
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1991-03

A stochastic approach to path planning in the

Weighted-Region Problem

Kindl, Mark Richard

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/26789

.

- 9o945-5nOg!

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DISSERTATION

A STOCHASTIC APPROACH
TO PATH PLANNING

IN THE WEIGHTED-REGION PROBLEM

by

Mark Richard Kindl

March 1991

Dissertation Supervisor: Man-Tak Shing

Approved for public release; distribution is unlimited.

T2523;

\j iy\^.i~iri\jijii u~.ls

.ECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
ia REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
1b. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;

distribution is unlimited
2b. dECLASSIFICATION/dOWNgRAdINg SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a name OF PerFOrMing 6rgANi2aTi6N

Naval Postgraduate School

6b. OFFICE SYMBOL
(if applicable)

37

7a. name oF MONiTOriNg 6rgAni2ATi6n

Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

7b. ADDRESS (City, State, andZIP Code)

Monterey, CA 93943-5000

8a. NAME 6F FUNdINg/SPONSORINg
organization

8b. OFFICE SYMBOL
(if applicable)

§. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code) 16. SOURCE OF FUNDING NUMBERS
PrOgram
element no.

PROJECT
NO.

TASK
NO.

WORK UNIT
ACCESSION N

1 1

.

TITLE (Include Security Classification)

A STOCHASTIC APPROACH TO PATH-PLANNING IN THE WEIGHTED-REGION PROBLEM
1 2. PERSONALAUTHOR(S)

Kindl, Mark Richard
13a. TYPE OF REPORT

PhD Dissertation

13b. TIME COVERED
From To

15. PAGE COUNT
270

14. DATE OF REPORT (Year, Month, Day)

March 1991
16. SUPPLEMENTARY NOTATION

The views expressed in this dissertation are those of the author and do not reflect the official policy or position

of the Department of Defense or the U.S. Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP path planning, route planning, shortest path, optimization, spatial reasoning, Snell's Law,

simulated annealing, weighted-region problem, path annealing, A* search

1 9. ABSTRACT (Continue on reverse if necessary and identify by block number)

Planning efficient long-range movement is a fundamental requirement of most military operations. Intelligent mobile autonomoi

vehicles designed for battlefield support missions must have this capability. We propose an efficient heuristic algorithm for planning nea

optimal high-level routes through complex terrain maps, modeled by the Weighted-Region Problem (WRP). The algorithm is driven by oi

adaptation of the combinatorial optimization technique called simulated annealing. The WRP provides a cartographical ly powerfi

representation for planar maps. Terrain features are modeled by polygonal homogeneous-cost regions. A cost coefficient assigned to eac

region indicates the relative cost per unit distance for movement in that region by a point agent on the ground. Region cost coefficients ai

assumed to be invariant with direction of movement. Given a start and a goal point, a solution (not necessarily optimal) is a set of piecewis

linear connected segments, spanning from start to goal. The cost of a solution path is the sum of the weighted lengths of all segments in tl

path, where the weighted length of each segment is the product of its Euclidean length and the cost coefficient of the region it crosses. Ideall;

we seek the least cost path. However, as problem instances approach the actual complexity of the battlefield, faster solutions become moi

desirable than absolute optimality. We introduce heuristics designed to reduce the search space independently of start and goal location, thu

allowing map preprocessing. We use other heuristics to improve the efficiency of local cost function optimization as well as the annealin

process itself.

20 DIST RIBUTION/AVA I LAB I LITY OF ABSTRACT
[x] UNCLASSIFIED/UNLIMITED fj SAME AS RPT. fj DTIC USERS

21. ABSTRACT SECURITY CLASS IFICATION

UNCLASSIFIED
22c. OFFICE SYMBOL

Code CS/Sh
22a. NAME OF RESPONSIBLE INDIVIDUAL

Dr. Man-Tak Shine
22b. TELEPHONE (Include Area Code)

(408) 646-2634

DD FORM 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Approved for public release; distribution is unlimited

A STOCHASTIC APPROACH TO PATH-PLANNING
IN THE WEIGHTED-REGION PROBLEM

by

Mark Richard Kindl

Major, United States Army
B.S., United States Military Academy, 1974

M.S., Naval Postgraduate School, 1983

Submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
March 1991

ABSTRACT

Planning efficient long-range movement is a fundamental requirement of most military operations.

Intelligent mobile autonomous vehicles designed for battlefield support missions must have this capability.

We propose an efficient heuristic algorithm for planning near-optimal high-level routes through complex

terrain maps, modeled by the Weighted-Region Problem (WRP). The algorithm is driven by our adaptation

of the combinatorial optimization technique called simulated annealing. The WRP provides a

cartographically powerful representation for planar maps. Terrain features are modeled by polygonal

homogeneous-cost regions. A cost coefficient assigned to each region indicates the relative cost per unit

distance for movement in that region by a point agent on the ground. Region cost coefficients are assumed to

be invariant with direction of movement. Given a start and a goal point, a solution (not necessarily optimal)

is a set of piecewise-linear connected segments, spanning from start to goal. The cost of a solution path is the

sum of the weighted lengths of all segments in the path, where the weighted length of each segment is the

product of its Euclidean length and the cost coefficient of the region it crosses. Ideally, we seek the least cost

path. However, as problem instances approach the actual complexity of the battlefield, faster solutions

become more desirable than absolute optimality. We introduce heuristics designed to reduce the search space

independently of start and goal location, thus, allowing map preprocessing. We use other heuristics to

improve the efficiency of local cost function optimization as well as the annealing process itself.

in

TABLE OF CONTENTS

I. INTRODUCTION 1

A. OVERVIEW 1

B. DEFINITION OF THE WEIGHTED-REGION PROBLEM (WRP) 1

C. WHY A STOCHASTIC APPROACH? 3

D. APPLICATIONS 5

E. ORGANIZATION OF CHAPTERS 6

II. RELEVANT CONCEPTS AND PREVIOUS RESEARCH 8

A. FUNDAMENTAL CONCEPTS 8

1. Problem Representation 8

a. High-Level vs. Low-Level Path Planning 8

b. Graph Search vs. Spatial Reasoning Approaches 9

c. Discrete vs. Continuous Representation 9

2. Sources of Error 11

a. Terrain Representation 1

1

b. Total Path Cost 12

c. Path Location 12

3. Search Techniques 13

a. Systematic Discrete Search 13

b. Local Iterative Search 15

c. Relaxation 17

d. Probabilistic Search 17

B. APPROACHES TO THE GENERAL WEIGHTED REGION PROBLEM 18

1. Grid-Based Wavefront Propagation 18

2. Snell'sLaw 19

3. Continuous Dijkstra Algorithm 21

4. Recursive Wedge Decomposition Algorithm 21

5. Local, Asynchronous, Iterative, and Parallel Procedures (LATPP) 22

IV

6. Optimal-Path Maps 22

7. Minimum-Energy Paths 23

C. SPECIAL CASES OF THE WEIGHTED REGION PROBLEM 24

1. Infinity, Zero-cost Regions, and Roads 24

2. Roads, Rivers, and Rocks Algorithm 25

D. SIMULATED ANNEALING 25

1. The Basic Annealing Algorithm 25

2. Routing Applications of Annealing 28

a. The Traveling Salesman Problem (TSP) 28

b. Wire Routing and Chip Placement 30

c. Robot Arm Movement 31

III. PATH ANNEALING DESIGN 33

A. INTRODUCTION 33

B. STATE SPACE REPRESENTATION 33

1. Window Sequences 33

2. Primitive Data Structures and Operations 35

C. INITIAL SOLUTION 37

1. Edge Dual-Graph 37

2. Search for an Initial Solution 39

D. COST FUNCTION EVALUATION 39

1. Single-Path Relaxation (SPR) 40

2. Uniform-Discrete-Point (UDP) Approximation 47

3. Combining Techniques 50

4. Reentrant Window Sequences 50

E. MOVE OPERATIONS 53

1. Vertex Rotation 54

2. Obstacle Jumping 54

3. Reachability 56

4. Reentrant Installation 57

5. Improving Reachability 61

6. Summary of Move Generator 64

F. ANNEALING SCHEDULE AND CONTROL 64

1. Starting Temperature 65

2. Stopping Criteria 67

3. Temperature Cooling 69

G. SUMMARY 70

IV. EFFICIENCY ENHANCEMENTS TO PATH ANNEALING 72

A. INTRODUCTION 72

B. SEARCH SPACE BOUNDS AND CONSTRAINTS 72

1. Bounding Ellipse 72

2. Ellipse Improvement 76

3. Edge-Pair Elimination 77

a. Shortcut Analysis 77

b. Critical Angle Analysis 79

c. Virtual Obstacles 81

C. HEURISTIC IMPROVEMENTS 81

1. Rapid Cost Function Evaluation 81

a. Relaxation Threshold 82

2. Caching Path Costs and Window Sequences 85

3. Move Generator Heuristics 86

a. Reduction of Repetition 86

b. Relation of Move Operators to Temperature 87

c. Tunneling 88

4. Faster Initial Solutions 91

5. Heuristic Bounds on Search Space 92

D. SUMMARY 95

V. EMPIRICAL STUDIES 96

A. TEST PROCEDURES AND MAPS 96

1. Input Maps 96

2. Control Algorithm 102

a. Wavefront Propagation 102

b. Uniform-Discrete-Point Global A* Search 102

VI

3. Validation Criteria 104

B. ANALYSIS OF TEST RESULTS 107

1. Testing of Grid-Based Wavefront Propagation vs. UDPGA* 107

2. Testing of Path Annealing vs. UDPGA* 113

a. Testing of Small Problem Instances 113

b. Testing of Moderately Complex Problem Instances 117

c. Testing Real Terrain 123

d. Testing Maps with Highly-Variable Cost Coefficients 129

e. Testing of a Difficult Problem Instance 136

VI. CONCLUSIONS 139

A. SUMMARY OF SIGNIFICANT RESULTS 139

B. ALGORITHM STRENGTHS AND WEAKNESSES 140

1. Strengths 140

2. Weaknesses 141

3. Strengths of Uniform-Discrete-Point Global A* (UDPGA*) Search 142

C. SUGGESTED FUTURE DIRECTIONS 142

1. Path Annealing Improvements 142

2. Extensions to Other Route Planning Applications 143

D. CONCLUDING REMARKS 144

APPENDIX A - THEOREMS 146

APPENDIX B - PROLOG AND C SOURCE CODE 156

B.l PATH ANNEALING 156

B.2 C INTERFACE AND C CODE 189

B.3 UTILITIES AND PRIMITIVES 210

B.4 USER INTERFACE 221

B.5 UNIFORM-DISCRETE-POINT GLOBAL A* (UDPGA*) SEARCH 241

B.6 MAP MAKER 249

LIST OF REFERENCES 256

INITIAL DISTRIBUTION LIST 261

vn

ACKNOWLEDGEMENTS

I wish to convey my sincere appreciation to my primary dissertation advisor and Ph.D. committee

chairman, Professor Man-Tak Shing. His many ideas, personal time, untiring interest, and constant

encouragement were instrumental to the completion of this dissertation as well as my entire degree program.

I would also like to thank Professor Neil Rowe. Although only a member of my Ph.D. committee, he

also contributed his time and ideas on a weekly basis, and was an additional source of encouragement.

Although he was not a member of my Ph.D. committee, Professor Timothy Shimeall assisted me on

many occasions with his programming expertise. I thank him for both his help and also for the encouragement

he provided.

The entire Computer Science Department technical staff provided timely software and hardware

support during the development, debugging, and testing of the prototypes in this work. In particular, I would

like to acknowledge the outstanding assistance I received (almost daily) from both Susan Whalen and Rosalie

Johnson.

In every endeavor there are persons who contribute indirectly, and yet significantly. Shirley Oliveira is

one such person. As our honorary "Ph.D. Student Den-Mother" she has made the most difficult of times a

little easier for all of the Ph.D. students by her encouragement, willingness to listen, and administrative

support.

Finally, but most importantly, I wish to thank my wife, Andrea, and my children, Jennifer and Lance,

for their unselfish patience and constant understanding throughout the last three and a half years. Their

support has been invaluable to my success in this degree program.

Vlll

I. INTRODUCTION

A. OVERVIEW

Planning efficient long-range movement using map data is fundamental to most military operations.

Intelligent mobile autonomous vehicles designed for battlefield support missions must also do this. Within

the last decade, successes in the development and practical use of robotic and automation equipment have

created a demand for more efficiency and capability in autonomous machines [Iyen89]. Furthermore, U.S.

Department of Defense interest in autonomous land vehicles [Keir88, Keir84], automated battle management

systems [Wilb89], and digital terrain analysis [Digi88, Clev84], has significandy augmented this demand.

Inspired by these requirements, this dissertation presents our design and implementation of an efficient

algorithm for high-level route planning through complex terrain. Our algorithm, which we refer to as path

annealing, finds solutions to what has been called the weighted-region problem [Mitc90].

Most previous approaches to the weighted region problem have used systematic search methods. Such

techniques may extract huge overheads for agenda maintenance. When problem instances become large and

complex, even heuristics can be ineffective in reducing the combinatorics. In contrast, path annealing

employs a form of adaptive local search, which samples the solution space and eliminates the need to maintain

expensive agendas. As the name suggests, path annealing is based on the probabilistic search technique

known as simulated annealing, which was first explored independently by [Kirk83] and [Cern85]. In adapting

this technique to solve the weighted region problem, we have also designed many heuristics based on

annealing, spatial reasoning, and geometry. These enhance performance and also tend to compensate for the

weaknesses inherent in local search. Empirical studies indicate that compared to A* search on relatively large

problem instances, path annealing has significantly lower execution times, while sacrificing very little

solution accuracy. Although, our algorithm cannot guarantee a globally shortest path, our empirical study

indicates that it will find it quite often.

B. DEFINITION OF THE WEIGHTED-REGION PROBLEM (WRP)

The weighted region problem (WRP) uses a mathematically simple, yet cartographically powerful

problem representation. Input to the WRP is a two-dimensional planar map, which models terrain features as

convex polygonal homogeneous-cost regions. We say that a WRP map is a connected planar straight-line

graph which partitions two-dimensional space into cost regions. Each cost region is assigned a cost

coefficient, which is a weighting value indicating the relative cost per unit distance for movement through

that region by a point agent. Cost regions are assumed to be isotropic, so that their respective cost coefficients

are invariant with respect to direction of movement. Without loss of generality, cost coefficients are integers

taken from the set [w, w+1, w+2 W,+<*>} t where w and W are the minimum and maximum weights

respectively. If necessary, rational number coefficients can always be handled by rescaling [Mitc90]. A

weighted-region problem instance is a WRP map specified in terms of boundary edges and cost coefficients,

and designated start and goal points corresponding to the current location and projected destination of the

agent.

A solution (not necessarily optimal) is a set of piecewise linear connected line segments, which spans

from start point 5 to goal point G (see Figure 1.1). Denote this path as P . The interior points of each segment

of P lie either entirely within a single cost region, or entirely on a single cost region boundary. Segment

end points lie on region boundary edges or vertices. The total cost oiP is the sum of the weighted lengths

of all segments of the path, where the weighted length of segment i is the product of its Euclidean length, d.,

and the cost coefficient, \x , of the region through which it passes:

KSGI-SOW (Eql.D
i

A path segment which coincides with all or part of a boundary edge incurs the lesser cost of the two regions

separated. An optimal solution, P , is the minimization of Eq 1.1, a globally least cost path from S to G.

Measured in time units, it represents the fastest route from start to goal.

We make several additional assumptions regarding the input map. We assume that all weighted regions

are convex. Even if this is not the case, it is always possible to insert additional boundary edges between

existing vertices to make all regions convex. Such edges will become boundaries between regions of equal

cost. We will refer to these as phantom edges because their sole purpose is to ensure convexity. Border edges

and border vertices define the outer limits of the map, and bound the only non-convex region. The current

implementation of path annealing requires that linear regions (as used in [Rowe90a] and [Mitc90]) must be

modeled by regions of positive (non-zero) area. However, this restriction is not essential to the algorithm

itself, and can be removed by a few data structure modifications.

Figure 1.1 Weighted-Region Problem Instance and One Possible Solution

(not necessarily optimal)

C. WHY A STOCHASTIC APPROACH?

Algorithms based on systematic search methods apply some deterministic ordering to nodes in a state

space search. The usual reason for this is to guarantee search completeness, which may be the only known

way to guarantee the optimality of a solution. Such algorithms must track a large number of partial solutions

using an agenda. However, this does not imply that ordered search is necessarily exhaustive. Heuristics and

bounds may provide sufficient cause to prune partial solutions from further consideration. Nevertheless, such

search organization sometimes carries a hefty price in the form of agenda maintenance. Larger, more

complicated problem instances will generally require more effort of these deterministic algorithms, likely

forcing unacceptably worst case performance.

