
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1989-06

An intelligent computer-aided instruction system for

Naval ship recognition

Bernier, Denise R.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/27102

iOOfe

NAVAL POSTGRADUATE SCHOOL
Monterey, California

f^uf^-?/)

AN INTELLIGENT COMPUTER-AIDED
INSTRUCTION SYSTEM

FOR NAVAL SHIP RECOGNITION

by

Denise R. Bemier

June 1989

Thesis Advisor: Neil C. Rowe

Approved for public release; distribution unlimited

mh^Jjti.i- POSrO-Hi. -SCHOOL

MOiJl'EEEY, CALIi Uiii^ iii 9394&-6002

Jnclassified

security Classification of this page

REPORT DOCUMENTATION PAGE
a Rqx)rt Security Classification

UNCLASSIFIED
lb Restrictive Markings

Ja Security Classification Authority

3b Declassification/Downgrading Schedule

3 Distribution Availability of Report

Approved for public release; distribution is unlimited.

I Performing Organization Report Number(s) 5 Monitoring Organization Report Nuinber(s)

id Name of Performing Organization

Naval Postgraduate School

6b Office Symbol

(IfApplicable)

52

7a Name of Monitoring Organization

Naval Postgraduate School

c Address (city, state, and ZIP code)

v^onterey, CA 93943-5000
7b Address (city, state, and ZIP code)

Monterey, CA 93943-5000
la Name of Funding/Sponsoring OrganLzation 8b Office Symbol

(IfApplicable)

9 Procurement Instrument Identification Nimiber

'c Address (city, state, and TIP code) 10 Source of Funding Numbers

Program Elonent Number Project No T»sk No Work Unit Accession No

1 Title (Include Security Classification)

iiN INTELLIGENT COMPUTER-AIDED INSTRUCTION SYSTEM FOR NAVAL SHIP RECOGNmON
2 Personal Author(s)

Bemier, Denise R.

3a Type of Report

Master's Thesis
13b Time Covered

From To

14 Date of Report (year, month,day)

June 1989
15 Page Count

97

6 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official

)olicy or position of the Department of Defense or the U.S. Government.

7 Cosati Codes

ield Group Subgroup

18 Subject Terms (continue on reverse ifnecessary and identify by block rmmber)

Artificial Intelligence, Intelligent Computer-Aided Instruction,

Ship Recognition, Prolog

9 Abstract (continue on reverse if necessary and identify by block number

This thesis discusses the design and implementation of an intelligent computer-aided instruction system for

^aval ship recognition. The system uses artificial-intelligence techniques to provide an interactive tutoring

nvironment. TTie student's abilities for ship recognition are tested using randomly selected side-view photos,

lie student's response is compared to the correct ship in an expert module. If the response is incorrect the

eatures of the correct ship are compared with those of the incorrect ship to formulate a hypothesis concerning the

tudent's misconceptions. Tutoring strategies are chosen based on this comparison. The system provides a

ecognition test, a summary review, and an individual photo review. A review of recognition features for each
hip is supplied during the recognition test. A final summary is generated at the end of testing.

3 Distribution/Availability of Abstract

|X| unclassified/unlimiled same as report DTIC users

21 Abstract Security Classification

UNCLASSIFIED
2a Name of Responsible Individual

Prof Neil C. Rowe
22b Telqjhone (Include Area code)

(408) 646-2462
22c Office Symbol

Code 52Rp
•D FORM 1473, 84 MAR 83 APR edition may be used imtil exhausted

All other editions are obsolete

security classification of this page

Unclassified

Approved for public release; distribution is unlimited

An Intelligent Computer-Aided Instruction System
for

Naval Ship Recognition

by

Denise R. Bernier
Lieutenant, United States Navy

B.S., Medical College of Virginia, 1981

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 198 9

ABSTRACT

This thesis discusses the design and implementation of

an intelligent computer-aided instruction system for Naval

ship recognition. The system uses artificial-intelligence

techniques to provide an interactive tutoring environment.

The student's abilities for ship recognition are tested

using randomly selected side-view photos. The student's

response is compared to the correct ship in an expert

module. If the response is incorrect the features of the

correct ship are compared with those of the incorrect ship

to formulate a hypothesis concerning the student's miscon-

ceptions. Tutoring strategies are chosen based on this

comparison. The system provides a recognition test, a

summary review and an individual photo review. A review of

recognition features for each ship is supplied during the

recognition test. A final summary is generated at the end

of testing.

Ill

TABLE OF CONTENTS

I

.

INTRODUCTION 1

A. SHIP RECOGNITION 2

B

.

METHODOLOGY 2

C . PREVIEW 3

II. OVERVIEW OF COMPUTER-AIDED INSTRUCTION 5

A

.

BACKGROUND 5

B

.

COMPUTER-AIDED INSTRUCTION 5

C

.

ICAI SYSTEMS 6

1 . STRUCTURE 7

a

.

Expert Module 7

b. Tutor Module 7

c. Student Model 9

2 . Applications 10

III . OVERVIEW OF SHIP RECOGNITION 13

A. PURPOSE 13

B. PROCEDURES 14

C

.

TRAINING PROGRAMS 14

D

.

ASSUMPTIONS 16

IV. SHIP RECOGNITION: AN ICAI APPROACH 17

A. SYSTEM ORGANIZATION 17

B

.

EXPERT MODULE 19

1

.

Knowledge Base 19

2

.

Inference Engine 20

IV

Ki^VAi. POS'iQH^...>O.^TE SCHOOL
UOMIERBY, CALIFORmA 9394b-8002

C. KNOWLEDGE ACQUISITION 21

D

.

TUTOR MODULE 22

E . STUDENT MODEL 2 6

F. USER INTERFACE 28

1. Input 2 8

2 . Error Checking .31

V. RESULTS 32

VI

.

CONCLUSION 33

A. ACHIEVEMENTS 33

B. LIMITATIONS 33

C

.

RECOMMENDED SYSTEM ENHANCEMENTS 34

APPENDIX A - DEMONSTRATION 36

APPENDIX B - USER' S MANUAL 51

APPENDIX C - SOURCE CODE 55

LIST OF REFERENCES 88

INITIAL DISTRIBUTION LIST 89

I . INTRODUCTION

Computer-assisted instruction systems in use today can

provide a sophisticated learning experience for students,

in some cases rivaling the instruction provided by human

instructors. One advantage of computer-based training is

the one-on-one teaching available for students. In the

majority of today's classrooms there is little opportunity

for students to receive the direct attention that is possi-

ble with computer-based instruction.

Although computerized instruction has been available to

one degree or another for many years, it has not been

utilized as extensively as it could have been. One reason

for this is the cost of computer hardware and software.

Systems in use in the past used expensive machines to

provide tutoring services that could be provided through

books and other types of less expensive media. Computer

tutoring systems needed to develop further in order for the

benefits to justify the cost.

In recent years a great deal of research has been done

in achieving "thinking" systems. These new "thinking"

systems provide a mechanism for computer-based instruction

that is much closer to the teaching possible from human

instructors. This thesis will investigate the possible use

of a "thinking" computer system for training military

personnel in ship recognition.

A. SHIP RECOGNITION

Ship recognition is the ability to differentiate be-

tween different classes of ships. Weapons systems, which

are easily recognizable, can be used to visually determine

the general mission of an observed ship from a side view.

Once a ship is identified by class, intelligence informa-

tion can provide further data concerning the armament and

capabilities of the contact. Positive identification of

unfriendly ships, before they come within attack range of

our own ships, provide a strong incentive for up-to-date

intelligence [Ref. 1],

Currently ship recognition is taught using drill meth-

ods. Intelligence officers with knowledge of each ship

class drill officers and crewmen using slides of both ship

photos, line drawings and silhouettes. There are also

flash cards and books available for individual study.

Recently, computer programs for use on microcomputers have

been introduced into military commands. These programs

provide another method of drilling the student on ship

features, while not requiring an instructor on hand.

B . METHODOLOGY

We have programmed a computer-based ship recognition

tutor from information provided by military recognition

guides and other recognition books [Refs. 2,3,4], A ship

feature description and a menu of ship names are provided

to the user. The user is required to select the name of

the correct ship or ask for help. Help is provided in the

form of the correct answer along with a list of the identi-

fying features of the ship in question. If the user

selects a ship name the ship recognition tutor will compare

the user's answer with that of an expert ship-identifica-

tion module. Based on this comparison the user receives

immediate results in the form of a positive response, with

a review of key features, or a negative response, with a

feature-by-feature review of the differences between the

correct response and the user's response.

Artificial intelligence (AI) techniques implemented in

the Prolog programming language were utilized in the design

of the ship recognition tutor. This type of computer

program is referred to as an intelligent computer-aided

instruction (ICAI) system or an intelligent tutoring system

(ITS)

.

C . PREVIEW

Chapter II provides an overview of the use of computers

in instruction, with a review of computer-aided instruction

(CAI) and intelligent computer-aided instruction (ICAI).

Chapter III provides an overview of ship recognition and

current training techniques. Chapter IV discusses the

design and implementation of our ship recognition tutor.

Chapter V discusses the performance of the ship recognition

tutor. Chapter VI is the conclusion and discusses the

benefits and limitations of the ship recognition tutor.

Appendix A provides a representative user session.

Appendix B contains a User manual for the program, with

information for use and modifications. Appendix C contains

the Prolog source code for the ship recognition tutor.

II. OVERVIEW OF COMPUTER-AIDED INSTRUCTION

A. BACKGROUND

Computers were first used for teaching in the late

1950' s. Computers have gone on to be used in all levels of

education. Medical students use computers to practice

diagnosis and prescription on patients simulated by comput-

er programs. Engineering students use computers to assist

in problem solving. Computers are also used for education-

al purposes outside schools. Children learn spelling and

arithmetic and high school students practice for college

entrance examinations using educational software available

to the general public [Ref . 5]

.

Computer-aided instruction (CAT) is the name given the

use of computers in education. Intelligent computer-aided

instruction (ICAI) refers to instructional systems utiliz-

ing artificial intelligence technology. The acronym CAI

will be used to refer to the more traditional approaches to

computerized instruction.

B. COMPUTER-AIDED INSTRUCTION

Traditional CAI programs tend to be statically

organized structures that contain both the domain and

pedagogical knowledge of the expert. This is similar to

the idea that books contain the knowledge of their authors.

There is no expectation that a book can dynamically access

the knowledge it contains to answer unexpected questions,

or that the book can add new knowledge to its current

contents [Ref. 6]. CAI programs translate the teacher's

decisions into a program, all the possible circumstances

that might require a decision are considered, and code to

deal with each of these possibilities is included in the

program.

Early research into CAI tried to build systems which

contained course material in sequential lessons. These

early programs were either electronic "page-turners", which

printed prepared text, or drill-and-practice monitors,

which asked students to answer questions and then responded

using prestored answers and comments. Educational uses of

computers have expanded to include free-style use of the

machine, where the student learns problem solving by pro-

gramming, as well as the use of games and simulations as

instructional tools.

C. ICAI SYSTEMS

The idea of research into instructional systems utiliz-

ing artificial intelligence is to capture the knowledge

that experts use to compose an instructional interaction.

The goal is to produce a system that is capable of autono-

mous reasoning on the basis of only primitive principles.

Reasoning from the expertise of experts rather than looking

up their decisions, creates the possibility of new deci-

sions that may not have been anticipated by the experts

[Ref . 6]

.

1 . Structure

ICAI systems consist of three main components: the

problem-solving expertise, which is the knowledge to be

imparted; the tutoring strategies, which indicate how the

system will teach the student; and the student model, which

indicates what the student knows or does not know [Ref. 7].

These components are respectively referred to as the expert

module, the tutor module and the student model. An inter-

face module is also needed to provide a smooth, clear

presentation to the user. Figure 2.1 shows the components

of an ICAI system.

a. Expert Module

The expert module serves two functions. It

acts as a source of the knowledge to be tested and a means

of evaluating the student's responses [Ref. 6]. The expert

module for tutors of technical skills should be drawn from

the knowledge of several experts in the field to be taught,

in order to prevent blind spots in the knowledge base

[Ref. 8]

.

Jb. Tutor Module

The tutor module selects problems to be solved,

monitors performance and provides assistance. This module

EXPERT
MODULE

STUDENT
MODEL

TUTOR
MODULE

INFERENCE
ENGINE

KNOWLEDGE
BASE

TUTORING

STRATEGIES

USER
INTERFACE

Figure 2.1 ICAI System Components

requires knowledge in addition to knowledge of the subject

being taught: knowledge of teaching skills.

Most ICAI research into tutor modules has

explored diagnostic modeling. The program evaluates the

student's understanding of the topic by interpreting his

response. Feedback is then provided, to allow the student

to learn skills he has used incorrectly or not at all.

Recently there has been an attempt to decide just the right

thing to say that will allow the student to realize his

error and to use this knowledge to switch to a better

method. This classical method, the Socratic method, re-

quires repetitive questions that guide the student along a

specific line of reasoning [Ref. 7].

A second teaching strategy is called coaching.

This method does not follow a strict lesson plan, but

encourages learning through activities such as computer

games. The primary aim of the student is enjoyment of the

game, with learning as a by-product. The computer "coach"

observes the progress of the game and offers suggestions or

new information as required. The coaching method requires

little interruption and allows the student to proceed

relatively on his own. [Ref. 7]

c. Student Model

The student model provides a representation of

what the student does and does not know. This information

is generally obtained by comparing the student's response

to that of the expert. Once a comparison has been made,

the information is used to determine possible misconcep-

tions and to decide the best tutoring strategy to correct

the misconception.

