S1 and S2 are used to control the "3 to
1" selector, shown in Figure 3.18. There is another way for
memory access to provide data to the universal cecntroller.
Before the universal controller starts the FFT, it would store
the input data set into one of the two RAMs using those memory
access signals drawn at the bottom of Figure 3.17 and 3.18.
Those signals drawn at the bottom of Figure 3.17 and 3.18
incluﬁe the signals of memory access OCH1, OCH2, OCH3,
OR1/0W1, OR2/0W2, OR3/0W3, CADD1l, CADD2, and CADD3, selection
signal C1, C2, and output enable BE. Those signals provide a
way that the universal controller can use to fetch input data
and store the results of the FFT. For example, for a complete
8-point FFT; which are initially stored in RAM 1 shown in
Figure 3.18, the universal controller would set N to 4 on
signal LEN and use selection signals Cl. C2, and one group of
memory access signals OCH 1, CADD 1, and OR1/OWl. It will

indicate where the input data is stored by setting ISTO to 1.

57

Then it activates the address sequence generator by setting
CHE. In the execution process of the FFT, the signal STAGE_CNT
would tell the universal controller which stage of FFT is
active. Using S1 and S2 and two groups of memory access
signals, the address sequence generator selects the input data
from RAM, and stores the output data of the FFT butterfly back
to RAM. When the FFT is done, the address sequence generator
responds to the universal controller by setting signal
FFT_CMP. Signal OSTO, in this case being 0 at the end of the
FFT, would indicate where the results of the FFT are stored.
According to the pointer 0STO, the universal controller would
fetch the results of the FFT from RAM 0 via CADD2, :2/0W2,
OCH2 and BE.

In the following, the activities of the address sequence
generator can be summarized. Let R_CNT and W_CNT be the
internal counters of read and write operations. The source
program of tiie address sequence generator and the controller
are attached in Appendix E.

» First, clear FFT_CMP and STAGE_CNT. Load N with
predetermined number of pairs of data to be transformed.

« Second, clear R_CNT, W_CNT, IN_E and OUT_E.

 Third, check the status of IN_R and OUT_A generated by the
controller in the following.

1. When both IN_R and OUT_R are clear, the controller
is not ready, so the address sequence generator would
wait until IN_R is set.

2. When the IN_R is set, the controller is ready, and

the butterfly needs to be fed with data. The number
stored in R_CNT is incremented by 1.

58

3. When OUT_A is set, the controller had opened the
output port of the butterfly, and the data on the
output data bus is available. The number stored in
W_CNT is incremented by 1.

4. When both IN_R and OUT_A are set, the butterfly
needs to be fed with data, and the output data coming

from it are available on the output data bus. The
number stored in R_CNT and W_CNT are incremented by 1.

+ Fourth, check the number of R_CNT and W_CNT, if the
predetermined number is reached for each counter, the stop
signals IN_E and OUT_E would be transmitted to the
controller. For example, when the data read is complete,
the IN_E would be set.

+ Finally. Once the IN_E and OUT_E are set. The address
sequence generator would increase the STAGE_CNT and
compare it with the total stage number required. If they
are not yet the same do the next stage again. For example
if the total number of pairs of data is 4, the execution
stages should be 3. If the number in the STAGE_CNT has
counted to this execution stage number, the address
sequence dgenerator would set the signal FFT_CMP,
indicating that the FFT operation is completed.

4. RAM

Since there is memory storage required in this
structure, a random access memory model is necessary for the
VHDL simulation. In order to reduce the complexity of the
signal timing in RAM and simplify the model of the RAM, only
static RAM, having a separate input and output data bus was
implemented. The size of the RAM is 256 by 32, because input
is a 32-bit floating point number. Several parameters, for
example, date set up time and access time associated with the
read cycle and the write cycle are shown in Figure 3.16. The

RAM VHDL model is attached in Appendix F. As mention above,

59

only a few timings are concerned in this model program. If
someone needs a larger sized RAM, he can change the size of
the local variable DATA_MATRIX to increase the storage of the

RAM.

D. SIMULATION OF THE DATA FLOW DESIGN OF FFT

Right now, several VHDL models which are associated with
the data flow of the FFT system were built. In order to reduce
the total size of the FFT design, and have a faster
simulation, several elements are left out, The 2 to 1
selectors, registers, and buffers were not modeled at the chip
level. Their behavior is described in the data flow design of
the FFT for simulation.

Shown in Figure 3.17 is an original description, where 6
pairs of RAMs with 256 by 32 bits are required to read and
write data. Three 2 to 1 selectors are used to decide where
input data is to be fetched from and where output data is to
be stored. In Figure 3.17, the universal controller uses
signal Cl1 and memory access signals of RAM 1 or RAM 2 to
select data on the input bus and store it into RAM 1 or RAM 2
respectively. In this situation, each RAM module contains
three blocks of RAM for storing A, B, and coefficient wk.
Assuming that the initial input data is stored in RAM 1, the
universal controller would load the length of the input data
pairs on signal LEN. It then indicates where the input data is

by setting signal ISTO. The universal controller also uses CHE

60

READ CYCLE TIMING

tc(rd)

ADDRESS A

ADDRESS VALID

CHIP
SELECT §

CUTPUT

1]
: ' ldists)

tv(A) S
! 1

DATA Q

WRITE CYCLE TIMING

/ Xxy&k HI-2Z

-~ teCwr)

ADDRESS A

>
ADDRESS VALID XXXXX

"' -'"_th(A)

; tsu(A)

WRITE
ENABLE W

\" Luw) "/

CHIP
SELECT § Vi

!

~
]
c
~
[0
~

w

c

~~

o

F l

*-H" S W

ASANA ' ‘
AVAVEY, : '

v

INPUT H

AT

DATA D v,
Vi

QUTPUT Q
vll.

HI~2

FIGURE 3.16

Timing of read cycle and write cycle (adopted

from National CMOS RAM data book).

61

T8

Y1110U1H0D

ALbing 1)

[[“

(=]
e ey | o B 4§ W O (o))
O S T T
3 (s} [¥]
o g 7 o N
= £
2 - — |
! !
- — _—

.

R N 1)

e e =

v TTTTe Tt - a ST ..ﬂ‘
s (8
IR £ -
[S)
o, %
T T Y
N e
N1 g
VN

3100} yoivyinis 19NIM0IS S Iuqa

v —

N
%

—— e -

ML Y]

———

~mﬂ1~9 0150

i

'S o 1)

L.
‘gl

1t

iy

gt

—— -

sng vynp

MALTA JOT LInDdiDd L 41-d

1 data flow system of FFT.

igina

The or

FIGURE 3.17

62

to trigger the address sequence generator. The address
sequence generator would generate access signals OEl, R1/W1,
and ADD1 to fetch the first input data to the FFT butterfly
after the controller has been initiated by the signal IN_E and
OUT_A. Since the universal controller stores the input data in
RAM 1, it will store output data from the butterfly of the
first stage to RAM 2 via the selector enable S1. As shown in
Figure 3.5, the output data of the first stage would then be
of the input data of the second stage. The output data of the
second stage FFT would again be stored back to RAM 1, and so
on and so forth. If the input data number is 8, as shown in
Figure 3.5, the total number of execution stages is 3. In the
manipulation of the data flow, the signal STAGE_CNT always
reveals to the universal controller which stage is being
executed. At the end of the FFT operation, the address
sequence generator would indicate to the universal controller
aboué where the final output data is stored via the pointer
signal OSTO. The completion flag is then set on the signal
FFT_CMP.

Since the original FFT design in Figure 3.17 is too large
to be accommodated in the VAX VMS 4.5 operating system, the
revised version of the design is created in Figure 3.18. In
Figure 3.18, all the data flow operations are similar to what
was mentioned earlier with the exception of the number of
selectors, RAM size, and internal data buses used are reduced.

The size of the internal bus lines was reduced from 128 to 64.

63

In Figure 3.18, the output data bus of the FFT butterfly
contains C and D outputs. It is split into two separable data
buses of size 64 and multiplexed into RAM. The two registers
A and B shown in Figure 3.17 are triggered at different edges
of the clock, because the output data of RAM with size 64 can
not convey two complex numbers, which requires a size of 128.
The complex data, therefore, needs to be multiplexed onto the
two registers. This design was successfully simulated on the
VMS 4.5 operating system. In Table 3.8, a successful example
of the simulation result of the revised FFT system is shown.
The flow chart of the universal controller is shown in Figure
3.19.

In this chapter the data flow models of a FFT system was
discussed. This is a full pipeline structure that requires
several VHDL mocdels. In the next chapter, using of the created

FFT system for a Discrete Cosine Transform is discussed.

64

input data have 8 complex number

-2.0 - 1.0 , 2.0 + 1.0
-3.0 + 2.0, 1.0 - 2.0j
4.0 - 2.0, 1.0 - 5.0
3.0 - 2.0, 3.0+ 1.0j
output data using MATLAB function
9.0 - 8.0j
2.2426407 + 14.0710678j
- 1.0 - 2.0j
-10.0 - 10.6568542]
- 5.0 + 2.0j
-6.2426407 - 0.07106783
5.0 - 4.0j
-10.0 + 0.65685427

output data using simulated program

9.0 - 8.03
2.2426407 + 14.07106777
-1.0 - 2.03
-10.0 - 10.6568542j
-5.0 + 2.03
-6.2426407 - 0.0710602j
5.0 - 4.0j
-10.0 + 0.65685323

TABLE 3.8 Comparison of the FFT result of using the MATLAB
function and this simulated FFT systenm.

65

. >
DT I O PO A I A AR I
s ¥) v N m '3 [S] ! ¥1)
2 : A1) [P PR '
—.. k o o
- -
U D, - DI}
il
Wi
[N 2 {B11I YI1IHINGIS SS Ay fmm e e
R RIHRLID N v I . 3 [T I ML Y Y
- — - -
. ANY” 1
w — — r (e e 0180
_———— .4) v N . A
M Y o w ti O L .m W
w 1= PN B ue <
" - (¥}
(h]
"
t4
(] ia)
" Ay o
") 0oy n
b VT B Y
o AVng 11y " o VA BV
ST Lo® @ x 2 | e
A yak a6 5N w
vl o XN
0 o 29 g
I)
_- il'\.— _ /] =<ﬁt e
) ya
Y _ @ vy AR
"
- w -.\\u
2 e 19
y W o 2 "
Ge b ooon A N w
i R N -
R |
I - i\:_ _ 49
. I voavy = 15 e
vy l_ 9 (Y L
o 43 \
i '9
ﬂ_.; 3—3‘4

ML A Jdol 1T1NOMED

[X

ERRC

66

FIGURE 3.18 The revised data flow system of FFT.

LOAD input data &
weight factor for
doing the FrT

T
[NITIATE those signels to
gclive the FFT system

=

?’

N

M

Y
k4

FETCH output dsts

ol

EMD

FIGURE 3.19 The flow chart of the universal controller.

67

Iv. THE DATA FLOW DESIGN OF THF DISCRETE COSINE TRANSFORM

A. INTRODUCTION TO DISCRETE COSINE TRANSFORM(DCT)

In the previous chapter, the Fast Fourier Transform
implementation was discussed. In this chapter, the discussion
is focused on the DCT using the system designed for FFT.
Applications of the DCT include image data compression,
coding, and storage.

Before the structure of DCT system is designed, it is
necessary to know the difference between the formula of
Discrete Cosine Transform, and the formula of Fast Fourier
Transform. The one-dimensional DCT for a limited sequence

{u(n), 0<=n<=N-1)} is define as

N-1

V(K) = a(K)E u(n)cos(x (2n+1) k/2N)) (4.1)
n=0

«a(0) = /yI/N for K =0 (4.2)

a(K) = y2/N for K=1...N-1 (4,3)

From the equation (4.1), the relationship between DCT and

FFT is derived as,

63

V(K) = Rel a(K)e I2rk/2Nypy(K)] (4.4)

N-1
U(K) = Y u(n)e-JZ=kn/¥ (4.5)

n=0

The total number of input sequence N must be an integer
number of power of 2 [Ref. 9]. From the equation (4.4)
conversion of the FFT to the DCT can be done in 3 steps, a
complex multiplication, a scale multiplication, and taking the
real part of the data. This requires two real multiplication,
one addition, and one scale multiplication when floating point
operations are counted.

The scale factor a(K) and the FFT weight factor W2 can be

merged, which can be written as

HX2 (k) = o (K) W2 (4.6)

In this way, it 1is possible to reduce the number of
multiplications from 2 to 2. Prior to calculating the DCT, the
data from the FFT calculation and scale weight factor H¥?(K)
must be stored in RAM. Then, two real data multiplications and

one addition will yield the result.

69

B. THE DISCRETE COSINE TRANSFORM S8YSTEM IMPLEMENTATION

Two methods to implement a DCT system are discussed here.
One is to use the full pipeline structure, the other is to
modify the universal controller of the FFT system discussed in
the previous chapter.

In Figure 4.1, a full pipeline structure uses 3 additional
processors, 2 for multiplication and 1 for addition. In other
words, once the output data from the FFT system is stored in
memory, additional circuitry is used to perform two
multiplications and one addition to obtain the Discrete Cosine
Transform. In addition, this requires the memory address
sequence generator to access data stored in RAM.

Figure 4.2 shows the block diagram of the FFT and the
external universal controller. The interface signals include
three groups signals. The first group of signals shown at the
bottom of the Figure 3.18, Cl, C2, OR1/0Wl, OR2/0W2, OR3/OW3,
OCH1, OCH2, OCH3, CADD1l, CADD2, CADD3 and BE, are associated
with memory access in the FFT system, The second group of
signals, shown at the lower hand corner in Figure 3.18,
include LEN, CHE, and ISTO which are used to initiate the
address sequence generator in the FFT system. The third group
of signals, O0STO, FFT_CMP, and STAGE_CNT, are the status
signals from the FFT system.

A second method of implementing the DCT is shown in Figure

4.3. The universal controller discussed in the previous

70

chapter is modified to complete the Discrete Cosine Transform
of the input data. In the Figure 3.3, the butterfly structure
of DIF non-bit-reversal algorithm was shown where the input

and output have the following relationship.

C=A+B (4.7)

D= (A- B)swk (4.8)

A, B, and wk are input data, whereas C and D are output
data. Based on equation (4.7) and equation (4.8), let WX be
a(K)*e /™2 A pe U(K), and B be 0. In this way the same
butterfly can yield another output D. For Discrete Cosine
Transform, only the real part of D is kept. After the complete
output data of FFT is generated, the result of DCT is needed
to go through the butterfly for one more cycle. The real part
of the output data is the result of the Discrete Cosine
Transform. It is straight forward to modify the flow chart of
the Qniversal controller of Figure 3.19. After the complete
output data is generated from the FFT butterfly, one more
cycle through the butterfly is needed if we want to do DCT for
original input data.

If the first method is used, it is necessary to build
additional circuitry, with 3 processors and a local memory
access sequence denerator. If it is undesirable to build anry
additional circuitry, method two can be adopted. This approach
will complicate the universal controller. Therefore, there is

a trade off between these two methods.

71

The idea of how to get a Discrete Cosine Transform result
using an FFT structure is discussed here. In the next chapter,
the improvement and future research of this thesis will be

discussed

72

ENABLE CLK emimed

p— —
IX] ENABLE CLK
‘—-> «
Hi
ENABLE CLK
R/ w o ADCR F\’/wA CP ADDR EN‘ABLE
|| I
(ARDP |
cue ssguencer
i el
CLK

Ar: the rezl part of date coming from FFT Sysiem output

Al: the imaginary partof dzsta coming from FFT system output
Hr: the real part of sczle weight factors

Hi: the imaginary part cf scgle weignt factors

ABCR. R/W. &CH ara the menory accs

I~OCR 1s the inttingl inzut cata aClrs
C=E 1z the chip enzole cf ssouencer

s1on sicnal
5

<
S

FIGURE 4.1 Full pipeline structure to implement the DCT
system, the input data come from the FFT system output.