Rather than incur the overhead for organized search, we propose to reduce the effort by using stochastic

search. Path annealing is our customization of simulated annealing [Kirk83], a probabilistic combinatorial

optimization technique which finds near-optimal solutions to problems having very large and complex search

spaces. The annealing approach to the WRP may seem strange for several reasons. First, the WRP is

polynomially solvable [Mitc90], yet, annealing's primary domain of application is generally considered to be

the class of NP-Hard problems. Second, simulated annealing has often been criticized for its large running

times which are sometimes necessary to ensure good solutions. Finally, for some problems, annealing has

made a relatively poor showing against good problem-specific heuristics [Naha85]. Although annealing may

not appear to be the correct tool for the WRP, our empirical studies tend to indicate otherwise.

Annealing experiments with the Traveling Salesman Problem exhibit a property which is similar to a

human approach to route planning. Consider planning a long-range automobile trip using a road atlas. Most

people form a solution hierarchically, descending top-down through levels of abstraction from interstate

expressways to state highways to local roads. Two basic forms of knowledge contribute to this natural

tendency. The first is general knowledge of speeds and traffic patterns associated with the major classes of

roads. The second is specific experience-based and analogical knowledge about road quality and traffic

patterns in local areas of the map. To solve the Traveling Salesman Problem, simulated annealing forms a

solution in mis same top-down progression [Kirk83]. Starting with an initial feasible solution, the algorithm

samples the search space by rapidly generating and testing random solutions. In uie beginning the process

finds many of the best gross high-level solutions. The effects of random samples are gradually constrained so

that these gross high-level solutions tend to freeze into the evolving detailed solution. Later stages of the

process generate and test smaller local changes, gradually refining the lower-level details of a final near-

optimal solution.

Hard optimization problems with complex solution spaces usually have a large number of local minima

with costs very near to that of the optimal solution(s) [Kirk83]. The WRP solution space, characterized by

multiple local minima, appears to be well-suited for a stochastic approach, especially in larger problem

instances. A high resolution requirement for terrain modeling could easily produce a problem instance which

would be arbitrarily complex in terms of vertices, boundary edges, regions, and their shapes and orientations.

Consider the case of an input map which is an approximate model of the real world. The sensitivity of true

optimal paths to very small changes in geometry and cost coefficient magnitude suggests that the effort

associated with finding a true optimal path is rarely worth the result. Simulated annealing proceeds under this

assumption, and finds a near-best solution without the expense of systematically proving its worth.

New approaches to problems often suggest additional constraints, heuristics, or bounds which might not

have been possible with earlier methods. Experience with annealing indicates that tailored heuristics can

increase its efficiency [Rome84b, Whit84, Gree84, Naha85, Adam85]. We have borrowed several methods

of improvement from previous work. In addition, we have developed several of our own heuristics and

constraint mechanisms which are specific to the WRP and path annealing. Some of our heuristics can also

support other path planning algorithms. Our stochastic approach to the WRP attempts to merge simple

intelligence with practical engineering by coupling simple heuristics to non-exhaustive, controlled sampling.

D. APPLICATIONS

Ifwe consider the WRP in a military planning context, then its significance to automated route planning

becomes more apparent. The problem is generic enough to model a variety of spatially oriented applications.

For a given map, regions and associated cost coefficients can represent any unit of measure provided that

within each region, cost remains isotropic, homogeneous, and varies linearly with planar distance. Examples

of cost measure include ease of movement through terrain, cover and concealment, exposure to enemy

positions, fuel or energy consumption, lethality of enemy weapons, or areas of contamination [Wilb89,

Rowe90d]. Multiple weighted-region maps could be merged by overlaying one atop another and performing

a combining operation on the cost coefficients of intersecting areas. The composite map would have

additional new vertices and regions with revised boundary edges resulting from boundary-edge intersections

and region overlaps. A route planning algorithm operating on such a map would simultaneously optimize

over several mission-critical parameters. For example, by using cost coefficients obtained from weighting the

the relative importance of each cost parameter, an optimal solution on such a composite map might represent

the path of combined minimum travel time, least exposure to the enemy, and maximum survivability

[Dent84]. In general, the complexity of route-planning on merged maps grows with the number of boundary

edge intersections and cost region overlaps. The need for fast solutions assumes increasing importance as the

scope of a problem instance approaches the reality and complexity of battlefield mission planning.

For a given problem instance, each execution of a stochastic algorithm can result in a different solution.

Whether executed in a parallel processing environment or given ample time to conduct multiple executions

serially, the best outcomes can be selected. A collection of different solutions from several processors can

provide insights into terrain overlays that might otherwise go unnoticed. For example, high-speed avenues of

approach, key choke points, and major by passing routes become more apparent as the military planner

correlates multiple solutions.

Solutions generated by a nondeterministic approach such as path annealing are appealing from the

military commander's perspective for several reasons. A globally optimal path returned by a deterministic

algorithm is predictable and may be very undesirable in an offensive tactical plan. An algorithm which only

finds a globally optimal path for a given problem instance will convey little surprise to an enemy, since he

can do likewise with a deterministic algorithm! On the other hand, a stochastic algorithm has a reasonably

good probability of discovering an optimal solution, but one of many near-optimal paths may be more likely.

Since such paths are not always spatially close to the optimal, routes found by the stochastic algorithm are

not always predictable.

If route planning must be conducted under time-variable constraints, then nondeterministic path

annealing has a definite advantage over the systematic approaches. Systematic search usually must run to

completion or near-completion in order to obtain a complete solution. In contrast, an annealing algorithm

approaches the optimal solution, i.e. its theoretical asymptotic limit, as time of execution approaches infinity

[Rome84a]. This means that the quality of a solution can improve with time. The starting point of annealing

is a feasible solution. Therefore, even when time constraints are uncertain, it would be possible to abort path

annealing prematurely to return the best solution currently known. The more time alloued to the algorithm,

the more opportunities exist for solution improvement.

As we have said, an important advantage provided by path annealing is its ability to achieve dramatic

reductions in average computation time necessary to find good solutions, particularly as problem instances

become larger and more complex. This is because the annealing algorithm only samples the solution space,

and is guided probabilistically by the sampling results. The random nature of the sampling process means that

overhead for maintenance of partial solutions in an ordered agenda is unnecessary. In general, a predefined

set of parameters constituting an annealing schedule determines the expected running time of an annealing

algorithm. Figures 5.33 and 5.34 in Chapter V (page 125) show time of execution as a function of problem

size for 66 different weighted-region problem instances for A* search and path annealing respectively. This

figure illustrates our claim that path annealing can require significantly less average running time than a

typical systematic search algorithm. In a majority of these 66 cases the total weighted path cost of the path

annealing solution is the same (or nearly the same) as the systematic search solution cost.

E. ORGANIZATION OF CHAPTERS

We begin in Chapter II by discussing basic concepts and terms relevant to this and previous research.

The chapter summarizes past approaches to solving the WRP and closely related problems, emphasizing

strengths and weaknesses. We also discuss simulated annealing and some examples of its uses. In Chapter III

we present the development of path annealing. This chapter is organized around the components of a basic

annealing algorithm. While only a few enhancements are discussed in Chapter III, Chapter IV emphasizes

performance improvements to path annealing that are achieved through heuristics and bounds. Some of these

are applicable to other approaches to the problem as well. In order to test and evaluate path annealing, we

must have a valid means of comparison and control. Chapter V begins with a discussion of the wavefront

propagation algorithm. We then describe another simple control algorithm which is uniquely different from

previous algorithms for the WRP. We refer to it as uniform-discrete-point global A* (UDPGA*) search. We

compare the performance of UDPGA* to wavefront propagation and show that UDPGA* is a faster, more

accurate systematic search algorithm. We then directly compare path annealing with UDPGA* for a variety

of maps. The remainder of Chapter V is a summary of these test results and analysis. Chapter VI summarizes

our conclusions and suggests extensions to this research.

H. RELEVANT CONCEPTS AND PREVIOUS RESEARCH

A. FUNDAMENTAL CONCEPTS

1. Problem Representation

a. High-Level vs. Low-Level Path Planning

The work reported in this dissertation addresses only high-level aspects of path planning. In

high-level route planning we assume that the moving agent is a point which has no physical dimension. Thus,

there is no consideration of restrictions to movement due to the agent's width or height. This is a reasonable

assumption when the map scale is of relatively low resolution as compared to the size of a human or a small

vehicle. We have tested our algorithms on a 1000 meter grid square extracted from a standard 1:50000 scale

military map [Defe74]. One unit of distance in our test maps is equivalent to approximately 10 meters distance

on the ground. For a small vehicular agent, this is probably close to the maximum resolution before height

and width constraints become active.

A high-level solution provides a general route for cross-country movement. The agent may

still require a low-level path planning system to navigate the path. The low-level planner accumulates local

sensory input and applies spatial reasoning to refine and safely follow the route as necessary for actual

movement. Our work does not concern planning at this level.

The goodness of a high-level solution depends to a large degree on how well the map

represents the realities of the terrain. The fact that WRP maps approximate curved features with straight lines

is one source of representation error. Another source can result from cost coefficient assignment which is

inconsistent with the actual cost per unit distance for movement on the ground. The mechanical aspects of our

algorithm design assume that input maps are perfect representations of the terrain. However, of necessity, the

representation of curves by straight lines normally approaches some finite precision (though possibly very

small). Therefore, maps will usually differ from reality to some degree. Our design takes a pragmatic

approach to optimization. There is Utile reason to expend large amounts of time searching exhaustively for a

solution whose optimality may be questionable. In larger, more complex problem instances, there may be

many near-optimal routes from which to select.

b. Graph Search vs. Spatial Reasoning Approaches

There are two general approaches to route finding: graph search and spatial reasoning. The

graph-search approach represents the search space as a network of nodes and arcs through which a route must

be found. The major advantage here is the ability to apply graph theory to obtain solutions. The very nature

of many well-defined search problems dictates this discrete approach. Path constraints are the usual reason.

For example, in city route planning for an automobile, clearly, there is no reason to consider off-road

movement. In contrast, a spatial-reasoning approach considers the significance of shape, size, and orientation

of features of the environment. The geometry of space and its effect on the cost of movement becomes more

important.

It appears that a graph-search approach alone cannot sufficiently capture the spatial

relationships inherent in a weighted-region problem (WRP) instance. Most of the previous work in the WRP

makes heavy use of spatial reasoning to develop constraints and bounds on the locations and costs of optimal

solution paths. Searching outward systematically from the start point, these constraints are continually

tightened until only a few routes remain that can satisfy conditions for global optimality. Then, either a graph

search or cost comparison selects the optimum.

Path annealing combines graph search and spatial reasoning in a more balanced mix.

Whereas most of the previous algorithms focused on spatial reasoning to build a global solution, path

annealing uses a fast, low-resolution graph search to get an initial solution. From this solution the algorithm

probabilistically explores local spatial relationships among neighboring paths. Local graph search and the

application of spatial constraints determine local optimal path-costs necessary to develop these relationships.

The cumulative effect of all of this localized activity gradually determines a refined global solution.

c. Discrete vs. Continuous Representation

Optimization problems may be classified into two general categories - continuous and

discrete [Papa82]. The discrete problems are also called combinatorial optimization problems. The solution

techniques for each category are usually quite different and depend upon the form of the input. For example,

calculus and binary search are two typical methods of continuous-variable optimization. Which to apply

depends upon whether a continuous function is input as an equation or as raw data. On the other hand,

standard graph theory provides discrete optimization techniques for finding shortest paths in networks of

weighted arcs.

The WRP has both discrete and continuous characteristics. Two-dimensional Euclidean

space imposes an uncountably infinite set of feasible paths between any pair of points, implying that

continuous optimization might be applicable. However, the need to manage combinatorial complexity

encourages a discrete flavor in problem representation. A finite set of boundary edges and vertices partitions

the continuous space of weighted region maps. The geometric simplicity of the resulting polygons provides

a natural way to manage the complexity and continuity of the WRP. We can divide a problem instance into a

finite set of continuous path subspaces whose boundaries are defined by the discrete edges and vertices.

Figure 2.1 depicts one such path subspace as defined by [Rich87].

The convexity theorem of [Rowe90b, Mitc90] lends further support for such a discrete

representation. Simply stated, it concludes that for any path subspace with common start point and which

crosses the same ordered sequence of boundary edges, weighted cost is a convex function of the parameters

necessary to specify a path. The path subspace in Figure 2.1 satisfies the conditions of this theorem. The

parameters necessary to specify each path are the coordinates of the start point and the boundary crossings.

The theorem implies that there must exist within this subspace a unique path with minimum weighted cost.

A continuous-function optimization technique (e.g. binary search) can determine this minimum cost path.

Figure 2.1 Well-Behaved Path Subspace (also called a wedge)

10

We can take advantage of the convexity theorem by allowing boundary edges and vertices to

define a discrete set of path-subspaces between start and goal. Each subspace contains a continuous family of

paths. By the convexity theorem we can obtain the locally shortest path within each subspace. However, there

are other advantages. Discrete data structures are easy to implement and can efficiently support both graph

search and spatial reasoning. Another advantage is that imposing a discrete structure on continuous space

results in a combinatorial optimization problem. While the search space may be very large, it is nevertheless

finite.

2. Sources of Error

a. Terrain Representation

Recall that in Section A.l.a of this chapter we briefly addressed terrain representation error.

The solution accuracy for all current WRP solution techniques is dependent upon the accuracy with which

straight lines approximate curves. This may have a direct influence on the size of a problem instance. The

more straight lines necessary to maintain terrain representation accuracy requirements, the larger will be the

number of vertices and edges in the map. The other source of representation error results from the use of

homogeneous-cost regions. Of necessity, these regions are bounded areas. Their cost coefficient values are

subjective averages, assigned because they best approximate cost per unit movement within that area from a

high-level perspective. While errors will always exist, we assume that they will tend to cancel one another or

average out over an entire high-level solution path.

We can quantify the effect of cost coefficient assignment error as follows. Let H represent

the maximum difference between assigned and true cost coefficient values over all regions of the map. If p.

represents the maximum cost coefficient, then for a path of unweighted length L, HL\i is the absolute

maximum error in total path-cost induced by cost coefficient errors. This result assumes that the solution path

uses regions of weight p. exclusively. But, the problem objective is to locate the least-cost path. So, the

occurrence of the maximum error is very unlikely, because good solutions will use p. as infrequently as

possible. For this reason, average error will be much lower. Also, consider that H may be a positive or

negative deviation. Unless cost coefficient assignments are biased high or low, errors will tend to cancel over

an entire solution path. The effect on total path-cost may then be minimal.

From a mathematical perspective our algorithm design assumes that input maps are accurate

representations of the terrain. However, a probabilistic approach assumes a more practical perspective. Why

conduct an extensive, time-consuming systematic search for an optimal solution whose accuracy depends on

11

the accuracy of the map? A stochastic algorithm which performs controlled sampling can be faster,

particularly for larger problem instances. Furthermore, we can design such an algorithm to be less sensitive

to the accuracy of an input map. A search guided by cost function gradients in die space of complete solutions,

can make extensive use of rapid approximations. It can choose to compute more carefully and accurately only

when sampled costs indicate such a computation might be fruitful. A systematic search can also be guided by

cost gradients. However, most of its time is spent examining partial solutions. Cost gradients of complete

solutions contain more knowledge than those of partial solutions.

b. Total Path Cost

A computed solution path cost may not always be precise. Local optimality conditions are

complex enough to admit irrational number solutions. As a result, many computed path costs are necessarily

approximations. Furthermore, geometric problems like the WRP usually require many line intersections and

point location procedures. This increases the likelihood round-off errors due to subtractions between near

equal values as happens in computing the intersection of two near-parallel lines. Since solution paths are

piecewise linear between such intersection points, then such round-off errors can accumulate, widening the

gap between true and computed total path cost. It is often possible to identify and replace such calculations

with more rational logic. For example, we can identify a parallel condition to a predetermined precision (six

decimal digits for Quintus Prolog Version 2.0 [Quin90]), then explicidy select the point of intersection rather

than compute it.

c. Path Location

A computed optimal path location (described by its linear segments) may differ from the true

optimal path location. Such errors may be so small that the characteristic behavior (for example, the sequence

of boundary edges crossed between start and goal) of both computed and true optimal paths are identical. On

the other hand, path location errors can also be very large. Furthermore, large path location errors are

sometimes caused by relatively small errors in optimal path cost. The reason is simple. A singleWRP instance

can have two distincdy different solutions paths whose total weighted costs are equal and globally minimum.

The solution path returned by an algorithm will be that for which path cost was most favorable. Thus, if the

average error in path cost is large relative to precision, then more solutions have the potential to be selected

as optimal due to error. Assuming that only one in this set is the true optimal, then the probability of selecting

it is dependent upon the level of noise.