2 . Applications

SCHOLAR is a mixed-initiative computer-based tutor-

ing system that tutors about facts concerning South

American geography. Both the student and the system can

initiate conversations by asking questions. This program

was a pioneering effort in the development of programs that

could handle unanticipated student questions and react

appropriately [Ref. 7].

WHY, which tutors students in the causes of rain-

fall, was developed in response to a need for systems that

could deal with subject matter that is not purely factual.

Student errors could involve not only forgotten facts but

also misunderstandings as to why processes work the way

they do [Ref. 7]

.

The SOPHIE tutoring system allows the student to

learn by trying out his ideas rather than by direct in-

struction. A model of problem-solving techniques is

contained in the system domain along with heuristics for

answering student questions and handling misconceptions.

These features allow a one-to-one interaction between the

student and a computer "expert", who helps the student come

10

up with his own ideas. The problem-solving skills taught

in SOPHIE are taught in the context of an electronics

laboratory [Ref. 7].

WEST was the first ICAI system to utilize a coach-

ing strategy. This method involves a computer game that

the student plays, while a "coach" observes in the back-

ground, occasionally offering suggestions. A coaching

strategy does not interrupt the student so often that it

becomes intrusive. This would destroy the fun of playing

the game. The idea of the WEST system is to provide drill-

and-practice in arithmetic to elementary school children.

WUMPUS is another coaching system which requires knowledge

of logic, probability, decision theory and geometry to

track down and destroy the Wumpus while avoiding various

traps [Ref. 7]

.

GUIDON is a system that teaches diagnostic problem-

solving in the medical field. The system utilizes the

MYCIN consultation system as the expert domain. GUIDON'S

teaching knowledge is totally separate from the MYCIN

subject domain. MYCIN provides infectious-disease rules

that constitute the topic to be discussed and a basis for

evaluating student responses. The system provides a mixed-

initiative dialogue that goes beyond merely responding to

the student's last response or repetitive questioning

[Ref. 7]

.

11

guidon's case method of presentation closely

resembles the presentation method we used in the ship

recognition tutor. The student is required to concentrate

on specific cases or, in our system, specific ships.

GUIDON allows the student to ask questions to gather

information, whereas our ship recognition tutor provides

information through a menu-based dialogue. In both systems

the tutorial system only intervenes when the student asks

for help or when his responses are suboptimal [Ref . 6]

.

STEAMER is a system used to train engineers who

will operate large ships. The training is designed to help

the student form a mental model of the steam propulsion

plant and understand related engineering principles.

STEAMER is important in the research into ICAI systems

since it stimulated interest in the development of object-

oriented graphic simulations in training [Ref. 7]

.

12

Ill, OVERVIEW OF SHIP RECOGNITION

Numerous changes have occurred in naval weaponry in the

past decade, resulting in warships that are hard to distin-

guish. Knowledge of identifiable features and weapon

systems is required to differentiate between different

classes of warships and to determine a ship's general

mission. Positive identification of unfriendly ships or

aircraft before they reach attack range can mean the dif-

ference between life and death in a wartime situation.

A. PURPOSE

Training of a ship's crewmen, intelligence personnel

and pilots in the identification of ship classes and weap-

ons systems is required to provide up-to-date intelligence

information. Air reconnaissance, both visual and

photographic, plays an important role in the intelligence-

gathering mission. Aircraft personnel must not only be

able to recognize unfriendly ships, but must also be able

to identify weapons systems on board. Information acquired

through air reconnaissance is rapidly passed to analysts on

the ground or on board ship. Once the ship is identified

by class, the operational intelligence personnel can brief

the commander on the capabilities of the contact.

[Ref. 1,10]

13

B

.

PROCEDURES

Naval ship recognition, as taught to Naval personnel,

follows two basic ideas. A fast, overall impression of the

ship provides operational identification. Then there is a

feature-by-feature analysis, requiring prolonged observa-

tion. This observation can be either direct or through

study of reconnaissance photos. Information that can help

in the identification of ships includes the geographical

location of the ship, knowledge of which ships are known to

cruise in the region and intelligence information gathered

prior to the sighting. Features of interest to

intelligence personnel are: (1) armament such as missile

launchers, guns and ASW weapons; (2) armor on sides decks,

turrets, towers and superstructures; (3) electronic equip-

ment; and (4) navigational equipment. [Ref 1,10]

C. TRAINING PROGRAMS

There are several aids for training military personnel

in ship recognition. Generally ship recognition is includ-

ed in training given by intelligence personnel. Sessions,

utilizing slides of ship photos along with either line

drawings or silhouettes, are provided to allow personnel to

become familiar with various ships. During these sessions

the instructor points out key identifying features and

suggests memory aids to help the student remember the ship

along with its features. The intelligence officer will

14

also provide classes to review ships that may be encoun-

tered in specific areas of deployment.

Supplemental resources available for learning ship

recognition include flash cards, with line drawings or

silhouettes, and books such as Jane^ s Fighting Ships .

There are CAI programs as well. The programs provide a

silhouette of the ship, allowing the student to answer a

multiple-choice question regarding the identity of the

ship. The student is provided with a positive or negative

response and a review of the features of the ship, similar

to the flash cards mentioned earlier.

Classroom training in ship recognition provides a

knowledgeable instructor to supply the student with com-

parison feedback for incorrect answers. For example the

instructor can point out features that are present on the

student's answer and show that they are not present on the

ship in question. He can also show slides of an incorrect

ship the student selected for an immediate visual compari-

son. But this is not often done due to the limited number

of instructors available and the time required for individ-

ual instruction. An ICAI program can provide this direct

comparison capability and provide one-on-one instruction

for everyone.

15

D. ASSUMPTIONS

In writing the ship recognition tutor we assume that

the student has some knowledge of ship features and weapon

systems. The system requires that photos, line drawings or

silhouettes be provided for the training syllabus. Appen-

dix B provides information that will allow modifications to

the system to include additional ships. The ships current-

ly included in the system are listed along with the source

code in Appendix C.

16

IV. SHIP RECOGNITION: AN ICAI APPROACH

A. SYSTEM ORGANIZATION

The ship recognition tutor was designed and implemented

on an IBM-compatible microcomputer using the Arity Prolog

programming language. It requires 512K of RAM memory. The

following files are needed: tdrlver.arl, tmenu .ari, com-

parer .ari , ships .ari, tdescrip. ari, utilities . ari,

summary .exe and getstime .exe. Figure 4.1 illustrates the

relationships between the program files. When the tutor is

operated on a hard-drive system, the time to identify each

ship is approximately one minute. The operating time is

greatly dependent on the expertise of the student, since

more time is required when incorrect responses are given.

The operating time may increase slightly when using a

floppy-drive system.

1. This program was started as a class project
in CS4311 at the Naval Postgraduate School,
Monterey, California.

17

USER INTERFACE

DIAGNOSTICS

TDRIVER
TINTRO
TMENU STUDENT

RESPONSES

TUTOR MODULE

STUDENT
MODEL
UPDATES

TDRIVER
COMPARER

c

PERCEIVED
STUDENT

UNDERSTANDING

STUDENT MODEL

TDRIVER

DOMAIN

KNOWLEDGE

SHIPS, TDESCRIP

EXPERT MODULE
INFERENCE KNOWLEDGE
ENGINE BASE

EXPERT

SOLUTIONS

Figure 4.1 Ship Recognition Tutor Structural Model

18

B. EXPERT MODULE

1 . Knowledge Base

The rules which identify ships are contained in the

file shipsl . ari . The information is contained in a series

of predicates, that include a list of the identifying

features of each ship. The format of this predicate

is :

rule (ship__id (<' ship-name' >) , [<feature-fact-list>])

The items in <feature-fact-list> have arguments that are

brief descriptions of the features. This descriptive

information is included to differentiate two features in

the same general category with different overall appear-

ances. Some examples of ship identification rules are

displayed in Figure 4.2.

19

rule (ship_id('Kresta II CG') ,

[inast_2 (' two masts')/
foremast (' large obelisk type foremast')/
aftermast (' smaller pyramid aftermast')

,

radar ('radar atop mack'),
top_sail (' TOP SAIL radar'),
heloC raised helo pad aft'),
ssmC canted launchers below bridge wings')]),

rule (ship_id(' Kiev CVHG')

,

[fight_deck (' angled flight deck'),
superstructure (' tiered superstructure')

,

other_features (' looks like cruiser in profile')
rule (ship_id(' Kirov CGN')

,

[mast_l (' large mack amidship')

,

radar ('atop mack'),
top_sail(TOP SAIL radar'),
superstructure (' superstructure amidship with
large mack')

,

forecastle (' long, slightly stepped, sharply
raked bow')])

.

Figure 4.2 Sample Ship Identification Rules

2 . Inference Engine

The ship recognition system uses comparison tech-

niques as its inference engine. The student's response is

compared with the known correct response obtained using the

following predicate:

ship_photo_coinb (<photo-n\iinber>, <ship-name>)

If the student's response is correct, the student is noti-

fied appropriately; if not, the system goes on to compare

the correct response rule with the incorrect response rule.

20

This comparison is done in the file comparer . ari utilizing

the predicate compare. The format for the comparison is as

follows

:

compare (<correct_answer>, <student_answer>,
<Features_not_present>, <Features_missed>,
<Features details diff>).ls2

<Features_not_present> is bound to a list of features that

were present in the incorrect answer, but not in the cor-

rect answer. <Features_missed>, is bound to a list of the

features contained in the correct ship's description but

not in the description of the ship that the student chose.

Finally, the predicate <Features_details_diff> contains a

list of the features in the student's answer that differ

only in the detailed descriptions (arguments) of the recog-

nition features.

C. KNOWLEDGE ACQUISITION

The domain expertise for the ship recognition tutor was

obtained from Department of Defense Recognition guides and

from other recognition books [Refs. 2,3,4]. Although there

was no direct consultation with experts, the knowledge

obtained from published sources was deemed adequate for the

development of this prototype tutor. An operational ship

recognition tutor should be modified as applicable by the

21

instructors involved in the teaching syllabus. Information

concerning modifications to this system is contained in

Appendix B.

In reference guides for ship recognition, the features

are listed along with a photo and a silhouette or a line

drawing of the ship in question. In this tutoring system

however, the features are listed for the student only in a

final review of the ship. For incorrect answers the tutor

addresses ship features individually and requires acknowl-

edgement from the student

.

D. TUTOR MODULE

Our tutor module is implemented in tdriver .ari. Tutor

modules differentiate ICAI systems from CAI systems in that

ICAI systems separate the tutoring strategies from the

expert module. The tutor module is responsible for over-

seeing the student's progress and selecting the appropriate

information to best instruct the student. The tutoring

rules used in the ship recognition tutor are handled ini-

tially by the predicate check_answer . The student is asked

to choose the correct ship from a menu of choices. The

possible responses are:

- help. The tutor will give the correct answer and a
review of the ship's features.

- quit. The tutor will quit, giving a summary of the
session

.

22

- correct response. The tutor will give an affirmative
response along with a review of the ship's name and
features

.

- incorrect response. The tutor will give a negative
response and will begin tutoring the student.

A major issue in deciding tutor strategies for this

sort of system lies in the attempt to determine where the

student went wrong. The ship recognition system tries to

determine the student's misconceptions using the compare

predicate to compare the student's ship to the correct

ship. Once the features that appear to have caused the

student difficulty are found, the next issue is which

category of misconceptions is most important, or more

likely to have caused the incorrect response.

We decided that the student was more likely to have

problems with features in the same general category, fea-

tures that were common to both the correct response and the

incorrect response, but possessed different descriptive

arguments. An example is shown in Figures 4.3 and 4.4.

The ships are the Kresta I CG and the Kresta II CG, which

are very similar. For example, both ships have SSM

launchers under the bridge wings, but on the Kresta I the

launchers are horizontal and on the Kresta II the launchers

are canted. The compare predicate would return this infor-

mation in the Feature_details_diff argument. Since a

misconception of this type is very likely to occur, the

student is first directed to these features.

23

AIR SEARCH RADAR
AIR SURVEILLANCE RADAR

FC DIRECTOR

SAM LAUNCHER

HELIPAD/HANGAR

3-
[\ i^^i

FC DIRECTOR

SSM LAUNCHER

SAM LAUNCHER

ASW LAUNCHER

Figure 4.3 Kresta I CG

AIR SURVEILLANCE RADAR

FC DIRECTOR

SAM LAUNCHER \ TORPEDO
TUBES

ASW LAUNCHERS

HELIPAD/HANGAR

FC DIRECTOR

SSM LAUNCHERS

SAM LAUNCHER

ASW LAUNCHERS

teE^

Figure 4.4 Kresta II CG

24

After any such student errors have been tutored, the

student is next instructed on any features that are present

in the correct ship, but not on the ship that he chose as

the answer. These features are contained in Features-

missed. Finally, the student is tutored on any

Features_not_jpresent, features that are present in the ship

he chose but not in the correct ship.

The student is given three chances to choose the cor-

rect ship, his initial choice and two more. The second

chance occurs following the entire tutoring sequence de-

scribed above, and the third chance after another pass

through the sequence. Each time he makes an incorrect

choice the tutoring strategy involves the latest choice.

After three chances, the system tells the student the

correct answer and provides him with the identifying fea-

tures of the correct ship.

When the student responds with an incorrect answer, the

program first checks the length of time it took him to

respond. The tutor utilizes the information the student

entered concerning his experience level to determine a

minimum length of time the student should view a photo

prior to making a ship name selection. This is only rele-

vant when the student's response is incorrect. It was

arbitrarily determined that a Beginner should review an

unfamiliar ship at least 30 seconds before attempting to

make an identification, an Intermediate user ten seconds.

25

and no minimum time for an Expert user. Incorrect

responses given prior to these times were considered

"guesses"

.