73

£s
o
c2
OR1/0WwW!
OR2/0wW2
0R3/0w
GC-1
OCH2 ——— -
ol FFT SYSTEM
UNIVERSAL QCHZ (ncluding vutteriiy,
CONTROLLER = addr sequence generator,
| CADOI . | andcontrolier)
CADD?2
|~>
CADD3
|w
LEN
|——}1
CHE
1STO
0570
FFT_CMRA
STAGE_CNT

FIGURE 4.2 Block diagram of the universal controller and
the FFT system.

74

LOAD input data &
yreight factor for
doing the FFT

7
IHTIATE those signals to
activate the FFTsystem

7

1

{
_ |

Y

ki
LOAD the scale weight ractors

0l

Y

4. 1 INITIATE those signal to
activate the FFT system

=

Y

N

FETCH the real part of ocutput data

Y

FIGURE 4.3 Modified flow chart of the universal controller.

75

v. CONCLUSION

A. CONCLUSION

Although this thesis modeled the floating point arithmetic
processor "AMD29325", data flow FFT systems, and the DCT
system, the methodology can be applied to other digital signal
processing systems. Many signal processing algorithms require
sum-of-product operations that are well suited to designs
discussed in this thesis.

In this thesis, the data flow design of FFT in the full
pipeline butterfly structure has been built and the model has
been verified. The result is shown in the Table 3.8. Due to
limitation of time the data flow design of DCT is not fully
simulated. Many problems had been encountered in the study. A
few p;oblems were easy to solve such as the syntax errors, but
many problems were difficult to overcome. A "trial and error"
approach was often taken. There are still unresolved problems.
One problem is related to the source programs created under
VHDL version 1.5 that can not run under VHDL version 2.0. This
problem developed due to the software version change. In the
Intermatrix VHDL version 1.5, there are several internal
problems. For example, it can not print a negative value in
the report file. It can not generate a triggered pulse

waveform in the interactive simulation mode. When the "BLOCK"

76

is used in the VHDL source program, it would generate some
unexpected sice effects.

The very important experience here is how to deal with
system design in top-down design methodology and how to use
VHDL simulation to analyze systems to get an optimum design.
Hierarchical design is an important approach that allows step

by step solution to circuit design.

B. IMPROVEMENTS AND FUTURE REBEARCH

The data flow designs of a Radix 2 FFT in DIF algorithm
and the data flow designs of a DCT had been discussed and
implemented in this thesis. However, several areas in this
thesis can be improved. For example, in Chapter III the
original FFT design does not run on the VMS 4.5 operating
system because of the size and complexity of the design used
in the source program. It is replaced by the revised program
which is shown in Figure 3.18. In Table 3.8 there are still
some errors in rows !, 6, and 8 of the output data from the
FFT system simulation. These errors were caused by truncation.
In this thesis truncation was used to deal with the large
values generated when the length of mantissa size exceeded 23
bit of the IEEE mantissa size pattern. For further improvement
a rounding method should be used. Several directions are

listed in the following for future research.

77

l. TO IMPLEMENT THREE ADDITIONAL PRECISION FORMATS TO
IMPROVE THE ARITHMETIC ACCURACY
Oonly single precision is employed in this thesis.
There are three other precision formats: single extended
precision, double precision, and double extended precision.
These formats are shown in Figure 2.2.
2. TO ADD SEVERAL OTHER FUNCTIONS ASSOCIATED WITH THE
AMD29325 OPERATION
In this thesis, only four floating point arithmetic
operations are implemented. There are other functions shown in
Figure 2.5 associated with the AMD29325 operation including
the floating-point constant substraction, integer to floating-
point conversion, floating-point to integer conversion, IEEE
to DEC format conversion, and DEC to IEEE format conversion.
3. TO “ERFORM THE RADIX 4 FAST FOURIER TRANSFORM IN DIT
OR D¥F ALGORITHMS
It 1is possible to further reduce the number of
calculations required to perform the FFT by using a radix 4
algorithm provided that the number of input data is an integer
power of 4. Two basic signal data flows in DIT and DIF
algorithm for radix 4 are shown in Figure 5.1. As shown in
Table 5.1, the advantage of the radix 4 algorithm is to reduce

the number of multiplications by 25% [Ref. 10].

78

X XQ=X0+X1+X2+X3

X1 K Xy = (XO~JX1 —X2+]X3)'\VI"

X2 Xa = {Xp— X1+ X3 —x3) * W2k

oK 2 (X0 = X1 4 Xz = x3)

% 3K X3 = (xg + Jxy =Xz~ fx3) * W3
X9 ' Xo = Xg+ Xq * Waxp * W2K 4 x3° W3k
X, - Xs = Xg =)Xy * WK = xp* W24 Jxg® WK
Xy éK Xo = Xg—=X; * WKa xp * W2k — x5 W3k
X3 3K X3 = Xg +]xq * WK— x5 " W2K— jxg* Wk

FIGURE 5.1 Butterfly in Radix 4, top is the DIT algorithm,
bottom is the DIF algorithm.

Radix 2 . Radix 4

N (*) (+) (*) (+)
64 192 384 144 384
256 1024 2048 - 768 2048
1024 5120 10240 3840 10240

TABLE 5.1 The comparison of total number of arithmetic
operations needed in Radix 2 and Radix 4.

80

4. TO IMPROVE THE ADDRESSING SEQUENCE GENERATOR TO REDUCE
FETCHING IDENTICAL WEIGHT FACTORS
In Figure 3.5, the total number of weight factors
needed for an 8-point fast fourier transform is 12. The number
of fetches for the weight factor is also 12. In fact, only 4
weight factors are different, i,e. k = 0, 1/4, 1/2, and 3/4.
If the address sequence generator is modified to recognize¢ the
identical weight factors, the memory needed to stored weight
factors can be reduced.
S. TO BUILD THE FAST FOURIER TRANSFORM USING A SPECIAL
"COMPLEX VECTOR PROCESSOR (CVP)" CHIP
In order to increase the speed of the FFT simulation
program, one special chip for FFT operation called “CVP"
{Ref. 11] can be used. The CVP implements a full 32
bit complex multiplication on chip in a single clock cycle. In
addition it provides four 40 bit programmable complex
accuﬁulators to facilitate operations in radix-2 and radix-4

algorithms.

81

APPENDIX A: THE ELEMENT FUNCTIONS OF THE FPU

--these element functions associated with FPU(floating point
unit)

library std ;
use std.standard.all:;
package refer is
type BIT_ARRAY is array(integer range<>) of BIT;
type BIT_ _MATRIX is array(integer range<>) of BIT ARRAY(31
downto 0) ;
type FLAG is
record
ovf_bit:BIT;
unf_bit:BIT;
nan_bit:BIT;
zero_bit:BIT;
end record:
type LOGIC_LEVEL is ('1','0','X','2');
type LOGIC_ “ARRAY is array (1nteger range<>) of LOGIC_LEVEL ;
type LOGIC MATRIX is array(integer range<>) of LOGIC _ARRAY (
31 downto 0) ;
constant d_precision: integer :
constant s_precision: integer :

64
32

-e we

function BITSARRAY_TO_FP(bits: BIT ARRAY)
return REAL ;

function FP_TO_BITSARRAY(fp: REAL; length: NATURAL)
return BIT_ARRAY ;

function INT _TO_BITSARRAY(int,length: NATURAL)
return BIT_ARRAY;

function BITSARRAY_TO_INT(bits: BIT_ARRAY)
return NATURAL;

function UNHIDDEN_BIT(bits: BIT_ARRAY)
return BIT_ARRAY;

function SHIFL_TO_R(bits: BIT_ARRAY ; times :integer)
return BIT_ARRAY;

function IS_OVERFLOW(exp_bits: BIT_ ARRAY;

precision:INTEGER)

82

return
function
return

function
return

function
return
function

return

function
return

function
return
function
return

function
return

function
return

function

return

end refer

function
return

BOOLEAN;

IS_UN ERFLOW(exp_bits: BIT_ARRAY;
precision: INTEGER)
BOOLEAN;

IS_ZERO(bits: BIT_ARRAY)
BOOLEAN ;

IS_NAN(exp_bits: BIT_ARRAY)
BOOLEAN:; N

BECOME_ZERO(bits: BIT ARRAY)
BIT ARRAY;

BECOME_NAN(bits: BIT_ARRAY)
BTIT_ARRAY;

SET_FLAG(bits,exp bits: BIT ARRAY;
precision: INTEGER)
FLAG;

ADD(sign_a:BIT; bits_a: B.T_ARRAY; sign_b:BIT;
bits_b: BIT_ARRAY)
REAL;

INCREASEMENT (bits:BIT_ARRAY;
BIT_ARRAY;

precision: INTEGER)

DECREASEMENT (bits:BIT_ARRAY;
BIT_ARRAY ;

precision: INTEGER)

BACK_TO_BITSARRAY (exp_bits:BIT_ARRAY;
fp:REAL; precision:INTEGER)
BIT ARRAY;

.
’

package body refer is

BITSARRAY_TO_FP(bits:BIT_ARRAY)
REAL is

variable result :REAL := 0.0;
variable index :REAL := 0.5;

begin
for i in bits'range loop
if bits(i) = '1' then
result := result + index ;
end if ;
index := index*0.5; ==== .5 = 2%%(-1)

83

end loop:;
return result;
end BITSARRAY TO_FP;

function FP_TO_BITSARRAY(fp: REAL; length: NATURAL)
return BIT_ARRAY is

variable local: REAL;
variable result: BIT_ARRAY(length-1 downto 0);:
begin
local := fp ;
for i in result'range loop
local := local*2.0 ;
if local >= 1.0 then
local := local-1.0;
result(i) := '1';
else
result(i) := '0';
end if ;
end loop
return result ;
end FP_TO_BITSARRAY ;

’

function INT_TO_BITSARRAY(int,length: NATURAL)
return BIT_ARRAY is
variable digit:NATURAL := 2**(length-1);
variable local:NATURAL ;
variable result:BIT_ARRAY(length-1 downto 0):;
begin
local := int ;
for i in result'range loop
if local/digit >= 1 then
result(i) := '1°';
local := local - digit;
else
result(i) := '0';
end if;
digit := digit/2;
end loop:;
return result;
end INT_TO_BITSARRAY;

function BITSARRAY_TO_INT(bits: BIT_ARRAY)
return NATURAL is
variable result :NATURAL := 0;
begin
for i in bits'range loop
result := result#*2;
if bits(i) = '1' then

84

result := result + 1;
end if;
end loop ;
return result ;
end BITSARRAY_TO_INT;

function UNHIDDEN_BIT(bits: BIT_ARRAY)
return BIT_ARRAY is
variable result : BIT_ARRAY(bits'length downto 0):
begin
for i in bits'range loop
result(i) := bits(i):
end loop:
result(bits'length) := '1'; ----IEEE format
return result;
end UNHIDDEN_BIT;

function SHIFL_TO_R(bits: BIT_ARRAY; times :integer)
return BIT_ARRAY is
variable number:integer := times;
variable result : BIT_ARRAY(bits'length-1 downto 0):
begin
for i in bits'range loop
result(i) := '0';
end loop:
while number <= bits'length-1 loop
result (number-times) := bits(number):;
number := number+1l ;
end loop:
return result;
end SHIFL _TO_R;

function IS_OVERFLOW(exp_bits: BIT_ARRAY;
precision: INTEGER)
return BOOLEAN is
variable result: BOOLEAN ;

begin
case precision is
when 32 => ----=-single precision

if exp _bits =B"11111111" then
result := TRUE;
else
result := FALSE;
end if;
when others => = = ====-- double precision
if exp_bits =B"11111111111" then
result := TRUE;
else
result := FALSE;

85

end if;
end case;
return result;
end IS_OVERFLOW;

function IS_UNDERFLOW(exp_bits: BIT_ARRAY;

precision: INTEGER)
return BOOLEAN is

variable result: BOOLEAN ;

begin
case precision is
when 32 => === ====- single precision

if exp _bits =B"00000000" then
result := TRUE;
else
result := FALSE;
end if;
when others => ----double precision
if exp_bits =B"00000000000" then
result := TRUE;
else
result := FALSE;
end if;
end case;
return result;
end IS_UNDERFLOW;

function IS_ZERO(bits: BIT_ARRAY)
return BOOLEAN is
variable result: BOOLEAN ;
begin
for i in bits'range loop
if bits(i) /= '0' then
result := FALSE;
return result ;
end if;
end loop ;
result := TRUE ;
return result;
end IS_ZERO;

function IS_NAN(exp_bits: BIT_ARRAY)
return BOOLEAN is
variable result: BOOLEAN ;
begin
for i in exp bits'range loop
if exp_bits(i) /= '1' then
result := FALSE;
return result ;

86

end if ;
end loop :
result := TRUE ;
return result;
end IS_NAN ;

function BECOME_ZERO(bits: BIT_ARRAY)
return BIT_ARRAY is
variable result: BIT_ARRAY(bits'left downto bits'right):;
begin
for i in bits'range loop
result(i) := '0';
end loop
return result;
end BECOME_ZERO;

function BECOME_NAN(bits: BIT_ARRAY)

return BIT_ARRAY is

variable result: BIT_ARRAY(bits'left downto bits'right);

begin
for i in bits'range loop

result(i) := '1';

end loop ;
return result;

end BECOME_NAN;

function SET_FLAG(bits,exp_bits: BIT_ARRAY ;
precision: INTEGER)
return FLAG is
variable result: FLAG ;
begin
result.ovf_bit
result.nan_bit
result.zero_bit
result.unf_bit := '
if IS_OVERFLOW(exp_bits, precision) then
result.ovf_bit := '1';
result.nan_bit := '1*';
elsif IS_UNDERFLOW(exp_bits, precision) then
result.unf_bit := '1';
if IS_ZERO(bits) then
result.zero_bit := '1';
end if;
end if;
return result ;
end SET_FLAG;

function ADD(sign_a:BIT; bits_a: BIT_ARRAY; sign_b:BIT;

87

bits_b : BIT_ARRAY)
return REAL is
variable result: REAL;
variable fra_a: REAL;
variable fra_b: REAL;
variable sig_a: REAL;
variable sig_b: REAL;
variable xbuff: BIT_ARRAY(O to 1);
begin
xbuff := sign_a&sign_b;
case xbuff is
when "00" =>

sig_a := 1.0;
sig b := 1.0;
when "01" =>
sig_a := 1.0; !
sig b := -1.0;
when "10" =>
sig_a := -1.0;
sig_ b := 1.0;
when "11% =>
sig_a := -1.0;
sig b := -1.0;

end case;

fra_a := BITSARRAY_TO_FP(bits_a);

fra_b := BITSARRAY_TO_FP(bits_b);

result := abs(sig_a*fra_a + sig_b*fra_b) ;
return result;

end ADD:

function INCREASEMENT (bits:BIT_ARRAY; precision:INTEGER)
return BIT ARRAY is
variable result : BIT_ARRAY(bits'length-1 downto 0);
variable length : INTEGER := bits'length ;
variable buf : BIT _ARRAY(0 to 1):
variable carry : BIT := '1'; -~ initial condition C(0)=1
variable bit_num :integer := 0;
begin
if IS_OVERFLOW(bits,precision) then
result := bits ;
return result;
end if;
while bit_num <= length-1 loop
buf := bits(bit_num) & carry ;
case buf is
when "00" =>
carry := '0';
result(bit _num) :='0';
when "01" =>
carry := '0';