12

3. Search Techniques

There are many ways to classify search techniques. Furthermore, unions and intersections of these

methods form a variety of combinations. We find it most appropriate to discuss search under two general

categories - systematic and local. When pertinent, we also mention important subclasses and variants.

a. Systematic Discrete Search

Globally optimal solutions of a WRP instance can only be recognized by demonstrating that

no other feasible solution can have lower cost. This requires a search strategy which is both complete and non-

repetitious [Pear84]. Completeness says that no optimal solution can be overlooked. Non-repetition precludes

endless reevaluation of locations previously visited (as can happen in cyclic graphs). In general, a systematic

search ensures both conditions.

Uniform breadth-first search is one such complete strategy [Barr8 1], It expands from the start

state in all directions accumulating cost at a uniform rate while maintaining a historical trail which links every

child state back to its optimal parent. There is an implicit ordering of state expansion. As it is encountered,

each new state is queued on an agenda. Thus, a roughly circular search frontier, represented by the agenda,

begins at the start state and gradually expands outward as the search progresses. Explored states are marked

as visited so that they can be identified if revisited. If a partial solution is extended to a state which was

reached earlier, then the historical data is updated to point back along the shorter approach path. A search is

said to be uniform with respect to cost if all partial solution paths are extended by the same cost increment.

Uniformity guarantees that the least-cost solution has been discovered as soon as the goal is reached. There

are two major drawbacks to uniform breadth-first search. First, it is a blind search because it does not use

information about the search space or the problem instance to guide exploration. Second, the incremental cost

step at which node expansions must occur is a function of the lowest cost coefficient. If the range of cost

coefficient values is large, then the rate of expansion through higher-cost regions can be painfully slow.

In some problems execution times can be reduced through bidirectional search. In this

variant, a search is conducted from both the start and the goal concurrently. If each search by itself is uniform,

then when a path from the start reaches a path from the goal, their union is the least-cost solution path.

Application of this technique requires a priori knowledge of the goal location. This being the case in the

WRP, bidirectional uniform search can be applied to shorten the execution time [Rich87].

Branch-and-bound is one search variant which avoids some weaknesses of uniform search.

This is considered a form of ordered search [Barr81], because there is an explicit ordering of state

13

expansions Instead ol queuing Mates, branch and bound always expands the state whoso current

accumulated path cost is minimum, This ordering guarantees thai an optimal solution has been found when

.1 |<.iili to the goal with a cost that is equal (0 01 lowei than the ininiimiin cost state eurrenlly on the agenda

(i c the next state to be explored) is discovered. The first complete solution provides en upper bound on the

K-.isi nisi solution Intermediate search nodes: whose cost equals 01 exceeds this bound cannot result in an

Optimal solution, ami. therefore, can be pruned from ilk- search. When the bounding mechanism can be

activated, and how effective it Will be, depends upon how quickly the first solution is found and how close it

is u> optimal Using accumulated path cost, branch and bound fOCUSOS its attention on paths which tend to

have more potential foi optimality, However, the measurement oi this potential is one-sided because it is

relative to the start state only. Unfortunate!) . when the search graph consists ofweighted arcs, then expansion

ol states will not be uniform with respect to cost Therefore, branch end bound cannot employ bidirectional

search to find least cost solution.

i* starch is i heuristic search variant winch extends the concept ofbranch-and-bound by

improving the measurement oi optimalit) potential Bach state placed on the agenda is rated by the value oi

us f\ ...'•; [Barr81] ["he evaluation function is the sum of the cost to reach that state from the

si.in plus m estimated COSt from mat state to the goal At each Stage in the search, the next state selected for

expansion is the one which lias the niuuniiini evaluation, Furthermore, if the estimate to the goal is a

guaranteed underestimate, then the search is called odWu ut . Admissibility guarantees the optimality of the

tusi path reaching the goal Since A* is more informed it often demonstrates marked improvement over

uninformed strategies rims, it good cost underestimates ire easy to compute, then a* may be preferred over

branch ami bound and uniform breadth tusi search.

Clear!) . we desire to employ the fastest, most efficient search strategy available. Wo note that

both branch and Nnuui ind a* search elicit a puce for their efficiency, Both require the maintenance of an

ordered agenda in the form ol i list oi heap Since in igenda contains the costs and locations oi ail partial

solutions, u cannot be truncated before it least one complete solution has been (ouw\ Otherwise, information

necessary to determine an optimal solution max be lost Agenda control mechanisms can become unwieldy

foi large problems rhus, if i good underestimate of cost from each state to the goal is not easily computed,

oi is not reasonably close to actual cost, then A* search may require more computing resources than simpler

techniques [Rich87] From I practical standpoint, the best search technique foi a given problem ultimatelv

depends uponanumbci offactors These include problem domain, representation scheme, solution space, and

the instances w e expect to eneountei

14

b. Local Iterative Search

One of the most powerful and successful techniques for attacking difficult combinatorial

optimization problems is local search [Papa82]. In continuous function optimization, local search techniques

are referred to as steepest descent (minimization) or hill-climbing (maximization) [BarrSl]. Researchers have

applied these searches quite successfully to many NP-hard problems (for example, Traveling Salesman

Problem [Lin65]). They are also valuable for some polynomial-time-solvable problems. For example, though

linear programming is polynomially solvable, it can be solved efficiently and exactly by the well-known

Simplex Algorithm, which is essentially a local search.

Given the set of all feasible solutions, F, local search requires an initial solution,/^ e F, and

a mechanism for generating a neighborhood, N, of solutions /.. The neighborhood of a solution / is a set

solutions,/., which are "close" to/[Papa82]. In general, a solution/ is in the neighborhood of/ , if starting

from/ , we can obtain/ by some small predetermined change to/ . This change (or changes) is usually

applied to some representation of the solution/ (for example, a simple swapping of two integers representing

ordered points in space). How the/ are generated determines the size and content of N. Beginning from/ , a

local search procedure applies and evaluates perturbations to the current solution in an attempt to find cost-

improving configurations. In iterative improvement only cost-improving perturbations are accepted and the

procedure repeats until no improvement can be found. At this point the current solution is locally optimal with

respect to its current neighborhood. The drawback for many problems is that this local minimum may be far

from the global minimum, with respect to both cost and physical location.

If the complete cost function of a problem is convex, then local search can always find the

globally optimal solution. A function f(x) is said to be convex if the following inequality holds for any pair

of domain values, x and a: [Baza77]:

V X e [0,1] f{hc
l
+ (1-X)x

2
) < X/Up + (l-?i)/U

2
) (Eq 2.1)

Convexity implies that a local extremum is a global extremum. By successively searching the neighborhood

of the improved solutions, a local search procedure eventually enters the neighborhood of the globally

optimal solution. The speed of approach depends on the size of the neighborhood, and how quickly its local

minimum can be found. In the worst case such a procedure can be very slow. But if the cost function of the

solution space is a convex function, then faster techniques such as binary or Golden Ratio search can be

used.

Not all problems exhibit the property of convexity. A solution space may consist of multiple

local extrema. Taken as a whole, the solution space of the WRP is not convex. However, recall that it can be

15

partitioned into convex SUbspaces. The cost of ihc local minimum in each subspacc can be found by binary

Search and compared with each other to determine the global minimum. The difficulty with this is that the

number Of path SUbspaces is at least 0(2
V
) where v is the number of vertices. Either a way must be found to

organize these subspaccs for systematic search, or a local search must be capable of escaping from local

minima.

A significant issue in local search is the configuration of a neighborhood and, consequendy,

how it is generated. F
;or a given neighborhood structure, when a locally optimal solution is also guaranteed

to be globally optimal, then the neighborhood is said to be exact (Papa82). If the functional value of a domain

point is belter than all other domain points within its neighborhood, then die point is locally optimal. If the

neighborhood is exact, then this point is also globally optimal. For a convex function, any non-empty

neighborhood is exact. However, for a non-convex function this is usually not true. Consequently, only very

large neighborhoods may be exact. Unfortunately, in some non-convex problems the only exact

neighborhoods contain all feasible solutions (for example, the Traveling Salesman Problem). In such cases

local search will require the same or more work than systematic search. Therefore, from a practical point of

view, it is sometimes belter to compromise an exact neighborhood for an inexact one and concede the

guarantee Of global optimality. Using inexact neighborhoods we can also search locally from several initial

feasible solutions. This can sometimes be more effective because it lends to broaden search space coverage.

However, this does not ensure thai the globally optimal solution lies in or can be located from any

neighborhood of the initial solutions selected.

Another important issue is local search control, die mediod by which a neighborhood is

searched. One common technique, Steepest descent examines the entire neighborhood, N, of some solution

and selects the locally best solution within N. This best solution has its own corresponding neighborhood,

which is searched for its local extremum. And the process iicratively repeats itself. A more expedient method,

first-improvement, searches the neighborhood as follows. Given a solution, neighbors are examined randomly

or in some order until the first cost-improving solution is found. This solution is used as the basis for the next

neighborhood. These two techniques generally represent the extremes in a spectrum of variations on

neighborhood search [Papa82],

The nature of the solution space will likely influence die choice of a specific control

procedure. When a neighborhood structure is relatively small and imparls a natural ordering to its solutions,

then orderly examination of the neighborhood may be all that is necessary to locate the local opumum.

\ low over, for some problems exact neighborhoods may be so large that only partial search is practical. In such

16

cases, random sampling within the neighborhood can be useful and more efficient. As in systematic search,

heuristic information can often help to reduce local search. For example, in his work on the Traveling

Salesman Problem [Lin65] recognized that it is sometimes possible to identify common features of good

solutions. The heuristic is that some of these features are very likely contained in the global optimal solution.

To apply this knowledge, a local search should tend to preserve these features in subsequent neighborhoods,

thereby reducing the overall search effort.

The steepest descent approach to the WRP would encounter difficulty with discontinuous

costs between path subspaces which occur at region vertices. The convexity theorem guarantees path-cost

continuity for path subspaces which cross identically ordered sequences of boundary edges. It does not apply

when the sequence of edges crossed changes, as occurs if a path subspace includes a vertex joining regions

of unequal cost coefficients.

c. Relaxation

Many optimization problems reduce to finding the solution which best satisfies a large set of

conflicting constraints, that is conditions required of the solution. A search technique in which constraints are

iteratively added, removed, or replaced to improve a solution is called relaxation. The term has been applied

to both continuous [Char87] and discrete [Rowe88] optimization. We say that a constraint is active when it

is currently being enforced. Otherwise, it is relaxed. We may begin from one solution and activate one or

more constraints which require that the original solution be changed to satisfy the new conditions. Another

method begins by assuming that all solutions are possible. As constraints are activated, solutions which

cannot satisfy them are eliminated. As more constraints become active they may or may not conflict. If they

do, it may be necessary to backtrack, relaxing some and activating others. The entire process can be viewed

as a state space search where states are solutions satisfying various constraint combinations and/or degrees of

restriction.

d. Probabilistic Search

If neighborhoods or problem instances are too large for practical exploration, then a

probabilistic approach to search becomes appealing. There are several forms of probabilistic algorithms. A

Monte Carlo algorithm returns a solution which has some probability of being correct. A Las Vegas algorithm

always finds a correct solution, but may require multiple executions to do so [Bras88]. Another form of

probabilistic algorithm estimates a solution when an exact solution is not possible or is impractical.

17

Our approach 10 solving the WRP lends toward probabilistic estimation. We rapidly sample

locally optimal solutions randomly by moving through neighborhoods consisting of convex path subspaces.

The cost of a SUbsptce is the cost of iLs locally optimal path. Cumulatively, the sampling covers a broad area

of the solution space. Probability focuses local se;uvh on die neighborhoods with greater potential for

containing an optimal path. Gradually, we reduce the ability of die algorithm to sample across a broad range

o(path suhspaccs. 11ns is done by decreasing the pa>bability of movement to cost-increasing solutions.

Inevitably, the probability constraints lighten to die point of preventing movement to all but cost-improving

solutions. When all cost improvements have been applied, the algorithm halls and delivers its best known

solution,

While probabilistic algorithms cannot guarantee globally optimal solutions, the practical

advantages can he significant. Probabilistic algorithms are inherently nondeterministic. Two execution

sequences on the same problem instance will almost never be identical, although the final solutions can often

be the same. Such behavior implies that For a given problem si/e algorithm performance does not depend on

a specific problem instance. In probabilistic algorithms < tpected tunc of execution replaces average execution

time over all possible instances of a particular si/e. For a given problem si/e, expected execution time is the

same for all problem instances - worst cases included. In this sense, one can argue that probabilistic

algorithms can exhibit more predictable performance than deterministic ones.

A typical behavior Of many probabilistic algorithms is that the quality of their final solutions

can improve over time. This can be a significant advantage when time resources are uncertain. Such

algorithms might be terminated prematurely and still return an adequate result. The most obvious time

advantage occurs because a probabilistic algorithm merely samples us solution space and uses Statistics and

heuristics to interpolate and inter know ledge. Often global or near-global optima can be found in significantly

less computing time. Thus, a relatively small sacrifice in solution quality can deliver a disproportionately

large increase in efficiency

B, APPROACHES TO THE GENERAL WEIGHTED REGION PROBLEM

1. Grid-Based Wavefront Propagation

Wavefront pre»pagation is an approximating method which employs a modified branch-and-hound

search. An orthogonal grid of predetermined resolution overlays a weighted-region map. Each grid cell is

assigned a cost coefficient. There arc- at least two ways to do this. We could use the homogeneous-cost

Coefficient of the region occupying the greatest area within die cell. We could also take the average cost

IS

coefficient weighted by the percentage of its area in the cell. The search begins from the grid cell containing

the start point and continues until the cell containing the goal point is reached. A trail of back pointers permits

optimal path retrieval. An agenda maintains the wave frontier and associated back pointers. Although simple,

the algorithm has three major drawbacks. First, it is a blind search. Thus, without heuristics, it is painfully

slow, particularly if the range of cost coefficients is large. Second, even maps with a few regions may require

a relatively high resolution grid to accurately represent detail. Each cell of die grid is essentially a node in the

search graph. Increasing the resolution of the grid by factor R roughly induces an fc increase in the number

of search nodes, and, consequently, the size of the problem instance. Third, fixing paths to a grid causes "stair-

step" solution paths. Assuming that resolution is fine enough to capture all terrain features modeled by the

weighted-region map, an 8-neighbor implementation, may return solutions which are as much as 8% greater

than optimal. Nevertheless, digital bias can be reduced [Mitc84], and heuristics can improve efficiency to

some degree [Rich87].

2. Snell's Law

More accurate approaches to solving the WRP use Snell's Law as a local optimization criterion.

Recall that cost regions are homogeneous. Thus, by the triangle inequality, optimal paths cannot turn at

interior points of cost regions. It follows that turning points may occur where cost changes abrupUy, that is,

at cost region boundary edges.

Snell's Law defines the optimality conditions for such turns. Given a fixed point in each of two

adjacent regions, the least cost path between them always satisfies the conditions of Figure 2.2, where 6 and

are region cost coefficients. This relation is analogous to that used in optics to determine how a light ray

will bend when it passes between two media with different refraction indexes.

19

>St H-2 V"n High C<
**

Low Cost 1^1 ^^^
SING

2 _ ^ 1

F
? SIN 6 1 V-2

Figure 2.2 Snell's Law Optimally Criterion

The optical analogy is less applicable in the limiting case of reflection. Figure 2.3 illustrates the

special case of a crossing episode which occurs at the Snell's Law critical angle associated with the higher

cost region. An optical light ray reflects back into the medium from which it came when its angle of incidence

exceeds the critical angle. Such a path would not be optimal in the WRP. To preserve optimality requires that

the path move parallel and infinitesimally close to the boundary edge on the low cost side. Thus, the path

incurs the lower cost per unit distance of travel on the edge.

Pi e c X Kz

High Cost H 2

%J-*l

Low Cost U

1

SIN9r = ^ 1

c
^2

Figure 2.3 Snell's Law Critical Angle Crossing

20

Previous research suggests that Snell's Law is a powerful concept for the WRP. However, there

are also some limitations and difficulties with its use. Snell's Law defines local optimization criteria only. It

is a necessary but not sufficient condition for optimality at boundary crossings. Therefore, a globally optimal

solution path must obey Snell's Law at every boundary crossing episode (except at vertices). However, a path

which satisfies Snell's Law at every crossing episode is not guaranteed to be globally optimal. Depending

upon how it is used, the relation may not be convenient to compute. While Snell's Law can compute required

angles directly, there is no closed form for computing the coordinates of crossing points. Furthermore, it

involves the sine function (or square roots in other forms), a relatively primitive but expensive operation.

3. Continuous Dijkstra Algorithm

The continuous Dijkstra algorithm [Mitc90] propagates Snell's Law constraint intervals in all

directions from the start A branch-and-bound procedure searches the graph representing these intervals. This

7 3
algorithm finds the true optimal path, and establishes a worst case 0(v L) time complexity and 0(v) space

complexity (where v is the number of region vertices and L is the number of bits used to represent input).

While establishing that the WRP is polynomially solvable, the algorithm's current lack of implementation

prevents practical comparison. Indeed, its seventh-degree-polynomial-timc complexity and its requirement

for triangulated cost regions, suggest that it will have relatively large average execution times.