Another important issue is that student misconceptions,

or errors, fall into two major categories, perceptual and

conceptual . When a student appears to see features that

are not on the ship or miss features which are there, the

error is perceptual; conceptual errors are knowledge mis-

conceptions. When the student misidentif ies a ship, our

system first checks for perceptual errors by asking the

student if the features identified by the comparison be-

tween the two ships are present or not. If the student

still does not see a feature that is present on the ship,

the system will ask him to look more closely and tell him

that the feature is there. If the student thinks a feature

is present that is not actually there, the system will tell

the student that the feature is present on the incorrect

ship but not on the correct ship.

E. STUDENT MODEL

The student model represents the student's knowledge of

the problem, as perceived by the tutoring system^. This

representation is based on the student's responses to the

questions asked by the system. The student model is only

used at the conclusion of each user session, when the

26

system provides the student with a summary of his responses

(Figure 4.5). This summary includes:

- names and number of ships identified on the first
look

- names and number of ships identified on the second
look

- names and number of ships identified on the third
look

- names of ships that the student did not identify

- number of ships when the student appeared to
guess the answer

There is no "grade" given; the information is provided to

encourage the student to review areas of difficulty.

You identified 8 ship(s) on the first try.
The ships (s) were:
Jiang Hu I FF Jiangdong FF Kresta I CG
Kresta II CG Grisha I/II/III FFL Kaman PTG
Kara CG Kiev CVHG

You identified ship(s) on the second try.
The ships (s) were:

You identified ship(s) on the third try.
The ships (s) were:

You did not identify the following ship(s)

:

Jiang Hu II FF

You appeared to guess on the first look at ship(s)

.

Figure 4.5 Sample Summary Screen

27

F. USER INTERFACE

1 . Input

A menu-based approach was used for user input to

the tutor. The information contained in the menus is

contained primarily in the file tdescrip . ari . The menu

formats are contained in the file tmenu . an. Determina-

tion of the choice of menus to be used is made as part of

the tutoring strategy in tdriver .ari.

The ship recognition tutor initially displays

information concerning the tutoring system, the options

available and reminders specific to the Prolog programming

language. The user is next prompted for his experience

level. The choices are Beginner, Intermediate and Expert;

the system will use this information to determine if the

user has responded to a query for the ship name with a

guess. Following this information, the first menu appears

(Figure 4.6) allowing the user to make one of four choices.

2. Menus are modifications of menu formats used in
Ref. 12.

28

Ship Recognition Main Menu

1 . Ship Recognition Test
2. Review a specific photo
3. View a summary
4 .Quit

Enter 1 . , 2 . , 3. or 4.

Figure 4 . 6 Main Menu

If the user chooses the first option the test

begins. The user is presented with a menu of ships from

which to choose (Figure 4.7) and is provided with a book of

photos or line drawings to identify. The system asks the

student to look at randomly chosen photos. Following each

incorrect answer the user is presented with a review of the

significant features. The questions are in either a yes/no

format (Figure 4.8) or a list of feature descriptions

(Figure 4.9).

29

Your ship choices are:
l.Kresta I CG 2.Kresta II CG
3.Jiangdong FF 4. Jiang Hu I FF
S.Jiang Hu II FF 6.Godavari FF
7.Grisha I/II/III FFL 8.Kaman PTG
9. Kara CG 10. Kiev CVHG

11. Kirov CGN 12.Krivak I FFG
IS.Krivak II FFG 14.Krivak III WPGF

Select the name that matches the photo or "q" to quit

Figure 4.7 Sample List of Ships

Is the foremast with the following description:
large obelisk type foremast
present on photo number 3.

Enter "y." for yes or "n." for no.

Figure 4.8 Sample Yes/No Question

Select the best description of the onboard helo structures.
1. hangar and pad aft
2. helo pad aft
3. raised helo pad aft

Make your selection.

Figure 4.9 Sample List of Feature Descriptions

If the user selects the second system option, in

the tutor main menu, to review specific photos, he is asked

30

the number of the photo he wishes to review. The user then

sees the key features for the ship he selected.

The third system option shows the user a summary of

his latest ship recognition test. Section E of this chap-

ter describes the user summary.

2 . Error Checking

The system will check for input that does not

conform to acceptable standards. For example, if there are

fifteen ship choices in the menu, the system will not allow

the user to select "16" as the answer. The user will be

asked to select an answer within the correct range of

choices

.

31

V. Results

Our ship recognition tutor was tested on a database of 20

Soviet ships, with the capability to add more ships as

required. Test runs were completed by five different

intermediate and beginning students, for a total of 25

runs. The system requires 50K of disk space and 368K of

RAM memory not counting the Prolog interpreter. The system

response time to incorrect student answers is one to three

seconds. Tutoring time ranges from five seconds for cor-

rect answers to four minutes for incorrect responses.

Tutoring times vary based on the individual user.

Demonstrations of the ship recognition tutor are in

Appendix A. Instructions as to how to add more ship data

to the knowledge base is in Appendix B.

32

VI . CONCLUSION

A. ACHIEVEMENTS

We have shown that an ICAI system for tutoring ship

recognition is possible. This fully computerized system

provides many of the benefits of an instructor. It is a

portable program that will run on any IBM-compatible micro-

computer. The source code is easily adaptable to teach

most ships. Portability is the main weakness of the GUIDON

tutor discussed in Chapter II. An ICAI system allows the

instructor more flexibility than flash card methods in

providing the student a useful learning environment. The

combination of these two features makes it a worthwhile

addition to any fleet training program.

B. LIMITATIONS

The ship-recognition tutor uses visual features such as

weaponry and structural characteristics referenced in

several ship recognition texts. These features, while

important to the overall identification of ships, may not

be the features required for quick recognition. Most

experts in this field recognize ships based on one or two

main features. The inclusion of "extra" features may only

add to the new student's confusion.

33

A second possible limitation concerns the program'

s

level of instruction. This level may be most applicable to

intermediate students. More experienced students may find

the method of tutoring too basic and therefore irritating.

Beginning students will not know how to proceed when shown

a ship. Nonetheless, the recognition test can still pro-

vide a good idea of any student's level of knowledge.

C. RECOMMENDED SYSTEM ENHANCEMENTS

There are several areas that can be enhanced to improve

the ship-recognition tutor. The first is to provide more

detail on the features used to identify the ships, as well

as memory mnemonics to help the student remember key fea-

tures. A means of specifying the locations of these

features, perhaps using screen graphics, would also be

helpful

.

Background information is another area for improvement.

The ease of identifying ships in the real world can be

greatly improved when information is included concerning

(1) geographical location of the sighting, (2) previous

ship sightings in the area and (3) intelligence data ob-

tained concerning political activities at the time of

sighting.

A third addition to the system might be to provide the

ship silhouettes as graphics on the computer screen. A

drawback to this addition would be to make the overall

34

system less portable. Not all microcomputers are capable

of producing graphics that are clear enough to allow the

user to discern fine details.

Another addition would be to increase the knowledge

base. This system was developed as a prototype, and there-

fore contains a limited number of ships. The knowledge

base is limited to Soviet warships. Additional ships from

other countries along with merchant ships would provide a

better balance for the student.

There are some improvements that can be made to the

instructional strategies. The menus could be presented in

a hidden multiple choice method, where the student is given

a multiple choice menu one item at a time. Another im-

provement would be to consider previous sessions when

preparing the tutoring session. This would provide the

student with more practice on the ships which cause him the

most difficulty.

Some interface considerations might be to provide more

flexible entry methods. The use of a mouse would be easier

than keyboard entry for menu selections. Creating natural

language input capability would also be helpful.

35

APPENDIX A - DEMONSTRATION

****** **************** Next Screen **********************

SSSSS HH
SS SS HH
SS HH
SS HH

HH II PPPPPPP
HH II PP PP
HH II PP PP
HH II PP PP

SSSSS HHHHHHHHH II PPPPPPP
SS HH HH II PP
SS HH HH II PP

SS SS HH HH II PP
SSSSS HH HH II PP

RRRRRRR EEEEEEEEE CCCCCC CCCCCC 000000
RR RR EE CC cc cc cc 00 00
RR RR EE cc cc cc cc 00 00
RR RR EE CC cc 00 00
RRRRRRR EEEEEEE cc cc 00 00
RR RR EE cc cc 00 00
RR RR EE cc cc cc cc 00 00
RR RR EE cc cc cc cc 00 00
RR RR EEEEEEEEE CCCCCC CCCCCC 000000

strike a key when ready .

36

********************** Next Screen **********************

Ship recognition training is required for many Naval person-
nel. It is taught by Intelligence personnel using slides,
flash cards and other drill methods.

This ship recognition tutor is designed to help you improve
your proficiency in ship recognition. You will be provided
with a list of ships from which to identify the photo speci-
fied. The method of tutoring is based on your level of
experience. The system also provides you with a means of
viewing a summary of your last session. You may also review
specific photos.

PROLOG REMINDER:

ALL ENTRIES MUST BE FOLLOWED BY A PERIOD (".")

Strike a key when ready . . .

************************* Next Screen **********************

Level of experience

1

.

Beginner
2

.

Intermediate
3. Expert

Enter 1. ,2. , or 3. : 2.

************************* Next Screen **********************

Ship Recognition Main Menu

1. Ship recognition test
2. Review a specific photo
3. View a summary
4. Quit

Enter l.,2.,3. or 4.1.

37

************************* Next Screen **********************

Please look at photo number 11
Your ship choices are:

l.Kresta I CG 2.Kresta II CG
S.Jiangdong FF 4. Jiang Hu I FF
5. Jiang Hu II FF 6.Gociavari FF
7.Grisha I/II/III FFL S.Kaman PTG
9. Kara CG 10. Kiev CVHG

11. Kirov CGN 12.Krivak I FFG
IS.Krivak II FFG 14.Krivak III WPGF
IS.Slava le.Kashin DDG
17 . Sovremennyy DDG IS.Yurka MSF
19.Kynda CG 20.Udaloy DDG

Select the name that matches the photo, "q" to quit or "h"
for help. 13.

That answer is incorrect.
The Krivak II FFG is not the correct ship.

************************* Next Screen **********************

Select the best description of the gun mounts.
1 . single mount
2. forward of superstructure, aft of deckhouse
3.gunmounts flat and square
4.gunmounts rounded with fence between
5. enclosed gunmount on bow
6. two enclosed gun mounts, fore and aft
7. two enclosed gun mounts forward
8. spheroid enclosed gun mount forward and aft

Make your selection: 5.

The gun description you chose:
enclosed gunmount on bow
is not present on a Krivak II FFG,
but it is present on the correct ship.

Type any letter to continue, c.

************************* Next Screen **********************

Is the helo with the following description:
hangar and pad aft
present on photo number 11.

Enter "y." for yes or "n." for no. y.

38

************************* Next Screen **********************

Is the ssm with the following description:
4 SSM launchers on bow
present on photo number 11.

Enter "y." for yes or "n." for no. n.

The ssm is present on the Krivak II FFG, but not on the
correct ship.

Type any letter to continue, c.

************************* Next Screen **********************

You have identified the following features:

fact (gun (' enclosed gunmount on bow')),
fact (helo (' hangar and pad aft')).

Try again to identify photo number 11
Remember, it is not the Krivak II FFG
Your ship choices are:

l.Kresta I CG 2.Kresta II CG
3.Jiangdong FF 4. Jiang Hu I FF
S.Jiang Hu II FF 6.Godavari FF
7.Grisha I/II/III FFL 8.Kaman PTG
9. Kara CG 10. Kiev CVHG

11. Kirov CGN 12. Krivak I FFG
13. Krivak II FFG 14. Krivak III WPGF
15.Slava 16.Kashin DDG
17 .Sovremennyy DDG 18.Yurka MSF
19.Kynda CG 20.Udaloy DDG

Select the name that matches the photo, "q" to quit or "h"
for help. 14.

************************* Next Screen **********************

Very good! You have chosen the correct ship.

Photo number 11 is the Krivak III WPGF
Here is a reminder of the key identifying features.

mast_2 (two masts)
masts (latticed)
superstructure (superstructure with masts)
stack (short, wide with lip on trailing edge)
gun (enclosed gunmount on bow)
helo (hangar and pad aft)

39

Type any letter to continue, c.
************************* Next Screen **********************

Please look at photo number 20
Your ship choices are:

l.Kresta I CG 2.Kresta II CG
3.Jiangdong FF 4. Jiang Hu I FF
S.Jiang Hu II FF 6.Godavari FF
7.Grisha I/II/III FFL S.Kaman PTG
9. Kara CG 10. Kiev CVHG

11. Kirov CGN 12.Krivak I FFG
13.Krivak II FFG 14.Krivak III WPGF
IS.Slava le.Kashin DDG
17.Sovremennyy DDG IS.Yurka MSF
19.Kynda CG 20.Udaloy DDG

Select the name that matches the photo, "q" to quit or "h"
for help. 15.

************************* Next Screen **********************

Very good! You have chosen the correct ship.

Photo number 20 is the Slava

Here is a reminder of the key identifying features.

mast_2 (two masts)
foremast (large pyramid mast structure)
aftermast (smaller radar mast)
stack (twin stacks amidship)
radar (Top Dome on after deckhouse)
helo (hangar and pad aft)
missiles (16 SS-N-12 Sandbox missiles paired forward)

Type any letter to continue, c.

40

************************* Next Screen **********************

Please look at photo number 9

Your ship choices are:
l.Kresta I CG 2.Kresta II CG
S.Jiangdong FF 4. Jiang Hu I FF
S.Jiang Hu II FF 6.Godavari FF
V.Grisha I/II/III FFL S.Kaman PTG
9. Kara CG 10. Kiev CVHG

11. Kirov CGN 12.Krivak I FFG
IS.Krivak II FFG 14.Krivak III WPGF
15.Slava 16.Kashin DDG
17.Sovremennyy DDG 18.Yurka MSF
19.Kynda CG 20.Udaloy DDG

Select the name that matches the photo, "q" to quit or "h"
for help. 7.