88

result(bit_num)
wh_n "10%" =>
carry := '0';
result(bit_num) :='1';
when "11%" =>
carry := '1!';
resul* (bit_num) := ‘0';
end case;
bit_num := bit_num + 1;
end loop:;
return result;
end INCREASEMENT ;

= lll:

function DECREASEMENT (bits:BIT_ARRAY; precision:INTEGER)
return BIT ARRAY is
variable result : BIT_ARRAY(bits'length-1 downto 0);
variable length : INTEGER := bits'length ;
variable buf : BIT ARRAY(O to 1):

variable borrow:BIT := 'l1'; --initial condition C(0) = 1
variable bit_num :integer := 0;
begin

if IS_UNDERFLOW(bits,precision) then
result := bits ;
return result;
end if;
while bit_num <= length-~1 loop
buf := bits(bit_num) & borrow ;
case buf is
when "00" =>
borrow := '0';
result(bit_num) :='0';
when "01" =>
borrow := '1';
result(bit_num) := '1°';
when "10" =>
borrow := '0';
result(bit_num) :='1"';
when "11" =>
borrow := '0';
result(bit_num) := '0°';
end case;
bit_num := bit_num + 1;
end loop:
return result;
end DECREASEMENT ;

function BACK_TO_BITSARRAY(exp bits:BIT_ARRAY;
fp:REAL; precision:INTEGER)
return BIT_ARRAY is

89

variable length:INTEGER := precision-1;
variable result: BIT_ARRAY(length-1 downto 0)
variable bits_buf: BIT_ARRAY(length-l-exp bits'length
downto 0)
variable fra_value: REAL;
variable fp_ buf :REAL := fp;
variable exp_bits_buf :BIT_ARRAY(exp _bits'length-1
downto 0) := exp_bits;
---be careful input prarmeter must be positive real value --
begin
if fp = 0.0 then
result := BECOME_ZERO(result):;
return result;
end if ;
if(fp>1.0 and IS_OVERFLOW(exp_bits , precision)) then
result := BECOME_NAN(result) ;
return result ;
end if ;
if (fp<l1.0 and IS_UNDERFLOW(exp_bits,precision)) then
result := BECOME_ZERO(result):;
return result;
else
while abs(fp_buf-1.5) > 0.5 loop
if fp buf > 2.0 then
fp buf := fp buf / 2.0;
exp_bits_buf
:= INCREASEMENT(exp_bits_buf,precision):
if IS_OVERFLOW(exp_bits_buf,precision) then
exit when(fp_buf <= 2. 0 and fp_buf >= 1.0);
bits_buf := BECOME_ZERO(bits_buf);
--set the fra_bits
result := exp bits_buf & bits_buf;
-=- become 0.
return result;
end if;

elsif fp buf < 1.0 then
fp buf := fp buf * 2.0;
exp_bits_buf :=
DECREASEMENT(exp_bits_buf,precision);
------ if underflow condition occurred
if IS_UNDERFLOW(exp_bits_buf,precision) then
bits_buf := FP_TO_BITSARRAY (
fp buf,bits _buf'length);
result := exp_bits buf & bits_buf ;
return result;
end if ;
end if;
end loop; -- it produces value over between 1 ana 2
fra_value := fp _buf - 1.0;
if fra_value = 1.0 then

90

if IS_OVERFLOW(exp_bits_buf,precision) then
bits_buf := BECOME ZERO(bits_buf);

else
exp_bits_buf :=

INCREASEMENT (exp_bits_buf,precision):;

bits_buf := BECOME_ZERO(blts_buf),

end if ;

elsif fra_value = 0.0 then
bits_buf := BECOME_ZERO(bits_buf);

else
bits_buf :=
FP_TO_BITSARRAY(fra_value,bits_buf'length);
end if;
result := exp_bits_buf & bits_buf ;
end if;

return result;
end BACK_TO_BITSARRAY;

end refer ;

91

APPENDIX B: THE TOP FUNCTIONS AND BEHAVIOR OF THE FPU
A. THE TOP FUNCTIONS OF THE FPU

-------- Floating Point Addition --=---se------

library fpu;
use fpu.refer.all;
package FP_ADDER is

function ADDER(sign_a:BIT; bits_a: BIT_ARRAY; sign_b:BIT;
bits_b : BIT ARRAY ; exp_diff: INTEGER)
return REAL;

function ADD2(bits_a: BIT_ARRAY ; bits_b: BIT_ARRAY;
exp_length,mantissa_length,precision: INTEGER)
return BIT_ARRAY ;

end FP_ADDER ;
package body FP_ADDER is

function ADDER(sign_a:BIT; bits_a: BIT_ARRAY; sign_b:BIT;
bits_b : BIT_ARRAY ; exp_diff :INTEGER)

return REAL is

variable result: REAL;

variable fra_a: REAL;

variable fra_b: REAL;

variable sig_a: REAL;

variable sig b: REAL;

variable xbuff: BIT_ARRAY(O to 1);

begin

xbuff := sign_a&sign_b;

case xbuff is

when "0O0" =>

sig_a := 1.0;
sig_b := 1.0;
when "01" =>
sig_a := 1.0;
sig b := -1.0;
when "10" =>
sig_a := -1.0;
sig_b := 1.0;
when "11" =>
sig_a := -1.0;

92

sig b := -1.0;
end case;
if exp_diff >=0 then
fra_a := BITSARRAY_TO_FP(bits_a);
fra_b := BITSARRAY_ ~TO _FP(SHIFL_TO_R(bits_b,exp_diff)):
else
fra_a := BITSARRAY_TO_FP
(SHIFL_TO_R(bits_a,abs(exp_diff))):
fra_ b := BITSARRAY TO_FP(bits_b);
end if ;
result := abs(sig_a*fra_a + sig_b*fra b) :
return result;
end ADDER;

function ADD2(bits_a: BIT_ARRAY ; bits_b: BIT_ARRAY;
exp_length,mantissa_length,precision: INTEGER)
return BIT_ARRAY is
variable a_is_nan :BOOLEAN;
variable b_is_nan :BOOLEAN;
variable a_is_zero :BOOLEAN;
variable b_is_zero :BOOLEAN;
variable a_is_underflow :BOOLEAN;
variable b_is_underflow :BOOLEAN;
variable exp_a :INTEGER;
variable exp_b :INTEGER;
variable exp_diff :INTEGER ;
variable bits_length :INTEGER := bits_a'length;
variable sign_bit_a : BIT := bits_a(bits_a'left);
variable exp_bits_a : BIT_ARRAY(bits_a'left-1 downto
bits_a'left-exp_length);
variable mantissa_a : BIT_ARRAY(mantissa_length downto
bits_a'right);
BIT := bits_b(bits_ b'left);
BIT_ARRAY (bits_b'left-1 downto
bits _b'left-exp_length):
variable mantissa_b : BIT_ARRAY (mantissa_length downto
bits_b'right);
variable bits_c: BIT_ARRAY(bits_a'left downto
bits_a'right);

variable sign_bit_b
variable exp_bits_b

variable sign_bit_c : BIT ;
variable exp_. bits_c:BIT_ARRAY(bits_a'left-1 downto
bits_a'left-exp_length):
variable buf bits_c :BIT_ARRAY(bits_a'left-1 downto
“bits_a'right);
variable fra_c : REAL ;

begin

exp_bits_a := bits_a(bits_a'left-1 downto
bits_a'left-exp_length);

bits_b(bits_b'left-1 downto

bits_b'left-exp_length);

exp_bits_b :=

93

a_is_nan := IS_OVERFLOW(exp_bits_a, precision) ;
b is_nan := IS_OVERFLOW(exp_ b1ts b, precision) ;

a_is_underflow := IS
b_is_underflow := IS
a_1s_zero := IS_ZERO
b_is_zero := IS_ZERO
if a_is_zero then
bits_c := bits_b;
return bits_c;
elsif b_is_zero then
bits_c := bits_a;
return bits_c ;
end if ;

case (a_is_nan or b_

when TRUE =>
if (a_is_nan and

_UNDERFLOW(exp_bits_a, precision)
_UNDERFLOW(exp_bits_b, precision)
(bits_a):
(bits_b):

is_nan) is

a_is_nan) then

bits_c := bits_a;
elsif b_is_nan then
bits_c := bits_b;

else

bits_c := bits_a;

end if;
when FALSE =>

exp_a := BITSARRAY TO_INT(exp_bits_a);
exp_b := BITSARRAY_TO_INT(exp_bits_b):
exp_diff := exp_a - exp_b

if exp_diff >=

24 then

bits_c := bits_a;

return bits_

c 7

elsif abs(exp_diff) >= 24 then
bits_c := bits_b;

return bits_

end if ;
if exp_diff >
exp bits_c

sign_bit_c

elsif(exp_diff

exp_bits_c
sign_bit_c
end if;

\>F]

0 then
exp_bits_a ;
sign_bit_a :
0) then

exp_bits_b
sign_bit_b

AN

s e
~e wo

if (a_is_underflow or b_is_underflow) then
if a_is_underflow then
---in the underformat there is not unhidden bit exitent

mantissa_a := '0'

& bits_a(mantissa_length-1 downto
bits_a'right);

elsif b_is_underflow then

mantissa b

end if;

:='0' & bits_b(mantissa_length-1
downto bits_b'right);

94

else
mantissa_a :=UNHIDDEN_BIT(bits_a(mantissa_length-1
downto bits_a'right));
mantissa_b :=UNHIDDEN_BIT(bits_b(mantissa_length-1
downto bits_b'right)):
end if ;

if(exp_diff = 0 and (mantissa_a >= mantissa_b)) then
exp_bits c := exp_bits_a
sign_bit_c := sign_bit_a
elsif(exp_diff = 0 and (mantissa_b > mantissa_a))
then

e we

exp_bits_c :
sign_bit_c :
end if ;

exp_bits_b
sign_bit b

.s ~a

fra_c :=2.0 * ADDER(sign_bit_a, mantissa_a,
sign_bit_b, mantissa_b,exp_diff);
if fra_c = 0.0 then
bits ¢ := BECOME_ZERO(bits_a):
else
buf_bits_c := BACK_TO_BITSARRAY(exp_bits_c,
fra_c,precision);
bits_c := sign_bit_c & buf bits_c ;

end if ;
end case;
return bits_c ;

end ADD2:;

end FP_ADDER ;

library fpu:;

use fpu.refer.all;
use fpu.fp_adder.all;
package FP_SUBER is

function SUB2(bits_a: BIT_ARRAY ; bits_b: BIT_ARRAY;
exp_length, mantissa_length, precision: INTEGER)
return BIT_ARRAY ;

end FP_SUBER ;

95

package body FP_SUBER is

function SUB2(bits_a: BIT_ARRAY ; bits_b: BIT_ARRAY;
exp_length, mantissa_length, precision: INTEGER)
return BIT_ARRAY is

variable buf_bits_b : BIT_ARRAY(bits_b'left downto
bits_b'right)
:= bits b ;
variable bits_c : BIT_ARRAY(bits_b'left downto
bits_b'right);

begin
if bits_b(bits_b'left) = '1l' then
but_bits_b(bits_b'left) :='0';
else
buf bits b(bits_b'left' :='1"';
end if;

bits c := ADD2(bits_a, buf_bits_b, exp length,
mantissa_length , precision);
return bits_c ;
end SUB2 ;
end FP_SUBER ;

————————— Floating Point Multoplication ------—==---

library fpu:
use fpu.refer.all;
package FP_MULTIER is

function MULTI2(bits_a: BIT_ARRAY ; bits_b: BIT_ARRAY;
exp_length,mantissa_length,precision: INTEGER)
return BIT_ARRAY ;

end FP_MULTIER ;

package body FP_MULTIER is

function MULTI2(bits_a: BIT_ARRAY ; bits_b: BIT_ARRAY;
exp_length,mantissa_length,precision: INTEGER)
return BIT_ARRAY is

variable a_is_zero :BOOLEAN;

variable b_is_zero :BOOLEAN;

variable a_is_nan :BOOLEAN;

variable b_is_nan :BOOLEAN;

variable a_is_underflow :BOOLZAN;

variable b_is_underflow :BOOLCAN;

variable exp_a :INTEGER,

variable exp_b :INTEGER:

96

variable

variable
variable
variable
variable

variable
variable

variable
variable

variable
variable

variable
variable
begin

sign_bit_c
exp_bits_a

exp_bits b

a_is_zero
b_is_zero

exp_sum :INTEGER

bits_length :INTEGER := bits a'length,

sign_bit_a BIT := bits a(b ts_a'left):

exp_bits_a BIT ARRAY (bits_a'left-1 downto

bits_a'left-exp_length);
mantissa_a : BIT_ARRAY(mantissa_length downto
bits_a'right);
BIT := bits _b(bits_b'left);
BIT_ARRAY (bits_b'left-1 downto
bits_b'left-exp_length);

mantissa_b : BIT_ARRAY(mantissa_length downto
bits_b'right);

bits_c: BIT_ARRAY(bits_a'left downto
bits_a'right);

sign_bit b
exp_bits_b

sign_bit_c : BIT ;
exp_bits_c:BIT_ARRAY(bits_a'left-1 downto
bits_a'left-exp_length);
buf_bits_c :BIT_ARRAY(bits_a'left-1 downto
bits_a'right);
fra_c : REAL ;

sign_bit_a xor sign_bit_b ;
bits_a(bits_a'left-1 downto
bits_a'left-exp_length);

:= bits_b(bits_b'left-1 downto
bits_b'left-exp_length):;

:= IS_ZERO(exp_bits_a):;
:= IS_ZERO(exp_bits_b):

if (a_is_zero or b_is_zero) then
bits _c := BECOME ZERO(bits c):

bits~ _c(
else

bits c'length-l)-- sign_bit_c :

a_is_nan := IS_OVERFLOW(exp_bits_a, precision) ;
b_is _nan := IS_OVERFLOW(exp_bits_b, precision) ;
a_is “underflow:= IS _UNDERFLOW(exp_bits_a,precision);
b is_ “underflow:= IS UNDERFLOW(exp bits_b,precision);
case (a_is_nan or b_is_nan) is
when TRUE =>

if a_is_nan then

bits_c := BECOME_NAN(bits_a);
bits_c(bits_c'length-1):= sign_bit_c ;

else

bits_c := BECOME_NAN(bits_b):

bits_c(bits_c'length-1):= sign_bit_c ;

end

if;

when FALSE =>

exp_

a := BITSARRAY TO_INT (exp_bits_a);

97

exp_b := BITSARRAY TO_INT(exp_bits_b);

if(a_is_underflow or b_is_underflow)then
if a_is_underflow then

-- in underflow formate there is not unhidden bit existing

mantissa_a :='0' & bits_a(mantissa_length-1 downto
bits_a'right);
elsif b_is_underflow then
mantissa_b :='0' & bits_b(mantissa_length-1 downto
bits_b'right):;
end if;

else
mantissa_a :=UNHIDDEN_BIT(bits_a(mantissa_length-1
downto bits_a'right));

mantissa b :=UNHIDDEN_BIT(bits_b(mantissa_length-1
downto bits _b'right)):

end if;
fra_c :=4.0 * BITSARRAY _TO_FP(mantissa_a) *
BITSARRAY _TO_FP(mantissa_b);

exp_sum := exp_a + exp_b ;

if precision = 32 then =~ -<=--- single precision
exp_sum := exp_sum - 127; ----IEEE EXP FORMAT
if exp_sum >= 255 then
bits_c := BECOME_NAN(bits c) ;
---= overflow
bits_c(bits_c'length-1):= sign_bit_c ;
elsif exp _sum < O then

if (exp_sum < -1) or (exp_sum = -1 and
bits_c < 2.0) then
bits_c := BECOME_ZERO(bits_c) :
---underflow
bits_c(bits_c'length-1):= sign_bit _c ;
return bits_c ;
elsif (exp_sum = -1 and fra_c >= 2.0)
then
fra_c := fra_c/2.0 ;
exp_bits_c := B"00000000" ;
end if ;

else
exp_bits_c := INT_TO_BITSARRAY(exp_sum
,exp_length) ;
end if;
else

98

exp_sum := exp_sum - 1023;
---the other case is 64 (double precision);

if exp_sum >= 2047 then
bits_c := BECOME_NAN(bits_c) :
-=== overflow

bits_c(bits_c'length-1):= sign_bit_c
elsif exp_sum < 0 then

-e

if (exp_sum < -1) or (exp_sum = -1 and
fra c < 2.0) then

bits_c := BECOME_ZERO(bits_c) ;
-==underflow

bits_c(bits_c'length-1):= sign_bit c
return bits_c ;
elsif (exp_sum = -1 and fra_c >= 2.0)