4. Recursive Wedge Decomposition Algorithm

Another algorithm which finds an optimal path to the WRP is the recursive wedge decomposition

algorithm implemented by [Rowe90b]. The algorithm propagates well-behaved sets of paths (referred to as

wedges) from the start point, and recursively expands and refines them to construct a graph of shortest paths.

These wedges are similar to the constraint intervals in [Mitc90]. A prototype implementation has

demonstrated 0(v) average time complexity for relatively simple terrain (although worst case is still

exponential). The algorithm tends toward its exponential worst case when a large number of wedges overlap

the goal [Rich87]. It is a very complicated algorithm which uses trigonometric functions for many heading

and visibility computations. Furthermore, its recursive nature can magnify the effects of these computations

and increase the amount of agenda maintenance necessary as the size of a problem instance expands.

Although, pruning heuristics do help to control these effects. The empirical performance of this algorithm in

more complex terrain maps (with a wide range of cost coefficients and many contiguous regions) is unknown.

21

5. Local, Asynchronous, Iterative, and Parallel Procedures (LAIPP)

The only known work that does not use some type of systematic search is [Smit88]. The Local,

Asynchronous, Iterative, and Parallel Procedures (LAIPP) approach is a form of relaxation. It is similar to a

neural network simulation executed on a single processor system. A hypothetical processor is assumed at each

boundary edge of the map. A boundary edge faces the two regions it borders. Its associated processor

communicates with each processor assigned to the other boundary edges of the two regions it faces. Each

processor tracks the locations of several path crossing points on its edge. For each point, the processor records

what it believes is correct local and global weighted distance data relative to start and goal. The processors

iteratively and asynchronously exchange and modify the data. Eventually all processors converge to an

agreement on locally and globally optimal path data. At least one serial set of processors from start to goal

has recorded identical (within tolerance) lengths for the solution path on which they lie. A systematic search

of the discrete graph defined by serial chains of agreeing processors is searched for the shortest such path from

start to goal. Although empirical results indicate that the procedure often converges to an exact globally

optimal path, it is not guaranteed to do so. Furthermore, many locally minimal paths can be far from optimum.

The empirical time complexity is measured as the number of iterations required for convergence to processor

agreement. This complexity is slightly more than linear as a function of Euclidean path length. Time

complexity is also dependent upon the range of cost coefficients used. LAIPP is an interesting and promising

approach which we believe will prove most valuable in a parallel processing environment.

6. Optimal-Path Maps

An interesting approach proposed by [Alex90] attempts to solve a large number ofWRP instances

at once. For a single goal point location and the geometry of weighted regions, the plane can be partitioned

into behavioral regions. These are areas in which optimal paths from all other points behave in a similar

manner. For example, all optimal paths from start points in a given partition might travel directly to and pass

through the same weighted region vertex enroute to the goal. Given enough preprocessing time, complete

optimal path maps can be constructed. An efficient storage scheme will enable fast subsequent computing of

any optimal path.

Two different approaches are proposed for constructing behavioral regions. The first is a

specialized grid-based wavefront propagation algorithm modified to recognize points on behavioral region

boundaries. These are recognized as the locations of wavefront convergence, points from which two (or more)

22

distinctly different paths exist which return to the goal at identical costs. This algorithm suffers from the usual

inefficiencies and inaccuracies associated with grid-based wavefront propagation.

The second approach is an elegant application of computational geometry. It is based on the

observation that in a constant weighted plane (i.e. a single cost coefficient on the entire map) the optimal-path

cost function originating from a common goal sweeps the surface of a perfect cone. The introduction of

weighted regions perturbs this cost function, and, thus, the shape of this cone. In simple maps, the behavioral

region boundaries formed by these perturbations can be computed as straight lines and conic section curves.

The algorithm applies complicated parametric equations to find the conic curves. The computations are

tedious and expensive, but the result is a complete and concise optimal path map from a given start (goal) to

any goal (start) point desired.

To determine behavioral regions more efficiently, [Rowe90e] suggests modifications to the

recursive wedge decomposition algorithm of [Rich87]. The algorithm's A* search strategy can be exploited

to recursively partition a map into a tree of wedges rooted at the designated start point. A few conditions

determine the possible locations of overlapping wedges. Standard polygon-intersection procedures can check

these wedges for true overlap, and, if found, establish the shape of conic behavioral region boundaries therein.

A prototype of this algorithm is currently under development. While this algorithm builds optimal-path maps

more efficiently than those of [Alex90], the time investment is too costly for single start-to-goal paths.

Ideas presented in this dissertation could be used to improve the retrieval of optimal paths from

the optimal-path-map storage structure proposed in [Alex90]. An optimal-path map is stored as tree of

behavioral regions which are linked back to a common goal point (the tree root) by the vertices and boundary

edges through which optimal paths must pass. Given a start point, its associated optimal path to the goal is

found by tracing the ordered sequence of edges and vertices which are its ancestors in the tree. This sequence

may require some limited optimization to obtain the exact path. Methods presented in this work can perform

this optimization efficiently.

7. Minimum-Energy Paths

The work of [Ross89] and [Rowe90c] established a model for finding minimum-energy paths over

terrain modeled by disjoint polygonal regions representing constant-slope surfaces. Such a terrain model is

sometimes said to represent 2-1/2 dimensions because freedom of movement is restricted to a 3 dimensional

surface. Follow-on work [Rowe90e] proposes an integration of both this model and concepts developed in

[Rich87]. This research extends the generalized WRP to incorporate anisotropic homogeneous-cost regions.

23

The proposed unified algorithm solves a WRP in the 2-1/2 dimensional terrain model where region weights

arc coefficients of friction. An optimal solution in this problem is the minimum energy path from start to goal

(or minimum time-travel path under constant power).

The original implementation of the algorithm partitions the map representation into subspaces in

which families of paths exist. Our approach to the WRP uses a similar partitioning of the map. However, all

of ourWRP subspaces are naturally bounded by vertices and boundary edges. The model of [Ross89] requires

the additional consideration of directional constraints which may further restrict the shapes and limits of

subspaces. These constraints must be examined and correlated in order to form complete path subspaces from

start to goal. This additional complexity is absent from the two-dimensional isotropic WRP.

C. SPECIAL CASES OF THE WEIGHTED REGION PROBLEM

Some applications may only require an easily solved special case of the WRP. We briefly consider two

algorithms designed to solve instances in which terrain features representation is restricted. The algorithms

arc similar in that each constructs a form of discrete visibility graph from spatial constraints. The concept of

visibility occurs often in movement planning. While its meaning may vary with problem context, visibility

generally implies that at least one unobstructed-straight-line path exists between two points on a map. As the

following special cases indicate, visibility analysis can often derive many powerful constraints on optimal

paths.

1. Infinity, Zero-cost Regions, and Roads

The algorithm in [Mitc87] solves a special case WRP in which we restrict terrain features to four

types: background, zero-cost regions, roads, and obstacles. As usual, obstacles are non-traversable areas of

infinite cosL Zero-cost regions arc areas in which travel incurs negligible cost regardless of distance

(essentially, movement at infinite speed). Cost per unit distance in background terrain is taken as one.

Although fixed, this value can be arbitrary. Roads are stricdy linear features whose cost per unit distance is

less than background cost. Given a start and goal, the algorithm computes a special visibility graph of all

possible optimal path locations. These locations are determined through visibility analysis between vertices,

and by applying the Sncll's Law local optimality criterion. The resulting graph is provably finite, and can be

searched using standard graph search techniques. The algorithm has worst case 0(n logn) time complexity,

where n is the number of feature vertices. This is a significant improvement over the seventh-degree-

polynomial lime complexity of the continuous Dijkstra algorithm.

24

Our approach to the generalized WRP makes an important assumption related to visibility about

the input map. The fact that all regions are convex (or can be made so with additional boundary edges) means

that all edges bounding a given region are completely visible to one another without further calculation. This

removes the need for visibility analysis between end points of path segments.

2. Roads, Rivers, and Rocks Algorithm

Additional work by [Rowe90a] extends the foregoing ideas to rivers, linear features with a higher

cost than background terrain. While the work does not consider zero-cost regions, it is a valuable extension

because roads, rivers, and obstacles can model a great number of commonly encountered terrain situations.

Proof is given that optimal paths can only cross rivers at single points and, unlike roads, will never travel on

them. Since the width of a linear feature is zero, then each river crossing episode incurs a fixed value, k, which

is added direcdy to total path cost. The RRR (Rocks, Rivers, Roads) program is a Prolog implementation of

the algorithm. RRR develops a special visibility graph similar to that in [Mitc90]. As a result, worst case time

complexity remains 0(n logn). However, RRR also uses several spatial heuristics along with A* search to

improve average case performance. The so-called shortcut meta-heuristic [Rowe90a] is proposed as the

unifying concept for all optimal path constraints. Related to the optimality principle, the Shortcut Meta-

Heuristic simply implies that a turning point on an optimal path can never be improved by shortcutting the

turn. In our own work, we employ this concept to generalize optimal path constraints between regional

boundary edges. Such constraints were first applied in limited form as heuristics by [Rich87].

D. SIMULATED ANNEALING

Simulated annealing is a search technique based upon the Metropolis Algorithm [Metr53], which

simulates a complex system of particles (molecules) in a heat bath. Recognizing concepts similar to

optimization, [Kirk83] and [Cern85] independently developed simulated annealing. Since then, many

researchers have used it to obtain solutions to a variety of combinatorial optimization problems.

1. The Basic Annealing Algorithm

In its simplest form, simulated annealing requires the five basic components described in Figure

2.4. Starting from the initial solution and its evaluated cost, a move generator randomly perturbs this solution

to obtain a new neighboring solution. The cost function of the new solution is computed and compared to the

cost of the current solution. The new soludon always becomes the current soludon if the change in cost, AC,

25

is an improvement. Otherwise, the new solution becomes the current with probability P=exp(-ACfT). Figure

2.5 shows the form of the algorithm we use in mis work [Pres88].

1. Solution space definition

2. S - Initial solution taken from the solution space

3. Move generator to randomly generate small perturbations in

solutions, thereby inducing a neighborhood structure to the

search space

4. C(S} - Cost function which can be evaluated for each solution

5. Annealing schedule to provide algorithm control:

T
Q

Initial value of T

T. Freezing value of T

R Reduction factor for T(typically 0.70 < R < 0.99)

L Maximum number of attempted moves at T

L Maximum number of accepted moves at T

Figure 2.4 Basic Components of Simulated Annealing

initialize CURRENT starting solution

initialize T := T /* T starting temperature */

while (T > T
f)
do /* until T reaches T

f
freezing value */

for i := 1 to L /* for L attempted transitions */

perturb CURRENT to generate NEW solution

AC := cost(NEW) - cost(CURRENT)

if (AC < 0)

then CURRENT := NEW
else CURRENT := NEW with P = exp(-AC/T)

end for

T := R * T /* decrement T by reduction factor R */

end while

return CURRENT solution

Figure 2.5 Standard Simulated Annealing Algorithm

26

The control temperature, T, is a value in the same units as the cost function. It regulates the

probability distribution that defines the acceptance criteria of solutions with degrading costs. At each

temperature, T, the procedure attempts up to L moves of which up to L acceptances are permitted. Then, the

temperature is reduced by a factorR , and both L and L are reset. The resulting behavior is a downward-biased

random walk through the solution space, with some ability to escape local minima. Referring to Figure 2.6,

it is easy to see that gradually decreasing control temperature changes the exponential probability distribution,

tightening the acceptance criteria against larger cost increases. The value of T for which no cost increases are

reasonably expected and no more improvements can be found is called thefreezing temperature, T At this

stage the algorithm returns the most current solution, and halts. As an added advantage, the algorithm can also

maintain the best known solution and return this if it is better than the final current solution.

1.0

Dl

o

0.0

-AC

decreasing T

Cost Difference AC

Figure 2.6 Probability of Acceptance vs Cost Difference AC

27

To enhance the performance of the basic annealing algorithm, researchers have developed and

tested a variety of improvement techniques and heuristics. All of these methods are concerned with one or

more of the basic annealing components. Since the focus of our work is in solving the WRP using annealing

as a tool, we defer discussion of enhancements to Chapter IV. To the best of our knowledge, the work of this

dissertation is the first (and only) investigation of a simulated annealing algorithm to solve the WRP.

In the sections which follow, we review some of the previous annealing work applied to problems

with a path-planning flavor bearing some resemblance to the WRP. Our objective is to identify and discuss

similarities and differences between these problems and the WRP as they relate to annealing. For annealing

work on other problems and applications, [C0II88] gives an extensive annotated bibliography of simulated

annealing theory and applications.

2. Routing Applications of Annealing

a. The Traveling Salesman Problem (TSP)

The classical Traveling Salesman Problem (TSP) is arguably one of the most investigated

problems on record. Because it is NP-Complete, large instances of the TSP are likely to be intractable and

require approximating algorithms to estimate the optimal solution. As a result, many researchers have

explored annealing solutions to it. In addition to the original work of [Kirk83] and [Cern85], [C0II88] lists 40

references to annealing work on the TSP. Most of this work uses the TSP as a vehicle to investigate properties

and enhancements to the annealing algorithm itself. While both TSP and WRP are essentially routing

problems in two-dimensional Euclidean space, there exist significant differences which impact on the

annealing approach.

The TSP admits a fairly straight forward annealing approach. In its classic form, a TSP

instance consists of a finite set of discrete points in a two-dimensional plane. The optimal solution is a

piecewisc linear least-cost path which connects every discrete point with a straight-line path segment. The

entire path forms a closed cycle. Thus, every feasible solution is well-defined, includes every input point

once, and has a cost which is almost precisely determinable. These three aspects of the TSP make it an

excellent annealing application. Solutions are nothing more than a fixed-length ordered set of points. A

solution cost is the sum of Euclidean distances between ordered points. The move generator for the annealing

algorithm is simple and efficient. To generate a new feasible solution, permute the point ordering of the

current solution.

28

In contrast, an annealing approach to the WRP is more difficult. A problem instance is a map

of regions, associated cost coefficients, and designated start and goal points. The number of feasible solutions

between start and goal is uncountably infinite. Fortunately, the convexity of the Snell's Law optimality

criterion can partition the solution space into a finite number of discrete path subspaces (recall the wedges in

[Rich87]). Even so, computation of a single cost for each subset of paths can be expensive and highly

dependent upon desired precision [Mitc90]. WRP feasible solutions usually consist of some subset of

problem input; generation of new feasible solutions is not as simple as permuting a fixed-length lisL Finally,

recall that annealing requires an initial soluuon to begin. While a TSP initial solution is any ordering of the

input, such is not the case for the WRP. A straight line path from start to goal is not guaranteed to be feasible

in the presence of infinite cost regions. Thus, we must also resort to a more sophisticated method to initiate

annealing for the WRP.

An annealing-based algorithm to solve a more general variation of the TSP is presented in

[Adam85]. The problem is to plan an ordered cyclic route from a given starting point to a subset of

predetermined locations on a two-dimensional map. The objective cost function is considerably more

complex than simple Euclidean distance. Each location i has a corresponding value V. which measures its

worth to the overall plan. Subgoal values V. can be dependent upon time and interdependent upon order of

arrival. The objective function also employs the conditional probability, P[G.\S], of reaching a subgoal i,

given that the plan j is pursued and given the current state S of the autonomous vehicle (e.g. fuel supply,

weapons status) and its working environment. Constraints of minimum acceptable probabilities and minimum

time required to reach particular subgoals may also factor into the cost of a plan. The algorithm searches for

a plan which maximizes overall utility defined as:

U:=
y

L(PiG.\S]V
ij

) (Eq2.2)

ij

One similarity between this problem and the WRP concerns cost function evaluation. Recall

that in annealing, cost function comparisons between solutions drive and guide the process. Clearly, exact

evaluation of each feasible solution is not reasonable in the algorithm of [Adam85]. Instead, the authors adopt

a Monte Carlo method to approximate the cost of each soluuon, which significantly increases algorithm

efficiency. A similar time-saving technique suggested by [Tove88] is the surrogatefunction swindle. If a cost

function is difficult to evaluate, substitute one which is easier and approximates the original. In the WRP,

Snell's Law enables us to compute locally optimal path costs. However the nature of Snell's Law makes the

29

procedures for doing so relatively expensive. Consequently, we approximate their costs as often as possible,

reserving the more precise computations only when absolutely necessary.

b. Wire Routing and Chip Placement

The design of very-large-scale integrated circuit boards requires the optimal placement of

solid state chips and associated wire connections. Simulated annealing has been successfully used in the chip

placement problem [Grov86, Sech86], a direct descendent of the NP-complete bin packing problem. Global

wire routing is a path optimization problem somewhat closer in similarity to the WRP. While the problem

context is a two-dimensional plane, wire routing solutions are usually drawn from a discrete space of

predetermined routes. Ordinarily, an optimal arrangement of components predetermines all terminal points

for connecting wires. An optimal routing of wires required between all terminal pairs minimizes total distance

and the number of bends and overlaps [Vech83]. In global wire routing, the routes are normally confined to

the orthogonal channels between components, so that the Manhattan distance metric applies and the solution

space is discrete. Also, there is usually some upper bound constraint on the overlap capacity of each channel

(i.e. the maximum allowable number of tracks per channel).