************************* Next Screen **********************

Very good! You have chosen the correct ship.

Photo number 9 is the Grisha I/II/III FFL

Here is a reminder of the key identifying features.

mast_l (heavy pylon mast with latticed extensions)
mast_l_loc (on top of the bridge)
stack (located aft)
rocket_launcher (RBU launcher on a raised mid section)

Type any letter to continue, c.

************************* Next Screen **********************

Please look at photo number 6
Your ship choices are:

l.Kresta I CG 2,Kresta II CG
3.Jiangdong FF 4. Jiang Hu I FF
5. Jiang Hu II FF 6.Godavari FF
7. Grisha I/II/III FFL S.Kaman PTG
9. Kara CG 10. Kiev CVHG

11. Kirov CGN 12.Krivak I FFG
IS.Krivak II FFG 14,Krivak III WPGF
IS.Slava le.Kashin DDG
17 .Sovremennyy DDG IS.Yurka MSF
19.Kynda CG 20.Udaloy DDG

41

Select the name that matches the photo, "q" to quit or "h"
for help. 4.

That answer is incorrect.
The Jiang Hu I FF is not the correct ship.

*•*******•*•*••*****•**** Next Screen **********************

Is the mast_l with the following description:
latticed tripod mast
present on photo number 6.

Enter "y." for yes or "n." for no. y.

************************* Next Screen **********************

Is the stack with the following description:
large, square
present on photo number 6.

Enter "y." for yes or "n." for no. y.

************************* Next Screen **********************

Is the ssm with the following description:
twin launchers forward and aft of stack
present on photo number 6.

Enter "y." for yes or "n." for no. y.

************************* ijext Screen **********************

Is the ssm_2 with the following description:
a SSM 1 launcher forward
present on photo number 6.

Enter "y." for yes or "n." for no. y.

************************* Next Screen **********************

Is the bridge with the following description:
forward placed
present on photo number 6.

Enter "y." for yes or "n." for no. y.

42

************************* Next Screen **********************

Is the helo with the following description:
helo pad aft
present on photo number 6.

Enter "y." for yes or "n." for no. y.

************************* Next Screen **********************

You have identified the following features:

fact (mast_l (' latticed tripod mast')).
fact (stack (' large, square')).
fact (ssm (' twin launchers forward and aft of stack'))-
fact(ssm_2('a SSM 1 launcher forward')).
fact (bridge (' forward placed')) .

fact (helo ('helo pad aft')).

Try again to identify photo number 6

Remember, it is not the Jiang Hu I FF
Your ship choices are:

l.Kresta I CG 2.Kresta II CG
3.Jiangdong FF 4. Jiang Hu I FF
S.Jiang Hu II FF 6.Godavari FF
7.Grisha I/II/III FFL 8 . Kaman PTG
9. Kara CG 10. Kiev CVHG

11. Kirov CGN 12.Krivak I FFG
13.Krivak II FFG 14.Krivak III WPGF
IS.Slava le.Kashin DDG
17. Sovremennyy DDG IS.Yurka MSF
19.Kynda CG 20.Udaloy DDG

Select the name that matches the photo, "q" to quit or "h"
for help. 5.

************************* Next Screen **********************

Very good! You have chosen the correct ship.

Photo number 6 is the Jiang Hu II FF
Here is a reminder of the key identifying features.

mast_l (latticed tripod mast)
stack (large, square)
ssm (twin launchers forward and aft of stack)
ssm_2 (a SSM 1 launcher forward)
bridge (forward placed)
helo (helo pad aft)

Type any letter to continue, c.

43

********************** 5it * * Next Screen **********************

Please look at photo number
Your ship choices are:

l.Kresta I CG
3.Jiangdong FF
5. Jiang Hu II FF
V.Grisha I/II/III FFL
9. Kara CG

11. Kirov CGN
IS.Krivak II FFG
IS.Slava
17 . Sovremennyy DDG
19.Kynda CG

2.Kresta II CG
4 .Jiang Hu I FF
e.Godavari FF
S.Kaman PTG

10. Kiev CVHG
12.Krivak I FFG
14.Krivak III WPGF
le.Kashin DDG
IS.Yurka MSF
20.Udaloy DDG

Select the name that matches the photo, "q" to quit or "h"
for help. 9.

That answer is incorrect.
The Kara CG is not the correct ship.

************************* Next Screen **********************

Select the best description of the mast.
1. heavy pylon mast with latticed extensions
2. latticed tripod mast
3. large radome atop mast
4. large pyramid mast, supports TOP SAIL radar
5. large mack amidship with TOP SAIL radar
6. single oil derrick mast
7 . latticed

Make your selection: 3.

The mast_l description you chose:
large radome atop mast
is not present on a Kara CG,
but it is present on the correct ship.

Type any letter to continue, c.

44

************************* Next Screen **********************

Select the best description of the SSM launchers (s)

.

1.4 SSM launchers forward of the superstructure
2. twin launchers forward and aft of stack
3. located between superstructure and deckhouse
4.4 SSM launchers located on bow
5. canted launchers below bridge wings
6. horizontal launchers under bridge wings
7. two (HOT DOG PACKS), 1 forward, 1 aft

Make your selection: 3.

The ssm description you chose:
located between superstructure and deckhouse
is not present on a Kara CG,
but it is present on the correct ship.

Type any letter to continue, c.

************************* Next Screen **********************

Is the gun with the following description:
forward of superstructure
present on photo number 7.

Enter "y." for yes or "n." for no. n.

The gun is present in the photo. Look carefully to identify
it. This feature is not present on a Kara CG

Type any letter to continue, c.

************************* Next Screen **********************

Is the gun_2 with the following description:
aft of deckhouse
present on photo number 7.

Enter "y." for yes or "n." for no. y.

************************* Next Screen **********************

Is the superstructure with the following description:
enclosed, streamlined with separated deckhouse
present on photo number 7.

Enter "y." for yes or "n." for no. y.

45

************************* Next Screen **********************

Is the stack with the following description:
large, square
present on photo number 7.

Enter "y." for yes or "n." for no. n.

The stack is present on the Kara CG, but not on the correct
ship.

Type any letter to continue, c.

************************* Next Screen **********************

Is the helo with the following description:
helo pad aft
present on photo number 7.

Enter "y." for yes or "n." for no. n.

The helo is present on the Kara CG, but not on the correct
ship.
Type any letter to continue, c.

************************* Next Screen **********************

You have identified the following features:

fact (mast_l (' large radome atop mast')).
fact (ssm (' located between superstructure and deckhouse')).
fact (gun (' forward of superstructure')).
fact (gun_2 (' aft of deckhouse')).
fact (superstructure (' enclosed, streamlined with separated
deckhouse')) .

Try again to identify photo number 7

Remember, it is not the Kara CG
Your ship choices are:

l.Kresta I CG 2.Kresta II CG
3.Jiangdong FF 4. Jiang Hu I FF
S.Jiang Hu II FF 6.Godavari FF
7.Grisha I/II/III FFL 8.Kaman PTG
9. Kara CG 10. Kiev CVHG

11. Kirov CGN 12.Krivak I FFG
13.Krivak II FFG 14.Krivak III WPGF
IS.Slava le.Kashin DDG
17.Sovremennyy DDG IS.Yurka MSF
19.Kynda CG 20.Udaloy DDG

46

Select the name that matches the photo, "q" to quit or "h"
for help. 8.
************************* Next Screen **********************

Very good! You have chosen the correct ship.

Photo number 7 is the Kaman PTG
Here is a reminder of the key identifying features.

mast_l (large radome atop mast)
gun (forward of superstructure)
gun_2 (aft of deckhouse)
ssm (located between superstructure and deckhouse)
superstructure (enclosed, streamlined with separated deck-
house)

Type any letter to continue, c.

************************* Next Screen **********************

Please look at photo number 8

Your ship choices are:
l.Kresta I CG 2.Kresta II CG
S.Jiangdong FF 4. Jiang Hu I FF
S.Jiang Hu II FF 6.Godavari FF
7.Grisha I/II/III FFL 8. Kaman PTG
9. Kara CG 10. Kiev CVHG

11. Kirov CGN 12.Krivak I FFG
IS.Krivak II FFG 14.Krivak III WPGF
IS.Slava le.Kashin DDG
17 .Sovremennyy DDG IS.Yurka MSF
19.Kynda CG 20.Udaloy DDG

Select the name that matches the photo, "q" to quit or "h"
for help. h.

************************* Next Screen **********************

The name of the correct ship is Kara CG

This is a list of the descriptive features of a Kara CG:

mast_l (large pyramid mast, supports TOP SAIL radar)
stack (large, square)
helo (helo pad aft)
ssm (canted launchers below bridge wings)

47

Identify each feature in the photo.

Remember the name of the ship is Kara CG

Type any letter key to continue, c.
************************** Next Screen **********************

Please look at photo number 1

Your ship choices are:
l.Kresta I CG 2.Kresta II CG
S.Jiangdong FF 4. Jiang Hu I FF
S.Jiang Hu II FF 6.Godavari FF
V.Grisha I/II/III FFL S.Kaman PTG
9. Kara CG 10. Kiev CVHG

11. Kirov CGN 12.Krivak I FFG
13.Krivak II FFG 14.Krivak III WPGF
15.Slava 16.Kashin DDG
17 .Sovremennyy DDG IS.Yurka MSF
19.Kynda CG 20.Udaloy DDG

Select the name that matches the photo, "q" to quit or "h"
for help. q.

************************* Mext Screen **********************

You identified 2 ship(s) on the first try. The ship(s)
were

:

Slava Grisha I/II/III FFL

You identified 3 ship(s) on the second try. The ship(s)
were

:

Krivak III WPGF Jiang Hu II FF Kaman PTG

You identified ship(s) on the third try. The ship(s)
were

:

You did not identify the following ship(s)

:

Kara CG

You appeared to guess on the first look at 1 ship(s)

.

Type any letter key to continue, c.

************************* Mext Screen **********************

Please enter an 8 character filename for your summary.
The filename must begin with a letter and contain only
letters and numbers. Remember this filename to
retrieve your summary at your next user session. mysum.

48

Your filename is mysum

Your summary has been saved to the file mysum.
Remember this filename to review this summary.

Type any letter key to continue, c.
************************* Next Screen **********************

Ship Recognition Main Menu

1. Ship recognition test
2. Review a specific photo
3. View a summary
4. Quit

Enter l.,2.,3. or 4.2.

************************* Next Screen **********************

Enter the number of the photo you wish to review followed by
a period. 15.

************************* Next Screen **********************

The name of the ship in photo number 15 is Sovremennyy DDG

This is a list of the descriptive features of a Sovremennyy
DDG:

bridge (radome atop bridge)
gun (spheroid enclosed gun mount foward and aft)
ssm (canted launchers under bridge wings)
stack (single stack amidship)
helo (pad and telescoping hangar aft of stack)
radar (air surveillance radar atop mack)

Identify each feature in the photo.

Remember the name of the ship is Sovremennyy DDG

Type any letter key to continue, c.

49

************************* Next Screen **********************

Ship Recognition Main Menu

1. Ship recognition test
2. Review a specific photo
3. View a summary
4. Quit

Enter l.,2.,3. or 4.3.

What is the name of your summary file?
mysum

.

************************* Next Screen **********************

You identified 2 ship(s) on the first try. The ship(s)
were

:

Slava Grisha I/II/III FFL

You identified 3 ship(s) on the second try. The ship(s)
were

:

Krivak III WPGF Jiang Hu II FF Kaman PTG

You identified ship(s) on the third try. The ship(s)
were

:

You did not identify the following ship(s)

:

Kara CG

You appeared to guess on the first look at 1 ship(s)

.

Type any letter key to continue, c.

************************* Next Screen **********************

Ship Recognition Main Menu

1. Ship recognition test
2. Review a specific photo
3. View a summary
4. Quit

Enter 1., 2. ,3. or 4.4.

50

APPENDIX B - USER'S MANUAL

A. USING THE PROGRAM

The ship recognition tutor is implemented in the Arity

Prolog programming language. It requires approximately 50K

of disk space and 512K of RAM memory. Once you have loaded

Arity Prolog, and started the interpreter, you will be

presented with a prompt:

Type " [loadfile] ." to begin. REMEMBER: PROLOG REQUIRES A

PERIOD (".") FOLLOWING ALL INPUT.

?- [loadfile]

.

The tutoring system will take several minutes to load,

please be patient. When the system responds with:

yes

type "gotutor .

"

?-gotutor

.

You will be presented with menus from this point. To quit

the system you may type "q." at the ship choice menu or

"4." at the main menu.

51

1 . Prolog Reminders

1. All input must be followed by a period (".") .

2. Letter entries, such as "q" or "h", must be made
in lower case.

3. Typing extra characters after the period and
before the carriage return will cause the system
to fail. No summary will be made and the program
will halt. You may type "gotutor." at the ?-

prompt to restart the program.

B. MODIFICATIONS AND ADDITIONS

The expert module of the ship recognition tutor is

easily modifiable, in order to add or delete ships, or to

change identifying features of the ships already in the

system. When modifying the system several things need to

be kept in mind:

1. Before making any changes be sure to make backup
copies of all files.

2. Whenever a change is made to the ships . arl file,
changes must also be made to the tdescrip . ari file
and vice versa.

