
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1989-12

Turbo Pascal implementation of a distributed

processing network of MS-DOS microcomputers

connected in a master-slave configuration

Ard, Nelson C.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/27317

NAVAL POSTGRADUATE SCHOOL

Monterey , California

THESIS
ft kiss

TURBO PASCAL IMPLEMENTATION OF A DISTRIBUTED
PROCESSING NETiORK OF MS-DOS MICROCOMPUTERS
CONNECTED IN A MAS'l'ER-SLAVE CONFIGURATION

by

NELSON C. ARD
i * *

DECEMBER 1989

Thesis Advisor: Uno R. Kodres

Approved for public release; distribution is unlimited

T247164

Unclassified
IECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Form Approved
OMB No 07040188

la REPORT SECURITY CLASSIFICATION

Unclassified
lb RESTRICTIVE MARKINGS

Unrestricted
2a SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION /DOWNGRADING SCHEDULE

3 DISTRIBUTION/ AVAILABILITY OF REPORT

Approved for public release; distribution
is unlimited

i PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

5a NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

6b OFFICE SYMBOL
(If applicable)

52

7a NAME OF MONITORING ORGANIZATION

>c. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

7b ADDRESS (City, State, and ZIP Code)

ia. NAME OF FUNDING /SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

k ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

1 TITLE (Include Security Classification)

IURBO PASCAL IMPLEMENTATION OF A DISTRIBUTED PROCESSING NETWDRK OF MS-DOS MICROCOMPUTERS
CONNECTED IN A MASTER-SLAVE CONFIGURATION
2 PERSONAL AUTHOR(S)

Ard, Nelson C.
3a TYPE OF REPORT

Vlaster's Thesis

3b TIME COVERED
FROM TO

14 DATE OF REPORT (Year, Month, Day)

December 1989

5 PAGE COUN':

308

6 supplementary notation The views expressed in this thesis are those of the author and do
not reflect the official policy or position of the Department of Defense or the U.S.
gQMeaaaeai:

COSATI CODES

FIELD GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Distributed Processing, Local Area Network, Star Network,
Turbo Pascal

1 9 ABSTRACT (Continue on reverse if necessary and identify by block number)

This thesis describes the design and implementation of a distributed processing network
bf IBM PC compatible computers capable of performing parallel processing tasks. The
network is a star cluster local area network, with the central computer controlling the
Dperations of the satellite computers on a sequential basis.
The local area network software operates over the computer's standard RS-232C comnuni-

^ations ports, and is currently implemented to allow the central computer to operate two
satellite computers. Processing tasks are dispatched to the satellite computers as
programs which run to completion on the satellite computers. Utility programs within the
software include file and message transfer to start the programs on the satellite
computers and to obtain the output of the remotely executed program, configuration
atilities to set the corrrnunications port parameters, and windowing utilities for display
of information normally presented on the remote computer's display. The program is

implemented in Turbo Pascal 4.0 under the MS-DOS operating system, version 3.21.

20 DISTRIBUTION 'AVAILABILITY OF ABSTRACT

Q UNCLASSIFIED/UNLIMITED SAME AS RPT d t
IC USERS

21 ABSTRACT SECURITY CLASSIFICATION

Unclassified
\2a NAME OF RESPONSIBLE INDIVIDUAL

Professor Uno Kodres
22b TELEPHONE (Include Area Code)

(408) 646-2197
2c OFFICE SYr.

52Kr

DForm 1473, JUKI 86 Previous editions are obsolete

S/N 0102-LF-014-6603

SECURITY CLA . ()F THIS PAGE

Unclassified

Approved for public release; distribution is unlimited

Turbo Pascal Implementation of a Distributed Processing Network of

MS-DOS Microcomputers Connected in a Master-Slave Configuration

by

Nelson C. ,Ard

B.S., Virginia Polytechnic Institute and State University, 1974

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

DECEMBER 1989

ABSTRACT

This thesis describes the design and implementation of a

distributed processing network of IBM PC compatible computers capable

of performing parallel processing tasks. The network is a star cluster

local area network, with the central computer controlling the

operations of the satellite computers on a sequential basis.

The local area network software operates over the computer's

standard RS-232C communications ports, and is currently implemented to

allow the central computer to operate two satellite computers.

Processing tasks are dispatched to the satellite computers as programs

which run to completion on the satellite computers. Utility programs

within the software include file and message transfer to start the

programs on the satellite computers and to obtain the output of the

remotely executed program, configuration utilities to set the

communications port parameters, and windowing utilities for display of

information normally presented on the remote computer's display. The

program is implemented in Turbo Pascal 4.0 under the MS-DOS operating

system, version 3.21.

iii

DISCLAIMER

The views expressed in this thesis are those of the author and do

not reflect the official policy or position of the Department of

Defense or the U.S. Government.

Several of the terms used in this thesis refer to commercial

products for which the manufacturer or vendor holds a trademark. All

registered trademarks appearing in this thesis are cited below with the

firm holding the trademark in lieu of citing the holder with each

individual occurance of the trademark.

Bell Laboratories, Murray Hill, New Jersey
UNIX Operating System

Board of Regents, University of California at San Diego (USCD) , San

Diego, California
UCSD Pascal Programming Language

Borland International, Incorporated, Scotts Valley, California
Turbo Pascal Programming Language

Digital Research Incorporated, Pacific Grove, California
Control Program/Microprocessor (CP/M) Operating System

International Business Machines Corporation, Boca Raton, Florida
IBM PC Personal Computer
IBM PC/AT Personal Computer

Microsoft Corporation, Bellvue, Washington
Microsoft Disk Operating System (MS-DOS)

RR Software Incorporated, Madison, Wisconson
JANUS/Ada Programming Language

United States Department of Defense
Ada Programming Language

Zenith Data Systems Corporation, St. Josephs, Michigan
Z-248 Personal Computer

IV

TABLE OF CONTENTS

I

.

INTRODUCTION 1

A

.

BACKGROUND 1

B

.

PROJECT DESCRIPTION 1

1

.

Target Hardware 1

2. Network Topology 2

3

.

Network Media 2

4. Software 2

a. Operating System 2

b. Programming Language 2

5. Proposed Capabilities 2

a. File Transfer 2

b. Distributed Processing 2

c. Control of Multiple Slave Microcomputers 3

d

.

Remote Login 3

e

.

Error Handl ing 3

C

.

STRUCTURE OF THE THESIS 3

I I

.

HARDWARE 5

A. THE IBM PC/AT PERSONAL COMPUTER 5

1

.

The Central Processor Unit 5

2. Interrupts 7

3. Communications Ports 8

4. Programmable Interrupt Controller (PIC) 10

III. THE OPERATING SYSTEM 12

A. BACKGROUND 12

B. CHILD PROCESSES 14

1 . Program Segment Prefix 14

a. Interrupts to be Restored on Program

Termination 15

b. The Environment Segment Address 15

c. File Handle Table 16

d. Redirection 17

C

.

PROGRAM TERMINATION 19

IV. THE PROGRAMMING LANGUAGE 20

A

.

JANUS ADA 21

1. Memory Size Limitations of Compiled Code 21

2. Failure of the Child Process Call 23

3

.

Need for a Replacement Language 25

B

.

TURBO PASCAL 25

1

.

Information Hiding 26

2. Support for Child Processes 26

3

.

Data Abstraction 26

4. Unit Initialization 27

5. Unit Exit Procedures 27

6. Absolute Variables 27

7. File Input and Output 27

8. Port Read/Write 28

9. Interrupt Service Routines 28

10. Exception Handling 28

vi

11. High Level Software Interrupt Procedure 28

12. ROM BIOS and Hardware Interrupt Procedures 29

13. Support for a Larger Memory Model 29

C . IMPLEMENTATION 29

THE IMPLEMENTATION 30

A. THE HARDWARE CONFIGURATION 30

B. SOFTWARE CONFIGURATION 31

1

.

The Operating System 31

2. The Distributed Processing Program 31

3. ZCOPY File Transfer Program 32

4. Software Maintenance 32

a. Configuration 32

b. Software Modification 32

C

.

SYSTEMS DESIGN 32

1 . The Command Parser 33

2. The Execution of Child Processes 33

a. Internal Commands 34

b. External (Executable) Commands 35

3. Redirection 35

4

.

File and Command Transfer via Xmodem 36

5

.

Serial Communications 37

6

.

Man Machine Interface 37

D. DESIGN CONSIDERATIONS 38

1 . Assembly Language 38

2

.

ROM BIOS Software Interrupts 38

3

.

Memory Management 38

vi i

4

.

Synchronization 39

5

.

Modular Programming 39

6. Preservation of Interrupt Vectors on Program

Termination 40

SYSTEM EXECUTION 40

1. Initialization 40

2. Slave Operation 41

3. Master Operation 41

a. Terminal Operations 42

b. Port Initialization 43

c

.

Remote Login to Slave 43

d. Remote Program Execution 43

e

.

Flow Control 44

f

.

Remote Reset 44

g. File Transfer 44

THE MODULES 45

1. Distrib 45

2

.

DataCom 45

3. Director 45

4

.

ErrorCod 46

5. General 46

6

.

MiscPack 46

7

.

Parser 46

8. Redirect 47

9

.

Spawn 47

10

.

Support 47

viii

11. Wndow 47

1 2

.

Xmodm 48

VI. CONCLUSIONS 49

APPENDIX A OPERATOR'S MANUAL 51

APPENDIX B INSTALLATION/PROGRAMMING AIDS 58

APPENDIX C XMODEM PROTOCOL 64

APPENDIX D MAINTENANCE MANUAL FOR DISTRIB PROGRAM 69

APPENDIX E MAINTENANCE MANUAL FOR UNIT DATACOM 81

APPENDIX F MAINTENANCE MANUAL FOR UNIT DIRECTOR 93

APPENDIX G MAINTENANCE MANUAL FOR UNIT ERRORCOD 96

APPENDIX H MAINTENANCE MANUAL FOR UNIT GENERAL 97

APPENDIX I MAINTENANCE MANUAL FOR UNIT MISCPACK 100

APPENDIX J MAINTENANCE MANUAL FOR UNIT PARSER 101

APPENDIX K MAINTENANCE MANUAL FOR UNIT REDIRECT 106

APPENDIX L MAINTENANCE MANUAL FOR UNIT SPAWN Ill

APPENDIX M MAINTENANCE MANUAL FOR UNIT SUPPORT 114

APPENDIX N MAINTENANCE MANUAL FOR UNIT WNDOW 120

APPENDIX MAINTENANCE MANUAL FOR UNIT XMODM 126

APPENDIX P SOURCE LISTING FOR UNIT DATACOM 136

APPENDIX Q SOURCE LISTING FOR UNIT DIRECTOR 156

APPENDIX R SOURCE LISTING FOR UNIT ERRORCOD 162

APPENDIX S SOURCE LISTING FOR UNIT GENERAL 166

APPENDIX T SOURCE LISTING FOR UNIT MISCPACK 171

APPENDIX U SOURCE LISTING FOR UNIT PARSER 174

APPENDIX V SOURCE LISTING FOR UNIT REDIRECT 186

APPENDIX W SOURCE LISTING FOR UNIT SPAWN 196

ix

APPENDIX X SOURCE LISTING FOR UNIT SUPPORT 203

APPENDIX Y SOURCE LISTING FOR UNIT WNDOW 226

APPENDIX Z SOURCE LISTING FOR UNIT XMODM 243

APPENDIX AA SOURCE LISTING FOR PROGRAM DISTRIB 270

APPENDIX AB CONFIGURATION FILE STRUCTURE 301

APPENDIX AC DOCUMENTATION FOR ZCOPY PROGRAM 302

LIST OF REFERENCES 304

INITIAL DISTRIBUTION LIST 306

ACKNOWLEDGEMENTS

Special mention is due to the following individuals who provided

solutions to some of the technical problems encountered in the

implementation of this thesis, as well as their kind permission to

reprint their work as program excerpts used in the thesis.

Diplomate Physics Christian Boettger
Institut fuer Metal lphysik und Nuklear Festkoerperphysik der
Technichen Universitaet Braunschweig

Bundesrepublik Deutschland (West Germany) FRG

Reino R. A. de Boer
Erasmus Universiteir Rotterdam
The Netherlands

Naoto Kimura
California State University, Northridge (CSUN)

Alexander Verbraeck
Delft University of Technology
Department of Information Systems
The Netherlands

My greatest thanks are due, of course, to my wife Michelle for her

loving support during this entire process.

XI

I. INTRODUCTION

A. BACKGROUND

Many designs for local area networks are currently available on the

commercial market, however, all are designed to provide -for sharing of

high performance centralized assets such as file servers or relatively

scarce resources such as specialized printers; or for the movement of

data and files. None are known to provide a distributed processing

capability by using the inherent capabilities of the attached

microcomputers or processors under the control of a central master

computer

.

The purpose of this thesis is to demonstrate such a capability in a

laboratory environment, utilizing a network of slave or server

microcomputers capable of running separate applications programs under

the control of a central or master microcomputer.

B. PROJECT DESCRIPTION

1 . Target Hardware

The proposed demonstration network consists of a single master

IBM PC compatible microcomputer connected to two IBM PC or IBM PC/AT

compatible slave microcomputers under the operational control of the

central master.

2. Network Topology

The proposed demonstration network is a small star network,

with the master microcomputer as the central node.

3. Network Media

The proposed networking media shall be the standard RS-232C

serial communications port provided with each microcomputer. The

central microcomputer is augmented with a second RS-232C serial port to

allow independent communications with both slaves.

4. Software

a. Operating System

The operating system selected -for the microcomputers

shall be Microsoft MS-DOS, version 3.0 or later, as supplied with each

microcomputer.

b. Programming Language

All applications software for the microcomputer control

programs was originally intended to be written in RR Software Inc.

Janus/ADA. The actual implementation is in Borland Turbo Pascal,

version 4.0.

5. Proposed Capabilities

a. File Transfer

The master microcomputer shall be able to initiate

program and data file transfers to and from any of the connected slave

microcomputers.

b. Distributed Processing

The master microcomputer shall be able to command the

execution of selected programs resident on any slave microcomputer,

receive an acknowledgment of the command from the slave, and receive

the text output o-f the selected program after execution.

c. Control o-f Multiple Slave Microcomputers

The master microcomputer shall be able to control more

than one slave microcomputer.

d. Remote Login

The master microcomputer shall be able to remotely log in

to any slave microcomputer and operate it remotely over the

communications network.

e. Error Handling

The master and slave microcomputers shall attempt to

restore communications to resume control in the event o-f a -fault.

C. STRUCTURE OF THE THESIS

Since standardized microcomputers and operating systems were

selected, the majority o-f this thesis consists o-f the programming

e-f-fort to create the network control programs, and the source code tor

those programs. What -follows will describe the design considerations

predicated by the choice o-f hardware, operating system and programming

languages; a description o-f the significant problems encountered: and

instructions for duplicating the network along with program operation

and maintenance.

Chapter II will describe the programmer's model of the hardware

utilized in the microcomputers and interrupt driven serial

communication considerations. Chapter III will discuss the essential

features of the operating system as they contributed to the thesis.

Chapter IV will describe the salient -features of the two programming

languages considered, and the reasons -for selecting a replacement -for

Janus/ADA. Chapter V will discuss the implementation from a systems

viewpoint with a brief description of each software module. Chapter VI

summarizes the conclusions reached from this thesis.

The appendices provide detailed descriptions of the program source

code, the source listings, an operator's manual, a. guide to program

maintenance, and the bibliography.

I I . HARDWARE

A. THE IBM PC/AT PERSONAL COMPUTER

The IBM PC/AT personal computer and its close compatibles, such as

the Zenith Z-248 adopted as the standard Navy desktop personal

computer, were selected as the target hardware for both program

development and application. These computers are general purpose, and

typically have at least 640K of random access memory -for operating

system and program execution, one or more -floppy disk drives handling

5-1/4 inch diskettes with 360K bytes o-f storage each, a hard disk drive

holding -from ten to twenty megabytes o-f storage, and a monochrome or

color monitor displaying 80 characters by 24 lines o-f text. One

RS-232C serial inter-face is standard, and a second is optional. The

computer also comes with a parallel printer port. The -following

hardware -features are of interest to aid in understanding the software

developed: (Norton, 1985, pp. 19 - 65)

1. The Central Processor Unit

The programming model of Table 2.1 is common to the Intel

8088, 8086 and 80x86 series of microprocessors used in the IBM PC/AT

compatibles. This information is not provided to support assembly

language programming (there is very little in this implementation), but

for interface considerations to control, read> from, write to, or obtain

the status of the IBM PC hardware in support of the distributed

processing network. The usage of specific registers for software

interrupts is de-fined by calling conventions similar to the -formal

parameter declarations -for procedures and -functions in higher level

languages such as ADA.

TABLE 2.1

MICROPROCESSOR REGISTERS

Register Type Function

Scratch Pad Registers: Arithmetic and data trans-fer

Arithmetic operations
Table pointer
Repetition loop
General purpose

The above registers may also be addressed as eight bit pairs, i.e.,
register AX may also be utilized as AL and AH -for the low and high
order bits.

AX Accumulator
BX Base
cx Counter
DX General

Segment Registers:

CS

DS
cc
'»

ES

Code Segment
Data Segment
Stack Segment
Extra Segment

Index Registers:

IP Instruction
Pointer

SP Stack Pointer

BP Base Pointer
DI Destination Inde

SI Source Inde:;

Separate code, data, stack and an

extra segment

Locates the code segment in memory
Locates the data segment in memory
Locates the stack segment in memory
Intersegment trans-fers

Relative o-f-fset -from a segment
register

Points to next instruction to be

executed
Points to next available location on

stack
O-f-fset into the stack segment
String data trans-fers

Strinq data trans-fers

Control Functions:

Flags Flag Register Used to record processor status
in-formation

2. Interrupts

Interrupts serve two -Functions in the IBM PC: hardware

interrupts allow a peripheral to request servicing -from the CPU, and

software interrupts allow the operating system or applications software

to obtain services from the hardware. Software interrupts are

generated by a machine instruction. In either case, a software or

firmware interrupt service routine must be called to process the

request. The originator of the interrupt does not need to know the

address of the routine that accomplishes the service, since the IBM PC

incorporates a powerful feature designed to minimise limitations in the

inherent design. A level of indirection is designed into the interrupt

architecture of the microcomputer that facilitates redefining the

interrupt service routines without rewiring the hardware or changing

firmware. This is accomplished through a table of interrupt vectors

reserved at the first 1024 bytes of system memory. Each of the 256

vector locations is a four byte pointer initialized to point to a

specific function by its location in the table. These functions

support hardware and software interrupts generated by the CPU (for

fault processing), the hardware (for peripheral service), or the

operating system or application program (for higher level services).

Control is passed to an interrupt service routine by utilising the

vector at the location assigned to that function to call the service

routine. By reassigning these vectors through the operating system,

the interrupt service routines normally found in the microcomputer

firmware may be substituted by another portion of ROM, the operating

system or the application program itself.

As an example, the dynamic assignment of interrupt services

was utilized to obtain interrupt driven character receive functions in

the distributed processing network. Two hardware interrupt vectors

pointing to interrupt service routines for the communications ports are

assigned to the interrupt vector table at offset $0B for port two

(logical port COM2) , and at offset $0C for port one (logical port

C0M1). The distributed processing program developed for this thesis

reassigns the indicated vectors to point to interrupt service routines

contained in the thesis program itself. These vectors are restored to

their previous values on program termination. (Edwards, 1987, p. 195)

3. Communications Ports

The IBM PC is inherently capable of handling up to seven

communications ports, but typically is fitted with only two at

standardized hardware addresses: logical ports C0M1 and COM2. These

are capable of data rates ranging from 110 to 38,400 baud; however the

microcomputer ROM Basic Input Output System (BIOS) servicing the ports

is only capable of setting speeds up to 9600 baud through service

interrupt $14. This service interrupt was also replaced by the

application program to set the ports and achieve a finer degree of

control over their operation than afforded by the BIOS or the operating

system. Table 2.2 is correct for an IBM PC (or Zenith Z-248) fitted

with two ports (Edwards, 1987, p. 231):

3

TABLE 2.2

COMMUNICATIONS PORT ADDRESSES

Register

Transmit Holding

Receive Buffer

C0M1/C0M2
Address Function

$3F8/*2F8

$3F8/*2F8

Interrupt Enable *3F9/*2F9

Line Status $3FD/*2FD

Modem Status *3FE/*2FE

Contains the 8-bit character to be
transmitted by the port. This is a

write only register.

Contains the byte
received by the port,

only register.

most recently
This is a read

A 4-bit register that enables the
serial port to generate interrupts to
the computer when any of the
following events occurs.

Bit 0: Interrupt when data are
available to be received.

Bit 1: Interrupt when the transmit
holding register is empty.

Bit 2: Interrupt when the line
status register changes
state.

Bit 3: Interrupt when the modem
status register changes
state.

Provides information about the status
of data transfer.

Data, ready to be received.
Overrun error
Parity error
Framing error
Break detected on the line
Transmit holding register is

empty
Transmit shift register is

empty
Always zero

the status of the modem

Delta clear to send
Delta data set ready
Trailing edge ring indicator
Delta line signal detect
Data set ready

Bit o

Bit 1

Bit o

Bit "?

Bit 4

Bit 5

Bit 6:

Bit 7:

Contains
signals
Bit 0:

Bit 1

Bit J-
'

Bit "7

Bit 4:

Bit 5: Data set ready
Bit 6: Ring indicator
Bit 7: Receive line signal detect

Line control $3FB/$2FB Used to con-figure the data
communications parameters.
Bits - 1: Word length (bits):

= 5

1 = 6

2 = 7

3 = 8

Bit 2: Stop bits:
= 1

1 = 2

Bit 3: Enable parity
Bit 4: Select even parity
Bit 5: Mark/space parity select
Bit 6: Generate BREAK signal
Bit 7: Divisor latch access

Modem control $3FC/$2FC Allows access to the signals used to
communicate with a modem
Bit 0: Data, terminal ready
Bit 1: Request to send
Bit 2: Outl

Bit 3: 0ut2. Must be set to enable
UART interrupts

Bit 4: Loopback

4. Programmable Interrupt Controller (PIC)

Another programming requirement involved enabling the IBM PC

hardware to recognize receive character interrupts generated by the two

UARTs. All hardware interrupts are prioritized -for the CPU by a device

called the Programmable Interrupt Controller. The Intel S259

Programmable Interrupt Controller is capable of prioritizing up to

eight interrupts, identified as IRQO through IRQ7, with IRQO being

assigned the highest (preemptive) priority. The programming

requirements are to set the appropriate mask bits in the Interrupt Mask

Register of the PIC, and to send an End Of Interrupt command to the

device following completion of the interrupt service routine supplied

10

by the thesis program. Communications port one is assigned interrupt

vector IRQ3 (bit 3), and communications port two has IRQ4 (bit 4). The

8259 can be instructed to recognize or ignore interrupts -from a

peripheral by clearing or setting the appropriate bit in the Interrupt

Mask Register located at I/O port $21, and this -feature was utilised to

disable ports when not in use. End Of Interrupt commands are sent to

I/O port $20. This relationship is summarized below (Breenberg, 1987,

pp. 46-50):

TABLE 2.3

PROGRAMMABLE INTERRUPT CONTROLLER ADDRESSES

Register- Address Function

Interrupt Mask $21

In Service $20

Contains the mask -for the currently
enabled interrupts (read/write)
Bit 3: IR03 - Com port 2 mask.

Clear to enable the port
interrupts

Bit 4; IRQ4 - Com port 1 mask.
Cleer to enable the port
interrupts

Write to the same bit as enabled in

the Interrupt Mask register to clear
the interrupt.

11

III. THE OPERATING SYSTEM

Microsoft MS-DOS version 3.21 was provided with the microcomputers

used in this thesis, and provides the traditional -functions expected in

an operating system: high level interface for applications programs,

file services, memory management, and input /output services (MS-DOS

Reference Guide, 1986, pp. 2.3 - 2.9). The use of a standard operating

system was desirable, as it allowed a piece of "trusted" software to be

utilized for most of the distributed processing functions while

providing a familiar environment for the operator. Certain extensions

to the operating system were constructed in software, to facilitate the

execution of programs on the microcomputers and to complement the

extensions in hardware services discussed earlier. These are discussed

below.

A. BACKGROUND

MS-DOS interfaces directly with the hardware implementation

dependent portion of the IBM PC compatible microcomputer, the ROM Basic

Input Output System (BIOS). Recall that this BIOS provides a logical

interface and some low level services for the underlying hardware,

including the disk drives, serial communications ports, keyboard and

video display. The ROM BIOS also accomplishes the initialization of

the IBM PC on power up. The ROM BIOS services remain available to the

programmer through interrupt service calls. (Norton, 1985, pp. 44

45)

The portion o-f MS-DOS that inter-faces with the ROM BIOS is

contained in a -file called 10. SYS, located on the media supplied with

the operating system. This -file contains extensions and in some cases

replacements to the ROM BIOS services supplied with the computer such

as device drivers -for mouse input devices or specialized video displays

not available when the design for IBM PC compatibles was standardized.

On initialization, 10. SYS substitutes the replacement interrupt service

routines for the existing ROM BIOS services by simply changing the

interrupt table vectors to point to the new routines in memory. This

facility allows the manufacturer to tailor a standard operating system

to various hardware manufacturer's microcomputers. A caution on the

means to change these interrupt vectors is noted below. (MS-DOS

Reference Guide, 1986, pp. 2.5 - 2.6)

The next file loaded is MSDOS.SYS, which provides hardware

independent services for the operating system, i.e., high level

inter-face for file services, memory management, and input/output

services. This portion includes the handler for a class of service

requests, called DOS function requests, utilized in the distributed

processing program to load and execute programs external to the

operating system and input/output redirection to implement the

capabilities cited in Chapter I. (MS-DOS Reference Guide, 1986,

pp. 2.4 - 2.5)

The last portion of the operating system loaded is C0MMAND.COM,

which builds on the previous layers to provide the familiar command

line interpreter and MS-DOS resident commands such as COPY and DIP.

(MS-DOS Reference Guide, 1986, pp. 2.7 - 2.9)

13

The use of function calls to change the interrupt vector table

providing ROM BIOS, 10. SYS and MS-DOS interrupt services is strongly

encouraged by Microsoft to prevent accidental or malicious corruption

of data structures within the operating system and the vector interrupt

table. It is also intended to allow backward compatibility for future

releases of the operating system that may include multitasking.

(MS-DOS Reference Guide, 1986, p. 6.3)

B. CHILD PROCESSES

The ability of the operating system to spawn a local process and

regain control after execution is an essential element of the

distributed processing network. MS-DOS Function Request 4BH is

utilised to load another program into memory and begin execution.

Programs executed from the Command. Com command line prompt are executed

as child processes of the operating system in exactly the same way.

This function provides for the execution of programs and for the remote

login capability required by the network. Several details of the

MS-DOS operating system capability were of interest in this thesis.

(MS-DOS Reference Guide, 1986, pp. 3.1 - 3.9)

1. Program Segment Prefix

When a child process is created, the MS-DOS operating system

finds the lowest available segment address to use as the start of

program memory for the spawned process, and builds a 256 byte control

block called the Program Segment Prefix (PSP) at offset zero within

that segment. The executable program immediately follows. While,

Microsoft does not officially document the use of certain fields within

14

the PSP, sufficient information was collected -from the MS-DOS Reference

Guide and other sources to manipulate the environment created for the

child process to accomplish the goals of the distributed processing

program.

a. Interrupts to be Restored on Program Termination

The interrupt vector table pointers for three essential

interrupts are placed in fields of the PSP of the spawned process prior

to execution. These are restored on program termination to insure that

the interrupt vector table is not corrupted should the child process

replace the vectors for its own use and then terminate abnormally.

These are: The Terminate Handier Address containing the address of the

operating system routine that accomplishes program termination; the

Control -C (also known as Control -Break) Address containing the address

of the operating system routine that handles operator induced program

termination; and the Fatal Error Handler Address used to process errors

that result in fatal program halts. (MS-DOS Reference Guide, 1936, pp.

"5 5 - "5 9)

b. The Environment Segment Address

The PSP contains a field that holds the segment address

of the system environment. This environment is a series of ASCII

strings that may be used by programs to determine permissible

operations or values. These strings take the form variable = value,

and are terminated in a zero (0) character. An example is the "PATH ="

environment variable used to set the search paths used by the command

processor Command. Com to locate an external command. The process'

current environment is made available by following this segment pointer

and searching the strings -found at that address until a string with a

second terminating zero character is -found. This -facility is used by

the thesis program to locate a copy o-f the Command. Com on disk to run

batch programs (Edwards, 1987, pp. 286 - 288). Each child process

inherits a copy o-f the environment pointed to by the segment address o-f

its parent. This means that the child process may manipulate its own

environment without disturbing that o-f its parent. It also means that

the parent may manipulate its own environment prior to spawning a child

process in order to communicate with the child or to restrict certain

environmental parameters -from the child, although this communications

means is not reversible. (MS-DOS Reference Guide, 1986, pp. 3.6 - 3.7)

c. File Handle Table

When the F'SP is constructed, the operating system places

a copy o-f all open -file handles in a. data structure o-f the type

FILEHANDLE = ARRAY CI. .20] OF BYTE in the PSP (Greco, 1987, p. 25).

Each word in the table indexes another data structure internal to the

operating system that contains information needed to locate the file on

the disk system(s). This inheritance has the effect of passing all the

open files of the parent to the child. A file handle is a Unix style

16 bit word that is used to identify a file or a device known to the

operating system, and replaces the use of CP/M compatible File Control

Blocks for file references by the operating system (Simrin, 1988,

p. 204). File handles allow the use of pathnames to open or create a

file. Once opened, the file handle is returned to the calling program

as the reference to the file. The first five files are opened by the

16

operating system and have special meaning: (MS-DOS Reference Guide,

1986, p. 5.9)

TABLE 3-1

MS-DOS RESERVED FILE HANDLES

File
Handle Mnemonic Purpose Function

Stdln Standard Input Input can be redirected

1 StdOut Standard Output Output can be redirected
StdErr Standard Error Output cannot be redirected

3 StdAux C0M1 I/O cannot be redirected
4 StdPrn Printer I/O cannot be redirected

d. Redirection

Redirection re-fers to the ability of the input or output

character stream associated with one o-f the reserved -files above to be

rerouted to or -from a different -File, An example of this -function is

the use o-f redirection characters on the command line (<, >, >>, or !),

when program output is redirected to a -file or pipe, as in the command

line entry: PROGRAM > FILE. When the operating system opens the

Standard Error file, it is directed to the same device as the Standard

Output file, the display console (logical device driver name CON), and

cannot be redirected on the command line as indicated in the table.

This limitation would prevent vital error information from being

redirected from the slave microcomputer display to the master

microcomputer display. (MS-DOS Reference Guide, 1986, p. 3.8)

While such redirection cannot be performed from the

program command line, MS-DOS provides function calls that overcome this

limitation. These are MS-DOS function calls 45H, Duplicate a File

Handle (DUP) , and 46H , Force a Duplicate of a Handle (FORCDUP) . DUP

17

creates a new -file handle that references the same -file at the same

position as an existing file handle. It does so by referencing the

same internal data structure for the file in the operating system for

both files. FORCDUP takes as input two file handles, but forces the

first file handle to refer to a file referenced by a second handle.

The file referenced originally by the first handle is closed (Simrin,

1988, pp. 450 - 452). To accomplish redirection of the Standard Error

character stream and overcome the limitation of the operating system

cited in III.A.c above, the parent process may use the following

procedure (Greco, 1987, p. 26):

Open the file that Standard Error will be redirected to

for writing.

Save a pointer to Standard Error using DUP.

Force the Standard Error handle to point to the newly

opened file using FORCDUP. This closes Standard Error.

Close the handle created in (1) since it is no longer

needed.

The child program may now be spawned, and has no

knowledge of the redirection. Upon termination of the child, the

parent reverses the above process:

Force the Standard Error handle to point back to Standard

Error by using FORCDUP and the saved pointer.

This redirection method is used for both Standard Error

and Standard Output to interleave the two output streams into the same

file. A more direct method is to directly manipulate the file handles

in the File Handle Table of the Program Segment Prefix, however, this

18

violates the strictures mentioned in the beginning of this chapter and

could corrupt the data structures contained in the operating system if

improperly done. The use o-f documented -function calls allows the

operating system to protect itself and to provide error handling.

C. PROGRAM TERMINATION

Upon termination o-f the spawned program, the operating system

accomplishes the -following (MS-DOS Reference Suide, 1986, p. 4.241).

First, the three interrupt vectors described above are restored to the

interrupt vector table -from values stored in the terminated process'

PSP. Next, control is given to the Terminate Handler address to return

control to the invoking process. Finally, all open files are closed.

Recall that the calling program retains a copy of all open files in its

own PSP. The effect of closing all the files of the child is to flush

file buffers held internal to the disk operating system and update the

disk directories (Defenbaugh, 1986, p. 22). The operating system then

terminates any redirection.

19

IV. THE PROGRAMMING LANGUAGE

Implementation of this thesis was originally attempted in a subset

ot the Department o-f Defense programming language mandated for mission

critical computer resources, Ada. Ada was chosen to explore the

language in this environment and to apply the language features that

localize the major design decisions into individual program modules

(decomposition)
,

promote information hiding through separate

compilation, and support data abstraction. Concurrency might have

allowed the separation of the communications and control requirements

into separate tasks, but was not supported in the subset. (MacLennan,

1987, pp, 261 - 263)

The subset of the Ada language chosen for this project was RR

Software Inc. JANUS/Ada. This subset of the approved language had

several limitations in addition to the lack of concurrent programming

(task) facilities, but was available and could be utilized on the same

microcomputer for program development and implementation. It had been

used successfully in a similar environment for local area networking

(Works, 1986), (Hartman and Yasinsac, 1986), and includes a. very

capable assembler for constructing machine language packages. It

turned out that this particular implementation was unsuitable to the

proposed capabilities of the distributed processing network for the

reasons cited below.

20

A. JANUS/Ada

1. Memory Size Limitations o-f Compiled Code

The initial work -for this thesis was to construct a command

line parser to recognize commands in MS-DOS syntax -for execution on the

slave microcomputer. This was first implemented in assembly language

Following the program o-f an established command intercept processor

(Mefford, 1986, pp. 313 - 334). This program successfully parsed the

elements of a command line and reported these components, thereby

demonstrating the potential to execute the command remotely. The code

files of table 4.1 resulted. Files ending in a "jrl" suffix are

compiler relocatable object files and files ending in a "com" suffix

are the linked result suitable for execution.

TABLE 4.

1

ASSEMBLY LANGUAGE PARSER

Program Name Language File Size (bytes)

find_com.jrl assembly 79i

parsemai.jrl Ada package 148

parsemai.com compiled 4480

The parser was then recoded as an Ada package to obtain the

flexibility of the higher order language and to develop the assembly

language to Ada package interfaces. JANUS/Ada allows assembly language

procedures to call Ada procedures and functions, and to reference Ada

data structures. The implementation of the parser as an Ada package

allowed rapid modification to the parser to adjust the command syntax,

as well as for interface to the other Ada. packages to be developed for

the system. When compiled, however, the following resulted:

21

TABLE 4.2

Ada LANGUAGE PARSER

Program Name Language File Size (bytes)

Int_21.jrl assembly 948
cmdlyne. jrl Ada 13656
main.jrl Ada 505
main.com compiled 42423

The cost of coding in this implementation of JANUS/Ada is

evident above. The JANUS/Ada compiler emits about a ten-fold increase

in code size to accomplish the same effort as the assembly language

version. The CON file is also much larger, due to the incorporation of

library routines from the JlibB6 support package to handle string

manipulation and other high level language constructs. With a code

size limitation of 64K bytes, results similar to the above would

rapidly exhaust the space available in the small memory model as

packages were added. This model is limited to 64 Kbytes of code and a

separate 64 Kbytes of data (JANUS/Ada Package User Manuals, 1983,

p. Z - 4), and is characteristic of CON files running under MS-DOS.

The options were either to code major portions of the thesis in

assembly language as had been done by Works, Hartman and Yasinsac,

linked together by Ada packages as a main program, or to find a way to

expand the code module. The latter was desirable due to the original

intent to utilize a higher level language for the distributed

processing network. Before this could be pursued, however, a more

serious problem developed.

22

2. Failure of the Child Process Call

As described in Chapter III, MS-DOS commands or programs not

implemented internally by the operating system Are called transient

commands, and must be run by loading the program into memory -from disk

and executing it as a child process. As the next step in the above

implementation, a call was constructed in an assembly language package

body to the MS-DOS -function 4BH, EXEC program (MS-DOS Reference Guide,

1986, pp. 4.237 - 4.239). This was done to overcome a limitation of

the JANUS/Ada supplied procedure, Prog_Call. The supplied procedure

recognizes only program names without path specifications, and does not

allow -for a command tail after the program name. The procedure also

terminates both the child process and its parent if the child process

terminates abnormally. This would not allow for a robust distributed

processing system, capable of recovering from a faulty child program

and continuing to operate in the network (JANUS/Ada Package User

Manuals, 1983, p. 15-3).

When this approach was implemented, however, all child

processes would execute normally when called from the MS-DOS function,

as expected. The system would lock up upon return of control to the

parent process, usually with a fatal error message such as INTERNAL

STACK OVERFLOW. This suggested that something was being corrupted in

the MS-DOS operating system upon termination of the child program.

An investigation of a disassembly listing of the compiled

program revealed that the JANUS/Ada runtime library was writing

initialization data into reserved areas in the Program Segment Prefix

of the parent program. These areas are undocumented by Microsoft in

its official literature, but have been identified by other authors.

Table 4.3 shows these locations: (Simrin, 1987, p. 211 - 212)

TABLE 4.3

JANUS/Ada INITIALIZATION AREAS

Location Contents

PSP:0016 PSP of parent process
PSP:001C Standard Printer -file handle (f i lehandleC4])
PSP:001E filehandleC6]
PSP: 0020 filehandleC83
PSP: 0022 -filehandleClO]
PSP: 0024 filehandleC123
PSP: 0026 filehandleC143

Since the filehandles are indices to data structures internal

to the operating system holding information about specific open -files,

the consequences o-f these actions are that the compiled program

unintentionally creates open -filehandles a-fter the Standard Printer

handle assigned by MS-DOS, or overwrite the filehandles -for -files

already opened by the parent program. Recall that MS-DOS opens the

-first -five handles, and the application program opens filehandles after

that up tc the FILES = (number)- set in the environment. When the

JANUS/Ada program overwrites these handles, the indices represented by

them now point to other potentially unrelated areas of the operating

system for files referenced by the file handles. These other areas may

then be corrupted when the operating system attempts to close the child

process' files using invalid file handles. These data structures are

common in the operating system to both parent and child. This may

e>;plain why the JANUS/Ada built in file operations and functions would

no longer work after a single assembly language call to operating

system -function calls, as observed by Works (Works, 1986, p. 24).

Works wrote all file handling procedures for his program in assembly

language to overcome this fault. (Works, 1986, p. 33)

The effect of corrupted data areas in the operating system is

to compromise the internal state of MS-DOS when the child process

terminates.

3. Need for a Replacement Language

At this point, a decision was made to implement the thesis in

a language that would support child processes and provide a larger

memory model

.

B. TURBO PASCAL

While performing the initial work for this thesis, Borland

Corporation Turbo Pascal version 3.0 was being examined for the

possible use of a construct similar to its operating system calls. The

language utilizes a very general procedure to call MS-DOS functions and

software interrupts with a data structure standing in for the contents

of the microprocessor registers discussed in Chapter II. With such a

procedure constructed for the JANUS/Ada language as a supporting

package, the large number of assembly language procedures and functions

that Works, Hartman and Yasinsac required could be abstracted out to a

single general purpose procedure, tailored for each instance by the

register contents.

When the difficulty encountered with the failure of child processes

in JANUS/Ada, a rapid prototyping effort was used in Turbo Pascal to

check the author's understanding of the requirements for the EXEC call

25

in another language to detect possible errors in implementation. The

EXEC -function worked satisfactorily in Turbo Pascal, using either the

MS-DOS call construct or the compiler's built in procedure. Since the

Ada implementation appeared to be in-feasible, the program was

implemented in Turbo Pascal. It turned out that version 4.0 o-f that

language has features that capture the essence o-f the original

programming objectives. Some particular -features -follow:

1. Information Hiding

Borland's Turbo Pascal version 4.0 implements the Unit as

originally developed for UCSD Pascal (Duntemann, 1987, p. 11). This

programming construct allows modular programming very similar to Ada,

however separate compilation cannot be achieved with just the module

interface declaration, as it can in Ada. Variables and procedures

implemented in the UNIT body ar& not visible by outside modules, as in

the Ada package.

2. Support for Child Processes

Turbo Pascal provides a robust implementation of the MS-DOS

Function 4BH. called EXEC. This is a high level procedure that takes

Pascal strings for the program path specification and the command tail

arguments as parameters. The procedure utilizes the Turbo Pascal

global variable DOSError to report operating system error messages for

program handling.

3. Data Abstraction

Turbo Pascal supports data abstraction in much the same way as

Ada, but does not implement a Private declaration.

26

4. Unit Initialization

The Turbo Pascal Unit provides an initialization section -for

Units, which can be used to perform unit configuration and to save

state information prior to program execution. This is helpful for

saving interrupt vector table contents for restoration on program exit.

5. Unit Exit Procedures

Turbo Pascal provides an important feature by allowing the

programmer to declare an exit procedure that will be run upon program

termination. This procedure will execute for normal or abnormal

termination, and can be constructed to provide error handlers. The

primary use in this thesis was to insure that interrupt vectors were

properly restored on program termination.

6. Absolute Variables

Turbo Pascal supports manipulation of hardware memory

locations by allowing the programmer to specify the actual location in

memory of a data structure. This is accomplished by the ABSOLUTE

reserved word in a VAR declaration, and was used to declare a pointer

to re-ference the video memory for windowing operations (Edwards, 1987,

p . 30)

.

7. File Input and Output

Turbo Pascal provides the capability to read or write to

untyped files in addition to Wirth's Read and Write procedures. This

allowed the file transfer protocol to treat a file as a stream of

bytes.

8. Port Read/Write

Turbo Pascal provides Port and Portw procedures to read or

write byte and word sized variables to the IBM PC ports. This

capability was used in the serial communications port module.

9. Interrupt Service Routines

The Turbo Pascal compiler has a special reserved word,

INTERRUPT, that allows the programmer to de-fine procedures as interrupt

service routines. The compiler handles all register preservation and

stack operations across the call.

10. Exception Handling

Turbo Pascal does not implement the Ada exception handler,

however, the combination o-f the DOSError variable and the ability to

relax I/O, range and type checking within a local scope allows the

programmer to place the exception handling mechanism in the control

flow with standard structured programming techniques. An EXIT

procedure with a scope identifier would have been useful to escape a

procedure. however, the current approach en-forces structured

programming.

11. High Level So-ftware Interrupt Procedure

Turbo Pascal provides a predefined procedure, MSDOS, and a

data type, registers, that allows a simple and standardized interface

to the operating system software interrupt function calls. The

registers data type stands in for the processor's built in registers

and allows the programmer to treat the MS-DOS functions in the same-

manner as a procedure. No assembly language programming is involved.

28

12. ROM BIOS and Hardware Interrupt Procedure

The above procedure, MSDOS, is a special case of the general

Turbo Pascal procedure, Intr (Intr, regs) , which allows access to any

hardware or software interrupt available on the IBM-PC compatible

microcomputer. No assembly language programming is involved.

13. Support for a Larger Memory Model

Turbo Pascal compiles programs into EXE files, and greatly

expands the potential size of a program. Each unit has an independent

code segment, with a maximum size of 64 Kbytes. A single data segment

and stack segment is allowed, each with their own 64 Kbyte limitation.

The remainder of memory, up to 640 Kbytes, is available on the heap.

The stack and heap size may be set by compiler directive to leave room

for spawned processes. (Duntemann, 1937, p. 12)

C. IMPLEMENTATION

The distributed processing program was implemented in Turbo Pascal

4.0. as described in the next chapter. This language provided support

for all proposed capabilities while eliminating the requirement for

extensive assembly language programming.

V. THE IMPLEMENTATION

The distributed processing program in this thesis has its origins

in an existing terminal program supporting the Xmodem protocol

(Edwards, 1987, pp. 220 - 275). This "brassboard" program served as

the foundation -for the addition of the command transfer functions that

were required by the proposed capabilities of the distributed

processing network, and was expanded to provide finer control over

multiple serial ports. In addition, command parser and local execution

modules were added for the Slave microcomputer to execute resident

programs. The operator interface and windowing environment was largely

retained intact, and is utilised for the man machine interface.

This approach allowed the referenced program to be modified in

discrete steps, and provided a test environment to exercise each

portion of the implementation listed below.

A. THE HARDWARE CONFIGURATION

The hardware used to implement the distributed processing network

consists of IBM PC/AT compatible microcomputers. Each Slave

microcomputer is supplied with a hard disk drive of 10 megabytes or

greater capacity, 640 Kbytes of memory and one RS-232C port. The

Master microcomputer is configured identically, except it has an

additional communications port.

The serial connection between computers are the RS-232C

communications ports operating at 9600 baud for IBM PC/AT compatible

30

machines and 4800 baud -for IBM PC/AT compatibles. The microcomputers

at each end of a single link must be con-figured for the same speed.

The pin connection for the interconnecting cables is shown at Figure

6.1. For microcomputers with the nine pin AT style connector, a nine

pin to RS-232C 25 pin DB-25 cable is recommended, with a NULL modem in

between. Hardware handshaking is turned back in this con-figuration.

The program will operate satisfactorily through a modem if the baud

rate is lowered. (Flanders, 1989, p. 252)

FIGURE 5.1

SERIAL PORT CONNECTIONS

Computer 1 Computer 2

Pin Function Pin Pin Pin Function

Signal Ground 7 7 Signal Ground
Transmit Data 2 > 3 Receive Data
Receive Data 3 < 2 Transmit Data
Request to Send 5 -, , - 5 Request to Send

Clear to Send 5-1 !- 5 Clear to Send

Carrier Detect 8 -' '-8 Carrier Detect
Data Set Ready 6 —

,
,-6 Data Set Ready

Data Terminal Ready 20 -' '- 20 Data Terminal Ready

B. SOFTWARE CONFIGURATION

1. The Operating System

The operating system is supplied with the microcomputers, and

is Microsoft MS-DOS, version 3.0 or higher.

2. The Distributed Processing Program

The distributed processing program was written to accommodate

the above operating system, and is used on both the Master and Slave

microcomputers.

5

3. ZCOPY File Transfer Program

A high speed, adaptive file transfer program is provided with

the distributed processing system software that allows file transfers

to be executed at the maximum speed permitted by the serial

communications link. The maximum speed is 115 Kbytes/second. The

program runs as a child process under the distributed processing

system, and includes independent error checking protocols. (Flanders,

1989, p. 282).

4. Software Maintenance

a. Configuration

Configuration is accomplished by a built in function in

the program, provided the program was initialized as a Master. Thi

normally suffices to set default configuration options, such as port

settings, for automatic loading when the program is run. The settings

are saved in a file. If the file is erased, the program initiates its

default settings and the operator can then recreate the file.

b. Software Modification

Software modification is accomplished through built

in editing, compilation, and run time environment supplied with Turbo

Pascal version 4.0. Build and make utilities are supplied with the

compiler to allow program modification and rebuild.

C. SYSTEM DESIGN

The problem of designing a distributed processing network was

decomposed into the following efforts:

1. The command parser for the remote (slave) microcomputer.

2. The execution of child processes.

3. Redirection of child process output.

4. File and command transfer via Xmodem.

5. Serial communications.

6. The man machine interface.

1. The Command Parser

The command parser decomposes an MS-DOS command directed to

the Slave microcomputer for execution into its component disk drive,

path, command or executable file name, and command arguments. The

latter is commonly called the command tail. Since compatibility with

the current MS-DOS command syntax was desired, these commands take the

form:

[dri ve:

1

C\l Cdirectory\3 . . Cdirectory\] command [command tail]

Once parsed, the type of command is determined so that the Slave

computer can execute it properly. As an experiment, the Unix commands

CAT and LS are mapped into their MS-DOS equivalents to demonstrate a

Slave with limited bilingual capabilities.

2. The Execution of Child Processes

Once the command is parsed, the parser must properly determine

if the command cited is a command normally executed internally by

MS-DOS, an executable COM or EXE file, or refers to a directory

operation. Internal MS-DOS commands implemented within the distributed

processing program are detected by pattern matching, the remainder are

identified by conducting an iterative search across the specified

director/ (or the current directory if none is cited in the remote

command) for an executable file of the appropriate extension, utilizing

the Turbo Pascal built in -functions Find_First and Find_Next. If

found, the type of file is passed by the parser to the appropriate

execution routine. The executable files are those with COM, EXE or BAT

extensions. MS-DOS does not require the operator to enter the

extension, and will execute the first file encountered with the command

name and an executable extension in the following order: COM, EXE and

BAT. The parser copies this trait. Implementation of the different

command types is summarized below.

a. Internal Commands

Internal commands are those that are executed within the

MS-DOS command processor, and are available from the familiar A>

prompt. These include the directory manipulation commands ChDir, Copy,

Del, Dir, MkDir, Ren, RmDir and disk drive login; to which were added a

prompt command to obtain the current directory on the Slave

microcomputer for display at the remote, and Equip, which provides the

Slave configuration (disk drives, memory, etc) accessible to the ROM

BIOS interrupt $11 (MS-DOS Version 3.21 User's Guide). ChDir, MkDir,

and RmDir along with Prompt are provided within the distributed

processing program. Error messages are supplied from the MS-DOS

operating system, hence, they are identical to those encountered in

local operations. Rather than duplicate the capabilities of the MS-DOS

command processor for the remaining commands, MS-DOS is utilized to

assist in this effort. A secondary copy of the MS-DOS command

processor is located by inspecting the "COMSPEC=<path/name>" string

from the local environment area, and is spawned with the appropriate

-

command tail for the desired command. This allows the remote command

34

to execute as if it were entered from the Slave microcomputer's

keyboard, and provides a familiar response. A utility program in the

public domain was utilized as a programming template to detect the

proper course of action before spawning a child process, depending on

the type of command received. (Mefford, 1988, pp. 321 - 336)

b. External (Executable) Commands

External commands are those that require the distributed

processing program to load, execute and collect output for display.

These are the familiar COM, EXE, and BAT files found in directory

listings. These commands are executed by calling the Turbo Pascal EXEC

procedure directly from the distributed processing program, with the

explicit path specification required by the procedure supplied by the

parser in its search for the executable file. The command tail is

provided from the parsing operation. Batch files are handled by

spawning a secondary copy of the command processor with the batch file

name as the command tail, as described for selected internal commands.

(Mefford, 1988, p. 327)

3. Redirection

Redirection control is contained in a separate module that

contains most of the Turbo Pascal EXEC calls. Prior to spawning an

executable file, a variable is checked to determine if the program

output is to be redirected to a. file managed by the distributed

processing program. This file is used to send the program output back

to the Master microcomputer over the communications channel by the

Xmodem protocol after execution of the program cited in the remote

command. The variable is managed by the module mi ti

1

ization routines

JvJ

and is normally set for redirection, otherwise the program output would

appear on the Slave microcomputer screen. If redirection is desired,

the distributed processing program redirects its own output to the

redirection file, utilizing the MS-DOS Function Calls 45H (DUPlicate

handle) and 46H (F0RCDUP1 icate handle) as described in Chapter III.

Since the child process inherits all open files from the parent (in

this case the distributed processing program) , it proceeds through the

execution oblivious to the redirected output. Error reports are also

available in the redirected output file, which overcomes a limitation

of redirection invoked from the command line with the < , >, and !

symbols. The appropriate files are then available to forward to the

Master microcomputer. (Greco, 1987. p. 25)

4. File and Command Transfer via Xmodem

Since the Xmodem protocol is utilized for both command and

data transfer, the highly modularized approach found in (Krantz, 1985,

pp. 66 - 89) is implemented to handle synchronization, packet transfer,

and file transfer under flow control in a hierarchical manner. The

modular approach does require a large number of variables that are

global in scope to the different building blocks, however, the

concentration of these variables and their associated function and

procedure implementations in a Turbo Pascal Unit as private variables

preserved information hiding. An additional file transfer program,

Zcopy, is available as an operator option on the Master display and

allows the use of an adaptive protocol that transfers files at the

maximum speed of the communications link, regardless of settings.

36

5. Serial Communications

All communications between the Master and Slave microcomputers

are handled by the microcomputers standard serial communications ports.

Communications is at 9600 baud -for communications between IBM PC/AT

compatibles, and at 4800 for IBM PC compatibles. The interrupt service

routines handle receive character streams for hardware ports C0M1 and

COM2, and are adapted from source listings posted on the

info-pascal@vim.brl.mil network (Kimura, 1988) and (de Boer, 1988).

Receive characters are queued in a. receive buffer for each port.

Transmit characters are sent under program control in a polling loop.

6. Man Machine Interface

The program uses the same operator interface for both the

Master and Slave configurations. Initialization is accomplished from a

configuration file in the local directory or from default constants if

the file is absent. When initialized, the program presents a terminal

screen for the primary port with communications inhibited. The

operator is then able to select options by special key combinations

(Alt-keys) to revise the configuration file, initialize communications

ports, enable and disable receive interrupts on a port basis, and

select the current port for use with file transfers and command

transfers to the connected slave. File, command transfers, and the

output of the remote Slave computer is available on a monitor window.

Status windows are shown for critical parameters.

The Slave microcomputer is operated in an infinite loop to

receive and process commands. Local operation may be restored (at the

37

cost of disabling server -functions) by pressing a local key which

aborts the Slave program.

D. DESIGN CONSIDERATIONS

1. Assembly Language

Assembly language is used in only two locations in this

thesis, -for the purposes of code optimization. The -first is to move

data between the screen bu-f-fer and a storage location to open and close

windows on the screen as used in the windowing module. The second is

to enable and disable CPU interrupts -for the interrupt service routines

contained in the data communications module. Both instances utilize

built in assembly language -facilities of the compiler. The remainder

of the program is coded in the Turbo Pascal dialect.