~e

then
fra ¢ := fra_c/2.0 ;
exp_bits_c := B"00000000000" ;
end if ;
else
exp_bits_c := INT_TO_BITSARRAY(exp_sum
,exp_length) :
end if;
end if ;

buf bits_c := BACK_TO_BITSARRAY(exp_bits_c,
fra_c, precision);

bits_c := sign_bit_c & buf_bits_c ;

end case;
end if;
return bits_c ;
end MULTI2;
end FP_MULTIER ;

----------- Floating Point Divider ----------c-----
library fpu;
use fpu.refer.all;
package FP_DIVIDER is
function DIVIDE2(bits_a: BIT_ARRAY ; bits_b: BIT_ARRAY;

exp_length,mantissa_length,precision: INTEGER)
return BIT_ARRAY ;

99

function DIV(bits_a,bits_b : 3IT_ARRAY ;exp_length
;precision : INTuGER)
return BIT_ARRAY ;

end FP_DIVIDER ;
package body FP_DIVIDER is

function DIV(bits_a,bits_b : BIT_ARRAY ; exp_length
,precision : INTEGER)
return BIT_ARRAY is
variable length : INTEGER := bits_a'length ;
variable diff_exp_value : INTEGER ;

variable exp_bits_a_value : INTEGER ;
variable exp_. b1ts b value : INTEGER ;
variable fra bits_b_value : REAL ;
variable fra_bits a value : REAL ;
variable fra_bits_c_value : REAL ;

variable bits_value : REAL
variable sign_bits_a :BIT := bits_a(bits_a'left);
variable sign_bits_b :BIT := bits_b(bits_b'left);
variable sign_bits_c :BIT ;
variable bits_c : BIT_ARRAY(bits_a'left downto
bits_a'right) ;
variable buf_bits_c : BIT ARRAY(bits_a'left -1 downto
bits_a'right) ;
variable exp_bits_b : BIT_ARRAY(bits_b'left-1 downto
bits_b'left-exp_length)
= bits _b(bits_b'left-1 downto
bits_b'left-exp_length) ;
variable exp bits_a : BIT_ARRAY(bits_a'left-1 downto
’ bits_a'left-exp_length)
= bits_a(bits_a'left-1 downto
bits_a'left-exp_length) ;

It~

variable exp_bits_buf : BIT_ARRAY(bits_a'left-1
downto bits_a'left-exp_length) ;

begin
sign_bits_c := sign_bits_a xor sign_bits_b;
exp_bits_ b _value := BITSARRAY TO_INT(exp_bits_b);
exp_bits_a_value := BITSARRAY_TO_INT(exp_bits_a):

if (IS_UNDERFLOW(exp_bits_a,precision))
or (IS_OVERFLOW(exp_bits_b,precision)) then

buf_bits_c := BECOME_ZERO(buf_bits c)

bits_c := sign_bits_c & buf_bits c ;
return bits_c

100

elsif (IS_OVERFLOW(exp_bits_a,precision))
or (IS_UNDERFLOW(exp_bits_b,precision)) then

buf_bits _c := BECOME_NAN(buf bits _c)
bits_c := sign_bits_c & buf blts _Cc
return bits_c ;

else
fra_bits_a_value :=BITSARRAY_TO_FP(
UNHIDDEN BIT (bits_a(bits_a'left
- exp_length-1 downto bits_a'right)))

fra_bits_b_value :=BITSARRAY_TO_FP(
UNHIDDEN_BIT(bits_b(bits_b'left
- exp_length-1 downto bits_b'right))) :

end if;

fra_bits_c_value := fra_bits_a_value /
fra_bits b value ;

if precision = 32 then --single precision
diff_exp_value := exp_bits_a_value -
exp_bits_b _value + 127;

if (diff_exp_value > 255 or
(diff_exp_value = 255 and
fra_bits_c_value >= 1.0)) then
buf_bits_c := BECOME_NAN(buf_bits_c)
bits_c := sign_bits_c & buf bits c ;
return bits_c ;
elsif(diff_exp_value < 0 or
(diff_exp_value = 0 and
fra_bits_c_value <= 1.0)) then
buf bits_c := BECOME_ZERO(buf _bits c):;
bits_c := sign_bits_c & buf_bits_c ;
return bits_c ;
else
exp_bits_buf:= INT_TO_BITSARRAY (
diff exp_value, exp_length);
end if;

else
diff exp_value := exp_bits_a_value -

exp_bits_b_value + 1023;
~-=-=double precision

if (diff_exp_value > 2747 or

101

(diff _exp_value = 2047 and fra_bits_c_value
>= 1.0)) then
buf_bits_c := BECOME_NAN(buf_bits_c)
bits_c := sign_bits_c & buf bits_c ;
return bits_c
elsif(diff_exp_value < 0 or
(diff_exp_value = 0 and
fra_bits_c_value <= 1.0)) then
buf_bits_c := BECOME_ZERO(buf_bits c):
bits_c := sign_bits_c & buf_bits_c ;
return bits _c :
else
exp_bits_buf:= INT_TO_BITSARRAY (
diff_exp_value, exp_length);
end if;

end if ;

buf_bits_c := BACK_TO_BITSARRAY (
exp_. bits _buf, fra b1ts c_value,precision);
bits_c := s1gn_b1ts_c & buf_blts_c ;
return bits_c;
end DIV ;

function DIVIDE2(bits_a: BIT_ARRAY ; bits_b: BIT_ARRAY;
exp_length,mantissa_length,precision: INTEGER)
return BIT_ARRAY is
variable a_is_zero :BOOLEAN;
" variable b_is_zero :BOOLEAN;
variable a_is_nan :BOOLEAN;
variable b_is_nan :BOOLEAN;
variable inv_bits_b: BIT_ARRAY (bits_b'left downto
bits _b'right);
variable bits_c: BIT_ARRAY(bits_a'left downto
bits_a'right);
variable sign_bit_c : BIT :;
variable exp_bits_a:BIT_ARRAY(bits_a'left-1 downto
bits_a'left-exp_length)
:=bits a(blts a'left-1 downto
blts_a'left-exp_length),
Vv riable exp_bits_b:BIT_ARRAY(bits_b'left-1 downto
bits_b'left-exp_length)
:=bits b(blts b'left-1 downto
“bits b'left-exp length) ;

begin
a_is_zero :=
b_is_zero :=

Lol

S_ZERO(exp_bits_a):
S_ZERO(exp_bits_b)

102

if a_is_zero then
bits_c := BECOME_ZERO(bits_a):
elsif (not(a_is_zero) and b_is_zero) then
bits_c := BECOME_NAN(bits_a):
else
a_is_nan := IS_OVERFLOW(exp_bits_a, precision) ;
b_is_nan := IS_OVERFLOW(exp_bits_b, precision) ;
case (a_is_nan or b_is_nan) is
when TRUE =>
if b_is_nan then
bits_c := BECOME_ZERO(bits_a):
else
bits_c := bits_a :
end if;
when FALSE =>
bits_c := DIV(bits_a, bits_b, exp_length,
precision);
end case;
end if;
return bits_c ;
end DIVIDE2;
end FP_DIVIDER ;

B. THE BEHAVIOR FUNCTIONS OF THE FPU

library fpu;

use fpu.refer.all, fpu.fp_adder.all, fpu.fp suber.all,
fpu.fp_multier.all,

fpu.fp_divider.all;

package utilityl is

function FP_UNIT(bits_a,bits_b: BIT_ARRAY;
vrecision,choice :INTEGER) return BIT_ARRAY ;

end utilityl ;
package body utilityl is

function FP_UNIT(bits_a,bits_b: BIT_ARRAY;
precision,choice :INTEGER) return BIT_ARRAY is

variable exp_length : INTEGER ;
variable mantissa_length : INTEGER ;
variable buf_c :BIT_ARRAY(bits_a'left downto
bits_a'right);
begin
if precision = 32 then
exp_length := 8;

103

mantissa_length := 23 ;

else
exp_length := 11; ----double precision
mantissa_length := 52;

end if;

case choice is

when 1 =>

buf_c := ADD2(bits_a , bits_b , exp_length,
mantissa_length, precision);

when 2 =>

buf ¢ := SUB2(bits_a , bits_b , exp_length,
mantissa_length, precision);

when 3 =>

buf_c := MULTI2(bits_a , bits_b , exp_length,

mantissa_length, precision);
when others =>
buf c := DIVIDE2(bits_a , bits_b , exp_length,
mantissa_length, precision);
end case ;
return buf c;

end FP_UNIT;

end utilityl ;

104

APPENDIX C: THE SBOURCE FILE OF THE FPU CHIP AMD29325

library fpu:
use fpu.refer.all, fpu.utilityl.all;

----- it is designed with single precision and
only 4

----- arithmetic operations built in AMD29325

entity AM29325 is
generic(D_FPU_T : time := 110ns);
port(R,S : in BIT_ARRAY(31 downto 0)
:= B"00000000000000000000000000000000";
ENR, ENS,ENY,ONEBUS,FTO,FT1,CLK : in BIT
t= '0';
OE : in BOOLEAN := false ;
10 I2 : in BIT_ARRAY(2 downto 0)

:= B"000" ;
I3_I4 : in BIT_ARRAY(1 downto 0)
:= B"0O0" ;
IEEE_OR_DEC : in BIT
e= '1. ;
S16_OR_S32, PROJ_OR_AFF : in BIT
t= |O' :
RNDO_RND1: in BIT_ARRAY(1 downto 0)
:= B"0O" ;

F : out BIT_ARRAY(31 downto 0)
:= B"00000000000000000000000000000000" ;
ovf, unf, zero, nan, invd, inet : out BIT
:t= '0')
end AM29325 ;

library fpu;
use fpu.refer.all, fpu.utilityl.all, fpu.write_file.all;
architecture behavioral of AM29325 is

begin
process (CLK, OE)
variable precision : INTEGER := R'length ;
variable BUF_F : BIT_ARRAY(31 downto 0) ;
variable BUF_F_FLAG : FLAG ;
variable choice : INTEGER :
constant ADD : INTEGER := 1;
constant SUB : INTEGER := 2;
constant MULTI : INTEGER := 3;
constant DIV : INTEGER := 4;

105

begin
if (OE and (CLK'EVENT and CLK = '1')) then
case IO_I2 is

when B"000" =>
choice := ADD ;

when B"001" =>
choice := SUB ;

when B"010" =>

choice := MULTI
when others =>
choice := DIV ;
end case ;
BUF_F := FP_UNIT(R,S,precision,choice) ;
F <= BUF_F after D_FPU_T;
BUF_F_FLAG := SET_FLAG(BUF_F BUF_F (30 downto
23) ,precision);
ovf <= BUF_F_FLAG.ovf_bit after D_FPU_T
unf <= BUF_F_FLAG.unf bit after D_FPU_T
zero<= BUF_F_FLAG.zero bit after D FPU T
nan <= BUF_F_FLAG.nan_bit after D FPU T
end if ;
end process ;

we we wme we

end behavioral;

106

THE APPENDIX D: THE SIMPLIFIED I/0O PORT OF THE FPU CHIP
AMD29325

library fpu, fft ;
use fpu.refer.all, fft.AM29325 ;

--- this program is created for simplifing
--- AM29325 entity.

entity A29325 is

generic (D_FPU_T : TIME := 110 ns);
port(inl,in2 : in BIT_ARRAY(31 downto 0)

-- inl, in2 input signal
= B"00000000000000000000000000000000";

clock : in BIT := '1' ;
option : in INTEGER := 1 ;
enable : in BOOLEAN := FALSE ;
outl : out BIT_ARRAY(31 downto 0)
:= B"00000000000000000000000000000000") ;
-- output of fft
end A29325 ;

library fpu ,fft;
use fpu.refer.all, fft.am29325 ;

architecture simple of A29325 is

component AM29325
generic(D_FPU_T : time := 110ns);
port(R,S : in BIT_ARRAY(31 downto 0)
:= B"00000000000000000000000000000000";
ENR, ENS,ENY,ONEBUS, FT0O,FT1,CLK : in BIT
s= 10';
OE : in BOOLEAN := false ;
I0_I2 : in BIT_ARRAY(2 downto 0)

:= B"000" ;
I3_I4 : in BIT_ARRAY(1 downto 0)
:= B"00" ;
IEEE_OR_DEC : in BIT
t= '1'
S16_OR_S32, PROJ_OR_AFF : in BIT
o= '0. H
RNDO_RND1: in BIT_ARRAY(1 downto 0)
:= B"00" ;

107

F :

out BIT ARRAY(31 downto 0)

:= B"00000000000000000000000000000000" ;

ovf, unf, zero,
OOI) ;

end component

for F1 :

signal
signal
signal
signal
signal
signal
signal

I3_I4 :
IEEE_OR_DEC

RNDO_RND1:
ovf, unf,
func :

begin
process(option)
begin

if (option =
func

func

elsif(option =
<= "011" ;

func
end if ;
ehd process ;

Fl: AM29325

zero,
BIT ARRAY(2 DOWNTO 0)

nan,

1) then
<= "000"
elsif(option =

func <= "001"
elsif(option =
<= “010" ;
4) then

-
’

[
’

nan,

invd,

2) then

3) then

invd,

inet

_ : BIT
BIT_ARRAY(1 downto 0) :
inet :
:= "Qo0"

generic map(D_FPU_T => 110ns)

port map(inl,

unf,

end simple ;

nan,

func,

108

I3_I4,

ENR, ENS,ENY,ONEBUS,FTO, FT1,CLK
BIT _ARRAY(1 downto 0)
BIT

S16_OR_S32, PROJ_OR_AFF

inet

out BIT

: BIT

ee oo

BIT

in2, ENR, ENS, ENY, ONEBUS, FTO,
clock, enable,
S16_or_S32,
zero,

) I

AM29325 use entity fft.AM29325(behavioral)

= '0';

Bllooll ;
lll H
IOI H
B“oo“

= '0'

»
’

FT1,

IEEE_OR_DEC,
PROJ_OR_AFF, RNDO_RND1, OUT1,
invd,

.
’

ovf,

APPENDIX E: THE PIPELINE STRUCTURE OF THE FFT BUTTERFLY

library fpu, fft;
use fpu.refer.all, fft.A29325, fft.basic.all ;

————— it designed for single precision

entity FFT_CELL is
generic (D_FPU_T : TIME := 110 ns);
port(a_real,a_img : in LOGIC_ARRAY(31 downto 0);
~- a is the input signal.
b _real,b_img : in LOGIC_ARRAY(31 downto 0):
-- b is the input signal.
w_real,w_img : in LOGIC_ARRAY(21 downto 0);
-- w is the weight signal.
clock : in BIT := '1' ;
enable : in BOOLEAN := false ;
-- chip enable for am29325
ie : in BOOLEAN := FALSE ;

-- input enable for final stage
-- output
oe : in BOOLEAN := FALSE ;
-~ output enable for first stage
-- input
c_real,c_img : out LOGIC_ARRAY(31 downto 0)
-- ¢ is the output signal.