3. Descriptive features, ship names, and predicate names
must match exactly whenever they are used.

The following is an example of the changes that need to

be made when adding a ship to the system:

1. Add a rule predicate:

rule (ship_id('Grisha I/II/III FFL')

,

[mast_l (' heavy pylon mast with latticed
extensions'

)

,

mast_l_loc (' on top of the bridge'),
stack (' located aft'),
rocket_launcher (' RBU launcher on a raised mid

section')])

.

52

Use predicate names such as stack, which are already

defined when possible. The same goes for feature

descriptions such as, 'located aff . Remember they

should be character-for-character the same as they

appear anywhere else in the program.

Add a ship_photo_comb predicate:

ship_photo_comb(9, 'Grisha I/II/III FFLM .

Be sure the photo number you assign is not already

assigned and that the ship name is typed exactly as

it appears in the rule predicate and the

ship_names predicate. The numbers must be

sequential

.

Add the name of the ship to the ship_names predicate

The ship name should be character-for-character the

same as it appears elsewhere.

ship_names (
' Your ship choices are: '

,

['Kresta I CG','Kresta II CG' ,
' Jiangdong FF'

,

'Jiang Hu I FF',' Jiang Hu II FF' ,
' Godavari FF'

,

'Grisha I/II/III FFL','Kaman PTG','Kara CG'

,

'Kiev CVHG',' Kirov CGN','Krivak I FFG'

,

'Krivak II FFG','Krivak III WPGF' ,
' Slava'

,

'Kashin DDG' ,
' Sovremennyy DDG','Yurka MSF'

,

' Kynda CG' ,
' Udaloy DDG'])

.

The order of the ship names, as they appear in this

predicate, is the order of ship names in the choices

menu

.

Increase the number of total photos in the predicate

total_photos

.

total photos (20)

.

53

5. Modify or add a descriptors predicate for every

feature which is added in the rule predicate.

descriptors (stack,
'Select the best description of the stack

structure .

'

,

[' located aft'

,

' large, square'

,

'short, wide with lip on trailing edge',
'4 in symmetry to the mast, canted out',
'4 stacks in pairs amidships',
'oval shaped stack (YURKED TO THE SIDE)',
'twin stacks amidship'

,

'single stack amidship']).

For example, the predicate stack was added in the

rule predicate above and the description was

^located aft'. The exact same descriptive phrase is

added to the descriptors predicate for stack. If

there is already a descriptors predicate which

contains the correct phrase, no change needs to be

made

.

Steps 1-4 concern changes made to the file ships . ari

,

step 5 concerns changes made to the file tdescrip. ari.

54

APPENDIX C - SOURCE CODE

/* tdriver.ari */

This file contains the tutoring portion of the ship recog-
nition tutor. It uses the files tmenu.ari, tdescrip. ari,
ships. ari/ utilities .ari and intro.ari. The file is loaded
by loadfile . ari . Two executable files, summary.exe and
getstime.exe, are also needed. They were created using
Turbo Pascal.

No modifications to this file are necessary, in order to
update or add to the database.

/* Initializing variables */

first_try (0, [])

.

second_try (0, [])

.

third_try (0, []) .

misses (0, []) .

num_guesses (0) .

number seen (0)

.

gotutor :-

abolish (stop_marker, 0) ,

abolish (quit_system, 0)

,

intro_screen,
shell (els)

,

experience_level/
choose_option

.

choose_option :- quit_system, !.

choose_option :- main_menu, start_tutor, choose_option

/* Direct the system to the user chosen option. */

start_tutor :- system_option (test)

,

abolish (viewed_photo, 1)

/

assert (viewed_photo (0))

,

initialize_seed,
start_test, abolish (stop marker, 0), !.

55

start_tutor :- system_option (photo_review)

,

shell (els), blines(lO),
write ('Enter the number of the photo you wish to

review '
)

,

write (' followed by a period. ')/

read (Number)

,

ship_photo_comb (Number, Correct_answer) ,

rule (ship_id (Correct_answer) , Correct_answer_list) ,

shell (els), blines(4),
nl, write ('The name of the ship in photo number '),
write (Number) , write (' is '),
write (Correct_answer) , nl, nl,
write ('This is a list of the descriptive features

of a ')

,

write (Correct_answer) , write(':'), nl, nl,
prettyprintl (Correct_answer_list) , nl, nl,
write (' Identify each feature in the photo.'), nl,
nl, write (' Remember the name of the ship is '),
write (Correct_answer) , nl, nl,
write ('Type any letter key to continue. '),
read (Anykey) , nl, !.

start_tutor :- system_option (view_summary)

,

shell (summary) , nl, nl, nl,
write ('Type any letter key to continue. '),
read (Anykey) , nl, !.

start_tutor :- system_option (quit)

,

assert (quit system)

.

/* Begin the ship recognition test. */

start_test :- stop_marker, conclusion, !.

start_test :- number_seen (Number) ,

total_photos (X) ,

Number >= X, conclusion, !

.

start_test :-

clear_vars,
shell (els) , blines(5),
get_photo_num,
photo_num (Number)

,

write (' Please look at photo number '),
write (Number) , nl,
ship_names (Header, Names) ,

write (Header) , nl,
shipmenu (Names) , nl, nl,
write (' Select the name that matches the photo,'),
write ('"q" to quit or "h" for help. '),
shell (getsthetime) , consult (timefile) , time (A, B),
retract (time (A, B))

,

56

ship_ask_which (Names) / nl,
shell (getsthetime) , consult (timefile) , time(C,D),
retract (time (C,D))

,

timecomp (A, B, C, D, Total)

,

assert (time_to_look (Total))

,

ship_fact (Stucient_answer) ,

abolish (ship_fact, 1)

,

check_answer (Student_answer, Number) ,

retract (number_seen (N)) ,

Nl is N + 1,

assert (number_seen (Nl))

,

start test.

/* Randomly select the photos to be presented. */

initialize_seed :- shell (getsthetime)

/

consult (timefile) , retract (time (A,B)

)

,

assert (seed (B))

.

get_photo_num :-

total_photos (R) ,

check_number (R/ N) , !.

check_number (R, N) :-

not (viewed_photo (N))

,

assert (viewed_photo (N))

,

assert (photo_num (N)) , !

.

check_number (R, N) :-

random (R, Nl)

,

check_number (R, Nl) / !.

random (R,N) :-

retract (seed(S))

,

N is (S mod R) + 1,

NewSeed is (25 * S + 1) mod 1096,
asserta (seed (NewSeed)) / !.

/* Check the student's first answer and respond appropri-
ately. */

check_answer (' quit' , Phot o_num) :- assert (stop_marker) , !.

check_answer (
' help' , Photo_num) :

-

ship_photo_comb (Photo_num, Correct_answer)

,

rule (ship_id (Correct_answer) , Correct_answer_list)

,

shell (els), blines(4),
nl, write ('The name of the correct ship is '),
write (Correct answer), nl, nl,

57

write ('This is a list of the descriptive features
of a ')

,

write (Correct_answer) , writeC:')/ nl, nl,
prettyprintl (Correct_answer_list) , nl, nl,
write (' Identify each feature in the photo.')/ nl,
nl/ write (' Remember the name of the ship is
write (Correct_answer) , nl, nl,
maintain_score {4, Correct_answer)

,

write ('Type any letter key to continue. ')

read (Anykey) / nl, !.

/

/

check_answer (Student_answer, Photo_num) :

-

ship_photo_comb (Photo_num, Student_answer)

,

shell (els) , blines(4),
write ('Very good! You have chosen the correct

ship. ') , nl, nl,
write ('Photo number '), write (Photo_num)

,

write (' is the '
)

,

write (Student_answer) , nl, nl,
write ('Here is a reminder of the key identifying

features .

') , nl,
nl, rule (ship_id (Student_answer) , R)

,

prettyprintl (R) , nl,
numtries (X)

,

maintain_score (X, Student_answer)

,

write ('Type any letter to continue. '),
read (Anykey) , nl, nl, !.

/* Beginner guess */

check_answer (Student_answer, Photo_num) :

-

user_level (beginner) , time_to_look (X)

,

X < 30,
ship_photo_comb (Photo_num, Correct_answer) ,

maintain_guesses,
write ('That answer is incorrect.'), nl,
write ('The '), write (Student_answer)

,

write (' is not the correct ship.'), nl, nl,
rule (ship_id (Correct_answer) , Correct_answer_list)

,

compare (Correct_answer_list , [] , Features_not_present,
Features_missed, Feature_details_dif f) , nl,

nl,
review_features (Correct_answer, Correct_answer_list,

Student_answer, Feature_details_dif f

,

Features missed, Features not present), !.

58

/* Intermediate user guess */

check_answer (Student_answer, Photo_num) :

-

user_level (intermediate) , time_to_look (X) ,

X < 10,
ship_photo_comb (Photo_num/ Correct_answer)

,

maintain_guesses,
write ('That answer is incorrect.')/ nl,
write ('The '), write (Student_answer)

,

write (' is not the correct ship.'), nl, nl,
rule (ship_id (Correct_answer) , Correct_answer_list)

,

compare (Correct_answer_list, [] , Features_not_present,
Features_missed, Feature_details_dif f) , nl,

nl,
review_features (Correct_answer, Correct_answer_list,

Student_answer, Feature_details_diff

,

Feature s_missed, Features_not_pre sent)
/* Non-guess */

1

check_answer (Student_answer, Photo_num) :

-

ship_photo_comb (Photo_num, Correct_answer)

,

write ('That answer is incorrect.'), nl,
write ('The '), write (Student_answer)

,

write (' is not the correct ship.'), nl, nl,
rule (ship_id (Student_answer) , Student_answer_list)

,

rule (ship_id (Correct_answer) , Correct_answer_list)

,

compare (Correct_answer_list, Student_answer_list

,

Features_not_pre sent, Features_missed,
Feature_details_dif f)

,

nl, nl,
review_features (Correct_answer , Correct_answer_list

,

Student_answer, Feature_details_dif f

,

Features_missed, Features_not_present) , !

.

/* Begin review of features after incorrect response */

review_features (Correct_answer, Correct_answer_list,
Student_answer, Feature_details_dif f , Features_missed,
Features_not_present) :- stop_review, !.

review_features (Correct_answer, Correct_answer_list,
Student_answer , Feature_details_dif f , Features_missed,
Features_not_present) :- stop_marker, !.

review_features (Correct_answer, Correct_answer_list,
Student_answer, Feature_details_dif f , Features_missed,
Features_not_present) :-

numtries (X) , X<3,
review_dif fs (Feature_details_diff , Student_answer,

Correct_answer_list) , nl,
review misses (Features missed, Student answer), nl,

59

review_not_present (Features_not_present,
Stucient_answer) ,

ask_ship (Correct_answer/ Stucient_answer,New_answer) ,

rule (ship_id (New_answer) ,New_answer_list) /

compare {Correct_answer_list , New_answer_list,
Features_not_present2 , Features_missed2

,

Feature_details_dif f2)

,

review_features (Correct_answer, Correct_answer_list/
New_answer, Feature_details_dif f

2

,

Features_missed2, Features_not_present2) , !

.

review_features (Correct_answer, Correct_answer_list/
Student_answer, Feature_details_dif f , Features_missed,
Features_not_present) :-

still_no_answer (Correct_answer/ Correct_answer_list)

,

nl, ! .

review_dif fs ([] , Student_answer, Correct_answer_list) :- !.

review_dif f s ([Detail I
Features] , Student_answer/

Correct_answer_list) :-

Detail =.. [Detail_feature, Detail_descrip]

,

Check_detail =. . [Detail_feature, Other_descrip]

,

fact (Check_detail)

,

review_dif fs (Features, Student_answer,
Correct_answer_list) , !

.

review_dif fs ([Detail I
Features] / Student_answer,

Correct_answer_list) :-

Detail =.. [Detail_feature/Detail_descrip]

,

Check_detail =.. [Detail_feature, Ot]ier_descrip] ,

incorrect_fact {Check_detail)

/

review_dif fs (Features, Student_answer,
Correct_answer_list

)

, !

.

review_dif fs ([Detail I
Features] , Student_answer,

Correct_answer_list) :-

Detail =.. [Detail_feature, Detail_descrip]

,

descriptors (Detail_feature/ Listheader, Descrip_list) ,

shell (els) , blines(5),
write (Listheader) ,nl,
writemenu (Descrip_list) / nl,
write ('Make your selection: '),
descrip_ask_which (Descrip_list, Item)

,

Selected_item =.. [Detail_feature, Item]

,

member (Selected_item, Correct_answer_list

)

,

assertz (fact (Selected_item)

)

,

nl, write ('Tlie ')/ write (Detail_feature) ,

write (' description you chose: ')/ nl,
write (Item), nl, write ('is not present on a ')/
write (Student_answer) , write (', '), nl,
write ('but it is present on the correct ship.'),

60

nl, write ('Type any letter to continue. ')/

read (Anyletter) ,

review_dif fs (Features, Student_answer,
Correct_answer_list) , nl, !

.

review_diffs ([Detail [Features] , Student_answer,
Correct_answer_list) :-

nl, write ('That is not the best description'), nl,
review_diffs ([Detail | Features] , Student_answer,

Correct_answer_list) , nl, !

.

review_misses ([] / Student_answer) :- !.

review_misses ([Detail [Features] , Student_answer) :-

Detail =.. [Detail_feature, Detail_descrip]

/

Chec]c_detail =.. [Detail_feature, Other_descrip] ,

fact (Check_detail)

,

review_misses (Features, Student_answer) , !

.

review_misses ([Detail I
Features] , Student_answer) :

-

Detail =.. [Detail_feature, Detail_descrip]

,

Chec]c_detail =.. [Detail_feature, Other_descrip] ,

incorrect_fact (Check_detail)

,

review_misses (Features, Student_answer) , !