2. ROM BIOS Software Interrupts

Calls are made to the ROM BIOS of the IBM PC compatible

computers to perform communications port speed initialization

(interrupt $143 , and to obtain the machine disk drive, memory, and

communications port configuration for display ($11).

3. Memory Management

Memory management is handled by the Turbo Pascal compiler

in accordance with the $M compiler directive. This was adjusted from

that offered by the Turbo version 3.0 to version 4.0 conversion

utility, which allocated all memory to the distributed processing

program. By reducing the size of the heap, child processes and MS-DOS

shells can be run from the program as a parent. The primary consumer

of heap memory is for dynamic allocation of memory to save screen

-r
B

displays -for windowing. Current program memory requirements are less

than 75 Kbytes, exclusive of the MS-DOS operating system and any

Terminate and Stay Resident programs run before the program. The use

of Terminate and Stay Resident programs is not recommended due to

unpredictable side effects.

4. Synchronization

Synchronisation is normally maintained by starting the Slave

microcomputer in the command receive mode and then executing in an

endless loop. The Master computer operator must initialize the

communications ports (if required) and connect to the appropriate port

to access the desired Slave. Commands are normally passed to the Slave

and responses displayed on the Master, however, if the Master computer

is redirected to another task while the Slave is processing the

request, the Slave will wait on the Master with its response. This is

a functionality of the Xmodem protocol, which is receiver driven. A

resynchronization command is available to the Master operator to force

the Slave back into the command receive mode if required. The process

is currently manual, and depends on operator familiarity with the

likely Slave responses. Adequate, although not necessarily automated,

status responses are available to the Master operator to determine the

Slave state.

5. Modular Programming

The windowing support unit, the Xmodem file and command

transfer protocol, and the RS-232C serial communications port and

interrupt service routines are contained in separate units. In the

case of the Xmodem unit and the data communications unit, the original

terminal program interface is retained although the implementation is

considerably different. This was intentionally done to create the

potential to provide a different transfer protocol or to use a

different network by redesigning the implementation section of the

unit, and to demonstrate information hiding. The windowing unit was

simply converted to a Turbo Pascal unit (Edwards, 1987, pp. 50 - 98),

along with a general support unit (Edwards, 1987, pp. 66 - 73).

6. Preservation of Interrupt Vectors on Program Termination

The manipulation of the vectors in the IBM-PC interrupt vector

table provides a powerful means to enhance the capabilities of the

machine, whether to incorporate new hardware or to adapt an existing

capability in software. The potential is equally high to lose control

of the system if the interrupt vectors Are not restored when the

program ends. This must be handled for normal termination as well as

unplanned, or abnormal termination.

E. SYSTEM EXECUTION

1. Initialization

The program contains all functions for operation as either a

Master or Slave microcomputer on the distributed processing network.

The operating selection is made when the program is run, either by

Distrib Master

for operation as a master, or by

Distrib

or

Distrib Server

40

•for operation as a Slave. The program than searches -for its

con-figuration -file and uses that to set the default communications port

settings, screen colors, etc. If not -found, the program utilizes built

in de-faults.

2. Slave Operation

Slave operation is automatic, with the program initializing

its communications port (de-fault is normally C0M1), and entering the

command processing mode in an in-finite loop. This loop may be reset by

the remote Master i-f the Slave is expecting to return a sequence o-f

responses -from a completed command, and the Master operator decides to

abandon the command a-fter execution. In this case, the Slave is reset

over- the communications port to the beginning o-f the command receive

loop to prepare -for the next command. The program is aborted and

control is returned to the operating system i-f any key on the Slave

keyboard is depressed. No warning is sent to the Master, since the

Master may be communicating with another Slave and receive buffers are

purged to begin a new communications sequence as recommended in the

Xmodem protocol. The Master operator can check for a "live" Slave by

watching for the received NAK characters, displayed each five seconds

over the receive channel, or enter receive mode to display a program

response from the Slave.

3. Master Operation

Master operations are menu driven. Upon initialization, the

Master displays a status bar showing the current communications port

selected at the bottom of the screen and queues the operator to depress

the HOME key for a list of commands available. The program otherwise

41

displays a blank terminal screen although the communications ports are

disabled -for receive on startup. When the operator depresses the HOME

key, a window appears that offers the following command selections with

a menu bar that can be positioned to select the desired command. The

operator is also reminded that the listed commands may be selected from

the terminal screen by depressing the Alt - <key> combination. The

commands are:

Alt-A Change drive &. path
Alt-B Send a Break signal
Alt-C Update Config File
Alt-D Dialing Directory
Alt-E Local echo toggle
Alt-F Change DC params
Alt-6 Show disk directory
Alt-H Hang up phone
Alt-L DOS Shell

Alt-M Activate Master
Alt-P Port Operations
PgDn

,

Alt-P XMODEM Set a file
Alt-S Activate Server
PgUp

,

Alt-T XMODEM Put a file
Alt-X (ESC) Exit emulator

A more complete discussion of the different commands is found in

Appendix A
5

the Operator's Manual. The following is a summary of

capabilities, as seen from the Master microcomputer.

a. Terminal Operations

The opening screen of the program is adequate to perform

teletype terminal communications over the currently selected

communications port, once properly initialised. The initialization

commands are found in the Activate master subscreens.

b. Port Initialization

The menu selections available allow the operator to

override the de-fault communications ports settings and to select a

communications port -for communications with the remote Slave. An ESC

key returns the operator to the terminal screen.

c. Remote Login to Slave

Most operations are accomplished at the Slave by using

the remote login -function. The command is packetized at the Master and

sent to the Slave as a 128 byte Xmodem packet. Upon success-ful receipt

at the Slave (signalled by an ACK character received at the Master),

the Master then assumes the Xmodem receive function to await the

response -from the Slave. The Slave then sends a packet back with a

prompt containing its current directory and drive. This prompt is

structured to look like the operating system prompt. Once received by

the Master, the Slave reverts to command receive mode to await the next

command. The Master displays a window to prompt the operator for the

next command to send to the Slave, or to quit the command mode. If a

command is sent, it is packetized and transmitted as before.

d. Remote Program Execution

Programs &re run on the Slave microcomputer in response

to commands received from the Master. Once the command is parsed, the

program handles some commands internally and runs a program as a child

process to accomplish those commands it does not recognize internally.

For spawned programs, the program output is captured in a file and then

sent back to the Master. The Master waits for the response after

sending the command. Responses may be a series of strings or -files,

and are displayed on the Master remote login window.

e. Flow Control

Flow control (selection of receiver and sender) is in

accordance with the Xmodem protocol, with one exception. An EOT (End

o-f Transmission character is specified in that protocol to signal a

complete transmission. In order to accomplish multiple string or file

transmission from the Slave to the Master to forward the output of a

spawned program, the Master interprets each received EOT character as

an end of transaction (string or file) as in the original protocol, but

does not end its receive operations until a CAN character is received

from the Slave to signal the end of the command and response sequence.

f. Remote Reset

Related to flow control is the ability for the Master

microcomputer to reset the flow direction if the Master and Slave

microcomputers lose synchronization. This may happen between the

command transfer to the Slave and the response from that microcomputer,

and is usually exhibited by both microcomputers attempting to send or

receive at the same time. The Master operator may break the deadlock

by sending a series of CAN characters to the Slave to force it back

into the command mode.

g. File Transfer

To send a file, the operator selects the ZCOPY option to

the remote microcomputer and the system prompts for a filename. A

complete path may be specified. Once selected, the program invokes a'

copy of the ZCOPY program at the Slave and places it in ZCOPY Server

44

mode. The Slave then waits -for the handshaking protocol from the ZCOPY

program at the Master (also spawned), and establishes a link over the

serial port at the maximum reliable data rate. Once the transfer is

complete, both copies of ZCOPY terminate and control is restored to the

distributed processing program at the established data rates. The

Slave then reports the ZCDPY program output to the Master.

F. THE MODULES

The following program modules are contained in the distributed

processing program.

1. Distrib

Distrib is the main program for both the Master and Slave

computers.

2. DataCom

Unit DataCom provides all procedures and functions needed to

initialize the computer serial communications ports, enable and disable

receive interrupts, provide buffered reception of characters, clear the

receive buffer(s), send or receive bytes through the ports, send a

BREAK signal over the RS-232 port, and nondestructive! y read the

receive buffer (s) . It supports Unit Xmodem and the terminal portion of

Distrib. The currently selected communications port is contained in

public variable Current_Com.

3. Director

Unit Director is a set of functions and procedures that allow

the output MS DOS file directories to a windowed environment. Masking

45

options and a selector -for normal or abbreviated (similar to the MS-DOS

/w switch) displays are allowed.

4. ErrorCod

ErrorCod is a array of string constants mapped by the DOS

Error Code, Error Class, Recommended Error Action and Error Locus

indices -found in (Microsoft, 1986, pp. 3-1 - 3.11, 4.254 - 4.255). The

unit is used by the units Parser, Spawn and the program Distrib to

report errors. A procedure is also provided to retrieve extended error

code information available in MS-DOS versions 3.0 and above by DOS

function call 59H.

5. General

The General Unit is a collection of general purpose routines

that support the Wndow Unit and other modules. (Edwards, 1987, pp.

66 - 73)

6. MiscPack

unit Miscpack is a collection of data types and utility

routines supporting these other units: Xmodm, Parser, Spawn, Redirect,

and the main program Distrib. The strong typing features of Turbo

Pascal require that instances of data types in different units that

must be equated be declared in one place to be compatible at compile

time. (Swan, 1986, pp. 14 - 23)

7. Parser

Unit Parser contains a central procedure, Parser_Main, which

attempts to parse and execute an MS-DOS style command on the local

machine. The remaining procedures and functions support this function.

46

8. Redirect

Unit Redirect is a set of functions and procedures that allow

the output of programs spawned under the Slave computer's copy of the

main program Distrib to be redirected to files. Once the program ends,

the Slave computer can then forward the output normally displayed on

the screen to the Master computer for display.

9. Spawn

This Unit detects commands that should be processed internally

by the Distrib program, and executes commands internally or by spawning

a child process. Command output and error responses are returned to

the caller either as strings suitable for conversion to Xmodm packets,

or by reference to files containing the text. This unit also contains

the redirection switch as a public variable that dictates whether

program output will be redirected to s file or displayed locally on the

screen. This switch is normally set to redirect to file.

10. Support

The Support Unit contains most of the constant declarations

for the program, along with the initialization procedure some general

purpose procedures as found in the original terminal program.

(Edwards, 1987, pp. 241 - 272)

1

1

. Wndow

The Wndow Unit provides all window creation, memory

allocation, display, menu bar processing, closure and memory

deallocation functions for the program Distrib. The unit was changed

from an include file to a unit, but not otherwise changed from that

47

originally developed by the author in (Edwards, 1987, pp. 50-98). The

purpose descriptions are -from the author.

12. Xmodm

This Unit handles all requests for Xmodem protocol packet and

file transmission and reception.

48

VI. CONCLUSIONS

The program developed and implemented -for this thesis successfully

demonstrated the capability for unmodified IBM PC/AT compatible

microcomputers to operate in a distributed processing network. A small

star network consisting of one master microcomputer and two slave

microcomputers was installed and operated in a laboratory environment.

The network displayed the capability of transferring program and

data files between the master microcomputer and either of the slave

microcomputers, and the capability of the master to command the

execution of MS-DOS commands and executable programs on the slaves.

The network further demonstrated that the output of the commands or

programs could be displayed on the master computer. A simple error

recovery methodology was also demonstrated.

Implementation of this program was not feasible in RR Software,

Inc. JANUS/Ada, due to unexpected problems in the implementation of

that subset of the Ada language and that compiler's design. This is

not a fault of the Ada programming language. These design deficiencies

in the JANUS/Ada were specific to the implementation in an MS-DOS or

CP/M environment; and caused fatal operating system faults when a child

process was executed from the command parser, as implemented in

JANUS/Ada. The amount of code emitted by the compiler also appeared to

be relatively large. It should be noted that the compiler available

for this thesis was relatively old, version 1.5.2, and as a subset of

49

the Ada language was not validated. It may be that the current,

validated version has corrected these deficiencies.

Borland Corporation. Turbo Pascal proved to be a viable programming

environment -for this thesis, and provided many of the -features desired

•from the Ada programming language. These include information hiding

through modular program and the unit structure, data abstraction,

strong typing, and high level procedures -for -file input and output,

access to the microcomputer input /output ports, and a standardized

inter-face to the system software interrupts. Assembly language

programming was not required, and was used in two isolated locations to

implement replacement interrupt service routines and enhance block data

movement.

50

APPENDIX A

OPERATOR'S MANUAL

A. STARTUP

The distributed processing program is designed to operate on an IBM

PC/AT compatible microcomputer such as the Zenith Z-248. Minimum
con-figuration is a 10 Mbyte or larger hard drive, 640 Kbytes of memory,
an EGA or VGA monitor, and at least one -floppy -for program loading.
The -following -files should be resident on the hard disk in the desired
directory: DISTRIB.EXE, DISTRIB.CFG, DISTRIB.PHN. A subdirectory
should exist off the root directory of the hard disk named SCRATCH for

the maintenance of redirected output files generated by the Slave
program. The file transfer program ZC0PY.COM should be available in

the DISTRIB.EXE directory.
The microcomputers must be connected by a null modem and

appropriate cables before the network will operate. Turn on the Slave
microcomputer (s) first.

B. Slave Operation

Slave operation is automatic. For convenience, if the
microcomputer is to be used largely as a Slave in the distributed
processing network, an AUTOEXEC.BAT file may be placed on the boot
drive root directory that specifies the complete drive and path
specification for the program, with the following program name:

CdriveD[path]DISTRIB Server

On startup, the program will load, initialize and display a

status screen with a monitor window for remote commands and the Slave's
responses. Operation of the Slave may be monitored from the display
screen. The program is aborted and control is returned to the
operating system if any key on the Slave keyboard is depressed. No

warning is sent to the Master.

C. Master Operation

Master operations are menu driven. For convenience, if the
microcomputer is to be used largely as a Slave in the distributed
processing network, an AUTOEXEC.BAT file may be placed on the boot
drive root directory that specifies the complete drive and path
specification for the program, with the following program name:

[drive] [path]DISTRIB Master

On startup, the program will load, initialize and display a

status bar at the bottom. This bar shows the current communications
port selected at the bottom of the screen and queues the operator to
depress the HOME key -for a list of commands available. The program
otherwise displays a blank terminal screen although the communications
ports are disabled for receive on startup. When the operator depresses
the HOME key, a window appears that offers the following command
selections with a menu bar that can be positioned to select the desired
command. The operator is also reminded that the listed commands may be
selected from the terminal screen by depressing the Alt - <key>
combination. The commands are:

Alt-A Change drive ?< path
Alt-B Send a Break signal
Alt-C Update Config File
Alt-D Dialing Directory
Alt-E Local echo toggle
Alt-F Change DC params
Alt-G Show disk directory
Alt-H Hang up phone
Alt-L DOS Shell
Alt-M Activate Master
Alt-P Port Operations
PgDn

,

Alt-R XMODEM Bet a file
Alt-S Activate Server
PgUp,
Alt-T XMODEM Put a file
Alt-X (ESC) Exit emulator

These commands are discussed individually in the following
sections. What follows is a. general sequence of commands or selections
to accomplish processing on the Slave microcomputer.

1. Terminal Operations

The opening screen of the program is adequate to perform
teletype terminal communications over the currently selected
communications port, once properly initialised. The initialization
commands are fourd in the Activate Master subscreens.

2. Remote Login

The Slave microcomputer may be operated as though the Master
operator is entering commands from its keyboard and observing the
results on its display. These functions are remoted to the Master
screen.

52

To log in to the Slave, select Activate Master -from the main

menu and then select options -from the secondary menu to establish the

correct baud rate, parity, for the port connected to the desired Slave
and to connect the port. The default settings are usually satisfactory
once the network is established. The Master cannot reset the Slave's
port parameters remotely. Once the port is connected, select Remote
Login from the Activate Master menu. After a moment for the exchange
of command and response, the Slave's local directory will be displayed.

From this point, any MS-DOS command or program entered at the Master

may be run on the Slave and the output will be displayed at the Master.

3. Initialize Port, Connect Port, Disconnect Port

These commands are used to set the communications port

settings, and to establish a link to the attached Slave microcomputer.
Both the Slave and Master microcomputers must be set up at the same
serial port parameters to communicate. To change to a different Slave
(port) , either first disconnect the current port and connect the
desired port, or simply connect the new port.

4. Equipment Status

This command will return the Slave configuration on the Master
screen. The number of disk drives, communications ports, and available
memory is displayed.

5. ZCOPY

These commands allow file transfers from or to the connected
Slave. Upon activation, the program will prompt for the file name to
be sent or received. If the copy will result in another file of the
same name being overwritten, confirmation will be asked. The Master
will display the Slave's ZCOPY program output after the transfer is
complete. This is useful i f an error occurs.

6. Reset Remote

This command is useful if the Slave was operating
satisfactorily and now appears unresponsive. It aborts any protocol
transfer in progress and restores flow control the command receive
mode.

7. Exit (ESC)

This exits the Activate Master environment. All
communications port selections remain intact.

JO

D. COMMAND SUMMARY

The remaining commands accessed from the main screen are:

1. Alt-A Change drive & path

This command changes the current disk drive and path for file
transfers or directory operations. It also determines the starting
directory for a DOS shell.

2. Alt-B Send a Break signal

This command sends an RS-232C break signal over the currently
selected communications port.

3. Alt-C Update Config File

This command allows the operator to display the current
program configuration parameters as found in the file DISTRIB.CFG, in

the current directory. An error indication is given if the file is not
found. The operator can select any of the displayed parameters to
change, and a range of options is displayed. Default settings for the
communications ports, the modem dialing prefix, and screen color
settings are provided.

4. Alt-D Dialing Directory

This command allows the operator to dial a telephone number
from a list of stored numbers, or a number entered manually from the

keyboard. This command assumes a Hayes compatible modem.

5. Alt-E Local echo toggle

Intended for terminal operations, this command sets a half

duple;: toggle to display transmitted as well as received commands if

the remote terminal does not echo received characters.

6. Alt-F Change DC params

This command allows the operator to set the baud rate, word

length, parity and stop bits for the currently selected communications
port, to override the configuration settings.

7. Alt-G Show disk directory

This command displays the local disk directory, in MS-DOS
standard or /w formats.

8. Alt-H Hang up phone

This command tells the modem to disconnect the telephone line.

9. Alt-L DOS Shell

This command executes a secondary copy of the MS-DOS command
processor to allow the operator to utilize the operating system without
terminating the distributing processing program.

10. Alt-M Activate Master

This command opens a second set o-f commands to command the

Slave processor. These include:

Initialize port

Connect to current port
Disconnect current port
ZCOPY -file to remote
ZCOPY -file -from remote
Get machine status
Login to remote machine
Reset remote server

a. Initialize Port

This command allows the operator to select the current
port parameters -from a menu of options, ranging from 110 baud to 38,400
baud.

b. Connect to Current Port

This command allows the operator to assign a port
(currently C0M1 or COM2) as the port for current operations.

c. Disconnect Current Port

This command disables the receive interrupts for the
currently selected port.

d. ZCOPY file to remote

This command requests the name of the file to be sent to
the Slave, and then invokes a program called ZCOPY to send the file at

the maximum data rate supported by the communications port.
Precautions must be taken if a modem is used, since the modem will
dictate the maximum data rate.

e. ZCOPY file from remote

This command requests the name of the file to be received
from the Slave, and then invokes a program called ZCOPY to receive the
file at the maximum data rate supported by the communications port.
Precautions must be taken if a modem is used, since the modem will
dictate the maximum data rate.

55

f. Get machine status

This command allows the Master operator to query the
con-figuration of the connected Slave microcomputer, and displays the
number o-f -floppy disk drives, communications ports, and available
memory.

g. Login to remote machine

This command returns a prompt from the remote machine on
a full screen window at the Master. The operator is then able to send
commands to the Slave in much the same manner as -from the local
operating system prompt. Responses are displayed on the Master screen.

h. Reset remote server

This command is used to resynchronize the Master and
Slave computers. It does so by sending a series o-f CAN characters down
the serial communications link to abort any operations in progress and
return the Slave to the command mode.

11. PgDn, Alt-R XMODEM Get a -file

This command allows the Master to perform a file transfer from
an Xmodem compatible remote system. The filename is requested from the
operator to assign to the received file.

12. Alt-S Activate Server

This command allows the operator to invoke Slave operations on

the local microcomputer, and is useful for systems initialisation and

setup. Depressing a key while in this mode aborts the Slave operation,
but returns the program to the terminal mode.

13. PgUp, Alt-T XMODEM Put a file

This command allows the operator to perform a file transfer to
an Xmodem compatible remote system. The filename of the file to be

sent is requested from the operator.

14. Alt-X (ESC) Exit emulator

This command halts the program, restores all communications
port interrupt vectors, and returns control to the operating system.

E. TERMINATION

1. Slave

Slave operation is terminated by depressing a key. Control

returns to the operating system.

cr

6

2. Master

The Master is terminated by returning to the main menu
(terminal screen) and depressing Alt-X. Control returns to the
operating system.

APPENDIX B

INSTALLATION/PROGRAMMING AIDS

This appendix provides information on the construction of null

modem cables -for use between the Master and Slave microcomputers, and
provides a listing of all procedures and -functions -found in the
distributed processing program. These procedures and -functions are
sorted alphanumerical ly within by program or unit.

A. SERIAL PORT CONNECTIONS

The serial connection between computers are the RS-232C
communications ports operating at 9600 baud -for IBM PC/AT compatible
machines and 4800 baud -for IBM PC/AT compatibles. The difference is

due to some spurious characters noted on the slower machine's display
during data transfers. The microcomputers at each end of a single link

must be configured for the same speed. The pin connection for the
interconnecting cables is shown at Figure B.l. For microcomputers with

the nine pin AT style connector, a nine pin to RS-232C 25 pin DB-25
cable is recommended, with a NULL modem in between. Hardware
handshaking is turned back in this configuration. The program will

operate satisfactorily through a modem if the baud rate is lowered.
(Flanders, 1989, p. 252)

FIGURE B.l

SERIAL PORT CONNECTIONS
Computer 1 Computer 2

Pin Function Pin Pin Pin Function

Signal Ground 7 7 Signal Ground
Transmit Data 2 > 3 Receive Data
Receive Data 3 < 2 Transmit Data
Request to Send 5 -, , - 5 Request to Send
Clear to Send 5 -! !- 5 Clear to Send
Carrier Detect 8 -' '-8 Carrier Detect
Data Set Ready 6 —

, , - 6 Data Set Ready
Data Terminal Ready 20 -' '- 20 Data Terminal Ready

B. INSTALLATION

Installation may be rapidly accomplished by connecting a null modem
cable to COM! for both the Master and Slave microcomputers. Install a

copy of Zcopy.com in the same directory as the Distrib.exe program.
The file Distrib.cfg and Distrib.phn should not be resident in this

"'I

58

directory, or the program may initialize the C0M1 ports to incompatible
settings. Execute the command "Distrib Master" at the MS-DOS prompt o-f

both machines. This should bring both programs up in the terminal
mode. Depress the Alt-M (Activate Master) key combination to access
the communications port settings and initialize C0M1 -for 9600 baud, 8

data bits, 1 stop bit and no parity (4800 baud for non - AT IBM PC

compatibles). Connect to the C0M1 port and press ESC to exit the

secondary menu. The Master and Slave should be able to communicate as

glass teletypes to each other. If desired, change the de-fault settings
-for both microcomputers to the desired port parameters by selecting
Alt-C (Update Con-fig File). This, when saved, will generate the

con-figuration -file -for the microcomputer. A similar procedure with
Alt-D will allow the creation of the telephone number file if desired.
Create an AUTOEXEC.BAT file for the microcomputer (s) designated as
Slave and include the command "Distrib Server" to enter the Slave
program on power up. A similar file with "Distrib Master" will allow
the Master microcomputer to assume that role on power up.

C. UNIT DEPENDENCIES

The following chart (Table B.l) illustrates the the dependencies of

the various units in the program, as a guide to the visibility of the
data structures, procedures and functions in the interface section of

each program module. CRT and DOS are units supplied with the compiler.
All programs and units depend on the System unit.

59

TABLE B.

1

UNIT DEPENDENCIES

UN IT/ PROGRAM-

DEPENDS ON

V*

CRT

DATACOM

DIRECTOR

DOS

ERRORCGD

GENERAL

PARSER

PRINTER

REDIRECT

SPAWN

SUPPORT

WNDOW

XMODEM

D

I

c

T

R

I

B

X

+

! X

+

—

! X

+

—

I V
I A

+

i y

-+

—

! X

-h

; X

: d

I A

! T

! A

! C

!

: m
-+

—

! X

-H

D

I

R

E

C

T

R

! E

: r

! R

: o

: r

: c

i o

: d
+

—

: x :

+—+

—

: g !

: e i

: n :

: e :

: r :

i a :

1

i

•

i L- i

+ +

: x i

+—

+

M !

I :

s :

c :

P !

A I

c :

K !— +-

! R

! E

! D

! I

! R

! E

! C

i T
-+

—

! X

+

—

-+ + + +-

; s

! p

! A

! W

! N
+

—

! X

H

! X

+-

! S

: u

! P

I p

: o

! R

! T
.+

! X

.+

—

! X

: w

! N

! D

!

: w
+

—

I X

•+

—

! X !

i m :

: o i

: d i

: e !

! M !

+ +-

! X !

+ +-

! X !

+ +-

-+ +

—

: x ! x

+— +

—

; x :

-+— +-

; x :

-4- + -

! X

H

: x

+

—

! X

-H

- + + -+

! X

-+

+

! X

+

! X

+

—

: x

+

—

!

1

+

! X

+

—

! X

-+

—

: x

+

—

-+

—

: x

-+

—

! 1

I I

! X !

+ +

! X !

+ + H 1

! X

-+ +-

-+ +-

i

y I i i i < i v i

A 1 i I ! I I A !

+ + + + + + +

—

V ! ! !
' i I !

+

X

-+ + -

-+ + -

-+

I A

-+ • + + + H + -i- +

! I

i <

i A i

i A i

+ +

C. PROCEDURE/FUNCTION LIST

The -following -functions and procedures are -found within the Distrib
programs

1. Program Distrib
a. Chanqe DC Parameters

60

2.

b. Comms_function
c. Dialing_Di rectory
d. Dial_Phone
e. Dirs
f. Dos_Shell

g- 6et_Dial
h. Set_Equip
i . Handle_Alt_Key

J. Hangup
k. Operator_input
1. Operator_message
m. Process_command
n. Reset_remote
o. Remote_Command

P- Rlogin

q. Rx_File
r . T;:_File

s. Save_File
t. TTY

UNIT Datacom
a. Connected
b. DataComm_Error
c. Disable
d. Di sab le_ Interrupt

s

e. Enable
f. Enable_ Interrupts

g- Establ ish

h. Hex Byte
i

.

HexWord

J. PurgeLine
k. Reset_Chip
1. RS232_Avai

1

m. RS232_Peek
n. RS232_In
o. RS232_Init

P- RS232_ISR1

q. RS232_ISR2
r

.

RS232_0ut
5. RS_Break
t. RS_Cleanup
u. RS_Eight_Bits
V. RS_ Initialize
w. RS_Restore
X • SelectBitRate
y- SelectFraming
z

.

SelectParity
as. Sel ectWordLength
ah. Send_EQI
ac. Send_String

61

3. UNIT Director
a. BetAttribut
b. ShowDir
c. StandBy
d. ViewDir
e. WriteEntry

4. UNIT ErrorCod
a. E>;tended_Error_Code

5. UNIT Seneral
a. Beep
b. Cursor_Size
c. Ex change
d. Fill Word
e. Get_Time
i. Max

g. Min

6. UNIT Miscpack
a. Bump St

r

Up

7. UNIT Parser
a. arqc

b. argv
c. Init_parse
d. Parse
e. ParseName
i . Parser_main

g. Resolve_command

8. UNIT Redirect
a. Close_File_Handle
b. Du.pl i cate_Handle
c. Init_Redirect_Unit
d. Redirect_All_Output
e. Redirect_Handle
f. Redirect_Btd_Inpu.t

g. Redirect_Std_Error
h. Redirect_Std_Ou.tput
i

.

Restore_Std_Error
j. Restore_Std_ Input
k. Restore_Std_Output
1

.

Restore_Al 1 _0utput
m. Restore_CRT_Assignments

9. UNIT Spawn
a. Match_Command
b. Process_intrinsic_comfnand
c. Run Local

62

10. UNIT Support

11,

a. Bui 1 d_Status_Li ne

b. Check_Auxport
c. Check_Keyboard
d. Fi nd_Envi ronment
e. GetEquip
f. Initial ize

g- Modi-fy_Entry
h. NoFile
i . OK

J. Save_File
k. Yes

UNIT Wndow
a. Build_Borders
b. Close_Window
c. Get_Dummy_Screen
d. Get_Real _Screen
e. Get_Window
f. Init_Window_In-fo

g- Move_Window
h. Write_Status
1

.

Gpen_Window

J. Proces5_Wi ndow_lienu

k. Restore_Wi ndow

1. Save_Window
m. SetBackground
n. SetColor
0. Speci al _F'rocessi ng

UNIT Xmodm
a. buf_to_string
b. Command _.X-f er

c. Get_Bu-Her
d. 6et_respon5e
e. ReadAuk
f. Recei ve_Record

g. Respond_by_f i ie

h. Send_CAN;
i

.

Send_E0T
j. Send_String
k. string_to_buf
1

.

Sync_Recei ve

m. Send_Record
n. Sync_Send
o. Trans-fer_Fi le

p. Update_Status
q. WriteAux
r. Xmodem Xfer

APPENDIX C

XMODEM PROTOCOL

The -following is an overview of the Xmodem protocol, as described
by the author. (Trimble, 1989).

A. MODEM PROTOCOL OVERVIEW 178 lines, 7.5K

1/1/82 by Ward Christensen. I will maintain a master copy of this.
Please pass on changes or suggestions via CBBS/Chicago at (312)

545-8086, or by voice at (312) 849-6279.

NOTE: this does not include things which I am not familiar with,
such as the CRC option implemented by John Mahr.

Last Rev: (none)

At the request of Rick Mallinak on behalf of the guys at Standard
Oil with IBM P.C.s, as well as several previous requests, I finally
decided to put my modem protocol into writing. It had been previously
formally published only in the AMRAD newsletter.

Table of Contents
1 DEFINITIONS

TRANSMISSION MEDIUM LEVEL PROTOCOL
MESSAGE BLOCK LEVEL PROTOCOL
FILE LEVEL PROTOCOL
DATA FLOW EXAMPLE INCLUDING ERROR RECOVERY
PROGRAMMING TIPS.

Definitions

<soh> 01H
< eot > 04H
<ack> 05H
<nak> 15H

<can> 18H

2. Transmission Medium Level Protocol

Asynchronous, 8 data bits, no parity, one stop bit.

The protocol imposes no restrictions on the contents of the
data being transmitted. No control characters are looked for in the

128-byte data messages. Absolutely any kind of data, may be sent

binary, ASCII, etc. The protocol has not formally been adopted to a

64

7-bit environment -for the transmission of ASCII-only (or unpacked-hex

)

data , although it could be simply by having both ends agree to AND the

protocol -dependent data with 7F hex be-fore validating it. I

specifically am referring to the checksum, and the block numbers and

their ones-complement.

Those wishing to maintain compatibility of the CP/M file

structure, i.e. to allow modemming ASCII files to or from CP/M systems

should follow this data format:

ASCII tabs used (09H) ; tabs set every 8.

Lines terminated by CR/LF (ODH OAH)

End-of-file indicated by '"1, 1AH. (one or more)

Data is variable length, i.e. should be considered a

continuous stream of data bytes, broken into 128-byte chunks purely

for the purpose of transmission.
A CF7M "peculiarity": If the data ends exactly on a

128-byte boundary, i.e. CR in 127, and LF in 128, a subsequent sector

containing the ""Z EOF character (s) is optional, but is preferred. Some

utilities or programs still do not handle EOF without •""Zs.

The last block sent is no different from others, i.e.

there is no "short block".

3. Message Block Level Protocol

Each block of the transfer looks like:

<SOHXblk #><255-blk #><— 128 data bytes— ><cksum>

in which:
<SOH> = 01 hex

<blk #> = binary number, starts at 01 increments by

1, and wraps OFFH to 00H (not to 01)

<255-blk #> = blk # after going thru 8080 "CMA" instr,

i.e. each bit complemented in the 8-bit block number.

Formally, this is the "ones complement".
<cksum> = the sum of the data bytes only. Toss any

carry.

4. File Level Protocol

a. Common to Both Sender and Receiver

All errors are retried 10 times. For versions running
with an operator (i.e. NOT with XMODEM), a message is typed after 10

errors asking the operator whether to "retry or quit". Some versions
of the protocol use <can>, ASCII '"X, to cancel transmission. This was
never adopted as a standard, as having a single "abort" character makes
the transmission susceptible to false termination due to an <ack> <nak>
or <soh> being corrupted into a <can> and canceling transmission.

The protocol may be considered "receiver driven", that
is, the sender need not automatically re-transmit, although it does in

the current implementations.

b. Receive Program Considerations

The receiver has a 10-second timeout. It sends a <nak>
every time it times out. The receiver's -first timeout, which sends a

<nak>, signals the transmitter to start. Optionally, the receiver
could send a <nak> immediately, in case the sender was ready. This
would save the initial 10 second timeout. However, the receiver MUST
continue to timeout every 10 seconds in case the sender wasn't ready.

Once into a receiving a block, the receiver goes into a

one-second timeout -for each character and the checksum. If the
receiver wishes to <nak> a block for any reason (invalid header,
timeout receiving data), it must wait -for the line to clear. See
"programming tips" for ideas Synchronising: If a valid block
number is received, it will be:

(i) The expected one, in which case everything is

fine; or

(2) a repeat of the previously received block. This
should be considered OK, and only indicates that the receivers <ack>
got glitched, and the sender re-transmitted;

(3) any other block number indicates a fatal loss of

synchronisation, such as the rare case of the sender getting a

line-glitch that looked like an <ack>. Abort the transmission, sending
a <can>.

c. Sending Program Considerations

While waiting for transmission to begin, the sender has

only a single very long timeout, say one minute. In the current
protocol, the sender has a 10 second timeout before retrying. I

suggest NOT doing this, and letting the protocol be completely
receiver-driven. This will be compatible with existing programs.

When the sender has no more data, it sends an <eot>, and

awaits an <ack>, resending the <eot> if it doesn't get one. Again, the
protocol could be receiver-driven, with the sender only having the

high-level 1-minute timeout to abort.

5. Data Flow Example Including Error Recovery

Here is a sample of the data flow, sending a 3-block message,
which handles the two most common line hits - a garbaged block, and an

<ack> reply getting garbaged. <xx> represents the checksum byte.

66

FIGURE C.l

DATA FLOW EXAMPLE

SENDER RECEIVER

times out after 10 seconds,
<nak>

<soh> 01 FE -data- <;•:>:> >

< <ack>
<soh> 02 FD -data- x>: > (data gets line hit)

< <nak>
<soh> 02 FD -data- xx >

<— <ack>
<soh> 03 FC -data- xx >

(ack gets garbaged) < <ack>
<soh> 03 FC -data- xx > <ack>
<eot> >

<ack>

6. Programming Tips

The character-receive subroutine should be called with a

parameter specifying the number of seconds to wait. The
receiver should -first call it with a time of 10, then <nak> and

try again, 10 times.

After receiving the <soh>, the receiver should call the

character receive subroutine with a 1-second timeout, for the

remainder of the message and the <cksum>. Since they are sent

as a continuous stream, timing out of this implies a serious
life glitch that caused, say, 127 characters to be seen instead
of 128.

When the receiver wishes to <nak>, it should call a "PURGE"

subroutine, to wait for the line to clear. Recall the sender-

tosses any characters in its UART buffer immediately upon
completing sending a block, to ensure no glitches were mis-
interpreted. <

The most common technique is for "PURGE" to call the
character receive subroutine, specifying a 1-second timeout,
and looping back to PURGE until a timeout occurs. The <nak> is

then sent, ensuring the other end will see it.

You may wish to add code recommended by Jonh Mahr to your
character receive routine - to set an error flag if the UART
shows framing error, or overrun. This will help catch a few
more glitches - the most common of which is a hit in the high
bits of the byte in two consecutive bytes. The <cksum> comes

67

out OK since counting inl-byte produces the same result o-f

adding 80H + 80H as with adding 00H + 00H.

68

APPENDIX D

MAINTENANCE MANUAL FOR DISTRIB PROGRAM

A. PROGRAM DISTRIB

1. Con-figuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microso-ft MS-DOS (Version 3.x)

e. Program Description
Distrib is the main program -for both the Master and

Slave computers operating in the distributed processing network. The

main program loop initializes the window unit, saves the current
directory and the current screen image for restoration on program
termination, and then calls Initialize in the Support Unit to establish
the communications port parameters, screen colors, dialing directory,
and other de-fault parameters. The program then examines the command
tail following the program name when it was called from the operation
system and takes one of the following actions:

(1) Command tail is NIL or "Server". If nothing is

specified after the program name, or the word "Server" is found as the
first command line parameter, the program assumes it is to operate as a

remote Slave or Server and enters a. processing loop to wait for a

command packet from its communications port. A local screen display is

available showing a program version banner and a monitor window showing
commands received and responses generated. Local keyboard input after
his point will abort the program, reverting the computer to local use.+

(2* Command tail is "Master". If the word "Master" is

found as the first command line parameter, the program enters the
terminal mode through the default communications port and awaits
operator action at the local keyboard. If a remote Slave computer is

connected, NAK symbols will be displayed periodically as the remote
computer awaits a command. A status line is displayed across the 25
line of the screen and HELP is offered to the local operator if the
HOME key is depressed. HELP displays a list of available commands to
initiate file transfers or run remote programs.

2. Subroutines Contained

a. Dial_Phone
(1) Type: Procedure

69

(2) Purpose: To dial a selected telephone number on a

Hayes compatible modem connected to the modem port.
(3) Description of Parameters: I is the entry number

to be dialed that was selected by the user -from the Dial ing_Directory
procedure that -follows. Demon_Dial, if TRUE, repeat dials the entry
until the modem reports a connection. This procedure changes the COMM
port selection stored in the DataCom Unit variable Current_Com to the
modem port, and leaves it there.

(4) Subroutines Called:
Flush_Buffer (dumps the receive buffer)
DataCom. Connected
DataCom. RS_Initial ize
DataCom. RS_Cleanup
DataCom. RS232_In
DataCom. RS232_Avai

1

DataCom. Send_String
CRT.ClrEOL
CRT.ClrScr
CRT. Delay
CRT.BoToXY
Wndow. Beep
Wndow. Get_Window
Wndow. Open_Window
Wndow. Close_Window

(5) Process Description
Given the dialing directory entry to dial, the

procedure initializes the modem port according to information stored in

the dialing entry data structure Support. Phone_Stuf f ; and sends a

string to the modem to dial the number. I-f repeat dialing is selected,
a window is displayed showing the progress o-f the call.

b. Get_Dial
(1) Type: Procedure
(2) Purpose: This procedure allows the operator to

select a telephone number to be dialed.
(3) Description o-f Parameters:

Input: Support. Phone_Menu. (the list of available
numbers)

Output: The function returns the order of the
n'th phone list entry

(4) Subroutines Called:
Wndow. Open_Window
Wndow. Process_Window

(5) Process Description
The procedure calls Open_Window with parameter

Phone_lvleriu from the Support Unit to display a menu of telephone numbers
contained in the file DISTRIB.PHN, and allows the operator to select
one with a menu bar.

c. Dialing_Di rectory
(1) Type: Procedure

70

(2) Purpose: To allow the user to dial, modify, add

or delete any telephone number entry in the data structure

Support . Phone_Stuf f

.

(3) Description o-f Parameters: none.

(4) Subroutines Called:
Get_Dial (displays the list of telephone numbers

that Are available)
CRT.GoToXY
CRT.ClrEOL
CRT.ClrScr
Support. Modi -f y_Entry
Support. OK
System. FreeMem
System. GetMem
System. Move
System. Si zeO-f

Wndow. Get_Window
Wndow. Open_Wi ndow
Wndow. CI ose_Wi ndow

(5) Process Description
This procedure -first displays a window allowing

the operator to dial, modify, add or delete any number in the data
structure Support . Phone_Stuff . If dial is selected, the number is

dialed and the program returns to terminal mode. If modify or delete
is selected, a list of available names attached to known telephone
numbers is displayed for selection. If a number is to be added, a

blank parameter table is displayed for data entry. On completion, the
operator is offered the opportunity to save the added number to the
file DISTRIB.PHN, through a call to Modif y_Entry. ESC returns to the
terminal mode.

d. Dirs
(1) Type: Procedure
(2) Purpose: To allow the user to display the local

disk directory.
(3) Description of Parameters: none.

(4) Subroutines Called:
CRT.GoToXY
CRT.ClrEOL
CRT.ClrScr
DOS.Find_First
DOS.FindJMext
System. ChDir
System. GetDir
System. ReadKey
Wndow. Open_Wi ndow
Wndow. CI ose_Wi ndow

(5) Process Description
This procedure prompts the user for a path

specification and directory mask similar to that used by the MS-DOS DIP

71

command and then displays the directory -for that specification a screen
at a time. Capabilities similar to DIR *.* and DIR *.*/w are provided.

e. Change_DC_Parameters
(1) Type: Procedure
(2) Purpose: To allow the user to select speed,

parity, word length and stop bit parameters -for the COM port specified
by DataCom.Current_Com.

(3) Description of Parameters: DataCom.Current_Com
(4) Subroutines Called:

CRT.ClrScr
DataCom.RS_Initialize
DataCom . RS_C1 eanup
Wndow. Open_Window
Wndow. Close_Window
Wndow. Process_Window

(5) Process Description
This procedure offers a selection of parameter

combinations for the currently selected COfl port and allows the port to
be configured accordingly. A menu bar selection is used.

f . Hangup
(1) Type: Procedure
(2) Purpose: To hang up the modem.

(3) Description of Parameters: DataCom. Current_Com
(4) Subroutines Called:

CRT. Delay
DataCom. RS232_In
DataCom. RS232_Avai

1

DataCom. RS_ Initial ize
DataCom. RS_C1 eanup
DataCom. Send_Strinq

(5) Process Description
This procedure places the modem in command mode

and sends a disconnect command string to the Hayes compatible modem
connected to the current communications port.

g. Operator_Input
(1) Type: Function
(2) Purpose: To obtain a string input from the

operator.
(3) Description of Parameters: Title is a string

typed in the Wndow Unit that is to be displayed on the window; Prompt
is a string written in the window area, specifying what the operator is

to enter.
(4) Subroutines Called:

CRT.ClrScr
Wndow. Open_Wi ndow
Wndow. Close Window

(5) Process Description
This -function opens a titled window and waits for

the operator to type a string. The string is returned as the -function

result.

h. Operator_Message
(1) Type: Function
(2) Purpose: To inform the operator with a string

message, usually o-f some error condition that is to be temporarily

displayed.
(3) Description o-f Parameters: Title is a string

typed in the Wndow Unit that is to be displayed on the window; Message

is the string message to be provided to the operator. Note that this

function depends on the calling program to close the window.

(4) Subroutines Called:
CRT.ClrScr
Wndow. Open_Wi ndow

(5) Process Description
This -function opens a titled window and places the

message string in the window.

i . Process_Command
(1) Type: Function
(2) Purpose: To operate the computer as a Slave,

process all requests to initialize COM ports, trans-fer files between
Master and Slave computers, remotely operate a Slave computer, or reset

the connection between computers.
(3) Description of Parameters: The function returns

to the calling program an enumerated state variable defined in the Unit

Xmodm depending on the successful dispatch of a command to a Slave
computer and the receipt of the response, or an indication that the

local operator has aborted the operation by pressing a. key. The

keypressed indication is typically all that is of interest, since the

function normally called repeatedly.
(4) Subroutines Called:

CRT.ClrScr
CRT.SoToXY
System. ReadKey
Wndow. Open_Window
Wndow. Close_Window
Wndow. Get_Window
Wndow. Process_Wi ndow
Xmodm. Buf _to_String
Xmodm. Command_Xfer
Xmodm. Send_CAN
Xmodm. String_to_buf
Xmodm. Respond_by_f i le

(5) Process Description
The initial state of the communications link is

from Master to Slave (this process). This function opens a small
status window indicating whether it is awaiting a remote command,

73

parsing a received command -for local execution, or completing the
command execution. It does so in this sequence: First, a loop is
entered that repeatedly calls the function Xmodm.Command_Xf er. On
successful receipt (status = Rx_done) , the command is converted -from an
Xmodem packet into a string and passed to Parser. Par ser_main for
execution. The communications link also switches direction, with the
Master expected the Slave to initiate Xmodem packet transmissions.
This procedure returns any error indication from the locally executed
procedure or spawned program as a string in the variable Error_Msg,
along with a typed variable Errtype indicating whether the response is
a file (for program results or output) or a simple string variable or

nothing at all (NULL string). Errtype is used in a following CASE
construct to send the file specified by a complete drive and path
specification in Error_Msg back to the Master computer, or to forward
Error_Msg as a packetized string utilizing the Transmit option of

Xmodm.Command_Xf er . Similarly, this procedure returns any output from
the locally executed procedure or spawned program as a string in the
variable Response, along with a typed variable Restype indicating
whether the response is a file (for program results or output) or a

simple string variable or nothing at all (NULL string). Restype is

used in a following CASE construct to send the file specified by a

complete drive and path specification in Response back to the Master
computer, or to forward Response as a packetized string utilizing the
Transmit option of Xmodm.Command_X.fer. The Master computer expects a

response of this type over the communications line when it detects the
successful command transfer. Note that the normal exit condition for

the Command_Xfer loops throughout this function is Rx_Done or Tx_Done.
The Master computer will continue to display responses from the Slave
until a CAN character is received. At this point, the function returns
with the last valid status of the Command_Xfer function, and the
communications link again switches to the beginning state, with the

Slave waiting on transmissions from the Master. Error indications
other than that in Error_Msg short circuit the program execution
through this function, send a CAN character to the Master, return the

communications link to its initial state, and leave the function with
an error status.

j. Reset_Remote
(1? Type: Procedure
(2) Purpose: This subprocedure of the Comms_Function

allows the operator to recover control of the Slave computer if

synchronization is lost over the communications link.

(3) Description of Parameters: None.

(4) Subroutines Called:

Update. Status (local to Comms_Function)
Xmodm.Send_CAN

(5) Process Description
This procedure sends four CAN characters out on

the communications link to the Slave. The Process_Command function
''described above' is sensitive to the receipt of CAN characters and

will exit the -function early with an error status. The calling program

74

simply loops
command.

into the Process_Command -function again and awaits a

subf unction of Comms_Function
a Master to Slave command and

Parameters: The -function is

k. Remote_Command
(1) Type: Function
(2) Purpose: This

•function accomplishes one cycle o-f

response over the communications port.

(3) Description o-f

entered with a string containing the command to be executed. The

function returns to the calling program an enumerated state variable

de-fined in the Unit Xmodm depending on the success-ful dispatch and

execution o-f a command by the Slave computer, or an indication that a

local operator has aborted the sequence by depressing a key. The

keypressed indication is typically all that is of interest, since the

function normally called repeatedly.
(4) Subroutines Called:

System. ReadKey
Xmodm. Command_Xf er
Xmodm. String_to_buf

(5) Process Description
This function is currently called by Get_Eqmp to

perform a single command cycle; or Rlogin to repeatedly cycle and allow
the operator to remotely operate the Slave computer from the Master
keyboard in a manner similar to the DOS prompt. It does so in this
sequence: First, a loop is entered that repeatedly calls the function
Xmodm. Command_Xfer to pass the command string to the Slave. On

successful transmission (status = Tx_done) , function
Xmodem. 6et_Response displays the packetized response from the Slave on

the Master monitor window, The Master continues to display responses
from the Slave until the Slave sends a CAN character, indicating
completion of the all responses, or the Master operator depresses a key
to break the cycle. At this point, the function returns with a boolean
indication of the success of the transfer
(TRUE = success, FALSE for any keypress during the cycle).

1. Rlogin
(15 Type: Procedure
(2) Purpose: This subprocedure of the Comms_Function

function cycles the Remote_Command function and allows operator input
of commands to the Slave until aborted by the operator.

(3) Description of Parameters: None.
(4) Subroutines Called:

Update. Status (local to Rlogin)
CRT.ClrScr
Di strib. Remote_Command
Di str i b . Reset_Remote
Di strib . Operator _ Input
Wndow. Open_Window
Wndow. Close_Window
Wndow. Get Window

75

(5) Process Description
At the beginning, this procedure opens a -full

screen window to display all responses from the Slave in much the same
way a local operator would view them. The procedure then calls
Remote_Command initially with a command string requesting a prompt from
the remote system so that the operator can determine the current
directory of the Slave. If that succeeds, the Master operator is
prompted for a command to send to the Slave by Operator_Input. Remote
processing may be terminated by entering an exclamation point ("!")

whereupon the operator is asked to confirm the termination. Remote
processing also terminates if Rlogin returns a FALSE result. On exit,
the procedure closes the monitor window and exits.

in. Rx_File
(1) Type: Procedure
(2) Purpose: This subprocedure of the Comms_Function

function initiates a file transfer from the Slave to the Master by
using an adaptive file transfer program, Zcopy.

(3) Description of Parameters: None.

(4) Subroutines Called:
Update. Status (local to Rlogin)
CRT.ClrScr
Distrib. Remote_Command
Di stri b. Operator _ Input
System. Exec
Wndow. Open_Wi ndow
Wndow.Close_Window
Wndow. Set_Window
Xmodm. String_to_buf

(5) Process Description
This procedure opens a full screen window to

display the operation of the Zcopy file transfer program, and prompts
the operator for the name of the file to receive. This file is assumed
to be in the current directory of the Slave unless a full path is

specified. Once the file name is obtained, a command string is

assembled to send to the Slave to initiate the transfer. The procedure
is terminated if the command transfer is interfered with by a keypress
at the Master. Once the Slave acknowledges receipt of the command, the
Master initiates the Zcopy program locally, using a different format to
operate as a server under the temporary control of the Slave. The
operator is provided prompting information from the Zcopy program in a

full screen window if a file must be overwritten or Zcopy
synchronization is not achieved. Once completed or terminated, the
procedure displays the Zcopy display output from the Slave computer for

error diagnostics (if needed), closes all opened windows and exits.

n. Tx_File
(1) Type: Procedure
(2) Purpose: This subprocedure of the Comms_Function

function initiates a file transfer from the Master to the Slave by
using an adaptive file transfer program, Zcopy.

76

(3) Description of Parameters: None.

(4) Subroutines Called:
Update. Status (local to Rlogin)
CRT.ClrScr
Di str i b . Remote_Command
Distrib.Operator_ Input
System. Exec
Wndow. Open_Window
Wndow. CI ose_Wi ndow
Wndow. Get_Window
Xmodm. String_to_buf

(5) Process Description
This procedure opens a full screen window to

display the operation of the Zcopy file transfer program, and prompts
the operator for the name of the file to transmit. This file is

assumed to be in the current directory of the Master unless a full path
is specified. Once the file name is obtained, a command string is

assembled to send to the Slave to initiate the transfer. The procedure
is terminated if the command transfer is interfered with by a keypress
at the Master. Once the Slave acknowledges receipt of the command, the
Master initiates the Zcopy program locally, operating as a file
transfer master with the Slave operating as a Slave. The operator is

provided prompting information from the Zcopy program in a full screen
window if a file must be overwritten or Zcopy synchronization is not
achieved. Once completed or terminated, the procedure displays the
Zcopy display output from the Slave computer for error diagnostics (if

needed), closes all opened windows and exits.

o. Get_Equip
(1) Type: Procedure
(2) Purpose: This subprocedure of the Comms_Function

function displays the communications port and floppy disk configuration
of the Slave computer.

(3) Description of Parameters: None.

(4) Subroutines Called:
Update. Status (local to Rlogin)
CRT.ClrScr
Di str i b . Remote_Command
Distrib. Operator_Input

Wndow. Open_Window
Wndow. CI ose_Window

(5) Process Description
Utilizing the Remote_Command function, this

procedure dispatches the command string "Equip" to the Slave, which is
processed in the Slave program to obtain BIOS information via BIOS call
$11. On exit, the procedure closes the remote monitor window and
exits.

p. Comms_Function
(1) Type: Function

77

(2) Purpose: To process operator requests to
initialize COM ports, transfer -files between Master and Slave
computers, remotely operate a Slave computer, or reset the connection
between computers.

(3) Description of Parameters: The function returns
to the calling program an enumerated state variable defined in the Unit
Xmodm depending on the successful dispatch of a command to a Slave
computer and the receipt of the response, or an indication that the
local operator has aborted the operation by pressing a key. The
keypressed indication normally allows the operator to make another
selection or to leave this function.

(4) Subroutines Called:
Update. Status (for local display of the system

state)
CRT.ClrScr
CRT.GoToXY
Di str i b . Remote_Command
Distrib.Rlogin
Distrib. Rx_File
Distrib. T>;_File

Distrib. Set_Equip
System. ReadKey
Wndow. Open_Wi ndow
Wndow . CI ose_Wi ndow
Wndow. Get_Window
Wndow. Process_Wi ndow
Xmodm. Buf _to_String
Xmodm. Command_Xf er
Xmodm. Send_CAN
Xmodm. Stri ng_to_buf
Xmodm. Respond_by_f i le

(5) Process Description
This function opens a window showing the

parameters for the current communications port, and a second window to
allow the operator to select one of the following functions:
Initialize a port, change to a different port and enable the receive
interrupts, disable a receive interrupts for a port, send a file to the
Slave computer, receive a file from the Slave, obtain the port and disk
configuration of the Slave, operate the Slave remotely, reset the
current Xmodem link, and leave the function. It does so by calling one
of the following procedures or functions local to Comms_Function by a

CASE selection: Distrib. Remote_Command , Distrib.Rlogin,
Distrib. R>:_Fi le, Distrib. T;;_Fi le, Distrib. Get_Equip.

q. DOS_Shell
(1) Type: Procedure
(2) Purpose: This procedure spawns a copy of the

MS-DOS command processor to allow the operator of the Master computer
to perform DOS functions while retaining the control program. Control
is returned to the Master program on exiting the secondary processor.