d_real,d_img : out LOGIC_ARRAY(31 downto 0)):
-- d is the
-- output signal.

end FFT_CELL ;

library fpu, fft;
use fpu.refer.all, fft.A29325, fft.basic.all ;
architecture structural of FFT_CELL is

component A29325
generic (D_FPU_T : TIME := 110 ns)
port(inl,in2 : in BIT_ARRAY(31 downto 0) -- inl, in2 is the
input signal
:= B"00000000000000000000000000000000";

clock : in BIT := '1' ;

---~- rising edge trigger
option : in INTEGER ;
enable : in BOOLEAN := FALSE ;

ou

end compo

for ALL

signal
signal
signal
signal
signal

signal

signal
signal
signal
signal
sidnal
signal
signal
signal
signal
signal
signal
signal
signal

signal

-- chip enable for am29325

tl : out BIT_ARRAY(31 downto 0));

nent ;

-- output of fft

: A29325 use entity fft.A29325(simple) ;

buf_a_real
buf b real
buf_w_real
buf_a_img
buf b_img

buf_ w_img

reg_1_real
reg_1_img
reg_2_real
reg_2_img
reg_3_real
reg_3_img
reg_ci_real
reg_cl_img
reg_c2_real
reg_c2_img
reg_c3_real
reg_c3_img
reg_c4_real

reg_c4_img

X3

BIT ARRAY(31 DOWNTO 0)
B",0000000000000000000000000000000"
BIT_ARRAY(31 DOWNTO 0)
B"00000000000000000000000000000000"
BIT ARRAY(31 DOWNTO 0)
B"00000000000000000000000000000000"
BIT ARRAY(31 DOWNTO 0)
B"00000000000000000000000000000000"
BIT ARRAY(31 DOWNTO 0)

= B"00000000000000000000000000000000"
BIT ' ARRAY(31 DOWNTO 0)

= B"00000000000000000000000000000000"

_BIT_ARRAY! 3i DOWNTO 0)
R"(:5600000000000000000000000000000"
BIT _ARRAY(31 DOWNTO 0)
= B"00000000000000000000000000000000"
BIL_ARRAY’ 21 DOWNTO 0)
B"00000000000000000000000000000000"
_BIT_ARRAY(31 DOWNTO 0)
B"00000000000000000000000000000000"
BIT _ARRAY(31 DOWNTO 0)
B"00000000000000000000000000000000"
BIT_ARRAY(31 DOWNTO 0)
B"50000000000000000000000000000000"
BIT_ARRAY(31 DOWNTO 0)
B"00000000000000000000000000000000"
BIT_ARRAY(31 DOWNTO 0)
B"00000000000000000000000000000000"
BIT_ARRAY(31 DOWNTO 0)
B"00000000000000000000000000000000"
BIT_ARRAY(31 DOWNTO 0)
B"00000000000000000000000000000000"
BIT_ARRAY(31 DOWNTO O}
B"00000000000000000000000000000000"
BIT_ARRAY(31 DOWNTO 0)
B"00000000000000000000000000000000"
BIT_ARRAY(31 DOWNTO 0)
B"00000000000000000000000000000000"
BIT_ARRAY(31 DOWNTO 0)
B"00000000000000000000005000000000"

110

~e

-.

~e

~e

~e

~e

-

~e

-,

-e

-0

~e

LYY

~e

-e

LYY

~e

signal reg_wl_real BIT_ARRAY(31 DOWNTO 0)
B"00000000000000000000000000000000"
BIT_ARRAY(31 DOWNTO 0)
B"00000000000000000000000000000000"
BIT_ARRAY(31 DOWNTO 0)
B"00000000000000000000000000000000"
BIT_ARRAY(31 DOWNTO 0)

B"00000000000000000000000000000000"

signal reg_wl_img

signal reg_w2_real

signal reg_w2_img

signal x1_real : BIT_ARRAY(31 DOWNTO 0)

:= B"00000000000000000000000000000000"
signal x1_img : BIT_ARRAY(31 DOWNTO 0)

:= B"00000000000000000000000000000000"
signal x2_real : BIT_ARRAY(31 DOWNTO 0)

:= B"00000000000000000000000000000000"
signal x2_img : BIT_ARRAY(31 DOWNTO 0)

:= B"00000000000000000000000000000000"
signal x3_real : BIT_ARRAY(31 DOWNTO 0)

:= B"00000000000000000000000000000000"
signal x3_img : BIT_ARRAY(31 DOWNTO 0)

:= B"00000000000000000000000000000000"
signal x4_real : BIT_ARRAY(31 DOWNTO 0)

:= B"00000000000000000000000000000000"
signal x4_img : BIT_ARRAY(31 DOWNTO 0)

t= B"00000000000000000000000000000000"
signal xcl_real : BIT_ARRAY(31 DOWNTO 0)

t= B"00000000000000000000000000000000"
signal xcl_img : BIT_ARRAY(31 DOWNTO 0)

:= B"00000000000000000000000000000000"

signal div ¢ INTEGER := 4 ; --=- division
signal mult ¢ INTEGER := 3 ; --- multiplication
signal sub : INTEGER := 2 ; --=- subtraction
signal add : INTEGER := 1 ; --- addition
constant DEL_T1 : time := 10 ns ;

constant DEL_T2 : time := 110 ns ;

begin

-------- begin at stage 1 ——————
--~- simply discribe D-FF behavior -~

process(clock, ie)

begin

if (clock'event and (clock ='0')and (ie = true)) then
buf_a_real <= LOGIC_TO_BIT(a_real) after DEL_T1:
buf_a_img <= LOGIC_TO_BIT(a_img) after DEL_T1;
buf_b_real <= LOGIC_TO_BIT(b_real) after DEL _Ti1;

111

-

-,

e

~s

-

~e

-e

~e

-e

-e

~s

-e

-e

LOGIC_TO_BIT(b_img) after DEL T1;
LOGIC_TO_BIT(w_real) after DEL_T1;
LOGIC_TO_BIT(w_img) after DEL T1;

buf b _img <
buf w_real
buf w_img <
end if ;
end process;

A
wnu

---------- end of stage 1 ~~=-----—mrmmemcmeremec e

-------- begin at stage 2 —————-

Al : A29325
generic map (D_FPU_T =>110 ns)
port map (buf_a_real, buf b _real, clock, sub,
enable, xl1 real);

A2 : A29325
generic map (D_FPU_T =>110 ns)
port map (buf_a_img, buf_b_img, clock, sub,
enable, x1_img);

A3 : A29325
generic map (D_FPU_T =>110 ns)
port map (buf_a_real, buf_b_real, clock, add,
enable, xcl_real);

A4 : A29325
generic map (D_FPU_T =>110 ns)
port map (buf_a_img, buf b img, clock, add,
enable, xcl_img);

--- delay time at input weight factor
process(clock)
begin
if (clock'event and (clock ='1')) then
reg_wl_real <= buf _w_real after DEL_T2:;
reg wl_img <= buf_w_img after DEL _T2;
end if ;
end process ;

---------- end of stage 2 I el L

-------- begin at stage 3 —————
---- simply discribe D-FF behavior -

112

process(clock)

begin

if (clock'event and (clock ='0')) then
reg_1l_real = x1_real after DEL_T1;
reg_1l_img <= x1_img after DEL_T1;
reg_cl_real <= xcl_real after DEL_T1;
reg_cl_img <= xcl_img after DEL _T1;

reg_w2_real <= reg_wl_real after DEL _T1;
reg_w2_img <= reg_wl_img after DEL T1;
end if ;
end process ;

---------- end of stage 3 ----=--=c-ceeoo-

-------- begin at stage 4 —————-

Bl : A29325
generic map (D_FPU_T =>110 ns)
port map (reg_1 real, reg_w2_real, clock, mult,
enable, x2 real);

B2 : A29325
generic map (D_FPU_T =>110 ns)
port map (reg_1l1 img, reg_w2_real, clock, mult,
enable, x2_img);

B3 : A29325
generic map (D_FPU_T =>110 ns)
port map (reg_1l_img, reg w2_img, clock, mult,
enable, X3_real);

B4 : A29325

generic map (D_FPU_T =>110 ns)
port map (reg_1_real, reg_w2_img, clock, mult,
enable, x3_img);

--- delay time at input weight factor
process(clock)
begin
if (clock'event and (clock ='1')) then
reg_c2_real <= reg _cl _real after DEL_T2;
reg_c2_img <= reg cl_img after DEL_T2;
end if ;
end process ;

---------- end of stage 4 e e

113

-------- begin at stage 5 ——————
~---- simply discribe D-FF behavior -
process(clock)
begin
if (clock'event and (clock ='0')) then

reg_2_real <= x2_real after DEL_T1:

A

reg_c3_real reg_c2_real after DEL_T1;

reg_2_img <= x2_img after DEL _T1;
reg_3_real <= x3_real after DEL_T1;
reg 3_img <= x3_img after DEL_T1;
reg c3_img <= reqg_c2_img after DEL_T1;
end if ;
end process ;
---------- end of stage 5 —-=——--eemmm———e-
-------- begin at stage 6 ——————
Cl : A29325

generic map (D_FPU_T =>110 ns)
port map (reg_2_real, reg_3_real, clock, sub,
enable, x4_real);

C2 : A29325
generic map (D_FPU_T =>110 ns)
port map (reg_2_img, reg_3_img, clock, add,
enable, x4_img);

--- delay time at input weight factor
process(clock)
begin
if (clock'event and (clock ='1')) then
reqg_c4_real <= reg_c3_real after DEL_T2;
reg_c4_img <= reg_c3_img after DEL_T2;
end if ;
end process ;

---------- end of stage 6 ——————— e ——————————

114

-------- begin at

stage 7

---- simply discribe D-FF behavior -
process(clock, oe)

begin

if (clock'event and (clock ='0'

then
c_real
c_img
d_real
d_img

end if ;

end process ;

AANA

A

end structural;

BIT_TO_LOGIC(reg_c4_real
BIT_TO_LOGIC(reg_c4_img
BIT_TO_LOGIC(x4_real
BIT_TO_LOGIC(x4_img

115

)
)
)
)

) and (oe =

after
after
after
after

true))

DEL_T1;
DEL_T1;
DEL_T1;
DEL_T1;

APPENDIX F: THE ADDRESS SEQUENCE GENERATOR AND CONTROLLER

library fpu, fft;
use fpu.refer.all, fft.basic.all, fft.ram_256,
fft.convert.all ;
entity SEQ_CONT is

generic(test_number : positive := 2) ;--- from 1 to 6 ---
end ;

library fpu, fft;

use fpu.refer.all, fft.basic.all, fft.ram_256,
fft.convert.all ;

architecture simple of SEQ_CONT is

function RESOLVE(bits_1, bits_2: LOGIC_ARRAY)
return LOGIC_ARRAY is

variable result :LOGIC_ARRAY(bits_1l1'left downto
bits_1'right) :

BOOLEAN ;

BOOLEAN ;

variable testl
variable test2
begin
testl := IS HiZ OR _X(bits_1)
test2 := IS HiZ_OR_X(bits_2)
if(testl and test2) then
for i in bits_1'range loop
result(i):= 'X' ;
end loop
elsif(testl) then
result := bits_2 ;
elsif(test2) then
result := bits_1 ;
else
assert(testl and test2)
report " bus can not resolve any one input signal "
severity error ;
end if ;
return result ;
end RESOLVE ;

“-e we

function TABLE1l(bits: BIT_ARRAY) return INTEGER is
variable result :integer := 0 ;
begin
result := 2#%%(BITSARRAY_TO_INT(bits)+ 1) ;
return result ;

end TABLE1l ;

116

function TABLE2(N: INTEGER) return INTEGER is
variable result :integer := 0 ;
begin

while 2**(result) < N loop
result := result + 1 ;

end loop

return result ;

end TABLE2 ;

constant chs_setup_t TIME := 200 ns ;
=2 ;

constant wrt_setup_t TIME 00 ns

signal LEN ¢ BIT_ARRAY(2 DOWNTO O) := "00O0" :

signal ISTO : BIT := '1°! H

signal CHE ¢ BIT := '1' H

signal IN_R : BIT := '0' :

signal OouUT_A ¢ BIT := '0' H

signal IN_E : BIT := '1! ;

signal OUT_E : BIT := '1° H

signal FFT_CMP ¢ BIT := '0' H

signal STAGE_CNT : INTEGER := -1 ;

signal 0OSTO : BIT := '1" H

signal TRIG : BIT := '0' H

signal EN ¢ BIT := '1°' :

signal S0 : BIT := '0° H

signal S1 : BIT := '0° H

signal ADDR_O : LOGIC_ARRAY(7 downto 0)
1= "Z2222222";

signal CHS_0O ¢ BIT := '1! ;

signal RW_O : BIT := '1! H

signal ADDR_WC ¢ LOGIC_ARRAY(7 downto 0)
t= MZ2Z22227222";

signal CHS_WC ¢ BIT := '1' ;

signal RW_WC : BIT := '1° ;

signal ADDR_1 : LOGIC_ARRAY(7 downto 0)
1= "ZZ2222222";

signal CHS_1 : BIT := '1' ;

signal RW_1 : BIT := '1' ;

signal TRIG_RD_O : BIT t= '0' ;

signal TRIG_WR_O : BIT = '0' ;

117

signal TRIG_RD 1 : BIT 1= 10" ;
signal TRIG_WR_1 : BIT t= '0' ;
signal RD_ADDR_O0 : LOGIC_ARRAY(7 DOWNTO 0)
s= WZ22Z22222" ;
signal RD_ADDR_1 : LOGIC_ARRAY(7 DOWNTO O0)
s= "Z2222Z222" ;
signal WR_ADDR_O : LOGIC_ARRAY(7 DOWNTO 0)
1= WZ2Z2222222" ;
signal WR_ADDR_1 : LOGIC_ARRAY(7 DOWNTO 0)
t= WZZ2Z2222Z" ;
signal I1E : BOOLEAN := FALSE ;
signal OE : BOOLEAN := FALSE ;
signal ENABLE : BOOLEAN := FALSE :
signal STATE : INTEGER := 0
begin
------------------ FFT controller =-----—----ceccecrccnce-—-
process(CLOCK, IN_E, OUT_E)
variable CNT : INTEGER := 0 ;
begin
if ((IN_E='0' and 1IN _E'event) and
(TOUT_E='0'and OUT _E'event))then
CNT := 0 ;
IN R <= '1';
OUT A <='0' ;
IE <= TRUE ;
ENABLE <= TRUE ;
elsif((CLOCK'event and CLOCK = '0')) then
CNT := CNT + 1 ;
if(CNT = 4) then
OE <= TRUE ;
elsif(CNT = 5) then
OUT A <= '1' ;
end if ;
elsif((CNT >=4) and (OUT_E = '1') and (CLOCK'event))
then
OUT A <= '0' ;

’

ENABLE <= FALSE

OE <= FALSE after 500 ns ;

elsif((CNT >=4) and (IN_E ='1')) then
IN R <= '0' ;
IE <= FALSE :

end if ;

.
’

end process

118

address sequencer =---—-——=-ececmccmc—ee—ccce~——co———

generate step by step signal ------
process(CLOCK, LEN, CHE, STATE, IN_R, OUT_A

variable R_CNT ¢ INTEGER := 0 ;
variable W_CNT ¢ INTEGER := 0 ;
variable N : INTEGER := 0 ;
variable PTR ¢ BIT = '0' ;

variable COE_BUF

LOGIC_ARRAY(7 downto
= "00000000" ;
variable F : INTEGER := 0 ;

begin
if ((CHE = '0'))then
if ((STATE = 0) and (CLOCK'event and
CLOCK = '1'))then

----- find out actural length -~----
= TABLE1(LEN) ;

2

:= TABLE2(TABLE1l(LEN))