.

review_misses ([Detail I
Features] , Student_answer) :-

Detail =. . [Detail_feature, Detail_descrip]

,

photo_num (Number) , shell (els) , blines (5)

,

write ('Is the '), write (Detail_feature)

,

write (' with the following description:'), nl,
write (Detail_descrip) , nl,
write (' present on photo number '), write (Number)

,

write ('.'), nl,
nl, write ('Enter "y." for yes or "n." for no. '),
read (Answer)

,

interp_miss_answer (Answer, Detail_feature,
Student_answer) ,

assertz (fact (Detail))

,

review misses (Features, Student answer), nl, !.

interp_miss_answer (Answer, Detail_feature, Student_answer) :

-

name (Answer, [121]) , nl, !.

interp_miss_answer (Answer, Detail_feature, Student_answer) :

-

name (Answer, [110])

,

nl, nl, write ('The '), write (Detail_feature)

,

write (' is present in the photo. Look carefully to
identify it .

')

,

nl, write ('This feature is not present on a '),
write (Student answer).

61

nl, nl, write ('Type any letter to continue. ')/
read (Anyletter) ,

r\l, ! .

interp_miss_answer (Answer, Detail_feature/ Student_answer)
nl, write ('Your input is not a "y" or a "n"

.

Please reenter: '),

read (New_entry) ,

interp_miss_answer (New_entry/ Detail_feature/
Student answer) , !

.

review_not_present ([] / Student_answer) : - !

.

review_not_present ([Detail | Features] / Student_answer) :

-

Detail =.. [Detail_feature, Detail_descrip]

,

Check_detail =.. [Detail_feature, Other_descrip]

,

fact (Check_detail)

,

review_not_present (Features, Student_answer) , !

.

review_not_present ([Detail | Features] , Student_answer) :

-

Detail =.. [Detail_feature, Detail_descrip]

,

Check_detail =.. [Detail_feature, Other_descrip]

,

incorrect_fact (Check_detail)

,

review_not_present (Features, Student_answer) , !

.

review_not_present ([Detail I
Features] , Student_answer) :

-

Detail =.. [Detail_feature, Detail_descrip]

,

photo_num (Number) , shell (els) , blines(5),
write ('Is the '), write (Detail_feature)

,

write (' with the following description:'), nl,
write (Detail_descrip) , nl,
write ('present on photo number '), write (Number)

,

write ('.'),
nl, nl,
write ('Enter "y." for yes or "n." for no. '),
read (Answer)

,

interp_not_present_answer (Answer, Detail_feature,
Student_answer) ,

assertz (incorrect_fact (Detail)) ,

review_not_present (Features, Student_answer) , nl, !

interp_not_present_answer (Answer, Detail_feature,
Student_answer) :-

name (Answer, [121])

,

nl, write ('The '), write (Detail_feature)

,

write (' is not present in the photo.
Please look more carefully.'),

nl, nl, write ('It is present on the '),
write (Student_answer)

,

write ('.'), nl, nl.

62

write ('Type any letter to continue. ')/

read (Anyletter) , nl, !.

interp_not_present_answer (Answer, Detail_feature,
Student_answer) :-

name (Answer, [110])

,

nl, write ('The ')/ write (Detail_feature)

,

write (' is present on the ')/

write (Student_answer) /

write (', but not on the correct ship.')/
nl, nl, write ('Type any letter to continue. '),

read (Anyletter) , nl, !.

interp_not_present_answer (Answer, Detail_feature,
Student_answer) :-

nl, write ('Your input is not a "y" or a "n".
Please reenter: '),

read (New_entry) ,

interp_not_present_answer (New_entry, Detail_feature,
Student answer) , !

.

/* Request user to try again to identify the correct
ship. */

ask_ship (Correct_answer, Student_answer,New_answer) :

-

shell (els) , blines(5),
write ('You have identified the following

features:'), nl, nl,
listing (fact) , nl,
photo_num (Number) ,

write ('Try again to identify photo number '),
write (Number) , nl,
write (' Remember, it is not the '),
write (Student_answer) , nl,
ship_names (Header, Names)

,

write (Header) , nl,
shipmenu (Names) , nl,
write (' Select the name that matches the photo,')
write ('"q" to quit or "h" for help. '),
ship_ask_which (Names) , nl,
ship_fact (New_answer)

,

abolish (ship_fact, 1) ,

numtries (X)

,

abolish (numtries, 1)

,

XI is X + 1,

assert (numtries (XI))

,

check answer2 (New answer, Number) , !.

63

/* Check users response for second and third tries at iden
tification. */

check_answer2 (' quit' / Phot o_num) :- assert {stop_marker) , !.

check_answer2 (
' help' , Photo_num) :

-

ship_photo_comb (Photo_num, Correct_answer) ,

rule (ship_id (Correct_answer) , Correct_answer_list)

,

shell (els)/ blines(5)/
nl, write ('The name of the correct ship is '),
write (Correct_answer) , nl, nl,
write ('This is a list of the descriptive features

of a '),
write (Correct_answer) , writeC:')/ nl, nl,
prettyprintl (Correct_answer_list) / nl, nl,
write (' Identify each feature in the photo.'), nl,
nl, write (' Remember the name of the ship is '),
write (Correct_answer) / nl, nl,
maintain_score (4 , Correct_answer)

,

write ('Type any letter key to continue. '),
read (Anykey)

,

assert (stop review), nl, !.

check_answer2 (New_answer, Photo_num) :-

ship_photo_comb (Photo_num, New_answer)

,

shell (els) , blines(5),
write ('Very good! You have chosen the correct

ship. ') , nl, nl,
write ('Photo number '), write (Photo_num)

,

write (' is the '
)

,

write (New_answer) , nl,
write ('Here is a reminder of the key identifying

features .

') , nl,
nl, rule (ship_id (New_answer) , R) , prettyprintl (R)

,

nl, numtries (X)

,

maintain_score (X, New_answer)

,

write ('Type any letter to continue. '),

read (Anykey) , nl, nl,
assert (stop_review) , !

.

check_answer2 (New_answer, Photo_num) :-

ship_photo_comb (Photo_num, Correct_answer)

,

write ('That answer is incorrect.'),
write (' The '), write (New_answer) ,

write (' is not the correct ship.'), nl, !.

64

/* After third incorrect response. */

still_no_answer (Correct_answer, Correct_answer_list) :

-

stop_marker, !

.

still_no_answer (Correct_answer/ Correct_answer_list)
:

-

stop_review, !

.

still_no_answer (Correct_answer, Correct_answer_list) :

-

shell (els) , blines (5)

,

write ('The name of the correct ship is '),
write (Correct_answer) / nl, nl,
write ('This is a list of the descriptive features

of a '),
write (Correct_answer) , writeC:'), nl, nl,
prettyprintl (Correct_answer_list) , nl, nl,
write (' Identify each feature in the photo.'), nl,
nl, write (' Remember the name of the ship is the '),
write (Correct_answer) , nl, nl,
maintain_score (4, Correct_answer) ,

write ('Type "c." to continue. ')/
read (Anykey) , nl, !.

/* Keep summary of student's responses. */

maintain_score (X, Student_answer) :

-

X == 1,

first_try (N, Tries)

,

Nl is N + 1,

abolish (first_try, 2) ,

append (TrieS/ [Student_answer] ,Tries2) ,

assert (first_try (Nl, Tries2)) , !.

maintain_score (X, Student_answer) :

-

X == 2,
second_try (N, Tries) ,

Nl is N + 1,

abolish (second_try, 2) ,

append (Tries, [Student_answer] , Tries2)

,

assert (second_try (Nl, Tries2)) , !

.

maintain_score (X, Student_answer) :

-

X == 3,
third_try (N, Tries)

,

Nl is N + 1,

abolish (third_try, 2)

,

append (Tries, [Student_answer] , Tries2)

,

assert (third try (Nl,Tries2)
) , !.

65

I

maintain_score (X, Student_answer) :-

misses (N, Tries)

,

Nl is N + 1,

abolish (misses, 2) ,

append (Tries, [Student_answer] , Tries2;
assert (misses (Nl, Tries2)) , !.

maintain_guesses :- num_guesses (X) ,

XI is X + 1,

abolish (num_guesses, 1)

,

assert (num_guesses (XI))

,

maintain guesses :- !.

/* Final summary of student's responses. */

conclusion :- shell (els) , blines(4),
first_try (A, First_tries) , nl,
write ('You identified '), write (A)

,

write (' ship(s) on the first try.'),
write (' The ship(s) were:'), nl,
print_3 (First_tries) , nl,
second_try (B, Second_tries)

,

write ('You identified '), write (B)

,

write (' ship(s) on the second try.'),
write (' The ship(s) were:'), nl,
print_3 (Second_tries) , nl,
third_try (C, Third_tries)

,

write ('You identified '), write (C)

,

write (' ship(s) on the third try.'),
writeC The ship(s) were:'), nl,
print_3 (Third_tries) , nl,
misses (D, Missed_ships)

,

write ('You did not identify the following
ship (s) : '

) , nl,
print_3 (Missed_ships) , nl,
num_guesses (G)

,

write ('You appeared to guess on the first look
at ')

,

write (G) , write (' ship(s).'), nl, nl,
write ('Type any letter key to continue. '),
read (Anykey) , nl, nl,
write_to_f ile, !

.

/* Write student's summary to file. */

write_to_file :-

shell (els), blines(lO),
write (' Please enter an 8 character filename

for your summary. '), nl.

66

write ('The filename must begin with a letter
and contain only '), nl,

write (' letters and numbers. Remember this
filename to '

) ^ nl,
write (' retrieve your summary at your next user

session. '
)

,

read (Filename) ,

nl, nl, write ('Your filename is '),
write (Filename) ,

tell (Filename)

,

first_try (A, First_tries) , nl,
write ('You identified '), write (A)

,

write (' ship(s) on the first try.'),
write (' The ship(s) were;'), nl,
print_3 (First_tries) , nl,
second_try (B, Second_tries)

/

write ('You identified '), write (B)

,

write (' ship(s) on the second try.'),
write (' The ship(s) were:'), nl,
print_3 (Second_tries) , nl,
third_try (C, Third_tries)

,

write ('You identified '), write (C)

,

write (' ship(s) on the third try.'),
write (' The ship(s) were:'), nl,
print_3 (Third_tries) , nl,
misses (D,Missed_ships)

,

write ('You did not identify the following
ship(s) : '

) , nl,
print_3 (Missed_ships) , nl,
num_guesses (G) ,

write ('You appeared to guess on the first
look at '

)

,

write (G) , write (' ship(s).'), nl, nl, nl,
told, nl, nl, nl,
write ('Your summary has been saved to the file '),
write (Filename) , write ('.'), nl,
write (' Remember this filename to review this

summary.'), nl, nl,
write ('Type any letter key to continue. '),
read (Anykey) , nl, nl, !.

/* Clear memory for the next photo. */

67

clear_vars :-

abolish (photo_num, 1)

,

abolish (ship_fact, 1) ,

abolish (fact, 1)

,

abolish (incorrect_fact, 1)

abolish (time_to_look, 1)

,

abolish (stop_review, 0)

,

abolish (fact, 1)

,

abolish (incorrect_fact, 1)

abolish (numtries, 1)

,

assert (numtries (1)) , !.

68

/* Comparer. ari */

/* This program does the comparison between the two lists.
Three lists are generated consisting of features in the
first list which are not in the second, features in the
second list which are not in the first, and features whose
predicates are the same in both lists, but whose arguments
are different. */

/*Any duplicate items in the two lists are deleted from
both prior to further comparisons.*/

compare (Answer, Student, Features_not_present , Features_missed,
Feature_details_dif f)

:-

delete_duplicates (Answer, Student ,Answer2,
Student2)

,

compare2 (Answer2, Student2, Features_not_present,
Features missed, Feature details diff)

.

/* Delete_duplicates deletes duplicate terms from Answer
and Student. */

delete_duplicates ([] , Student, [] , Student) .

delete_duplicates ([A | Answer] , Student, Answers, Student 3) :-

member (A, Student)

,

delete (A, Student, Student2)

,

delete_duplicates (Answer, Student2, Answers,
Students) , !

.

delete_duplicates ([A| Answer] , Student, [A| AnswerS]

,

Students) :-

delete_duplicates (Answer, Student, Answers,
Students) .

/* Base condition */

compare2([], [],[],[],[]).

/* Answer has more terms than the Student model. */

compare2 ([A | Answer] , [] , Features_not_present,
[A|Features_missed] , Feature_details_dif f) :-

compare2 (Answer, [] , Features_not_present

,

Features missed, Feature details diff),!

69

/* student model has more terms than the Answer. */

compare2 ([] , [SI Student] / [S I Features_not_present]

/

Features_missed, Feature_details_dif f) :

-

compare2 ([] / Student, Features_not_present,
Features missed, Feature details diff) ,

!

/* The Answer has terms with different arguments than the
Student model. */

compare2 (Answer, Student, Features_not_present

,

Features_missed, [S t Feature_details_dif f]) :-

match_terms (Answer, Student , A, S) ,

delete (A, Answer, Answer2)

,

delete (S, Student, Student2)

,

compare2 (Answer2, Student2, Features_not_present,
Features missed, Feature details diff),!.

/* The Answer has terms not in the Student model, but the
Student model is not empty. */

compare2 (Answer, Student, Features_not_present,
[Term I Features_missed] , Feature_details_dif f) :-

find_a_term (Answer, Student, Term) ,

delete (Term, Answer, Answer2)

,

compare2 (Answer2 , Student , Features_not_present

,

Features_missed, Feature_details_dif f) , !

.

/* The Student model has terms not in the Answer, but the
Answer is not empty. */

compare2 (Answer, Student, [Term | Features_not_present]

,

Features_missed, Feature_details_dif f) :

-

find_s_term (Answer, Student, Term)

,

delete (Term, Student, Student2)

,

compare2 (Answer, Student2, Features_not_present,
Features missed, Feature details diff),!.