(3) Description of Parameters: None.

78

(4) Subroutines Called:
CRT.ClrEOL
CRT.ClrScr
CRT. Del ay
Distrib.Find_Environment
Support. OK
System. ChDir
System. GetDir
System. Exec
Wndow. Open_Wi ndow
Wndow. Close_Window

(5) Process Description
The procedure -first locates a copy of the DOS

command processor by finding the "COMSPEC=" path specification in the

current environment. This is established on startup of the computer
and is normally passed down to the application program for its use.

Once this complete file specification is obtained, the operator is

informed that the DOS shell will be activated and a full screen window
is opened to save the current screen. When the operator terminates the
secondary command processor by entering "EXIT" at the prompt, the
procedure restores the original disk drive and directory, notes any DOS
errors returned, and returns to the terminal screen. If the COMSPEC
environment parameter cannot be found, the procedure informs the
operator, obtains acknowledgment, and exits.

r. Handle_ALT_Key
(1) Type: Procedure
(2) Purpose: This procedure dispatches the program to

a particular function selected by the operator as an ALT-key. A help
display is also provided as offered on the status line.

(3) Description of Parameters: B is the high order
byte read from the keyboard and is used as a CASE selector

{A) Subroutines Called:
CRT.ClrEOL
CRT.ClrScr
CRT. Del ay

DataCom.RS_Break
Distrib.Change_DC_Parameters
Distrib.Comms_Function
Dist rib. Dial ing_Di rectory
Distrib.Dirs
Distrib.DOS_Shell
Distrib. Hangup
Distrib.Handle_ALT_Key (the procedure calls itself

after processing the help menu)

Support. Bui ld_Status_Line
Support. Modi fy_Entry
Support. OK
System. ChDir
Wndow. Beep

79

(5)

port

modem

communications

parameters

Wndow. Close_Window
Wndow. Open_Wi ndow
Wndow. Process_Wi ndow_Menu
Xmodm.Transf er_File

Process Description
The -functions offered by this procedure are:

Alt-A: Change Drive and Path
Alt-B: Send a Break signal out of the current COM

allow selection b x

Alt-C:

Alt-D:

Alt-E:

Alt-F:

Alt-G:
Alt-H:

Alt-Li
Alt-M:
Alt-P:

Alt-R,
Alt_S:

Alt-T,
Alt-X:

Home:

menu, bar

Clear the screen
Dial a telephone

Toggle the

Change

local

the

number and connect by

Echo for half duplex

default communications

Show the current directory
Hang up the modem
Open the DOS Shell
Activate the Master
Activate the Master

PgDn: Receive a file via Xmodem
Activate the Server

PgUp: Transmit a file via Xmodem
Terminate the program
Display a help screen of these commands and

provides a teletype

indicates

s. TTY
(1) Type: Procedure
(2) Purpose: This procedure

emulation augmented by ANSI control functions.
(3) Description of Parameters: ANSI = TRUE

the procedure acts as an ANSI terminal emulator.
(4) Subroutines Called:

WriteLF (process a line feed)
DOS Interrupt $10 (Video Display)
CRT.ClrScr
CRT. Del ay

Wndow. Open_Window
Wndow. Close_Window
Support. OK

System. ChDir
System. GetDir
System. Exec

(5) Process Description
The procedure filters characters generated by the

keyboard and arriving from the communications port in the terminal mode
to emulate an ANSI terminal. ALT-key combinations are intercepted from
the keyboard and processed by Handle_ALT_Key.

80

APPENDIX E

MAINTENANCE MANUAL FOR UNIT DATACOM

A. UNIT DATACOM

1. Configuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)

e. Program Description
Provides all procedures and -functions needed to

initialize the computer serial communications ports, enable and disable
receive interrupts, provide buffered reception of characters, clear the
receive buffer(s), send or receive bytes through the ports, send a

BREAK signal over the RS-232 port, and nondestructi vely read the
receive buffer (s). Supports Unit Xmodem and the terminal portion of

Distrib. The currently selected communications port is contained in

public variable Current_Com.

2. Subroutines Contained

a. Disable_Interrupts
(1) Type: Procedure
(2) Purpose: To permit a Pascal procedure to disable

system interrupts.

(3) Description of Parameters:
Input: None.

Output: System interrupts are disabled.
(4) Subroutines Called:

Inline assembly.
(5) Process Description

The assembly instruction to mask o-ff interrupts at

the CPU is inserted into the code stream at compile time.

b. Enable_Interrupts
(1) Type: Procedure
(2) Purpose: To permit a Pascal procedure to enable

system interrupts.
(3) Description of Parameters:

Input: None.
Output: System interrupts are enabled.

(4) Subroutines Called:
Inline assembly.

81

(5) Process Description
The assembly instruction to unmask interrupts at

the CPU is inserted into the code stream at compile time.

c. RS232_ISR1
(1) Type: Procedure
(2) Purpose: The interrupt service routine -for

communications port one.

(3) Description of Parameters:
Input: An interrupt vector call initiated -from

communications port one.

Output: The received character is placed in a

buf -f er

.

(4) Subroutines Called:
DataCom. Disablelnterrupts
DataCom.Enablelnterrupts
System. Port

(5) Process Description
System interrupts are temporarily turned off to

service this interrupt. The UART Line Status Register -for

communications port one is read to record any error indications, then
the Receive Buffer Register is read to place the character in the
receive buffer. The buffer tail pointer is advanced and an End of

Interrupt command is sent to the Programmable Interrupt Controller to

signal the end of the interrupt service call.

d. RS232_ISR2
(1) Type: Procedure
(2) Purpose: The interrupt service routine for

communications port two.

(3) Description of Parameters:
Input: An interrupt vector call initiated from

communications port two.

Output: The received character is placed in a

buffer.
(4) Subroutines Called:

DataCom. Disablelnterrupts
DataCom. Enablelnterrupts
System. Port

(5) Process Description
System interrupts are temporarily turned off to

service this interrupt. Tie UART Line Status Register for
communications port two is read to record any error indications, then
the Receive Buffer Register is read to place the character in the
receive buffer. The buffer tail pointer is advanced and an End of
Interrupt command is sent to the Programmable Interrupt Controller to
signal the end of the interrupt service call.

e. RS_Break
(1) Type: Procedure

82

(2) Purpose: To instruct the UART on the currently
selected communications port to send and RS-232 BREAK signal.

(3) Description o-f Parameters:
Input: Current_Com (public)

Output: A break signal is generated on the

currently selected communications port.

(4) Subroutines Called:
CRT. Del ay

System. Port
(5) Process Description

This process ORs the current contents o-f the UART

Line Control Register with constant LCR_BREAK to instruct the UART to

send a constant space on the output line. A UART receiving this will

set its LSR_BREAK to signal a BREAK received. A-fter a delay o-f about
1/5 second, the line is restored.

f. RS232_Avail
(1) Type: Function
(2) Purpose: In-forms the calling program that

received characters are available to be read -from the current
c ommun i cat i on s p or t

.

(3) Description o-f Parameters:
Input: Current_Com (public)

Cutout: TRUE i-f characters available, FALSE
otherwi se,

(4) Subroutines Called: None.
i"

i

;

Process Description
The buf-fer pointers RS_Bu-f_Head C Current _Com]

and RS_Buf_Tail E Current_Com] will be equal if the buffer is empty,
the function returns the result of this test.

g. Purgeline
(1) Type: Procedure
(2) Purpose: Dump the receive buffer and clear the

UAR^ receive registers. Used to clear the communications line prior to

an Xmodem packet reception (Christensen , 1962, p. 3).

(3) Description of Parameters:
Input: Current_Com (public)

Outpu.tr The internal buffers are cleared.
(4) Subroutines Called:

System. Port

(5) Process Description
The buffer pointers RS_Buf_Head C Current_Com]

and RS_Buf_Taii [Current_Com] are both set to their initial
conditions (zero) and the UART receive register is read to reset any
pending receive interrupt.

h. Connected
(1) Type: Function

S3

(2) Purpose: Returns TRUE if the currently selected

communications port is receiving a hardware handshaking signal,

indicating the presence of a modem or a directly connected computer.

(3) Description o-f Parameters:
Input: Current_Com (public)

Output: TRUE i-f connected, PALSE otherwise.

(4) Subroutines Called:
System. Port

(5) Process Description
The UART Modem Status Register is read to detect

the presence of Data Carrier Detect. This line is normally TRUE if a

modem or computer is connected .

i . RS_232_Peek
(1) Type: Function
(2) Purpose: Nondestructive read of the receive

buffer of the current communications port. Used to assist Xmodem
synchronization in Unit Xmodm.

(3) Description of Parameters:
Input: Current_Com (public)

Output: The next available received character.
(4) Subroutines Called:

CRT. Del ay

(5) Process Description
The receive buffer pointers are compared for the

currently selected communications port. If unequal, a character is

available. If equal, a short delay is run and the test is repeated.
When a character is available, it is returned from this function
without disturbing the pointers.

j. RS_232_In
(i) Type: Function
(2) Purpose: Read the next character from the the

receive buffer of the current communications port. Used for all port
reads.

(35 Description of Parameters:
Input: Current_Com (public)

Output: The next available received character.
(4) Subroutines Called:

CRT. Delay
(5) Process Description

The receive buffer pointers are compared for the
currently selected communications port. If unequal, a character is
available. If equal, a short delay is run and the test is repeated.
When a character is available, it is returned from this function and
the buffer head pointer is advanced.

k. RS_232_0ut
(1) Type: Procedure.

84

Current_Com (public); and Par am, the

sent to the port.

(2) Purpose: Send a character out of the currently
selected communications port. Used for all port writes.

(3) Description of Parameters:
Input:

character to be sent.
Output: The character is

RS_Error (public) is cleared.
(4) Subroutines Called:

CRT. Del ay
System. Port

(5) Process Description
The UART Line Status Register is checked on the

currently selected communications port to see if the last character has

been sent. If not, a short delay is runand the test is repeated. When

the buffer is clear, the port Modem Control Register Request To Send

and 0UT2 lines are set to insure the hardware is prepared to send a

character. Next, the corresponding Data Set Ready and Clear To Send

status lines are checked and short delays run until they are true, if

the options are selected. Last, the character is sent to the port and

the error flag is cleared.

1. Enable
(1) Type: Procedure
(2) Purpose: Enable receive interrupts for a

communications port.

(3) Description of Parameters:
Input: IRQ.

Output: The proper Interrupt Mask Bit in the
Programmable Interrupt Controller is cleared for the communications
port.

(4) Subroutines Called:
System. Port

(5) Process Description
The procedure masks off the selected bit in the

PIC Interrupt Mask Register.

m. Disable
(1) Type: Procedure
(2) Purpose: Disable receive interrupts for a

communications port.

(3) Description of Parameters:
Input: IRQ.

Output: The proper Interrupt Mask Bit in the
Programmable Interrupt Controller is set for the communications port.

(4) Subroutines Called:
System. Port

(5) Process Description
The procedure sets the selected bit in the PIC

Interrupt Mask Register.

8!

n. Establish
(1) Type: Procedure
(2) Purpose: Enable the Data Terminal Ready, 0UT2 and

Request To Send handshaking bits on the selected communications port.
(3) Description of Parameters:

Input: Com, the communications port to be
enabled.

Output: The appropriate lines are set.

(4) Subroutines Called:
System. Port

(5) Process Description
The OR combination of the Data Terminal Ready,

0UT2 and Request To Send handshaking bits are set.

o. Send_EOI
(1) Type: Procedure
(2) Purpose: Sends a specific End Of Interrupt

command to the 3259 Programmable Interrupt Controller to indicate that

a particular interrupt has been serviced.
(3) Description of Parameters:

Input: IRO, the interrupt serviced.
Output: The Interrupt Service Register bit for

the specific interrupt is cleared.
(4) Subroutines Called:

System. Port
(55 Process Description

The bit for specific interrupt is OR'd with $60
and sent to the PIC.

p. Reset_Chip
(1) Type: Procedure
(2) Purpose: To shut down a communications port.

(3) Description of Parameters:
Input: Com, the port to be disabled.
Output: The port is cleared, all handshaking

lines are cleared, and interrupts are disabled on the UART.

(4) Subroutines Called:
System. Up Case
System. Length

(5) Process Description
The UART Line Status Register is read repeatedly

to clear all receive buffers. The system interrupts are disabled to

prevent further interrupts from this port. The interrupts from the

UART are disabled, and all port handshaking lines are dropped. The

Programmable Interrupt Controller interrupt enable line for this port

is reset. System interrupts are then restored.

q. RS232_Init
(1) Type: Procedure
(2) Purpose: Initialize the selected communications

port

.

86

(3) Description of Parameters:
Input: COM, the port to be initialized; and

Params, the port parameter word.

Output: The port is initialized.
(4) Subroutines Called:

DOS. Intr ($14) , the communications port service

interrupt.
(5) Process Description

Com is adjusted to satisfy the requirements o-f

Intr($14) and register DX loaded with the communications port to be

initialized. The packed word, Params, is loaded into register AX and

the interrupt is called.

r. SelectBitRate
(1) Type: Procedure
(2) Purpose: Initialize the selected communications

port. (3) Description of Parameters:
Input: COM, the port to be initialized; and

Speed, the data rate for the port.

Output: The port is initialized.
(4) Subroutines Called:

System. Port
System. Portw

(5) Process Description
The communications port identified by Com is

accessed and its Divisor Latch Access Bit is set to access the bit rate
registers. The Speed parameter is mapped into a 16 bit control word

and placed in the UART Divisor Latch. The Divisor Latch Access Bit is

then cleared and the port is allowed to settle. The current baud rate
setting is stored in the port initialization record for later

reference.

s. SelectWordLength
(1) Type: Procedure
(2) Purpose: Initialize the selected communications

port.

(3) Description of Parameters:
Input: COM, the port to be initialized; and

Length, the word length for the port.

Output: The port is initialized.
(4) Subroutines Called:

System. Port
System. Portw

(5) Process Description
The Speed parameter is mapped into an 8 bit

control word and placed in the UART Line Control Register. The current
length setting is stored in the port initialization record for later
reference.

t. SelectFraming
(1) Type: Procedure

87

(2) Purpose: Initialize the selected communications
port.

(3) Description of Parameters:
Input: COM, the port to be initialized; and Stop,

the number o-f stop bits -for the port.
Output: The port is initialized.

(4) Subroutines Called:
System. Port
System. Portw

(5) Process Description
The Stop parameter is mapped into an 8 bit control

word and placed in the UART Line Control Register. The current stop

setting is stored in the port initialization record for later
reference.

u. SelectParity
(1) Type: Procedure
(2) Purpose: Initialize the selected communications

port.

(3) Description of Parameters:
Input: COM, the port to be initialized; and P,

the type of parity for the port.

Output: The port is initialized.
(4) Subroutines Called:

System. Port
System. Portw

(5) Process Description
The P parameter is mapped into an 8 bit control

word and placed in the UART Line Control Register. The current stop

parity is stored in the port initialization record for later reference.

v. Send_String
(1) Type: Procedure.
(2) Purpose: To send an ASCII string of characters

out the currently selected COM port. Typically used to send command
strings to a modem.

(3) Description of Parameters:
Input: S, the string to be sent.

Output: The string is sent out the currently
selected COM port.

(4) Subroutines Called:
DataCom. RS232_0ut
System. Length

(5) Process Description
The string is treated as an indexed array of

characters, and each character is sent to procedure RS232_0ut in turn.

w. RSInitialize
(1) Type: Procedure.
(2) Purpose: To set the communications port to the

input parameters.

88

(3) Description of Parameters:
Input: Com, the port to be initialized; Speed, an

enumerated type ranging -from 110 baud to 9600 baud; Parity, an

enumerated type specifying No Parity, Odd, Even, or Don't Care; The

number of stop bits (1 or 2) and the length of the character word (5,

6, 7 or 8 bits)

.

(3) Output: The communications port is initialized.
(4) Subroutines Called:

DOS. Intr ($14) (BIOS communications port service)
DOS.SetlntVec
System. Port

(5) Process Description
Com and the input parameters are adjusted for the

BIOS call. The BIOS call initializes the port, however, it also

disables UART receive interrupts. These are enabled separately and the

UART Divisor Latch Access Bit is cleared to insure that further writes
to the UART will set the proper registers. The UART is recycled and

the hardware handshaking lines set. Receive interrupts are enabled at

the UART, and the Programmable Interrupt Controller is enabled for the

current communications port. The proper interrupt vector for this port

is set to point to our interrupt service routine. The settings stored
in data structure CommPort I Com] for future reference by RS_Restore.

x . RS_Restore
(1) Type: Procedure/Function
(2) Purpose: Restores the parameters of the

communications port to the settings stored in data structure CommPort C

Com 3. Used after a child process is spawned to recover communications
port operations.

(3) Description of Parameters:
Input: Com, the communications port to be

restored
Output: The selected port is restored.

(4) Subroutines Called:
DataCom.RS_Initialize

(5) Process Description
Com and the parameters stored in Comport [Com]

are used to call RS_Ini tial ize.

y. RS_Eight_Bits
(1) Type: Procedure
(2) Purpose: To set the current communications port

to eight data bits for Xmodm transfers.
(3) Description of Parameters:

Input: Current_Com (public)

Output: The communications port is set for eight
data bits.

(4) Subroutines Called:
System. Port

89

(5) Process Description
The UART Line Control Register is ORed with $03,

setting the number of data bits to eight.

z. RS_Cleanup
(1) Type: Procedure
(2) Purpose: Disables interrupts -for the current

communications port at the Programmable Interrupt Controller.
(3) Description of Parameters:

Input: Current_Com (public)

Output: The PIC is reset for this interrupt.
(4) Subroutines Called:

System. Port
(5) Process Description

The interrupt mask bit for the current
communications port is set.

aa. Hex Byte
(1) Type: Function
(2) Purpose: Converts a byte into its hexadecimal

string equivalent for the Unit Exit procedure.
(3) Description of Parameters:

Input: B, the byte to be converted.
Output: A string of length two.

(4) Subroutines Called: None.

(5) Process Description
The byte is first shifted right four bits to

consider only the high order bits, and a character indexed from the
hexadecimal sequence HexDigit. This is concatenated with the character
produced by indexing HexDigit by the low order four bits of B to form
the two digit hex equivalent.

ab. HexWord
(1) Type: Function
(2) Furpose: Converts a word into its hexadecimal

string equivalent for the Unit Exit procedure.
(3) Description of Parameters:

Input: I, the word to be converted.
Output: A string of length four.

(4) Subroutines Called:
DataCom. HexByte.
System. Hi

System. Lo
(5) Process Description

HexByte is called with both the high and low order
bytes of the word, and the resulting function results concatenated to

produce a four digit hex equivalent.

ac. DataComm_Error
(1) Type: Procedure

90

(2) Purpose: Provides a robust means o-f handling

program -faults while still insuring that interrupts are restored.

(3) Description o-f Parameters:
Input: System variables ExitCode, a word that

gives an indicaton o-f why program termination occured; and ErrorAddr, a

pointer containing a runtime error address if nonzero;

Output: The procedure writes any error messages

desired to the display and resets any interrupt vectors to their state

be-fore program execution.
(4) Subroutines Called:

Dos.SetlntVec
System. Assign
System. Rewrite
DataCom. Hex

(5) Process Description
This procedure is chained in to the normal exit

processing that the compiler installs -for the unit and the unit

initialization code. It must be compiled using the Far Call model to

be accessible by the program runtime library. The procedure -first

checks ExitCode and ErrorAddr -for abmormal program termination and sets

Output to the standard -file output -for display to allow error message
display. The procedure then reports a USER BREAK or runtime error and

address i-f applicable. The program then insures any interrupt vectors
are restored and the communications ports are shut down. The
Programmable Interrupt Controller Interrupt Mask Register is restored
•from a saved location. Finally, the original exit code -for this unit
is restored -from a saved location -for use by the runtime system
(TurboPascal Owner' Handbook, pp. 369-370).

ad. DataCom Unit Initialization Code
(1) Type: Procedure
(2) Purpose: Initializes the Unit, stores critical

vectors and registers -for restoration on program termination.
(3) Description of Parameters:

Input: System variables ExitProc, a pointer that

gives the address of the DataCom unit exit procedure in the runtime
1 ibrary.

Output: The procedure DataComm_Error is linked in

before the runtime exit procedure to accomplish an orderly termination
of the unit.

(4) Subroutines Called:
Dos.SetlntVec
System. Port

(5) Process Description
The procedure first sets CRT. CheckBreak to TRUE to

allow user termination of the program. A pointer to the runtime exit
procedure is saved, as well as the current settings for the
Programmable Interrupt Controller Interrupt Mask Register for
restoration on exit. GetlntVec is used to save the current interrupt
vectors for communications ports one and two for restoration on e;;it.

The communications port buffers are cleared, and the unit supplied exit

91

procedure DataComm_Error is linked in to the runtime system
(TurboPascal Owner' Handbook, pp. 369-370). Finally, the two
communications ports are assigned default parameters, although not
initialized at this time.

APPENDIX F

MAINTENANCE MANUAL FOR UNIT DIRECTOR

A. UNIT DIRECTOR

1. Configuration Information
a. Language - Turbo Pascal Version 4.0

b. Compiler Version - 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)

e. Program Description
Director is a set of functions and procedures that

allow the output MS DOS file directories to a windowed environment.

Masking options and a selector for normal or abbreviated (similar to

the MS-DOS /w switch) displays are allowed.

2. Subroutines Contained

a. StandBy
(1) Type: Procedure
(2) Purpose: Used internally by ShowDir, this

procedure displays an operator prompt to pause long listings. The

procedure exits when a key is pressed.
(3) Description of Parameters:

Input: Operator input from System. ReadKey
Output: Prompt information to the window supplied

by the calling program.
(4) Subroutines Called:

CRT.GoToXY
CRT.HighVidec
CRT.WhereX
CRT.WhereY
System. ReadKey

(5) Process Description
The procedure notes the position of the cursor,

writes a prompt to the operator, and waits until the operator presses a

key. The procedure then blanks the prompt, and exits.

b. View_Dir
(1) Type: Procedure
(2) Purpose: Provides the selective display of a

directory, with the filenames and subdirectories displayed in summary
form (no date, size or attribute data).

(3) Description of Parameters:
Input: MatchPtrn, which specifies the path and

wildcard options; PromLine and ToLine, which specify the window size.

93

Output: To the window supplied by the calling
program.

(4) Subroutines Called:
CRT.SoToXY
CRT. HighVideo
CRT.Lowvideo
DOS. FindFirst
DOS.FindNext

(5) Process Description
The procedure positions the cursor at column one

of the line specified in FirstLine, then utilizes the procedure
FindFirst to find any -file or directory matching MatchPtrn. This sets
up the DOS unit for subsequent searches. The first entry found is

displayed and then FindNext is used for subsequent entries until the
directory is exhausted. Subdirectories are displayed in highlighted
video for ease of recognition in this summary display.

c. WriteEntry
(1) Type: Procedure
(2) Purpose: Displays the complete file or directory

information of attributes, size, date and time for procedure ShowDir.
(3) Description of Parameters:

Input: Dirlnfo, a DOS Unit structure that

contains packed information about the most recently found directory
entry; line, the window line to display the information on. Output:
To the window supplied by the calling program.

(4) Subroutines Called:
GetAttribut
CRT.GoToXY
CRT.HighVideo
CRT. Lowvideo
DOS. FindFirst
DOS.FindNext
DOS.UnPackTime

(5) Process Description
The procedure calls library procedures in the DOS

unit to unpack the time entry in Dirlnfo. GetAttribut maps the

attribute order to a string representation. Tne name, "<DIR>"

designation or file size, creation date and time, and the attribute
string are then written on the display at Line in MS-DOS format.

d. GetAttirbut
(1) Type: Procedure
(2) Purpose: Map an MS-DOS attribute number to a text

string.
(3) Description of Parameters:

Input: attr, the ordinal MS-DOS attribute
combination.

Output: attr i but, a string to return the text
string representation of the attribute.

(4) Subroutines Called:
System. Str

94

(5) Process Description
The attr variable is used as a selector in a case

construct to load attribut with the proper string. If the variable

does not map, the hexadecimal number in the variable attr is converted

to a string -for display.

e. Show_Dir
(1) Type: Procedure
(2) Purpose: Provides the selective display of a

directory, with the filenames and subdirectories displayed in summary

form (no date, size or attribute data).

(3) Description of Parameters:
Input: MatchPtrn, which specifies the path and

wildcard options; FromLine and ToLine, which specify the window size;

error, which reports DOSerror back to the calling program.

Output: To the window supplied by the calling
program.

(4) Subroutines Called:
CRT.ClrEOL
CRT.ClrScr
CRT.GoToXY
CRT. HighVideo
CRT.Lovideo
Director. WriteEntry
DOS.FindFirst
DOS.FindNext
System. INC

(5) Process Description
The procedure utilizes the procedure FindFirst to

find any file or directory matching MatchPtrn. This sets up the DOS
unit for subsequent searches. Depending on the state of DOS. DOSError

,

which indicates error conditions on the attempt to find a directory
entry

5
the entry is either displayed via WriteEntry or an error or

status message is displayed and the procedure exits. The first entry
found is displayed and then FindNext is used for subsequent entries
until the directory is exhausted. For directories that exceed the
window size specified by FromLine and ToLine, the display is paused by
a call to the procedure StandBy and the operator is allowed to press a

key to continue.

95

APPENDIX 6

MAINTENANCE MANUAL FOR UNIT ERRORCOD

A. UNIT ERRORCOD

1. Configuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)
e. Program Description

ErrorCod is a array of string constants mapped by the
DOS Error Code, Error Class, Recommended Error Action and Error Locus
indices found in (Microsoft, 1986, pp. 3-1 - 3.11, 4.254 - 4.255). The
unit is used by the units Parser, Spawn and the program Distrib to
report errors. A procedure is also provided to retrieve extended error
code information available in MS-DOS versions 3.0 and above by DOS
function call *59.

2. Subroutines Contained

a. Extended_Error_Code
(1) Type: Procedure
(2) Purpose: To return the extended error code, class

and locus information available in MS DOS version 3.0 and later, in

response to a D0SERR0R result.
(3) Description of Parameters: Extended_Error_Code

returns the Error Code, Error Class and Error Locus in the respective
variabl es„

(4) Subroutines Called:

DOS. Intr<*21)
(5) Process Description

This procedure calls DOS function $59 with

register EX = to get extended error information from MS DOS following
an operating system error flag, as indicated by the Turbo Pascal

variable D0SERR0R > 0.

96

APPENDIX H

MAINTENANCE MANUAL FOR UNIT GENERAL

A. UNIT GENERAL

1. Configuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)

e. Program Description
General is a collection of general purpose routines

that support the Wndow Unit and other modules.

2. Subroutines Contained

a. FillWord
(1) Type: Procedure
(2) Purpose: Given a variable, V, the procedure fills

Num words in the variable with integer Value.

(3) Description of Parameters:
Input: Variable V; Num, the number of words to be

filled; and Value, the fill value.

Output: V is returned after filling.
(4) Subroutines Called:

Inline assembly
(5) Process Description

Register DI is initialized with the starting
offset of the variable V, CX contains the number of words to be filled,
and AX contains the Value to be used to fill. The ST03W instruction
autoincrements the DI register after each store and decrements CX. The
loop ends when CX = 0. Using assembly language string processing
instructions, the procedure uses the DI index register to point to the
memory iterates a store operation with the 16 bit word Value beginning
at the first location in V and continuing for Num iterations,
incrementing the storage location by a 16 bit word each time.

b. Exchange
(1) Type: Procedure
(2) Purpose: Exchange the contents of two variables

without compatibility checking.
(3) Description of Parameters:

Input: S, D are the variables to be exhanged, and
L is the number bytes to be exchanged.

97

Output: The variables S and D are returned after
the exchange.

(4) Subroutines Called:
Inline assembly

(5) Process Description
Register DI is loaded with the offset o-f variable

SI with that of D. CX receives L. The value at variable
D, indexed by DI, is loaded into AX and exchanged with the value at

variable S, indexed by SI. STOSB autoincrements both index registers
and decrements CX. The loop stops as CX reaches 0.

S, register

c . Beep
(1) Type:

(2)

(3)

14)

Procedure
Purpose: Produce a speaker tone -for 1/4 second.
Description o-f Parameters:
Input: Preq, the desired tone frequency.
Output: A speaker tone.

Subroutines Called:
CRT. Del ay
CRT. Sound
CRT.NoSound
Process Description
CRT procedures NoSound

tandem. First the speaker is silenced. Then,

the CRT Unit is called with parameter Freq and

allowed before turning the speaker off again.

ID)

and Sound operate in

the Sound procedure in

a delay of 1/4 second is

d. Max

(1) Type: Function
(2-1 Purpose: Returns the larger of two integers.

Typically used with Open_Window to insure the window is large enough to

hold a men u display.
(3) Description of Parameters:

Input: X, Y, the integers to be compared.
Output: The larger integer of the input

parameters,
(4) Subroutines Called: None.

(5) Process Description
The two integers are compared and the function

result equated to the larger.

e. Min
(1) Type: Function
(2) Purpose: Returns the smaller of two integers.

Typically used with Open_Window to insure the window is large enough to

hoi d a menu d i sp 1 ay =

(3) Description of Parameters:
Input: X, Y, the integers to be compared.
Output: The smaller integer of the input,

parameters.
(4) Subroutines Called: None.

98

(5) Process Description
The two integers are compared and the -function

result equated to the smaller.

f. Cursor_Size
(1) Type: Function
(2) Purpose: Sets the cursor displayed as either an

underline or a block.
(3) Description of Parameters:

Input: Cursor_Type an enumerated type consisting
of line, block or invisible. Mono is TRUE if the display is

monochrome, FALSE if color.

Output: The video card is updated to display the

selected cursor.

(4) Subroutines Called:
DOS. Intr ($10) (video service)

(5) Process Description
Register AX is set to $10 to call the BIOS video

service, and the CX register is set to the proper value for the cursor
requested prior to the call.

g. Get_Time
(1) Type: Function
(2) Purpose: Returns a string with the current time.

(3) Description of Parameters:
Input: Nothing.
Output: A string with the current time in format

HH:MM:SS xM.

(4) Subroutines Called:
DOS. Intr ($21) (DOS service)
System. Str

(5) Process Description
Register AH is set to $2C to call the DOS time

service, and the CH, CL, DH and DL return the ordinal number for hours,
minutes, seconds and hundreths of seconds (Norton, 1985, p. 287). The
Turbo Pascal Str procedure is used to convert each number into a string
representation. The strings are then concatenated with formatting
characters and AM or PM notations.

99

APPENDIX I

MAINTENANCE MANUAL FOR UNIT MISCPACK

A. UNIT Miscpack

1. Configuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)
e. Program Description

Miscpack is a collection of data types and utility
routines supporting these other units: Xmodm, Parser, Spawn, Redirect,
and the main program Distrib. The strong typing features of Turbo
Pascal require that instances data types in different units that must
be equated be declared in one place to be compatible at compile time.

2. Subroutines Contained

a. BumpStrup
(1) Type: Procedure
(2) Purpose: To convert any string to upper case

characters.
(3) Description of Parameters: S is the formal

variable for a string of any length, since length checking is relaxed.
(4) Subroutines Called:

System. UpCase
System. Length

(5) Process Description
This procedure returns the string as a call by

reference parameter after converting ail of the characters making up

the string to uppercase.

1 00

APPENDIX J

MAINTENANCE MANUAL FOR UNIT PARSER

A. UNIT PARSER

1. Configuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)

e. Program Description
The central procedure in this unit is Parser_Main,

which attempts to parse and execute an MS-DOS style command on the

local machine. The remaining procedures and functions support this
function.

2. Subroutines Contained

a. argc
(1) Type: Function
(2) Purpose: Returns the number of arguments in the

command line parsed by the procedure Parse. Parse must be called
before this -function is valid.

(3) Description of Parameters:
Input: None.
Output: The number of arguments in the command

line last parsed.
(4) Subroutines Called:
(5) Process Description

argc is set to the variable arg_count, which is

loaded by Parse.

b. argvO
(1) Type: Function
(2) Purpose: Return the arg_count'th argument

encountered on the last command line parsed by procedure Parse. Parse
must be called before this function is valid.

(3) Description of Parameters:
Input: ar g_count, the index of the argument

desired, arq_array, the index to the arguments indexed, and arg_string,
a copy of the command.

Output: A string, up to 128 characters long,
containing the arg_count'th argument.

(4) Subroutines Called: None.

101

(5) Process Description
Following a call to procedure Parse, the data

structure arg_array is loaded with the relative index of the start of

each argument in the command line parsed, and the length of that
argument. A length of zero at that index indicates no argument was
found. To construct the arg_count'th argument, the command saved in
arg_string is copied starting at the index saved in the index field in

the arg_count'th record of array arq_array , for the length field in the
same record.

c. Init_Parse
(1) Type: Procedure
(2) Purpose: To parse the input string for

Parser_Main, and initialise the component strings for later use.
(3) Description of Parameters:

Input: Command_s, an input parameter for
Parse_Main.

Output: Pathspec is set to argv(O), the remaining
drive, node, and name strings are parsed.

(4) Subroutines Called:
Parse. argv (0)

Parse. ParseName
(5) Process Description

This procedure is local to Parse_Main, and is used
any time the command string being parsed is first parsed, or after the
command has been modified.

d. Parse
(1) Type: Procedure
(2) Purpose: Set up the argv and arc functions for a

command line received.
(3) Description of Parameters:

Input: Command, a string variable containing the
command to be parsed.

Output: arg_array and arg_count are private
variables visible inside this unit.

(4) Subroutines Called:
System. Inc

System. Length
(5) Process Description

First, a copy of the command is retained outside
this procedure in arg_string for later use by argv. Arg_array is then

initialized to clear old parsing actions, and arg_count is initialized
to zero to act as an index for arq_array. The cycle begins by skipping
leading whitespace in the command. When the first non whitespace
character is encountered, the index of the string is noted in the
arg_count'th record of arg_array and non whitespace characters are
skipped while incrementing the length field to determine the length of

the argument. Upon reaching whitespace again, the next record in

B.rq_arra.y is selected and the cycle repeats until the end of the string

102

is reached. arq_array , arg_count and arg_string are retained in

variables private to the unit -for future List.

e. ParseName
(1) Type: Procedure
(2) Purpose: Break a complete -filename with path and

drive into its component parts.

(3) Description o-f Parameters:
Input: inName is a composite drive, path and

filename string.
Output: The component file name, extension, name

and extension, path, drive and node (if any) in inName.

(4) Subroutines Called:
System. Copy
System. Delete
System. Length

(5) Process Description
The syntax for inName is:

[Node: :][Drive:]C\3directoryC\directory\3f i lespecC /Switch] , simi lar to
the MS-DOS command line syntax with the exception of the node
designator, which was intended for use with commands intercepted by a

background process. The procedure scans the command line backwards,
looking for the delimiters established in the constants Path_or_dri ve

and Hode_or_drive. When such delimiters are found, the suceeding
substring is copied into the appropriate output variable and the
command is truncated to continue the scan until the first character is

reached. The filename, if any, is then broken down similarly into its
component name and extension (Swan, pp. 26 - 27).

f . Resol ve_Command
(1) Type: Function
(2) Purpose: This procedure is passes the first

argument in a command line and attempts to create a complete path
specification and match the filename to a command normally handled
internally by the DOS command processor or to an executable file in the
specified directory. Relative directory citations are adjusted to a

path from the root directory. Parser_Main sets up the component parts
of the first argument via Parse_Name and places them in the variables
immediately above this function.

(3) Description of Parameters:
Input: Argurement, the first parameter in the

command line from Parser_l"1ain.

Output: Argument, corrected to a complete path
specification and filename extension. The function returns the type of

file detected (batch file, com file, executable file, directory,
pathstring or other file) as an enumerated type.

(4) Subroutines Called:
System. GetDir
DOS.FindFirst
DOS.FindNext

103

(5) Process Description
Resol ve_command first determines the current

directory with GetDir, and adjusts any relative directory path
specification found in argument to a full path specification complete
with drive and root directory, if needed. This is needed by the Exec
function called by Parser_Main. If no file extension was parsed by
Parse_Name, Resol ve_Command attempts to find an executable file in the
directory cited by the now complete path specification by finding a

file with the same name and an "COM", "EXE", or "BAT" extension. They
are searched for in reverse priority so that the Exec call will attempt
to execute the filename with the highest rank, as Command. Com does
(Mefford, 1988, p. 336) and the file type is identified. If the
command did cite a filename with extension, the file type is

identified. The file type is returned by the function for Parser_Main.

If an executable file was not found, a check is made to see if a

directory by that name exists, otherwise a general pathname type is

returned.

g. ParserMain
(1) Type: Procedure
(2) Purpose: This procedure parses a command received

by the Slave and attempts to execute it.

(3) Description of Parameters:
Input: Command_s, the received command string.

Output: Response and Error_Msg are strings
containing either the command output and error messages, respectively,
or filenames containing the information. Restype and Errtype tell the

calling program what Response and Error_Msg contain. Prompt is the

local machine current directory for return to the Master via the

calling program after the response is competed.
(4) Subroutines Called:

Parser. InitParse
Parser . Match_Command
Parser . Resol ve_Command
Parser .Parse
Parser . ParseName
Parser . argc

Parser . argvO
Spawn . Match_Command
Spawn. Process_intrinsic_command
Spawn . Run_l ocal

System. Length
(5) Process Description

On entry, command_s contains the complete command

to be executed. Its component arguments are isolated by Init_Parse,

and then a special case is checked to see if a simple drive change is

requested (e.g., "C:">. If so, the internal DOS command "CD" is

prefixed to the command and it is re-parsed. The filename in the first

argument is checked by Spawn. Match_Command against a set of commands

that this program handles internally. This is a subset of the MS-DOS

internal commands: Change Directory, Copy, Delete, Directory, Erase,

104

Make Directory, Remove Directory, Rename and their abbreviated forms.
If matched, the command is passed to Spawn. Process_Intrinisic_Command
for execution and collection of responses. If not, the file type
returned by Resol ve_Command is used as a case selector to either run an

executable file via Spawn. Run_Local , or a syntax error indication is

returned to the calling program. If executable, the command (program
name) is separated from the following command tail and passed to
Run Local

.

105

APPENDIX K

MAINTENANCE MANUAL FOR UNIT REDIRECT

A. UNIT REDIRECT

1. Configuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)

e. Program Description
Redirect is a set of functions and procedures that

allow the output of programs spawned under the Slave computer's copy of

the main program Distrib to be redirected to -files. Once the program
ends, the Slave computer can then forward the output normally displayed
on the screen to the Master computer -for display.

2. Subroutines Contained

a. Init_Redirect_Unit
(1) Type: Procedure
(2) Purpose: To reverse the Turbo Pascal

initialization o-f the Pascal standard -files Input and Output to the CRT

Unit in preparation for redirection.
(3) Description of Parameters: None. This procedure

reassigns the Pascal standard files Input and Output.
(4) Subroutines Called:

System. Assign
System. Reset
System. Rewrite

(5) Process Description
The Turbo Pascal Version 4.0 reference manual

indicates that the initialization code found in standard Unit CRT
assigns the Pascal standard test files Input and Output to the CRT
Unit. In order to accomplish I/O redirection, these files must be
rereferenced to the standard input and output. The above subroutines
accomplish this.

b. Duplicate_Handle
(1) Type: Function
(2) Purpose: Returns a second handle that refers to

the same -file (or device) as the variable Handle. Used to save the
reference to standard I/O for later restoration after redirection ends.

(3) Description of Parameters: Handle is the file'

handle to be duplicated. ErrorNum is a variable for an MS-DOS error
code returned in the AX register if the MS-DOS function call fails.

106

(4) Subroutines Called:
DOS. Intr($21>

(5) Process Description
The D0S.Intr<*21) call is to the DuplicateJHandle

function, $45. The function returns another handle of type word.

c. Close_File_Handle
(1) Type: Function
(2) Purpose: Closes a file handle that refers to a

file or device. Used to terminate I/O to the standard input or output

handle when redirected, and to dispose of the redirection handle.

ErrorNum is a variable for an MS-DOS error code returned in the AX

register if the MS-DOS function call fails.

(3) Description of Parameters: Handle is the file

handle to be closed.
(4) Subroutines Called:

D0S.Intr($21)
(5) Process Description

The DOS. Intr ($21) call is to the Close_Handle
function, $3E. ErrorNum is returned with an MS-DOS error code if the

call fails, as indicated by a FALSE function result.

d. Redirect_Handle
(1) Type: Procedure
(2) Purpose: Forces a handle used by the system for

standard input or output to be redirected to the same file or device as
another handle. The file or device originally pointed to may then
closed. I/O to the standard input or output handle now appears at the
same file or device as the handle redirected to.

(3) Description of Parameters: Handle is the file
handle point i g to the file or device to be redirected to, Red_Handle is

the standard I/O handle to be redirected.
(4) Subroutines Called:

DOS. Intr<$21)

(5) Process Description
The DOS. Intr ($21) call is to the FDup_Handle

function, $46. ErrorNum is returned with an MS-DOS error code if the
call fails. On return the redirected standard I/O handle now operates
through the file or device of Handle.

e. Redirect_Std_Output
(1) Type: Function
(2) Purpose: Redirects Standard Output to a file of

our choosing.

(3) Description of Parameters: StdOut is the MS-DOS
standard output file handle to be redirected. Std_Output_Fi le_Temp is

the file that output will be redirected to.

(4) Subroutines Called:
Redirect. Dupl icate_Handle
Redi rect. Redirect Handle

107

(5) Process Description
The temporary output -file is opened, a handle

pointing to StdOut is saved and then StdOut is forced to point to our
output -file.

i . Restore_Std_Output
(1) Type: Function
(2) Purpose: Restores the saved standard Output to

its previous state, sets a variable Response_Fi le to the name of the
File holding the redirected output to end redirection.

(3) Description o-f Parameters: StdOut is the MS-DOS
standard output -file handle that was redirected. Std_Output_Fi le_Temp
is the -file that output was redirected to. Saved_Std_Out is the handle
that points to the original standard Output.

(4) Subroutines Called:
Redirect. Close_Fi le_Handle
Pedirect.Redirect_Handle

(5) Process Description
StdOut, the file handle for standard output is

reset to point to Saved_Std_Out , the temporary file Std_Output_Fi le is

closed for writing, and the variable Response_Fi le is set to the name
of the temporary file if no errors are encountered, otherwise NIL.

g. Redirect_Std_Input
(1) Type: Function
(2) F'L'-pose: Redirects standard Input to be drawn

from a + ile of our choosing.
(3) Description of Parameters: Stdln is the MS-DOS

standard input file handle to be redirected. Std_Input_File_Temp is

the file that input will be redirected from.

(4 5 Subroutines Called:
Redirect. Duplicate_Handle
Redirect. Redirect_Handle

(5) Process Description
The temporary input file is opened for reading, a

copy of the handle pointing to Stdln is saved and then Stdln is forced
to point to our input file.

h. Restore_Std_Input
(1) Type: Function
(2) Purpose: Restores the saved standard Input to its

previous handle, and closes the input file to end redirection.
(3) Description of Parameters: Stdln is the MS-DOS

standard input file handle that was redirected. Std_Input_Fi le_Temp is

the file that input was redirected from. Saved_Std_In is the handle
that points to the original standard Input.

(4) Subroutines Called:
Redirect. CI ose_Fi le_Handle
Redirect . Redirect Handle

108

(5) Process Description
Stdln, the file handle for standard input is reset

to point to Saved_Std_In, the temporary -file Std_Input_Fi le is closed

for reading. The function returns TRUE if no file errors are detected.

i. Redirect_Std_Error
(1) Type: Function
(2) Purpose: Redirects standard Error to be sent to a

file of our choosing.
(3) Description of Parameters: StdErr is the MS-DOS

standard error file handle to be redirected. Std_Error_Fi le_Temp is

the file that error will be redirected to.

(4) Subroutines Called:
Redirect.Duplicate_Handle
Redi rect . Redi rect_Handl

e

(5) Process Description
The temporary error file is opened for writing, a

copy of the handle pointing to StdErr is saved and then StdErr is

forced to point to our error file.

j . Restore_Std_Error
(1) Type: Function
(2) Purpose: Restores the saved standard Error to its

previous handle, and closes the error file to end redirection.
(3) Description of Parameters: StdErr is the MS-DOS

standard error file handle that was redirected. Std_Error_Fi le_Temp is

the file that Error was redirected to. Saved_Std_Error is the handle
that points to the original standard Error.

(4) Subroutines Called:
Redi rect. Close_Fi le_Handle
Redirect. Redirect_Handle

(5) Process Description
StdErr, the file handle for standard error is

reset to point to Saved_Std_Error , the temporary file Std_Error_Fi le is

closed for reading. The function returns TRUE if no file errors are
detected.

k. Redirect_All_Output
(1) Type: Function
(2) Purpose: Redirects both standard error and

standard output to a file of our choosing.
(3) Description of Parameters: StdOut is the MS-DOS

standard output file handle to be redirected. Std_Output_Fi le_Temp is

the file that output will be redirected to. StdErr is the MS-DOS
standard errort file handle to be redirected. Std_Error_Fi le_Temp is

the file that output will be redirected to.

(4) Subroutines Called:
Redirect.Du.pl icate_Handle
Redi rect .Redi rect_Handl e

(5) Process Description
The temporary output file is opened, a handle

pointing to StdOut is saved and then StdOut is forced to point to our

109

output -file. The process is repeated -for StdErr, except that it is
redirected to the same output file.

1 . Restore_Al 1 _Output
(1) Type: Function
(2) Purpose: Restores the saved standard output and

error to their previous states, sets a variable Response_File to the
name of the file holding the redirected output to end redirection.

(3) Description of Parameters: StdOut is the MS-DOS
standard output file handle that was redirected. Std_Output_Fi le_Temp
is the file that output was redirected to. Saved_Std_Out is the handle
that points to the original standard Output. StdErr is the MS-DOS
standard output file handle that was redirected. Std_Error_File_Temp
is the file that output was redirected to. Saved_Std_Err is the handle
that points to the original standard Error.

(4) Subroutines Called:
Redirect.Close_Fi le_Handle
Redirect.Redirect_Handle

(5) Process Description
StdOut, the file handle for standard output is

reset to point to Saved_Std_Out , the temporary file Std_Output_Fi le is

closed for writing. StdErr, the file handle for standard error is

reset to point to Saved_Std_Err , the temporary file Std_Error_Fi le is

closed for writing, and the variable Response_Fi le is set to the name
of the temporary file if no errors are encountered, otherwise NIL.

m. Restore_CRT_Assignments
(1) Type: Procedure
(2) Purpose: To set the standard Input and Output

files to textdrivers in the CRT Unit. Faster inoput and output is

obtained.
(3) Description of Parameters: None. This procedure

reassigns the Pascal standard files Input and Output to CRT. AssignCRT (

Input) and CRT. AssignCRT (Output).

(4) Subroutines Called:
System. AssignCRT
System. Reset
System. Rewrite

(5) Process Description
The assignments restore the input and output

standard files to the CRT unit.

110

APPENDIX L

MAINTENANCE MANUAL FOR UNIT SPAWN

A. UNIT SPAWN

1. Con-figuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)

e. Program Description
This unit detects commands that should be processed

internally by the Distrib program, and executes commands internally or

by spawning a child process. Command output and error responses are
returned to the caller either as strings suitable for conversion to

Xmodm buffers, or by reference to files containing the text. This unit
also contains the redirection switch as a public variable that dictates
whether program output will be redirected to a file or displayed
locally on the screen. This switch is normally set to redirect to

file.

2. Subroutines Contained

a. MatchCommand
(1) Type: Function
(2) Purpose: To search a command string for a substring

that matches a command to be processed internally by the Slave program.
(3) Description of Parameters:

Input: Filespec is a command stripped o-f path

specification, or leading or trailing spaces.
Output: The function returns TRUE if a match was

found, along with an enumerated type matching the command, FALSE
otherwise.

(4) Subroutines Called:
System. Length
System. Pos

(5) Process Description
A substring search is conducted using the enumerated

internal command type to index an array of strings containing the
command names. The internal command must be matched by exact
replication and must be positioned as the first substring in FileSpec.

b. Process_Intrinsic_Command
(1) Type: Procedure

111

(2) Purpose: This procedure executes an internal
command detected by Match_Command. This procedure, and Run_local,
execute commands -for Spawn. Parser_Main.

(3) Description of Parameters:
Input: Command, the enumerated type specifying the

internal command. Command_tail are the parameters for the internal
command.

Output: Response and Error_Msg are strings
containing either the command output and error messages, respectively,
or filenames containing the information. Restype and Errtype tell the
calling program what Response and Error_Msg contain. Prompt is the
local machine current directory for return to the Master via the
calling program after the response is competed.

(4) Subroutines Called:
System. ChDir
System. BetDir
System. Mkdir
System. RmDir

(5) Process Description
The Command parameter is used in a CASE construct

select commands that are completed by Turbo Pascal functions and
procedures, and to pass other internal commands to Run_local to spawn a

copy of the MS-DOS command processor and run the command. This
approach is taken to greatly simplify the command parsing and
execution, since these requirements can be offloaded to the spawned
command processor for commands with complex processing requirements
such as DIP. Batch_mode is set to signal Run_Local to spawn a copy of

the command processor rather than attempting to execute the command as

a program.

c. Run_Local
(1) Type: Procedure
(2) Purpose: This procedure executes all command that

nd detected by Match_Command. This procedure, and

Process_Intrisic_Commarid, execute commands for Spawn. Parser_Main.
(3) Description of Parameters:

Input: Program_name, the name of the command or

file to be executed; Command_l ine, the arguments for the command or

file; and Batch, which signals that a copy of the MS-DOS command
processor is to be used to run the program for batch files and certain
internal MS-DOS commands.

Output: Response and Zrror_Msg are strings
containing either the command output and error messages, respectively,
or filenames containing the information. Restype and Errtype tell the
calling program what Response and Error_Msg contain. Prompt is the
local machine current directory for return to the Master via the
calling program after the response is competed.

(4) Subroutines Called:
Red i r ec t i on . I n i t _Red i r ec t i on _Un i t

Redirection. Redirect_Al l_Output
Redirection. Restore_Al l_0utput

112

Redi recti on . Restore_CRT_Assi gnments
Support . Fi nd_Envi ronment
System. ChDir
System. GetDir
System. UpCase
System. Length

(5) Process Description
CRT. CheckBreak is set to allow an operator to

terminate execution of a runaway program. If the Batch flag is set,

the command is adjusted to execute a copy of C0MMANB.COM and the
original command and arguments are moved to command tail.

Find_Environment is used to locate the explicit path specification and
file name for C0MMAND.COM, as required by the Exec procedure. The
current directory is saved to return the program to its working
directory after command execution. If the Redirection flag has been
set, calls are made to the Redirection Unit to route all subsequent
program output to files visible in the Redirection Unit. This
redirection is inherited by any programs spawned from this program by
Exec (Greco, 1937, p. 25). Exec is then called to spawn the
program(s). On return, the standard output handles are restored and
the original working directory restored as a precaution.

117

APPENDIX M

MAINTENANCE MANUAL FOR UNIT SUPPORT

A. UNIT SUPPORT

1. Configuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)
e. Program Description

The Support Unit contains most of the constant
declarations for the program, along with the initialization procedure
some general purpose procedures. From (Edwards, 1987, pp. 241 - 272).

2. Subroutines Contained

a. Initialize
(1) Type: Procedure
(2) Purpose: This procedure sets the de-fault

parameters for the program, attempts to read the telephone number file
and creates a -file if none exists, reads the user developed
configuration file to override some de-faults, displays the terminal
screen and initializes the Wndow Unit.

(3) Description of Parameters:
Input:

Output

:

(4) Subroutines Called:
System.UpCa.se
System. Length

(5) Process Description
This procedure first attempts to open a

con-figuration tile under the name found in the constant structure
Defaults. If this -file exists, the current configuration is read in to

a similar structure called Current, otherwise all parameters Are taken
from the constant structure. This is used to set the screen colors,

identi-fy the initial communications port to use, and identify the modem
port. This file may be updated -from the Master screen. From the
configuration selected, the environmental parameters Are established.
A similar process attempts to read the list of telephone numbers and
associated parameters, however the size o-f this array is not known in

advance. A memory block is drawn -from the heap for each telephone
record read to make the list. If the -file does not exist, a dummy
record is established. This file may also be updated -from the screen.
Finally, the designated communications port is initialized. This is

114

essential if the Slave computer is to recognize external commands
without operator intervention.

b. Save_File
(1) Type: Procedure
(2) Purpose: To save user modified con-figuration or

telephone dialing list parameters in a local file for later use on

program initialization.
(3) Description of Parameters: D is a boolean switch

that selects the file to be saved.

(4) Subroutines Called:

Wndow. Open_Window
CRT.ClrScr
Support. Yes
Support. NoFi le

Support. OK
Wndow. CI ose_Wi ndow

(5) Process Description
This procedure saves the default environmental

parameters as modified by the user in the file DISTRIB.CFS; or the
current list of telephone numbers and communications port parameters in

the file DISTRIB.PHN. Both files are loaded on program initialization
(if available) and override the default parameters found in the
constant data structures in the unit Support.

c. OK
(1) Type: Procedure
(2) Purpose: To obtain an acknowledgement from the

user

.

returns.

3) Description of Parameters:
Input: S, the string to title the prompt window.
Output: The user has responded if the call

(4) Subroutines Called:
Wndow. Open_Window
Wndow. Process_Window
Wndow. CI ose_Wi ndow

(5) Process Description
This function opens a window with a "OK" display

and the query in the window title field. The operator then depresses
the ENTER key to acknowledge, which is detected by Process_Window. The
widow is closed and the procedure call returns.

d. Yes
(1) Type: Function
(2) Purpose: To prompt the user for a yes or no

response.

se! ected.

(3) Description of Parameters:
Input: S, the string to title the prompt window.
Output: The function returns true if Yes was

11!