~=== do state 0 -==—e—--
STAGE_CNT <= 0 ;
COE_BUF := "00000000" ;
PTR := ISTO ;
FFT_CMP <= '1' ;
STATE <= 1 ;

0)

elsif ((STATE = 1) and (CLOCK'event and

CLOCK = '1'))then
————— do state 1 which is initization state ----

IN.E <= '0'
OUT E <= '0°
R_CNT := 0 ;
W_CNT := 0 ;
EN <= '0' ;

~e we

if((IN_R = '1')) then
-- gen. next addr
STATE <= 3 ;
else
STATE <= 7 ;
end if ;

119

elsif((2 <= STATE) and (STATE <= 4))
then

---- do state 2, 3, or 4

if((IN_R = '1' and R _CNT < 2*N and
CLOCK'event)) then

if(PTR = '0')then
--- when RAM 0 is read ----

if ((CLOCK = '0')) then

ADDR_O <= RD_ADDR 0 ;
TRIG_RD_O0 <= not(TRIG_RD 0);
--- generate rext addr ----
ADDR_WC <= COE_BUF ;
CHS_WC <= '1°',
'0' after 1 ns ,
'1' after chs_setup t

RW_WC <= '1"' ;

COE_BUF := INC(COE_BUF) :

elsif (CLOCK = 'l')then

ADDR_O <= RD_ADDR_1 ;
TRIG_RD_1 <= not(TRIG RD_1)

-- generate next addr -----
end if ;
CHS_0 <= '1°',

'0' after 1 ns ,

'l' after chs_setup_t ;
RW 0 <= '1' ;

-e

elsif(PTR = '1l')then
-- when RAM_1 is read ---

if ((CLOCK = '0')) then
ADDR_1 <= RD_ADDR 0 ;
TRIG_RD_0 <= not(TRIG RD 0):
~-- generate next addr ---
ADDR_WC <= COE_BUF ;
CHS_WC <= '1',

120

'0' after 1 ns ,
'1' after chs_setup_t ;

RW_WC <= '1' ;

COE_BUF := INC(COE_BUF)
elsif (CLOCK = '1')then

ADDR_1 <= RD_ADDR_1 ;
TRIG_RD_1 <= not(TRIG_RD_1)

-,

-,

-- generate next addr ----

end if ;
CHS_1 <= '1°',
'0' after 1 ns ,
'l' after chs_setup_t ;
RW_1 <= '1' ;
end if ;

R_CNT = RCNT + 1 ;
STATE <= 3 ;
TRIG <= not (TRIG) after del_t;

elsif(R_CNT = 2*N) then
IN E <= '1' ;
EN <= '1' ;

end if ;

--------------- writing ----------
if((OUT_A = '1' and W_CNT < 2*N
and CLOCK'event)
or (OUT_A'event and OUT_A = '1')) then

if(PTR = '0') then
if(CLOCK = '0') then
ADDR_1 <= WR_ADDR_O ;
TRIG_WR_O0 <= not(TRIG_WR 0) ;
elsif(CIOCK = '1') then
ADDR_1 <= WR_ADDR_ 1 ;
TRIG_WR_1 <= not(TRIG_WR_1) ;
end if ;
CHS_1 <= '"1',
'0' after 30 ns ,
'1' after chs_setup_t ;

RW_1 <= '1°',

121

'0' after 30 ns,
'1' after wrt_setup t ;

elsif(PTR = '1') then
if(CLOCK = '0') then
ADDR_O <= WR_ADDR O ;
TRIG_WR_O0 <= not(TRIG_WR 0) ;

elsif(CLOCK = '1') then
ADDR_0 <= WR_ADDR_1 ;
TRIG_WR_1 <= not(TRIG_WR_ 1)
end if ;
CHS 0 <= '1°',
'0' after 30 ns ,
'1' after chs_setup_t
RW 0 <= '1°',
'0' after 30 ns,
'1' after wrt_setup_t ;

-

~e

end if ;

if(CLOCK = '0') then

Sl <= '0' ;
SO0 <= '1"' ;
elsif(CLOCK = '1') then
S1 <= '1!' ;
S0 <= '0o!' ;
end if ;
W_CNT

W_CNT + 1 ;
:

&l

STATE <=

elsif(W_CNT = 2*N) then
OUT_E <= '1' ;
S1 <= '0' after 500 ns
S0 <= '0!' after 500 ns
end if ;

LY Y'Y

if ((W_CNT = 2*N) and (R_CNT = 2*N)) then

STATE <= 7 ;
end if ;

----- do state 7 , increment stage_counter
elsif (STATE = 7) then
if (IN_E = '1' and OUT_E = '1') then
STAGE_CNT <= STAGE_CNT + 1 ;

122

PTR := NOT(PTR) ;

STATE <= 8 ;
else
if(IN.E = '1') then
STATE <= 2 ;
else
STATE <= 3 ;
end if ;
TRIG_RD_O <= not(TRIG_RD_O)
TRIG_RD_1 <= not(TRIG_RD_1)
TRIG_WR_O0 <= not(TRIG_WR_O)
TRIG_WR_1 <= not(TRIG_WR_1)
end if ;

----- do state 8 which is final -----
elsif (STATE = 8) then
if (STAGE_CNT = (F+1)) then
FFT CMP <= '0' after 500 ns ;
OSTO <= PTR ;
STATE <= -1 ;
elsif(STAGE_CNT <(F+1)) then

STATE <= 1 ;
end if ;
end if ;
elsif(CHE = '1') then

IN E <= '1"' ;
OUT_E <= '1' ;

SO <= '0' ;

S1 <= '0' ;

OSTO <= '0!';

ADDR_O <= "“Z22222ZZ";
CHS_ 0 <= '1' ;

RW_O <= '1';

ADDR WC<= "Z222222Z2";
CHS_WC <= '1' ;

RW WC <= '1';
ADDR_1 <= “222222Z%";
CHS 1 <= '1' ;
RW_1 <= '1';
STATE <= 0 ;

end if ;

end process ;

i23

e me we =~

process (TRIG_RD_0, TRIG_WR_O0, TRIG_RD 1, TRIG_WR_1,

STAGE_CNT)
variable jum._dis : INTEGER := 0 ;
variable addr_dis : INTEGER := 1 ;
variable i1 : INTEGER := 0 ;
variable i2 : INTEGER := 0 ;
variable k1 ¢ INTEGER := 0 ;
variable K2 : INTEGER := 0 ;
variable j1 ¢ INTEGER := 0 ;
variable j2 : INTEGER := 0 ;
variable L ¢ INTEGER := 0 ;

begin

if(STAGE_CNT'event and STAGE_CNT >= 0) then
addr_dis := TABLE1(LEN) / 2**(STAGE_CNT) ;
jump_dis := TABLE1(LEN)*2 / 2*%*(STAGE_CNT) ;
il
i2
j1
j2
k1
k2
L

else

|1 1 T Y
HOOOOOO
n

*e %0 ee se o
w~. we “e wo ws “e

ABLE1l (LEN)

if(STAGE_CNT >= 0 and TRIG_RD_O'event) then
RD_ADDR_O <=
BIT_TO_LOGIC(INT_TO BITSARRAY(((il mod addr_ dis) +
j1*jump_dis),8));

if(((11+1) mod addr_dis)= 0) then
: j1 = 3j1 + 1 ;

end if ;

i1 := i1 + 1;

end if ;
if(STAGE_CNT >= 0 and TRIG_RD 1l'event) then
RD_ADDR_1 <=
BIT_TO_LOGIC(INT_TO_BITSARRAY(((i2 mod addr_dis)
+ addr_dis + j2*jump_dis) ,8))

if(((i2+1) mod addr_dis)= 0) then

j2 = 3j2 + 1 ;
end if ;
i2 = 1i2 + 1;
end if ;

if(STAGE_CNT >= 0 and TRIG_WR_O'event) then
WR_ADDR_0<=BIT_TO_LOGIC(INT_TO_BITSARRAY(k1, 8)):

124

kl := k1 + 1 ;

end if
if(STAGE_CNT >= 0 and TRIG_WR_1l'event) then
WR_ADDR_1 <= BIT_TO_LOGIC(INT_TO_BITSARRAY ((k2 +
L),8)):
k2 := k2 + 1 ;
end if ;
end if ;

end process ;

125

APPENDIX G: THE BEHAVIOR OF RAM

library fpu, fft;
use fft.basic.all, fpu.refer.all;

---------------- the size of ram is 256 by 32
entity RAM 256 is

generic (read_cycle_t : TIME := 300 ns ;-- read cycle time

300 ns ;
-- write cycle time

write_cycle_t : TIME :

data_setup t : TIME := 150 ns ;
-- data setup time
chs_setup_t : TIME := 150 ns ;

-- chip set up time

wrt_pulse width_t : TIME := 150 ns ;
-~ write pulse width

chs_access_t :TIME := 50 ns);
-- access time from chip select

in LOGIC_ARRAY(7 downto 0);

port(addr_lines
in BIT ; --=- it is chip selec* signal

chs

rw_en in BIT :

--=- it 1is read/write enable

signal
i_data_lines : in LOGIC_ARRAY(31 downto 0);
o_data_lines : out LOGIC_ARRAY(31 downto 0)):

end RAM_256 ;

library fft, fpu;
use fpu.refer.all, fft.basic.all ;
architecture behavioral of RAM_256 is

signal addr_buf ¢ LOGIC_ARRAY(addr_lines'left downto
addr_lines'right);

126

signal i_data_lines_buf
signal rw_en_buf : BIT

signal chs_buf : BIT ;

begin

-8

LOGIC_ARRAY(i_data_lines'left
downto i_data_lines'right

addr_buf <= addr_lines ;
i_data_lines_buf <= i_data_lines ;
rw_en_buf <= rw_en ;
chs_buf <= chs ;
--------------- when chip is enable -===--c---cec——--

--- check for read cycle timing violation ---

process (rw_en, chs)

begin

if ((rw_en = '1') and (chs ='0')) then
assert addr_buf'delayed(read_cycle_t) 'stable
report " read cycle time error "
severity error ;
end if ;
end process ;

--- check for write cycle time violation ---
process (rw_en, chs)
begin
if (rw_en = '0' and chs ='0') then
assert addr_buf'delayed(write_cycle_t) 'stable
report " write cycle time error "
severity error ;
end if ;
end process ;

--- check for write pules width violation ---
process (rw_en, chs)
begin

if (rw_en = '0' and chs ='0') then

127

assert rw_en_buf'delayed(wrt_pulse_width_t) ‘'stable
report " read/write time error "
severity error ;
end if ;
end process ;

--- check for chip select setup time violation ---
process (rw_en, chs)
begin
if (rw_en = '0' and chs ='0') then
assert chs_buf'delayed(chs_setup_t) 'stable
report " chip select setup time error "
severity error :;
end if ;
end process ;

--- check for data setup time violation ---
process(rw_en, chs)
begin
if (rw_en = '0' and chs ='0') then
assert i_data_lines_buf'delayed(data_setup_t) 'stable
report " data setup time error "
severity error ;
- end if ;
end process ;

process(rw_en, chs}
variable cell_num :INTEGER := 0
variable data_buf : LOGIC_ARRAY(i_data_lines'left
downto i_data_lines'right);

variable cell_matrix :
LOGIC_MATRIX(O to (2** addr_lines'length - 1)) ;
begin

cell num := BITSARRAY_TO_INT(LOGIC_TO_BIT(addr_buf)) :

~--- write mode - ---—--c=----

if((rw_en = '0') and (chs'event and chs = '0'))
then

data_buf := i_data_lines_buf ;

cell matrix(cell_num) := data_buf ;

---- read mode ----======--
elsif((rw_en = '1') and (chs'event and chs = '0'))
then
o_data_lines <= "“ZZ2222222222222222Z22222222222222",
cell matrix(cell_num) after chs_access_t ;

---- chip disable ------
else
o_data_lines <= "22222Z22Z2Z22222222222222222222222";
end if ;
end process ;

end behavioral:

129

APPENDIX H: THE S8OURCE FILE OF THE FFT SYSTEM

library fpu, fft:
use fpu.refer.all, fpu.readl_file.all, fft.basic.all;
use fft.ram 256, fft.convert.all
entity sys2 is
generic(test_number : POSITIVE := 2) ;
~-- form 1 to 6 --—-

end ;

library fpu, fft;

use fpu.refer.all, fpu.readl_file.all, fft.basic.all;
use fft.ram 256, fft.convert.all ;

architecture simple of sys2 is

function RESOLVE(bits_1, bits_2: LOGIC_ARRAY)

return LOGIC_ARRAY is

variable result: LOGIC_ARRAY(bits_1l'left downto
bits_1'right);

variable testl : BOOLEAN

variable test2 : BOOLEAN

- we

begin
testl := IS_HiZ OR_X(bits_1) ;
test2 := IS_HiZ OR_X(bits 2) ;

if(testl and test2) then
for i in bits_1l'range loop
result(i):= 'X' ;
end loop
elsif(testl) then
result := bits_2 ;
elsif(test2) then
result := bits_1 ;
else
assert(testl and test2)
report " bus can not resolve any one input signal "
severity error ;
end if ; .
return result ;
end RESOLVE ;

function TABLE1l(bits: BIT_ARRAY) return INTEGER is
variable result :integer := 0 ;
begin
result := 2#%*(BITSARRAY_TO_INT(bits)+ 1) ;
return result ;

130

end TABLE1l ;

function TABLE2(N: INTEGER) return INTEGER is
variable result :integer := 0 ;
begin

while 2**(result) < N loop
result := result + 1 ;

end loop :

return result ;

end TABLE2 ;

type vector_set is array(positive range <>) of
BIT_ARRAY (2 downto 0) ;

function input_vector return vector_set is
begin

return("oo0oO"

"001"

"010"

"011"

"100"

lllooll) H

end input_vector ;

- W % w -

component RAM_ 256

generic(read_cycle_t : TIME := 300 ns ;
-- read cycle time

write_cycle_t : TIME := 300 ns ;
-- write cycle time

data_setup_t : TIME := 150 ns ;
-- data setup time

chs_setup_t : TIME := 150 ns ;

-- chip set up time
TIME := 150 ns;
-- write pulse width
chs_access_t : TIME := 50 ns);
-- access time from chip select

wrt_pulse_width_t

port(addr_lines : in LOGIC_ARRAY(7 downto 0);

-
3

chs BIT ;
--- active low chip select signal
rw_en : in BIT ;

--- active low write/read enable signal
i_data_lines : in LOGIC_ARRAY(31 downto 0);

131

o_data_lines : out LOGIC_ARRAY(31 downto 0)):;

end component ;

component FFT_CELL
generic (D_FPU_T : TIME := 110 ns);
port(a_real,a_img : in LOGIC_ARRAY(31 downto 0):
-=- a is the input signal.
in LOGIC_ARRAY(31 downto 0):
-- b is the input signal.
w_real,w_img : in LOGIC_ARRAY(31 downto 0);
-- W is the weight signal.
clock : in BIT := '1' ;
enable : in BOOLEAN := false ;
-- chip enable for am29325

b_real,b_img

ie : in BOOLEAN := FALSE ;
-- input enable for final stage output
oe : in BOOLEAN := FALSE ;

-- output enable for first stage input
c_real,c_img : out LOGIC_ARRAY(31 downto 0) ;
-~ ¢ is the output signal.
d_real,d_img : out LOGIC_ARRAY(31 downto 0));
-~ d is the output signal.

end component ;
for F1:FFT_CELL use entity fft.FFT_CELL(structural):

for all :RAM_ 256 use entity fft.RAM_256(behavioral):;

constant del_t : TIME := 100 ns ;
constant chs_setup_t : TIME := 200 ns ;
constant wrt_setup t : TIME := 200 ns ;

signal LEN ¢ BIT_ARRAY(2 DOWNTO O) := "Q00" ;
signal ISTO : BIT := '1° ;
signal CHE ¢ BIT := '1! ;
signal IN_R : BIT := '0' H
signal OUT_A : BIT := ‘0! ;
signal IN_E ¢ BIT := '1° ;
signal OUT_E ¢ BIT := '1° H
signal FFT_CMP : BIT := '0° ;
signal STAGE_CNT : INTEGER := -1 ;
signal OSTO : BIT := '1' ;
signal TRIG : BIT := '0' ;
signal EN ¢ BIT := '1° ;
signal SC : BIT := '0' ;
signal S1 : BIT := '0' ;

132

signal

signal
signal
signal

signal
signal
signal

signal
signal

signal
signal
signal
signal
signal

signal
signal

signal

signal
signal

signal
signal
signal
signal

signal

signal
signal
signal

signal
signal
signal

signal
signal
signal

signal
signal

ADDR_0

CHS_0O
RW_O
ADDR_WC

CHS_WC
RW_WC
ADDR_1

CHS_1
RW_1

TRIG_RD_O
TRIG_WR_O
TRIG_RD_1
TRIG_WR_1
RD_ADDR_0

RD_ADDR_1
WR_ADDR_O

WR_ADDR_1

CLOCK
times

IE

OE
ENABLE
STATE

EADDR_0O

ECHS_0
ERW_0O
EADDR_WC

ECHS_WC
ERW_WC
EADDR_1

s es e .. 6 28 08 00 ee 8¢ e se e

LOGIC_ARRAY(7 downto

= WZZ2222222";

LOGIC_ARRAY(7 downto

BIT := '1!
BIT := '1!