/* Match_terms finds the terms in The Answer which match
the terms in the Student model except that the arguments
are different. It returns the terms that match. */

match_terms ([A | Answer] , Student, A, S) :

-

A =. . [Pred,TA]

,

S =. . [Pred,TS]

,

member (S, Student)

.

70

/* Find_a_term finds terms in Answer which are not in the
Student~model . Used when Student model is not empty. Will
not find terms with mismatched arguments. */

/* Example: a predicate with no arguments */

find_a_term ([Term | Answer] , Student, Term) :-

Term =. . [Pred]

,

S =. . [Pred] ,

not (member (S, Student))

.

/* Example: any one argument predicate */

find_a_term ([Term | Answer] , Student, Term) :

-

Term =. . [Pred, TA]

,

S =. . [Pred,TS]

,

not (member (S, Student))

.

/* Find_s_term finds terms in the Student model which are
not in the Answer. Used when the Answer is not empty.
Will not find terms with mismatched arguments. */

find_s_term (Answer, [Term | Student], Term) :-

Term =. . [Pred]

,

A =. . [Pred]

,

not (member (A, Answer))

.

find_s_term (Answer, [Term | Student], Term) :-

Term =. . [Pred, TS]

,

A =. . [Pred,TA]

,

not (member (A, Answer))

.

71

/* tmenu.ari */

/* This file contains the menus for the tutor program */

writemenu ([]) :- !.

writemenu (Descrip_list) :- length (Descrip_list,N)

,

writemenu2 (Descrip_list/ N) , !

.

writemenu2 { [] , N) :- !.

writemenu2 ([I I Descrip_list2] ,N) :-

length (Descrip_list2,N2) ,

N3 is N - N2,
tab (3), bspace(N3),
write (N3) , write {'.'),
write (I) , nl,
writemenu2 (Descrip Iist2/N).

shipmenu ([]) : - !

.

shipmenu (Descrip_list) :- length (Descrip_list, N)

,

shipmenu2 (Descrip_list,N) , !.

shipmenu2 ([] , N) :- !.

shipmenu2 ([II I []] /N) :-

length (Descrip_list2, N2)

,

N3 is N - N2,
tab (3), bspace(N3),
write (N3) , write ('.')/
write (II) , nl,
shipmenu2 (Descrip_list2, N) , !.

shipmenu2 ([II, 12 | Descrip_list2] ,N) :-

length (Descrip_list2, N2)

,

N4 is N - N2,
N3 is N4 - 1,

tab (3), bspace(N3),
write (N3) , write ('.')/
write (II)

,

name(Il,L), length (L, LI)

,

Spaces is 25 - LI,
tab (Spaces), bspace(N4),
write (N4) , write ('.')/
write(I2), nl,
shipmenu2 (Descrip_list2,N)

.

ship_ask_which (Names) :-

read (Shipname) , create_ship_fact (Shipname, Names)

,

nl, nl

.

72

create_ship_fact (Shipname, Names) :-

name (Shipname, [113]) , assert (ship_fact (' quit')) , !

create_ship_fact (Shipname, Names) :-

name (Shipname, [104]) , assert (s]iip_fact (' help')) / !

create_ship_fact (Shipname, Names) :-

total_photos (X)

,

integer (Shipname) ,

Shipname > 0,

Shipname =< X,
item (Shipname, Names, I) /

assertz (ship fact (I)), !.

create_ship_fact (Shipname, Names) :- nl, nl,
total_photos (X)

,

write ('Your input is not within the range of
1 to M,

write (X), write ('.'), write (' Please reenter: '),

read (New_entry)

,

create ship fact (New entry, Names) , !.

descrip_ask_which (Descrip_list, I) :

-

read (Description)

,

find_description (Description, Descrip_list, I)

.

find_description (Description, Descrip_list, I) :

-

length (Descrip_list, N)

,

integer (Description)

,

Description > 0,

Description =< N,
item (Description, Descrip_list , I) , !

.

find_description (Description, Descrip_list, I) :- nl, nl,
length (Descrip_list,N)

,

write ('Your input is not within the range of
1 to ')

,

write (N) , write ('.'), write (' Please reenter: '

read (New_entry) , find_description (New_entry, De-
scrip_list, I) , !

.

itemd, [X|L] ,X) .

item(N, [X|L] , I) :- N > 1, N2 is N - 1, item(N2,L,I).

73

main_menu :- abolish (system_option, 1)

,

shell (els) /

blines(lO), tab(17),
write ('Ship Recognition Main Menu')/ nl, nl,
tab (17), write (' 1. Ship recognition test')/ nl,

Review a specific photo'), nl.
View a summary'), nl.
Quit'), blinesO),

3. or 4.'
)

,

read (Choice) , check_entry (Choice, 4 , main_menu)

,

assert option (Choice) , blines(3).

tab(17), writeC 2

tab(17), writeC 3

tab(17), writeC 4

write ('Enter l.,2.,

assert_option (1)

assert_option (2)

assert_option (3)

assert_option (4)

assert option ()

- assert (system_option (test))

.

- assert (system_option (photo_review)

)

- assert (system_option (view_summary)

)

- assert (system option (quit))

.

experience_level :- abolish (user_level/ 1)

,

shell (els)

/

blines(lO), tab(25),
write ('Level of experience'), nl, tab (25),
write (' '

) ,

nl, tab (25), writeC 1- Beginner'), nl,
tab (25), writeC 2. Intermediate'), nl,
tab (25), writeC 3. Expert'), blines (3) ,

writeCEnter l.,2., or 3.: '),
read (Choice)

,

check_entry (Choice, 3, experience_level) ,

assert_level (Choice) , blines (3).

assert_level (1)

assert_level (2)

assert_level (3)

assert level ()

- assert (user_level (beginner))

.

- assert (user_level (intermediate)

)

- assert (user level (expert))

.

chec)c_entry (Choice, Num_entries, Pred) :
-

Choice > 0,
Choice =< Num_entries, !

.

check entry (Choice, Num entries, Pred) :- Pred, !.

74

/* ships. ari */

This file contains the database for the ship recognition
tutor. All ships in the database are contained in the rule
predicates. The ship_names predicate is used by when
creating the ship choices menu.

When adding ships to the database tdescrip.ari must also be
updated. Be sure to update the total_photos, ship_names
and
ship photo comb predicates also.

/* Number of photos in the data base. */

total_photos (20)

.

/* Information for tmenu.ari, should exactly match the
names in the predicate rule and ship_phot_comb . */

ship_names (' Your ship choices are: '

,

['Kresta I CG','Kresta II CG' ,
' Jiangdong FF'

,

'Jiang Hu I FF',' Jiang Hu II FF' ,
' Godavari FF'

,

'Grisha I/II/III FFL'^'Kaman PTG','Kara CG'

,

'Kiev CVHG',' Kirov CGN','Krivak I FFG'

,

'Krivak II FFG','Krivak III WPGF' ,
' Slava'

,

'Kashin DDG' ,
' Sovremennyy DDG','Yurka MSF'

,

'Kynda CG'^'Udaloy DDG'])

.

/* Assigns photo numbers to ship names,
photos correctly. */

Be sure to number

ship
ship_
ship
ship_
ship_
ship_
ship
ship
ship
ship
ship_
ship_
ship_
ship_
ship_
ship_
ship_
ship

photo
photo
photo
photo
photo
photo
photo
photo
photo
photo
photo
photo
photo
photo
photo
photo
photo
photo

_comb (1,

_comb (2,

_comb (3/
_comb (4,
_comb (6,
_comb (5,

_comb (9,

_comb (7,

_comb (8,
comb (14
_comb (12
_comb (13
_comb (10
comb (11
_comb (15
comb (16
comb (17
comb (18

Jiang Hu I FF') .

Jiangdong FF') .

Kresta I CG')

.

Kresta II CQ>') .

Jiang Hu II FF')

.

Godavari FF')

.

Grisha I/II/III FFL'

)

Kaman PTG')

.

Kara CG')

.

'Kiev CVHG')

.

'Kirov CGN')

.

'Krivak I FFG')

.

'Krivak II FFG')

.

'Krivak III WPGF')

.

' Sovremennyy DDG')

.

'Udaloy DDG')

.

'Yurka MSF')

.

'Kynda ZQ')

.

75

ship_photo_comb (19, 'Kashin DDG')

.

ship_photo_coinb (20/ ' Slava') .

/* ships expert system */

rule (ship_id('Godavari FFM /

[mast_2('two masts')/
foremast (' solid tower foremast')/
mainmast (' smaller pylon mainmast')/
ssm(M SSM launchers forward of the

superstructure'

)

,

samC single launcher'),
helo ('hanger and pad aft')]).

rule(ship_id('Grisha I/II/III FFL')

,

[mast_l (' heavy pylon mast with latticed
extensions')

,

mast_l_loc (' on top of the bridge'),
stack (' located aft'),
rock:et_launcher (' RBU launcher on a raised mid

section')])

.

rule (ship_id (' Jiangdong FF') ,

[mast_2('two masts'),
foremast (' latticed tripod foremast'),
foremast_loc (' abut the superstructure'),
aftermast (' quadruped mast'),
aftermast_loc (' atop the aft deckhouse'),
sam (' launcher forward of bridge'),
sam_2('an identical pair of SAM launchers aft'),
gun ('single mount'),
bridge (' globular fire control on top')]),

rule (ship_id(' Jiang Hu I FF') ,

[mast_l (' latticed tripod mast'),
stack (' large, square'),
ssmCtwin launchers forward and aft of stack'),
bridge (' forward placed')])

.

rule (ship_id (' Jiang Hu II FF')

,

[mast_l (' latticed tripod mast'),
stack (' large, square'),
ssmCtwin launchers forward and aft of stack'),
ssm_2('a SSM 1 launcher forward'),
bridge (' forward placed'),
helo ('helo pad aft')]),

rule (ship_id ('Kaman PTG')

,

[mast_l (' large radome atop mast'),
gun ('forward of superstructure'),
gun_2('aft of deckhouse'),
ssmC located between superstructure and

deckhouse')

,

superstructure (' enclosed, streamlined with separated
deckhouse')])

.

76

rule (ship_id(' Kara CG')

,

[mast_l (' large pyramid mast/ supports TOP SAIL
radar')

,

stack (' large, square')/
heloChelo pad aft') ,

ssmC canted launchers below bridge wings')]),
rule (ship_id('Kresta I CG')

,

[mast_2('two masts'),
foremast (' large obelisk type foremast'),
aftermast (' smaller pyramid aftermast'),
radar ('air surveillance radar atop mack'),
heloC hangar and pad aft'),
ssm (' horizontal launchers under bridge wings')]).

rule(ship_id('Kresta II CG') ,

[mast_2('two masts'),
foremast (' large obelisk type foremast'),
aftermast (' smaller pyramid aftermast'),
radar ('air surveillance radar atop mack'),
top_sail ('TOP SAIL radar'),
heloC raised helo pad aft'),
ssmCcanted launchers below bridge wings')]),

rule (ship_id(' Kiev CVHG') ,

[fight_deck (' angled flight deck'),
superstructure (

' tiered superstructure')

,

other_features (' looks like cruiser in profile')]),
rule (ship_id(' Kirov CON'),

[mast_l (' large mack amidship')

,

radar ('atop mack'),
top_sail ('TOP SAIL radar'),
superstructure (' superstructure amidship with large

mack')

,

forecastle (' long, slightly stepped, sharply raked
bow')])

.

rule (ship_id('Krivak I FFG')

,

[mast_2('two masts'),
masts (' latticed')

,

superstructure (' superstructure with masts'),
ssm ('4 SSM launchers on bow'),
stack (' short, wide with lip on trailing edge'),
gun (' gunmounts flat and square')]),

rule (ship_id('Krivak II FFG'),
[mast_2('two masts'),
masts (' latticed') ,

superstructure (' superstructure with masts'),
ssm ('4 SSM launchers on bow'),
stack (' short, wide with lip on trailing edge'),
gun (' gunmounts rounded with fence between')]),

rule (ship_id('Krivak III WPGF')

,

[mast_2('two masts'),
masts (' latticed') ,

superstructure (' superstructure with masts').

77

stack (' short, wide with lip on trailing edge')/
gun (' enclosed gunmount on bow')/
heloC hangar and pad aft')]).

rule (ship_id('Kashin DDG')

,

[mast_l (' single oil derrick mast'),
stack ('4 in symmetry to the mast, canted out'),
sam('2 SAM launchers, fore and aft'),
gun ('2 enclosed gun mounts, fore and aft')]).

rule (ship_id('Kynda CG') ,

[mast_2('two masts'),
masts ('pyramid masts'),
ssmCtwo (HOT DOG PACKS), 1 forward, 1 aft'),
other_features ('mast-stack-mast-stack')])

.

rule (ship_id('Udaloy DDG') ,

[mast_2('two masts'),
masts (' tripod mast preceeds each set of stacks'),
stack ('four stacks in pairs amidship') ,

heloCtwin helo hangar and raised helo pad aft'),
ssmC canted launchers below bridge wings'),
gun ('2 enclosed gun mounts forward')]).

rule (ship_id(' Yurka MSF')

,

[stack ('oval shaped stack (YURKED TO THE SIDE)'),
mast_l (' latticed') ,

radar ('fire control radar atop mack'),
gun ('gun mount forward and aft')]).

rule (ship_id (' Slava')

,

[mast_2('two masts'),
foremast (' large pyramid mast structure'),
aftermast (' smaller radar mast'),
stack ('twin stacks amidship'),
radar ('Top Dome on after deckhouse'),
helo ('hangar and pad aft'),
missiles ('16 SS-N-12 Sandbox missiles paired

forward')])

.

rule (ship_id (' Sovremennyy DDG'),
[bridge (' radome atop bridge'),
gun (' spheroid enclosed gun mount foward and aft')
ssmCcanted launchers under bridge wings'),
stack (' single stack amidship'),
helo ('pad and telescoping hangar aft of stack'),
radar ('air surveillance radar atop mack')]).