(4) Subroutines Called:
Wndow. Open_Window
Wndow. Process_Wi ndow
Wndow. CI ose_Wi ndow

(5) Process Description
This function opens a window with menu bar,

displaying the query in the window title field and the selections "Yes"
or "NO" in the window. The operator selects with the menu bar, and
Process_Window returns a value of two if the selection was "Yes." The
widow is closed and the function returns true if "Yes" was selected.

e. NoFile
(1) Type: Procedure
(2) Purpose: To obtain an acknowledgement from the

user after failing to find a file.

(3) Description of Parameters:
Input: S, the string to title the prompt window.
Output: The user has responded if the call

returns.

(4) Subroutines Called:
CRT.ClrScr
Support. OK

Wndow. Open_Wi ndow
Wndow. Pr ocess_Wi ndow
Wndow. CI ose_Wi ndow

(5) Process Description
This function opens a window to inform the

operator that the desired file could not be found, then opens another
window with a "OK" display. The operator then depresses the ENTER key

to acknowledge, which is detected by the OK procedure. The widow is

closed and the procedure call returns.

f. Build_Status_Line
(1) Type: Procedure
(2) Purpose: To construct a status line at the bottom

of the video display.
(3) Description of Parameters:

Input: Nothing.
Output: A status line containing information on

the current communications port is displayed at the bottom of the
screen.

(4) Subroutines Called:
System. Insert
Wndow. Writ e_St at u.s_Line

(5) Process Description
The procedure starts with a blank status line and

inserts substrings depending on the state of variables declared in this

unit to construct the status line. Wri te_Status_Line displays the line
in the appropriate position.

116

g. Check_keyboard
(1) Type: Function
(2) Purpose: To return a keyboard character,

including special characters.
(3) Description of Parameters:

Input: The key is taken -from the Readkey

function. Output: The -function returns the character

read, or the keyboard scan code in the high byte if a special character

is read (Readkey returned a zero). If no key is available, the

function returns zero.
(4) Subroutines Called:

System. KeyPressed
System. Readkey

(5) Process Description
The function checks the Keypressed function and if

true, calls Readkey to get the character. If Readkey returns zero, a

special key has been pressed, and the scan code is read from Readkey.

The character is returned, or the scan code in the high byte of the

integer if appplicable.

h. Check_Auxport
(1) Type: Function
(2) Purpose: This function checks for a character at

the currently selected communications port and returns a result.
(3) Description of Parameters:

Input: Nothing.
Output: NUL if no character is ready, or the

character if one was read.
(4) Subroutines Called:

DataCom. RS232_Avai

1

Data.Com.RS232_In
(5) Process Description

RES232_Avail returns true if a character is

available in the receive buffer of the currently selected
communications port. If true, the character is read through RS232_In,
and passed to the LST device and Ascii_file if public variables are
set. The character is returned, or NUL if no character was available.

i. Find_Environment
(1) Type: Function
(2) Purpose: To return a. specified string from the

operating system environment. This function typically is called to
find the CQMSPEC=<path specif i cation > string to locate a copy of the
MS-DOS command processor. With this path information, a second copy of

the command processor can be spawned to run programs -from this one.

(3) Description of Parameters:
Input: What is the parameter to be searched for.

The environment contains strings of the form What=<te:;t>.

Output: If found, the <te::t> part of the
environment string; if not, a NUL string.

117

(4) Subroutines Called:
System. MemW
System. Ptr
System. Copy
System. Length

(5) Process Description
To run a batch -file, a second copy of the MS-DOS

command processor is spawned as a child process, with the batch -file as
a command tail. The secondary processor executes the batch -file and
terminates. A copy of the command processor must -First be located
without previous knowledge. MS-DOS normally places a string citing the
path to the C0MMAND.COM on system initialization in an area o-f memory
called the environment, along with other information from the
AUTOEXEC.BAT file such as PATH information. A segment pointer to this
MS-DOS environment is placed in any program spawned from the original
command processor in the child Program Segment Prefix, at offset $002C.
The environment starts on a segment boundary, so the offsed is
automatically $0. This environment is the same one manipulated by the
SET command from MS-DOS, and normally contains a string of the form
C0MSPEC=D: \directory\directory\command. com. To search the environment
for the requested string, a pointer (Environ) is typed for the maximum
size of the environment, 32K bytes and initialized from the segment
value at offset $002C, Each string in the environment is terminated by
a NUL character (ASCIIZ). The environment area itself is terminated by
an extra NUL. The environment area is searched, string by string by

copying the strings into a local variable string, S. Each of these
strings is examined for the search string What. If found, the
remainder of the string is returned, otherwise a NUL string. This
function is duplicated in Unit Support to prevent circular unit
dependencies. (Edwards, 1987, p. 250).

j. Update_Status
(1) Type: Procedure
(2) Purpose: To display or refresh the current status

of the calling program in a monitor window.
(3) Description of Parameters:

Input: Typically this procedure writes current
information contained in a data structure by writing formatted strings
to an open window, and then displaying the contents of the data as a

string, or by mapping an enumerated data type to an array of constant
strings to display the value.

Output: A window display of the current status.
(4) Subroutines Called:

Wndow. Get_Window
CRT.ClrEOL
CRT.GoToXY

(5) Process Description
This procedure is local to Modif y_Entry. The,

process depends on the caller to open a properly sized window and to
set a variable called Status_ID to allow the status window to be

accessed via Get_Window. Once reopened, the procedure writes the

118

current status information. The procedure then resets the working window
to that of the caller's Monitor_ID.

k. Modify_Entry
(1) Type: Procedure
(2) Purpose: to display the current list o-f telephone

numbers that may be dialed automatically, or the current program
configuration parameters.

(3) Description of Parameters:
Input: I, a selector. If I > the phone list is

to be modified, if I = then the configuration parameters are
modified.

Output: The user is offered the opportunity to
save the modifications to a file.

(4) Subroutines Called:
Update_Status (local)

CRT.ClrScr
CRT.GoToXY
System. UpCase
System. Length
Wndow. Open_Window
Wndow. Process_Wi ndow
Wndow. Close_Window

(5) Process Description
Depending on I, the procedure opens a window of

the correct size, and then displays the current parameters by mapping
their values through arrays of constant strings to display readable
values. The procedure then enters a loop for operator entry of

parameters to be modified. The user then positions a menu bar aver the
appropriate selection and presses ENTER. Depending on the selection,
the procedure prompts the operator for an input string, or displays
another parameterized window and calls Pr ocess_Wi ndow to obtain the
current selection. When ESC is pressed, the loop ends and the recorded
modifications may be safec to a configuration or phone list file by
Save_File. All windows are closed and the procedure returns.

119

APPENDIX N

MAINTENANCE MANUAL FOR UNIT WNDOW

A. UNIT WNDOW

1. Configuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)
e. Program Description

This unit provides all window creation, memory
allocation, display, menu, bar processing, closure and memory
deallocation functions for the program Distrib. The unit was changed
from an include file to a. unit, but not otherwise changed from that
originally developed by the author in (Edwards, 1987, pp. 50-98). The
purpose descriptions are from the author.

Subroutines Contained

a. SetCol or
(1) Type: Procedure
(2) Purpose: Set the EGA foreground color -for text

(3) Description of Parameters:
Input: Color, the code to set the color to.

Output: All -Future text will be displayed in the

display.

color selected.

Foreground, and

(4) Subroutines Called:
CRT. TextCol or

(5) Process Description
The color selected is stored in the variable

a call is made to TextColor to set the screen

foreground color in accordance with the EGA monitor standards.

b. SetBackGround
(1) Type: Procedure
(2) Purpose: Set the EGA background color for text

display.
(3) Description of Parameters:

Input: Color, the code to set the color to.

Output: All future text will be displayed on a

background of the color selected.
(4) Subroutines Called:

CRT. TextBackGround

120

(5) Process Description
The color selected is stored in the variable

Background, and a call is made to TextBackGround to set the screen

background color in accordance with the EGA monitor standards.

c. Get_Dummy_Screen
(1) Type: Procedure
(2) Purpose: Force the Screen variable to point to a

dummy area on the heap.

(3) Description of Parameters:
Input: Screen, Screen_New (Public variables in

this unit.
Output: Screen and Screen_New

(4) Subroutines Called: None.

(5) Process Description
Screen is initialized to point to the the start of

the display area -for the color or monochrome monitor in

Init_Window_Inf o. This procedure saves this pointer in Screen_New and

then fills Screen with the same in-f ormation.

d. Get_Real_Screen
(1) Type: Procedure
(2) Purpose: To undo the work of Get_Dummy_Screen
(3) Description of Parameters:

Input: Screen, Screen_New (Public variables in

this unit.

Output: Screen and Screen_New
(4) Subroutines Called: None.

(5) Process Description
Screen is initialized to point to the the start of

the display area for the color or monochrome monitor in

Init_Window_Inf o. Get_Dummy_Screen redirects the pointer Screen to a

dummy area on the heap. This procedure restores Screen to its original
setting.

e. Build_Borders
(1) Type: Procedure
(2) Purpose: Build a border of single or double lines

around a window.
(3) Description of Parameters:

Input: Lines, specifying a single or double
border. Acti ve_Window, a public pointer in this unit to a window
control block containing information about the size and current
position of the window to be bordered.

Output: The output is a border written to the
display to outline the window.

(4) Subroutines Called:
General .Fi 1 1 Word
System. Length

121

(5) Process Description
This procedure determines the window limits

contained in the window control block pointed to by Active_Window, and
places standard symbols in screen memory to outline the window.

f. Open_Window
(1) Type: Function
(2) Purpose: Open a window on the screen and draw a

border around it. (3)

Description of Parameters:
Input: XI, Yl, X2, Y2 are the window coordinates;

Flag is a bit mask of allowed functions for this window (borders, GOTO
allowed within the window, relocatable and can be closed from the main
program); Name is the window title to be displayed.

Output: - window opened successfully; 1
-

Invalid window coordinates; 2 - not enough memory (failure).
(4) Subroutines Called:

System. GetMem
System. MemAvai

1

System. Move
Wndow. Bui ld_Borders

(5) Process Description
After checking the input parameters for valid

coordinates and sufficient memory, the memory required to save the
portion of the screen displayed by the window is allocated from the
heap and the window is drawn with the appropriate colors and borders.
Active_Window is advanced to this new window after adding it to the
linked list of open windows.

g. Close_Window
(1) Type: Function
(2) Purpose: To close the window pointed to by

Acti ve_Window.
(3) Description of Parameters:

Input: Active_Window is a public pointer managed
by this unit, and refers to the currently open window.

Output: The window is closed, and Active_Window
is redirected to the previous window in the linked list of open
windows. The function returns FALSE if successful, TRUE if an attempt
was made to close a window with Acti ve_Window"'=NIL (no more windows
open)

.

(4) Subroutines Called:
System. FreeMem
System. Move
Wndow. Bui ld_Borders
Wndow. SetBackground
Wndow. SetColor

(5) Process Description
After checking the input parameters for valid

coordinates and sufficient memory, the memory required to save the
portion of the screen displayed by the window is allocated from the

1 £.£.

heap and the window is drawn with the appropriate colors and borders.
Acti ve_Window is advanced to this new window after adding it to the
linked list of open windows.

h. Save_Window
(1) Type: Function
(2) Purpose: This function saves the image o-f the

current window, closes it, and returns a pointer to the saved window in

memory.
(3) Description o-f Parameters:

Input: Active_Window is a public pointer managed

by this unit, and refers to the currently open window.

Output: A pointer to the saved window.

(4) Subroutines Called:
Wndow. Dpen_Window
Wndow. Close_Window

(5) Process Description
W, a local variable is pointed to the same

window_block as the current Acti ve_Window. The procedure then opens a

window with parameters identical to the current window by using the
local pointer W to dereference the current window parameters. The act

of opening a window of the same size and parameters has the effect of

saving the original window. Acti ve_Window now points to the new
window. If the call to Open_Window fails, a NIL pointer is returned
from Save_Window and the function exits. Otherwise, parameters from
the saved window are transferred to the Acti ve_Window block, W is

redirected to the newly updated current window, Acti ve_Window is

retracted to the saved window and the window that overlaid it is

closed. The function returns the pointer to the saved block.

i. Restore_Window
(1) Type: Procedure
(2) Purpose:
(3) Description of Parameters:

Input: A pointer to a saved window.
Output: TRUE if the function was unable to

restore the window.
(4) Subroutines Called:

Wndow. Open_Window
Wndow. SetBackGround
Wndow. SetColor

(5) Process Description
The function first uses the window pointer to set

the video display colors. Then, an attempt is made to open a window of

the same size as the saved window. If this fails, the function returns
true. Otherwise, the Acti ve_Window parameters are set to the saved
window, the saved window is added to the window control block chain,
and Acti ve_Window is reset to point to the restored window.

j. Get_Window
(1) Type: Function

.23

(2) Purpose: To bring a window to the top o-f the
screen.

(3) Description o-f Parameters:
Input: Which, the ID of the window to be

sur -faced.
Output: False i-f the operation succeeds, True if

the ID did not exist.
(4) Subroutines Called:

Wndow. Get_Dummy_Screen
Wndow_Restore_Wi ndow

(5) Process Description
Get_Window follows the backlinks from

Acti ve_Window back until the ID of Which is found or the links end at a

NIL. If found, Move_Window is used to copy the desired window into a

heap area obtained by Get_Dummy_Screen. The window is then placed on

the screen by Restore_Window.

k . Move_Wi ndow
(1) Type: Function
(2) Purpose: To move a current window by a relative X

and Y.

window.

(3) Description of Parameters:
Input: X, Y the direction and amount to move the

Output: False if the operation succeeds, True if

the coordinates are invalid.
(4) Subroutines Called:

CRT. Window
Wndow. Exchange

(5) Process Description
Move_Window checks the values of X and Y and then

copies the window incrementally in the desired direction (s) . The built
in procedure Window is then used to enable the new window location for

displ ay.

1. Write_Status
(15 Type: Procedure
(2) Purpose: To display a string on the 25th video

display line with a video attribute.
(3) Description of Parameters:

Input: S, the status string; Attrib, the display
attribute.

Output: The string is written to the display.
(4) Subroutines Called:

System. Length
(5) Process Description

The procedure first concatenates the attribute
byte with the display character and then writes the combination to the
screen as a word, using the Screen pointer.

124

ffl. Process_Window_Menu
(1) Type: Procedure
(2) Purpose: to display and process a menu in the

current window.
(3) Description of Parameters:

Input: Menu is a constant that must consist of an

integer, followed by an array of string constants of length Menu.

Output: The function returns a byte reflecting

the index of the i 'th string in the constant array. A zero is returned

if ESC is pressed.
(4) Subroutines Called:

SetJHighlights (local)

GoDown (local

)

GoHome (local)

GoEnd (local)

GoUp (local)

CRT.GoToXY
CRT. TextBackground
CRT.TextColor
Support. Max

Support. Mi

n

System. Length
Wndcw. Bui ld_Borders

(5) Process Description
This function relies on a side effect of the data

structure, and assumes that the array of strings representing the

selections to be displayed in the window immediately follow Menu. By
obtaining a memory address for Menu, the function opens a window of the
proper size and then uses this implementation specific information to

display the strings. The function then offers the operator the menu
bar movement options on the status line to make a selection.

12!

APPENDIX

MAINTENANCE MANUAL FOR UNIT XMODM

A. UNIT XMODM

1. Configuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)
e. Program Description

This unit handles all requests for Xmodem protocol
packet and file transmission and reception.

2. Subroutines Contained

a. String_to_Buf
(1) Type: Procedure
(2) Purpose: Convert a string of length 128 to an

Xmodem buffer of the same length.

(3) Description of Parameters:
Input: S, a 128 character string.
Output: buf , an Xmodem buffer. Short strings are

padded with NUL characters.
(4) Subroutines Called:

System. Length
(5) Process Description

The string is treated as an array of characters,
and each is read into the same position in the buffer.

b. Buf _to_String
(1) Type: Function
(2) Purpose: Convert a 128 character buffer into a

string of the same length. Nonprinting characters are replaced with

spaces.
(3) Description of Parameters:

Input: buf, the 128 character buffer of

characters.
Output: s, a 128 character string.

(4) Subroutines Called: None.
(5) Process Description

The string is treated as an array of characters,
and each character in the buffer, another array of compatible type is

read into the string. Spaces are substituted for nonprinting'
characters.

126

c

.

ReadAux
(1) Type: Function
(2) Purpose: Returns a character -from the currently

selected communications port, and also writes the character to the
monitor -file and monitor window if selected. Provides a timeout
function and a keypressed abort.

(3) Description of Parameters:
Input: Seconds, the number of seconds to wait for

a character before returning with a timeout indication.
Output: A word with the received character in the

low order byte, value 256 (timeout) otherwise.
(4) Subroutines Called:

CRT. Del ay

CRT. Keypressed
CRT.TextColor
CRT. BackGround
DetaCom. RS232_Avai

1

System. DEC
(5) Process Description

A factor is multiplied by the number of seconds to

wait, and then used in a fast loop to test for a received character or

operator keypress. Either event breaks the loop. If a character is

available, the function returns the character. If Monitor_ID is

greater than zero, a monitor window is open and the character is

written to the cursor position there and to a monitor file. Otherwise,

a timeout indicator is returned.

d. WriteAux
(1) Type: Procedure
(2) Purpose: Sends a character to the currently

selected communications port, and also writes the character to the

monitor -file and monitor window if selected.
(3) Description of Parameters:

Input: Ch , the character to be sent.

Output: The character is sent and displayed if

the Monitor_ID switch is greater than 0.

(4) Subroutines Called:
CRT. Text Co lor
CRT.BackGround
DataCom.RS232_0ut

(5) Process Description
The character is sent out the communications port

by RS232_0ut. If Monitor_ID is greater than zero, a monitor window is

open and the character is written to the cursor position there and to a

monitor file.

e. Send_String
(1) Type: Procedure
(2) Purpose: To send a string out the currently

selected communications port.

127

(3) Description o-f Parameters:
Input: S, a string.

Output: The string is sent to the port.
(4) Subroutines Called:

DataCom. RS232_0ut
System. Length

(5) Process Description
The string is passed, character by character, to

the communications port.

f . Rece i ve_Recor d
(1) Type: Function
(2) Purpose: Receive an Xmodem packet from the

currently selected communications port. A building block -for -file and
command transfers.

(3) Description of Parameters:
Input: Buf , the data portion of the packet;

Blocksize, the size of the data buffer; seconds, the number of seconds
to wait before timing out on reception; and expected_block , the ordinal
number of the next block expected from the sender.

Output: Buf is filled with the data packet
contents if successfully received; errors indicates the number of

errors encountered in receiving the packet.
(4) Subroutines Called:

Xmod m. Read Aux
Xmodm. Wri teAux

(5) Process Description
Recei ve_Record first listens for the SOH character

signalling the start of an Xmodm packet from the port via ReadAux

,

passing the numbert of seconds to wait on the call. The function exits
immediately with an appropriate status code if a CAN, EOT or unexpected
character is received. IF SOH is received, the function then assembles
the Xmodem header, calculates a running checksum on the incoming data,
and detects the checksum character. It then checks the packet for
match between the block number and its inverse (packet locations two
and three, respectively), an incorrect block number compared to the
input expected_block , and a different checksum from that received and

provides the appropriate status on return for each. If the packet was
received correctly, an ACK is sent to the transmitter. If not, a NAK

is sent.

g. Set_Buffer
(1) Type: Procedure
(2) Purpose: Reads a buffer of size blocksize from a

previously opened file. Pads the buffer with NUL characters if smaller
than requested.

(3) Description of Parameters:
Input: Buf, the buffer to fill; blocksize, the

size of the buffer in bytes; XferFile is a private file variable in

this unit.

128

Output: Buf contains the next -file buffer.

(4) Subroutines Called:
System. Bl oc kRead

(5) Process Description
The low level file read procedure BlockRead is

used to read an untyped buffer. The procedure reports the number of

bytes read. If less than the buffer size, the remaining bytes are

filled with NULL characters.

h. Send_Record
(1) Type: Function
(2) Purpose: Send an Xmodem packet out the currently

selected communications port. A building block for file and command
transfers.

(3) Description of Parameters:
Input: Buf , the data portion of the packet;

Blocksize, the size of the data buffer; seconds, the number of seconds
to wait before timing out on acknowledgement; Block, the ordinal number
of this packet; and errors, a count of the number of errors on the
attempt to return to the calling program.

Output: Buf is unchanged and is a VAR parameter
for efficiency; errors indicates the number of tries to send the
packet.

(4) Subroutines Called:
DataCom. Purgel i ne

Xmodm. ReadAux
Xmodm. Wri teAux

(5) Process Description
Send_Record first calculates a checksum value for

the data in the buffer and then sends the SOH character signalling the
start of an Xmodm packet to the port via Wri teAux, followed by the
block number and its inverse, the data and the calculated checksum
value. PurgeLine is called to clear the receive buffer to prevent an

erroneous interpretation of an earlier character received. ReadAux is
then called to listen for the receiver's acknowledgement. Status is

set accordingly. Finally, the keypressed function is checked to an
operator interrupt and status is updated. Status is returned as the
function result.

i. Sync_Receive
(1) Type: Function
(2) Purpose: Used to synchronize to receive Xmodem

packets.
(3) Description of Parameters:

Input: Seconds, the number of seconds to wait
between sending sync characters (NAK for Xmodem); and sync_character

,

the sync character to send.

Output: A status code indicating synchronization,
timeout or operator keypress.

(4) Subroutines Called:
CRT. KeyPressed

129

DataCom. PurgeLi ne
DataCom. RS232_Avai

1

Xmodm. WriteAux
(5) Process Description

Sync_Recieve calculates the number of ten second
intervals in seconds is calculated. The receive line is cleared and
the sync character is sent. The function then loops waiting for a

character to be received or the operator to press a key for the time
indicated by seconds, sending a new sync character every five seconds.
The function does not check the received character, only whether or not
one was received in the allotted time. A status code is returned as

the function result (packet acknowledged, negative acknowledge,
receiver requests to cancel the transaction, timeout or operator
keypress)

.

j . Sync_Send
(1) Type: Punction
(2) Purpose: Used to synchronise to send Xmodem

packets,
(3) Description of Parameters:

Input: Seconds, the number of seconds to wait

between sending sync characters (NAK for Xmodem).

Output: A status code indicating synchronization,
timeout or operator keypress.

(4) Subroutines Called:
CRT. KeyPressed
DataCom. PurgeLi ne
Xmodm. ReadAux

(5) Process Description
Sync_Send clears the receive line with PurgeLi ne

and then calls ReadAux to detect a received character. A status code

is returned as the function result (sync character received, checksum
sync received, receiver timed out or a keypress was detected).

k. Send_EOT
(1) Type: Procedure
(2) Purpose: To signal the end of a data transfer for

the Xmodem protocol

.

(3) Description of Parameters:
Input: Status, to be changed to reflect the

outcome of the call; and Suppress_EDT, a flag set to suppress the

normal EOT on an Xmodem data transfer. Used to concatenate file

transfers.
Output: Status, reflecting transmission

completed, or a timeout error (or too many errors).
(4) Subroutines Called:

Xmodm. ReadAux
Xmodm. WriteAux

(5) Process Description
Suppress_EOT is first checked to see if the EOT

will be sent. If TRUE, the EOT is not sent and the procedure returns a

130

completion status. This allows successive Xmodem transfers without

encountering the normal flow control reversal. Otherwise., EOT

characters are sent every ten seconds until acknowledged or the

accumulated errors exceed RetryMax , a constant private to the Xmodm

Unit. A timeout status is returned if errors were exceeded, a

transmission complete status i-f EOT was properly acknowledged.

1 . Send_CAN
(1) Type: Procedure
(2) Purpose: Used to inform the other side of the

communications link that the Xmodem operation is to be aborted.

(3) Description of Parameters:
Input: None.

Output: Two CAN characters are sent out the

communications port.

(4) Subroutines Called:
Xmodm. WriteAux

(5) Process Description
Two CAN characters are sent out the communications

port.

m. Update_Status
(1) Type: Procedure
(2) Purpose: To display or refresh the current status

of the calling program in a monitor window.
(3) Description of Parameters:

Input: Typically this procedure writes current
information on the status of a data, transfer, the number of bytes and

blocks sent or received, and the count of the number of errors
accumulated on the transaction in a formatted display.

Output: A window display of the current status.
(4) Subroutines Called:

Wndow. Get_Window
CRT.GoToXY

(5) Process Description
This process is used several places in this unit,

and operates identically in each. The process depends on the caller to
open a properly sized window and to set a variable called Status_ID to

allow the status window to be accessed via Set_Window. Once reopened,
the procedure writes the current status information using variables
local to the caller. The procedure then resets the working window to

that of the caller's Monitor_ID.

n. Xmodem_Xfer
(1) Type: Function
(2) Purpose: Perform an Xmodem file transfer.
(3) Description of Parameters:

Input: Send, TRUE to send a file, FALSE to
receive; and Blocksize, the size of the data buffer to use.

Output: A status code indicating success or what
problem was encountered.

131

(4) Subroutines Called:
Update. Status (local to this -function)

CRT.ClrScr
CRT. Del ay
CRT.GoToXY
CRT.KeyPressed
CRT.ReadKey
DataCom.RS_Eight_Bits
General .Beep
System. BlockWrite
System. Assign
System. Reset
System. Rewrite
Xmodm. Sync_Send
Xmodm. Get_Buf f er

Xmodm. Send_Record
Xmodm. Sync_Recei ve
Xmodm. WriteAux
Wndow. Close_Window
Wndow. Open_Window

(5) Process Description
The public variable Monitor_Transf ers is checked

to see if a monitor window is to be opened to display the characters
transfered. If TRUE, the window and a monitor file are opened. The
status window is then opened and unchanging field names written.
RS_Eight_Bits is called to insure the communications port passes eight
bit data, regardless of its settings. After initializing the variables
used to report status, the function branches depending on whether a

file is to be sent or received. If Send is TRUE, Sync_Send is called
to detect sync characters from the receiver. If Sync_Send times out,

the transfer is aborted and the timeout is reported to the caller. IF

sync is detected, file buffers are obtained from Get_Buffer and sent

via Send_Record until EOF is detected or too many errors are

encountered. If successful, EOT is sent to the receiver to signal the

end of transmission. The KeyF'ressed function is monitored at several

points, and will cause an immediate abort with status returned to the
caller. If Send is FALSE, Sync_Receive is called to send sync

characters. If a timeout is not encountered, Recei ve_Record is called
repeatedly to obtain received buffers and monitor status. The transfer
terminates on receipt of EOT (competion) , too many errors detected or a

keypress indication, with appropriate status returned to the caller.

Update_Status is called several times throughout each branch to

indicate progress or report errors. The transfer file is then closed,

as are the monitor and status windows. RS_Initial ize is called to

reset the communications port to its previous word length.

o. Command_Xfer
(1) Type: Function
(25 Purpose: Transfer a single command packet.

132

(3) Description of Parameters:
Input: Send, TRUE to send a packet, FALSE to

receive a packet; Buf , the data buffer send or received; Blocksize, the

size of the data buffer.
Output: A status code indicating success or what

problem was encountered.
(4) Subroutines Called:

Update. Status (local to this function)

CRT.ClrScr
CRT. Del ay
CRT.GoToXY
CRT.KeyPressed
CRT.ReadKey
General .Beep

Xmodm. Sync_Send
Xmodm. Get_Buf f er

Xmodm. Send_Record
Xmodm. Sync_Recei ve

Xmodm. WriteAux
Wndow. Close_Window
Wndow. Open_Wi ndow

(5) Process Description
This function operates similarly to Xmodem_Xfer,

except that a single Xmodem packet is transferred. The public variable
Moni tor_Transf ers is checked to see if a monitor window is to be opened

to display the characters transfered. If TRUE, the window and the

monitor file are opened. The status window is then opened and

unchanging field names written. RS_Eight_Bits is called to insure the
communications port passes eight bit data, regardless of its settings.

After initializing the variables used to report status, the function
branches depending on whether a file is to be sent or received. If

Send is TRUE, Sync_Send is called to detect sync characters from the

receiver. If Sync_Send times out, the transfer is aborted and the
timeout is reported to the caller. IF sync is detected buf is sent via
Send_Record. If successful, EOT is sent to the receiver to signal the
end of transmission. The KeyPressed function is monitored at several

points, and will cause an immediate abort with status returned to the
caller. If Send is FALSE, Sync_Recei ve is called to send sync

characters. If a timeout is not encountered, Recei ve_Record is called
to obtain received buffer and monitor status. The transfer terminates
on receipt of EOT (competion) , too many errors detected or a keypress
indication, with appropriate status returned to the caller.

Update_Status is called several times throughout each branch to
indicate progress or report errors. The monitor file is then closed,
as are the monitor and status windows. RS_Ini tial ize is called to
reset the communications port to its previous word length.

p. TransferFile
(1) Type: Procedure
(2) Purpose: To obtain the name of the file to be

transferred from the local operator.

(3) Description of Parameters:
Input: Send, TRUE i-f a -file send is desired,

FALSE to receive a -file.

Output: Monitor display.
(4) Subroutines Called:

Wndow. Open_Wi ndow
Wndow. CI ose_Wi ndow
Support. NoFile
System. Assign
System. Length
System. Reset
System. Rewrite
System. Upcase

(5) Process Description
Transf er_File first opens a window to ask the

operator what filename is to be transferred. The transfer is aborted
and NoFile is called if the file is not found or cannot be opened.
Depending on Send, the file is opened for reading or writing and then
Xmodem_Xfer is called to accomplish the transfer.

q. Respond_by_File
(1) Type: Procedure
(2) Purpose: To allow the remote Slave to send the

results of a program or other message contained in a file to the
Master.

(3) Description of Parameters:
Input: Response, the file to be sent.

Output: None from this procedure.
(4) Subroutines Called:

Wndow. Open_Wi ndow
Wndow. Close_Window
System. Assign
System. Length
System. Reset
System. Rewrite
System. Upcase

(5) Process Description
Transf er_Fi le first opens a window to ask the

operator what filename is to be transferred. The transfer is aborted
if the -file is not found or cannot be opened. Depending on Send, the

file is opened for reading or writing and then Xmodem_Xfer is called to

accomplish the transfer.

r. Get_Response
(1) Type: Function
(2) Purpose: To allow the Master to receive file

responses from a program completed by the Slave.
(3) Description of Parameters:

Input: BlockSize, the size of the Xmodem buffers.'

Output: Status code of the call.

134

(4) Subroutines Called:
CRT.KeyPressed
CRT.ReadKey
DataCom.RS_Eight_Bits
DataCom. RS_Restore
Xmodm. Sync_Receive
Xmodm. Recei ve_Record
Xmodm. WriteAux
System. Assign
System. Close
System. Rewrite
Wndow.TextColor
Wndow. TextBackBround

(5) Process Description
For this -function, the monitor window is set to

the current window, and the monitor file is directed to NUL, the bit

bucket. This satisfies ReadAux and WriteAux so that the display will

operate properly without creating an unnecessary -file. RS_Eight_Bi ts

is called to insure the communications port passes eight bit data,

regardless of its settings. After initializing the variables used to
report status, Sync_Receive is called to send sync characters. If a

timeout is not encountered, Recei ve_Record is called to obtain received
buffer and monitor status. The transfer terminates on receipt of EOT
(competion) , too many errors detected or a keypress indication, with
appropriate status returned to the caller. Update_Status is called
several times throughout each branch to indicate progress or report
errors. RS_Initialize is called to reset the communications port to

its previous word length, and the dummy monitor file is closed.

s. Xmodm Unit Initialization
(1) Type: Unit Initialization Procedure
(2) Purpose: To initialize the unit on loading.

(3) Description of Parameters:
Input: Suppress_EOT, Moni tor_Transf ers.

Output: Suppress_EOT, Moni tor_Transf ers.
(4) Subroutines Called: None.

(5) Process Description
Suppress_EOT and Moni tor_Transf ers are set to

their default values.

131

APPENDIX P

SOURCE LISTING FOR UNIT DATACOM

***********##******************************#***#**#***#*********##*)

***•*

DATACOM. PAS
This is the unit that accomplishes all inter-face to the
communications ports -for character, string and buffer
transfer. It also initializes the communications ports
and provides interrupt interrupt service routines -for

character receive.

References:
Inter-f ace:

Multiple
Ports:

Edwards, C.6.

Turbo Pascal

,

Inc., 1987.

Advanced Techniques in

pp. 220 - 238, Sybex,

Low Level

Procedures:

UART/PIC
Declarations:

Kimura, N. , <abcscnuk@csuna. uucp>,
inf o-pascal -@vim.br 1 .mil message,
Subject: Re: TP4.0 Auk Problem,
Message- ID: < 1376@csuna.uucp>,
17 Nov 88 10:20:54 8MT.

de Boer, R. , < reino@eurai vl . uucp>,
in-fo-pascal-@vim. brl .mi 1 message,
Subject: Serial Unit in TP4,

Message- ID: < 797@eur a i v 1 . uucp >

,

15 Nov 88 14:17:15 GMT.

Greenberg, R.M., "TSRCOMM, a Replacement
tor Interrupt 14", source listing,
Ross M. Greenberg, 1987.

Developed by Nelson Ard.

Last modification Sec 89.

***)

********#*************************#*****#*********^

(* Mcdi-f i cat ion history

8 Sep 89 - added RS_Eight_Bi ts to change the port data work
width to eight bits -for Xmodem protocol operation,

*)

136

UNIT DATACOM;

INTERFACE

USES General, CRT, Dos;

CONST
COM1 = 1;

COM2 = 2;

COM3 = 3; Cnot implemented, but MS-DOS knows about them}
COM4 = 4; Cnot implemented, but MS-DOS knows about them}

(*********#****#********* Start Edwards Excerpt a*******************-)

TYPE
RS_Baud = (B 1 1 , B 1 50 , B300 , B600 , B 1 200 , B2400 , B4800 , B9600 , B 1 9200

,

B38400)

;

RS_F'arity = (None, Odd , Nevermind, Even)

;

RS_Config = Record
Stop

,

Length : byte;
Alias : string [101;

Speed : RS_Baud;
Parity : RS_Parity;
IRQNo : byte;

Installed : boolean;
end; { RECORD }

PortRange = C0M1..C0M2;

VAR
Current_Com : Byte; {public, specifies current port -for

command or -file transfer}
ComPort : ARRAY C PortRange 3 OF RS_Config;

Procedure RS_Break;

{ This procedure instructs the currently selected data communications
port to send a break signal}

Function RS232_Avai 1 : Boolean;
[This function returns TRUE if there are characters to be read from
the RS232 port. It is analogous to the Turbo function KEYPRESSED for
the kevboard.

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex , Inc. All rights reserved.
*********+********•*-** Continue Edwards Excerpt ***********•*****•****)

137

(a-**-***************** Continue Edwards Excerpt ******************)
Function RS232_In: Char;
•CThe AUX device is set to point to this -function -for input. It returns
the next character received from the RS232 port.

Procedure RS232_0ut (Param : Char)

;

{ Sends the character to the RS232 port. }

Procedure RS_Ini tiali ze (Com: Byte; Speed :RS_Baud; Parity :RS_Parity;
Stop , Length: Byte)

;

•C Initialize communications port. Vector the appropriate interrupt to
point to our interrupt service routine. Initialize hardware
handshaking lines. Store current settings in a data structure for
restoration.

Input: COM - The RS232 port to be handled
Speed - The baud rate of the line
P - The parity of the line
Stop - The number of stop bits
Length - The number of data bits

j

Procedure RS_Cleanup;

{This procedure should be called on exit to disable interrupts on the
RS232 port and reset everything to its default state.

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
#***************** End Edwards Excerpt ***********************)

procedure Purged ne;

{ This function clears the receive buffer and UART receive buffer for

the currently selected port}

Function Connected : boolean;
C Returns TRUE if the Data Set Ready line is true, signalling hardware
handshaking J-

Function RS232_peek : Char;

{ Added to allow nondestructive read of the currently selected port
input buffer for xmodm. Sync_recei ve)

13£

Procedure Send_String (S : String);

•f Send a string out the currently selected RS232 port }

Procedure RS_Restore (COM : byte)

;

{ Reinitialize the COM Port }

Procedure RS_Eight_Bits;

£ Adjust the comport -for eight bits regardless o-f current setting }

13?

IMPLEMENTATION

(************************ Start Greenberg extract *********************)
CONST

£ UART declarations }

•C Interrupt Enable Register }

{ Or one or more of these bits to enable the respective interrupts J

IER._RDA = $01;

IER.JHRE = $02;

IER._RLS = $04;

IER. MS = $08;

C Receive Data Available Int Bit
{ Transmitter Hold Register Empty Bit
•C Receive Line Status Int Bit

{ Modem Status Int Bit

•1 >

•C Interrupt Identification Register }

£ Check the lower four bits to see what interrupt called

IIR_RLS = $05;

IIR_RDA = $04;

IIR_THRE = $02;

IIR_PEND = $01;

IIR MS $00;

{ Receiver Line Status Interrupt
{ Receive Data Available
£ Transmitter Hold Register is Empty
£ zero if * any * interrupt pending
£ Modem Status interrupt

101 }

100 }

-— -010 }

001 }

-— -000 3

£ Line Control Register }

£ Or one or more of these bits to select comm port parameters }

LCR_CHR5 — $00;

LCR_CHR6 = $01;

LCR_CHR7 = $02;

LCR_CHR3 = $03; '

LCR_ST0P1 = $00;
LCR_ST0P2 = $04; •

LCR_N0PAR ITY = $00;
LCR_PARITYEN = $08;

LCR_EPARI TY = $10; •

LCR_SPARI"TV = $20;

LCR_BREAK = $40; '

LCR_DLAB = $80;

Five bit character
Six bit character
Seven bit character
Eight bit character
One stop bit
Two stop bits
No parity
Enable parity (see SPARITY and

EPARITY
Even parity bit 1

Stick parity — 1-

Transmits a BREAK (space) -1

—

Divisor Latch Access bit 1

—00 J

—01 J

— 10 1
J

—11 -1

J

-o

—

\

-1— J

J

\

(* Reprinted from "TSRC0MM.ASM A Replacement for Interrupt 14" by Ross
M. Greenberg, by permission of the author. Copyright 1987, Ross M.

-

Greenberg. All rights reserved.
********************** Continue Greenberg Excerpt ********************)

140

(***#**•********#****** Continue Greenberg extract *********************)

{ Modem Control Register }

{ Or one or more of these bits to signal the modem >

MCR_DTR
MCR_RTS
MCRJDUTl
MCR_0UT2

= $01;
= $02;
= $04;
= $08;

r
\

£

{

£

MCR LOOP = $10; r

set Data Terminal Ready
set Request To Sent
Output 1 (resets Hayes modem)
Output 2 (allows comm

port interrupts)
Loopback test

1 J

1— }

{ Line Status Register }

{ Test one or more of these bits to determine comm port status

LSR_DATA = $01;

LSR_0VERRUN = $02;
LSR_PARITY = $04;

LSR_FRAMING s $08;

LSR_BREAK = $10;

LSR_THRE = $20;

LSR TSRETY = $40;

data is available
overrun error bit
parity error bit
framing error bit
BREAK detected bit

1

Transmit Holding Register Empty — 1-

Transmit Shift Register Empty -1—

Modem Status Register >

Test one or more of these bits to determine modem actions }

M5R_DEL_.CTS = $01;
MSR_DEL..DSR = $02;

MSR_EDGE:_Ri = $04;

MSR_DEL..SIGD = $08;

MSR_CTS = $10;

MSR_DSR = $20;
MSR_RI = $40;

MSR DCD = $80;

delta Clear To Send
delta Data Set Ready
Trailing Edge of Ring Indicator
delta Receive Line Signal Det
Clear To Send
Data Set Ready
Ring Indicator - entire ring
Data Carrier Detect - on line

1

— 1-

-1—
1

1

— 1-

-1—
1

(* Reprinted from "TSRC0MM.ASM A Replacement for Interrupt 14" by Ross
M. Greenberg, by permission of the author. Copyright 1987, Ross M.

Greenberg. All rights reserved.
*********+************* End Greenberg Excerpt *********************)

141

(***************** Start Edwards Excerpt ***********************)

{ IRQ Lines }

IRDline : ARRAY C PortRange 3 OF byte = (4, 3);

TYPE

INSB250 = reconJ

THR • word; r

RBR word; r

IER word; {

IIR • word; {

LCR • word; r
\

MCR • word; r

LSR word; r
L

MSR word; r

DLL word; r
l

DLM • word; r

Transmit Holding Register
Receive Holding Register
Interrupt Enable Register
Interrupt Ident Register
Line Control Register
Modem Contro Register
Line Status Register
Modem Status Register
Divisor Latch LSB
Divisor Latch MSB

CONCJ

END:

RS_3uffer_Si2e = 4095; [Size of Buffer - 1... Change this i-f you
want a different buffer size)

8259 PIC declarations
ISR = $20;

IMP = $21;
IRQ4 _Mask = *EF:

IRQ3._Mask = *F7;

Interrupt Service Register
Interrupt Mask Register }

Enable for C0M1 }

Enable for COM2 }

{ IBM PC comm port interrupt vectors
C0M1_INTR = $0C;

COM2 INTR = SOB;

RS_Error
Chk_DSR
Chk CTS

byte = 0;

boolean = FALSE;
boolean = FALSE;

Regs : Array CI.

((THR:*3F8;
MCR:$3FC;
(THR:*2F8;
MCR:*2FC;

23 of INS8250 =

RBR:*3F8; IER:*3F9; IIR:$3F9;

LSR:*3FD; MSR:*3FE; DLL:*3F8;
RBR:*2F8; IER:*2F9; IIR:$2F9;
LSR:$2FD: MSR:*2PE; DLL:$2F8;

LCR:*3FB;
DLM:*3F9)

,

LCR:*2FB;
DLM:$2F9));

(* Reprinted with extensive modifications from Advanced Techniques in

'urbo Pascal Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
Modified after "Re:: TP4.0 Aux Problem" by Naoto Kimura, reprinted
by permission of the author.

********#*****•*•***•*** Continue Edwards Excerpt **********#*********)

142

(a******************* Continue Edwards Excerpt *******************)
War RS_Buffer : Array C 1 . .2,0. . RS_Buff er_Size3 of Byte;

RS~Buf_Head,
RS_Buf_Tail : Array CI.. 23 OF word;

index : byte;
Line_settings : byte;

Procedure Disablelnterrupts;

{ Insert assembly code to disable computer interrupts }

INLINE (*FA)

;

Procedure Enablelnterrupts;

{ Insert assembly code to enable computer interrupts }

INLINE ($FB)

;

Function RS232_Avai 1 : Boolean;
{This -function returns TRUE if there are characters to be read from
the RS232 port. It is analogous to the Turbo function KEYPRESSED for

the keyboard.

Begin
Rs232_Avail :=

RS_Buf_Head C Current_COM] <> RS_Buf_Tail C Current_C0M];

End; Cor RS232_Avain-

Procedure RS232_ISR1
(Flags, CS, IP, AX, BX , CX, DX, SI, DI, DS, ES , BP : word);
INTERRUPT;

{ This procedure handles interrupts from RS232 port one
THIS PROCEDURE MUST NOT BE CALLED BY ANY OTHER PROCESS }

Begin
Di sabi elnterrupts;
RS_Error:=PortC RegsC C0M1].LSR 3 and $1E;
RS_Buffer[C0M1, RS_Buf_Tail C C0M1 33 := PortCRegsC C0M1 3.RBR3;
RS_Buf_TailE C0M1 3 := (RS_Buf_Tail[C0N1 3+1)

mod (RS_Buf f er_Size+l)

;

Enablelnterrupts;
PortE $20 3 := $20; {Report end oi service to PIC)

End; {of RS232_ISR1 }

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
Modified after "Re:: TF'4.0 Aux Problem" by Naoto Kimura, reprinted
by permission of the author.

********************* Continue Edwards Excerpt ***********+***-*****)

143

(***********#******** Continue Edwards Excerpt ********************)

Procedure RS232_ISR2
(Flags, CS, IP, AX, EX, CX, DX, SI, DI, DS, ES, BP : word);
INTERRUPT;

CThis procedure handles interrupts -from RS232 port two
THIS PROCEDURE MUST NOT BE CALLED BY ANY OTHER PROCESS}

Begin
Disablelnterrupts;
RS_Error:=Port[RegsC COM2 3 . LSR] and $1E;
RS_BufferC COM2. RS_Buf_Tail C COM2 3 3 := Port C RegsC COM2].RBR];
RS_Buf_TailC COM2 3 := (RS_Buf_TailC COM2]+l)

mod (RS_Buffer_Size+l)

;

Enabl elnterrupts;
PortE $20 3 := $20; {Report end o-f service to PIC3-

End; -Cot RS232_I3R2 >

Procedure R2_Break;
C This procedure instructs the currently selected data communications
port tc send a break signal}

Begin
Port[Regs[Cur K-ent_Com] . LCR] :

=

PortERegsCCu.rrerit_Com3.LCR3 or LCR_BREAK;
De 1 ay (200) ; -CI / 5 sec on d }

PortCRegsCCu^rent_Comj .LCR3 i=

PortCRegsCCurrent_Com3.LCR] xor LCR_BREAK;
End; Cof RS_Break>

^un c t i on RS232_ I n : Ch ar

;

[The AUX device is set to point to this -function -for input. It returns
the next character received from the R5232 port.

Beg l r.

While RS_Bu-f _Heed C Current_COM 3 = RS_Bu-f_Tail C Current_COM 3 Do

Delay (10)

;

RS232_In :=

Char (RS_Bu-ffer C Current_COM, RS_Bu-f_Head C Current_.COM 33);

RS_Buf_Head C Current_COM 3 :=

(RS_Buf_Head C Current_COM 3+1) mod (RS_Buf f er_Size+i)

;

End; Cof RS232 In}

(# Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.

Copyright 1967 Sybex, Inc. All rights reserved.
Modified after "Re:? TP4.0 Aux Problem" by Naoto Kimura, reprinted
by permission of the author.

***********+**+*•**+++ Continue Edwards Excerpt ********************)

144

(******************** Continue Edwards Excerpt ********************)

Procedure RS232_0ut (Param : Char)

;

{ Sends the character to the RS232 port. }

Beg i n

While ((Port [Regs C Current_Com].LSR] and *20) <> $20)

{Transmit Reg empty]
do Del ay (1)

;

(* Request to send *)

Port C Regs C Current_.COM 3.MCR] := MCR_RTS OR MCR_0UT2;
IP Chk_DSR THEN
While ((PortE Regs C Current_.COM].MSR] and MSR_DSR) <> MSR_DSR)

do Del ay (1); {Wait a while]-

IF Ghk_CTS THEN
While ((PortE Regs E Current_CDM 3.MSR3 and MSR_CTS) <> MSR_CTS)

do Del ay (1); {Wait a while]-

PortERegsE Current_.COM 3.THR3 := Byte (Param);

RS_Error: =0:

End;

(* Reprinted with extensive modifications -from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission o-f Sybex, Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
Modified after "Re:; TF'4.0 Aux Problem" by Naoto Kimura, reprinted
by permission of the author.

************************ End Edwards Excerpt **********************)

(************************* Start de Boer extract ********************)
PROCEDURE Enable (IRQ : byte);

£ Set the Interrupt Mask Register on the Programmable Interrupt
Controller to recognize interrupts from this port]

BEGIN
Port CI MR] := Port EI MR] AND NOT (1 SHL IRQ >;

END; £ Enable }

PROCEDURE Disable (IRQ : byte);

£ Reset the Interrupt Mask Register on the Programmable Interrupt
Controller to ignore interrupts from this port }

BEGIN
Port EIMR] := Port CIMR3 OR (i SHL IRQ);

END; £ Disable }

(* Reprinted from "Serial Unit in TP4" by Reino de Boer, by permission
of the author. Copyright 1987 Reino de Boer. All rights reserved.

************************ Continue Boer Excerpt *********************)

14J

(*********************** Continue de Boer extract a*******************)

PROCEDURE Establish (COM : byte);

C Raise ail hardware handshaking lines to prepare for
communications }

BEGIN
WITH Regs C COM] DO

Port [MCR 3 := MCR_DTR OR MCR_RTS OR MCR_0UT2;
END;

PROCEDURE SendEOI (IRQ : Byte);

{ Send an End Of Interrupt command to the Programmable Interrupt
Controller to let it know we are done servicing this interrupt >

BEGIN
Port [ISP 3 := $60 OR IRQ;

END;

Procedure ResetChip (Com : Byte);

C Disable UART generated interrupts, drop the hardware handshaking
lines. Shut down the currently selected communications port }

Var Dummy : byte;

Begin
WITH Regs [Com 3, Comport C Com 3 DO BEGIN

WHILE ((Port C LSR 3 AND LSR_DATA) <>) DO

Dummy := Port C RBR 3;

Disablelnterrupts;
•C Allow none o x the interrupt types }

Port C IER 3 := 0:

•C Tell modem we're nGt ready }

Port [MCR 3 := Port C MCR 3 AND
NOT (MCR_0UT2 OR MCR_DTR OR MCR_RTS)

;

{ Disable all interrupts for this port }

Disable (IRQNo)

;

Enable Interrupts;
END;

END;

CONST { Bit rate divisor table }

Divisor : ARRAY CRS_Baud3 OF word =

(1047, 768, 384, 192, 96, 48, 24, 12, 6 , 3) ;

(* Reprinted from "Serial Unit in TP4" by Reino de Boer, by permission
of the author. Copyright 1987 Reino de Boer. All rights reserved.

#*****+****•******* Continue Boer Excerpt *********************}

146

(*********************** Continue de Boer extract ********************)

{ Select bit rate by programming the PBRG }

PROCEDURE SelectBitRate* COM : byte; Speed : RS_Baud);

CONST PBRG_Settle : word = 250;

VAR BaudDiv : word;

BEGIN
{ Update port data }

ComPort [Com]. Speed := Speed;

BaudDiv := Divisor [Speed];

£ Set Divisor Latch Access Bit }

portC Regs C Com 3. LCR] :=

portC Regs [COM] . LCR 3 OR LCR_DLAB;

{ Bit rate divisor to PBRG }

portwL Regs C COM].RBR 3 := BaudDiv;

£ Give port some time to settle >

del ay (PBR6_Settle);

{ Reset function o-f RBR }

portC Regs C COM 3. LCR 3 :=

portE Regs C COM 3. LCR 3 XOR LCR_DLAB;

END; i SeiectBitRate }

{ Set word length in Line Control Register }

PROCEDURE SelectWordLength(COM : Byte; Length : byte);

VAR LineControl : byte;

BEGIN
{ Update po^t data }

ComPort [Com 3. Length := Length;

LineControl := portC Regs C Com 3 . LCR 3;

LineControl := (LineControl AND (NOT LCR_CHR8))

OR (Length - 5)

;

{ Set relevant bits }

portE Regs E COM 3. LCR] := LineControl;
END; { SeiectWordLength >

(* Reprinted -from "Serial Unit in TP4" by Reino de Boer, by permission
o-f the author. Copyright 1987 Reino de Boer. All rights reserved.

************************ Continue Boer Excerpt *********************)

147

(*#********************* Continue de Boer extract a-*************-******)

{ Set stopbits in Line Control Register }

PROCEDURE SelectFraming(COM : Byte; Stop : byte);

VAR LineControl : byte;

BEGIN
C Update port data]

ComPort C Com].Stop := Stop;
LineControl := portC Regs C Com D.LCR];

LineControl := (LineControl AND (NOT LCR_Stop2))

OR ((Stop - 1)*4)

;

•C Set relevant bits >

portC Regs C COM 1

.

LCR] := LineControl;
END; { SelectFraming >

C Set parity in Line Control Register }

PROCEDURE SelectParity(COM : byte; Parity : RS_Parity);

VAR LineControl : byte;

BEGIN
ComPort [Com]. Parity := Parity;

< Update port data >

LineControl := portC Regs C Com] . LCR 3;

LineControl := i LineControl AND (NOT $40))

OR ORD (Parity) *S;

C Set relevant bits >

portC Regs [COM 3. LCR] := LineControl
END: { SelectParity }

CONST RTS_Settle : byte = 2;

DTR_Settle : byte = 2;

PBRG_Settle : word = 250;

(* Reprinted from "Serial Unit in TP4" by Reino de Boer, by permission
of the author. Copyright 1987 Reino de Boer. All rights reserved.

#*********#********* End de Boer Excerpt *********************)

14S

Procedure PurgeLine;
{ This -function clears the receive bu-f-fer and UART receive bu-f-fer -for

the currently selected port}

VAR
Dummy : Byte;

BEGIN
RS_Bu-f_Head [Current_COM 3 := 0;

RS~Bu-f_Ta.il C Current_C0M] := 0;

Dummy := Port[Regs[Current_COM3.RBR3;
End; Co-f PurgeLine}

FUNCTION Connected : boolean;

{ Returns TRUE if the Data Set Ready line is true, signalling hardware
handshaking }

BEGIN
Connected := PortERegsCCurrer.t_Com3.MSR3 and $80 = $80;

END;

Function RS232_peek : Char;

{ Added to allow nondestructive read o-f the currently selected port

input bu-f-fer -for xmodm. Sync_recei ve}

Begin
While RS_But_Head E Curfent_.COM 3 =

RS_Buf_Tsil C Current_C0M 3 do Delay (10);

RS232_peek ;= Char < RS_Bu-fter[Current_C0M,
RS_Bu-f_Head CCurrent_C0M] 3>;

End; -Cot RS232_Peek3

Procedure RS_Eight_Bits;

•C Adjust the comport -for eight bits regardless o-f current setting }

BEGIN
Port [Regs C Current_Com 3.LCR 3 := LCR_N0PARITY OR LCR_ST0P1

OR LCR_CHR8;
END;

Procedure RS_Restore (CON : byte)

;

•C Reinitialize the CON Port }

BEGIN
WITH Comport C CON 3 DO

RS_Initial ize (Com, Speed, Parity, Stop, Lenqth);

END;

149

Procedure Send_String (S : String);

C Send a string out the currently selected RS232 port }

BEGIN
IF Length (S) > THEN
FOR index := 1 to Length (S) DO
RS232_0ut (S C index]);

END;

(********************** Start Edwards Excerpt ****************#****)
Procedure RS232_Init (COM, Params : word);

C Call BIOS interrupt $14 with a -formatted word to initialize the
currently selected communications port }

VAR Regs : DOS. Registers;

BEGIN
Regs.DX := Com-1;
Regs. AX := Params;
Intr ($14, Regs)

;

END;

Procedure RS_ Initial ize (Com: Byte; Speed : RS_Baud ; Par ity:RS_Parity;
Stop , Length: Byte)

;

{ Initialize communications port. Vector the appropriate interrupt to
point to our interrupt service routine. Initialize hardware
handshaking lines. Store current settings in a data structure for
restoration.