= "Z222222Z";
BIT := '1!
BIT := '1!

LOGIC_ARRAY(7 downto

= WZ222222722";

BIT :=
BIT

BIT
BIT
BIT
BIT

LOGIC ARRAY(7 DOWNTO

ll!
ll'

= WZ222222722"

LOGIC_ARRAY(7 DOWNTO

= "ZZ222222"

LOGIC_ARRAY(7 DOWNTO

= "Z2222ZZ22"

LOGIC_ARRAY(7 DOWNTO

= WZ2222222Z2"

BIT :=

integer

BOOLEAN
BOOLEAN
BOOLEAN
INTEGER

’1!

0

F
F

we wo

we we

lo!
L
10!
'o!
’
’

.
H

.
’

e “o W

ALSE
ALSE
FALSE
0

e we we

0)

0)

0)

0)
0)
0)

0)

LOGIC_ARRAY(7 downto 0)
= "22222222";

BIT :=
BIT :=

lll
lll

LOGIC_ARRAY (
= "Z2222222";

.
’

7 downto 0)

-y we

LOGIC_ARRAY(7 downto 0)

BIT := '1°!
BIT := '1!

= WZ2222222Z2";
BIT := '1°
BIT := *'1!
BIT := '0°'
BIT := '1' ;
BIT := '1' :

133

we we wo

signal
signal
signal
signal
signal
signal

signal

signal
signal
signal

signal

signal
signal
signal
signal
signal

signal

signal

signal

signal

signal

signal
signal

signal

CH_W ¢ BIT := '1' ;
RW_EN_ O : BIT := '1' ;
RW_EN_1 : BIT := '1' ;
RW EN W : BIT := '1' ;

ADDR_LINES_0 :LOGIC_ARRAY(7 downto O)
1= "ZZZ22222" ;
ADDR_LINES_1 :LOGIC_ARRAY(7 downto 0)

= WZ2222222" ;
ADDR_LINES_W :LOGIC_ARRAY(7 downto 0)
= "22222222" ;
R_in_real :LOGIC_ARRAY (31 downto 0)
1="ZZZZZZZ2Z2222222Z2ZZ2222222Z2Z2Z";
R_in_img ¢LOGIC_ARRAY (31 downto 0)
$="22222222222222222222222222222222" ;
RO_real :LOGIC_ARRAY (31 downto 0)
¢ =YX XXX XXX XXX XXX XXX XX XXX XXX XXXXXXY ;
RO_img :LOGIC_ARRAY (31 downto 0)

¢ =T XXX XX XX XXX XX XXX XXX XXX XX XX XXX XXX ;

inl_real :LOGIC_ARRAY (31 downto 0)
1="22222222222222222222222222222222" ;
inl_img :LOGIC_ARRAY (31 downto 0)
T="22222222222222222222222222222222" ;
in2_real :LOGIC_ARRAY (31 downto 0)
T="22222222222222222222222222222222" ;
in2_img ¢:LOGIC_ARRAY (31 downto 0)
T="22222222222222222222222222222222" ;
Rl_real ¢ LOGIC_ARRAY (31 downto 0)
-—"xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx";
R1l_img :LOGIC_ARRAY (31 downto 0)
=X XXX XXX XXX XX XXX XXX XXX XX XXX XX XXX ;
W_real :LOGIC_ARRAY (31 downto 0)
=YX A XXX XXX XA XX XXX XXX XXX XXX XXX XXXX" ;
W_img :LOGIC_ARRAY (31 downto 0)
¢ = XXAXXXXXXXXXAXXXA XXX XXX XX XXXXXXX" ;
W_in_real :LOGIC_ARRAY (31 downto 0)
¢ =T XXXX XXX XXX XXX XXX XXX XXX XXX XX XXXXX" ;
W_in_img :LOGIC_ARRAY (31 downto 0)

: =P XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKX" ;

outl_img :LOGIC_ARRAY (31 downto 0)
$ =X XXX XXX XXX XX XX XX XX XXXXXXXXXXXXXX" ;
outl_real ¢:LOGIC_ARRAY (31 downto 0)
$=IXXXX XXX XXX XXX XXX XXX XXX XXX XXXXXXXY ;
out2_img ¢LOGIC_ARRAY (31 downto 0)

134

= XXXXXAXAXX XXX XXX XXX XX XXX XX XXX ¢
signal out2_real :LOGIC_ARRAY (31 downto 0)
Holi) $.0.09.0.000066000060666006606660000 ¥

signal ex_img :LOGIC_ARRAY (31 downto 0)
¢ ST XXXXXXX XXX XXX XXX XXX XX AKX XXX XX XXX ;
signal ex_real ¢LOGIC_ARRAY (31 downto 0)
=T XXX XXX XXX XXX XXX XX XXX XXX XXX XXX XXX ;
signal exW_real :LOGIC_ARRAY (31 downto 0)
T XXX XXX XXX AXX XXX XXX XXX XXX XKXXKXKXX" ;
signal exW_img ¢LOGIC_ARRAY (31 downto 0)

= XX XXXY XXX XX XXX XXX XXX XXX XXX XKXXXKXXXY

signal FFT_img :LOGIC_ARRAY (31 downto 0)
= XX XXX XX XXX XXX XXX XX XX XXX XXX XX XXX XX ;
signal FFT_real ¢:LOGIC_ARRAY (31 downto 0)
3 =X XX XXX XXX XXX XX XXX XXX XXX XXX ;
signal DONE : BOOLEAN
1= false ;
signal F ¢ INTEGER
=0
signal N ¢ INTEGER
=0 ;
signal L ¢ BIT_ARRAY(2 downto 0)
:= "Q00" ;

begin
CLOCK <= NOT(CLOCK) after 500 ns ;

times <= times + 1 after 1000 ns

assert not(DONE)
report "this is enough -- good"
severity error ;

------ active low
------ active low
------ active low

CH_O0 <= CHS_O0 and ECHS_O
CH_1 <= CHS_1 and ECHS_1
CH_W <= CHS_WC and ECHS_WC

we wg

-

RW EN_0 <= RW 0 and ERW_ 0 ; ==—=—=-- active low
RW EN 1 <= RW 1 and ERW l; —wee—- active low
Rw EN W <= RW WC and ERW _WC ; e==——- active low

ADDR_LINES_O0 <= RESOLVE(ADDR O , EADDR 0) ;
ADDR_LINES_1 <= RESOLVE(ADDR_1 , EADDR 1) ;

135

ADDR_LINES_W <= RESOLVE(ADDR_WC , EADDR_WC) :

------------------- initialization --==---ce-c—o—-
L <= input_vector(test_number) ;
N <= TABLE1(L)
F <= TABLE2(TABLEl(L))

import input data by universal controller
process(times, CLOCK)

variable data_r : REAL MATRIX(1 to 1000)
variable data_i : REAL_MATRIX(1 to 1000) ;
variable data_wr: REAL_MATRIX(1 to 1000) ;
variable data _wi: REAL_MATRIX(1 to 1000) ;
variable i ¢ INTEGER := 1 ;
begin
if(times = 0) then

read_real ("real.dat", data_r)

read_real("img.dat", data_i) :

read_real("w_real.dat", data_wr) ;

read_real (
else

if(times <= N and (CLOCK'event)) then
ex_real <= BIT_TO_LOGIC(convertl(data_r(i))
ex_img <= BIT TO_LOGIC(convertl (data_i(1i))
exW_real <= BIT TO_LOGIC(convertl (data_wr(i
exw_lmg BIT TO_LOGIC(convertl(data_wi (i

elsif(times =(N+1) and (CLOCK'event)) then
exW_real <= BIT_TO_LOGIC(convertl(data_wr(i)))

"w_img.dat", data_wi) ;

)
)
)))
)))

~e wa

s wa

exW_img <= BIT TO_LOGIC(convertl (data_wi(i)))
ex_real <= "22222222222222222222222222222222" ;
ex_img <= MZ2Z222Z2Z2Z2722Z222Z2222Z22Z222Z2Z2Z22Z2222";

elsif(times

(N*(F+1) /2+1)) then
"22222222222222222222222222222222" ;
"22222222222222222222222222222222" ;

end if ;
end process ;

--- generate addressing signal by universal controller --

process (times, CLOCK)
begin
if(times = 1 and (CLOCK'event and CLOCK='l')) then
82 <= '1' ;

EADDR_O <= "00000000"
EADDR_WC<= "00000000"
ISTO <= '0' ;

- wp

136

elsif (times <= N and (CLOCK'event)) then
EADDR_O <= INC(EADDR_O)
EADDR_WC <= INC(EADDR WC) ;

elsif(times <= (N*(F+1)/2) and (CLOCK'evert)) **en
EADDR_WC <= INC(EADDR WC) ;

elsif(times = (N*(F+1)/2+1)) then
EADDR_O <= "ZZ2Z2Z22ZZZ" ;
EADDR_WC <= "ZZZ22Z222" ;
S2 <= '0' ;

end if ;

if(times <= N and (CLOCK'event)) then

ECHS_O0 <= '1!',

‘o' after 1 ns ,

'1' after chs_setup_t :
ERW_0 <= '1°',

'0' after 1 ns ,

'1' after wrt_setup_t ;

ECHS_WC <= '1°',

'0!' after 1 ns ,

'1' after chs_setup_ t
ERW_WC <= '1',

'0' after 1 ns ,

'1' after wrt_setup_t

~a

elsif (times <= (N*(F+1)/2) and (CLOCK'event))
then

ECHS_WC <= '1°',
'0' after 1 ns ,
'l' after chs_setup_ t ;
ERW_WC <= '1°',
'0' after 1 ns ,
'1' after wrt_setup_t
else
ECHS_WC <= '1°';
ERW_WC <= '1"';
end if ;

if (times < (N*(F+l1)/2+1)) then
CHE <= '1' ;
elsif(times = (N*(F+1)/2+1)) then

CHE <= '1', '0' after 10 ns ;
LEN <= L;
ISTO <= '0';
end if ;
------------- end of program =---=--<-=ce---

137

if ((FFT_CMP = '0' and FFT_CMP'event)
and (times >= 1)) then
CHE <= '1' ;
DONE <= TRUE ;
end if ;
end process ;

------------------ FFT controller —-—--—--—-ccccccac—c—c—-o-
process(CLOCK, IN_E, OUT_E)
variable CNT : INTEGER := 0 ;
begin
if ((IN_E='0' and IN_E'event) and
(OUT_E='0'and OUT_E'event))then
CNT := 0 ;
IN R <= '1';
OUT_A <='0' ;
IE <= TRUE ;
ENABLE <= TRUE :;
elsif((CLOCK'event and CLOCK = '0')) then
CNT := CNT + 1 ;
if(CNT = 4) then
OE <= TRUE ;
elsif(CNT = 5) then
OUT A <= '1' ;
end if ;
#21sif((CNT >=4) and (OUT_E = ‘'1') and (CLOCK'event))
then
OUT A <= '0' ;
ENABLE <= FALSE ;
OE <= FALSE after 500 ns ;
elsif((CNT >=4) and (IN_E ='1')) then
IN R <= '0' ;
IE <= FALSE ;
end if ;

end process ;

- - - — - D T Y W —— P T W W . . D W - ————————— " ——

-------- address sequenCer —--—-—-—-———---ssseecccmccmm e m e

------- generate step by step signal ------
process{ CLOCK, LEN, CHE, STATE, IN_R, OUT_A)
variable R_CNT INTEGER := 0 ;
variable W_CNT INTEGER := 0 ;
variable PTR BIT t= 'Ot ;
variable COE_BUF : LOGIC_ARRAY(7 downtn 0)
t= "00000000" ;

20 e o0

138

begin
if ((CHE = '0'))then
if ((STATE = 0) and (CLOCK'event
and CLOCK = '1'))then

----- find out actural length ------

-=== gdo state 0 =———==——-
STAGE_CNT <= 0 ;
COE_BUF := "00000000" ;
PTR := ISTO ;

FFT_CMP <= '1!' ;
STATE <= 1 ;

elsif ((STATE = 1) and
(CLOCK'event and CLOCK= '1'))then

----- do state 1 which is initization state —----

IN E <= '0' ;
OUT_E <= '0' ;
R_CNT := 0 ;
W_CNT := 0 ;
EN <= '0' ;

if((INR = '1')) then
-- gen. next addr
STATE <= 3 ;
else
STATE <= 7 ;
end if ;

elsif((2 <= STATE) and (STATE <= 4 })
then

--=-=- do state 2, 3, or &

if((INR = '1' and R _CNT < 2*N and
CLOCK'event)) then

if(PTR = '0')then
--- when RAM_0 is read

139

if ((CLOCK = '0')) then

ADDR_O <= RD_ADDR_O ;
TRIG_RD_O <= not(TRIG_RD 0);
--generate next addr

ADDR_WC <= COE_BUF ;
CHS_WC <= '1¢,
'0' after 1 ns ,
'1' after chs_setup_ t

~e

RW_WC <= '1' ;
COE_BUF := INC(COE_BUF)
elsif (CLOCK = '1')then
ADDR_O <= RD_ADDR_1 ;
TRIG_RD_1 <= not(TRIG_RD_1)
--generat next addr

end if ;
CHS_O0 <= '1°',
'0' after 1 ns ,
'1' after chs_setup t ;
RW 0 <= '1' ;

elsif(PTR = '1')then
-- when RAM_1 is read

if ((CLOCK = '0')) then

ADDR_1 <= RD_ADDR_O ;
TRIG_RD_O <= not(TRIG_RD 0):;
--generate next addr

ADDR_WC <= COE_BUF ;
CHS_WC <= '1°',
'‘0' after 1 ns ,
'1' after chs_setup t ;

RW_WC <= '1' ;
COE_BUF := INC(COE_BUF)
elsif (CLOCK = '1')then
ADDR_1 <= RD_ADDR_1 ;
TRIG_RD_1 <= not(TRIG_RD 1);
--generate next addr
end if ;
CHS_1 <= '1°',
'0' after 1 ns ,
'1' after chs_setup t ;
RW_1 <= '1' ;

end if ;

140

R_CNT = R.CNT + 1 ;
STATE <= 3 ;
TRIG <= not(TRIG) after del_t;

elsif(R_CNT = 2*N) then
IN E <= '1' ;
EN <= '1"' ;

end if ;