Like the Traveling Salesman Problem, the global wire routing problem lacks the continuous

space aspect that complicates the WRP. However, wire routing exhibits a more complicated objective

function. The objective function of [Vech83] attempts to model all constraints simultaneously. Annealing is

conducted in two stages. The first permits only L-shaped paths (single bend) between terminal points. The

second stage begins at the temperature from the last state of stage one, and includes both L and Z-shaped paths

(two bends). Staging the optimization in two shifts reduces overall computing time yet achieves results

comparable to those obtained when both path types are sampled throughout the entire annealing process.

Similarly, [Sech86] employs a two-stage approach. However, the first stage is a non-annealing algorithm

which selects wiring configurations that minimize only total distance. The second stage uses annealing to

minimize total wire overlap by searching through the choices made by the first stage. Again, the result is

savings of time.

A multi-stage approach is often applied to difficult problems. The strategy attempts to

identify high-level characteristics common to most optimal or near-optimal solutions (for example, general

shapes, common placements, etc.) that can later guide development and optimization of a more detailed

solution. This strategy is formalized in [Whit84] by relating the scaling of moves to annealing temperature.

At higher temperatures, larger random moves through the solution space arc more efficient than smaller

30

moves. Detailed solution improvements are discovered at lower temperatures, when smaller moves are most

efficient. In this sense, simulated annealing develops a solution in a top-down manner. Evidently, because of

this similarity, multi-staging seems to be a good general-purpose annealing heuristic.

Closely related to multiple stages is concept of the target prejudice swindle suggested by

[Tove88]. This applies when general characteristics or properties of optimal solutions are known. The

annealing process often saves time if the the move generator can be biased to generate neighbors with optimal

solution characteristics. For example, in the WRP we know that optimal solutions never have cycles.

Therefore, we should avoid generating such paths. In the extreme sense, this is what [Vech83] has done by

biasing his first stage exclusively toward L-shaped paths. Another simple way to get the effect of the target

prejudice swindle heuristic is to begin with a reasonably good initial solution. In the [Sech86] algorithm, the

non-annealing first stage selects a large number of good starting solutions. This effectively provides the

second stage (annealing) with a boost. Thus, stage two does not waste time examining poor solutions just to

identify better ones.

We find that staging concepts are also applicable to our annealing-based algorithm for the

WRP. Our current implementation finds one good initial starting solution from which to begin annealing.

However, several initial starting solutions could improve the performance of die overall algorithm. Chapter

III discusses how an initial solution is found. In Chapter IV, we suggest how to obtain multiple starting

solutions might be obtained. Chapter IV also describes heurisdcs for preconditioning weighted region maps

to improve path annealing performance.

c. Robot Arm Movement

The problem of efficiendy and safely moving the end effector of a robot arm through three-

dimensional space is another path-planning problem to which simulated annealing has been applied. The

algorithm of [Lind87] uses an octree representation of space in which to plan movement for a manipulator of

5 or 6 degrees. Simple problem instances are handled by a deterministic algorithm. However, simulated

annealing tackles the complex cases. Here again, we see a two-stage approach. However, in contrast to

previously discussed applications, it is the first stage of this algorithm that uses annealing, not the second. The

first stage finds solutions for movement of the first three links closest to the manipulator base, corresponding

to coarse movement. The solutions are near-optimal in the sense that they minimize the link movements

(torque and translation) required to translate the last three links to the target position in space. The second

stage deterministically locates refined soludons for the links closest to the wrisL

31

Another example of an annealing-based algorithm for manipulator arm movement planning

is found in [Carr90]. This work reports that reasonably good solutions are obtained from relatively simple

annealing schedules. We have also found such to be the case in our approach to the WRP. Although we

performed some very limited testing with more elaborate annealing schedules, the best results came from the

simplest ones.

32

III. PATH ANNEALING DESIGN

A. INTRODUCTION

Path annealing is a probabilistic algorithm which combines a fast, crude systematic search with a non-

exhaustive local search to find near-optimal solutions for the weighted-region problem. This chapter presents

the basic design concepts for the path annealing algorithm.

In this chapter we introduce and define many terms and concepts specific to path annealing. Some of

these concepts refer to supporting theorems which are presented only informally (with intuitive explanations

as required for immediate understanding). A more formal statement of the theorems and associated proofs is

contained in Appendix A.

Since we desired to implement a prototype of path annealing quickly, we chose to use Quintus Prolog

Release 2.5 [Quin90] as our base language. There were many good reasons for this decision. Prolog code for

several standard algorithms used in our work (such as A* search) was available through other related research

projects. Generic Prolog is very high-level and provides automatic backtracking. Furthermore, Quintus

Prolog provides automatic hashing, compilation, a foreign language interface, and graphic display

capabilities. All of these facilities were used to develop, debug, and optimize the prototype. Appendix B is a

complete listing of all source code.

B. STATE SPACE REPRESENTATION

1. Window Sequences

For a WRP instance define the solution space as the collection of all conceivable piecewise linear

paths between start and goal, whose turning points (between linear segments) occur at regional boundary

edges or vertices. We omit from this collection all paths with turning points which do not lie on regional

boundaries because such paths can never be optimal. Furthermore, it is always possible to improve the cost

of such a path by shortcutung any turning points which occur in region interiors. Note that we do not exclude

cyclic paths, even though such paths cannot be optimal. WRP solution space contains an uncountably infinite

number of solutions. The convexity theorem does not apply to the solution space as a whole unless all paths

between start and goal must cross the same sequence of edges in exactly the same order (a possible, but very

33

unlikely problem Instance). Mosl problem instances contain many palh-COSt discontinuities. In order to

manage such complexity we desire to represent this space in some discrete form.

Recall from Section II.A.l.c that die primary reasons for representing the WRP search space

discretely are: (I) to utilize the cost function convexity theorem for paths which cross the same sequences of

consecutive boundary edges; and (2) to make the problem suitable for combinatorial optimization. We assign

a unique integer identifier to each region boundary edge. Furthermore, we assign identifiers s and g to

designated start and goal points respectively. We now define the concept of window sequence (WS). This

concept was originally adopted by |Ross89) to describe a family of paths which cross the same sequence of

boundary edges and vertices and which must obey the same set of movement constraints. Our definition of

window sequence is similar, but not identical. Consider the continuous, infinite set of all paths between the

start and gad points which cross the same ordered sequence of edges. We can uniquely label this family of

paths using an ordered list of edge identifiers. The first and last elements of Uiis list arc always s and g

Corresponding to start and goal respectively. Such an ordered set is called a window sequence. Figure 3.1 is

an example of a window sequence (WS). Duplicate edge identifiers arc permitted within a legitimate WS.

lliis simply means that a family of paths must cross die same edge multiple limes. Also, note that a WS must

include every edge identifier that its associated paths cross. Identifiers may not be skipped in a valid WS list.

Figure 3.1 Window Sequence

34

Note that a WS is not the same as a wedge [Rich87| as in Figure 2. 1 . A wedge has a start but no

terminating point, and consisLs of only Snell's Law paths defined between extreme left and right bounding

paths. In contrast, a WS has both start and terminating points and consists of all paths (regardless of Snell's

Law) which cross the given sequence of defining edges. Nevertheless, the convexity theorem of [Rowc90b]

and [Mitc90] still applies to WS because the theorem places no restriction on edge length and the path-cost

function remains the same. Therefore, a unique locally optimal path must exist within each WS, and a

standard continuous function optimization method can be used to locate it.

Window sequences partition the WRP solution space into possibly overlapping classes of paths.

We can identify a number of desirable properties which emphasize the advantages of a window sequence

representation:

• All WS's are discretely represented by ordered lists of edge identifier

• Assuming a bordered map, the total number of WS's is finite.

• Every path in the WRP solution space is contained in some WS.

• Some WS contains the globally optimal path.

• Consecutive turning points between path segments are always visible.

Though finite, the number of states (i.e. window sequences) in this space is very large. However, if we can

find the locally optimal path of any WS, then we have a means of comparing WS's. By searching the

solution space of WS's we can use these costs to determine optimal or near-optimal paths.

Recall from Section I.B that we assume all regions in a WRP map are convex (with the exception

of the non-traversable border regionj. The reason is that a convex-region map subsumes the definition of edge

visibility. Consecutive edges in a WS are always completely visible to one another, and so, visibility

computations are unnecessary. This improves the efficiency of determining the locally optimal path in a WS.

2. Primitive Data Structures and Operations

In order to form a high-level representation of the solution space v/c prcprocess a WRP map into

several primitive data structures designed to facilitate rapid navigation through the space at lower levels. Our

input maps are just a list of boundary edges with defining vertices and associated cost coefficients to either

side. It is assumed that this list represents a complete set of straight-line segments in a planar graph.

Henceforth, we refer to this graph as a weighted-region map. The input description of each edge in the map

conforms to a standard convention. Boundary edge, E, is defined by the set f v v p. p. J, where v and v

are the coordinates of its terminating vertices, and p and p are the cost coefficients of the regions it bounds.

An agent traveling along this edge from v to v will always see p on his left and p on his right, when p <

35

\i . However, if \i = |i , then the x coordinates of the vertices are related as v (x) < vAx). If (I = \i and v Ax)

= v
2
(jc), then v

y
(y) < v

2
(y).

Map preprocessing creates and assigns a unique integer identifier to each edge, and stores it

together with defining vertices, associated weights, linear equation form, midpoint, length, bounded regions,

and directional data. This provides extremely efficient access since Quintus Prolog [Quin90] hashes

predicates on the first atomic argument, in this case the edge identifier. Thus, given a WS of edge identifiers,

its vertices, regions, and related data are all immediately accessible.

In addition to the edges themselves, there are two special structures which store knowledge about

spatial relationships between edges. We create an edge link for each pair of edges which end in the same

vertex and are adjacent around the same common vertex. For each such edge-pair, the edge link records

appropriate edge identifiers, the common vertex, and the cost coefficient of the common region bounded by

the pair. We also create an edge dual-graph which is a high-level data structure representing all WS's.

Because it is high-level, we defer discussion of this data structure to the next section.

Since we desire quick access among edges, vertices, and regions, preprocessing creates several

data structures which are essentially inverted files indexed on these entities. For each vertex in the map, a

vertex edge-list is maintained. This data structure stores a clockwise ordered list of edges incident around each

vertex. Two similar data structures are constructed for regions. A region edge-list holds the associated cost

coefficient and the ordered list boundary edges for each convex region. A region vertex-list stores the ordered

list of vertices around each region. As will be explained later, obstacles are treated as though they were special

oversized vertices. Similar to a vertex edge-list, an obstacle edge-list stores an ordered list of the incident

edges around each obstacle.

The geometric nature of the WRP requires a large number of floating point operations.

Unfortunately, Prolog was not designed for efficient number crunching. Furthermore, Quintus Prolog Release

2.5 floating point operations are accurate to only 6 decimal digits of precision. To compensate we

implemented many primitive routines in C, (see Appendix B). particularly floating point operations. These

are called as Prolog predicates through the foreign language interface. Common routines implemented in C

include: weighted and unweighted distance computations, random number generation, linear interpolation,

routines to implement a heap data structure, Golden Ratio and binary search routines, and annealing schedule

control.

A few primitive geometric routines are implemented in Prolog. However, we have intentionally

written these procedures to execute simple arithmetic operations only, avoiding square roots and

36

trigonometry whenever possible. We have also compressed the mathematics in these routines to as few

operations as possible. Line intersections are taken by solving simultaneous linear equation forms.

Perpendicular projections are done similarly. For efficiency and accuracy, special cases (e.g. intersections of

parallel or coincident lines) are intercepted by pattern matching of coordinates and line equation coefficients.

Then, instead of permitting calculations which might result in great loss of precision, we attempt to solve

them through spatial reasoning about local geometry. Directional heading computations require a single

arctangent operation at one stage, and otherwise they involve only arithmetic operations. Again, special cases

are intercepted and handled separately by spatial reasoning.

C. INITIAL SOLUTION

Annealing can begin from any solution in the space. However, empirical evidence suggests that

reasonably good initial solutions can often provide better final results [Naha86, John89]. The obvious

straight-line path from start to goal is not always feasible when obstacle regions are present While there are

good algorithms for constructing and searching a visibility graph, this is more work than is necessary. To

initialize path annealing, we conduct a limited search through a special representation of the WRP input map.

1. Edge Dual-Graph

A connected graph embeddable in the Cartesian plane without intersecting arcs and whose vertices

are minimum degree two is known as a planar graph. Restricting the arcs of a planar graph to straight lines

results in aplanar straight-line graph (PSLG) [Prep87]. OurWRP input maps are PSLG's. We further restrict

these maps to consist of convex regions only. For all such structures, graph theory defines the notion of a dual

graph. Regions in the planar graph become vertices in its dual graph; whereas vertices in the planar graph

become regions in its dual graph. In the dual graph arcs connect vertices corresponding to adjacent regions in

the original graph. Thus, a one-to-one correspondence exists between arcs in the planar graph and arcs in its

dual. While this kind of dual graph is often a valuable problem transformation (e.g. Min/Max Cut Problem),

it is not that useful for our purposes. Instead, we construct a dual representation for a WRP map that differs

from the standard region dual-graph described above.

We define a dual representation of a WRP map called the edge dual-graph. The discussion which

follows refers to two distinct representations of a problem instance - the weighted region input map and its

corresponding edge dual-graph. In order to avoid confusion, we will use the terms vertices, edges, regions,

and map to describe a weighted region map. We will use the terms nodes, arcs, and graph to describe the edge

dual-graph. The edge dual-graph is essentially an adjacency list representing the spatial structure of the map

37

ai a relatively high level of abstraction. To create this graph, we assign a node to the midpoint of each map

edge which does not bound an obstacle (or the border). Special nodes are assigned to the start and goal points.

In each non-obstacle region, we add arcs to connect all nodes representing the edges which bound the same

region. The fact that all regions are convex guarantees that all such arcs cannot intersect obstacles or other

regions. Thus, each region contains a clique consisting of all nodes representing its non-obstacle boundary

edges. The regions containing the start and goal points will have additional arcs connecting the start or goal

node to the clique. Figure 3.2 illustrates a simple WRP map with its associated edge dual-graph.

INPUT MAP EDGE DUAL-GRAPH O O

Figure 3.2 Weighted-Region Problem Map and Edge Dual-Graph

38

2. Search Tor an Initial Solution

We obtain the initial solution by conducting an A* search of the edge dual-graph. The cost

function is the weighted Euclidean distance. The estimated cost to the goal is straight-line distance to the goal

weighted by the map's lowest cost coefficient, p. . The is an underestimate to the goal, because it is weighted

by the optimal cost. Therefore, the search is admissible, and returns the shortest weighted midpoint path, and

the corresponding WS in which it resides. We refer to this path as the optimal midpoint path. Note that we

should not expect this midpoint path to be globally optimal; nor should we expect that its corresponding WS

necessarily contains a globally optimal path. However, the optimal midpoint path does represent a reasonably

good initial solution.

Simulated annealing does not require the optimal midpoint path from which to begin. We could

begin with any feasible solution regardless of its cosl So, we could overestimate distance to the goal, thereby

inducing a greater depth-first component to the search [Pear84]. Such an evaluation function usually finds a

solution faster. The resulting midpoint path might be of higher cost, but nevertheless, will be feasible since

the edge dual-graph does not pass through infinite cost regions. However, there are two advantages to

initializing with admissible A* search. First, the resulting midpoint path is a reasonably good starting

solution. It is an indication of a high-speed avenue with a higher potential for containing (though not

necessarily) the optimal or a near-optimal path. Much empirical research indicates that simulated annealing

is faster when provided with reasonably good initial solutions [John89, Naha86, Bono84]. Second, the total

cost of this path provides an upper bound on the cost of the globally optimal path. Since we want the least

upper bound obtainable, then it is desirable to find the best midpoint path.

D. COST FUNCTION EVALUATION

In the main phase of annealing, each newly generated WS must be evaluated to find the cost of its

locally optimal path. In many annealing applications the cost of a sample solution is easily evaluated. But in

path annealing, cost function evaluation is difficult and may require a relatively large amount of computing

time. Thus, streamlining this procedure is a high priority.