Input: COM - The RS232 port to be handled
Speed - The baud rate of the line
P - The parity o-f the line
Stop - The number o-f stop bits
Length - The number oi data bits

Var Param.s : word:

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission o-f Sybex , Inc.

Copyright 19S7 Sybex, Inc. All rights reserved.
Modified after "Re:: TP4.0 Aux . Problem" by Naoto Kimura, reprinted
by permission of the author.

##***************** Continue Edwards Excerpt *************-*******)

150

(******************** Continue Edwards Excerpt ********************)

Begin
WITH Regs [COM 3 DO BEGIN

Current_Com:=Com; {save comm port in local variable]
Params := Ord (Speed) *32 + Ord (Parity) *8 + (Stop-l)*4 + Length-5;

C Calling the BIOS service to initialize the port
* clears * all UART interrupts 3-

RS232_Init (COM, Params);

Delay (PBRS_Settle); £ delay to allow UART to settle 3-

Port [LCR] :=

Port [LCR 3 AND (NOT LCR_DLAB)

;

{ Set our interrupt handler }

CASE Com OF

1 : SetlntVec (C0M1_INTR, Addr (RS232_ISR1));

2 : SetlntVec (C0M2llNTR, Addr (RS232_ISR2));

END;

Reset Chip (Com);

Disablelnterrupts;
Establish (COM);

Enable (Comport C Current_Com 3.IRQNo);

{ Interrupt on receive only }

Port C Regs C COM 3.IER 3 := IER_RDA;

{ Clear the port buffer >

RS_Bu.f_Head [Com 3 :=0;

RS_Buf_Taii C Com 3 :=0;

C Reset any stray interrupts in the PIC 3-

SendEOI (Comport C Current_Com 3.IRQNo);

Enablelnt err up ts;

Comport C Current_Com 3. Speed
Comport [Current_Com 3. Parity
Comport [Current_Com 3. Stop
Comport C Current_Com 3. Length

= Speed;
= Parity;
= Stop;
= Length;

Comport C Current_Com 3. Installed := TRUE;

;nd ,-

End; Cof Initialize}

(* Reprinted with extensive modi-f ications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission o-f Sybex , Inc.

Copyright 1937 Sybex, Inc. All rights reserved.
Modified after "Re:: TF'4.0 Aux Problem" by Naoto Kimura, reprinted
by permission of the author.
Modified after "Serial Unit in TP4" by Reino de Boer, reprinted by
permission of the author. Copyright 1987 Reino de Boer. All

rights reserved.
********************* Continue Edwards Excerpt ********************)

151

(******************* Continue Edwards Excerpt a*******************)
CONST
ExitPtr : pointer = NIL;

OldlntVecl
01dIntVec2
01d_IMR
01d_IERl
Old IER2

pointer = NIL;

pointer = NIL;

byte = 0;

byte = 0;

byte = 0;

Procedure RS_Cleanup;

•CThis procedure should be called on exit to disable interrupts on the
RS232 port and reset everything to its de-fault state.

Begin
Comport [Current_CofTi 3. Installed := FALSE;

ResetChip (Current_Com);

End; {of Cleanup}

(* Reprinted with extensive modifications -from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
Modified after "Re:: TF'4.0 AuX Problem" by Naoto Kimu.ra, reprinted
by permission of the author.
Modified after "Serial Unit in TP4" by Reino de Boer, reprinted by
permission of the author. Copyright 1967 Reino de Boer. All

rights reserved.
***********#********-* Continue Edwards Excerpt ********************)

(a******************* Continue Edwards Excerpt *******************)

(* This is the error handler -for Datacomm *)

(*******#********************* Start Swan Excerpt a**-****************)

CONST
HexDigit : ARRAY CO. . 15] OF Char = '0123456789ABCDEF

'

;

TYPE
string2 = stringC23;
string4 = stringC43;

PtrRec = RECORD
Ofs, Seg : word;

END;

FUNCTION HexByte (B : Byte) : string?;
BEGIN
HexByte := HexDigit CB SHR 43 + HexDigitCB AND *F3;

END;

FUNCTION Hex (I : Word) : string4;

BEGIN
Hex := HexByte (Hi (I)) + HexByte (Lo (I))

;

END;

(* Reprinted -from Mastering Turbo Pascal Files By Tom Swan, by

permission of Howard W. Sams and Company. Copyright 1987 Howard W.

Sams and Company. All rights reserved.
#######**###*#*###*#***##** End Swan Excerpt **************#******)

•C*F+} PROCEDURE Datacomm_Errar; C$F->

C This is the Exit Procedure -for * this * unit >

VAR index : byte;

BEGIN
IF (ExitCode <> 0) OR (ErrorAddr <> NIL) THEN

BEGIN
Assign (Output ,

'

'
)

;

Rewrite (Output)

;

(*Writeln(#7) ;*)

IF ExitCode = f-FF THEN
Writeln('USER BREAK')

ELSE

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, bv permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
Modified after "Re:: TP4.0 Aux Problem" by Naoto Kimura, reprinted
by permission of the author.

**************+****** Continue Edwards Excerpt *************+******)

153

Continue Edwards Excerpt ******************)

HEX(ExitCode))

;

:', Hex(of s (ErrorAddr")));

BEGIN
Writeln ('Critical Error # ',

Write CAT PROGRAM LOCATION');
Writeln (HEX (seg (ErrorAddr~>)

,

END;

END;

Disable Interrupts;
C Restore the previous interrupt vectors }

SetlntVec (C0M1_INTR, OldlntVecl);

SetlntVec (C0M2_INTR, 01dIntVec2);

Enable Interrupts;
{ Shut down the ports >

FOR index := C0M1 TO COM2 DO BEGIN
Port: Regs [index 3. LCR3 : =PortC Regs C index 3.LCR3 and $7F;
PortC Regs C index 3.IER3:=0;
Port: Regs [index 3.MCR3:=0;

END;

-C Restore the PIC interrupt mask]

Port C I MR : := 01d_IMR;
ExitProc := ExitPtr:

END; Datacomm Errc 3

. : Initialization >

Checl Breal := TRUE;

Save the existing exit procedure -for this unit !

ExitPtr := ExitProc;
C Save the e i sting interrupt mask -for the PIC }

Qld.IMR := Fort [IHR 3;

C Save the current serial port interrupt vectors 3

SetlntVec (COMi_INTR, OldlntVecl);
SetlntVec (C0M2_INTR, DldIntVec2);
{ Clear t K e -eceive bu-F-fers)

RS_Bu-f_Head I COM!] := 0;
z E_r.+_Heac [C0H1 I := 0;

RS^BuOail [COM2 3 := 0;

RS_But_Tail C C0*2 3 := :

:

link in our unit exit procedure to undo all of the above or

progran termination }

ExitProc := Addr (DatacoM_error :

C Set up both ports to initial values }

* Reprinted -it -
e tensive nodi -fications -from Advanced Techniques in

Turbo c = si5l r. Charles Edwards, by permission Off Sybe . Inc.

Copyright :
C E~ Sybe , Inc. All rights reserved.

Modi-fie: after ^e: : TP4.0 Aux Problem" by Naoto Kimura, reprmtec
permission a-f the author.

+++<-++++++ +++ + + Z^ntinue Edwards E cerpt whhj****************

154

(******************* Continue Edwards Excerpt *****•*•*************)

FOR index := C0M1 TO COM2 DO
WITH Comport [index 3 DO BEGIN

Stop : = 1

;

= 8;Length
Alias
Speed
Parity
IRQNo

= B4800;
= None;
= IRQLine C index 3;

Installed := FALSE;

end; C COMPORT initial izaton >

END.

* Reprinted with extensive modifications -from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission o-f Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.

Modifications ^ep^inted -from "Serial Unit in TP4" by Reino de Boer,
:• permission o-f the author. Copyright 198^ Reino de Boer. All

rights reser vec

.

#* - + -^ + » ++***+*++++**+* End Edwards E v cerpt ************+*******)

APPENDIX Q

SOURCE LISTING FOR UNIT DIRECTOR

(**#********#*******************#******#-**********^
(**** DIRECTOR. PAS ****)
(*************** Turbo Pascal 4.0 unit to read a directory ********)
(*************** and display it *#******#)
(*************** Date: 28 July 1989, 10:06:53 MEZ *******)
(#******#****** From: Christian Boettger ********#)
(************** +49 (0)531 3915113 / 12010506 at DBSTU1 *********)
(* *)

(* Modified slightly to change presentation *)

(* -for the window manager *)

(* and to use the error reporting capability *)

(* of UNIT Err orCod *)

(* by Nelson Ard *)

(* Last modification Sep 89 *)

(******+***

unit director;

interface

uses dos.crt, Err or Cod; CErrorCod added}

procedure Vi ewDir (MatchPtrn : string; FromLine, ToLine : integer);

procedure ShowDir (MatchPtrn : string; FromLine, ToLine : integer;

var error : integer);

(* Reprinted from "Turbo Pascal 4.0 unit to read a directory and

display it" by Dipl. Phys. Christian Boettger, by permission of the

author

.

*************+*+*****+ Continue Boettger Excerpt #********+**********)

156

(********************* Continue Boettger Excerpt ********************)

implementation

procedure StandBy;
var >;,y : integer;

muell : char;

begin
;;:=whereX; y:= WhereY;
HighVideo;
write ('Hit any key to continue ');

NormVideo;
repeat until keypressed;
muell := Read Key;
write(

'

'

)

;

GotoXY(x,y>;
end;

(* Reprinted -from "Turbo Pascal 4.0 unit to read a directory and
display it" by Dipl. Rhys. Christian Boettger, by permission o-f the
author

.

************************* End Boettqer Excerpt ********************)

(******************** Start Verbraeck Excerpt ********************)

procedure ViewDir (MatchPtrn : string; FromLine, ToLine : integer);

(*********************#***********#****#************^

Ir. Alexander Verbraeck
Delft University of Technology
Department of Information Systems
PO Box 356, 2600 AJ The Netherlands

e-mail

:

wi nf ave@hdetud 1 . bi tnet
winfave@dutrun.uucp

#*************#****•)(•)

Dirlnfo : SearchRec;
Line ,

Position : integer;

begin
LowVideo;
GotoXY (1, FromLine) ; ClrEol;
Line:=FromLine; Position:=l;
FindFirst (MatchPtrn ,$37, Dirlnfo)

;

if DosErrorOO then

writelnC*** NO FILES FOUND ***
'

)

else
while (DosError=0) and (Line < ToLine) do

begin
GotoXY < Posit ion, Line)

;

if Dirlnfo. Attr=$10 then HighVideo;
write (Dirlnfo. Name)

;

LowVideo;
Position: =Position+16;
if Position>65 then
begin

Line: =Line+l;
Positional;

end;

FindNext (Dirlnfo)

;

end;

NormVideo;
end;

(* This portion reprinted from "Turbo Pascal 4.0 unit to read a

directory and display it" by Dipl. Phys. Christian Boettger, with

the permission of Ir. Alexander Verbraeck, the original author.
•a-*******************-** End Verbraeck Excerpt ********************-)

158

(********************* Start Boettger Excerpt ********************)

procedure ShowDir (MatchPtrn : string; FromLine, ToLine : integer;
var error : integer);

(**

Christian Boettger phone: (+49) (0)531/391-5113
mail: Institut -fuer Metal lphysik und Nukleare Festkoerperphysi k

,

(room -167/-168) , Technische Universitaet Braunschweig,
Mendel ssohnstrasse 3, D-3300 Braunschweig, land
Bundesrepublik Deutschland (West Sermany / FRG / RFA)

EARN: I2010506SDBSTU1.BITNET InterNet: 'boettger@julian.uwo.CA
UseNet: boettger@julian. UUCP

UUCP / UseNet:
(whereever) luunet ! watmath

!

Julian ! boettger
(whereever) ! uunet !boettger@hydra.uwo.CA
(whereever) luunet ! mcvax ! unido ! i2010506@DBSTUl . BITNET

***)

var Dirln-fo : SearchRec;
start , i

,

line, ml : integer;

procedure Wri teEntry (Dir Inf

o

var DT : BateTime;

attribut : strinq;

SearchRec; line : integer);

procedure Bet Attribut (attr : byte var attribut : string);
begin

case attr of

Readonly attribut = 'Readonly'

;

Hidden : attribut :
= 'Hidden

'

;

SysFile : attribut = 'SysFi le'

;

Volume ID : attribut ; =
' VolumelD'

;

Directory , attribut = 'Directory
'

;

Archive ; attribut :
= 'Archive'

;

AnyFile : attribut :
= AnyFi le

'

;

else begin
Str (attr, attribut:

;

atti-ibut := 'Attr = + attribut;
end;

end;

end;

(* Reprinted -from "Turbo Pascal 4.0 unit to read a directory and
display it" by Dipl. Rhys. Christian Boettger, by permission o-f the
author.

********************** Continue Boettger Excerpt ********************)

159

(********************* Continue Boettger Excerpt a-*****************-**)

begin (*of WriteEntry*)
with Dirln-fo do

begin
UnPackTime(Time,dt)

;

GetAttribut (attr ,attribut)

;

BotoXY(l,line); ClrEol;
IF attr = Directory THEN HighVideo;
write (Name)

;

GoToXY (13, line);

IF attr = Directory THEN
Write (

' <DIR>')
ELSE Write (size : 8);

GotoXy (24, line);

{Write (Name: 12,' ',Size:8,' '); }

with dt do

begin
write (day: 2, '-

'
, month: 2, '-

'
,year: 4,

'
'

)

;

write (hour: 2,
'

:

'
,min:2, '

:

'
,sec:2, '

'
)

;

end;

writeln(' ',attribut);
LowVideo;

end;

end; (*oi WriteEntry*)

begin (*of ShowDir*)
Ml := ToLine - FromLine;
start := WhereY+1;

FindFirsKMatchPtrn, AnyFile, Dirlnfo);
CB.se DOSError of

: begin
WriteEntry (Dirlnfo, start)

;

line := start;
while DDSError=0 do
begin
FindNext (Dirlnfo)

;

Inc(line) ;

if line>Ml then begin
StandBy;
line := start;
CirScr

;

end;

if DosError=0 then WriteEntry (Dirlnfo, 1 ine)

(* Reprinted from "Turbo Pascal 4.0 unit to read a directory and

display it" by Dipl. Phys. Christian Boettger, by permission of the
author t

****#***************** Continue Boettger Excerpt ********************)

160

(********************* Continue Boettger Excerpt ********************)

else begin
GotoXYd, line);

ClrEolj
writeln;
ClrEol;
writeln (Error_Code C DOSError],' !!');

writeln;
ClrEol;
GotoXY(l,WhereY);

end;

end;

error :=0;

end;

2 : begin
GotoXYd, start);
writeln (Error_Code [DOSError],' !!');

writeln
(

'Directory not found!!');
error := DOSError;

end;

18 : begin
GotoXYd, start);
writeln (Error_Code C DOSError],' !!');

writeln

(

'No Entries in directory that match pattern !!');

error := DOSERROR;
end;

else begin
GotoXYd, st art);

wri teln (Error_Code C DOSError],' !!');

error := DOSError;
end;

end;

end; (*of ShowDir*)

end.

(# Reprinted -from "Turbo Pascal 4.0 unit to read a directory and

display it" by Dipl. Rhys. Christian Boettger, by permission o-f the
author.

********************** End Boettger Excerpt ********************)

161

APPENDIX R

SOURCE LISTING FOR UNIT ERRORCOD

(***************************#******###******#**##*##*^
(***#

(**#*

(****

(*#**

(****

(****

(****

(****

(*#**

(***#

(****

(****

ERRORCOD. PAS
This unit maps MS-DOS error codes returned by the
operating system to strings to give the operator a

human readable response.

Reference: MS-DOS Version 3 Programmer's Utility Pack
MS-DOS Reference Guide Volume 1

1986, pp. 4.86-4.88, 4.254-4.257.

Developed by Nelson Ard

Last modification Sep 89

**)

**#)
**)

UNIT ErrorCod;

INTERFACE

USES Dos;

CONST Error_Code
strinqC40]

ARRAY CO. .883 OF
('No errors '

,

'Invalid function code',
'File not found

'

,

'Path not found
'

,

'No file handles left',

'Access denied '

,

' Inval id handle '

,

'Memory control blocks destroyed',
'Insufficient memory',
'Invalid memory block address',
'Invalid environment',
' Inval id format '

,

'Invalid access code',
' Inval i d data

'

,

'RESERVED error code',
' Inval id drive

'

,

Attempt to remove the current directory',
'Not same device

'

,

'No more f i les
'

,

'Disk is wri te-protected
'

,

'Bad disk uni t '
,

162

'Drive not ready
'

,

Invalid disk command',
'CRC error

'

,

'Invalid length (disk operation)',
'Seek error

'

,

Not an MS-DOS disk',
'Sector not found',
Out of paper '

,

'Write fault'

,

Read fault
'

,

'General failure '

,

Sharing violation',
'Lock violation

'

,

Wrong disk
'

,

'FOB unavailable
'

,

RESERVED error code'

'RESERVED error code'
RESERVED error code'

'RESERVED error code'

RESERVED error code'
RESERVED error code'

RESERVED error code'

'RESERVED error code'

RESERVED error code'
'RESERVED error code'
RESERVED error code'
'RESERVED error code'
RESERVED error code'

'RESERVED error code',
Network request not supported',
'Remote computer not listening',
Duplicate name on network',
'Network name not found',
Network busy

'

,

'Network device no longer exists',
Net BIOS command limit exceeded',
'Network adapter hardware error',
Incorrect response from network',
'Unexpected network error',
Incompatible remote adapt',
'Print queue f ul 1 '

,

'Queue not f ul 1
'

,

'Not enough space for print file',
Network name was deleted',
'Access denied '

,

Network device type incorrect',
'Network name not found',
Network name limit exceeded',
'Net BIOS session time exceeded',
Temporarily paused',
'Network request not accepted',

163

'Print or disk redirection is

'RESERVED error code'
'RESERVED error code
'RESERVED error code'
'RESERVED error code
'RESERVED error code'
'RESERVED error code
'RESERVED error code'
'File exits

'

,

'Duplicate File Control Block
'Cannot make

'

,

'Interrupt 24 -failure',

'Out of structures',
'Already assigned',
'Invalid password',
' Inval i d parameter

'

,

'Net write -fault ') ;

paused

CONST Error_Class : ARRAY CI.. 123 OF string [40] =

(Out o-f a resource
'

,

Temporary situation
'

,

Permission problem',
Internal error in system software
Hardware -failure',

System software -failure',

Application program error',
File or item not found',
File or item of invalid format',
File or item interlocked',
Media failure - storage medium',
Unknown error ')

;

Recommended_Error_Action : ARRAY [1..7] OF String[40] =

('Retry, then prompt user',
'Retry after a pause',
'Reprompt user to reenter',
'Terminate with clean up',
'Terminate immediately',
'Observe only '

,

'Retry after correcting fault');

Error_Lccus : ARRAY CI. .5] OF StringC40] =

('Unknown
'

,

'Random Access block device',
'Related to a network',
'Related to serial access device',
'Related to RAM');

164

PROCEDURE E:;tended_Error_Code (VAR Error_Code : INTEGER;
VAR Error_Class : Byte;
VAR Error_Locus : Byte)

;

{ Following an error code returned by an MS-DOS -function call or

I/O function, this may be called -for amplification on the
error }

IMPLEMENTATION

War index : integer;

PROCEDURE E;;tended_Error_Code (VAR Error_Code : INTEGER;
VAR Error_Class : Byte;

VAR Error_Locus : Byte)

;

War Regs : Registers;

BEGIN
Regs. AH := $59;
Regs.BX := 0;

Intr ($21 , Regs)

;

Error_Code := Regs. AX;

Error_Class := Regs.BH;
Error_Locus := Regs.CH;

END;

BEGIN
END.

165

APPENDIX S

SOURCE LISTING FOR UNIT GENERAL

}

(a***
(** GENERAL. PAS **)

(** This is a library of general purpose routines to augment the **)

(** features o-f Turbo Pascal 4.0. This UNIT requires the standard**)
(** units CRT and DOS supplied with the Turbo Pascal 4.0 compiler **)

(** in order to compile. **)

(** *#)

(** Reference: Edwards, C. C. , Advanced Techniques in **)

(** Turbo Pascal, pp. 66 - 73, Sybex , Inc., 1987 **)

(*# *#)

(** Modified from a Turbo Pascal 3.0 include file to a **)

(** Turbo Pascal 4.0 UNIT by Nelson Ard **)

(## **)

(** Last Modification: Sep 89 **)

<*******************#**** Start Edwards Excerpt a*****************)

UNIT General

;

INTERFACE

USES
Dos

,

L>l C
f

TYPE
Long_String = String [255];

He>;_Type = StringC23;

Cursor_Type=(Cursor_Smal 1 ,Cursor_Large,Cursor_Invisible) ;

(* Reprinted with some modification from Advanced Techniques in Turbo
Pascal by Charles Edwards, by permission of Sybex, Inc. Copyright
19S7 Sybex, Inc. All rights reserved.

*****+************** Continue Edwards Excerpt ***********•**#******)

166

(******************** Continue Edwards Excerpt ********************)

Procedure Fi 1 1 Word (Var V; Num, Value: Integer)

;

(*This procedure is similar to the Turbo procedure FillChar, except

that it fills the variable with a 16 bit word value rather than an

8 bit character.*)

Procedure Exchange(Var S,D; L: Integer);

(*This procedure is a -fast machine languge routine to exchange the

contents of two variables. No test is made concerning the

compatibility of the variables. That is left to the programmer.*)

Procedure Beep (Freq: Integer
)

;

(*This procedure produces a tone for 1/4 second*)

Function Max (X , Y: Integer) : Integer;

(*Max returns the larger of two integers*)

Function Min (X ,Y: Integer) : Integer:

(*Max returns the smaller of two integers*)

Procedure Cursor_Size (Size: Cursor_Type; Mono: Boolean)

;

(*This procedure changes the cursor into either an underline or a

block cur so;-"

Input; Size = Cursor_Small creates an underline cursor
Cursor_Large creates a block cursor
Cursor_Invisible creates an invisible cursor

Mono = True for a. monochrome screen
False for a col or /graphics card

*)

Function Get_Time: Long_String;

(*This procedure returns the time in the form HH:MM:SS xM*)

(* Reprinted with some modification from Advanced Techniques in Turbo
Pascal by Charles Edwards, by permission of Sybex , Inc. Copyright
1987 Sybex, Inc. All rights reserved.

**********+*****+**** Continue Edwards Excerpt ********************)

167

IMPLEMENTATION

(******************** Continue Edwards Excerpt -a******-****-*********)

Procedure Fill Word (Var V; Num, Value: Integer
)

;

(*This procedure is similar to the Turbo procedure FillChar, except
that it fills the variable with a 16 bit word value rather than an
8 bit character.

Input: V: The variable which is to be -filled

Num: The number of words to full with the value
Value: The 16 bit word to be stored in V

*)

Begin
Inline($C4/$BE/V (*LES DI,V[BP]*)

/$8B/*8E/Num <*MOV CX , CNum+BF']*)

/*8E/$86/Value (*MOV AX , CValue+BP]*)
/*FC <*CLD*>

/*F2/$AB (*REPNZ STOSW*)

);

End; (*of Fill Word*)

Procedure Exchange (Var S,D; L: Integer);
(*This procedure is a fast machine languge routine to exchange the
contents o-f two variables. No test is made concerning the
compatibility of the variables. That is left to the programmer.

Input: S,D: The variables to be exchanged
L: The number of bytes to exchange

*)

Begin
Inline <*1E <*PUSH DS*)

/$C5/*B6/S C*LDS SI,SCBP3*)
/*C4/*BE/D (*LES DI,DCBP]*)
/$SB/*8E/L (*MOV CX,CL+BP3*)
/*FC (*CLD*)

/$26/$8A/*05 (*L: MOV AL,ES: LDI]*)

/*86/*04 (*EXCH CSI],AL*)

/$46 (*INC SI*)

/$AA (*STOSB*)

/*E2/$F7 (*LOOP L*)

/$1F (*POP DS*)

):.

End; (*of Exchange*)

(* Reprinted with some modification from Advanced Techniques in Turbo
Pascal by Charles Edwards, by permission of Sybex , Inc. Copyright
1987 Sybex, Inc. All rights reserved.

***************+***** Continue Edwards Excerpt ********************)

168

(******************** Continue Edwards Excerpt a-*******************)

Procedure Beep (Freq: Integer
)

;

(*This procedure produces a tone -for 1/4 second*)
Begin
NoSound; (*Reset flag*)

Sound (Freq)

;

Del ay (250)';

Nosound;
End; (*of Beep*)

Function Max (X,Y: Integer) : Integer;

(*Max returns the larger o-f two integers*)

Begin
If X < Y then

Max : =Y

else
Max:=X;

End; (*o-f Max*)

Function Min (X,Y: Integer) : Integer;

(*Max returns the smaller of two integers*)
Beg i n

If X < Y then
Min:=X

else
Min: =Y;

End; (*of Min*)

Procedure Cursor_Size (Size: Cursor_Type; Mono: Boolean)

;

(*This procedure changes the cursor into either an underline or

a block cursor

Input: Size = Cursor_Small creates an underline cursor
Cursor_Larqe creates a block cursor
Cursor_Invisible creates an invisible cursor

Mono = True for a monochrome screen
False for a col or /graphics card

*)

Const
Cursor_Val ues: Array CO.. 3] of Integer = ($0607, $0007, $0C0D, fOOOD

)

;

Var Regs: Registers;
Begin
Regs. AX: =$0100;
If Size = Cursor_Invisible then

Regs. CX: =$2607

(* Reprinted with some modification from Advanced Techniques in Turbo
Pascal by Charles Edwards, by permission of Sybex , Inc. Copyright
1987 Sybex, Inc. All rights reserved.

**************#+***** Continue Edwards Excerpt ***#********-********)

169

(******************** Continue Edwards Excerpt a-*******************)

else
Regs.CX:=Cursor_ValuesCOrd (Mono)*2+0rd (Size) 3;

Intr ($10,Regs)

;

End; (*o-f Cursor_Size*)

Function Get_Time:Long_String;
(This procedure returns the time in the -form HH:MM:SS xM*)
Var Regs: Registers;

Hour,Min,Sec,MsStringC23;
I: Byte;

Begin
Regs.AH:=$2C;
MSDos(Regs)

;

Str(Regs.CL:2,Min);
Str (Regs. DH: 2, Sec)

;

For I:=l to 2 do
Begin
If MinC 1 3=' ' then MinCI 3:='0'

;

If Seed 3=' ' then SecCI]:= '0
'

;

End;

Case Regs.CH of

0: I: =12;
13.. 23: I:=Regs.CH-12;
else I:=Regs.CH;

End; (* of case*)
St- (I: 2, Hour);
If Hour CI 3«' ' then Hour CI 3: = '0

'

;

If Regs.CH < 12 then
M:='AM'

else
M: = 'PM';

Get_Time: =Hour+ ' :
' +Mi n+ ' : '+Sec+' '+M;

End; (*of Get_Time*)

BEGIN
END.

(* Reprinted with some modification from Advanced Techniques in Turbo
Rascal by Charles Edwards, by permission of Sybex , Inc. Copyright
1987 Sybex, Inc. All rights reserved.

#**************** Continue Edwards Excerpt ********************)

170

APPENDIX T

SOURCE LISTING FOR UNIT MISCPACK

I***)

(****

(**#*
(****

(****

(***#

MISCPACK. PAS

This contains common data structure declarations for

several units and a. couple of utility routines.
Derived from the include file of the same name in the

reference.

Reference: Swan, Turbo Pascal Files, 1987, pp. 14 - 26
Developed by Nelson Ard

Last modification Sep 89

***)

UNIT Miscpack;

{ USES no other packages }

{ 15 Jul 89 - Added stringl28, response_type }

{ 19 Jul 89 - Added buffer for xmodm }

C 11 Sep 89 - deleted Val2Hex }

INTERFACE

CONST

(********************** Start Swan Excerpt **************#***•*******)

C String Lengths >

PathLen = 65;

FileLen = 12;

NameLen = 8;

ExtnLen = 3;

DriveLen = 2:

Maximum complete path name length + 1 }

Maximum file name length (with extension) >

Maximum file name length (without extension) }

Maximum file extension length }

Maximum drive letter string }

C Typing helpers }

NullStr = '';
C No blank between the quotes }

Blank = ' '; C A single blank character }

(* Reprinted with some modification from Mastering Turbo Pascal Files
By Tom Swan, by permission of Howard W. Sams and Company. Copyright
1987 Howard W. Sams and Company. All rights reserved.

#+***#**********#******* Continue Swan Excerpt *********************)

171

(*****#**************#** Continue Swan Excerpt a********************)

{ Keyboard control code translations }

KeyRight=
KeyHome =

KeyUp =

KeyPgUp =

KeyLeft =

KeyEnd =

KeyDown =

KeyPgDn =

Key Ins =

KeyDel =

"•D

"W

'-E

AR
AS

z
"X

•••B

{ Right arrow }

{ Home }

C Up arrow }

{ PgUp }

C Left arrow }

•C End }

{ Down arrow }

C PgDn }

{ Ins }

C Del }

TYPE

Pile and path name strings }

Path-String

FileString
NameString
ExtnString

= StringC PathLen 3;

= StringC FiieLen 3;

= StringC NameLen 3;

= StringC ExtnLen 3;

DriveString = StringC DriveLen 3;

{ Other strings }

HexStr = StringC 4 3;

StrSO = StringC 80 3;

strinqiZ'B = StringC 128];

{Miscellaneous types >

Pointer
CharSet

= '"•Byte;

= SET OF CHAR;

C:\TURBO\TEST.PAS
TEST. PAS
TEST
PAS

C:

4 - digit hex strings (FC9A)

80-character strings }

C Pointer to memory bytes >

•C Character sets }

C Added for Spawn, Intrinsic Exec calls }

Response_type = (strng, file_type, nothing);

C Added for Parser, xmodm }

CONST
Max block = 1024;

(* Reprinted with some modification from Mastering Turbo Pascal Files
By Tom Swan, by permission of Howard W. Sams and Company. Copyright
1987 Howard W. Sams and Company. All rights reserved.

**********#************* Continue Swan Excerpt *********************}

17:

(*******************#*** Continue Swan Excerpt *********************)

TYPE
Buffer = ARRAY [1 . .Max block] OF CHAR;

PROCEDURE BumpStrUp (VAR s : String);

C Convert (bump) all chars in string s to uppercase 3

IMPLEMENTATION

PROCEDURE BumpStrUp (VAR s : String);

{ Convert (bump) all chars in string s to uppercase >

VAR

i : INTEGER; {String index }

BEGIN
FOR i != 1 to Length (s) DO

SCi] := UpCase(sEi 1)

END; { BumpStrUp }

BEGIN {Unit initial lzaton >

END. { UNIT Miscpack }

(* Reprinted with some modification from Mastering Turbo Pascal Files
By Tom Swan, by permission of Howard W. Sams and Company. Copyright
1987 Howard W. Sams and Company. All rights reserved.

+*********+***-****•**>-*•»- End Swan Excerpt *******+************+)

APPENDIX U

SOURCE LISTING FOR UNIT PARSER

(***#*******#***)
(**** PARSER. PAS ****)
(**** This is the unit that executes all commands -for the ****)
(**** Slave computer. ****)
(**#* ****)

(**** Re-ferences: Hall, W.V., "When Turbo Isn't Enough," in #***)
(**** Shammas, N.C., The Turbo Pascal Toolbook, ****)

(****

(****
(***•*

(****

pp. 145 - 146,

Developed by-

Last modification Sep 89

Hall, W.V., "When Turbo Isn't Enough," in

Shammas, N.C., The Turbo Pascal Toolbook,
M & T Publishing, Inc., 1986.****)

"Running Programs Painlessly ****)

7, 16 February, 1988. ****)

****)

****)

Me-fforb, M.J,

PC Magazine,

Nelson Ard

UNIT Parser;

C 8 Nov 88 }

C 5 June 89 - changed sets to constants}
C 9 June 89 -added

argv, argc -functions

adjusted parsename to correctly parse long -filenames}

C 19 Jun 89 - added bu-f _to_string . string_to_buf }

{ 20 Jun 89 - added Resol ve_command to prepare -for EXEC call >

C 12 Jul 89 - moved Match_command , internal command constructs to spawn,
added response construct to parser_main >

{ 4 Aug 39 - deleted Intrinsic -from USES statement }

INTERFACE

USES MISCPACK, ErrorCod, Spawn, Dos;

PROCEDURE Parser main Command_s
VAR Response
VAR Restype
VAR Error_msg
VAR Errtype
VAR Prompt

stringl28;
Stringl28;
Response_type;
Stringl28;
Response_type;
Strmgl2S)

;

174

{ This procedure parses an MS-DOS command and executes it locally

Input: Command_s is the command to be executed with path

Output: Response is the output o-f the program
Restype is the type of Response (string, -file, nothing)
Error_Msg is the error output of the program
Errtype is the type of Error_Msg (string, file, nothing)
Prompt is a simulated command line prompt after program
execution

IMPLEMENTATION

TYPE
argtype

arg_rec

:
(opt , other)

;

= RECORD
arg_type
arg_length
arg_index

END;

argtype;
byte;

byte;

arqarray = ARRAY CO.. 9] OF arq_rec;

SETOFCHAR = set of char;

command buffer = ARRAY CI. .123 OF char;

CONST
SPACE
TAB
COMMA
SEMICOLON =

COLON
PLUS
MINUS-

SLASH
BACKSLASH =

DOT
STAR
NUL
TILDE

= ••H;

= *

= <*;

_ ' »v

Path_or_dri ve
Node_or_dri ve
arg_separator
whi tespace
opti on

Null String

SETOFCHAR
SETOFCHAR

: SETOFCHAR
: SETOFCHAR
: SETOFCHAR

PathString =

C COLON, BACKSLASH 3;

C COLON 3;

[SPACE, COMMA, SEMICOLON, PLUS, MINUS 3;

[SPACE, TAB 3;

[SLASH];

17!

VAR
arg_array : argarray;
arg_count : byte;

Command_l ine : PathString;
index : byte ;

count : byte;
(* This variable -for use ** only ** by argvO *)

arg_string : stringl28;

PROCEDURE Parse (Command : stringl28);

{ Used by Parser_Main to count and isolate the command line
parameters. This procedure loads argc and argv }

VAR

index : byte;

BEGIN
arg_string := Command; Csave a copy o-f the command}
FOR arg_count := TO 9 DO
WITH Arg_array C arg_count] DO BEGIN

arg_type := OTHER;

arg_length := 0;

ar g_index : = 0;

END;

index := 1;

ar g_count := 0;

REPEAT
WHILE (index < Length (Command))

AND (Char (Command C index 3) IN whitespace) DO

INC (index)

;

WITH &rq_arrs.y [arg_count 3 DO BEGIN
IF index <= Length (Command) THEN

CASE Command [index 3 OF
TAB, SPACE ; BEGIN

END;

5LAJ IF index
BEGIN

(*INC (index

arg_length
arg_index
arg_type
INC (index
INC (index

length (Command) THEN

) ;*)

2; (*!*)

index;

opt;

INC

END;

);

(arg_count)

;

176

ELSE BEGIN
arg_index := index;

arg_type := other;
arg_length := 1;

INC (index);

WHILE (index <= Length (Command)) AND
NOT (Char (Command C index]) IN whitespace)

AND NOT (Char (Command C index]) IN option)

DO BE6IN
INC (arg_length)

;

INC (index);

END;

INC (arg_count)
;

END; {BEGIN}

END CCABE)

END { WITH }

UNTIL index >= length (Command);

END; {Parse}

FUNCTION ar gc : byte;

{ Returns a count o-f the number o-f arguements on the command
line }

BEGIN
argc := arg_count;

END;

FUNCTION argv (arg_count : byte) : string 128;

{ Returns the arg_count'th arguement -from the command
line }

VAR
index : byte;

temp : stringl28;

BEG I

N

temp := Null string;
WITH arg_array [arg_count] DO

FOR index := arg_index TO (arg_index + arg_length - 1) DO
temp := temp + arg_string C index 3;

argv := temp;
END;

(**************************** Start Hall Excerpt ********************)

PROCEDURE ParseName (inName : PathString; VAR nameSpec : NameString;
VAR extnSpec : ExtnString;
VAR -fylespec : Filestring;
VAR pathSpec : PathString;
VAR driveSpec : DriveString;
VAR nodeSpec : NameString);

{ Breaks down a -filespec into its component parts -for Parser_Main,
Resolve_command. From the Hall reference. }

VAR
Count : Byte;
DotPos : Byte;
StarPos : Byte;

index : integer;
•filespec : pathstring;

BEGIN
Count := Length (InName)

;

{*V->

NiscPack.BumpStrUp (InName);

{*V+}
IF (InNameECountl IN Path_or_dri ve) THEN

C do nothing }

ELSE BEGIN
REPEAT

Count : = PRED (Count
)

;

UNTIL (Count = 0) OR (InNameECountl IN Path_or_dri ve)
;

END;

{Isolate Filename}
C Copy (Source, Startpos , No o-f Char) }

fileSpec := Copy (InName, Count + 1, LENGTH (InName) - Count);
DELETE (InName, Count + 1, LENGTH (InName) - Count); {Chop tail off}
IF (Count > 2) THEN

IF (InNameECoLint] <> ':') THEN
REPEAT

Count : = PRED (Count
)

;

UNTIL (InNameECountl IN Node or Drive) OR (Count = 0)

;

(* The library ParseName appears in The Turbo Pascal Tool book by Namir
C, Shammas (ed.) and has been reprinted with the permission o-f the
publisher M & T Books 1-800-533-4372. Minor modi-fi cations by Nelson
Ard.

************************* Continue Hall Excerpt *********************)

178

(************************ Continue Hall Excerpt *********************)

CASE Count OF

: pathSpec := InName;

1 : C Syntax Error };

ELSE BEGIN
pathSpec := Copy (InName, Count + 1, LENGTH (InName) - Count);

{Chop tail off>

DELETE (InName, Count + 1, LENGTH (InName) - Count);

CASE InNameCPRED (Count)] OF

COLON : BEGIN
{Chop tail off?.

DELETE (InName, Length (InName) - 1, 2);

nodeSpec := InName;

END;

'A'.. 'Z' : BEGIN
driveSpec := InNameCPRED (Count)] + ':';

DELETE (InName, Count - 1, 2); CChop tail off}

Cou nt : = Length (InName)

;

IF (Count > 2) AND (P0S('::', InName) = Count - 1)

THEN IF LENGTH (InName) > 10 THEN
nodeSpec := Copy (InName, 1, 8)

ELSE nodeSpec := Copy (InName, 1,

LENGTH (InName) - 2)

ELSE { Syntax error in node part }

IF Count '<> THEN ;

END;

ELSE { Syntax Error, drive not alpha character }

;

END; {Case}
END:

END: {Case}

{Adjust filename}
DotPos := P0S(DOT, fileSpec):
IF DotPos <> THEN BEGIN
extnSpec := COPY (f i leSpec , DotPos + 1, 3);

(* The library ParseName appears in The Turbo Pascal Tool book by Namir
C. Shammas (ed.) and has been reprinted with the permission of the
publisher M & T Books 1-B00-533-4372. Minor modifications by Nelson
Ard.

************************* Continue Hall Excerpt *********************

179

(************************ Continue Hall Excerpt *********************)

DELETE (fileSpec, DotPos, (LENGTH (fi leSpec) -DotPos)+l);
END
ELSE
extnSpec := '

'

;

IF LENGTH (fileSpec) > 8 THEN
DELETE (-fileSpec, 9, LENGTH (-fi leSpec) -8)

;

StarPos := POS (STAR, -fileSpec);

IF StarPos <> THEN BEGIN
DELETE (-fileSpec, StarPos, (LENGTH(-fi leSpec) -StarPos) +1)

;

FOR Count := LENGTH (-fi leSpec) TO 7 DO
fi leSpec := fileSpec + '?';

END;

Namespec := filespec;
StarPos := POS (STAR, extnSpec):
IF StarPos <> THEN BEGIN
DELETE (extnSpec, StarPos, (LENGTH (fi leSpec)-StarPos) +1

)

;

FOR Count := LENGTH (extnSpec) TO 2 DO
extnSpec := extnSpec + '?';

END;

IF NOT (extnspec = Nullstring) THEN
fylespec := Namespec + DOT + extnspec

ELSE fylespec := Namespec;
END;

(* The library ParseName appears in The Turbo Pascal Tool book by Namir
C. Shammas (ed.) and has been reprinted with the permission of the
publisher M & T Books 1-800-533-4372. Minor modifications by Nelson
Ard.

***************************** End Hall Excerpt *********************)

TYPE { used by Resoive_Command and Parser_Main }

Type_of_file = (BATJFile, C0M_File, EXE_File, Directoree, Other_File,
Pathname)

;

VAR { initialized by Parser_Nain for resol ve_command }

pathSpec : PathString;
fileSpec : fileString;
nodeSpec

,

nameSpec : NameBtring;
extnSpec : ExtnStrinc;
driveSpec : Dr i veStri no;

1 80

FUNCTION Resolve_command (VAR arguement : PathString) : Type_o-f _-f i le;

C The MS-DOS Exec -Function needs a complete -file specification (drive,

path and -filename including extension to run a child process.
Resolve_command examines the -first arguement in an MS-DOS command
line, arguement, and fills out the complete path information if

needed, then uses this path to conduct a file search for the
exact filename. The completed file specification is returned to

the caller along with the type (COM, EXE, BAT, or path) for

execution or directory change action. The building blocks
needed to construct the complete file specification have been
placed in the variable immediately above by ParseName. The
deterministic algorithm for detecting the correct executable file is

from (Mefford, 1988, p. 327).

Input: arguement, the command file to be searched for

Output: arguement, adjusted to specify a complete path
The function returns the type of file as an enumerated type

VAR
Dirlnfo : SearchRec;
resolved

,

relative_di rectory : boolean;
Dir : PathString;

BEGIN
resolved := FALSE;
GetDir (0, Dir);

C lack of a leading backslash could mean a simple
request to log to another drive }

relative_directory := (pathSpec [1 3 <> BACKSLASH);

IF relative_di rectory AND ((Dir [13 = driveSpec [13)

OR (Drivespec = BLANK)) THEN
C Fill out the complete path specification }

arguement := Dir + BACKSLASH + arguement;

IF extnSpec = Null String THEN BEGIN

{ The command does not have a file extension, could be
directory. Search the now complete path for a file
with the same name, in the reverse order that the
MS-DOS command processor would. Add the appropriate
extension to arguement if matched. End up with the
file with precedence to execute. }

181

FindFirst (arguement + '.BAT', Archive, Dirln-fo);

WHILE DosError = DO
BEGIN

IF Dirlnfo.attr AND Archive <> THEN BEGIN
arguement := arguement + '.BAT';

resol ve_command := BAT_File;
resolved := TRUE;

END;

FindNext (Dirln-fo);

END;

FindFirst (arguement + '.COM', Archive, Dirln-fo);

WHILE DosError = DO
BEGIN

IF Dirlnfo.attr AND Archive <> THEN BEGIN
arguement := arguement + '.COM';

resolve_command := COM_File;
resolved := TRUE;

END;

FindNext (Dirlnfo);
END;

FindFirst (arguement + '.EXE', Archive, Dirln-fo);

WHILE DosError = DO
BEGIN

IF Dirln-fo. attr AND Archive <> THEN BEGIN
arguement := arguement + '.EXE';

resolve_command := EXE_File;
resolved := TRUE;

END;

FindNext (Dirlnfo);
END;

END
ELSE BEGIN C extension not NULL, ready to execute }

IF (extnSpec = 'COM') THEN BEGIN
Resol ve_command := C0M_File;
resolved ;= TRUE;

END
ELSE IF (extnSpec = 'BAT') THEN BEGIN

Resol ve_command := BAT_File;
resolved := TRUE;

END
ELSE IF (extnSpec = 'EXE') THEN BEGIN

Resol ve_command := EXE_File;
resolved ;= TRUE;

END
ELSE BEGIN

Resol ve_command := Other_-file; C a path specification ? }

resolved := TRUE;

END
END;

(* changed this *)

IF NOT resolved THEN BEGIN
FindFirst (arguement , Directory, Dirlnfo);
WHILE DosError = DO

BEGIN
IF Dirlnfo. attr AND Directory <> THEN BEGIN
Resolve_command := Directoree;
resolved := TRUE;

END;

FindNext (Dirlnfo);
END;

END;

IF NOT resolved THEN Resol ve_command := Pathname;

END; CResolve_Command}

(# #)

PROCEDURE Parser_main (Command_s : stringl28;
VAR Response : Stringl2S;
VAR Restype : Response_type;
VAR Error_msg : Stringl28;
VAR Errtype : Response_type;
VAR Prompt : Stringl28);

C This procedure parses a command line similar in form to an

MS-DOS command, and executes it if possible on the local

machine

Inputs Command_s i= the command to be executed with path

Output: Response is the output of the program
Restype is the type of Response (string, file, nothing)
Errcr_Msg is the error output of the program
Errtype is the type of Error_Msg (string, file, nothing)
Prompt is a simulated command line prompt after program
execution

CONST Null String : String = '';

Current_Dri ve : byte = 0; C used with ChDir }

VAR
Command : Internal _Command;
arg_count : byte;

index : byte;

183

Current_Dir

,

program_name : PathString;
File_type : Type_of _Fi le;

Batch : boolean;

PROCEDURE Imt_parse;

\ Break the command line into parameters, store the components
of the first arguement (normally the command itself) }

VAR
index : byte;

BEGIN
Parse (command_s) ; C load argc, argv }

pathspec := argv(O);
filespec := Null string;
extnspec := Null string;
drivespec := Nul lString; {Blank; ! !

}

nodespec : = Null string;
•C now break the first arguement into components }

Parsename (pathspec, NameSpec, extnSpec, fileSpec,
pathspec, drivespec, nodeSpec);

END; { Imt_Parse }

BEGIN
Init Parse;
IF (Length (Drivespec) = 2) AND (argc = i)

•C Drive change only }

THEN BEGIN
command_s := 'CD ' + command_s;
Init_Parse; C redo with added command }

END;

IF Match_command (FileSpec, Command) THEN BEGIN
•C command can be handled by * this * program }

IF argc >= 1 THEN BEGIN
cmdline := Null string; { no command tail }

FOR index : = 1 TO (argc - 1) DO
Cmdline := Cmdline + argv (index) + SPACE;

{ trim trailing space J

IF Cmdline C Length (Cmdline) 3 = SPACE THEN
Cmdline := Copy (Cmdline, 1, Length (Cmdline)

- 1);

END;

{ process as a built in function >

Process_intrinsic_command v Command, cmdline, Response, Restype,
Error_msg, Errtype, Prompt);

END

184

ELSE BEGIN C prepare -for a child process }

program_name := argv(O);
File_Type := Resol ve_command (Program_Name);

CASE File_Type OF

COM_File.
EXE_File,
BAT_File : BEGIN

Batch := (File_Type = BAT_File);

cmdline := NullString;
IF argc > 1 THEN FOR index : = 1 TO argc - 1 DO

Cmdline := Cmdline + SPACE + argv(index);
Run_Local (Program_name, cmdline, Response, Restype,

Error_msg, Errtype, Prompt, Batch);

end;

ELSE BEGIN C command did not parse, notify Master }

Errtype := nothing;
System. GetDir (Current_Dri ve, Prompt);

Prompt := Prompt + '>';

Restype := strng;

Response := 'Slave: syntax error';
END; {ELSE}

END; CCASE3
END;

END; {Parser main}

BEGIN

18J

APPENDIX V

SOURCE LISTING FOR UNIT REDIRECT

(**********************************#*****#**********^
REDIRECT. PAS ****)

This is the unit that accomplishes redirection of the ***#)

Standard Input and Output file handles normally assigned ****)

by the MS-DOS command processor to files to capture the ****)

output of a program running under the Slave computer
control. Variables are loaded with the file names for

later reference.

Reference: Defenbaugh, G. , "Parents, Children,
Redirection, and Piping with DOS Functions
45H and 46H, Programmer's Journal, Nov/Dec
1986, pp. 22-25.