--------- writing ---=-=—e--
if((OUT_A = '1l' and W_CNT < 2*N and
CLOCK'event) or (OUT_A'event and OUT A = '1'))
then

if(PTR = '0') then
if(CLOCK = '0') then
ADDR_1 <= WR_ADDR_O ;
TRIG_WR_O <= not(TRIG_WR_O) ;
elsif(CLOCK = '1') then
ADDR_1 <= WR_ADDR 1 ;
TRIG_WR_1 <= not(TRIG_WR_1) ;
end if ;
CHS_1 <= '1',
'0' after 30 ns ,
'1' after chs_setup_ t ;

RW_1 <= '1',
'0' after 30 ns,
'1' after wrt_setup t ;

elsif(PTR = '1') then
if(CLOCK = '0') then
ADDR_O <= WR_ADDR O ;
TRIG_WR 0 <= not(TRIG_ WR 0) ;

elsif(CLOCK = '1') then
ADDR_O0O <= WR_ADDR_1 ;
TRIG_WR_1 <= not(TRIG_WR_ 1) ;
end if ;
CHS_O0 <= '1°',
'0' after 30 ns ,
'1' after chs_setup_t
RW_O0 <= '1°',
'0' after 30 ns,
'l1' after wrt_setup_t ;

end if ;

141

if(CILOCK = '0') then

S1 <= '0' ;
SO0 <= '1' ;
elsif(CLOCK = 'l1') then
S1 <= '1' ;
S0 <= '0' ;
end if ;
W_CNT :

= W CNT + 1 ;
STATE <= 2 ;

elsif(W_CNT = 2*N) then
OUT_E <= '1' ;
Sl <= '0' after 500 ns
S0 <= '0' after 500 ns

end if ;

we o

if((W_CNT = 2*N) and (R_CNT = 2*N))
then

STATE <= 7 ;
end if ;

do state 7 , increment stage_counter

elsif (STATE = 7) then
if (IN_E = '1' and OUT_E = '1') then
STAGE_CNT <= STAGE_CNT + 1 ;
PTR := NOT(PTR) ;
STATE <= 8 ;

else
if(INE = '1') then
STATE <= 2 ;
else
STATE <= 3 ;
end if ;
TRIG_RD_0 <= not(TRIG_RD_0) ;
TRIG_RD_1 <= not(TRIG_RD 1) ;
TRIG_WR_O <= not(TRIG_WR_0) ;
TRIG_WR_1 <= not(TRIG_WR_1) ;
end if ;
----- do state 8 which is final -----

elsif (STATE = 8) then

142

if (STAGE_CNT = (F+1)) then
FFT_CMP <= '0' after 500 ns ;
OSTO <= PTR ;
STATE <= -1 ;

elsif(STAGE_CNT <(F+1)) then
STATE <= 1 ;

end if ;
end if ;
elsif(CHE = '1') then
IN_E <= '1' ;
OUT E <= '1' ;
S0 <= '0!' ;
Sl <= 'Q!' ;
OSTO <= '0°!';
ADDR 0 <= "“ZZZ2Z22ZZ";
CHS_ 0 <= '1' ;
RW_0O <= '1';
ADDR_WC<= "“2Z2ZZZ2Z2";
CHS_WC <= '1' ;
RW_WC = '11;
ADDR 1 <= "“ZZ222Z2ZZZ";
CHS_1 <= '1' ;
RW_1 <= '1°';
STATE <= 0 ;
end if ;

end process ;

process (TRIG_RD_0, TRIG_WR 0, TRIG RD 1,

TRIG_WR_1, STAGE_CNT)

variable jump_dis : INTEGER := 0 ;
variable addr_dis : INTEGER := 1 ;
variable il : INTEGER := 0 ;
variable i2 : INTEGER := 0 ;
variable k1 : INTEGER := 0 ;
variable K2 ¢ INTEGER := 0 ;
variable j1 ¢ INTEGER := 0 ;
variable j2 ¢ INTEGER := 0 ;
variable L : INTEGER := 0 ;
begin

if(STAGE_CNT'event and STAGE_CNT >= 0) then

addr_dis := TABLE1(LEN) / 2**(STAGE_CNT) ;
jump_dis := TABLE1(LEN)#2 / 2%#(STAGE_CNT) ;
il := 0 ;
i2 =0 ;

143

j1 := 0 ;

j2 =0 ;

k1l := 0 ;

k2 := 0 ;
else

if(STAGE_CNT >= 0 and TRIG_RD_O'event) then
RD_ADDR_O <=
BIT_TO_LOGIC(INT_TO_BITSARRAY(((il mod addr_dis) +
j1l*jump_dis),8));

if(((i1+1) mod addr_dis)= 0) then
j1 == j1 + 1 ;

end if ;

i1 := i1 + 1;

end if ;

if(STAGE_CNT >= 0 and TRIG_RD_1l'event) then
RD_ADDR_1 <=
BIT_TO_LOGIC(INT_TO_BITSARRAY(((i2 mod addr_dis)
+ addr_dis + j2*jump_dis) ,8)) :

if(((i2+1) mod addr_dis)= 0) then
j2 = j2 + 1 ;

end if ;

i2 = i2 + 1;

end if ;

if(STAGE_CNT >= 0 and TRIG_WR_O'event) then
- WR_ADDR_O0 <= BIT_TO_LOGIC(INT_TO_BITSARRAY(k1, 8));
kl := k1 + 1 ;
end if ;

if(STAGE_CNT >= 0 and TRIG_WR_1l'event) then
WR_ADDR_ 1 <= BIT _TO LOGIC(INT TO _BITSARRAY ((k2+N),8)):
k2 = k2 + 1 ;
end if ;
end if ;

end process ;

----- simply depict the behavioral of 4 to 1 switch --

process(outl_real, outl_img, out2_real, ou-2_img,
ex_real, ex_img, SO, S1, S2)
variable test : BIT_ARRAY(2 downto 0) := "000" ;
begin
test := S0&S1&S2 ;

144

case test is
when "100" =>

R_in_real <= outl_real ;

R_in_img <= outl_img
when "010" =>

R_in_real <= out2_real ;

R_in_img <= out2_img
when "“001" =>

R_in_real <= ex_real ;

R_in_img <= ex_img 7

when others =>
R_in_real <= "“222222222227Z22272222227222222722222";
R_in_img <= "“222222222222222222Z222Z2222222222";

end case ;

end process ;

--------- simple depict D_FFT behavioral -------
process(RO_REAL, RO_IMG, R1_REAL, R1l_IMG, W_real, W_img,
TRIG, EN)

begin
if(EN = '0') then
if (TRIG = '1l' and TRIG'EVENT) then
inl_real <= RESOLVE(RO_REAL, R1_REAL) ;
inl_img <= RESOLVE(RO_IMG, R1_IMG)
W_in_real <= W_REAL ;
W_in_img <= W_IMG ;
elsif(TRIG = '0' and TRIG'EVENT) then
in2_real <= RESOLVE(RO_REAL, Ri_REAL) ;
in2_img <= RESOLVE(RO_IMG, R1_IMG) ;
end if ;
end if ;

end process ;

F1:FFT_CELL
generic map(D_FPU_T =>110 ns)
port map(inl_real, inl_img,
in2_real, in2_img,
W_in_real, W_in_img,
clock, ENABLE, IE, OE, outl_real,
outl_img, out2_real, out2_img) ;

145

RO_r:RAM_256 generic map(read_cycle_t => 300 ns ,

write_cycle_t => 300 ns ,
data_setup_ t => 150 ns ,
chs_setup_t => 150 ns ,
wrt_pulse width_t => 150 ns ,
chs_access_t => 50 ns)

port map (ADDR_LINES_O, CH_O, RW_EN_O,R_in_real,RO_real)

RO_i:RAM_256 generic map(read_cycle_t => 300 ns ,
write_cycle_t => 300 ns ,
data_setup_t => 150 ns ,
chs_setup_t => 150 ns ,
wrt_pulse width_t => 150 ns ,
chs_access_t => 50 ns)

port map(ADDR_LINES_O0, CH_O, RW_EN_O0, R_in_img, RO_img)

R1_r:RAM_256 generic map(read_cycle_t => 300 ns ,
write_cycle_t => 300 ns ,
data_setup_t => 150 ns ,
chs_setup t => 150 ns ,
wrt_pulse_width_t => 150 ns ,
chs_access_t => 50 ns)

port map(ADDR_LINES_1, CH_1, RW_ EN 1, R in_real, Rl_real):

Rl i:RAM_256 generic map(read_cycle_t => 300 ns ,
write_cycle_t => 300 ns ,
data_setup_t => 150 ns ,
chs_setup_t => 150 ns ,
wrt_pulse_width_t => 150 ns ,
chs_access_t => 50 ns)

port map(ADDR_LINES_1, CH_l RW_EN_1, R_in_img,
Rl_img);

W_r:RAM_256 generic map(read_cycle_t => 300 ns ,
write_cycle_t => 300 ns ,
data_setup_t => 150 ns ,
chs_setup_t => 150 ns ,
wrt_pulse_width_t => 150 ns ,
chs_access_t => 50 ns)

port map(ADDR_LINES W, CH_W, RW_EN_W, exW_real,
W_real);

W_i:RAM_256 generic map(read_cycle_t => 300 ns ,

146

write_cy: e_t
data_setu. _t
chs_setup_t
wrt_pulse_ width_t
chs_access_t

vVVvVyVv

vV Vv

300
150
150
150
50

port map(ADDR_LINES_W, CH_W, RW_EN_W, exW_img,

W_img);

end simple;

147

ns
ns
ns
ns
ns

A et T T T N

APPENDIX I: THE ACCES8SORY FILES

A. THE SOURCE FILE ASSOCIATED WITH DATA READ

library fpu;
use STD.TEXTIO.all:;
package READ1_FILE is

type REAL MATRIX is array(integer range <>) of real ;]

procedure read_real (F_name:in STRING ;
data_array:out REAL MATRIX); g

end READ1_FILE ;

library fpu:
use STD.TEXTIO.all;
package body READ1_FILE is

procedure read_real (F_name:in string; data_array: out
REAL_MATRIX) is

~-- this procedure is design for input real data

file F: text is in F_name;
variable temp: LINE;
- variable temp_data:real;
variable L_flag: BOOLEAN := true;
variable count : INTEGER := 1;
begin

-- extract the real data_array from data file.
while (not endfile(F)) loop
readline(F, temp) ;
read(temp,temp data):; v
data_array(count) := temp_data ;
count := count + 1 ;
end loop;
end read_real;

end READ1_FILE:

148

library fpu:
use STD.TEXTIO.all, fpu.refer.all;
package READ_FILE is
function bit_type (char : CHARACTER)
return BIT ;
procedure read_data(F_name:in STRING ; data_array:out
BIT_MATRIX) ;
end READ_FILE ;

library fpu;
use STD.TEXTIO.all, fpu.refer.all;
package body READ_FILE is

function bit_type(char : CHARACTER)
return BIT is
variable b: BIT ;

begin
if (char = '1') then
b := 1'1';
elsif (char = '0') then
b := '0';
end if ;
return b;

end bit_type ;

procedure read_data(F_name:in string;
data_array:out BIT_MATRIX) is

--- this procedure is design for input data length 32 bits

" file F: text is in F_name;
variable temp: LINE;
variable temp_char:CHARACTER;
variable IO_temp: BIT_ARRAY(1l to 32);
variable L_flag: BOOLEAN := true;
variable count : INTEGER := 1;
variable i :integer := 2;
begin

-- cut out the unwanted space or portion.
while not endfile(F) 1loop
L_flag := true ;
i:=2;
readline(F,temp);
while L_flag loop
read(temp, temp_char);

if(temp_char = '1l' or temp_char = '0') then
L_flag := false ;
end if:;

149

end loop ;

-- extract the bits array from data file.
IO_temp(l) := BIT_TYPE(temp_char)
while (i <= 32) loop
read(temp, temp_char);
if(temp_char = 'l' or temp_char = '0')
then
I0_temp(i) := BIT_TYPE(temp_char) ;
elsif(endfile(F)) then
assert not (temp_char /= 'l' and temp_char /= '0')
report " reach down to the end of data_file. ";
end if ;
i::=1i+1;
end loop ;

data_array(count):= IO_temp ;
count := count + 1 ;
end loop;
end read_data;
end READ_FILE;

B. THE SOURCE FILE OF THE CONVERSION BETWEEN FP_NUMBER AND
IEEE FORMAT

library fpu ;
use fpu.refer.all;
package CONVERT is

function CONVERT1(value : REAL)
return BIT_ARRAY ;

end CONVERT ;

package body CONVERT is

--- convert fp_number into IEEE standard format -----
------ procession = 32

function CONVERT1(value : REAL)
return BIT_ARRAY is
variable result ¢ BIT_ARRAY(31 downto 0)
t= "*0000000000000000000000000000G0000" ;

150

variable mantissa_bits
variable exp_bits

BIT_ARRAY(22 downto 0)
BIT_ARRAY(7 downto 0)

- we

variable sign : BIT :
variable quot : INTEGER := 0 ;
variable local : REAL := 0.0 ;

begin

if(value > 0.0) then
sign := '0' ;

elsif(value < 0.0) then
sign := '1' ;

elsif(value = 0.0) then
return result ;

end if ;

local := abs(value)

while (local >= 2.0) or (local < 1.0) loop
if (local >= 2.0) then
local := local * 0.5 ;
quot := quot + 1 ;
elsif(local < 1.0) then
local := local * 2.0 ;
quot := quot -1 ;
end if ;
end loop ;

mantissa_bits :=
FP_TO_BITSARRAY((local-1.0),mantissa_bits'length);

exp_bits :=
INT_TO_BITSARRAY((quot+127), exp_bits'length) ;
result := sign & exp_bits & mantissa_bits ;
return result ;

end CONVERT1

end CONVERT ;

151

10.

11.

LIST OF REFERENCES

VHDL MANUAL, 2™ed., IEEE 1.76, 1989.

Lipsett, R., Schaefer, C.F., and Ussery, C., VHDL:

Hardware Description And Design, Kluwer Acadenic
Publishers, 1989.

J. R. Armstrong, CHIP-LEVEL MODELING WITH VHDL, Prentice
Hall, 1989.

L. H. Pollard, Computer Design And Architecture, Prentice
Hall, 1990, page 49.

J. L. Heanesy & D.A. Patterson, Computer Architecture &
Quantitative Approach, Morgan Kaufmamn, page A-14.

D. Stevenson, "A Proposed Standard For Binary Floating
point Arithmetic", IEEE Computer, March 1981.

S. Carlson, Introduction To HIDIL-Besed Design Using VHDL,
Synopsys, Inc., page 5.

R. D. Strum and D. E. Kirk, First Principles Of Discrete

Sysiems And Digital Signal Processing, Addison wesley,
1988, pages 466 - 522.

A. K. Jain, Fundamentals Of Digital Image Processing,
Prentice Hall, 1989, pages 150 - 151.

Array Processing And Digital Signal Processing Hand Book,
pages 18-20.

A. J. Kern an1 T. E. Cutis, "A Fast 32-bits Complex Vector
Processing Engine", Proceeding Of The Institute Of

Acoustics, Vol 11 part 8, 1989.

152

INITIAL DISTRIBUTION LIST

No. Copies

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

Department Chairman, Code EC

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5100

Professor Chin-Hwa lLee, Code EC/Le

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5100

Professor Chyan Yang, Code EC/Ya

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5100

Y.S. Wu, Code 8120
Naval Research Laboratory

‘Washington, DC, 20375

Hu, Ta-Hsiang

26 LANE415, LEIN WU RD,
TAICHUNG, TAIWAN 40124
R. 0. C.

153