Recall that the convexity proof implies each WS contains a unique shortest path [Rowe90b, Mitc90]. It

is possible to find this path (within some precision) using Snell's-Law ray-tracing and a standard iterative

search technique such asfalse position [Rich87]. By assuming that each edge in the WS is an infinite length

line, we can treat a WS similar to Richbourg's wedge. However, the left and right boundaries defining a

wedge are Snell's Law paths themselves. In contrast, the left and right boundaries of a WS are lines through

39

the terminating vertices of the edges which define the sequence. As a result, a WS may have no Snell's Law

paths within it at all. We find that locally optimal path for many WS's is constrained by, and therefore passes

through one or more of the vertices of the defining edges. An iterative ray-tracing approach to WS

optimization can expend much computing time backtracking to false starts caused by the ray failing to

intersect edges within the WS. In the next section, we describe WS optimization techniques which take more

advantage of the nature of WS's.

1. Single-Path Relaxation (SPR)

Because Snell's Law determines the local optimality criteria for path segments that cross

boundary edges, it is possible to find the shortest path constrained to a WS without iteratively computing total

path-cost. Given an arbitrary WS from start to goal, one can locate the optimal path constrained to the defining

edges using the coordinate descent method proposed by [Smit88] (also suggested by [Mitc90]). Beginning

with a path through the midpoints of the edges, consider any set of throe consecutive points P P , and P .

Fix the outside pair, P and P, and use Golden Ratio search [Prcss88] to adjust P to the point on the middle

edge at which the weighted distance of path P -P -P is minimized. The point P will be located on the

middle edge such that Snell's Law is satisfied relative to P and /%. Applied to any set of three consecutive

points along a path through a WS, this procedure cannot increase total path-cost Because of this, we may

apply the procedure iteratively from start to goal. Beginning with the first set of three consecutive points

which includes the start point as P adjust P to its optimal location, and slide to the next set of three points.

This process continues to the goal point, then reverses direction moving back to the start. Passes continue in

alternating directions until one complete pass in cither direction is made through all points, during which no

point moves from its previous position more than some precision c, referred to as relaxation tolerance. The

procedure converges on the locally optimal path because total weighted path length is a monotonically

decreasing function of the sequence of adjustments [Smit88]. It is also possible to pass through the WS

continuously in the same direction (such as start to goal). However, we have found that moving in alternating

directions tends to cause faster convergence.

Simulated annealing cannot afford expensive primitive operations. Smith's coordinate descent

method avoids the direct use of Snell's Law and expensive trigonometric functions, which is good. Also, the

technique makes good use of the hounding vertices of the edges. However, simple testing of coordinate

descent using Golden Ratio search suggests that Smith's method, though accurate, is too slow to be of

practical value in path annealing, since long WS's can require a very large number of iterations. Furthermore,

40

wide window sequences with long edges can have very slow convergence to the locally optimal path.

Therefore, we investigated faster alternatives.

Direct determination of a starting direction for a ray-trace which must cross several boundary

edges to hit a known target point is very difficult. Combining the system of equations representing the Snell's

Law criterion at each boundary crossing, results in a very high-degree-polynomial equation, whose solution

yields the starting and target-point coordinates [Mitc90]. However, if only a single boundary edge separates

the starting point and the target, then we only need to determine the point of optimal crossing on the boundary

edge between start and target. Snell's Law has no closed form to compute this point directly. This is one

reason that [Smit88] resorts to Golden Ratio search. Nonetheless, if the range of region cost coefficient values

is known, then we can direcUy determine optimal crossing points with a very fast table-lookup procedure. We

employ this procedure in the coordinate descent technique described earlier by replacing Golden Ratio search

with a constant-time Snell's-Law-table lookup. We refer to our method of coordinate descent using table-

lookup as single-path relaxation (SPR).

The problem of finding a Snell's Law crossing point on a boundary edge between two fixed points

requires a three-dimensional table. Recall from Chapter I that by rescaling rational cost coefficients [Mitc90],

it is always possible to establish integer cost coefficients for a WRP. To construct an appropriate Snell's-Law

lookup table, it is necessary to determine the expected working range of cost coefficient ratios a priori. By

working range, we mean those encountered most often in maps of interest. Our implemented table uses

integer ratios. It is not necessary for the set to include every ratio to be encountered; out-of-bounds conditions

can always trigger a more expensive Golden Ratio search. However, our objective is to severely reduce the

number of times a lookup must resort to iterative search.

Given fixed approach points P and P , we normalize the geometry of a typical crossing episode

on a standard rectangle as shown in Figure 3.3. Note that we orient this rectangle such that the crossing edge

is always parallel to the x axis. Four parameters characterize every crossing episode geometrically similar to

this rectangle:

p = \ij\x. (ratio of cost coefficients) (Eq 3.1)

r = x/y (inverse of the slope of line PjP
2)

(Eq 3.2)

y'= yly (ratio of y coordinates of P and P) (Eq 3.3)

yf= xJy (ratio of x coordinate of P to y coordinate of P) (Eq 3.4)

41

Figure 3.3 Crossing Episode Geometry

The mathematical basis of the table is derived as follows. For optimal crossing point P Figure 3.3 obeys

Snell's Law:

Sin(0
7
) / Sin(9

2
) =^ / u, = p (Eq 3.5)

Letting p = \i-J\i. and applying trigonometric identities we derive the equivalent expression:

p = Cos(ArcTan(y /x)) / Cos(ArcTan((yr>)/(x -xj)) (Eq 3.6)

Multiplying each arctangent argument by (l/v)/(l/v) and substituting yields a parametric equation in four

variables, where p, r, and / determine xf:

p = Cos(ArcTan(y7;0) / Cos(ArcTan((l->0/(''-x'))) (Eq 3.7)

where x' = xjy
{
, p = p./p-

2
, r = x/y

f
and y'= yjyf

42

For any given crossing episode, the values of p, r, and y' are known. Golden Ratio search precomputes the

table values of x which satisfy Eq 3.7 for discrete values of the other parameters. Figure 3.4 tabulates the

parameter ranges and key characteristics of our prototype Snell's-Law lookup table.

Range

Low High Increment No. of Values

p 1.00 10.00 *

r 0.00 10.00 0.05
y' 0.00 1.00 0.05

45
201
21

* based on cost coefficient ratios ja 2/Mi = P
where \i\ e {1,2,3,...,10} and n 1

< fi2

Total no. of function points = 45 * 201 * 21 = 189945

Total raw space required on disk = 760180 bytes

Figure 3.4 Characteristics of Snell's-Law Lookup Table

Recall that all region weights, p.., are drawn from the integer set { 1,2,.. ,10,°°}. We use this set to

indirecUy index the proper value of p in the lookup table. Note that it is always possible to orient the geometry

of an episode such that p < 1 is true. Therefore, we employ a two-dimensional triangular array of 45 entries,

indexed by integer p. values in numerator-denominator pairs. The array holds the indices to the exact values

of x in the lookup table.

Consider the generalized crossing episode in Figure 3.3. From fixed points P and P we can

easily determine intersections I , I , and I , and associated distances relative to the edge, E . With this data

the lookup procedure computes the parameters r and y. The parameter, p, is exact and indexes the appropriate

plane in the table. Using r and y\ the indices are created to bracket the appropriate value for x within a two-

dimensional rectangle. Simple linear interpolation determines a value for*'. This value gives the location of

the optimal crossing site on E relative to both y , and its left vertex. Since x = xJy , then the location of the

optimal point relative to x is x = xfy

.

43

The location of the optimal crossing point on E assumes an infinitely extended boundary edge.

However, all boundary edges are actually finite length segments. Therefore, the opumal crossing point may

not always lie between the vertices which define the boundary edge. In such cases, the optimal crossing point

will be the closest vertex. We refer to these occurrences as constrained crossings, because the optimal

crossing must violate Snell's Law (as little as possible) to satisfy restrictions of boundary edge length. A

constrained crossing is illustrated in Figure 3.5.

constraining i vertices ^yi|i

- ^2
\

jZ>*^^ T
F> ^^^^^^ unconstrained best path

Figure 3.5 Constrained Optimal Crossing

By always orienting the crossing edge E fixed points P and P and cost coefficients \i and \i

as shown in Figure 3.3, we can detect many constrained crossings before applying the complete table-lookup

procedure. Note that in Figure 3.3 an unconstrained optimal crossing can only occur between intersection

points / and / . If both vertices of the crossing edge lie outside of the interval defined by / and / , then a

constrained crossing is certain, and table-lookup is unnecessary. The vertex closest to the/ -/ interval is the

opumal crossing site. Otherwise, if a table-lookup is still necessary, the location of the optimal crossing point

returned by the lookup is compared to the location of edge vertices to determine if a constrained crossing is

optimal.

In summary, the work to lookup x! requires three intersections, three distance calculations (to

determine x, y , yX and one linear interpolation in two dimensions. Thus, a single lookup can be done in

constant time. On rare occasions, if the geometry of a crossing episode causes the parameters to fall outside

the bounds of the table, then the lookup procedure defaults to Golden Ratio search. The major steps of the

optimal-crossing-point lookup algorithm are outlined in Figure 3.6.

44

Input :

fixed points P-,, P2

crossing edge Eq (defined by vertices V-,, V2)

cost coefficients |i 1s u 2 where ji-j < u.2

Output :

Snell's Law crossing point P

Optimal Crossing Point Algorithm :

Assume that Eq extends infinitely in both directions and compute
straight-line intersection l of E and line P1P2-

IF E is a phantom edge

THEN l is Pq, check for constraining vertices and return

ELSE compute perpendicular intersection l2 from P2 on E

IF V2 is between l2 and V^

THEN V2 is P .

ELSE IF V1 is between V2 and l

THEN V^ is P , return V^ as P

ELSE compute perpendicular intersection 11 from P1 to Eq

CALL C routine snell(P
1
,P2 ,l

1
,l i |2.^2»Mi)- Sne " uses U^h to

determine if table lookup can compute P . If not, then l ,l2 are

used as starting points for Golden Ratio search to find P .

Check for constrained Snell's-Law vertex crossing and return.

Figure 3.6 Optimal-Crossing-Point Table-Lookup Algorithm

To compare the table lookup procedure to pure Golden Ratio search, we generated random

crossing episodes across a single boundary edge of 100 map units in length. For each episode one random

45

point was selected from each square region on either side of the crossing edge. For the two regions, unequal

pairs of weights, \i and \i , were randomly assigned from the set {1,2,...,10}. Timing results of the tests

indicate that the table lookup is one order of magnitude (10 times) faster than pure Golden Ratio search. These

results include time needed by the table lookup procedure to perform an occasional Golden Ratio search when

random out-of-bounds conditions occur. To compute the accuracy of the lookup routine, we assume that

Golden Ratio search finds the exact optimal point and, consequently, the true minimum weighted distance.

Let CnD be the total weighted cost of a crossing episode as computed by Golden Ratio search. Let the
Cm

corresponding table-lookup value be C_ . We compute relative error in weighted distance as

lC
TL-

C
GR

l/C
GR ^ 3 -8>

7 fk

For 100,000 random samples the mean relative error was 3.83x10" with standard deviation 1.73x10' . The

maximum relative error is on the order of 10 , and occurs in less than 0.01% of the sample. We should

expect some error, since our two-dimensional linear interpolation is an approximation of a curved surface by

a flat plane. Figure 3.7 is a plot of the discrete points in the table for p = 1.1. Although slight, the curvature

of this surface is most noticeable at the lower values of r and y'. The squaring and square root operations of

weighted distance soften the effect of interpolation error on x '. Nonetheless, we can rely on about 5 decimal

digits of accuracy for the optimal weighted distance of a crossing episode. Note that there are only 6 decimal

digits of precision provided by our implementation language, Quintus Prolog [Quin90]. Depending upon the

length of a WS (i.e. how many crossing episodes), errors can accumulate. However, because mean relative

error is essentially zero, we may assume that errors accumulated over long WS's will usually cancel one

another. We conclude that the Snell's-Law-table lookup method provides SPR with a reasonably accurate

and efficient means for computing optimal crossing points on boundary edges.

46

Figure 3.7 Surface Plot of SnelPs-Law Table (*' =/(y» for p=l.l)

2. Uniform-Discrete-Point (UDP) Approximation

While local path optimization with SPR is fast, the procedure can sometimes run into worst case

situations. In practice we have found that even with a relatively slack relaxation tolerance, SPR may

sometimes converge at an unacceptably slow rate. This happens if the midpoint path (starting condition) is

far from optimal and has few sharp bends. In such situations the improvement of each crossing-point

adjustment may be slight. Therefore, a large number of iterations may be necessary to optimize the path.

Figure 3.8 illustrates a typical worst case for SPR. In this example the rate of SPR convergence decreases

rapidly as the solution approaches optimum.

47

m = 1 ^-^/f
G

^i2 = i+2e

\/ 1 V locally

mjdpoints^^;^-^^

|X3 = 1+48 >,

\ \ /

i

optimal
path

|i4 = 1 + 28

where 8 « 1 n^ q

Figure 3.8 Worst Case Convergence for Single-Path Relaxation (SPR)
(dark path marks progress from midpoints after four passes)

Usually at high annealing temperatures a large number of the WS's sampled will have locally

optimal path-costs which are very large. Therefore, accurate WS cost evaluation is only necessary when the

locally optimal path might be globally optimal. Both theoretical and empirical evidence validate the use of

approximations to the actual cost function [Adam85, Tove88]. To capitalize on this idea, we implement a very

simple approximation to pre-evaluate the cost function of a WS. We refer to the method as uniform-discrete-

point (UDP) search. It is essentially Dijkstra's algorithm restricted to a WS. UDP is used to rapidly

approximate the locally optimal path through a WS, and, if necessary, to provide a starting path for SPR.

48

Uniformly spaced points, called edge-points, are specified on each edge in the WS. From the start point, all

paths constrained to pass through this set of points are searched. The discrete interval, 8, defines the upper

bound for the separation distance of any pair of adjacent edge-points. Given a value for 8, all edge-points can

be predetermined and stored for all boundary edges. For a given edge of length, /, the number of required

edge-points is

m = r(//8)+ll. (Eq3.9)

The m points (which include terminating vertices) are then evenly spaced across the edge. For any edge with

non-zero length, there must be a minimum of two edge-points - the terminating vertices. Note that the

resulting structure can be viewed as a higher resolution edge dual-graph.

This idea is similar to one used by [Papa85] to efficiently approximate the optimal path through a

field of polyhedral obstacles. To each obstacle edge, he assigns discrete points spaced exponentially out in

either direction from the closest point on the edge (the perpendicular intersection from a previous fixed

reference point). Exponential spacing is essentially a device which holds the subsequent path search to

polynomial time. However, the polyhedrons in this three-dimensional obstacle-avoidance problem are all

obstacles (i.e. travel is not permitted within them). Therefore, optimal paths tend to avoid their vertices, and

settle into closest approach tangents across polyhedron edges. So, in a sense, exponential spacing also

represents point samples from a normal probability distribution centered at locations most likely to be on the

optimal path. In the WRP this notion is countered by the added dependence of optimal paths upon relative

region weights as well as direction. The relative positions and weights of regions can often override the

natural tendency for very straight optimal paths. Therefore, it appears that uniform point-spacing is more

appropriate for the WRP.

To approximate the optimal cost of a window sequence (WS), the uniform-discrete-point (UDP)

procedure works as follows. Beginning from the start point (or inversely the goal), Dijkstra's Algorithm

proceeds through the WS toward the goal. Back pointers are recorded at each point on an edge to indicate the

direction of the shortest path back to the start. When the goal point is reached, the shortest path is retrieved

through back pointers. This search is fast because it is restricted to a WS. Consequently, the search always

proceeds in order of WS edges from the start point The lime complexity of the algorithm is 0(nm), where

n is the maximum number of edges in any WS and m is the maximum number of edge-points assigned to any

edge in the map. Note that m is a function of 8 and the longest edge in the map.

49

3. Combining Techniques

In our implementation, to find the locally optimal path in a WS, we employ uniform-discrete-point

(UDP) approximation and single-path relaxation (SPR) in a two-stage combination. For a given WS, theUDP

solution path is a more refined estimate of the local optimum than die midpoint path. Thus, UDP can hasten

SPR convergence by finding a starting path which is usually closer to the true local optimum than the

midpoint path. In stage one, UDP rapidly selects the locally shortest path constrained to discrete 5-spaced

edge-points in the WS. In stage two, SPR begins from the path returned by UDP through these edge-points.

Only a few passes by SPR will suffice for convergence to the true local optimum.

Both UDP search and SPR can be tuned to a desired accuracy by adjusting the discrete interval,

6, and the relaxation tolerance, e (see Section m.D.l), respectively. We have found that setting 8 equal to the

average length over all edges tends to balance the assignment of edge-points uniformly across the map. We

assume that the length of the shortest edge is closely related to the intended map resolution and required

solution accuracy. Using mean edge-length to set 8 strikes a compromise between accuracy and speed over

all problem instances associated with a given map. The value of 8 might also be computed dynamically based

upon the lengths of boundary edges between and in the vicinity of start and goal locations. As we will discuss

in Chapter I\ , our particular choice of 8 provides another opportunity to improve performance through

heuristics.