Developed by Nelson Ard

Last modification Sep 89

UNIT Redirect;

(* Modification history

22 Jul 89 - Chained ErrorNum variables through Close_Fil e_Handle
call

- Placed two string variables in interface section for

external units to find filespec for the response, error
files while using standard TP file functions

4 Aug 89 - Absorbed FileDecl UNIT as include file *)

INTERFACE

JSES Dos, Crt, Miscpack;

PROCEDURE Restore_CRT_Assignments;

{ Optional procedure to replace the standard files Input and Output

with tewtfile drivers in the CRT unit for speed. In turns out that

the CRT Unit does this on initialization, but disallows I/O

redirection by doing so

(Turbo Pascal Owner's Handbook, 1987, p. 377) >

186

PROCEDURE Init_Redirect_Unit;

£ Required to reset I/O to the MS-DOS standard -file handles, which
may then be redirected }

FUNCTION Redirect_Std_Inpi.it : boolean;

•C Redirect program input from a predefined -file }

FUNCTION Redirect_Std_Output : boolean;

C Redirect program output to a predefined file }

FUNCTION Redirect_Std_Error : boolean;

•C Redirect program error output to a predefined file }

FUNCTION Redirect_All_Output : boolean;

\ Redirect program output and error output to a predefined file >

FUNCTION Restore_Std_Input : boolean;

{ Restore program input to the standard file handle }

FUNCTION Restore_Std_Output : boolean;

C Restore program output to the standard file handle }

FUNCTION Restore_Std_Error : boolean;

t Restore program error output to the standard file handle }

FUNCTION Restore_All_Output : boolean;

{ Restore program output and error output to the standard file handle }

VAR
Response_lr i le,

Errors_File : PathString;

IMPLEMENTATION

CONST {These are the predefined standard and redirected files;
CMS-DOS predefines the following handles}

Stdln : word = 0; (* File handle for Standard Input *)

StdOut : word = 1; (* File handle for Standard Output *)

StdErr : word = 2; (* File handle for Standard Error *)

StdAu:; : word = 3; (* File handle for Standard Auxiliary *)

StdPrn : word = 4; (* File handle for Standard Printer *)

[Redirection takes place from/to these files'

187

It

Std_Output_Fi le_Temp : String[21]
Std_Input_Fi le_Temp String[21]
Std_Error_Fi le_Temp : StringC213

CONST Make.Dir Byte = $39;
Remove_Dir : Byte = $3A;

Change_Dir Byte = $3B;

Create_Handle : Byte = $3C;

Open_Handle Byte = $3D;

Close_Handle : Byte = $3E;

Read_Handl

e

Byte = $3F;

WriteJHandle : Byte = $40;
Delete_Entry i Byte = $41;
Move_Ptr : Byte = $42;
Charige_l"lode : Byte = $43;

Dup_Handle Byte = $45;

FDup_Handle ! Byte = $46;
Get_Dir : Byte = $47;

Find_First_File : Byte = $4E;

Find_Ne;;t_File : Byte = $4F;

VAR

Input_File,
Error __Fi le,

Output_Pile : Text;
Saved_Std_In,
Saved_Std_0ut,
Saved_Std_Err

,

Redir In,

Red lr Out

,

RedirErr : word;

'C:\Scratch\OTPT.TMP';
'C:\Scratch\INPT.TMF";
'C:\Scratch\Err.TMF";

PROCEDURE Imt_Redirect_Unit;

C Optional procedure to replace the standard files Input and Output
with text-file drivers in the CRT unit -for speed, In turns out that

the CRT Unit does this on initialization, but disallows I/O

redirection by doing so
(Turbo Pascal Owner's Handbook, 1987, p. 377) }

BEG I

N

Assign
Reset
Assi gn

Rewrite
END;

Input ,

'

')

;

Input)

;

Output ,

'

')

;

(Output)

;

188

FUNCTION Duplicate_Handle (Handle : word;
VAR ErrorNum : word) word;

•[Input: Handle, a -file handle to an open -File

Output: The -Function returns a second -file handle
for the same file. Both handles use the same
file pointer
ErrorNum is returned by MS-DOS:

$04 : No -free handles left
$06 : Handle is not currently open

VAR Regs : Registers;

BEGIN
Regs. AH := Dup_Handie;
Regs.BX := Handie;
Intr($21, Regs);

IF (Regs. Flags AND FCarry) = THEN BEGIN
Dupl icate_Handle := Regs. AX

END
ELSE BEGIN

ErrorNum := ErrorNum + Regs. AX;

Duplicate_Handle := $FF

END
END;

FUNCTION Ciose_File_Handle (Handle : word;

VAR ErrorNum : word) Boolean;

Input; Handle, a file handle to an open file
Output: The function returns TRUE if the operation was successful

and the file closed. All internal buffers are flushed.
If FALSE, an invalid handle was specified.
ErrorNum is returned by MS-DOS:

$06 ; Handle is not currently open

VAR Reqs : Registers:

BEGIN
Regs. AH := Close_Handle;
Regs.AL := $0;

Regs.BX := Handle;
Intr($21, Regs);

IF (Regs. Flags AND FCarry)

Close_File_Handle := TRUE
END

= THEN BEGIN

189

ELSE BEGIN
ErrorNum := Error Num + Regs. AX;

Close_File_Handle := FALSE;
END

END;

PROCEDURE Redirect_Handle (Handle, Red_Handle : word;
VAR ErrorNum : word)

;

C Input: Handle, a -file handle to an open -file

Red_Handle a -file handle to a second file
Output: The -file referenced by Red_Handle is closed

Red_Handle now uses the same file pointer as
Handle, and either may be used to acces the file
ErrorNum is returned by MS-DOS:

$04 : No free handles left

$06 : Handle is not currently open

VAR Regs : Registers;

BEGIN
Regs. AH := FDup_Handle;
Regs.BX := Handle;
Regs.CX := Red_Handle;
Intr($21, Regs);
IF (Regs. Flags AND FCarry) = THEN BEGIN

END
ELSE BEGIN

ErrorNum :

END
END;

ErrorNum + Regs. AX;

FUNCTION Redirect_Std_Output : boolean;

C Redirect program output to a predefined file

On entry, StdOut refers to the standard output
device driver. A copy of StdOut is saved, and

StdOut is redirected to our predefined output file

The function returns TRUE if successful

VAR ErrorNum : word;

BEGIN
ErrorNum := 0;

Assign (Output_File, Std_Output_Fi le_Temp);

Rewrite (Output File);

190

Saved_Std_Oi.it := Dupl icate_Handle (StdOut, ErrorNum);

Redirect_Handle (TextRec< Output_File). Handle, StdOut, ErrorNum);

Redirect_Std_Output := (ErrorNum =);

END;

FUNCTION Restore_Std_Output : boolean;

{ Restore program output to the standard file handle

On entry, StdOut re-fers to our predefined -File

StdOut is rereferenced to the standard output
device driver

The -function returns TRUE if successful

VAR ErrorNum : word;

BEGIN
ErrorNum := 0;

Redirect_Handle (Saved_Std_0ut , StdOut, ErrorNum);

IF Close_File_Handie (Saved_Std_0ut , ErrorNum) THEN
C$1-}

Close (Output_File)

;

IF IOResult = THEN BEGIN
Response_Fi le := Std_0utput_Fi le_Temp;
Restore_Std_0utput := (ErrorNum =);

END
ELSE BEGIN

Response_File := NuliStr;
Restore_Std_Output := FALSE;

END;

{*I+}
END;

FUNCTION Redirect_Std_Input : boolean;

{ Redirect program input from a predefined file

On entry, Stdln refers to the standard input
device driver. A copy of Stdln is saved, and
Stdln is redirected to our predefined input file

The function returns TRUE if successful

VAR ErrorNum : word;

BEGIN
ErrorNum := 0;

Assign (Input_File, Std_Input_Fi le_Temp);

191

Reset (InPut_File >;

Saved_Std_In := Dupl icate_Handle (Stdln, ErrorNum);

Redirect_Handle (Te;;tRec(Input_File). Handle, Stdln, ErrorNum);

Redirect_Std_Inpu.t := (ErrorNum = >;

END;

FUNCTION Restore_Std_Input : boolean;

C Restore program input to the standard -file handle

On entry, Stdln refers to our predefined file
Stdln is rereferenced to the input
device driver

The function returns TRUE if successful
}

VAR ErrorNum : word:

BEGIN
ErrorNum := 0;

Redirect_Handle (Saved_Std_In , Stdln, ErrorNum);

C$1-}

Close (Input_File);

IF Close_File_Handle (Saved_Std_In, ErrorNum) THEN;

Restore_Std_ Input := (ErrorNum =) AND (IOResult <> 0;

V$ 1 + }

END;

FUNCTION Redirect_Std_Error : boolean;

{ Redirect program error output to a predefined file

On entry, StdErr refers to the standard output
device driver. A copy of StdErr is saved, and
StdErr is redirected to our predefined error file
Overcomes inability to redirect from the MS-DOS
commend line

The function returns TRUE if successful

VAR ErrorNum : word;

BEGIN
ErrorNum := 0;

Assign (Error _File, Std_Error_Fi le_Temp);

Rewrite (Error_File);

Baved_Std_Err := Dupl icate_Handle (StdErr, ErrorNum);

.92

Redirect_Handle (Te;:tRec(Error_File). Handle, StdErr, ErrorNum);

Redirect_Std_Error := (ErrorNum =0);

END;

FUNCTION Restore_Std_Error : boolean;

{ Restore program error output to the standard file handle

On entry, StdErr refers to our predefined file
StdErr is rereferenced to the output
device driver

The function returns TRUE if successful

VAR ErrorNum : word;

BEGIN
ErrorNum := 0;

Redirect_Handle (Saved_Std_Err , StdErr, ErrorNum);

{$!-}

Close (Error_File);

IF Close_File_Handle (Saved_Std_Err , ErrorNum) THEN;

IF IOResult = THEN BEGIN
Errors_Fiie := Std_Error_Fi le_Temp;
Restore_Std_Error := (ErrorNum =);

END
ELSE BEGIN

Erro^r_FiIe := NullStr;
Restore_Std_Er^ or := FALSE;

END;

{$1+]

END;

^UNCTION Redirect_All_Output : boolean;

C Redirect program output and error output to a predefined file

On entry, StdOut refers to the standard output
device driver. A copy of StdOut is saved, and

StdOut is redirected to our predefined output file

On entry, StdErr refers to the standard output
device driver. A copy of StdErr is saved, and
StdErr is redirected to our predefined error file
Overcomes inability to redirect from the MS-DOS
command line

The function returns TRUE if successful

193

VAR ErrorNum : word;

BEGIN
ErrorNum := 0;

{$1-}

Assign (Output_File, Std_Output_File_Temp);

Rewrite (OutPu.t_File);

Saved_Std_0ut := Duplicate_Handle (StdOut , ErrorNum);

Saved_Std_Err := Dupl icate_Handle (StdErr, ErrorNum);

Redirect_Handle (Te;:tRec(Output_File). Handle, StdOut, ErrorNum);

Redirect_Handle (Te>:tRec(Output_File). Handle, StdErr, ErrorNum);

Redirect_All_Output ;= (ErrorNum =) AND (IDResult <>);

END;

FUNCTION Restore_All_Output : boolean;

C Restore program output and error output to the standard file handle

On entry, StdOut re-fers to our predefined -file

StdOut is rere-ferenced to the standard output
device driver

On entry, StdErr re-fers to our predefined file
StdErr is rereferenced to the output
device driver

The function returns TRUE if successful

VAR
ErrorNum : word;

BEGIN
ErrorNum := 0;

Redirect_Handle (Saved_S'td_0ut , StdOut, ErrorNum);

IF Close_File_Handle (Saved_Std_0ut , ErrorNum) THEN;

Redirect_Handle (Saved_Std_Err , StdErr, ErrorNum);

IF Close_File_Handle (Saved_Std_Err , ErrorNum) THEN;

C$1-}

Close (Output_File);

IF lOResult = THEN BEGIN
Response_Fi le := Std_0utput_Fi le_Temp;
Restore_Al l_0utput := (ErrorNum =0);

END
ELSE BEGIN

Response_File := NullStr;
Restore_All .Output ;= FALSE;

194

END;

{$1+}

END;

PROCEDURE Restore_CRT_Assignments;

{ Optional procedure to replace the standard -files Input and Output
with text-file drivers in the CRT unit for speed. In turns out that

the CRT Unit does this on initialization, but disallows I/O

redirection by doing so

(Turbo Pascal Owner's Handbook, 1987, p. 377)

BEGIN
AssignCRT (Input);

Reset (Input)
;

AssignCRT (Output)

;

Rewrite (Output)

;

END;

BEGIN (* no initialization required *)

END.

19!

APPENDIX W

SOURCE LISTING FOR UNIT SPAWN

(**********#*************************************^
(****

(****

(****
(****

(****
(****

(****

(****
(*•#**

(****

(****

(****

(****

SPAWN. PAS
This is the unit that executes child processes under
MS-DOS for the Slave computer. Included is a •function

to detect MS-DOS commands to be handled by the
program rather than by a spawned copy of Command.com.
The function is placed here to prevent circular unit
dependencies while restricting visibility to unrelated
units.

Reference: Mefford, M.J.

,

PC Magazine, v.

"Running Programs Painlessly
7, 16 February, 1988.

Developed by Nelson Ard

Last modification Sep 89

****)

****)

****)

****)

****)

#***)

****)

****)
****)

****)

****)

****)

#***)

****)

****)

(* Modification history

8 Sep. 89
2^ Mar 90

added PROMPT to the list of internal commands
deleted Find_Environment (duplicated in Unit Support

*)

UNIT Spawn;

INTERFACE

uses Dat acorn, Dos, Crt, Redirect, Support, ErrorCod, Miscpack;

TYPE
Internal _C.omma.nd = (CD, CHDIR, COPI, DEL, DIR, ERASE, EQUIP, LS, MD,

MKDIR, PROMT, RD, REN, RENAME, RMDIR);

CONST
Command_Name : Array [Internal _Command 3 OF String C6H =

('CD', 'CHDIR', 'COPY', 'DEL', 'DIR',

'ERASE', 'EQUIP', 'LS', 'MD', 'MKDIR', 'PROMPT',

'RD', 'REN', 'RENAME', 'RMDIR');

Com Port : StrmqC6] = 'CC0M1D':

196

VAR
Redirection ; boolean; { set by the caller in the main program to

force all command program output to -file

for remote display }

FUNCTION Match_Command (VAR FileSpec : FileString;
VAR Command : Internal _Command) : boolean;

{ Matches the command in FileSpec against the above list of commands
processed internally by this program.

Input: FileSpec is the command/file name

Output: FileSpec is adjusted to contain the complete path, i-f any
Command i s an enumerated type for internal commands
The function returns true i-f a command is matched

Procedure Run_Local (ProgramName, Cmdline : string;
VAR Response : string 12S;

VAR Restype : Response_type;
VAR Error_msg : string 128;
VAR Err type : Response_type;
VAR Prompt : string 128;

Batch : boolean)

;

{ Used to spawn a child process, program name in Command,
parameters in Command_Tai 1 . Program output, error responses,
and a follow on command line prompt as it would appear from a

local command line processor are returned to the calling
program.

Input: ProgramName is the command to be executed with path
Cmdline is the command tail for ProgramName
Batch lets Run_Local know a batch file is to be executed

Output: Response is the output of the program
Restype is the type of Response (string, file, nothing)
Error_Msg is the error output of the program
ETtype is the type of Error_Msg (string, file, nothing)
Prompt is a simulated command line prompt after program
execution

19
_

PROCEDURE Process_intrin5ic_command (Command : Internal_command;
Command_tail : Stringl28;
VAR Response : Stringl28;
VAR Restype : Response_type;
VAR Error_msg : Stringl28;
VAR Errtype : Response_type;
VAR Prompt : Stringl28);

•C Used to execute a command normally processed internally by
command.com. The program name is -found in Command,
parameters in Command_Tai 1 . Program output, error responses,
and a -follow on command line prompt as it would appear from a

local command line processor are returned to the calling
program.

Input: Command is the command to be executed with path
Command_Tail is the command tail -for Command

Output: Response is the output of the program
Restype is the type of Response (string, file, nothing)
Error_Msg is the error output of the program
Errtype is the type of Error_Msg (string, file, nothing)
Prompt is a simulated command line prompt after program
execution

IMPLEMENTATION

FUNCTION Match_Coimnand (VAR FileSpec : FileString;
VAR Command : Internal _Command) : boolean;

{ Matches the command in FileSpec against the above list of commands
processed internally by this program. Returns true if a command
is matched

Input: FileSpec is the command/file name

Output: FileSpec is adjusted to contain the complete path, if any
Command is an enumerated type for internal commands
The function returns true if a command is matched

VAR
Found : boolean;
index : Internal Command;

198

BEGIN
Found := FALSE;
FOR index := CD TO RMDIR DO

IF (Pas (Command_Name[index], FileSpec) = 1) AND

(Length (Command_NameC index]) = Length (FileSpec)) THEN

BEGIN
Found := TRUE;

Command := index;

END;

Match_Command := Found;

END;

Procedure Run_Local (ProgramName, Cmdline : string;

VAR Response : stringl28;
VAR Restype : Response_type;
VAR Error_msg : stringl28;
VAR Errtype : Response_type;
VAR Prompt : string 128;

Batch : boolean)

;

{ Used to spawn a child process, program name in Command,

parameters in Command_Tail . Program output, error responses,
snd a follow on command line prompt as it would appear from a

local command line processor are returned to the calling
program.

"'-,

ie use of a secondary copy of COMMAND. COM to run batch files is from
(Mefford, 1988, p. 327).

Input: ProgramName is the command to be executed with path
Cmdline is the command tail for ProgramName
Batch lets Run_Local know a batch file is to be executed

Output: Response is the output of the program
Restype is the type of Response (string, file, nothing)
Error_Msg is the error output of the program
Errtype is the type of Error_Msg (string, file, nothing)
Prompt is a simulated command line prompt after program
execution

begin
CheckBreak := TRUE;

IF Batch THEN BEGIN
Cmdline := ' /c + programname + Cmdline;
C set up temporary command.com }

ProgramName := Find_Environment ('COMSPEC');
END;

199

BetDir(0, Prompt);
IF Redirection THEN BEGIN

Ini t_Redirect_L)nit;
IF Redirect_All_Output THEN;

END;

Exec (Programname, Cmdline);
IF Redirection THEN BEGIN

IF Restore_All_Output THEN;

Restore_CRT_Assi gnments;
END;

RS_Cleanup;
RS_Restore (Current.COM)

;

Restype := file_type;
Response := Redirect. Response_fi le;

Errtype := strng;
IF doserror <> THEN BEGIN

Error_Msg := Error_Code C DosError];

END
else Error_Msg := '';

System. ChDir (Prompt);

Prompt := Prompt + '
>

'

;

END;

CONST
SPACE : Char = ' ';

PROCEDURE Process_intrinsic_command (Command : Internal _command;
Command_tail : Stringl2S;
VAR Response : Stringl28;
VAR Restype : Response_type;
VAR Error_msg : Stringl28;
VAR Errtype : Response_type;
VAR Prompt : Stringl28);

Used to execute a command normally processed internally by
command, com. The program name is -found in Command,
parameters in Command_Tai 1 . Program output, error responses,
and a -Follow on command line prompt as it would appear from a

local command line processor are returned to the calling
program.

Input: Command is the command to be executed with path
Command_Tail is the command tail -for Command

Output: Response is the output of the program
Restype is the type of Response (string, file, nothing)
Error_Msg is the error output of the program
Errtype is the type of Error_Msg (string, file, nothing)
Prompt is a simulated command line prompt after program
execution }

200

CONST Current_Drive : byte = 0;

Batch_mode : boolean = TRUE;

VAR I OR : word:

CLtrrent_F'ath : PathString;
List : EquipmentListType;

BEGIN
CASE Command OF

CD,

MB,

RD,

CHDIR,

MkDir,
Promt

,

RmDir : BEGIN
{$1-}

Restype := strng;
Errtype := strng;

CASE Command OF

CD,

ChDir : System. ChDir (Command_ta.il);

MD,

MKDIR : System. MkDir (Command_tail);

PROMT : GetDir (Current_Drive, Prompt);

RD,

RMDIR : System. RmDir (Command_tail);

END;

I OR := IOResult;
IF I OR <> THEN
Error_fH5g ;= AG + Error_Code [IOR]

ELSE Error_msg := '';

GetDir (Current_Dri ve, Prompt);

Response : = ' '

;

Prompt := Prompt + ">'\

END;

201

DEL,

LB,

DIR,

REN,

COP I,

ERASE

,

RENAME : BEGIN
IF Command = LS THEN Command := DIR;

Run_Local (Command_Name [Command] + SPACE,
Command_Tai 1

,

Response, Restype, Error _msg, Errtype,
Prompt, Batch_Mode);

END;

EQUIP : begin
CheckBreak := TRUE:

GetDir (0, Prompt)

;

IF Redirection THEN BEGIN
Init_Redi rect_Unit;
IF Red irect_All _0utpi.it THEN;

END;

Support. GetEquip (List);

Errtype := strng;

IF Redirection THEN BEGIN
IF Restore_All_Output THEN;

Restore_CRT_Assignments;
Restype := file_type;
Response := Redirect. Response_-fi le;

IF doserror <> THEN
Error_Nsg := Error_Code C DosError]

else Errcr_Msg := '';

END
ELSE BEGIN
Restype := strng;
Response : = 'Unable';

Error_Msg : =
'

'

;

END;

System. ChOir (Prompt);

Prompt := Prompt + '>';

END;

END; {CASE}

END;

BEGIN
Redirection : = TRUE; { output is normally redirected to file }

end.

202

APPENDIX X

SOURCE LISTING FOR UNIT SUPPORT

(a**)
***** SUPPORT. PAS ****)

(**** This is the unit that contains typed constants for use ****)

(**** by the main program Distrib to display window menus. ****)

(**** in addition to general purpose routines, the unit also ****)

(**** contains the initialization procedure -for the program. ****)

(#*** ****)

(****

(****

(****
(****

(****

(****

(****

(****

(****
(***-*

(****

(****

(****

References

;

****)

Edwards, C. C. , Advanced Techniques in Turbo ****)

Pascal, pp. 241 - 272, Sybex , Inc., 1987

Hall, W.V., "When Turbo Isn't Enough," in

Shammas, N.C., The Turbo Pascal Tool book,

pp. 225 - 226, M & T Publishing, Inc., 1986.

Converted to a unit -from program Turbocom.com in the

first reference,

Last modification Sep 89

****)

****)

****)

****)

****)

****)

**#*)

****)
****)

****)

(*****•*****+**)

UNIT Support;

{ Modification History
4 Aug 89 - Changed introductory maintenance screen

Deleted conversion messages from TP 4.0 }

INTERFACE

(******************** Start Edwards Excerpt ********************)

Uses
Crt,
Dos,

General

,

Datacom,
Wndow,
Printer;

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 19S7 Sybex, Inc. All rights reserved.
*******+****+-*****+•** Continue Edwards Excerpt ********************)

20

:

(******************** Continue Edwards Excerpt *******************)
Const Alt..A = 30

Alt [b = 48
Alt._C = 46

Alt._D — "T*5

Alt E = 18

Alt._F — 77

Alt..5 = 34

Alt._H _ -tct— •.'•vj

Alt..1
— H7

Alt._J = 36

Alt..K = 37

Alt..L = 38
Alt..M = 50

Alt..N = 49

Alt..0 = 24

Alt..P — nc

Alt."o = 16

Alt._R = 19

Alt "s = 31

Alt.J = 20
Alt. U _ nn

A3 t..V = 47

Alt. w = 17

Alt. x = 45

Alt..Y = 21

Alt" 7 = 44

Home = 71

PgUp = 73

PgDr1 = 81

Const NUL = $00

;

SOH = $01;
STX = $02;
ETX = $03;
EOT = $04;
ENQ = $05;
ACK = $06

;

BEL = $07;
BS = $08;
HT = $09;
LF = $0A;

VT = $0B;

FF = $0C;

CR = $0D;

SO = $0E;

SI = $0F

;

(* Reprinted with extensive modifications -from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex , Inc. All rights reserved.
***********+*****-**** Continue Edwards Excerpt ************•********)

204

(*****#************** Continue Edwards Excerpt *****************)
DLE = $10
DC1 = $11

DC2 = $12
DCS = $13
DC4 = $14
NAK = $15
SYN s $16
ETB = $17
CAN = $18
EM = $19
SUB = $1A
ESC = $1B
FS = $1C
SS = $1D
RS = $1E
US = $1F

CEE = $43;

Type Phone_Name = String [30];

Phone_Params = Record
Phone_Number:String[203;
Phone_Baud : RS_Baud

;

Ph one_Par i t y : RS_Par i t y

;

Phone_Length: Byte;
Phone_Stop: Byte;

Phone_Echo: Bool ean

;

End;

Phone_Record = Record
Name: Phone_Name;
Phone_Data:Phone_F'arams;
End;

Phone_Names = Record
Length: Integer;

Names: Array [1..13 o-f Phone_Name;
End;

Phone_Bata = Array C1..1] o-f Phone_Params;
Commumcations_Type = Record

Speed: RS_Baud;
Parity:RS_Parity;
Length: Byte;
Stop: Byte:

End;

String3 = String[33;
String4 = StringC43;

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission o-f Sybe;; , Inc.

Copyright 1987 Sybex , Inc. All rights reserved.
a******************** Continue Edwards Excerct a*******************)

(a-******************* Continue Edwards Excerpt ***********#*****)

TYPE EquipmentListType = RECORD
NbrO-f Printers,
NbrO-f Serial

,

NbrOfDiskettes,
Initial Video,
RAMOnBoard : word;
IsGamePort

,

IsDiskette : boolean;
END;

VAR List : EquipmentListType;

Var Phone_Fi le:Fi le of Phone_Record;
{Moved -from Dialing Directory }

Phone_Menu,
01d_Phone_Menu: •'•Phone_Names;

Phone_Stuf f

,

01d_Phone_Stuff :-"Phone_Data;

Phone_F'refix : String [103;

Echo , Pr i nt , Asci i _Up 1 oad , Asc 1 i _Downl oad , End_Emul ator : Bool ean

;

Status_Line: String [80];
Emulators String[103;

Ascii_File : File of Char;

Asci i_Fi leName: String [20 3

;

Current_Path: Long_Stnnq;
Dial_Delay: Integer;

Last_Dial : Integer;

Type De-fault_Type = Record {The de-fault parameters for Distrib>
Def ault_Name: StringE303;
Def aul t_Com: Byte;

Def aul t_Modem: Byte;

Default_Phone:String[203;
Def aul t_Speed : RS_Baud

;

Def aul t_F'ari ty: RS_Parity;
Def aul t_Length: Byte;

Def aul t_Stop : Byte;
Def ault_Echo: Boolean;
Def aul t_Te>: tcolor: Byte;
Def ault_Menucolor: Byte;

Def ault_Backcolor:Byte;
Def aul t_Pref ix : String [103;
Def aul t_Delay: Integer;

End;

(# Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 19S7 Sybex, Inc. All rights reserved.
#*****+****#**•*•** Continue Edwards Excerpt ********************)

206

(******************** Continue Edwards Excerpt *******************)

VAR Current : Def ault_Type;

Const De-faul

(De-fau

De-Fau

Defau
Defau
De-f au

De-fai

Def au

Defai

De-fau

Def au

De-f au

Defau
De-fau

Defau

ts: Def ault_Type =

lt_Name: 'DISTRIB. CFG '

;

lt_Com: 1;

lt_Modem:2;
lt_Phone: '555-1212';

lt_Speed:B9600;
lt_F'arity:None;

lt_Length:8;
lt_Stop: 1;

lt_Echo:False;
lt_Textcolor:LightGray;
1 t_Menucol or : Green

;

1 t_Backcol or : Bl ack

;

It "Prefix: 'ATDT9, ,9,
,

';

It.Delays 30);

0K_Menu: Integer = 1;

QKJIsg: String [3] = 'OK ':

Yes_No_Menu: Integer
Yes_No_Msg : Array C

1

'No '

,

' Yes ' >

;

23 of StrinqC3] = (

Dial_Menus Integer = 5;

DialJIsg: Array El. .5] of StringC63
'Dial

'Repeat

' Mod i f y
'Delete
'Add

= (

Speed_Menu: Integer = 10;

Speed_Msg: Array CI.. 103 of StrmgC43
' 110'
' 150'
' 300

'

' 600

'

'
1 200

'

' 2400

'

' 4300

'

' 9600

'

= (

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 19S7 Sybex, Inc. All rights reserved.
********+***********+ Continue Edwards Excerpt ****+***************)

207

(******************** Continue Edwards Excerpt *****************)

'19K2',
' 38K4 '

)

;

Pari ty_Menu: Integer
Pari ty_Msg: Array CI,

'None
'

,

'Odd ',

'Even ')

:

3] of StringC43 = (

Stop_Menu: Integer = 2;

Stop_Msg: Array CI. .2] of StringC63
'0 Bits'

,

'1 Bit ');

= (

Lengtn_Menu: Integer = 4;

Length_Msg: Array CI.. 43 of StringC63
'5 Bits'

,

'6 Bits',
'7 Bits'

,

'8 Bits');

Param_Menu: Integer = 14

Param_rvl5g: Array CI.. 14]
' Name
'Phone Number
' Speed
'Word Length
'Parity
'Stop Bits
'Local Echo
'Comm Port
'Modem Port
'Dial Prefix
'Redial Delay
'Foreground Color
'Bac kground Co I or

'Menu Color '
)

;

of StringC16] = (

Col or_Menu; Integer = 8;

Color_nsg:Array CI.. 93 of StringC73 = (

'Black
?

'Blue
i

'Green
i

'Cyan
i

(* Reprinted with extensive modifications from Advanced Techmgues in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
***********•*-*******-** Continue Edwards Excerpt ********************)

208

;#*****#************* Continue Edwards Excerpt ******************)

'Red '

,

'Magenta '
,

'Brown '

,

'White ',

'Nothing '
)

;

Comm_Menu: Integer = 2;

Comm_Msg: Array CI.. 23 of StringCS]
'COM 1

'

,

'COM 2');

Protocol_Menu: Integer = 2;

Protocol _Msg: Array CI.. 23 of StringC6]
'Asci i

'

,

'XModem')

:

= (

Communications_Menu: Integer = 21;

Communi cat ions_Msg: Array CI.. 21] of StringCIO] = (

' 300-E-7-1
' 300-0-7-1
' 300-N-8-1
'1200-E-7-1
'1200-0-7-1

'1200-N-8-1
'2400-E-7-1
'2400-0-7-1

'2400-N-S-l
'4S00-E-7-1
'4800-0-7-1

'4800-N-S-l
'9600-E-7-1
'9600-0-7-1

'9600-N-B-l
'19K2-E-7-1
'19K2-0-7-1
'19K2-N-8-1
'38K4-E-7-1
'38K4-0-7-1
'38K4-N-8-1

Communi cations_St
(Speed: B300
(Speed :B300
(Speed: B300

(Speed :B120(

):

uff: Array CI.. 21] of Communi cat ions_Type
Parity: Even; Length: 7; Stop: 1

)

,

Parity: Odd; Length: 7; Stop: 1)

,

Parity: None; Length: 8; Stop: 1
)

,

= (

(Speed :B1200; Parity: Even; Length: 7; Stop: 1)

,

); Parity: Odd; Length: 7; Stop: 1)
,

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex , Inc. All rights reserved.
********+***--*-******** Continue Edwards Excerpt a*******************)

>09

(******************** Continue Edwards Excerpt *******************)

(Speed :B1200; Parity: None; Length: 8; Stop: 1)

(Speed :B2400; Parity: Even,-Length: 7; Stop: 1)

(Speed : B2400; Par i ty : Odd ; Length : 7; Stop : 1
)

,

(Speed :B2400; Parity: None; Length: 8; Stop: 1)

(Speed : B4800; Par i ty: Even; Length: 7; Stop: 1

)

(Speed :B4800; Parity: Odd; Length: 7; Stop: 1)

,

(Speed: B4800; Pari ty: None; Length : 8; Stop: 1

)

(Speed :B9600; Parity: Even; Length: 7; Stop: 1)

(Speed:B9600;Parity:0dd;Length:7;Stop: 1)
,

(Speed: B9600; Parity: None; Length: 8; Stop: 1)

(Speed: B 19200; Pari ty: Even; Length: 7; Stop:

1

(Speed : B 1 9200 ; Par i t y : Odd ; Leng t h : 7 ; St op : 1

)

(Speed :B1 9200; Parity: None; Length: 8; Stop:

1

(Speed :B38400; Parity: Even; Length: 7; Stop: 1

(Speed :B38400; Parity: Odd; Length: 7; Stop: 1)

(Speed : B38400: Pari ty: None; Length: 8; Stop : 1);

Hel p_Menu: Integer = 17;

HelpJIsg; Array CI.. 173 o-f StringC263
'Alt-A Change drive 2< path

Send a Break signal
Update Con-fig File
Dialing Directory
Local echo toggle
Change DC params
Show disk directory
Hang up phone
DOS Shell
Activate Master
Port Operations

= (

'Alt-B
'Ait-C

'Alt-D

'Alt-E

'Alt-F

Al t _ L-<

'Alt-H
'Alt-L
*Alt-M
'Alt-P

'PgDn

,

'Alt-R
'Alt-S
'PgUp,

'Alt-T
'Alt-X

XMODEM Bet a -file

Activate Server

);

XMODEM Put a -file

(ESC) Exit emulator
Hel p_ Index: Array CI.. 17] of Byte =(

Alt_A,
Ait_B,
Alt_C,
Alt_D,
Alt_E,
Alt_F,
Alt _B,

(* Reprinted with extensive modi fi cations from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1^87 Sybex, Inc. All rights reserved.
****#**#************-+ Continue Edwards Excerpt ********************)

210

(#******************* Continue Edwards Excerpt ********************)

Alt_K,
Alt_L,
Alt_M,
Alt_P,
PgDn

,

Alt_R,

Alt S,

PgUp,

Alt_T,

Alt_X);

Procedure Initialize;

Procedure Modif y_Entry (I : Integer)

;

Procedure Save_Fi le (D: Boolean)

;

Procedure OK (S: String3)

;

Function Yes (S: String4) : Boolean;

Procedure Bui ld_Status_Line;

Function Check_Keybcard: Integer;

Function Chec k_Aux port: Char

;

Function Find_Environment (What: Long_String) :Long_String;

Procedure NoFi le (S: Long_String)

;

Procedure GetEquip (VAR List : EquipmentListType);

IMPLEMENTATION

Procedure Initialise;

CThi = procedure initialises the de-fault values and reads the phone -file}

\>ar Phone: Phone_Record;
I : Integer;

Con-figuration : File;

Numread : word;

(* Reprinted with extensive modi -fi cations -from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission o-f Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
********************* Continue Edwards E-;cerpt ********************

)

211

(******************** Continue Edwards Excerpt ******************)

Begin
Assign (Con-figuration, De-faults.Default_Na.me);

C*I-}

Reset (Configuration, Sizeof (Defaults));

If IOResult > then Current := Defaults
ELBE Begin

BlockRead (Configuration, Current, Sizeof (Defaults),Numread);
Close (Configuration);

If IOResult > then Current := Defaults;
End;

{$1+}
With Current do

Begin
ClrScr;
If not Mono then

Begin
SetColor (Def aul t_Textcolor

)

;

SetBackground (Def aul t_Backcolor
)

;

Menuground: =Bef aul t_Menucolor

;

End;

Ph one_Pref i x : =Def aul t_Pref i x

;

Echo: =Def ault_Echo;
Dial_Delay:=Default_Delay;
Print; =False;
Asci i_Upload: =False;
Asci i_Download:=False;
Got oXY (27,1) ;

Textcoior (Def aul t_Textcolor+8)

;

Wr it el n
(

'Remote Server Version 1.0');

GotcXY(3i,2);
Write ('Maintenance Screen');
GotoXY(35,3)

;

Write ('Dr. Kodres');
Textcolor (Def ault_Textcolor

)

;

Write_Status (

'

Initial izing "

,

Default_Jextcolor shl 4+Def aul t_Backcolor+*B0)

;

End;

Last_Dial:=l;
Assign (Phone_File, 'DISTRIB.PHN'

)

;

{*I-}
Reset (Phone_Fi 1 e)

;

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
*#***#*#**#*##***#*** Continue Edwards Excerpt *******************#)

nn n

(******************** Continue Edwards Excerpt *******************)

C*I+}

If IOResult > then
Begin [Create new file}

GetMem (Phone_Menu,SizeOf (Phone_Names))
;

GetMem (Phone_Stuff ,SizeOf (Phone_Params)
)

;

Phone_Menu"-. Length: =1

;

Phone_Menu'"-.Names[l]: = '
. . .To be provided... ';

Move(Def aults.Def ault_Phone,Phone_Stuf f '"[1] ,SizeOf (Phone_Params))

;

Phone. Name: =Phone_Menu'-. Names [1];

Phone. Phone_Data: =Phone_Stuf
f
"C 1]

;

Rewrite (Phone_File)
;

Write (Phone_Fi le, Phone)

;

End
el se

Begin {Get phone file}

I:=Fi leSize (Phone_Fi le)

;

GetMem (Phone_Menu, I *SizeOf (Phone_Name) +2)

;

BetMem(Phone_Stuff ,I*SizeOf (Phone_Params)
)

;

Phone_Menu'''. Length: =1

;

1 . — X ,

{*R-

While not Eof (Phone_Fi le) do
Begin
Read (Phone_Fi le, Phone)

;

Phone_Menu "". Names C I] : =Phone. Name;

Phone_Stu-ff "C I 3: =Phone. Phone_Data;
I:=I+1;
End;

{$R-

End;

Close(F'hone_File)
;

With Current do
Begin

R3_ I n i t i a 1 i z e (Def au 1 1 _Com , Def aul t_Speed , Def aul t_Par i t y

,

Defauit_Stop,Default_Length)
;

End;

Write_Status(' ', Current . De-f aul t_Backcol or shl 4 +

Current. De-f aul t_Textcolor)
;

End; {of Initialize}

(* Reprinted with extensive modifications -from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
***********+******+#* Continue Edwards Excerpt ********************)

!13

(***************#**** Continue Edwards Excerpt *********#*******)

Procedure Save_Fi le (D: Boolean)

;

CThis procedure asks the user if he wants to save a changed
configuration
If so, it writes the appropriate file

Input D: True if saving default values
False if saving phone file

j

Var Configuration : File;
Phone: Phone_Record;
J: Integer;

Begin
If 0pen_Window(50,9,67, 12,Flag_Borders, '

') = then;

ClrScr

;

If D then
WriteCSave defaults?')

else
Write ('Save this entry?');

I f Yes
(

' Save ') then
Begi n

ClrScr;

Write (

'Saving. . . ')

;

If D then
Begin
Assign (Configuration, Def aul ts. Def aul t_Name);

{$!-}

Rewrite (Configuration, Sizeof (Defaults));

If IOResult > then
NoFile (De-faults. Def aul t_Name)

else
Beg i n

BlockWrite (Configuration, Current, 1

Close (Configuration);

End;

End

j

{$!+}

el se

Begin
•C*R-}

Assign (Phone_File, 'DISTRIB. PHN ')

;

Rewrite (Phone_Fi ie)

;

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission o+ Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
************-****-****-* Continue Edwards Excerpt *******#************)

!14

(*************##***** Continue Edwards Excerpt a-*******************)

For J:=l to Phorie_Menu"-. Length do

Begin
Phone. Name: =F'hone_Menu"". Names C J]

;

Phone. Phone_Data: =F'hone_Stu+-f " C J]

;

Write (Phone_File, Phone)

;

End;

Close (Phone_Fi le)

;

C*R+}

End;

End;

If Close_Window then;
End; {o-f Save_File>

Procedure Modi -f y_Entry (I : Integer)

;

CThis procedure modifies an entry in the phone list.

Input: I - It > then the entry in the phone list to be modified
If = then the default parameters

War J,K: Integer;
Status_Window,Msnu_Window: Byte;

S: Long_Strinq;
B: Boolean;

Pr oc edur e Upd at e_St at us

;

\'ar J: Integer;

Begin
•C*-R->

If Get_Window(Status_Window) then;

For J:=l to Param_Menu do
Beg 1 n

GotoXY(18,J>;
ClrEol;
Case J of

1: If I = then
Write (Current. Def aul t_Name)

else
Write (Phone_Menu""-. NamesC II);

2: If I = then
Wri te (Current . Def aul t_F'hone)

else
Write(F'hone Stuf f "C I 3 . Phone Number);

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.

Copyright 1^87 Sybex, Inc. All rights reserved.
********************* Continue Edwards Excerpt ************#****#**)

215

(a******************* Continue Edwards Excerpt *************#******)

3: If I = then
Write (Speed_MsgCOrd (Current. De-f ault_Speed)+13)

else
Wr 1 te (Speed_Msg COrd (Phone_Stuf f '-C 1 3 . Phone_Baud) +1]

)

;

4: If I = then
Write (Length_Msg [Current. De-f aul t_l_ength-43)

else
Write(Length_M5gCPhone_Stuff-"CI3.Phone_Length-43);

5: H I = then

Wr i te (Par i ty_lylsg CMi n (Ord (Current . Def aul t_Par i ty

)

+ 1,3)])

else
Write

(

Pari ty_Msq CMi n (Ord (Phone Stu-f-f
A

C 1 3. Phone Parity)
+1,3)3);

6: I-f I = then
Write(Stop_MsgCCurrent.Default_Stop+13)

else
Wri te (Stop_MsgCPhone_Stuf f

•'

C I 3 . Phone_Stop + l 3) ;

1\ If I = then"
Wr i te (Yes_No_Msg COrd (Current . De-f aul t_Echo) +13)

else
Wnte(Yes_No_MsgC0rd(Phone_Stu-ff •CI3.Phone_Echo) + 13) ;

8: Wri te (Comm_Msg [Current. De-f aul t_Com3) ;

9: Wri te (Comm_Msg[Current. De-f aul t_Modem3)
;

1 • Wr i te (Current . De-f aul t_Pre-f i ;<
)

;

1 i : Wri te (Current. De-f aul t_Del ay)

;

12: Write(Color_MsgCCurrent.Default_Textcolor+U)

;

13; Write (Col or_MsgE Current. Def aul t_Backcolor+l 3)

;

14? Write (Col or_MsgCCurrent . De-f aul t_Menucolor + i 3)
;

End; {of Case}
End;

If Get_Window(Menu_Window) then;

End; -Cof L!pdate_Status}

Beqi n

If I = then
If Mono then

Param_Menu: =10
else-

Par am Menu: =13

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 198"7 Sybex , Inc. All rights reserved.
*****************-+*-** Continue Edwards Excerpt *******************•*)

(#******************* Continue Edwards Excerpt a-*******************)

else
Param_f1enu:=7;

If Open_Wi ndow (1 , 2 , 50 , 3+Param_Menu , Fl ag_Borders

,

'Parameters') = then;

Status_Wi ndow: =Active_Wi ndow". ID;

ClrScr;
For J:=l to Param_Menu do

Begin
BotoXY(l,J);
Write(Param_Msg[J3, ':

')

;

End;

I f 0pen_Wi ndow (52 , 2 , 70 , 3+Param_Menu , Fl ag_Border s

,

'Options ') = then;

Menu_Window: =Acti ve_Window '. ID;

ClrScr;
Repeat Begin

Update_Status;
J:=Process_Window_Menu(Param_flenu)

;

Case J of

0: ; CESC...do nothing}
1: Begin {Change Name}

I-f 0pen_Wi ndow (5 , 21 , 75 , 24 , Fl ag_Border s

,

'Name ') = then;

ClrScr;
Write

(

'Name: '

)

;

Read In (S)

;

If Length (S) > then
If I = then

Current. Def ault_Name: =S

else
Phone_Menu " . Names [I] : =S

+
'

;

If Close_Window then;

End;

2: Begin -tPhone number}
If 0pen_Window(5, 21 ,75,24, Flag_Borders,

'Phone Number') = then;

ClrScr;

Write ('Phone Number: ');

Readln (S)

;

If Length (S) > then
If I = then
Current. Def ault Phone: =S

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybe;: , Inc. All rights reserved.
#**#*****#*#*#******* Continue Edwards Excerpt a*******************)

:17

(************#******* Continue Edwards Excerpt ******************)

else
Phone_Stuf f '"[I] . Phone_Number : =S;

If Close_Window then;
End;

3: Begin (Speed)
If 0pen_Window(69,5,75,14,Flag_Borders, 'Baud') =

then;
ClrScr;
K: =Process_Wi ndow_Menu (Speed_Menu)

;

If K > then
If I = then
Current . Defaul t_Speed : =RS_Baud (K-l

)

else
Phone_Stuf f •'•[1 3 . Phone_Baud: =RS_Baud (K-l

)

;

If Close_Window then;

End;

4: Begin {Word Length}
If 0pen_Window(69,6,77,ll,Flag_Borders, 'Bits') =

then;

ClrScr;
K:=Process_Window_lvlenu (Length_Menu)

;

If K > then
If I = then
Current . Defaul t_Length : =K+4

else
Phone_Stuf f •[I D . Phone_Length: =K+4;

If CLose_Window then;
End;

5: Begin {Parity}
If Open_Window (69,7,75, 11 , Fiaq_Borders,

'Type ') =0 then;
ClrScr;
K:=Process_Window_ly1enu (Pari ty_Menu)

;

If K < 3 then K:=K-1;
If K >= then

If I =0 then
Current. Def aul t_Pari ty: =RS_Parity (K)

else
Phone_Stuf f ••••[

I].Phone_Parity:=RS_Parity(K);
If Ciose_Window then;

End;

6: Begin {Stop bits}
If 0pen_Window(69,8,77, 11 ,Flag_Borders,

'Bits') = then;

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
**********#****#***** Continue Edwards Excerpt **********•**#*******)

a- 1 _'

(******************** Continue Edwards Excerpt ********************)

ClrScr;
K:=Process_Window_Menu(Stop_Menu) ;

If K > then
If I =0 then

Current . Def aul t_Stop : =K-1

else
Phone_Stuf f •""[

I 3 . Phone_Stop: =K-1

;

If Close_Window then;

End;

7: Begin {Local echo}
B: =Yes('Echo'

)

;

If I =0 then
Current. De-fault_Echo:=B

else
Phone_Stuf -F-'-C I] . Phone_Echo: =B;

End;

8: Begin CComm port}
I -f 0pen_Wi ndow (69 , 10 , 76 , 1 3 , Fl ag_Bor ders

,

'Port ') =0 then;
ClrScr;

K:=Process_Window_Menu (Comm_Menu)

;

If K > then
Current. Def ault_Com: =K;

If Close_Window then;

End;

9: Begin CComm port}
If 0pen_Window(69, 10,76, 13,Flag_Borders

,

'Port ') =0 then;

ClrScr;

K: =Process_Window_tv)enu (Comm_Menu)
;

If K > then
Current . Def aul t_Com: =K;

If Close_Window then;

End;

10: Begin {Dial Prefix)
If 0pen_Window<5, 21 ,75,24, Flag_Borders,

'Prefix ') =0 then;
ClrScr;
Write ('Prefix :

'

)

;

Readln(S);
If Length (S) > then

Current. Def ault_Pref i>: : =S;

If Ciose_Window then;

End;

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 19S7 Sybex, Inc. All rights reserved.
********************* Continue Edwards Excerpt ********************)

:i9

(******************** Continue Edwards Excerpt a-****************-***)

11: Begin {Default redial delay}
If 0pen_Window<5, 21 ,75,24, Flag_Borders,

'Redial delay') = then;
ClrScr;
Write('Redial delay (in seconds): ');

Readln (Current. Default_Del ay)

;

If Close_Window then;
End;

12, {Foreground color}

13, {Background color}
14: Begin {Menu color}

If 0pen_Window(69,2+J,7B, 1 1+J ,Flag_Borders,
'Colors') = then;

ClrScr;
K:=Process_Window_lvlenu (Color_Menu)

;

If K > then
Case J of

12: Current. Def ault_Textcol or :=K-1;

13: Current. Def aul t_Backcolor:=K-l;
14: Current. Def aul t_Menucol or: =K-1;
End; {of Case}

If Close_Window then;
End;

End; {of Case}
End

Until J = 0;

If Closs_Window then;

Save_File(I = 0)

;

If Close_Window then;

•C$R+>

End; Cof Modif y_Entry}

Procedure OK (S:String3)

;

{This procedure displays a window on the screen and waits for an

acknoledqement from the user

Input: S - The title to use for the window
j

Begin
If 0pen_Window(60,5,64,7,Flag_Borders,S) = then;

If Process_Window_!*1enu(0K_lvlenu) - then;

If Close_Window then;
End; -Cof OK)

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 19S7 Sybex , Inc. All rights reserved.
********************* Continue Edwards Excerpt -a-*******************)

220

(**#*******#**#****** Continue Edwards Excerpt *******************)

Function Yes (S: String4) : Boolean;
{This procedure prompts the user for a yes or no response

Input: S - The title to use for the window

Output: True if YES was selected

Begin
If 0pen_Window(69,9,74,12,Flag_Borders,S) = then;
Yes:=Process_Window_lvtenu(Yes_No_Menu) = 2;

If Close_Window then;

End; -Cof Yes}

Procedure Bui ld_Status_Line;
•CThis procedure updates and displays the status line}

VAR Comport : stringCl];

Begin
Str (Current_COM, Comport);

Status_Line:=

'

'+ C40 spaces}
'

; C40 spaces}
Insert ('Com Port: ' ,Status_Line, 1)

:

Insert (Comport ,Status_Line, 11);

WITH Datacom. Comport C Current_CON 3 DO
BEGIN

Insert (Speed_Msg[QRD (Speed) + 1 3, Status_Line, 13);

Insert ('Baud ', Status_Line, 18);

Insert (Length_Msg[Length-43, Status_Line, 23);

Insert (Pari tyJIsgCMin (ORD(Parity)+l, 3)3, Status_Line, 30);

Insert (Bt.op_MsgC Stop + 13, Status_Line, 35);

END;

If Echo then

Insert
(

'Echo
'
,Status_Line,47)

;

If Print then
Insert (

'Print
'

,Status_Line,52)

;

Insert
(

'Home for Help
'
,Status_Line,68)

;

Write_Status (Status_Line, Foreground shl 4 + Background);
End; Cof Bui ld_Status_Line}

Function Check_Keyboard: Integer;

CThis function checks for keyboard input

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybe:: , Inc.

Copyright 19S7 Sybex , Inc. All rights reserved.
a******************* Continue Edwards Excerpt a*******************)

221

(******************** Continue Edwards Excerpt *#*****************)

Output: if no key pressed
If normal key then high byte is and low byte is value of key
If special key then low byte is and high byte is value of key

>

Var ChrChar;
Begin
If Ascii_Upload then

Begin
If Eof (Ascii_File) then

Begin
Close(Ascii_File)

;

Asci i_L)pload: =False;
Bui ld_Status_Line;
End

else
Begin
Read (Asci i_Fi le,Ch)

;

If Ch = Char(LF) then
Ch:=Char(NUL)

;

Check_Keyboard:=Byte(Ch)

;

End

End

else if Keypressed then
Begin
Ch := Read Key;
If (Ch = #0) then

Begin
Ch := ReadKey;
Check_Keyboard:=Byte(Ch) shl 8;

End
else

Check_Keyboard: =Byte (Ch)

;

End
else

Check_K'eyboard : =0;

End; Cof Check_Keyboard>

Function Check_Auxport : Char;

CThis function checks for input from the date, communications port

If the appropriate global booleans are set, it will send the output
to the printer or to a disk file

Output: NUL if no character otherwise character received

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1967 Sybex, Inc. All rights reserved.
*******************-** Continue Edwards Excerpt **#****************)

(******************** Continue Edwards Excerpt ********************)

Var Ch:Char;
Begin
If RS232_Avail then

Begin
Ch := RS232_In;
If Ch <> Char(NUL) then

Begin
If Print then

Write(LST,Ch)

;

If Asci i_Download then
Write(Ascii_File,Ch> ;

End;

Check_Auxport: =Ch;

End

else
Check_Auxport:=Char(NUL>;

End; Cof Check_Auxport>

Function Find_Environment (What : l_ong_String) : Long_String;

{This function searches the environment for a particular specifier of

the form: ID=Text

Input: What - the ID to look for

Output: The Text of the environment string or empty if not found

Type Environment = Array [1.. 327673 of Char;

Var Environ: ''Environment;

Environ_Segment : word;

S:Long_String:
I : Integer;

Begin
Enviror,_Segment := MemWCPref ixSeg: $002C3

;

Find_Environment :
= '

'
; {Assume not found}

What:=What+'=';
Environ: =PTR (Environ_Segment ,0)

;

I: = l;

While Environ '-CI 3 <> AS Do
Begin

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 19S7 Sybex, Inc. All rights reserved.
********************* Continue Edwards Excerpt ********************)

HIT

(******************** Continue Edwards Excerpt ********************)

Repeat Begin
S:=S+Environ"'[I];

I:=I+1;
End

Until Environed] = A
@;

If (Length (S) >= Length (What)) and
(Copy (8,1, Length (What)) = What) Then
Fi nd_Envi ronment : =Copy (S , Length (What) +1 , Length (S) -Length (What)

)

else
I:=I+1;

End;

End; {of Find_Environment>

Procedure NoFi le (S: Long_String)

;

{This procedure opens a window and notifies the user that a file was
not found}
Begin
If 0pen_Window(42,2,80,5,Flag_Borders, 'No file') = then;
ClrScr;
Write ('Cannot find file ',S);

OK (
' '

)

;

If Close_Window then;

End; {of NoFiie}

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
************************ End Edwards Excerpt ************************)

(*********************** Start Hall Excerpt ************************)

Procedure GetEquip (VAR List : EquipmentListType);

CONST SYS_INT : byte = *11;

VAR Regs ; Dos. Registers;

BEGIN
With List BO BEGIN

With Regs DO BEGIN

(* The library GetEquip appears in The Turbo Pascal Tool book by Namir
C. Shammas (ed.) and has been reprinted with the permission of the
publisher M %>. T Books 1-800-533-4372. Minor modifications by Nelson
A^d.

************************* Continue Hall Excerpt *********************)

224

(************************ Continue Hall Excerpt *********************)

INTR (SYS_INT, Regs)

;

NbrO-f Printers := AH SHR 6;

IsBamePort := (AH AND $10) > 1;

NbrO-f Serial := (AH AND *0E) SHR 1;

IsDiskette := (AL AND $01) = 1;

IF IsDiskette THEN
NbrO-f Diskettes := (AL SHR 6) + 1

ELSE
NbrO-f Diskettes := (AL SHR 6) + 0;

Initial Video := (AL AND $30) SHR 4;

CASE InitialVideo OF

1 : InitialVideo := 0;

2 : InitialVideo := 2;

3 : InitialVideo := 7;

END;

RAMOnBoard := ((AL AND $0C) +1) * 16;

END; C Regs }

Wri teln;

Writeln ('No.

Writeln ('No.

Writeln ('No.

Writeln ('InitialVideo = ', InitialVideo);

Writeln ('RAMOnBoard = ', RAMOnBoard);

Writeln ('IsGamePort = ', IsBamePort);

END;

END;

(* The library BetEqu.ip appears in The Turbo Pascal Tool book by Namir
C. Shammas (ed.) and has been reprinted with the permission o-f the
publisher M & T Books 1-800-533-4372. Minor modi fi cations by Nelson
Ard.

**************************** End Hall Excerpt ***********************)

BEGIN
END.

o-f Printers = ' , NbrOf Printers)

;

o-f Serial = '

, NbrO-fSerial) ;

o-f Diskettes = '

, NbrO-f Diskettes);

APPENDIX Y

SOURCE LISTIN6 FOR UNIT WNDOW

(a***)
(**** WNDOW. PAS ****)
(**** This is a library of general purpose routines to #***)
(**** display windows and control menu bars for selectors on ****)
(**** the IBM PC screen. ****)
(**** ****)
(**** Reference: Edwards, C. C. , Advanced Techniques in Turbo ****)
(**** Pascal, pp. 73-97, Sybex , Inc., 1987 #***)
(**** *##*)
(**** Modified slightly to make a Turbo Pascal 4.0 Unit ****)
(**** ****)
(**** Last Modification: Sep 89 ****)

(I***)

UNIT Wndow;

INTERFACE

(******************** Start Edwards Excerpt ********************)

USES General, Crt, Dos;

f.fi)_*.
\. •+ V J

Type Window_l_ink = "'"Window_Control_Block;

Screen_Line = Array CI.. 80] of WORD; {! changed per

upgrade }

Screen_Array = ArrayC1..253 of Screen_Line;
Screen_Block = ArrayCI. .2000] of Integer;
Window_Title = StringCSOJ;
Window_Control_EIock = Record

Xl,Yl,X2,Y2:Byte; {Window boundaries]
X,Y:Byte; {Cursor locations-

ID: Byte;
Menu_Index: Integer;
Menu_TopY: Integer; {The top item in a menu}
Flag: Byte;
Foreground ,Menuground: Byte;

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
********************* Continue Edwards Excerpt ********************)

(******************** Continue Edwards Excerpt a*******************)

Title: Window_Ti tie;

Back_Link: Window_Link;
Screen_Contents: Screen_Block;
End; {of Record Window_Control_Block}

Border_Type = (Single, Double)

;

Long_String = STRING [255 3;

Const Foreground: Byte
Menuground : Byte
Background: Byte

LightGray;
LightGray;
Black;

{Color within the windows]-

{Color of the menu borders]-

{Background color]-

{These are the bit values o-f the -field "Flag" in Window_Control_Block]
Const Flag_Borders = $01

5

Fiag_Gcto = $02;

Flag_Relocate= $04;
Flag_Close = $08;

{Borders on the window]-

{Goto to this window is allowed]
{Window may be relocated]
{Window may be closed -from main
menu}

Var W,

Act i ve_Wi ndow: Wi ndow_Li nk

;

Window_Count: Integer;
Window_fr ixed_F'art: Integer;

Mono: Boolean;
{Forced to assign these variables on the same line

Screen

,

Screen_New,Screen_Temp:'"Screen_Array;

Procedure SetColor (Color: Byte)

;

{This procedure sets the -forground color]-

Procedure SetBackground (Color: Byte)

;

{This procedure sets the background color]

type mismatch >

Procedure Get_Dummy_Screen;
{This procedure changes Screen to point to a dummy screen area on

the heap]-

Procedure Get_Real_Screen;
{This procedure undoes the work of Get_Bummy_Screen>

(* Reprinted with extensive modi -fi cat ions -from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
************#*******+ Continue Edwards Excerpt ********************)

(******************** Continue Edwards Excerpt *****************)

Procedure Bui ld_Borders (Lines: Border_Type)

;

{Purpose:

This procedure builds a border around a window.

Input:

Lines:Single = Single line border
Double = Double line border

Output:
None }

Funct i on Open_Wi ndow (X 1 , Yl , X2 , Y2: Byte; Fl ag: Byte;
Name: Window_Title) :Byte;

{Purpose:

This function opens a window on the screen and places a border
around 1 t

.

Input:

X1,X2,Y1,Y2 are the coordinates of the window to be opened.
Flag is a bit mask of functions allowed in this window
Name is the title of the window

Output

:

Open_Window returns a byte as follows:
= Window opened OK

1 = Invalid window coordinates
2 = Not enough memory

Function Close_Window: Boolean;
•CThis function closes the currently active window.

Output:
Returns a True if there is no currently active window.