78

/* tdescrip.ari */

/* This file contains the descriptive information for each
feature. The information exactly matches the features
descriptions used in the rule (ship_id) predicates. This
file is used by to create the feature description menus.*/

/* When adding ships to the database be sure to update this
file also. */

descriptors (mast_2,
'Does the ship have: ',

[' two masts'])

.

descriptors (masts,
'Select the best description of the masts. ',

['latticed'

,

'pyramid masts',
'tripod mast preceeds each set of stacks']).

descriptors (foremast,
'Select the best description of the foremast.',
['solid tower foremast',
'latticed tripod foremast abuts superstructure',
'large obelisk type foremast',
'large pyramid mast structure']).

descriptors (foremast_loc,
'Does the foremast: ',

['abut the superstructure?']).

descriptors (aftermast,
'Select the best description of the aftermast.',
['quadruped mast',
'smaller pyramid aftermast',
'smaller radar aftermast']).

descriptors (aftermast_loc,
'Is the aftermast located: ',

['atop the aft deckhouse']).

descriptors (mainmast,
'Does the ship have a: ',

['smaller pylon mainmast']).

79

descriptors (mast_l,
'Select the best description of the mast.',
['heavy pylon mast with latticed extensions',
'latticed tripod mast',
'large radome atop mast',
'large pyramid mast, supports TOP SAIL radar',
'large mack amidship with TOP SAIL radar',
'single oil derrick mast',
'latticed'])

.

descriptors (mast_l_loc,
' Is the mast : '

,

['on top of the bridge']).

descriptors (ssm,
' Select the best description of the SSM

launchers (s) .

'

,

['4 SSM launchers forward of the superstructure',
'twin launchers forward and aft of stack',
'located between superstructure and deckhouse',
' 4 SSM launchers located on bow'

,

'canted launchers below bridge wings',
'horizontal launchers under bridge wings',
'two (HOT DOG PACKS), 1 forward, 1 aft']).

descriptors (ssm_2,
' Is there : '

,

['a SSM launcher forward']).

descriptors (sam,
' Select the best description of the SAM

launcher (s) .
'

,

['single launcher',
'launcher forward of bridge, identical pair aft',
'two SAM launchers, fore and aft']).

descriptors (sam_2,
' Is there an : '

,

['identical pair of SAM launchers aft']).

descriptors (rocket_launcher,
'Does the ship have a:',
[' RBU launcher on a raised mid section']).

descriptors (missiles,
'Does the ship have:',
['16 SS-N-12 Sandbox missiles paired forward']).

80

descriptors (gun,
'Select the best description of the gun mounts.'
['single mount',
'forward of superstructure, aft of deckhouse',
'gunmounts flat and square',
'gunmounts rounded with fence between',
'enclosed gunmount on bow',
'two enclosed gun mounts, fore and aft',
'two enclosed gun mounts forward',
'spheroid enclosed gun mount forward and aft'])

.

descriptors (gun_2,
'Is there a second gun :',

['aft of deckhouse']).

descriptors (radar,
'Select the best description of the radar

features . '

,

['air surveillance radar atop mack',
'Top Dome on after deckhouse',
' fire control radar atop mack'])

.

descriptors (top_sail,
'Does the ship have: ',

['TOP SAIL radar'])

.

descriptors (stack,
'Select the best description of the stack

structure .

'

,

[' located aft'

,

' large, square'

,

'short, wide with lip on trailing edge',
'4 in symmetry to the mast, canted out',
'4 stacks in pairs amidships',
'oval shaped stack (YURKED TO THE SIDE)',
'twin stacks amidship'

,

'single stack amidship']).

descriptors (bridge,
'Select the best description of the bridge

structure .

'

,

['globular fire control on top',
' forward placed'

,

' radome atop bridge']).

81

descriptors (superstructure,
'Select the best description of the

superstructure .

'

/

['enclosed, streamlined with separated deckhouse',
'tiered superstructure',
'superstructure amidship with large mack',
'superstructure with masts']).

descriptors (flight_deck,
'Does the ship have a:',
['angeled flight deck']).

descriptors (helo,
' Select the best description of the onboard helo

structures .

'

,

['hangar and pad aft',
' helo pad aft' ,

'raised helo pad aft',
'twin helo hangar and raised helo pad aft',
'pad and telescoping hangar aft of stack'])

.

descriptors (forecastle,
'Does the ship have a:',
['long, slightly stepped, sharply raked bow']).

descriptors (other_features,
'Some other features are:',
['looks like a cruiser in profile',
'mast-stack-mast-stack']) .

82

/* tintro.ari */

intro_screen :- shell (els)/ blines(2), tab (17),
write (' SSSSS HH HH II PPPPPPP')/ nl.

tab(17).
write (' SS

nl, tab(17).
write (' ss

nl, tab(17).
write (' SS

nl, tab(17),
write ('

tab(17) ,

write ('

tab(17) ,

write ('

tab(17) ,

write (' ss
tab(17) ,

write ('

ss HH

HH

HH

HH II PP

HH II PP

HH II PP

PP')/

PP') ,

PP') /

SSSSS HHHHHHHHH II PPPPPPP'), nl,

SS HH HH II PP')/ nl,

SS HH HH II PP')/ nl,

SS HH HH II PP'

)

, nl,

SSSSS HH HH II PP'), nl,
blines(2), tab(12),
write CRRRRRRR EEEEEEEEE CCCCCC CCCCCC

000000'), nl, tab (12),
write CRR RR EE CC CC CC CC 00

00'), nl, tab(12),
write CRR RF

00'), nl, tab(12),
write CRR RF

00'), nl, tab(12),
write CRRRRRRR

00'), nl, tab(12),
write CRR RR

00'), nl, tab(12),
write ('FIR RR

00'), nl, tab(12),
writeCRR RR

00'), nl, tab(12),
write ('F(R RR EEEEEEEEE

000000'), nl,
blines(2), shell (pause)

,

shell (els), blines(5),
write (' Ship reeognition training is required for

many Naval '
)

,

write (' personnel . '), nl,
write (' It is taught by Intelligenee personnel using

slides, '
)

,

write (' flash cards '), nl,
write ('and other drill methods.'),
blines (3)

,

EE CC CC CC CC 00

EE CC CC 00

EEEEEEE CC CC 00

EE CC CC 00

EE CC CC CC CC 00

EE CC CC CC CC 00

CCCCCC CCCCCC

83

write ('This ship recognition tutor is designed to
help you '

)

,

write (' improve your ')/ nl,
write (' proficiency in ship recognition. You will

be provided '

)

,

write ('with a. '
) , nl,

write ('list of ships from which to identify the
photo specified.')/

write (' The method'), nl,
write ('of tutoring is based on your level of

experience. The '),
write (' system also '), nl,
write (' provides you with a means of viewing a

summary of your '
)

,

write ('last session. '), nl,
write ('You may also review specific photos.'),
blines (3)

,

write ('PROLOG REMINDER: '), nl, nl,
write ('ALL ENTRIES MUST BE FOLLOWED BY A

PERIOD (".")'),
blines (2), shell (pause) .

/* loadfile.ari */

- write (' Please wait.'), nl.
- nl.
- [tdriver]

.

- write ('Still loading').
- nl.
- [tintro, tmenu]

.

- write ('Still loading').
- nl.
- [ships, tdescrip]

.

- write ('Still loading').
- [utilities, comparer]

.

84

/* Arity utility predicates. */

abolish (F, A) :- functor (T, F, A) , retractall (T) .

retractall (X) :- retract (X) , fail,
retractall (X) :- retract ((X :- Y)) , fail,
retractall (_)

.

length ([] ,0)

.

length ([X] , 1)

.

length([X|L] ,N) :- length (L,N1) , N is Nl + 1.

append ([] , L, L)

.

append ([XI L] ,L2, [XI L3]) :- append (L, L2, L3)

.

concatenate (SI, S2, S) :- name (SI, ASl) , name (S2, AS2)

,

append(ASl, AS2, AS) , name (S, AS).

blines (0) :- !

.

blines(N) :- nl, Nl is N - 1, blines (Nl).

bspace(X) :- X < 10, write (' ').
bspace (X)

.

timecomp (A,B, C, D, Total) :-

Min is C-A,
Sec is D-B,
Total is Min * 60 + Sec.

member (X, [X|L])

.

member (X, [Y I L]) :- member (X,L).

delete (X, [],[]).
delete(X, [XjL] ,M) :- !, delete (X, L, M)

.

delete(X, [Y|L] , [Y|M]) :- not X=Y, delete (X, L,M)

prettyprint ([]) .

prettyprint ([Y |L]) :- prettyprintl (Y) , prettyprint (l;

prettyprintl ([])

.

prettyprintl ([XI L]) :- write (X) , nl, prettyprintl (L)

,

85

print_3([]) .

print_3 ([X,Y,Z|L])
:-

write (X), name (X, XI), length (XI, A)

,

Al is 25 - A, tab(Al)

,

write (Y), name(Y,Yl), length (Yl, B)

,

Bl is 25 - B, tab(Bl) ,

write (Z), nl/ print_3 (L) .

print_3{[X,Y| []]) :-

write (X), name (X, XI), length (XI, A)

,

Al is 25 - A, tab(Al)

,

write (Y) , nl, print_3 (L) .

print_3([X| []]) :-

write (X) , nl, print 3 (L) .

86

/* Pascal executable files */

Program Summary (input, output)

;

(* This program reads in the user session summary and
prints it to the screen. *)

type
StringSO = string[80];
String25 = string[25];

var
Line : StringSO;
Filename : String25;
Data : text;

begin
Writeln (' What is the name of your summary file?');
Readln (Filename) ;

Assign (Data, Filename)

;

Reset (Data)

;

While not EOF (Data) do
begin

Readln (Data, Line)

;

Writeln (Line)

;

end;
Close (Data)

;

end.

program getstime (input , output)

;

uses dos;

var
Hour, Min, Sec, Hun: word;
data : text;

begin
GetTime (Hour , Min, Sec, Hun)

;

assign (data, ' timefile . ari')

;

reset (data)

;

write (data, ' time ('
)

;

write (data, Min)
write (data, '

,
'

)

write (data, Sec)
write (data, '

)

'

)

close (data)

;

end.

87

LIST OF REFERENCES

1. Fundamentals of Naval Intelligence, pp. 196-197, Naval
Education and Training Command, 1975.

2. COMPATWINGSPAC Recco Guide, Commander Patrol Wings
Pacific, 1988.

3. Janets Fighting Ships, Janes' s Publishing Company,
Limited, 1988.

4. Polmar, Norman, Guide to the Soviet Navy, 4th ed..
Naval Institute Press, 1986.

5. Zinn, K. L., "Computer-Assisted Learning and Teaching"
in Encyclopedia of Computer Science and Engineering,
2nd ed., A. Ralston, pp. 294-302, Van Nostrand
Reinhold Co, 1983.

6. Wenger, E., Artificial Intelligence and Tutoring
Systems, Morgan Kaufmann Publishers, 1987.

7. Barr, A. and Feigenbaum, E. A., The Handbook of
Artificial Intelligence, v. 2, William Kaufmann, 1982.

8. Woolf, B. and Cunningham, P. A., "Multiple Knowledge
Sources in Intelligent Teaching Systems, " IEEE
Expert, pp. 41-54, Summer 1987.

9. Kearsley, G. P., Artificial Intelligence &

Instruction : Applications and Methods, Addison-
Wesley, 1987.

10. Kennedy, William V., and others. Intelligence Warfare,
Crescent Books, 1983.

11. Campbell, D. F., An Intelligent Computer-Assisted
Instruction System For Cardiopulmonary Resuscitation,
Master's Thesis, Naval Postgraduate School, Monterey,
California, June 1988.

88

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2

Naval Postgraduate School
Monterey, California 93943-5002

3. Chief of Naval Operations 1

Director, Information Systems (OP-945)
Navy Department
Washington, DC 20350-2000

4. Department Chairman, Code 52 2

Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

5. Curriculum Officer, Code 37 1

Computer Technology
Naval Postgraduate School
Monterey, California 93943-5000

6. Associate Professor Neil C. Rowe 1

Code 52Rp
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

7. Professor Timothy J. Shimeall, Code 52Sm 1

Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

8. Commanding Officer 1

Naval Research Laboratory
Washington, DC 20375

9. Chief of Naval Education and Training 1

Naval Air Station Pensacola
Pensacola, Florida 32508

89

10. Dr. Hank Smith
Education Coordinator
Patrol Squadron THIRTY-ONE
Naval Air Station
Moffett Field, California 94035

11. Tactical Training Team
Patrol Squadron THIRTY-ONE
Naval Air Station
Moffett Field, California 94035

12. CPT Michael J. Bizer
1204 Catskill Circle
Huntsville, Alabama 35802

13. LT Denise R. Bernier
1908 Azalea Street
Denton, Texas 76205

90

DnrLBY KWOX LTSE.^.P..T
HAVAL POSTGRADUATE SCHOOT.
MOHTSEEY, CALIFOKEIA

93343"-600S

3fi^ ' S'^i

f

Thesis /
B4529 Bernier
c.l An intelligent compu-

ter-aided instruction
system for Naval ship
recognition.

5 JUL <>1 3 6^51

Thesis

B4529
c.l

Bernier
An intelligent compu-

ter-aided instruction
system for Naval ship

recognition.