4. Reentrant Window Sequences

A window sequence (WS) which contains at least one reentrant path is called a reentrant window

sequence. Recall from Chapter II that a reentrant path exits a high-cost region by striking a boundary edge at

the Snell's-Law critical angle, travels along the edge incurring the cost of the low-cost region, and reenters

the high-cost region at the critical angle (see Figure 2.3). Reentrant WS's present no special problem for UDP

approximation, since this method is not Snell's-Law based. However, we note that such WS's are distincdy

different from those which cannot contain reentrant paths. A WS which contains reentrant paths should list

each reflective edge twice in succession to indicate that there are two distinct turning points on it - the point

of exit from and the point of reentry into the highest region it bounds. UDP approximation simply assumes

that for each edge identifier in the WS there must be a corresponding optimal path turning point. Given a WS

and its edge-points, the algorithm determines an optimal edge-point on each edge by running Dijkstra's

algorithm. For each edge listed twice in succession, weighted distances between all pairings of its edge-points

are computed using the optimal weight of this edge. The pair returned as optimal on this edge is the pair along

50

the shortest weighted back-pointer path retrieved after the goal point is reached. If a reentrant path is, indeed,

locally optimal within the WS, then the pair returned with the optimal list will usually be those edge-points

which least violate Snell's Law. However, in some cases a reentrant path cannot be locally optimal for the

WS (i.e. when it is always cheaper for a path to travel directly through the region instead of reflecting). This

happens most often when a reentrant WS is forced onto a boundary edge from its low-cost side. Figure 3.9

illustrates such a situation. A reentrant path against edge E between approach points p and p is not an

advantage over the direct path p to pr In this case the pair of entry/exit points returned corresponds to a

single point. The resulting path segments can always be shortcut at less cost. However, we expect this because

a reentrant WS intentionally forces the cost evaluation mechanism to find the best path which hits the

reentrant edge whether or not this path represents cost improvement over the original direct route.

^o< Hi

Figure 3.9 Uniform-Discrete-Point (UDP) Approximation Is Forced to Reenter a
Low-Cost Region from the Low-Cost Side of a Boundary Edge

51

Unlike UDP, SPR must recognize each reentrant path location within the WS because it must

adjust entry and exit points to the Snell's-Law critical angle, instead of executing a table lookup. This angle

is measured from the approach points, i.e. the edge-crossing episodes just prior to and after the reflective

edge. When a reentrant path is encountered during a single-path relaxation pass, critical-angle reflection

points are determined using Snell's Law from the most current approach points. The stopping condition for

SPR, i.e. one complete pass through the WS without any point adjustment greater than tolerance e, never

depends on reflection point adjustments, only on crossing point adjustments. This is because reflection points

are predetermined by the adjustments of their corresponding approach points. Therefore, it is sufficient to

monitor only the adjustments of crossing points (i.e. non-reflection points) in order to detect convergence to

the locally optimal path.

Recall from Chapter I thai phantom edges are edges which which bound regions with equal cost

coefficients. They are used to ensure that all regions are convex. When a reentrant path is forced against either

a phantom edge or a higher-cost edge, it is known a priori that the reentering path cannot be locally optimal.

In such cases, SPR ignores the reentrant path route and optimizes the straight-line path between crossing

episodes immediately before and after the points of reflection (i.e. approach points), effectively bypassing the

reflective edge This situation is illustrated in Figure 3.10. The WS still lists the reflective edge twice. The

reason for th is that there may still exist an edge within the adjacent region bounded by the reflective edge

on which reflection may still be advantageous. This will be discussed more in the next section.

52

high-cost region

Hi

Ho< Hi

Figure 3.10 Single-Path Relaxation (SPR) Ignores Non-Advantageous Reentrant
Path When Forced to Reenter a Low-Cost Region

E. MOVE OPERATIONS

Simulated annealing samples many different solutions by randomly applying move operators to explore

the solution space. In path annealing, the move generator works in the space ofWS 's. Recall that we represent

each WS uniquely as an ordered list of edge identifiers. A new WS can be created from another by little more

than random number generation, data retrieval, and list processing. The move generator perturbs the current

WS by rerouting it through neighboring edges and regions. Repetition of this process enables random search.

Annealing does not normally search the entire solution space. Nevertheless, all feasible solutions should have

some chance of being sampled. Our prototype employs two very simple move operators. These operators

require data structure support in addition to the edge dual-graph (previously discussed). In this section, we

introduce these move operators and discuss their sampling capabilities.

53

1. Vertex Rotation

Consider an arbitrary window sequence, WS , between designated start and goal. One of the

simplest ways to obtain a new window sequence, WS , is to shift WS across a vertex which defines one of

its edges. We call this operation vertex rotation. The operation is relatively efficient because vertex edge-lists

(see Section III.B.2) are readily available in sorted order.

Given WS , path annealing generates a neighboring WS as follows. Generate a random integer to

select one vertex of one edge in WS . This vertex, called the rotation vertex, defines the site of intended

displacement. If the rotation vertex is a border vertex then backtrack and randomly select another vertex. Let

£ be the vertex edge-list for the rotation vertex. Let £' be those edges in E which are also members of WS .

Then, WS is defined by the set operations

WS
2
= (WS - £0 u (£ - £0 = (WS - £0 u E' (Eq 3.10)

Eq 3.10 simply implies that we replace the edges in £ currently in WS with the edges in £ which are not in

WS . The result is WS . Of course, order in each set is significant, and list reversals must be performed as

necessary.

The vertex rotation operator has an important side-effect. Given the rotation vertex V , the current
A

WS is scannee for the first and last occurrences of edges in the vertex edge-list of V . All edges between these

two edges in lusive will be removed. Thus, if random perturbations have formed a WS with an open loop

which crosses two edges incident to VD , then a rotation across V will cause the WS to cross itself at the open
A A

base of this loop, and the set operations of Eq 3.10 will remove it. By the Optimality Principle, a globally

optimal path cannot cross itself. It follows that any WS which crosses itself cannot contain the optimal path.

Therefore, a significant advantage of vertex rotation is its automatic removal of WS's which contain cyclic

paths.

2. Obstacle Jumping

The presence of obstacles necessitates special consideration. Recall that the edge dual-graph

which represents the feasible solution space does not contain arcs through obstacle regions. However, we can

view obstacles as enlarged vertices with non-zero area. Thus, to enable obstacle rotation or obstaclejumping,

we employ a special data structure similar to a vertex edge-list. An obstacle edge-list (see Section m.B.2)

records the clockwise ordered list of incident edges around an obstacle. If an obstacle vertex is selected as the

displacement site, the WS shifts completely across the obstacle by using the operation of Eq 3.6, where £ is

now the appropriate obstacle edge-lisL

54

It is also possible to jump some obstacles by a sequence of normal interior vertex rotations. A jump

of this type occurs as the result of pinching a looping path which has circled the obstacle from both the

clockwise and counterclockwise directions. Figure 3.1 1 illustrates a path within a WS with the potential for

jumping obstacle region A. Closing the base of the loop by rotating across vertex V will remove the detour

around obstacle region A, replacing it with the dotted path segment and its associated WS. Not all obstacles

can be jumped in this manner. For such a jump to occur enough interior vertices and edges must surround the

obstacle so that a WS can be perturbed completely around it in either direction. Obviously, obstacles which

connect directly to the map border cannot be jumped this way (e.g. the obstacle region B in Figure 3.1 1). For

such cases, explicit obstacle rotation is necessary.

Figure 3.11 A Path with the Potential to Jump Obstacle A on a Single Vertex
Rotation at V„

55

While obstacles and interior vertices are logically equivalent with respect to the rotation operator,

we ensure that they are distinguishable. In particular problem instances it may be more efficient to reduce or

temporarily prevent the capability to jump obstacles. This control is necessary because the move generator

can have a natural bias toward selection and jumping of large obstacles with many vertices. This is especially

true when the current WS includes several edges incident to the same obstacle, as is often the case

immediately after jumping it. In such situations, given an equal probability of selecting any edge in the WS

from which to obtain the rotation vertex, that vertex with the most incident edges in the WS will have the

greatest likelihood of being selected. This bias can waste valuable sampling time with useless repetition as

the move generator attempts to jump back and forth across a single large obstacle. As well, there are good

reasons for ignoring this bias and allowing the annealing process to make its own decisions. We defer a more

complete discussion of these reasons and methods of obstacle control to Chapter IV.

3. Reachability

Recall that the move operators should guarantee reachability; that is, that all feasible solutions

which could be optimal are accessible to the annealing process with a non-zero probability. This is to ensure

that optimal solution cannot be overlooked intentionally. Do not confuse this term with completeness, which

describes a seemingly similar guarantee offered by systematic search algorithms. The difference is in the

probability i I locating a globally optimal solution. An algorithm which offers completeness will find the

optimal solution with probability one; the probability of not finding it is zero. However, reachability means

that both the probability of finding the optimal solution as well as not finding it are non-zero.

A move generator based only upon the rotation operators (vertex and obstacle) can only guarantee

reachability for a subset of those WS's with the potential to contain a globally optimal path. We refer to this

subset as the class of proper window sequences. The class of proper window sequences is all WS's which do

not enter the same cost region more than once. This definition implies that no proper WS can cross any

boundary edge more than once, otherwise it necessarily reenters some region. In contrast, an improper

window sequence may enter the same cost region multiple times. We have proven in Theorem 3.3 (see

Appendix A) that all proper WS 's are reachable from any initial properWS in a convex weighted region map.

Thus, if only proper WS's could contain globally optimal paths then our move generator would guarantee

reachability. Unfortunately, in some problem instances an improper WS may contain the optimal path. The

next section discusses these improper WS's and the additional move operator required to reach them.

56

4. Reentrant Installation

Although an optimal path cannot cross, it can cross the same edge more than once, and therefore,

can also reenter a region. Recall from Chapter II that an optimal reentrant path will obey Snell's Law by

striking a boundary edge at its critical angle and traveling along the edge just inside the lower cost region.

Since we disallow linear regions (e.g. roads), such a path may exit the edge in only one of two ways. It may

travel to a terminating vertex (Figure 3.12), where Snell's Law does not apply. Or, it may reenter the region

at the Snell's-Law critical angle (Figure 3.13). In either case, the path can still be globally optimal. The former

case involving the terminating vertex is contained within a proper WS. Since this path does not reenter the

region, then it must cross a different edge when it reaches the vertex. Such paths are contained within proper

WS's which can be reached by the rotation operators (Theorem 3.3 in Appendix A). However, the reentrant

path in the latter case must reside within an improper WS. The reason is that the path reenters a region, and

thus, by definition (see Section 3 above) can only be within an improper WS. The rotation operator alone

cannot reach improper WS's.

A simple argument shows why this is true. Suppose that some arbitrary sequence of rotations

applied to a proper WS results in an improper WS. Without loss of generality, we may assume that at some

point in the sequence a rotation operation transformed proper window sequence WS into improper window

sequence WS . This would require that the rotation insert at least one edge identifier into WS more than once

to create WS . But this contradicts the definition of a rotation since the only edges inserted are those which

are not already in the window sequence. Therefore, our assumption that a proper WS was transformed into

an improper WS is false. It follows that a rotation can never create an improper WS from a proper WS. As a

consequence, the rotation operator alone can never create a WS with a reentrant path. We need an additional

operator to reach improper reentrant WS's.

57

>< ":

Mo
v/

"

a>

l

>N
o-

mi

— critical angle
Mo<Mi

Figure 3.12 Critical-Angle Reflection Path (non-reentrant)

N. \

Mo
:

J/eT
m

5 CH r

- critical angles/ Mo< Mi

Figure 3.13 Critical-Angle Reentrant Path

58

The reentrant installation operator perturbs a window sequence (WS) by forcing it to reflect on

one edge. This so-called reflective edge is selected randomly. The selection process is similar to that for a

rotation vertex. The reflective edge is randomly chosen from the set of all crossable edges that bound regions

through which the current WS passes. Edges which have crossing episodes within the current WS cannot be

reflective edges. Transformation to the new WS is a simple double insertion of the reflective edge identifier.

In Figure 3.14, window sequence {s,l,2,3,g} becomes {s,l,4,4,2,3,g} after reentrant installation on reflective

edge 4. Note that the new WS is improper because by crossing edge 4 twice to reflect, the WS enters the same

cost region twice. However, the evaluation ofWS {s,l,4,4,2,3,g} will discover if a reentrant path exists which

improves cost by using two points on edge 4.

4

TL tx.
/ 3

l
s

{S,1,2,3,G}->{S,1,4,4,2,3,G}

Figure 3.14 Installation of a Reentrant Window Sequence

It is not possible for an optimal path to reenter the same region on both of two adjacent boundary

edges. Instead, the path must detour around the common vertex or cut straight across the region between the

approach points. This fact is based upon a proof given in [Mitc90] which concludes that between any critical

point of entry (exit) and the next critical point of exit (entry) the path must pass through at least one vertex.

Because of this, our path annealing prototype will not create WS's with reentrant paths on two consecutive

boundary edges.

59

It is possible for optimal paths to cross a sequence of several boundary edges, reflect and reenter

a region at the last edge, and double back through the same sequence of edges in reverse order. Figure 3.15

illustrates the case of an optimal path which must cross several edges to reflect on the last and return. To reach

the improperWS containing this path, four reentrant installations must be stacked by effectively pushing each

through the one preceding it. To reach such special cases requires that the move generator install reentrant

paths against an edge on which a reentrant already resides. Therefore, we allow reentrant installations to push

(i.e. stack) through one another, ensuring that such special situations are reachable.

Figure 3.15 Reentrant Path Crosses Edges Multiple Times

Recall that reentrant-path optimal solutions tend to be rare because they require particular cost-

region placements and angular alignments [Rich87, Mitc90]. Regardless of this, we give the reentrant

installation and rotation operators equal probability of selection, and let the annealing process accept or reject

their resulting transitions stochastically. This means that reentrant edges will be frequently installed into the

current WS. A newly installed reentrant edge which greatly improves local optimal path cost of the current

WS is more likely to be kept within the current WS. This reduces the chance of eliminating good reentrant

paths by the vertex rotation.

60

5. Improving Reachability

The rotation and reentrant operators are capable of reaching all proper WS's and improper WS's

which contain at most one reentrant path per edge. However, acyclic improper window sequences (WS) exist

that these operators cannot reach. Unfortunately, some of these can contain an optimal path. We can trace the

problem to an interaction between the rotation and reentrant operators. Consider the special case of an optimal

path in Figure 3.16. Note that the very long edge bounding the top of the narrow cost-region is crossed several

times by the optimal path. The vertex rotation operator cannot create such a WS because it automatically

removes edges which are already in the WS. The reentrant operator only stacks reentrants on the same edge

it cannot install them side-by-side. No combination of these operators can generate this WS from an arbitrary

proper WS. Therefore, the rotation and reentrant operators cannot ensure complete reachability for all

possible globally optimal paths.

Figure 3.16 Optimal Path Crosses Edge Eq Multiple Times (integers are cost

coefficients)

In the case of Figure 3.16, it is possible to modify the reentrant operator so that reentrants can be

installed side-by-side on particularly long edges. This would require that the algorithm recognize boundary

edges whose length and geometry could allow multiple reentrant optimal paths. Then, when such an edge

were selected for reentrant installation, if a reentrant path already existed on this edge, then an additional

decision (possibly random) would have to made to stack the reentrant or install it side-by-side.

61

One way to avoid operator modification is to fix the source of the problem - relative edge-length.

When a long boundary edge is situated among relatively short edges there is an increased likelihood that an

optimal path may cross this edge multiple times. It is tempting to believe that complete triangulation of all

regions will preclude any optimal path from crossing a single edge more than twice. Unfortunately, this is not

true. Consider Figure 3. 17 in which two near-degenerate triangular regions are adjacent with cost coefficients

as shown. The path from S to G crosses the long edge (center) three times. Note that by squeezing these

triangles closer to degeneracy, we can eventually reach a geometry which ensures that the path shown is

optimal for S to G.

Figure 3.17 Optimal Path Crosses Edge E Multiple Times (triangular regions)

(integers are cost coefficients)

From the above simple example we see that the problem concerns resolution disparity in the map.

The dimensions that are generally parallel and transverse to the long edge have a relatively large resolution

differential. The disproportionately long edge allows ample opportunity for short transverse crossings to

greatly improve path efficiency in parallel directions. In Figure 3.17, two path segments that are generally

parallel to the long edge become more efficient by connecting them with a very short, and therefore, relatively

low-cost transverse segment. We can easily prevent this problem with the addition of one vertex at the center

of the long edge and two phantom edges connecting it to existing vertices in either region. This does not

change the representation of the map. It simply balances the resolution of the map in a localized area.