Function Save_Window: Window_Link;
•{This procedure saves off the current window ?< closes it

Output

:

Pointer to the saved window

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
********************* Continue Edwards Excerpt ***#****************)

228

(a-******************* Continue Edwards Excerpt ****************)

Function Restore_Window (W: Window_Link) : Boolean;
{This procedure re-creates a saved window on the screen}

Function Get_Window (Which: Integer) : Boolean;
{This procedure brings window "Which" to the top of the screen}

Function Move_Window (X ,Y: Integer) : Boolean;

{This procedure moves the current window by "X,Y" locations}

Procedure Wri te_Status (S: Long_String; Attrib: Integer)

;

{This procedure writes to line 25 of the display

Input: S = String to be written
Attrib = Video attribute byte to use

Function Process_Wi ndow_Menu (Var Menu) : Byte;

{This procedure will display and process a menu in the currently
active window.

The menu may be longer or shorter than the actual window.

Input: Menu - A pointer to a record with the -following -format:

Bytes 0-1: An integer giving the number o-f string
variabl es

Bytes 2-n: A series o-f String variables.

Dutout: The -function returns the index (i relative) o-f the item
selected. A zero is returned i-f the ESC key is pressed

Procedure Ini t_Window_In-f o;

{This procedure initializes all the of data used by the
windowing routines}

IMPLEMENTATION

Procedure SetColor (Color: Byte)

;

{This procedure sets the forground color

Input: Color = Color to set forground to }

Begin
Foreground: =Color

;

Textcolor (Color)

;

End; Cof SetColor}

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybe:; , Inc.

Copyright 198" Sybe;-:, Inc. All rights reserved.
********************* Continue Edwards Excerpt ********************)

22?

(a-******************* Continue Edwards Excerpt *******************)

Procedure SetBackground (Col or: Byte)

;

{This procedure sets the background color

Input: Color = Color to set background to
}

Begin
Background: =Color;
Textbackground (Color)

;

End; Cof SetBackground 3-

Procedure Get_Dummy_Screen;
{This procedure changes Screen to point to a dummy screen area on
the heap}

Begin
If Screen_New <> Nil then

Begin
Screen_New": =Screen'";

Screen: =Screen_New;
End;

End; Cof Get_Dummy_Screen]

Procedure Get_Real_Screen;
{This procedure undoes the work o-f Get_Dummy_Screen>

Begin
It Screen_New <> Nil then

Begin
Screen_Temp"': =Screen_New"'"';

Screen: =Screen_Temp;
End;

End; Cof Get_Real_Screen>

Procedure Bui ld_Borders (Lines: Border_Type)

;

{Purpose:

This procedure builds a border around a window.

Input:

Lines: Single = Single line border
Double = Double line border

Output:
None }

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
***************#***-*•*- Continue Edwards Excerpt ********************)

230

(*#****************** Continue Edwards Excerpt a-*******************)

Const (Jpper_Le-ft: Array C0..1] of Char = (#218, 'J);

Upper_Right:Array C0..1] o-F Char = (#191, #187);
Lower _Le-ft: Array CO.. 13 o-f Char = (#192, #200);
Lower_Right: Array CO. . 1] o-f Char = (#217, #188);
Vertical: Array CO.. 13 o-f Char = (#179, #186);

Horizontal: Array C0..1] of Char = (#196, #205);

Var Index: Byte Absolute Lines;
XX,YY,I:Byte;
MG,H,V: Integer;
Begin
I: = l

;

With Active_Window" do

Begin
If (Flag and Flag_Relocate) = Flag_Relocate then

Upper_LeftCl]:=•'

J

else
Upper_Le-ftC13:=#201;

MG:=Menuground shl 8;

H: =MG+Byte (Horizontal C Index]
)

;

V:=MG+Byte (Vertical C Index 3
)

;

Screen-'-CYl , X 1 3 : = (MG) +Byte (Upper_Le-ft C Index 3)
;

Screen"CYl , X23 : = (MG) +Byte (Upper_Right C Index 3
)

;

Screen ••CY2 , X 1 3 : = (MG) +Byte (Lower_Le-f t C Index 3)
;

Screen"- CY2, X23 : = (MG) +Byte (Lower _RightC Index 3)
;

XX:=X1+1;
While XX < X2 do

Begi n

H I <= Length (Title) then
Screen--CY1,XX3: = (Foreground shl 8) +Byte (Ti tleC 1 3

)

+ Index shl 11

else
Begin
FillWord(Screen-"'CYl , XX3 , X2-XX ,H)

;

XX:=X2;
End;

XX:=XX+1;
I:=I+1;

End;

FiIlWord(Screen-CY2,Xl+13,X2-Xl-l,H);

(* Reprinted with extensive modi -fi cations from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission o-f Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
#************** Continue Edwards Excerpt ****************#**#)

231

(a-******************* Continue Edwards Excerpt ******************)

For YY:=Y1+1 to Y2-1 do
Begin
Screen •-•[YY, XI]:=V;

Screen--CYY,X23:=V;
End;

End; (of With}
End; -Cof Bui ld_Borders}

Funct i on Open_Wi ndow (X 1 , Yl , X2 , Y2: Byte; Fl ag : Byte;

Name: Window_Ti tie) :Byte;

{Purpose:
This -function opens a window on the screen and places a border
around it.

Input:

X1,X2,Y1,Y2 are the coordinates o-f the window to be opened.
Flag is a bit mask o-f functions allowed in this window
Name is the title o-f the window

Output:
Dpen_Window returns a byte as -follows:

= Window opened OK
1 = Invalid window coordinates
2 = Nat enough memory

i
_i

K'ar Block: Window_Link;
Line_Length,Window_Size, I: Integer;

Y, Borders: Byte;

Begin
If Acti ve_Window <> Nil then

If Acti ve_Window'-. Flag and Flag_Borders = Flag_Borders then

Bui ld_Borders (Single)

;

Line_Length:=(X2-Xi+l)
;

Borders: =Byte (Flag and Flag_Borders = Fl ag_Borders)

;

Window_Size: =Line_Length* (Y2-Y1+1) *2+Window_Fixed_Part

;

If (XI < 1) or (X2 > 80) or (Yl < 1) or (Y2 > 25) or

(X2-X1 < 2) or (Y2-Y1 < 2) then

Open_Window:=l
else if (MemAvail < Window_Size+l) and (NemAvail >= 0) then

Open_Window: =2
else Begin

GetMem (Block , Window_Size)

;

Block"-.Xl:=Xl;

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
#*********•******* Continue Edwards Excerpt ***#***********#****)

OT'j

(**************•****** Continue Edwards Excerpt ********************)

Block'. X2:=X2;
Block'-. Y1:=Y1;
Block'. Y2:=Y2;
Block'"". X:=WhereX;
Block'. Y:=WhereY;
Block' .Title: =Name;
Block'".Flag:=Flag;

Bl ock" . Menu_Index : =0;

Block""-. Menu_TopY: =0;

Block". Foreground: =Foreground+ (Background shl 4);

Block"-. Menuground:=Menuqround+ (Background shl 4);

Block". Back_l_ink:=Active_Window;
Acti ve_Window:=Block;
I:=l;

For Y:=Y1 to Y2 Do

Begin
Move (Screen'" EY, X 1] ,B1 ock-". Screen_ContentsC I]

,

Line_Length*2)

;

I : = I +Li ne_Length

;

End;

Window
(Xl+Borders,Yl+Borders,X2-Borders,Max ((Y2-Borders) , (Yl+Borders+1)))

;

If Borders = 1 then
Bui ld_Borders (Double)

;

GotoXY(l,l>;
Window_Count:=Window_Count + l

;

Bl oc k" . I D: =Wi ndow_Count

;

Open_Window: =0;

End;

End; {of 0pen_Window3-

Function CIose_Window: Boolean;

CThis function closes the currently active window.

Output:
Returns a True if there is no currently active window.

J

Var Block: Window_Link;
Line_Length,Window_Size, I: Integer;
Y, Borders: Byte;

Begin
If Acti ve_Window = Nil then

Close_Window: =True

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Rascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 19S7 Sybex, Inc. All rights reserved.
********************* Continue Edwards Excerpt ********************)

(****************** Continue Edwards Excerpt ***********#****)

else
Begin
Block: =Acti ve_Window;
Line_Length:=(Block'.X2-Block A .Xl+l);
Window_Si2e:=Line_Length*(Block-"-.Y2-Block'-.Yl + l)*2

+ Window_Fixed Part;

I:=l;

For Y:=Block'".Yl to BlockA.Y2 Do
Begin
Move (Block"-.Screen_ContentsC ID, Screen"-: Y, Block'"-. XI],

Line_Length*2)

;

I : = I+Line_Length;
End;

Acti ve_Window:=Block"-.Back_Link;
If Acti ve_Window = Nil then

Window(l,l,80,25)
else with Active_Window'- do

Begin
Borders:=Byte(Flag and Flag_Borders = Flag_Borders)

;

Window(Xl+Borders,Yi+Borders,X2-Borders,Max ((Y2-Borders)

,

(Yl+Borders+1)))

;

If Borders = 1 then
Bui ld_Borders (Double)

;

SetColor (Foreground and 7);

SetBackground (Foreground shr 4);

End;

GotoXY (Block--. X, Block -.Y);

FreeMem (Block , Window_Size)

;

Window_Count : =Wi ndow_Count-l

;

Close_Window: =False;
End;

End; {of Close_Window}

Functi on Save_Window: Window_Link;
CThis procedure saves off the current window ?< closes it

Output

:

Pointer to the saved window

Var W: Window_l_ink;

Begin
W:=Active Window;

(# Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
**************-*-•*•***** Continue Edwards Excerpt ********************)

234

(****************** Continue Edwards Excerpt ********************)

If Open_Window(W-\Xl, W'\Y1,W'-.X2,W'-.Y2,W-'-. Flag,

W

A
. Title) > then

Save_Window: =Ni

1

else
Begin
Active_Window'-. ID:=WA . ID;

Active_Window"-.Menu_Inde>::=W-"-.Menu_Index;

Acti ve_Window '•. Menu_TopY: =W"-. Menu_TopY;
W:=Active_Window;
Acti ve_Window:=W".Back_Link;
I-f Close_Window then;

Save_Window: =W;

End;~
End; {of Save_Window>

Function Restore_Window(W: Window_Link) : Boolean;

{This procedure re-creates a saved window on the screen}
Begin
SetCol or (W". Foreground and 7);

SetBackground (W. Foreground shr 4);

If Open_Window(Wrt
. XI,W\ Yl,bT.X2,fcr. Y2,W\ Flag, IxT. Title) > then

Restore_Window: =True
else

Begin
Active_Window'". ID:=WA . ID;

Ac t i ve_Window"". Menu_ Index : =W". Menu_ Index
;

Acti ve_Window". MenuJTopY: =W-'"'-. Menu_TopY;
W '". Back_Link:=Acti ve_Window;
Acti ve_Window: =W;

Restore_Window: =Close_Window;
End;

End; Cof Restore_Window}

Functi on Bet_Window (Which: Integer) : Boolean;
CThis procedure brings window "Which" to the top of the screen}
'Jar WindowP: Window_Link;

Function Move_Windows: Boolean;
War W: Window_Link;

Beg i n

W: =Save_Window;
If W = Nil then

Move_Windows: =True
Else

If W". ID <> Which then

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
********************* Continue Edwards Excerpt ********************)

(a-******************* Continue Edwards Excerpt ********************)

Begin
If Move_Windows then

Move_Wi ndows: =True
else

Move_Windows: =Restore_Window (W)

;

End
else

Begin
WindowP:=W;
Move_Windows: =False;
End;

End; Cof Move_Wi ndows}
Begin {Outer block of Get_Windowl-

Get_Window: =False;
WindowP: =Acti ve_Window;
While (WindowP <) Nil) and (WindowP- . ID <> Which) do

WindowP: =WindowP"' . Back_Link;
If WindowP = Nil then

Get_Window: =True
else if Active_Window"". IB <> Which then

Begin
Get_Dummy_Screen;
If Move_Wi ndows then

Get_Window: =True
else

Get_Window:=Restore_Window (WindowP)

;

Get_Real _Screen

;

End;

End; Cof Get_Window>

Function Move_Window (X , Y: Integer) : Boolean;
•CThis procedure moves the current window by "X,Y" locations!
Var W: Window_Link;

XC
;
YC,!_ine_Length,YI , Borders: Byte;

I : Integer;
Begin
W:=Acti ve_Window;
If W = Nil then

Move_Wi ndow: =True
else if (W--.X1 + X < 1) or (W".Y1+Y < 1) or (W'".X2+X > 80)

or (W--.Y2+Y > 24)

then Move_Window: =True
else Begin

XC:=WhereX;

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
*************#**-*-**** Continue Edwards Excerpt ********************)

(****•**#************* Continue Edwards Excerpt ******************)

YC:=WhereY;
Line_Length:=W-.X2-W'-.Xl + l;

I: = l;

For YI:=W'\Y1 to W"\Y2 do

Begin
Exchange <W'-.Screen_ContentsC I],Screen''[YI, IT. XI],

Line_Length*2)

;

I:=I+Line_Length;
End;

W". X1:=W-\X1+X;
W-\Y1:=W'-.Y1+Y;

W. X2:=W\X2+X;
W'-.Y2:=W\Y2+Y;
I: = l;

For YI:=W'-.Y1 to W'".Y2 do

Begin
Exchange (W". Screen_ContentsC I] ,Screen""CYI , W". X 1]

,

Line_Length*2)

;

I:=I+Line_l_ength;

End;

Borders: =Byte (W". Flag and Flag_Borders = Flag_Borders)

;

Window(W-'. Xl+Borders,W"'-.Yl+Borders,W-"-.X2-Borders,

Max ((W'.Y2-Borders) , (W-\ Yl+Borders+1))
)

;

GotoXY(XC,YC)

;

End;

End; {of Move_Window}

Procedure Wri te_Status (S: Lonq_String; Attrib: Integer)

;

{This procedure writes to line 25 of the display

Input: S = String to be written
Attrib = Video attribute byte to use

J

Var X:Byte;

Begin

Attrib! =Attrib shl 3;

For X:=l to 80 do
If X > Length (S) then
Screen-'[25,X]:=Attrib+$20

else
Screen-[25,X]:=Attrib+Byte(S[Xl);

End; {of Write Status}

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
****##**#*##*#******# Continue Edwards Excerpt **********#****•*****)

(******************** Continue Edwards Excerpt ********************)

Function Keyin (Checkit : Boolean) : Integer;
[This procedure reads in a key from the keyboard.

Input: Checkit = True if we should call Special_F'rocessing to check it
= False if we should not call Special _Processing

Output: The value of the key read
Function keys are returned with a in the low byte and the
extended scan code in the high byte

Vsr C:Char;
Key: Integer;
Done: Boolean;
Begin
Done: =Tru.e;

Repeat
Begin
Repeat until KeyPressed;
C := ReadKey;
If (C = #0) then

Begin
C := ReadKey;

Key : =Byt e (C) sh 1 8

;

End

else
Key:=Byte(C)

;

H Checkit then
Done:=TRLJE;

End

until Done;

Keyin: =Key;
End; Cot Keyin}

Function Process_Wi ndow_Menu. (Var Menu): Byte;

{This procedure will display and process a menu in the currently
active window.
The menu may be longer or shorter than the actual window.

Input: Menu - A pointer to a record with the following format:

Bytes 0-1: An integer giving the number of string
variables

Bytes 2-n: A series of Strinq variables.

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex. Inc. All rights reserved.
********************* Continue Edwards Excerpt ********************)

238

(****#*************** Continue Edwards Excerpt *****************)

Output: The function returns the index (1 relative) of the item
selected. A zero is returned if the ESC key is pressed

\Jar Menu_Count: "'Integer;

Menu_Item:"Long_String;
f1enu_0ff set: Integer Absolute Menu_Item;
Window_Size, I , J ,Key: Integer;

Done:Boolean;
Procedure GoUp;

•CThis procedure moves up to the prior item in the menu}
Begin
Menu_Of f set : =Menu_Of f set-Length (Menu_Item

A
) -1

;

I:=I-1;
If I < Active_Window". Menu_TopY then

Begin
GotoXY(l,l);
InsLine:
Wri te (Men u_ Item"")

;

Acti ve_Window •. Menu_TopY: =1

;

End;

End; {of GoUp)
Procedure GoDown;
CThis procedure moves down to the next item in the menu)

Begin
Menu_Of f set: =Menu_0f f set+Length (Menu_Item"") +1

;

I:=I+1;
If I = Acti ve_Window"" . Menu_TopY+Window_Size then

Begin
GotoXY(i,l);
Del Line;

GotoXYU ,Window_Bize)

;

Write (Mental tern")

;

Acti ve_Window"\ Menu_TopY: =Acti ve_Window ''. Menu_TopY+l

;

End;

End; Cof GoUp>
Procedure GoHome;
CThis procedure positions the cursor in the home position}
Begin
While I > 1 do

GoUp;
End; Cof GoHome}
Procedure GoEnd;

•CThis procedure positions the cursor in the end position}
Begi n

(# Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, bv permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
*****+********•*******• Continue Edwerds Excerpt *#*#########*####*#)

239

(******************** Continue Edwards Excerpt a***************-****)

While I < Menu_Count'" do
GoBown;

End; {of GoEndJ
Procedure Set_Highl ights;

Begin
With Acti ve_Window" do

Begin
If I = Menu_ Index then

Begin
Textcolor (Foreground shr 4);

Textbackground (Foreground and 7);

End
else i-f I = Abs (Menu_Index) then

Begin
Textcolor (Blue)

;

TextBackground (Black)

;

End

ei se
Began
Textcolor (Foreground and 7);

TextBackground (Foreground shr 4);

End;

End;

End; {of Set_Hi gh light s>
Begin
Menu_Count i =Addr (Menu)

;

Menu_Item: =Ptr (Seg (Menu) ,0f s (Menu) +2)

;

Window_Size: =Acti ve_Window""-. Y2-Acti ve_Window ' . Yl-1

;

If Acti ve_Window'' . Menu_Index <= then
Begin
ClrScr;
Active_Window"-. Menu_TopY:-l

:

For I:=l to Min (Menu_Count "", Window_Size) do
Beg i n

GotoXY (1,1);

Set_Highl ights;
Wri te (Menu_Item"'")

;

Menu_Of fset : =Menu_Of f set+Length (Menu_Item") +1

;

End;

If Window_Size = 1 then
Bui ld_Borders (Double)

;

End;

Menu_Item:=Ptr (Seg (Menu) ,0f s (Menu) +2)

;

(+ Reprinted with extensive modifications from Advanced Technigues in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex , Inc. All rights reserved.
********************* Continue Edwards Excerpt *********#**********)

>40

(******************** Continue Edwards Excerpt ********************)

For I:=l to Acti ve_Window" . Menu_Index-l do

Menu_Q-f f set : =Menu_0f f set+Length (Menu_ItemA) +1

;

I:=Max (Acti ve_Window"-. Menu_ Index , 1)

;

Active_Window'".Menu_Index:=Min (Acti ve_Window'". Menu_Index ,0)

;

Done:=False;
Write_Status('Choose item using the arrow keys ' AX' 8< '-"Y'

+ #179' Press ESC to abort '+

#179' Press '"-Q#217' when done ' foreground shl 4);

Repeat Begin
TextColor (Acti ve_Window""-. Foreground shr 4);

TextBackground (Acti ve_Window"\ Foreground and 7);

GotoXY(l,I-Active_Window'-.Menu_TopY+l)

;

Write(Menu_Item")

;

Set_Highlights;
GotcXYd , I-Active_Window"-.Menu_TopY+l) ;

Cur sor_S i z e (Cursor _Invisible, Mono)

;

Key : =Key i n (Tr ue)

;

Wr i te (Men u_ 1 1 em-'"-
)

;

Case Lo(Key) of

0: Case Hi (Key) of

72: If I > 1 then
GoUp

else
GoEnd;

80: If I < Menu_Count"" then
GoDown

else
GoHome;

73: For J:=l to Window_Size do

If I > 1 then
GoUp

;

81: For J:=l to Window_Size do
If I < Menu_Count''' then

GoDown;
71: GoHome;
79: GoEnd;

Else Beep (100)

;

End; {of case}
13: Begin

Process_Window_Menu:=I

;

Done: =True;

End;

(# Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
********************* Continue Edwards Excerpt ********************)

141

(******************** Continue Edwards Excerpt **#****************)

27: Begin
Process_Wi ndow_Menu: =0;
Done: =Tr Lie;

End;
Else Beep (100)

;

End; {o-f case}
End

Until Done;

With Active_Window'- do
Begin
Menu_Index:=I;
TextCol or (Foreground and 7);

TextBackground (Foreground shr 4);

End;

Wri te_Status ('

'
, Foreground)

;

Cu.rsor_Size(Cursor_Smal 1 , Mono)
;

End; {o-f Process_Window_Menu}

Procedure Init_Window_Inf a;

{This procedure initializes all the o-f data used by the
windowing routines}

Ve.r Regs: Registers;
Begin
Intr ($1 1 ,Regs)

;

Mono: =(Lo (Regs. AX) and $30) = $30;
I-f Mono then

Scr een : =Pt r ($B0G0 ,)

else
Screen: =Ptr ($B800,0)

;

Acti ve_Window:=Ni 1

:

Screen_Temp : =Screen

;

Window_Fixed_Part: =Sizeof (Window_Control_Block)
- Sizeo-f (Screen_Block)

;

If (MemAvail < 0) or (MemAvail > Sizeof (Screen_Array) +100) then

{ Changed per upgrade to accomodate TP 4.0 MemAvail }

New (Screen_New)
else

Screen_New: =Ni 1

;

Wi ndow_Count : =0;

End; {of Init_Window_Info)
BEGIN
END

.

(* Reprinted with extensive modifications from Advanced Technigues in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1937 Sybex, Inc. All rights reserved.
****#**************** End Edwards Excerpt ********************)

242

APPENDIX Z

SOURCE LISTING FOR UNIT XMODM

(*#***#***********#*********##****#***********
(**** XMODM. PAS ****)

(**** This is the unit that abstracts all packet and -file ****)

(**** transfers -for the Xmodem protocol. The interface is ****)

(***# derived from the Turbocom.com program in the first ****)

(#*** reference, however, the implementation has been rebuilt ****)

(**** for command and data transfer from the second source. ****)

(**#* ****)

(**** References: Edwards, C. C. , Advanced Techniques in Turbo *•***)

(**** Pascal, pp. 220-275, Sybex , Inc., 19S7 #***)
(**•** ***#)

(**** Krantz, D. , "Christensen Protocols in C," ****)

(**** Dr. Dobb's Journal, v. 10, no. 6, pp. 66-89, ****)

(**** June 1985. ****)

(**** ****)

(**** Modified by Nelson Arc ****)

(**** ****)

(**** Last Modification: Sep 89 ****)

(***********#**#**#*****#*******************#^

UNIT Xmodm;

INTERFACE

USES Miscpack, General, Wndow, Datacom, Support, Crt;

{ 13 Jun 89 - changed status variable to enumerated data type for
clarity changed Send_Record, Recei ve_Record to
independant procedures (callable by outside processes)

15 Jun 89 - eliminated global variables, moved formal declarations
for command packet building blocks into Interface
section

22 Jul 89 - added Respond_by_f i le

28 Jul 8^ - added a variable to control transfer monitor windows

12 Aug 89 - extended variable Moni tor_transf ers to include the
Update_status and the monitor window

24 Aug 89 - gated ReadAux and WriteAux to show only data characters
changed Respond_by_f l 1 e to function to obtain status

243

broke long resync problem with Command_X-f er syncing on
CAN character from master and resetting after 10 block
errors }

(a******-************* Start Edwards Excerpt ****#**************)

CONST
CEE = $43;

TYPE
Result = Rx_sync

,

Rx_done,
Rx_ACK,

Rx_old_ACK,
Rx_E0T,
Rx_junk

,

Rx_timeout

,

irs,Rx_error =>

Rx_lost_block_st

RxJMAK,
Rx~CAN,
Rx keypressed

,

T; _sync,
Tx_done,
Tx_ACK,
Tx_CEE_sync

,

T>:_E0T,

Tx_ti meant

,

Tx errors

.

Tx_NAK_sync
,

TxJMAK,
tjTcan,

Junk
,

;X_U-,..„,

Tx_keypressed

Waiting for sync
completed
Good R>: , within retrymax
Good Rx , old block
Good Rx , EOT char
Garbage on the line
nothing heard
Bad Rx , retrymax exceeded
Bad Rx , out of sync
Bad Rx, NAK sent
Good Rx, CAN char
Keypressed detected
Waiting for sync
completed
Good Tx , within retrymax
Good Tx , CRC sync rxd
Good Rx , EOT char
nothing heard
Bad Tx , retrymax exceeded
Good Tx , cksum sync rxd

Bad Tx , NAK received
Bad Rx , CAN char received
Trash on the receive line
Keypressed detected

VAR Suppress_ECT

,

Suppress_CAN,
Monitor Transfers boolean;

FUNCTION Sync_Recei ve (seconds : integer;
sync_character : char) : result;

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
**************+*•***-** Continue Edwards Excerpt **************•******)

244

(******************** Continue Edwards Excerpt ********************)

FUNCTION Recei ve_Record (VAR Buf : Buffer; blocksize : word;

seconds : word; expected_block : word;

VAR errors : byte) : result;

FUNCTION Sync_Send (seconds : word) : result;

FUNCTION Send_Record < VAR Bu-f : Buffer; blocksize : word;

seconds : word; block : byte;

VAR errors : byte) : result;

PROCEDURE Send_EOT (VAR status : result);

PROCEDURE Send_CAN;

PROCEDURE Transfer_File (Send : Boolean);

Function Comma.nd_X.fer (Send: Boolean; VAR buf : buffer;

BlockSize: Integer) : result;

FUNCTION Respond_by_f 1 le (Response : pathstring) : result;

Procedure Send_String (S : String);

Function 6et_response (BlockSize: Integer) : result;

Procedure string_to_buf (s : string; VAR buf : buffer);

•C Converts a string into an Xmodem buffer }

Function bu-f _to_string (VAR buf : buffer) : stringl28;

C Converts an Xmodem buffer into a string }

IMPLEMENTATION

CONST timeout = 256;

Retrymax = 10;

TYPE

Xmodem Frame = ARRAY CI.. 43 of Char;

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
********************* Continue Edwards Excerpt ********************)

24:HD

(****#*************** Continue Edwards Excerpt *******************)

Const Xmodem_Status: Array CRx__syn

'Rx_sync r

'Rx_done ' r

'Rx_ACK r

'Rx_old_ACK r

' Rx _EOT r

'Rx_junk
'Rx_timeout

' r

r

'Rx_errors
'Rx_lost_block f

'Rx_NAK

'Rx_CAN r

'Rx_keypressed ', c

'Tx_sync r
3 \.

'Tx_done ' r

'Tx~ACK r

'Tx_CEE_sync
'Tx~EOT

r

r
9 i

'Tx_timeout r

'Tx_errors r
5 \

'Tx_NAK_sync
' Tx _NAK

r

'Tx_CAN 9 V

'Tx_Junk

,

r

'Tx_keypressed ^
r

' 5
l

ic. . Tx_keypressed] of String[17]
Waiting for sync }

completed }

Good Rx , within retrymax }

Good Rx , old block }

Good Rx, EOT char 3-

Garbage on the line }

nothing heard
Bad Rx , retrymax exceeded
Bad Rx , out of sync
Bad Rx , NAK sent
Good Rx , CAN char
Keypressed detected
Waiting for sync
completed
Good Tx , within retrymax
Good Tx, CRC sync rxd
Good Rx, EOT char
nothing heard
Bad Tx , retrymax exceeded
Good Tx , cksum sync rxd
Bad Tx, NAK received
Bad Rx , CAN char received
Trash on the receive line
Keypressed detected

= (

}

>

}

>

CRC : Eoclean;
Xfer_File : File?

Status_ID, Momtor_ID:Byte;
Monitor_File:File of Char;

buffr : buffer;
monitor_gate : boolean;

PROCEDURE string_to_buf (s : string; VAR buf : buffer);

{ Converts a string into an Xmodem buffer }

VAR index : byte;

BEGIN
r0R index : = 1 TO Length (s) DO

buf C index] := s C index 3;

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
********************* Continue Edwards Excerpt ********************)

246

(******************** Continue Edwards Excerpt ********************)

FOR index := Length (s) + 1 TO 128 DO
but C index 3 := Char (NUL);

END;

FUNCTION bu-f_to_string (VAR buf : buffer) : stringl28;

C Converts an Xmodem buffer into a string }

CONST SPACE = ' ';

TILDE = "*'\

VAR s : string 128;

index : byte;

BEG I

N

w s — *—
' = .

FOR index := 1 TO 128 DO
IF but C index 1 IN C SPACE .. TILDE] THEN

s := s + buf [index]
ELSE s : = s + SPACE;

buf _to_string := s;

END;

FUNCTION ReadAux (seconds : word) : word;

VAR I : word;

Ch : char;

BEGIN
I:=seconds * 1000;

While ((not RS232_Avail) and (I > 0) AND (NOT Keypressed)) do BEGIN
Del ay (1);

DEC (I
)

;

End;

If RS232_AvaiI then BEGIN
Ch := RS232_In;
If (Monitor_ID >) AND (monitor_gate) then Begin
TextColor (Foreground)

;

TextBackground (Background)

;

Case Byte(Ch) of

NUL,BEL,BS,LF : { suppress };

*20 .. *FF : Write (Ch);

CR : Writeln;

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
a******************* Continue Edwards Excerpt ********************)

247

(******************** Continue Edwards Excerpt **#####***#*#**##**)

End; Co-f Case}
Write (Monitor_File,Ch) ;

End;

ReadAux := ORD(Ch)

;

End
else

ReadAux := Timeout;
End; Co-f ReadAux}

Procedure Wri teAux (Ch:Char)

;

Begin
RS232_0ut(Ch);
H (Monitor_ID >) AND (moni tor_gate) then

Begin
TextColor (Background)

;

TextBackground (Foreground)

;

Case Byte(Ch) of

NUL,BEL,BB,LF : { suppress }j

$20 . . SFF : Write (Ch);

CR : Writeln;
End; -Co-f Case}
Write <Monitar_File,Ch)

;

End; {begin}
End; {o-f Wr i teAux}

"'rocedure Send_Btring (S : String);

VAR index : word;

BEG I

N

IF Length (S) > THEN BEGIN
FOR index : = 1 TO Length (S) DO

RS232_0ut(S [index 3);

RS232_0ut (Char (CR));

END;

END;

FUNCTION Receive_Record (VAR Bu-f : Bu-f-fer; biocksize : word;

seconds : word; expected_block : word;
VAR errors : byte) : result;

(* Reprinted with extensive modifications -from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission o-f Sybex , Inc.

Copyright 1987 Sybex , Inc. All rights reserved.
***********#***•*-***-** Continue Edwards Excerpt ***********#**#*****)

248

(******************** Continue Edwards Excerpt ********************)

VAR
temp : word;

I : word;

checksum : byte;

Frame : Xmodem_f rame;
Ch : Char;

BEGIN
Ch:=Char(NUL);
errors := 0;

CASE ReadAux (seconds) OF

SOH : BEGIN
monitor_gate := -false; £ turn off monitor display 3

For I: =2 to 3 do
Frame CI] := Char (Lo(ReadAu:; (seconds)));

Checksum: =0;

monitor_gate := true; { turn on monitor display 3

For I:=l to BlockSize do

Begin
But CI3 := Char (La (ReadAu;-; (1)));

Checksums (Byte (Checksum) +Byte (BufCID)) MOD 256;

End;

monitor_gate := false; { turn o-ff monitor display }

Frame [4] := Char (Lo (ReadAux < 1)));

If (Byte(Frame[23; <> (255-Byte (Frame[33))) or

(Char (Cnecksum) <> FrameC43) then

Begin {Error on datacomm line}

INC(Errors)

;

WriteAux (Char (NAK)
)

;

Recei ve_Record := Rx_NAK;

End

else it Byte(FrameC23) = expected_biock then

Begin {Block numbers match}
Errors; =0;

Recei ve_R'ecord := R;;_ACK;

WriteAu;; (Char (ACK)
)

;

End
else if Byte(FrameC23) = (expected_block-l) then begin

Recei ve_Record := R>;_old_ACK;

INC (Errors);

WriteAux (Char (ACK)) {Old block resent... ACK it)

END

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Fascal by Charles Edwards, by permission of Sybex , Inc.

Copyright l^R"? Sybex, Inc. All rights reserved.
********************* Continue Edwards Excerpt ft*******************)

24?

(#*#***********#***** Continue Edwards Excerpt ******************)

else
Begin CWe lost a block}

Recei ve_Record := Rx_lost_block;
End;

End; CSOH)

CAN : Recei ve_record := R>:_CAN;

Timeout : Recei ve_record := Rx_timeout;

EOT : Recei ve_record := Rx_E0T;

else Recei ve_record := Rx_junk;

END; £ OF CASE }

END; {Recei ve_Record>

PROCEDURE Get_Buffer (VAR bu-f : buffer; blocksize : word);

VAR
Numread : word;

index : word;

BEGIN
BlockRead (Xfer_Fi le, bu-f, blocksize, Numread);
IF Numread < blocksize THEN
For index := Numread + 1 to blocksize DO

Buf Cindex] : = CHAR (ORD ()
)

;

END;

FUNCTION Send_Re-ord (VAR Bu-f : Buffer; blocksize : word;

seconds : word; block : byte;

VAR errors : byte) : result;

VAR
Numread,
Numwr i 1 1 en : wor d

:

index : word;
checksum : byte;

Ch : CHAR;

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 198? Sybex, Inc. All rights reserved.
********************* Continue Edwards Excerpt ************-********)

(**********#********* Continue Edwards Excerpt a*******************)

ending_char : char;
quit : boolean;

BEGIN
monitor_gate := -false; C turn o-f-f monitor display }

Errors := 0;

checksum := 0;

FOR index := 1 to blocksize DO

checksum := (checksum + ORD (Buf [index])) MOD 256;

Begin
IF blocksize = 128 THEN WriteAux (Char (SOH))

ELSE WriteAux (Char (SOH));;

WriteAux (Char (Block))

;

WriteAux (Char (255-Block));

monitor_gate := true; { turn on monitor display >

For index :=1 to blocksize DO

Wr i teAux (Buf E i ndex 3)
;

monitor_gate : = false; C turn off monitor display >

WriteAux (Char (checksum));

PurgeLine;
CASE ReadAux (seconds) OF

ACK : Send_Record := Tx_ACK;

NAK : Send_Reco^d := Tx_NAK;

CAN : Send_Record := Tx_CAN;

Timeout ; Send_Record := Tx_timeout;

ELSE Send_Record := Tx_Junk;

End; Cease}

IF Keypressed THEN Send_Record := Tx_keypressed;
END; [repeat/

End i

FUNCTION Sync_Receive (seconds : integer;
sync_character : char) : result;

(* Reprinted with extensive modifications -from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission o-f Sybex , Inc.

Copyright 19S7 Sybex , Inc. All rights reserved.
******#*****•******+** Continue Edwards Excerpt ********************)

251

(***#**#************* Continue Edwards Excerpt ***************#*)

VAR

I,

tries : integer;

BEGIN
PurgeLine;
Wri teAux (sync_character

)
; C try immediately }

tries := TRUNC (seconds /5 + 0.6); {convert seconds to cycles }

WHILE ((not RS232_Avail> and (tries >)

and (NOT keypressed)) do BEGIN
Wri teAux (sync_character

)

;

I := 1000;

While ((not RS232_Avail) and (I >) and (NOT keypressed)) do
Begin;

Del ay (5) ; C 10 ms * 1000 cycles = 10 seconds }

DEC (I)

;

End;

DEC (tries);

END;

IF Keypressed THEN
Sync_Recei ve := Rx_keypressed

ELSE IF RS232_Avail THEN BEGIN
IF RS232_peek <> Char (CAN) THEN Sync_Receive := Rx_sync
ELSE Sync_Receive := Rx_CAN;

END
ELSE Sync_Receive := Rx_timeout

;

END;

FUNCTION Sync_Send (seconds : word) : result;

VAR
quit : boolean;

Begin
quit ;= FALSE;

Repeat
PurgeLine;

(* Reprinted with extensive mod i f i cat ions from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 19S7 Sybex. Inc. All rights reserved.
*#**************#**** Continue Edwards Excerpt ********************)

(•a-******************* Continue Edwards Excerpt ********************)

CASE ReadAux (seconds) OF
CEE : BEGIN { checksum handshake }

CRC := TRUE;

Sync_Send := T>:_CEE_sync;

quit := TRUE;
END;

NAK : BEGIN C checksum handshake >

CRC := FALSE;
Sync_Send := Tx_NAK_sync;
quit := TRUE;

END;

Timeout : BEGIN
Sync_Send := Tx_timeout;
quit := TRUE;

END;

CAN : BEGIN
Sync_send := Tx_CAN;
quit := true;

END;

ELSE BEGIN
Sync_send := Tx_junk; {Garbage on the line}

END;

End; {CASE }

UNTIL (quit) OR Keypressed:
IF Keypressed THEN Sync_Send := Tx_Keypressed;

END;

PROCEDURE Send_EDT (VAR status : result);

VAR errors : byte;

BEGIN
IF (Suppress_EQT) THEN
status := Tx_done

ELSE BEGIN
Errors ;= 0;

REPEAT
WriteAux (Char (EOT))

;

INC (Errors)

;

UNTIL (ReadAux (10) = ORD (ACK)) OR (Errors = Retrymax)

(* Reprinted with extensive modi fi cations from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission o-f Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
****************-***** Continue Edwards Excerpt ********************)

253

(a******************* Continue Edwards Excerpt *******************)

IF Errors = Retrymax THEN
Status := Tx_timeout C timeout on EOT }

ELSE status := Tx_done;
END

END;

PROCEDURE Send_CAN;

BEGIN
IF NOT Suppress_CAN THEN BEGIN
WriteAux (char (CAN));

WriteAux (char (CAN))

;

END;

END;

Function Xmodem_Xfer (Send: Boolean; BlockSize: Integer) : result;
CThis procedure per-forms an Xmodem -file transfer

Input: Send - True to send a file
False to receive a file

BlockSize - The block size to use for the file transfer }

VAR ending_char : char;

Xf er_Type: String C6];

done,

Abort: Boolean;
Status : result;
Ch : Char;
Errors,
Settings,
Block Count : bvte;
I,

block,
i ndex

,

Blocks,

Numread

,

Error _Count : word;
Byte_Count: Longint;
bu.f : buffer;

Procedure Update_Status;
Var I : Integer;

(# Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
*************#*****-*-* Continue Edwards Excerpt ********************)

254

(******************** Continue Edwards Excerpt a*************-******)

Begin
I-f Monitor_ID > then begin

I-f Bet_Window(Status_ID) then;

For I: =2 to 5 do Begin
GotoXY(ll,I)

;

ClrEol;
Case I o-f

Write (Xmodem_StatusCStatus])

;

Write (Blocks);

Write (Byte_Count)

;

Write (Error_Count)

;

End; Co-f Case}
End;

I-f Get_Window(Monitor_ID) then;

END;

End; Co-f Update_Status}

Begin
I-f Monitor_Trans-fers THEN

Begin
I-f Open_Window(l ,8,80,24,Flag_Borders, 'Monitor Window')

ClrScr;
Writeln ('Opening monitor file');

Mon i tor _ I D : =Act l ve_Wi ndow "" .ID;

Assign (Mom tor _File, 'MONITQR.DAT')
;

Rewrite (Monitor_Fi le)

;

End

el se

Beg i n

Monitor_ID: =0;

End;

X-f er_Type: = ' Xmodem '

;

= them

{ Open the Status Window >

I-f 0pen_Window(40, 1 ,80,7,Flag_Borders, X-f er_Type) = then;

Status_ID:=Active_Window\ ID;

CI rScr

;

For i;=i to 5 do

Begin
GotoXY(l,I)

;

(* Reprinted with extensive modi -fi cations -from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission o-f Sybex , Inc.

Copyright 1987 Sybex , Inc. All rights reserved.
+***#**************** Continue Edwards Excerpt ********************)

£. .J _•

(A-******************* Continue Edwards Excerpt ********************l

Case I of
1 • Write ('Name :

'

)

;

Write ('Status :')

Write('Blocks :')

4: Write('Bytes : ')

5: Write('Errors :
'

)

End; Cof Case}
End;

RS_Eight_Bits; C make sure we can pass eight data bits }

Blocks:=0;
Byte_Count:=0;
Errors: =0;

Error_Count:=0;
Block_Count:=l;
Abort: =False;

If Send then
Begin {Send the file}
Status := Tx_sync; C Holding -for start }

Update_status;
Status := Sync_Send (10);

If Status = Tx_Keypressed then Ch := ReadKey;
Update_status;
IF Status = Tx_Keypressed THEN

{ keep status same }

ELSE IF NOT (Status IN ETx_CEE_sync , Tx_NAK_sync]) THEN BEGIN
Writeln ('No acknowledgement -from other side');
{Status ; = T>- _t i meout ;

}

Update_Status;
END

ELSE
BEGIN

done := false;
While not (Eof (Xfer_File)) AND NOT (done) do

Beg i n

Update_Status;
Get_Buffer (buf , blocksize);

status := Send_Record (Buf, Blocksize, 10, block_count,
errors)

;

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 198"7 Sybex , Inc. All rights reserved.
##**##**#########*#*# Continue Edwards Excerpt ************•********)

(******************** Continue Edwards Excerpt ********************)

CASE Status OF

Tx_ACK : BEGIN
Error_Count := Error_Count + Errors;

INC (Blocks);
Byte_Count : =Byte_Count+Bl ockSi z e;

INC(Block_Count>;
END;

Tx_NAK : BEGIN
INC(Error_count)

;

If Error_count >= retrymax then done := true;

END;

TX_timeout : BEGIN
INC (Error_count

)

;

It Err or_count >= retrymax then

done := true;

End;

Tx_CAN,
Tx_keypressed : BEGIN

done := TRUE;

END;

ELSE BEGIN
INC (Er r or_count)

;

If Error_count >= retrymax then

Begin
done t- true;

Status := Tx_errors;
End;

END;

END;

Update_Status;
End; {WHILE}

While KeyPressed do

Begin
Ch := ReadKey;
End;

END;

H Status = TX_ACK then Send_EOT (status)

ELSE Send_CAN;
END

(* Reprinted with extensive modifications -from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
********************* Continue Edwards Excerpt ********************)

257

(a-******************* Continue Edwards Excerpt ********************)

else
Begin {Receive -file}

Status: =Rx_sync;
Update_status;
Status := Sync_Receive (60, Char(NAK));

CASE Status OF

R;<_KeyPressed Begin
Abort := TRUE
Update_status
Ch := ReadKey;

End;

Rx_timeout

,

Rx CAN : BEGIN
Abort := TRUE;

Update_Status;
END;

ELSE Repeat
Status := Receive_Record (Bu-f , blocksize, 1,

Block_count, errors) ;

CASE Status OF

Rx_ACK : BEGIN
INC (Blocks);

Byte_Count:=Byte_Count+BlockSize;
INC (Block_Count);

BlockWnte(Xfer_File,Bu-f , blocksize);

END;

Rx_ junk

,

R;-:_timeout

,

R>:_01d_ACK : BEGIN
INC (Error_Count)

;

IF Error_Count > retrymax THEN
abort := TRUE;

END;

Rx_E0T : BEGIN
Status := Rx_EQT;

END;

ELSE BEGIN
Error_Count := Error_Count + Errors;
IF Error_Count > retrymax THEN abort := TRUE;

END;

END; {CASE}

(* Reprinted with extensive modifications -from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission o-f Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
#+**-**+*+********** Continue Edwards Excerpt ****#***********-****)

(******************** Continue Edwards Excerpt *•*******************:

Update_Status;
If not Abort then
While KeyF'ressed do
Begin
Ch := ReadKey;
Abort: =True;

Status: =Rx_keypressed;
End;

Until (Status = Rx_EOT) or Abort;

END; £ CASE }

If not Abort then Status: =Rx_done;
Update_Status;
If Status <> Rx_done then

WriteAux (Char (CAN)

)

else
WriteAux (Char (ACK)

)

;

End:

Xmodem_Xf er := status;
Close (Xf er_Fi le)

;

If (not Send) and (Abort) then
Erase (Xf er_Fi le)

;

{ Close the Status window }

RS_Restore (Current_COM); C restore comport settings to whatever
was selected before }

If Close_Window then:

If Monitor_ID > then

Begin
If CIose_Window then; { Close the monitor window if open }

Text col or (Foreground)

;

Textbackground (Background)

;

Close (Moni tor_Fi le)

;

Monitor_ID := 0;

End:

End; {of Xmodem Xfer}

Function Command_Xfer (Send: Boolean; VAR buf : buffer;

BlockSize: Integer) : result;

{This procedure performs an command/response exchange

Input: Send - True tc send a buffer
False to receive buffer

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
****************+**** Continue Edwards Excerpt ****+***************>

259

(********#*********** Continue Edwards Excerpt ********************)

BlockSize - The block size to use for the transfer

VAR ending_char : char;

Xfer_Type: String [18];

done,
Abort: Boolean;
Status : result;
Ch : Char;

Errors,
Settings,
Block Count : byte;

I,

inde>;

,

Blocks,
Numread

,

Error_Coun.t : word;

Byte_Count: Longint;

Procedure Update_Status;
\}ar I; Integer

;

Begin
If l

y!onitor_ID > then begin
If Get_Window(Status_ID) then;

For I: =2 to 5 do Begin
GotoXYdl ,1) ;

CI r Ecu
;

Case I of

2: Write (Xmodem_St at us [Status])

;

Write (Blocks)
;

Write (Byte_Count)

;

j; Wri te(Error _Count
)

;

End; Cof Case}
End;

If Get_Window(Monitor_ID) then;
END

;

End; Cof Upda.te_Sta.tus/

Begi n

If Monitor_Transfers THEN
Beg i n

If Open_Window(l ,8, 80,24, Flag_Borders, 'Monitor Window') = then;

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 19S7 Sybex, Inc. All rights reserved.
+**+**#******** Continue Edwards Excerpt *#**###*#*###**#***#)

260

(##*********#******** Continue Edwards Excerpt ********************)

ClrScr;
Writeln ('Opening monitor tile');
Moni tor_ID:=Acti ve_Window"\, ID;

Assi gn (Moni tor_Fi 1 e
,

' MONITOR. DAT '
)

;

Rewrite (Monito^_Fi Is)

;

Xfer_Type:= 'Command Transfer';
If 0pen_Window(40,l,80,7,Flag_Borders,Xfer_Type) = then;

Status_ID: =Acti ve_Window'\ ID;

ClrScr;
For I:=l to 5 do Begin

BotoXY(i,I);
Case I of

1 Writer ');

Write* 'Status
Write (' Blocks-

Write ('Bytes

Write('Errors

Co-f Case}

>
;

);

) :

End;

End;

End

else

Monitor_ID:=0;
RS_Eight_Bi ts; { make sure we can pass eight data bits }

Blocks := 0;

Errors := 0;

Byte_Count: =0;

Error_Count: =0;

Block_Count:=l;
Abort ;=False;
If Send then

Begin {Send the command]
Status := Tx_sync; C Holding for start }

Update_status;
Status := Sync_Send (10);

If Status = T>:_Keypressed then Ch := ReadKey;
Update_status;
IF Status = Tx_Keypressed THEN

{ keep status same >

ELSE IF NOT (Status IN [Tx_CEE_sync , Tx_NAK_sync 3) THEN BEGIN
Writeln ('No acknowledgement from other side');
{Status := Tx_timeout;}
Update_Status;
END

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Rascal by Charles Edwards, by permission of Sybex, Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
*********************** Continue Edwards Excerpt ********************)

261

(**********#********* Continue Edwards Excerpt ********************)

ELSE
BEGIN

done := false;

REPEAT
L)pdate_Status;

status := Send_Record (Bu-f , Blocksize, 10, block_count,
errors)

;

CASE Status OF

T>:_ACK : BEGIN
Error_Count := Error_Count + Errors;
Byte_Count : =Byte_Count+Bl ockSi ze;

done : = true;
END;

TxJMAK : BEGIN
INC (Error_count)

;

I-f Error_count >= retrymax then done := true;

END;

TX_timeout : BEGIN
INC(Error_count)

;

I-f Error_count >= retrymax then
done := true;

End;

Tx_CAN,

Tx_keypressed s BEGIN
Wri teln

(

'aborting '
)

;

done := TRUE;

END;

ELSE BEGIN
INC (Error_count)

;

If Error _count >= retrymax then
Begin
done := true;

Status := Tx_errors;
End;

END;

END; {Case }

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 19S7 Sybex, Inc. All rights reserved.
*****************#*+* Continue Edwards Excerpt *************•*******)

262

(*********##****#**** Continue Edwards Excerpt ********************)

UNTIL done;
While KeyPressed do

Begin
Ch := ReadKey;
End;

END;

Update_status;
If Status = TX_ACK then BEGIN
Send_EOT (status);

status := Tx_done;
END
ELSE Send_CAN;

END
else

Begin {Receive file}
Status: =Rx_sync;
Update_status;
Status := Sync_Receive (60, Char(NAK));

CASE Status' OF

Rx_KeyPressed : BEGIN
Abort := TRUE;

Update_status;
Ch := ReadKey;

End;

Rx_timeout

,

Rx_CAN : BEGIN
Abort := TRUE;

Update_Status;
END;

ELSE Repeat
Status := Recei ve_Record (Buf , blocksize, 10,

Block_count, errors);

CASE Status OF

Rx_ACK : BEGIN
Byte_Count:=Byte_Count+BlockSize;

END;

Rx_junk

,

Rx_timeout

,

Rx_Cld_ACK : BEGIN
INC (Error Count)

;

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 19S7 Sybex , Inc. All rights reserved.
******#*******#*****+ Continue Edwards Excerpt ********************)

?63

(a******************* Continue Edwards Excerpt ********************)

IF Error_Count > retrymax THEN
abort := TRUE;

END;

R>:_E0T : BEGIN
Status := Rx_E0T;

END;

ELSE BESIN
Error_Count := Error_Count + Errors;
IF Error_Count > retrymax THEN
abort := TRUE;

END;

END; {CASE}

Update_Status;
It not Abort then
While KeyPressed do
Begin
Ch := ReadKey;
Abort :=True;

Status: =Rx_keypressed;
End;

Until (Status = Rx_EOT) or Abort;
END; { CASE }

It not Abort then Status: =Rx_done;
Update_Status;
It Status <> Rx_done then

WriteAux (Char (CAN >

)

el se

WriteAux (Char (ACK)
)

;

End; { Receive >

Command_X-fer := status;

{ Close the status window }

C restore comport settings to whatever was selected be-fore }

RS_Restore (Current_COM)

;

H Monitor_ID > then { Close the monitor window }

Begin
I-f Close_Window then;

It Close_Window then;
Textcolor (Foreground)

;

Textbackground (Background)

;

Close (Monitor_Fi le)

;

Monitor_ID := 0;

(* Reprinted with extensive modi-f ications -from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 19S7 Sybex, Inc. All rights reserved.
+**************** Continue Edwards Excerpt #*******************)

264

(******************* Continue Edwards Excerpt ********************)

End;

End; {of Command Xfer>

Procedure Transf er_Fi le (Send: Boolean)

;

{This procedure initiates a -file transfer

Input: Send - True if we want to send a -file

False to receive a file

Var FileName : Long_String;
I , J: Integer;

Abort: Boolean;
status : result;

Beg i n

Abo"-t:=False;

If Open_Window (20, 16,60, 19, Flag_Borders, 'Name') = then;

ClrScr

;

Write ('File Name: ');

ReadlrH FileName);

If Close_Window then;

IF (Length (FileName) =) or (FileName = "'-p) THEN

{ do nothing }

ELSE BEGIN
For J:=l to Length (FileName) do

FileName CJ3 := UpCase(FileName [J]);

Assign (Xfer_File, FileName);

If Send then Begin
{$1-]

Reset (Xfer_File, 1);

{$ I +

}

If I0Resu.lt > then Begin
NoFi le(Fi leName)

:

Abort:

=

True;

End:

End

el se

Rewrite (Xfer_Fi le, 1);

If not Abort then status := Xmodem_Xfer (Send, 128);

END;

End; Cof Transfer File}

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex , Inc. All rights reserved.
#********•******#* Continue Edwards Excerpt ********•************)

26^

(************#**#**** Continue Edwards Excerpt *******************)

FUNCTION Respond_by_f ile (Response : pathstring) : result;

•CThis procedure provides the user a response contained in a -file

Input: Response - the complete path specification -for the -file

}

CONST Send : boolean = TRUE;

Var

Abort: Boolean;

Begin
Abort:=False;
Assign (Xfer_File, Response);

{$1-}

Reset (Xfer_File, 1);

{$1+}

If IOResult > then
Begin
NoFi le (Response)

;

Abort :=True;

End;

If not Abort then Respond_by_-f i le := Xmodem_Xf er (Send, 128)

ELSE Respond_by_f lie := Tx_CAN;
End; £ Respond_by_-f ile }

Function Get_response (BiockSize: Integer) : result;

{This procedure performs an Xmodem tile trans-fer

Input: Send - True to send a response
False to receive a series of responses

BlockSize - The block size to use for the file transfer

Statu5_ID, Monitor_ID must be seen by WriteAux, ReadAux

v'At ending_char : char;

Xfer_Type: String [6];

done.

Abort: Boolean;
Status : result;

(* Reprinted with extensive modifications from Advanced Techmgues in

Turbo Rascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
+*******-****•*-****• Continue Edwards Excerpt *##*####*#*#*#******)

Zoo

(#************•******# Continue Edwards Excerpt ********************)

Ch ; Char;
Errors,
Settings,
Block Count : byte;

I,

block,
index

,

Blocks,
Numread

,

Error_Count : word;

Byte_Count: Longint;
bu-f : buf-fer;

Display_Window_ID : byte;

Begin
Monitor_ID := Acti ve_Window"". ID;

Assign (Moni tor_Fi le, 'NUL');

Rewrite (Monitor_File);

{ Chance to current comms }

RS_Eight_Bits; { make sure we can pass eight data bits }

Blocks: =0;
Byte_Count:=0;
Errors: =0:

Error_Count: =0;

Block_Count: =1

;

Abort: =Fal se;

Begin {Receive -file}

Status: =Rx_sync;
Status := Sync_Receive (60, Char(NAK));

CASE Status OF

Rx _KeyPr essed : Beg i n

Abort := TRUE;

Ch := ReadKey;
End;

Rx_timeout

,

Rx_CAN : Abort := TRUE;

ELSE Repeat
Begi n

Status := Recei ve_Record (Bu-f, blocksize, 1,

Block_count, errors);

(* Reprinted with extensive modifications -from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission at Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
+***#************ Continue Edwards Excerpt ********************)

267

(******************** Continue Edwards Excerpt ******************)

CASE Status CF

Rx_ACK : BEGIN
INC (Blocks);
Byte_Count:=Byte_Count+BlockSize;
INC (Block_Count);

END;

Rx_junk

,

Rx_timeout

,

Rx~01d_ACK : BEGIN
INC (Error_Count);

IF Error_Count > retrymax THEN abort := TRUE;

END;

Rx_EOT : BEGIN
Status := Rx_EOT;

END

;

Rx_CAN : BEGIN
abort := TRUE;

END;

ELSE BEGIN
Error_Count := Error_Count + Errors;

IF Error_Count > retrymax THEN abort := TRUE;

END;

END: CCASE>

H not Abort then
While KeyPressed do

Begin
Ch := ReadKey;
Abort: =True;
Status: =Rx_keypressed

;

Fnrlcna
?

END { Receive }

Until (Status = Rx_EOT) or Abort;
END; { CASE }

H not Abort then Status: =Rx_done;
H Status <> Rx_done then

WriteAux (Char (CAN)

)

else
WriteAux (Char (ACK)

)

;

End;

Get_Response := status;

(* Reprinted with extensive modi -fi cations -from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission o-f Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
*****************-*-** Continue Edwards Excerpt ********************)

(***#*#************** Continue Edwards Excerpt a-*******-************)

C restore comport settings to whatever was selected before }

RS_Restore (Current_COM)

;

I-f Monitor_ID > then
Begin
Textcolor (Foreground)

;

Textbackground (Background)

;

Close(Morntor_File)
;

Monitor_ID := 0;

End;

End; C Get_response }

BEGIN
Suppress_E0T := FALSE;
Suppress_CAN := FALSE;

Moni tor_Transf ers := TRUE;

monitor_gate := -false; C don't display xmodem packet headers }

END.

(* Reprinted with extensive modifications -from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission o-f Sybex , Inc.

Copyright 1987 Sybex , Inc. All rights reserved.
*****+***+****•**•*•**** End Edwards Excerpt ***+****************)

26?

APPENDIX A

A

SOURCE LISTING FOR PROGRAM DISTRIB

}

I***)
(**** DISTRIB. PAS ****)

(*#** This is the main program -for the Master/Slave networked ****)

(**** computer system. The same program is used for both the ****)

(**** Master and Slave, with the -function being selected -from ****)

(**#*

(****
(****

(****

(****

(****

the command line as follows:

Master: Distrib Master (also allows program config

Distrib Server

Reference: Edwards, C. C. , Advanced Techniques in Turbo ****)

(**** Pascal, pp. 220-275, Sybex , Inc., 1987 ****)
(**** ****)
(+**# Heavily modified from the terminal emulation program *#**)

(**** found in the reference. Converted to a Turbo Pascal 4.0 ***#)

(**** program by Nelson Ard *#**)

(**** Last Modification: Sep 89 ***#)
(##***####*#*#*****#*#*****#*#******#*###*#*#*##**#*^

(* Modification history
12 Sep 89 - Replaced local RS232 write procedure with

DataCom. Send_String
*)

{*R+]

£*B+}

{*S+}
{$!+}

{$N-}

{Range checking on}

{Boolean complete evaluation on}

[Stack checking on}

CI/0 checking on}

{No numeric coprocessor}
•C*M 65500,16384,65500} {Modified default stack and heap}

Program Distnb;

Uses
Dat acorn,
Crt,

Dos

,

Wndow,
Xmodm,
Di r ecto 1^

,

General

,

270

ErrorCod

,

Support

,

Printer,
Parser, Spawn, mi sc pack;

(***************** Start Edwards Excerpt *******************)

Procedure Save_Pi le (D: Boolean)

;

CThis procedure asks the user i-f he wants to save a. changed
con-figuration I-f so, it writes the appropriate -file

Input D: True i-f saving de-fault values
False i-f saving phone -file

>

Var Con-f igure:Fi le o-f Byte;

Phone: Phone_Record;
J: Integer

;

Begin
If Dpen_Window(50,9,67,12,Flag_Borders, '

') = then;

ClrScr;
I-f D then

Write ('Save defaults?')
else

Write ('Save this entry'!'');

I-f Yes ('Save') then

Begi 1-
!

ClrScr;
Write ('Saving. .

.

'
)

;

It D then
Begin
Assign (Con-f igure, Defaults. Def ault_Name)

;

{$1-}

C$I + j

Reset (Configure)

;

If IOResult > then
NoF i 1 e (Def au 1 1 s . Def au 1 1 _h4ame

)

else
Beg i n

ClrScr;
Writeln('If you want to use these parameters');
Write ('You must end and restart Distrib');
OK

('

')

;

If Close_Window then;

End;

End

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 19S7 Sybex, Inc. All rights reserved.
*********#***•******** Continue Edwards Excerpt *****************•***)

271

(**********#********* Continue Edwards Excerpt a*******************)

else
Beg i n

•C$R-]

Assign (Phone_File, 'DISTRIB. PHN '
)

;

Rewrite (Phone_Fi le)

;

For J:=l to Phone_Mena'. Length do
Begin
Phone. Name: =Phone_Menu"-. Names [J]

;

Phone. Phone_Bata: =Phone_Stu-f -f ^C J]

;

Write (Phone_Fi le, Phone)

;

End;

Close(Phone_File)

;

{*R+}
End;

End;

I-f Close_Window then;

End; Cof Save_File]

{$V-}

Procedure Wnte_AUX_String (S : STRING);

CThis procedure writes a string out to the currently selected COM port]
VAR index : byte;

BEGIN
FOR index : = 1 TO Length (S) DO BEGIN

RS232_0u.t(SC index]) ;

END;

END;

C$V+}

Procedure Dial_Phcne (I ; Integer; Demon_Dial : Boolean)

;

{This procedure dials a phone entry. The demon dial -feature is the
only -feature of Distrib which explicitly assumes the presense of

a Hayes or Hayes compatible modem.

Input: I - The index into the phone array that we are to dial

Demon_Dial - true i-f we are to repetitively dial until an

answer is obtained

\>ar Coun t : Integer;
S: Long_String;
Ch:Char;
{Connected: Boolean;

}

(* Reprinted with extensive modifications -from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
##************* Continue Edwards Excerpt #*##*####****###*##*)

T7^

(*#***************#** Continue Edwards Excerpt ******#*************)

J: Integer;
Time: Integer;

quit : boolean;

Procedure Flush_Buf f er

;

Va.r Ch:Char;
Begin
Repeat Begin

Ch := RS232_In;
If not RS232_Avail then Delay(200);
End

Until not RS232_Avail;
End; {of Flush~Bu-ff erJ

Begin
RS_Cleanup;

CfR-J

With P'hone_Stuf f '"'[I] do

Begin
RS_ Initial i ze (De-faults. Def au.I t_Modem , Phone_Baud , Phone_Pari ty

,

Phone_Stop,F'hone_Lenqth) ;

Echo: =F'hone_Echo;

Last_Dial : =1

;

If Demon_Dial then

Beg i n

DataCom.Send_String
(

'A7Z '+Char (CR)
)

;

Fiush_Buf f er;

Delay (1000; ; {Give modem time to reset}

DataCom.Send_String('ATV1Q0E1S7= '+Char (Dial _Deiay) +Char (CR))

:

If 0pen_Window<15,09,65, 17 ,Flag_Borders, 'Dial '

) = tnen:

ClrSc 1":

Wr i tei n
(

' Name :
'

, Phone_MenuA . Names [I])

;

Writeln ('Attempt :
'

) ;

Wri teln !' ' Status
Wri tel n

(

' Started
Writeln ('Dialed at

Writeln ('Elapsed

' ,Get_Time)

;

'

) ;

')
:

Write('Options : ESC to abort... any other key to cycle');
Flush_Buffer;
Count: =0;

quit : = False;

(* Reprinted with extensive modifications -from Advanced Techniques in

Turbo Rascal by Charles Edwards, by permission of Sybex, Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
********************* Continue Edwards Excerpt *****#***+****+*-****-:

{******************** Continue Edwards Excerpt *******************)

Repeat Begin
Count : =Count+l

;

Time:=0;
GotoXY(12,2)

;

Write (Count)

;

6otoXY(12,3)

;

ClrEol;
Write('Dialing ')

;

6otoXY(12,5);
Write(Get_Time)

;

DataCom.Send_String (Phone_Pre-f ix+Phone_Stu-f -f'"CI].Phone_Number
+Char(CR));

Flush_Bu-f-fer;

J:=0;
Delay (2000); {Give time to dial the phone}
While not (Key-Pressed or RS232_Avail) do

Begin
Delay(lO); {This delay is correct -for the PC or XT,

it may have to be changed for an AT or

-faster box}
J: =J+1:

If J = 100 then
Bee; n

Time: =7ime-*-l

;

GctoXV(i2.6?

;

ClrEol;

Write (Ti me
5

" Seconds ') ;

J: =0;

Enor

Encr

I
f KeyPressed then
Begin
Ch e = ReadKey:
It KeyPressed then

Ch ; = ReadKey;

H Ch = Char (ESC) then
Begin
S:= 'Aborted

'

;

quit := True;

End

el se

S: = 'Cvcl inq '

;

(* Reprinted with extensive modifications -from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex , Inc. Ail rights reserved.
************+***• ++*•* Continue Edwards Excerpt *****#**##*****####*)

274

(#******#************ Continue Edwards Excerpt *#******************)

Data.Com.Send_String(Char (Ch)
)

;

Delay (2000)

;

If RS232_Avail then Flush_Bufferj
End

else
Begin
S:=' ';

Repeat Ch := RS232_In until Ch = Char(LF);
Repeat Begin

Ch := RS232_In;
If Ch > Char (US) then

S:=S+Ch;
End

until Ch = Char (LF)

;

End;

BotoXV(l2,3);
ClrEol;
Wri te(S>

;

If not Connected then Delay (5000);
End

Until Connected OR quit;

For Count :=1 to 10 do Beep (500)

:

It Close_Window then;

c_nu

el se

DataCom, Send _St ring (Phone_Pref ix+Phone_Stuf f
•'"'[

I] =. Phone_Number+
Char (CR) >;

{$R+}
End; {of Dial_Phone}

Procedure Dial i ng_Di rectory;
CThis procedure allows the user to dial or modify any o-f the entries in

the phone array}
War I , J; Integer;

Function Get_Dial: Integer:

Begin
If 0pen_Window(24,5,56 ,Min (6+Phone_Menu "•. Length ,17) ,Flag_Borders ,

'Phone List') = then;

Get_Dial : =F'rocess_Window_Menu (Phone_!v
teriu'"') ;

It Close_Windo^ then;

End; {of Bet Dial!:

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybe>: , Inc.

Copyright 1967 Sybex , Inc. All rights reserved.
******.*******+-**+*.».*+ Continue Edwards Excerpt ***************»-****)

27S

(******************* Continue Edwards Excerpt ******************)

Begin
If 0pen_Window(36,5,44,ll,Flag_Borders, 'Choice') = then;
I: =Process_Window_Menu (Dial_Menu)

;

I-f Close_Window then;

Case I of

0; ; -CESC. . .No Choice}
1,2: Begin -CDial or Demon Dial}

J:=6et_Dial;
I-f J > then

Dial_Phone(J,I=2);
End;

3: Begin {Modify}
I:=Get_Dial;
I-f I > then

Modify_Entry(I)

;

End;

4: Begin {Delete}
I-f Phone_Menu"'-. Length = 1 then

Begin
I-f 0pen_Window(45,9,67,12,Flag_Borders, '

') = then;
ClrScr;

Write <
'Cannot delete last entry');

OK (
'

'

)

;

I-f Close_Window then;

End
else

Begin
I :=Get_Dial

;

I-f I > then
Begin
01d_Phone_Menu:=Phone_Menu;
01 d_Phone_Stuf f : =Phone_Stuf f

;

J:=Phone_Menu""-. Length;
GetMem (Phone_Stu-f -f , (J-l) *Sizeof (Phone_Params))

;

6etflem(Phone_Menu, (J-l)*Sizeo-f (Phone_Name)+2)

;

Move(01d_Phone_Menu.-" , Phone_Menu""-, (1-1) *

Sizeof (Phcne_Name)+2)

;

Move (01 d_Phone_Stu-f -f
"

, Phone_Stuf -f
'•

, (I - i) *

Sizeo-f (Phone_Params))

;

I-f I < J then
Begin
Move (01 d_Phone_Menu/"-. Names C 1 + 1]

,

Phone_Menu"'. NamesC I]

,

(J-I) *Sizeo-f (Phone_Name))
;

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 19S7 Sybex, Inc. All rights reserved.
******+***•***+**+*** Continue Edwards Excerpt **##***********#***#)

ilb

(***************#**** Continue Edwards Excerpt *#*******#**********)

Move(01d_Phone_Stu-f-f'-CI + 13,Phone_Stu-f-f'
s

CIj,

(J-I) *Sizeof (Phone_Params>)

;

End;

Phone_Menu'". Length: =J-1

;

FreeMem(01d_F'hone_Menu, J*Sizeof (Phone_Name)+2)

;

FreeMem(01d_Phone_Stuff ,J*Sizeo-f (Phone_Params))

;

Save_Fi le (False)

;

End;

End;

End;

5: Begin {Add}

•C*Rr*p--

01 d_Phone_Menu: =Phone_Menu;
01 d_Phone_Stuf i : =Phone_Stuf f

;

GetMem (Phone_Stuf f , (Phone_Menu/*. Length+D*
Sizeof (Pho.ne_Params)) ;

Get!"!em (Phone_Menu, (Phone_Menu'"-. Length+1 > *

Sizeo-f (Phone_Name) +2)

;

I : =01d_Phone_MenuA . Length;
hove (01d_Phone_Menu'' , Phone_Menu"-, I*Sizeof (Phone_Name) +2)

;

Move(Qld_Phone_Stuf f''-,Phone_Stuff
''

-, I*Sizeof (Phone_Params))

:

I:=I+1;
Phone_MeriU'"-, Length : =1

;

Phone_Menu'' . NamesC I]: = '... To be provided... ';

Move(Defaults.Default_Phone,Phone_Stuf-f A CI],
Sizeo-f (P'none_Params))

;

Modi-fy_Entry- I)
;

FreeMem (01 d_Phone_Menu, (1-1) *Sizeof (Phone_Name) +2)
;

FreeMem(01d_Phone_Stuff , < 1-1 >*Sizeof (Phone_Params))

;

•c*r+:

End;

End; {of Case]

End" {of Dial ing_Di rectory}

Procedure Dirs;

{ Replacement directory }

CONST
Start : integer = 5;

Finish : integer = 20;

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.

Copyright 1937 Sybex, Inc. All rights reserved.
****************+•*•*+* Continue Edwards Excerpt **********+*********)

277

(#****•************** Continue Edwards Excerpt a-****************-***)

VAR
error : integer;
Dirlnfo : Dos. SearchRec;
ca

>

Mask

,

Option : string;
Directory_f ound : Boolean;
FromLine : integer;

Ch : Char;

Begin
GetDir (0,S)

;

H Open_Window(l , Start, 80, Finish, Flag_Borders,S) = then;
ClrScr;
IF Qpen_Window (5, Start + 5, 70, Start + 7, Flag_Borders,

'Mask^ *.* is de-fault') = THEN;

GotoXY (1,1);

Read In (Mask)

;

IF Length (Mask) = THEN Mask := '*.*';

If Close_Window then;

ClrScr;
IF Open_Windcw (5, Start + 5, 70, Start + 7, Flag_Borders,

'Options^') = THEN;

GotoXY (1,1);

Write ('[none = dir (Mask), "w" = dir (Mask) /w] ');

Read In (Option)

;

I-f Close_Window then;
ClrScr;
IF Length (Option) = THEN BEGIN
GotoXY (1,1);

ShowDir (Mask, 1, 13, error);

END
ELSE CASE OptionEll o-f

'w', *W : BEGIN
GotoXY (1,1)

;

ViewDir (Mask, 1, 13);

END;

END; {CASE)
GotoXY (1, 13);

Write (

'Finished. . .Press any key');
Ch := ReadKey;
I-f KeyPressed then Ch := ReadKey;
If Cicse_Window then;

End; (of Dirs)

(* Reprinted with extensive modi -fi cations from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybe;: , Inc.

Copyright 1987 Sybex , Inc. All rights reserved.
#*#*****+***•**•***- Continue Edwards Excerpt ********+*****•******)

278

(***#**************** Continue Edwards Excerpt *******************)

Procedure Change_DC_Parameters;
{This procedure allows the user to choose -from a list o-f speed,
parity, word length, and stop bit con-figurations}

War I : Integer;
Beg i n

It 0pen_Window(67,l,79,23,Flag_Borders, 'Baud-P-L-S') = then;

ClrScr

;

I:=Process_Window_r1enu (Communications_Menu)

;

I-f I > then
Begin
RS_Cleanup;
With Commu.nicatioris_Stu.-f -f [I] do

Begin
RS_Ini tial ize (Current_Com, Speed , Parity, Stop , Length)

;

End;

End;

I-f Close_Window then;

End; -Cot Change_BC_Parameters}

Procedure Hangup;
{This procedure hangs up the Hayes compatible modem}
War ChrChar;

Beg i n

Repeat Begin
While RS232_Avail do Ch := RS232_In;
Delay (500)

;

End

Until not RS232_Avail;
DataCom.Send_String ('+++

'
)

;

Delay (2500)

;

DataCom. Send_Stri ng
(

' ATHO '+Char (CR)
)

;

Delay (1000)

;

While RS232_Avail do Ch := RS232_In;
End; Co-f Hangup}

Procedure Dos_Shel 1

;

[This procedure opens a window and spawns a DOS command processor}
Var Prog , Par am, Dir: String;

I : Integer;

(* Reprinted with extensive modi -f ications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission o-f Sybex . Inc.

Copyright 19B7 Sybex , Inc. All rights reserved.
•*+***********..-*..*-* Continue Edwards Excerpt *******************-)

27?

(******************** Continue Edwards Excerpt ********************)

Begin
Prog : =Fi nd_Envi ronment

(

' COMSPEC '
)

;

If Length (Prog) <> then BEGIN

Param:=' ';

H 0pen_Window(40,5,60,8,Flag_Borders, 'DOS') = then;

ClrScr;
Writeln ('Opening Dos Shell');
Write ('Use EXIT when done');
OK (

"
)

;

If Close_Window then;

If 0pen_Window(l,l,80,25,0,
'

') = then;

ClrScr;
SetDir (0,Dir)

;

Exec (Prog, Param)

;

System. ChDir (Dir)

;

if doserror <> THEN BEGIN
If 0peri_Window(40,i,75,3,Flag_Borders, 'DOS Error') = then;

ClrEol;
Writeln (Error_CodeCDosError])

;

Delay (2000);

If Close_Window then;

END;

H Close_Window then;

END
ELSE BEGIN

If 0pen_Window(35, 10,75, 13, Flag_Borders, 'Error ') = then;

ClrEol

:

Writelnf' Unable to open DOS shell');

Write(' ''COMSPEC' not found in environment');
OK (

' '
) =

If Close_Window then;

END;

End; Cof Dos Shell:

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
********************* End Edwards Excerpt #**#****************)

FUNCTION Operator_input (Title : Window_title;
Prompt : PathString) : PathString;

VAR Response : PathString;

BEGIN
IF Open_Window (5, 10, 75, 13, Fiag_Borders, Title) = THEN
BEGIN

ClrScr;

2S0

Writein (Prompt)
;

Read In (Response);

Operator_Input := Response;
IF Close~Window THEN;

END
ELSE Operator_Input := ';

END;

PROCEDURE Operator_message (Title : Window_title;
Message : PathString);

BEGIN
IF Open_Window (40, 10, 80, 13, Flag_Borders, Title)

ClrScr;
Writein (Message);

END
END;

THEN BEGIN

FUNCTION Process_command : result;

CONST Receive : boolean = FALSE;

Transmit : boolean = TRUE;

VAR
i nde; byte;

Stnngl28;
Response_type;
Stringl23;
Response_type:
Stringl28:'

Response
Restype
Error_msg
Err type-

Prompt
bu-f i but-fer;

send ; boolean;
Server _ID : byte;

status : result:

Ch : char;

finished : boolean;
debugging : boolean;

BEGIN
debugging := FALSE;
finished := FALSE;

IF Open_Window (1, 1, 80, 7, Flag_Borders, 'Remote Server')
ClrScr

;

Server_ID := Acti ve_Window'. ID;

For index := 1 TO 4 do BEGIN
GctoXY (1, index);

CASE index OF

1 : Write ('Server Version 1.0');

2 ; Write ('Function : Initializing');

= THEN;

Write ('Status Awaitinq Command');

?fl'81

4 : Write ('Command : ');

END: { CASE }

END;

Send := FALSE;

Redirection := true;

CSend_string (':;modem st test.tst ') ;}

IF Get_Window (Server_ID) THEN;

GOTOXY (12, 2);

Write ('Getting Command');
REPEAT

status := Command_X-f er (Receive, bu-f , 128);

UNTIL (status = R>;_done) OR (status = R::_keypressed)
;

IF Get_Window (Server_ID) THEN;

Process_command := status;
IF (status = R>;_keypressed) AND NOT (debugging) THEN BEGIN

IF Close_window THEN;

WHILE keypressed DO
Ch := readkey;

EXIT;

END;

GOTOXY (12, 2);

Write ('Parsing Command ')

;

GOTOXY (12, 3);

Write ('Executing Command ');

GOTOXY (12, 4)

;"

IF debugging THEN
String_to_bu-f (Operator_Input ('Command', 'server command?'),

buf)
;

Write (bu-f_to_string (but));

Parser_main (buf _tc_string (buf), Response, Restype,
Error_msg, Errtype, Prompt);

CASE Errtype OF

strng : BEGIN
IF Length (Error_msg) > THEN BEGIN

string_to_bu-f (Error_msg, bu-f);

REPEAT
status := Command_X-fer (Transmit, bu-f, 128);

UNTIL (status = Tx_done)

OR (status = T>;_keypressed)

OR (status = T;:_CAN)
;

Process_command := status;
CASE status OF

282

Tx_keypressed : BEGIN
IF Close_window THEN;

WHILE keypressed DC

Ch := read key;
•finished := TRUE;

EXIT;
END;

Tx_CAN : BEGIN
finished := TRUE;

END;

END; {CASE)
END; CIF}

END;

file_type : BEGIN
status := Xmodm. Respond_by_-f i le (Error _msg);

END;

nothing : BEGIN
END;

END; CCASEJ

IF NOT ((-finished) OR (status = Tx_CAN)) THEN

CASE Restype OF

strng : BEGIN
string_to_bu-f (Response, but);

REPEAT
status := Command_Xf er (Transmit, bu-f , 12S);

UNTIL (status = Tx_done)

OR (status = Tx_keypressed)

OR (status = Tx~CAN);

Process_command := status;
CASE status OF

Tx_keypressed : BEGIN
IF Close_window THEN;
WHILE keypressed DO

Ch := read key;
finished := TRUE;
EXIT;

END;

Tx_CAN : BEGIN
finished := TRUE;

END;

EN^: (CASE)

END

no-

file_type : BEGIN
status

END;

= Xmodm.Respond_by_f ile (Response);

nothing BEGIN
END;

END; { CASE 3-

IF NOT -finished THEN BEGIN
IF Get_Window (Server_ID) THEN;

GOTOXY (12, 2);

Write ('Forwarding Prompt');

BOTDXY (12, 3);

Write ('Command Complete');
GOTOXY (1,4);
Write ('Prompt :

'

)

;

GOTOXY (1, 11);

Write (Prompt)

;

string_to_bu-f ("tl + Prompt, buf);

REPEAT
status := Command_X-fer (Transmit, buf, 128);

UNTIL (status = T;-:_done)

OR (status = Tx_keypressed)

OR (status = Tx_CAN)

;

Send_CAN;
WHILE keypressed DO

Ch := read key;
Process_command := status;
IF Get_window (Server_ID) THEN;

END;

IF Clcse_window THEN;

END;

(#****#*#*#***####**#*## Start Edwards Excerpt ********************]

C 1 Sep 89 global variables eliminated }

CONST Comms_Nenu
Comms Fns

integer = 9;

ARRAY CI. .93 OF STRING C

' Initialize port
'Connect to current port
'Disconnect current port
'ZCOPY file to remote
'ZCOPY -file -from remote

24 3 = (

(# Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
******+****+********* Continue Edwards Excerpt *#******************)

284

(************#******* Continue Edwards Excerpt ******************)

'Get machine status ',

'Login to remote machine ',

'Reset remote server ',

' (ESC) Exit ');

Comms_Stat_Menu : integer = 7;

Comms_Stat : ARRAY C 1..7 3 OF STRING C 16]

'Comm Port
'Speed

'Word Length
'Parity
'Stop Bits
'Function
'Status ');

= (

PI!UNCTION Comms -function : result;

CONST Receive : boolean = FALSE;

Transmit : boolean = TRUE;

VAR

I,

Server_ID,
Save_Window,
Status_Window,
Remote_Window,
Function_Window : Byte;

Verbose ; boolean;
quit : boolean;
List : EquipmentListType;

Procedure Update_Status (Fn , Status : string);

VAR J : Integer;

BEGIN
H Get_Window (Status_Window) THEN;

FOR J := 1 to Comms_Stat_Menu DO BEGIN
GoToXY (18, J);

ClrEOL;
WITH Comport C Current_COM] DO
CASE J OF

1 : Write (Current_COM) ;

2 : Write (Speed_Nsg CORD (Speed) + 1]);

(* Reprinted with extensive modi -fi cations -From Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission o-f Sybex , Inc.

Copyright 1^87 Sybex, Inc. All rights reserved.
*#******************* Continue Edwards Excerpt ********************)

(#************#****** Continue Edwards Excerpt a-*******************)

3 : Write (Length_M5g[Length-4]);

4 : Write (Pari ty_Msg[Min (ORD (Parity)+l, 3)]);

5 : Write (Stop_MsgC Stop + 1]);

6 : Write (Fn) ;

7 : Write (Statue)

;

END; { CASE }

END;

IF Get_Window (Function_Window) THEN;

END; { Update Status }

Procedure Reset_remote;
•C This procedure -forces the remote server to return to the
command receive mode}

BEGIN
Llpdate_Status ('Resetting', 'Please wait. . . ');

Xmodm.Send_CAN;
delay (500);

Xmodrn. Send_CAN;
delay (500);

Xmodrn. Send_CAN;
delay (500);

Xmodrn. Send_CAN;
delay (500);

END;

Function Remote_Command (Command : Stringl2S) : boolean;

VAR Ch : char;

status : result;
buf : buffer;

Function stop_case (status : result) : boolean;

BEGIN
5top_case ;= < status = Rx_keypressed)

OR (status = Rx_CAN)

;

COR (status = Rx_done);J-

END;

BEGIN
IF Verbose THEN Writeln ('sending command');
string_to_buf (Command , buf);

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 19S 7 Sybex , Inc, All rights reserved.
********************* Continue Edwards Excerpt ********************)

286

(-a-******************* Continue Edwards Excerpt a-*******************)

REPEAT
status := Ccmmand_Xfer (Transmit, bu-f , 128);

UNTIL (status = Tx_done) OR (status = Tx_keypressed);

CASE status OF

Tx_CAN,
Tx_ keypressed : BEGIN

Update_Status (", 'Aborted');
IF Get_Window (Remote_Window) THEN;

WHILE keypressed DO
Ch := readkey;

Remote_Command := FALSE;
END;

Tx_done : BEGIN
Xmodm. Monitor_transf ers := FALSE;

IF Verbose THEN Writeln ('Getting response');

REPEAT
status := 6et_Response (128);

UNTIL stop_case (status)

;

CASE status OF

R;-:_ keypressed :

BEGIN
Writeln
('Aborted by user waiting for response');

delay (1000);

WHILE Keypressed DO

Ch ;= readkey; C clear the keypress }

Remote_Command := FALSE;

END;

Rx_done,
Rx_CAN :

BEGIN '. normally the signal to turn
the link around fo>- the next
command }

Remote_Command := TRUE;

END;

END; { CASE }

END;

END; £ CASE >

END; { Remote Command }

(* Reprinted with extensive modifications -from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex , Inc. All rights reserved.
******************-#** Continue Edwerds Excerpt *******•*************)

287

(******************** Continue Edwards Excerpt ********************)

Procedure Rlogin;

VAR quit : boolean;

Command : String 128;

buf : buffer;

BEGIN
quit := FALSE;

Update_Status ('Login to remote', ''
);

IF Open_Window (1, 1, 80, 23, Flag_Borders,
'Remote system - ESC terminates') = THEN;

ClrScr;
Remote_Window := Acti ve_Window'\ ID;

IF Verbose THEN Writeln ('synchronizing');

Write! n ('Trying . . .');

Command : = 'Prompt
'

;

REPEAT
IF NOT (Remote_Command (Command)) THEN BEGIN
Writeln ('Command -failed');

quit := TRUE;

END
ELSE BEGIN

Command := Cperator_input ('Command C"!<CR>" to quit]',
'Command to send to remote);

IF (Pos ('I', Command) <> 0) THEN REPEAT
Command := Operator_input ('Quit', 'Quit? Cn, y3 ');

quit := (Command = 'Y') OR (Command = 'y')

OR (Command = ' '

)

;

UNTIL (quit OR NOT (Command = 'n') OR NOT (Command = 'N')>;

END;

UNTIL quit;

Xmodm. Mom tor_transf ere ;= TRUE;

IF Set_Window (Remote_Window) THEN;

IF CIose_Window THEN; C Close the Remote Window }

END; { Rlogin >

Procedure Rx_File;

CONST Curnt_CQM : String C 5 3 = 'CQM1';

VAR Dir : Pathstring;
Command : String 128;

status : result;
quit : boolean;

(.* Reprinted with extensive modi-f ications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex , Inc. All rights reserved.
**************#****** Continue Edwards Excerpt **#*****************)

288

(******************** Continue Edwards Excerpt ********************)

Ch : Char;
Settings : byte;

bu-f : bu-f-fer;

BEGIN
quit := -False;

Update_Status ('Receive File', ''
);

£ Open message window }

IF Open_Window (1, 12, 80, 20, Flag_Borders,
'Receive File Monitor - press any key to abort') = THEN;

ClrScr;
Remote_Window := Acti ve_Window"-. ID;

Command := Operator_input ('File to Receive',
'Full Path at remote?');

Writeln ('Trying . . .');

string_to_bu-f ('zcopy + Command + + Curnt_C0M, but);

IF Verbose THEN Writeln ('sending command');
REPEAT

status := Command_X-Fer (Transmit, bu-f, 128);

UNTIL (status = Tx_done) OR (status = Tx_keypressed);

WHILE Keypressed DO

Ch := Read key;

IF status <> Tx_done then BEBIN
Writeln ('Aborted by user on send');
del ay (1000)

;

quit ;= true;

END
ELSE BEGIN

IF Open_Window (1, 1, 80, 25, 0, ") =0 THEN BEGIN
ClrScr;
GetDir (0, Dir)

;

Exec ('zcopy.com', ' ' + Curnt_C0M);

RS_Cleanup;
RS_Restore (Current.COM)

;

IF Close_Window THEN;
IP DosError <> THEN BEGIN
Writeln ('DOS Error ', Error_Code C DOSERROR]);

Delay (2000);

END;

System. ChDir (Dir);

END;

(* Reprinted with extensive modi-f ications -from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission o-f Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
********************* Continue Edwards Excerpt ********************)

289

(**#***************** Continue Edwards Excerpt ********************)

IF Verbose THEN Writeln ('Getting response');

REPEAT
status := Bet_Response (128);

UNTIL (status = Rx_keypressed)

OR (status = Rx_CAN)
;

IF status = Rx_keypressed THEN BEGIN
Writeln ('Aborted by user waiting for response');

delay (1000);

quit := true;

END;

Xmodm.Monitor_transf ers := TRUE;

END;

C Close message window }

IF Close_Window THEN;

END; C Rx_File }

Procedure Tx_File;

CONST Curnt_C0M : String [53 = 'C0M1';

VAR Dir : Pathstring;
quit : boolean;
Command ; Stringl28;
Ch : Char;

but : buffer;
status : result;

BEGIN
quit := false;

Update_Status ('Transmit File', ''
);

{ Open message window }

IF Open_Window (1, 12, 80, 20, Flag_Borders,
'Transmit File Monitor - press any key to abort') = THEN;

ClrScr;
Remote_Window i= Acti ve_Window"' . II;

Command := Operator_input ('File to Transmit',
'Full Path (local)? ');

Writeln ('Trying . . .');

string_to_buf ('zcopy ' + Curnt_C0M, buf);

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
*******+*********•*•** Continue Edwards Excerpt ********************)

290

(********#*********** Continue Edwards Excerpt *****************#**)

IF Verbose THEN Writeln ('sending command');
REPEAT

status := Command_X-fer (Transmit, bu-f , 128);

UNTIL (status = Tx_done) OR (status = Tx_keypressed);

WHILE Keypressed DO
Ch := Read key;

IF status <> Tx_done then BEGIN
Writeln ('Aborted by user on send');
delay (1000);

quit := true;

END
ELSE BEGIN

IF Open_Window (1, 1, 80, 25, 0, ") = THEN BEGIN
ClrScr;
GetDir (0, Dir);

Exec ('zcopy.com ', ' + Command + ' + Curnt_C0M);

RS_Cleanup;
RS_Restore (Current_COM)

;

IF Ciose_Window THEN;

IF DosError <> THEN BEGIN
Writeln ('DOS Error ', Error_Code C DOSERROR]);

Delay (2000);

END;

System. ChDir (Dir)

;

END;

IF Verbose THEN Writeln ('Getting response');

REPEAT
status := 6et_Response (128);

UNTIL (status = Rx_keypressed)

OR (status = Rx_CAN)
;

IF status = Rx_keypressed THEN BEGIN
Writeln ('Aborted by user waiting for response');
delay (1000)

;

quit := true;
END;

Xmodm. Noni tor_trans-f ers := TRUE;

{IF Close_Window THEN;}
END;

{ Close message window }

IF Closejdindow THEN;

END; { Tx_File }

(* Reprinted with extensive modi-f ications -from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission o-f Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
************###**#*** Continue Edwards Excerpt ********************)

291

(******************** Continue Edwards Excerpt a-**********-*********)

Procedure Get_Equip;

VAR Command : string 128;

buf : buffer;

BEGIN
Update_Status ('Getting remote equipment', ''

);

IF Open_Window (1,1, 80, 23, Flag_Borders,
'Remote system - ESC terminates') = THEN;

ClrScr;
Remote_Window := Acti ve_Window""-. ID;

IF Verbose THEN Writeln ('synchronising');
Writeln ('Trying . . .');

Command := 'Equip '

;

string_to_bu-f (Command , buf);

IF (Remote_Command (Command)) THEN;

Xmodm.Monitor_trans-fers := TRUE;

IF Close_Window THEN;

END; { Get_Equip }

BEGIN
Verbose := TRUE;

IF Dpen_Window (1, 2, 80, Comms_Stat_Menu + 3, Flag_Borders,
'Current Port') = THEN;

Status_Window ;= Acta ve_Window". ID;

ClrScr;
FOR I := 1 TO Comms_Stat_Menu. DO BEGIN

GoToXY (1, I);

Write (Comms_Stat C I], ':');

END;

IF Open_Window (41, 2, 75, Comms_Menu + 3, Flag_Borders,
'Functions') = THEN BEGIN

Function_Window s= Acti ve_Window'\ ID;

ClrScr;

Update_Status (

'

'
,

'

')

;

END
ELSE Writeln ('Can"t ')

;

REPEAT
I := Process_Window_Menu (Comms_MenLt);

quit := •false;

CASE I OF

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex , Inc. All rights reserved.
***********#******-**+ Continue Edwards Excerpt ********************)

292

(***********#******** Continue Edwards Excerpt ********************)

: ; C ESC - do nothing }

i : BEGIN {Initialize port }

Update_Status (

'

Intializing '

,

'Select new parameters');

Change_DC_Parameters;
Save_Window := Acti ve_Window"-. ID;

RS_Cleanup;
WITH Comport C Current.COM] DO

RS_Initialize (Current_C0M, Speed, Parity,
Stop, Length)

;

L)pdate_Status ('Completed','');
IF Get_Window (Save_Window) THEN;

END;

2 : BEGIN {Connect to port }

If Qpen_Window (40, 15,47, 18, Flag_Bcrders, 'Port ') = then;

CirScr;

I:= Process_Window_Menu (Comm_Menu)

;

IF I IN [Coml..Com23 THEN BEGIN
Current_C0M := I;

RS_Cleanup;
WITH Comport C Current_C0M] DO

RS_ Initialize (Current_C0M, Speed, Parity, Stop,

Length)

;

It Close_Window then;

Update_Status ('Connecting', ''
);

END
ELSE

Update_Status ('Can''t', 'Port out of range');

END;

3 : BEGIN {Disconnect current port }

Update_Status ('Disconnecting', ''
);

RS_Cleanup;
{ Disable these interrupts }

END;

4 : BEGIN {Put file to remote }

Update_Status ('Putting File', ");

Tx_File;
END;

(.* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
********************+- Continue Edwards Excerpt ********************:.'

>93

(***********#******** Continue Edwards Excerpt ********************)

5 : BEGIN {Get -file -from remote }

Update_Status ('Getting File', ''
);

Rx_File;

END;"

6 : BEGIN CGet machine status }

Get_Equip;
END;

7 : BEGIN {Login to remote machine }

Rlogin;
END;

8 : BEGIN {Reset remote machine }

Reset_remote;
Update_Gtatus ('Reset', ");

END;

9 : BEGIN {(ESC) Exit >

I := 0;

END;

END: {CASE}

UNTIL CI = 0) or (quit)

;

IF Close_Window THEN;

IF Close_Window THEN;

Comms_Function := Tx_done;
END; C Comms_Function }

Procedure Handle_Al t_Key (B: Byte)

;

{This procedure handles the ALT-Key combinations.

Input: B - the high order byte returned from Check_Keyboard

Var I: Integer;

S: Long_String;
status : result;

Beg i n

Case B o+"

Alt_A: Begin {Drive and path}
If 0pen_Window(10,3,50,7,Flag_Borders, 'Path ') = then;
ClrScr

;

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
+*#*#********** Continue Edwards Excerpt *******************)

294

(***************•***** Continue Edwards Excerpt ********************)

Writeln ('Enter new drive and path using -Format:');

Writeln('D:\Path\Path.. . ');

Readln(S)

;

If Length (S) > then
System. ChDir (S)

;

If Close_Window then;

End;

Alt_B: Begin {Break}
RS_Break;
End;

Alt_C: Begin {Clear screen}
Modify_Entry(0)

;

End;

Alt_D: Begin {Dial}

Dial ing_Di rectory;
End;

Alt_E: Begin {Echo}
Beep (250)

;

Echo:=not Echo;

End;

Al t _F = Begin {Data comm parameters}
Change_DC_Parameters;
End;

Alt_B: Begin {Show disk directory}
Dirs;

End;

Alt_H: Begin {Hangup}
Beep (250)

;

Hangup;
End;

Alt_L: Begin {DOS Shell}
Dos_Sheil

;

End;

Alt_M : Begin
Status := Comms_Function;

End;

Alt_P: Begin
Status := Comms_Function;

End;

Alt_R,
PgDn : Begin {Receive a file}

If Asci i_Download then

Begi n

Close (Asci i_File)
;

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
***********+**#**#*++ Continue Edwards Excerpt *******************)

(******************** Continue Edwards Excerpt **************#**#**)

Asci i_Download: =False;
If 0pen_Window(35, 10,66, 13, Flag_Borders, ''

) = then;

ClrScr;
Write (

'Receipt of file terminated');
OK (

"
)

;

If Close_Window then;

End
else

Transf er_File (False)

;

End;

Alt_S: Begin {Activate Server}
REPEAT
Status := Process_Command;

UNTIL (status = Rx_keypressed) OR
(status = Tx_keypressed);

End;

Alt_T,
PgUp : Begin {Transmit a file}

Transf er_Fi le (True)

;

End;

Alt_X: Begin {Exit}
Beep (400)

;

End_Emulator:= TRUE;

If End_Emulator and Asci i_Download then
Close (Ascii_File)

;

End;

Home: Begin {Help}
If Open_Window(1 , 1 ,29, Mi n (20,Help_Menu+2) ,Flag_Borders,

'Help ')= then;

ClrScr;
I : =Process_Window_Menu (Help_Menu)

;

If Clcse_Window then;

If I > then
Handl e_AI t_Key (Help_ Index C 1 3

)

;

End;

Else Begin
Beep (1000)

;

End;

End; {of Case}
Bui ld_Status_Line;
End; {of Handl e_Alt_Key}

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
********************# Continue Edwards Excerpt *****************#**)

?96

(******************** Continue Edwards Excerpt ******************)

Procedure TTY (Ansi : Boolean)

;

{This procedure provides basic teletype emulation.
It suppresses NULs and converts BS into a non-destructive backspace}

Const Ansi Init: Array CO.. 8] o-f Char = (#27, ' C
'

,
*3'

,
'7'

,
'

;
'

,
'4'

,
'0'

,

'm', '*');

ColorsrArray CO. .7] of Char = ('0 ' , '4 '

,

'2 '

,

'6 '

,
'
1

' , '5 ' , '3 ' , '7 '

)

;

War Ch:Char;
I : Integer;

Regs: Registers;

Procedure WriteLF;
Begin
If not Ansi then

Wri teln
else if WhereY >= 24 then

Begin
Regs. AX: =$0601;
Regs. CX: =$0000;
Regs.DX:=$174F;
Regs.BH:=Background shl 4 + Foreground;
Intr ($10, Dos. Registers (Regs)

)

;

GotoXY(l,24)

;

End
else

Beg i n

Regs. AH; =2;

Regs. DL: =LF;

MSDos (Dos . Reg i sters (Regs))

;

End;

End; ioi WriteLF}

Procedure Writeit (ChzChar)

;

Begi n

I-f Ansi then
Begin
Regs.AH:=2;
Regs.DL:=Byte(Ch)

;

MSDos (Dos. Registers (Regs)
)

;

If WhereY > 24 then WriteLF;
End

else
Write(Ch);

End; Cof Writeit]

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
********************* Continue Edwards Excerpt ********************>

297

(******#******•******* Continue Edwards Excerpt #*******************)

Begin
If Open_Window(l , 1 ,80,24,0,

'

') = then; {Save existing screen}
Bui ld_Status_Line;
If Ansi then Begin

Regs. AH: =9;
Regs.DS:=Seg (Ansi_Init)

;

Regs.DX:=Ofs(Ansi_Init)

;

Ansi _I nit [-33: =Col or sC Foreground]
;

Ansi_Ini t C6 3 : =Colors [Background 3;

MSDos (Dos. Registers (Regs)
)

;

End;

ClrScr;
Repeat Begin

Ch:=Check_Auxport;
Case Byte(Ch) of

NUL: ; [Throw it away}
GS: Begin CNon-destructi ve backspace}

iVwhereX > 1 then
GotoXY(WhereX-l,WhereY)

6otoXY(80,WhereY-l
else

GotoXY(80,24);
End;

LF: WriteLF;
Else Begin

Writeit (Ch)

;

End:

End; {of Case}
I ; =Chec k_Keyboard

;

If I <> then
If Lo(I) = then

Handle_Alt_Key(Hi (I))

else
Begin
Ch: =Ch ar (Lo(I)

)

;

RS232_0ut(Ch)

;

If Echo then
Begin
Writeit (Ch);

If Ch = Char(CR) then
WriteLF;

If Print then
Begin

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
#*******************•*• Continue Edwards Excerpt *********#*•*-**-*****-*)

298

(******************** Continue Edwards Excerpt ********************)

Write (LST,Ch)

;

If Ch = Char(CR) then
Write(LST,Char(LF));

End;

End;

End;

End
Until End_Emulator;
If Ansi then

Begin
Regs. AH: =9;

Regs. DS:=Seg(Ansi _Init)
;

Regs.DX:=Ofs(Ansi_Init)

;

Ansi_InitC3]:=ColorsCLightGray];
Ansi~InitC6]:=ColorsCBlack];
MSDos< Dos. Registers (Regs))

;

End;

If Close_Window then;

End; Cof TTYj-

CThe outer block of Distrib. It performs all necessary initialization
and presents the user with a list of terminal emulators from which to

select J-

War I : Integer;

status : result;
command_tai I : string;

Begin
GetDir (0, Current_Path) ; (* save current directory for restoration *)

Init_Window_Inf o;

If 0pen_Wi ndow(1,1 ,80,25,0,
'

') = then;

Support. Initial ize;

IF ParamCount > THEN BEGIN
command_tail := ParamStr (1);

BumpStrUp (command_tai 1);

END;

IF ((ParamCount >) AND (command_tail = 'SERVER'))

OR (ParamCount =) THEN
REPEAT
status := Process_command;

UNTIL (status = Tx_keypressed) OR (status = Rx_keypressed)

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex , Inc.

Copyright 19S7 Sybex , Inc. All rights reserved.
********************* Continue Edwards Excerpt ******************+-

299

(******************** Continue Edwards Excerpt ********************)

ELSE BEGIN C Master or maintenance function }

End_Emulator: =False;
Emulators 'ANSI ';

TTY(True);
END;

Repeat
until Close_Window; t Close out all windows >

System. ChDir (Current_Path) ; (* restore the previous directory *)

End.

C* Reprinted with extensive modi-f ications -from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission o-f Sybex , Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
************************ End Edwards Excerpt ***********************)

500

APPENDIX AB

CONFIGURATION FILE STRUCTURE

A. DISTRIB. CFG FILE STRUCTURE

This is the data structure recorded in the DISTRIB. CFG -file when a

con-figuration is saved. This structure can be accessed from the
Distrib program main menu by pressing the special key combination
Alt-C, for Update Con-fig File.

1. Data Structure for the Default Configuration

This is the data structure in the Support Unit that is

recorded in variable Current or type Def ault_Type.

Const Defaults : Default_Type =

(Default_Name ; 'DISTRIB. CFG ' ; The file name to

Default_Com : 1; The default communications

Def ault_hodem : 2; The default modem port
Default_Phone : '555-1212';

Def ault_Speed ; B9600; The default comm port

Def aul t_Parity : None; The default comm port

De-Paul t_Length : 8: The default comm port
Def au.lt_Stop : 1; The default comm port
Def aul t_Echo: False; Enable Half Duplex.

Default_Textcolor : LightGray; The default text

Def aul t_Menucol or: Green; The default menu color
Def aul t_Backcolor: Black; The default background

Def ault_Pref i:<: 'ATDT9, ,9, ,
'

; The default modem

Def ault_Delay:30) ; The default delay to wait for

modify"

port

speed

parity

color

colo^

dialing prefix

connection

301

APPENDIX AC

DOCUMENTATION FOR ZCOPY PROGRAM

This is the documentation -for the Zcopy program used for -file

transfer (Flanders, 1989, pp. 251 - 282).

ZC0PY.COM
Command

Bob Flanders
1989 No. 4 (Utilities)

Purpose: Transfers files at high speed, via a serial link, between
machines that do not share a common disk format.

Format: ZCOPY source [target] [/w3 E/n3 C/u] C/o3 C/a3C/p3 E/d3

Remarks: The two machines must be IBM-compatible and must be connected
by a standard "null modem" cable. ZCOPY is executed, with appropriate
parameters, on both machines; a 30-second (default) connect timeout is

provided.

On the sending machine both a source (filename plus any needed
drive and path) and a target (C0M1 or COM2) must be specified. ZCOPY
supports the * and ? DOS filename "wildcards," but it does not permit
renaming files during transfer.
On the receiving machine the source is C0M1 or COM2, and the target, if

specified, must be a directory path. (Any needed subdirectories must

be created on the receiving machine before using ZCOPY.)

The optional /w and /n switches operate before connection is

established, and so are entered on the ZCOPY command line of each
machine. The /w parameter prolongs the default connection timeout
indefinitely; it can be cancelled with Ctrl-Break. The /n parameter
sets the highest bi t-per-second (bps) rate at which ZCOPY will attempt
to transfer data. If used, it must be the same on both machines. The
default is /l (115 kbps) . Other acceptable values are /2 through /6

(57.6 kbps, 38.4 kbps, 19.2 kbps, 9600 kbps, and 4800 kbps,
respectively). If ZCOPY cannot maintain error—free transfer at a given
transfer rate, it automatically steps down to the next lower speed.

The other optional parameters may be entered on either machine's
ZCOF'V command line. The /u (Update) switch permits overwriting
same-named files on the receiving machine without operator confirmation

3<>

i-f the source -file is more recent. The /o (Overwrite) switch
suppresses the confirmation prompt for all files. By default, when
ZCOPY receives a disk-full signal, before aborting it tries to find a

smaller selected source file that will fit on the receiving disk. The
/a (Abort on Full) aborts at the first disk-full indication. The /p

(Pause) switch creates a pause before the transfer operation begins
after the connection between machines has been made.

30:

LIST OF REFERENCES

1. Borland International Inc. , Turbo Pascal Owner's Handbook Version

4.0 , 1987.

2. de Boer, R. , <reino@eurai vl. uucp>, info-pascal-@vim.brl.mil

message, Subject: Serial Unit in TP4, Message-ID:

<797@euraivl.uucp>, 15 Nov 88 14:17:15 GMT.

3. Defenbaugh, B. , "Parents, Children, Redirection, and Piping with

DOS Functions 45H and 46H," Programmer's Journal , v. 6,

November /December 1986.

4. Duntemann, J., "TURBO Pascal at 4," Turbo Technix , v. 1,

November /December 1987.

5. Edwards, C. C. , Advanced Techniques in Turbo Pascal , Sybex , Inc.,

1987.

6. Flanders, R. , "File Transfers Fast and Easy," PC Magazine , v. 8,

28 February 1989.

7. Greco, F.D., "Redirection, or 'They Went That-a-way '

" , Programmer 's

Journal , v. 7, January/February, 1987.

8= Greenberg, R.M., "Keeping Up With the Real World: Speedy Serial
I/O Processing," Microsoft Journal , v. 2, July 1987.

9. Greenberg, R.M., "TSRCOMM, a Replacement for Interrupt 14", source
listing, copyright 1987, Ross M. Greenberg.

10. Hall, W.V., "When Turbo Isn't Enough," in Shammas, N.C, , Turbo
Pascal Tool book , M ?< T Publishing, Inc., 1936.

11. Hartman, R.L., and Yasinsac, A.F., Janus/Ada Implementation of a

Star Cluster Network of Personal Computers With Interface to an

Ethernet LAN Allowing Access to DDN Resources , M. S. Thesis, Naval

Postgraduate School, Monterey, California, June 1986.

12. Kimura, N. , < abcscnukicsuna. uucp>, info-pascal-@vim.brl.mil
message. Subject: Re: TP4.0 Aux Problem, Message-ID:
<1376@csuna.uucp>, 17 Nov 83 10:20:54 GMT.

13. Krantz, D. , "Christensen Protocols in C," Dr. Dobb's Journal .

v. 10, June 1935.

14. MacLennan, B. J. , Principles of Programming Languages , 2nd. ed. , CBS
College Publishing, 1987.

304

15. Mefford, M.J., "Running Programs Painlessly," PC Magazine , v. 7,

16 February, 1988.

16. Microsoft Corporation, MS-DOS Version 3 Programmer's Utility Pack

MS-DOS Reference Guide , v. 1, Zenith Data Systems Corporation,
1986.

17. Microsoft Corporation, Microsoft MS-DOS Version 3.21 User's Guide ,

Zenith Data Systems Corporation, 1987.

18. Norton, P., The Peter Norton Programmer's Guide to the IBM PC ,

Microsoft Press, 1985

19. Prosise, J., " Instant Access to Directories," PC Magazine , v. 6,

14 April , 1988.

20. RR Software, Inc., JANUS/Ada Package User manuals, 8086 Version 3.2
March 1985 , RR Software, 1983

21. Simrin, S. , The Wai te Group ' s MS-DOS Bible , 2nd, ed. , Howard W.

Sams ?•••: Company, 1986.

22. Swan, T. , Mastering Turbo Pascal Files , Howard W. Sams & Company,
1987.

23. Trimble, R. , <reid@hpmtlx . hp. com), info-pa.scal@vim.brl.mil message,
Subject: Re? xmodem help needed, Message-ID:
<5430002@hpmti>;.HP.C0M>, 23 Feb S9 21:03:55 GMT.

24. Works, T.V., JANUS/ADA Software Implementation of a Star Cluster-

Local Area Network of Personal Computers , Master's Thesis, Naval

Postgraduate School, Monterey, California, December 1986.

30

INITIAL DISTRIBUTION LIST

1. De-fense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142
Naval Postgraduate School

Monterey, California 93943-5002

3. Department Chairman, Code 52
Department o-f Computer Science
Naval Postgraduate School

Monterey, California 93943-5000

4. Computer Technology Programs-

Code 37

Naval Postgraduate School
Monterey , Cal i f" orn l a 93943-5000

5. Protessor Uno Kodres, Code 52KR
Department o-f Computer Science
Naval Postgraduate School
Mon terey , Cal i f orni a 93943-5000

6= Mr. Nelson C. Ard
916 Helmsdale Court
Chesaoeake, VA 23320

(pW'StS

306

Thesis
A6455 Ard

c# l Turbo Pascal imple-

mentation of a distribu-

ted processing network

of MS-DOS microcomputers

connected in a master-

slave configuration.
" ^H ^m

Thesis

A6455 Ard

c.l Turbo Pascal imple-
mentation of a distribu-
ted processing network
of MS-DOS microcomputers
connected in a master-
slave configuration.

.•'"Of?