62

Some simple preliminary map analysis can reduce the risk of having optimal paths with multiple

edge crossings by identifying and partitioning particularly long edges. This can be done by examining the

length of each edge, e, relative to its immediate environment. Let B represent the set of edges bounding the

two regions separated by e but not including e. Let V represent the set of vertices on the two regions. If the

length of e is much greater than the average length taken over all edges in setB , and if the maximum distance

over all perpendiculars from points in V to e is much less than the length of e, then e should be partitioned

with one or more additional vertices connected to existing vertices by phantom edges. Figure 3.18 illustrates

how the long edge in Figure 3.17 should be partitioned. A comparison of cost-coefficients should also be

made to ensure that the weights of the two regions separated by the edge are large relative to surrounding

coefficients. If such is not the case then the possibility of a multiple crossing on the edge is minimal even if

it is long.

Figure 3.18 Introduction of Additional Edges (dotted) and Vertex (small circle) to

Prevent Optimal-Path Multiple Crossings on a Long Edge

We emphasize that the above procedure is heuristic at best. However, a completely thorough

analysis is likely to be tantamount to solving many weighted-region problems. Furthermore, the rarity of

reentrant-path optimal solutions and solutions which are not contained within proper window sequences (WS)

indicates that more detailed analysis is probably not worthwhile. We desire that map resolution be reasonably

balanced. In the limiting case, as more vertices and phantom edges are added, the map will approach a

63

uniform grid representation, and the advantages of path annealing may diminish. Therefore, a long edge

should be partitioned only in the case that the conditions indicated earlier are extreme.

6. Summary of Move Generator

We summarize the key features of the move generator as follows. Its mechanics are simple and

involve only two operators - vertex/obstacle rotations and reentrant installations. It guarantees reachability

for all proper window sequences (WS). The perturbations are small and induce a neighborhood structure on

the search space. The cumulative effects of the operators are large, particularly at high control temperatures.

In the next section we discuss the establishment of the annealing schedule and the control of the temperature.

F. ANNEALING SCHEDULE AND CONTROL

Although many applications of simulated annealing require large amounts of computing time to arrive

at reasonably optimal solutions, we have found that path annealing performs reasonably well without the need

for such. Our annealing schedule is admittedly crude and uses only the simpler ideas proposed by other

researchers. Path annealing efficiency seems to rely more on good WRP bounds and heuristics (to be

discussed in Chapter IV) than on a well-tuned annealing schedule. Therefore, we employ the annealing

algorithm for its probabilistic control of local search through a subset of the solution space.

While annealing schedules may differ somewhat with particular applications, we use the five control

parameters described in Figure 3.19. The following sections discuss the establishment of the particular value

for each parameter.

T = starting temperature in weighted distance map units

T
f
= freezing temperature in weighted distance map units

R = temperature reduction (cooling) factor; typically 0.70 < R < 0.99

where T|+1 = R * T|

L = annealing chain length; maximum no. of attempted transitions

per temperature Tj

L s = maximum no. of accepted transitions per temperature Tj; also

known as a cutoff [John89]

Figure 3.19 Standard Annealing Schedule Parameters

64

1. Starting Temperature

Recall that annealing temperature, T, controls the shape of the exponential probability distribution

used to accept or reject new solution samples. While all cost-decreasing changes are accepted, changes which

increase the cost are accepted with probability

/'(acceptance) = Exp(-AC/T) (Eq 3. 1 1)

where AC is the difference between the costs of the new and current solutions (also see Figure 2.6). The

acceptance ratio over a sample of transitions is estimated by [Aart89] as

X = ((m
y
+ (m

2
Expi-'EC+ZT)) / (rrij+mj (Eq 3.12)

where m is the number of cost-decreasing transitions, m is the number of cost-increasing transitions, and

AC+
is the mean over the m cost-increasing transitions. To ensure that annealing can sample across the

solution space without trapping between high-cost peaks and freezing too early, it is desirable to set T to

produce an acceptance ratio close to one. Ratios of .90 to .95 are generally considered close enough

[Aart89].

To determine a good starting temperature, T (initial value of T), we have tried an empirical

technique suggested by [Aart89]. Randomly generate sample transitions in the solution space without

rejections. From the sample values of AC compute AC+
. Eq 3.12 then determines the value of T which

produces the required % [Aart89] suggests an iterative approach reported to converge rapidly on a value of T.

The conclusions of [John90] suggest that simple application-specific formulas can usually be

derived on the basis of desired acceptance rate and a few problem-specific parameters. Thus, another way to

determine a starting temperature value is to consider the worst-case transition that can be made by the move

generator in the map. For very complex problems, such an approach is not always be reasonably possible.

Fortunately, our representation of the WRP by window sequences allows efficient analysis of individual

transitions. We desire the value of T which makes the acceptance rate as close to one (1) as possible. In Eq

3.12, let x = 0.95, and replace AC+
with an estimate of the greatest cost-increasing value, Max(AC

+
).

To determine the value of T for an acceptance rate close to one, assume that the generator applies

only a single operator to the current WS, then returns a new WS for cost evaluation. Since cost-increasing

reentrant installations usually do not result in large cost changes and because they are not necessary to move

freely around the solution space, we will consider only rotations. We wish to determine the largest possible

cost-increasing transition. This transition will likely be the site of a long edge bounding two regions with a

large cost-coefficient differential.

65

Intuitively, Max(AC+) should depend on an edge with a large weight differential. However,

dependence upon the length of that edge may not be as clear. The reason that length is a factor is that a rotation

is followed by local optimization to find cost (UDP approximation). If this rotation has just forced the current

WS across the large weight differential, then local optimization will also force the locally optimal path to use

as little of the high cost region as possible. Following this, a second transition across the other vertex of the

same edge gives optimization no choice but to cross through the high-cost region. While it is possible that

local optimization can still dampen the cost difference of the second transition, we assume the worst case.

Ignoring smaller surrounding effects, the largest change will generally occur along the entire length of the

edge. The situation is depicted in Figure 3.20.

locally optimal path

for WS {S,a,d,G}

locally optimal path

for WS {S,a,b,c,G}

Figure 3.20 Maximum Cost Difference Max(AC+
) Occurs for WS Transition

{S,a,b,c,G} —> {S,a,d»G} (cost coefficients are boxed integers)

Thus, to estimate Max(AC+
), we have only to analyze the length and weighted-region-cost

differential for every edge in the map according to the following equation:

Max(AC+
) = Max „ . (L («,-«,)) (Eq3.13)

over all edges e e 2 I
' \ -i /

If we assume that in a random sample of transitions m =m , then Eq 3.12 becomes

X = 1/2 (1 + Exp(-Max(AC
+
)) IT) (Eq 3.14)

solving for T yields

r=-Max(AC+
)/ln(2x-l) (Eq3.15)

66

In this approach there is no need to conduct empirical testing. One computation during map

preprocessing can establish a common starting temperature for all problem instances. The major advantage

here is the tendency for this method to be independent of problem instance, depending instead on the

particular map. But it is conservative and can increase annealing running times unnecessarily. However, we

emphasize that this approach is quite flexible. It is possible to conduct the analysis for MaxCAC^) on a subset

of map edges confined to the vicinity of start and goal. This variation is more problem-instance dependent

while still very efficient

The presence of obstacles, again, requires special consideration. Small obstacles with few

boundary edges will not significantly effect transitions. However, larger obstacles can sometimes hamper

lateral movement because they may require acceptance of large cost changes to jump. If we wish to set

starting temperature such that all obstacle rotations will be accepted in early annealing, it is necessary to

analyze their worst-case cost differences also. Consider a single obstacle rotation. The worst transition tends

to occur when the current WS is forced to detour completely around the obstacle from a single edge incident

to it. To estimate the value of this worst-case cost difference, we compute cost of traveling on the boundary

edges of the obstacle in a closed loop. From this we subtract the shortest weighted length edge of all its

boundary edges to account for that portion of the cost incurred by the original path which passed near the

obstacle.

2. Stopping Criteria

Freezing temperature, T„ is the final value of Tat which no significant cost-increasing transition

has a reasonable probability of acceptance. The reduction of unnecessary search time is as dependent upon T

as it is on T . Once T is low enough, the current WS will trap in a local minimum from which it will likely

never escape and in which it can never improve the cost beyond the lowest it has already discovered. At this

point we desire that the process terminate soon. However, if it is still the case thatT» T
f
then the algorithm

will waste a lot of time before it halts.

How is it possible to determine the proper value of T when it apparently depends upon a priori

knowledge of the optimal solution cost and its location? Fortunately, annealing runs exhibit a few similar

characteristics. An annealing curve is a plot of the mean solution cost vs the logarithm of temperature. Figure

3.21 illustrates a curve which is typical of most annealing runs [Aart89, VanL87, Haje85, Whit84, Kirk83].

C is the average cost over all solutions sampled at discrete temperature T. Note that the *-axis represents

log(7) in the direction of time. Therefore, log(7) decreases from left to right. Path-annealing curves tend to

67

be wavier at higher temperatures (left half of the curve) because the starting solutions reside in cost function

valleys. Path annealing climbs in and out of many such valleys until the value of T is low enough to stabilize

(by trapping) it within a localized area However, at lower temperature path-annealing curves do resemble the

tail in Figure 3.21.

CT = average cost over all solutions
sampled at temperature T

iog(T) log(T)
logCTf)

Figure 3.21 Annealing Curve: Average Cost at T vs. Log(T)

One way to set T dynamically is to extrapolate the end of the annealing curve by tracking the

change in mean cost [Aart89]. This does not work well in path annealing since even with smoothing the mean

cost can fluctuate significantly at very low temperatures. The suggestion of [Huan86] is simpler and a much

better indicator of the freezing condition in path annealing. For a given T, if the cost difference between the

largest and smallest accepted transitions is the same (or very nearly so) as the largest accepted AC, then

apparently all solutions in the neighborhood are of very similar cost. At this point, simulated annealing should

default to iterative improvement and halt. To guard against premature freezing, we suggest that the above

condition exist for two or three consecutive temperatures.

68

The above procedure stops the annealing algorithm dynamically. Recall that our prototype

actually uses a fixed value for T
f
However, we determined its value from many observations of path

annealing using the criteria of [Huan86].

3. Temperature Cooling

There are several sophisticated cooling schemes which have been devised for efficient, adaptive

reduction of temperature [Huan86, Lund86, Aart85]. We prefer the more simplistic approach taken in the

original work of [Kirk83], also adopted by [John89]. Three fixed parameters control temperature cooling: R,

L, and L .

s

The reduction or cooling factor, R,isa multiplier used to reduce T geometrically according to

T.
+]
=RT. (typically 0.70 <R< 0.99) (Eq3.16)

This parameter controls AT, and thus, the speed at which the algorithm will approach T In accordance with

the underlying theory of simulated annealing [Kirk83] it is best to reduce T as gradually as possible with

values of R closer to one. In any case, there is a tradeoff between time spent at each temperature value and

the size of AT. Large AT approaches T relatively fast, but requires more time at each value of T. On the other

hand, smaller AT approaches the stopping criteria much slower, but requires less time at each T.

The amount of search time spent at each temperature is directly controlled by L. The chain length,

L, is the maximum number of transitions attempted by the move generator at each value of T. The best value

ofL is generally believed to approximate the size of the local search neighborhood [Aart89]. The local search

neighborhood is the number of distinct states (i.e. window sequences) reachable in transition one of the move

generator. For path annealing the local neighborhood size is a function of the number of edges in a current

WS, since the move generator selects transitions on this basis. However, in contrast to the cardinality of a

solution set in other problems (e.g. the Traveling Salesman Problem), the number of edges in a WS changes

frequently. Also note that WS length varies greatly with the number of bends, waves, and even cycles.

Therefore, we suggest the employment of some average or other stable value representative of WS length.

We could use the length of the starting WS found by A* search through midpoint paths. However,

this WS is often biased and may not represent the size of most neighborhoods. Thus, for our testing we choose

to use a fixed value for all problem instances of a map. A reasonable value for L can be derived from a map

by using a sample of straight lines equal in length to the diameter of the map. L is computed by averaging the

number of boundary edges crossed by each line over all lines in the sample. This procedure is essentially an

69

estimate of map resolution. Once again, the advantages are simplicity and problem-instance independence

with an option to allow adjustments to L for particular problem instances if more efficiency is desired.

Closely associated with L is the maximum number of accepted transitions per temperature, L .

Recall that a transition attempted by the move generator is accepted if its corresponding solution cost is less

than the current solution cost, or with probability P (see Eq 3.11) if more. L is referred to as a cutoffTor L

[John89] . The purpose of a cutoff is simply to compensate for overestimating the starting temperature, T . We

desire a minimum value for T at which the acceptance ratio x = 0.95 (or very close to one). It is better to

begin annealing at an overestimated value of T , rather than risk the possibility of trapping too early in a bad

local minimum. Assuming T has been overestimated, until T approaches the proper value of T , each

consecutive sequence of L acceptances will cause premature temperature reduction by Eq 3.16. L is

essentially an annealing-specific heuristic devised by [Kirk83] to reduce search time spent at high

temperatures [John89]. There appears to be little published guidance as to how to establish this parameter.

Some forms of the annealing algorithm do not use it. In fact, [John89] claims that its effect is often

insignificant, and its use is usually unnecessary if good starting temperatures can be found. We should expect

some gain in efficiency by using a cutoff because our starting temperatures tend to be higher than necessary.

Indeed, path annealing exhibits generally faster execution times with the same performance for (0.67)L < L

< (0.75)L. Note that use of this control parameter has no effect when L =L.

G. SUMMARY

This chapter has presented the framework for a simulated-annealing-based algorithm designed to solve

large instances of the WRP. We have discussed the theory and practical application of the algorithm in terms

of its five essential components:

• state space representation

• initial solution

• cost function evaluation

• move generation

• annealing schedule

We employ simulated annealing as a simple tool for the control of local search. In doing so, many of

the specific design concepts (e.g. the annealing schedule) are adapted from previous research. Therefore, we

emphasize that the significant contribution of our work is not in annealing, but rather in the novelty and design

of our annealing-based approach to solving the WRP. Chapters I and II have already described several of the

advantages offered by this algorithm over previous ones.

70

In Chapter IV we will discuss heuristic enhancements and bounds which are available to path annealing

(and some other algorithms) to increase performance and efficiency. We believe this collection of heuristics

and bounding techniques is another significant contribution to automated path-planning research and the

WRP.

71

IV. EFFICIENCY ENHANCEMENTS TO PATH ANNEALING

A. INTRODUCTION

In optimization problems it is sometimes possible to predetermine absolute limits on the location or cost

of an optimal solution. We refer to such limits as bounds rather than heuristics since the latter are generally

not absolute limits. Both upper and lower bounds can reduce the search effort by restricting the set of

solutions or partial solutions which an algorithm must examine. The WRP provides several opportunities to

devise bounds by reasoning about geometric conditions in the input maps. When absolute bounds are

inadequate to reduce the amount of search required to obtain solutions in reasonable time, heuristic guidance

can be employed. Although there is no assurance that heuristic knowledge will always achieve its intended

objective, good heuristics can be helpful [Pear84]. The next two sections examine bounds and heuristics

designed to increase the performance of path annealing. Some of these also apply to systematic search

methods.

B. SEARCH SPACE BOUNDS AND CONSTRAINTS

1. Bounding Ellipse

In their systematic approach to the WRP, [Rich87] and [Rowe90b] implement a bounding box

which is guaranteed to contain the globally optimal path. The box is actually a simplifying device that

circumscribes a bounding ellipse whose foci are start and goal points. The bounding ellipse is based on the

weighted cost of a feasible path from start, S, to goal, G, and the lowest cost coefficient on the map. For every

point, P, on the ellipse, the straight-line path SPG weighted at the lowest cost is equal to the cost of the known

feasible path. Figure 4.1 illustrates the ellipse inscribed within its bounding box.

72

bounding

Ellipse defined by: u.*(|SP|+|PG|)

fi* = lowest cost coefficient

D = cost of initial solution

= D

Figure 4.1 Bounding Ellipse Inscribed within Bounding Box

To compute the box, the implementation of [Rich87] determines the lengths of the major and

minor axes of the ellipse. These lengths are functions of the known distance \SG\, the lowest cost coefficient

and the initial solution cost. Referring to Figure 4.1, let |i be the lowest cost coefficient on the map, and let

D be the weighted cost of the initial solution. Then the lengths of the major and minor axes are

JrT- \SGY
minor

D

(Eq4.1)

(Eq4.2)
major .,*

These lengths, and the heading of the line from S to G, establish the edges of the bounding box. Any path (or

partial path in systematic search) which intersects an edge of the bounding box (or ellipse) cannot be a

globally optimal because the feasible path used to construct the box must be lower cost. Thus, the search

space is absolutely bounded.

73

In path annealing we implement a true version of the bounding ellipse, which eliminates more area

than the box. Path annealing can sometimes benefit greatly by eliminating even a few edges or edge parts

from the search space; one less edge translates to combinatorially fewer WS's. Furthermore, cutting a long

edge in half results in about one half of the edge-points needed by UDP approximation each time this edge is

evaluated in a WS.

The cost of the initial midpoint solution returned by A* search is an upper bound on the cost of

the globally optimal path. However, we can usually improve this bound by applying UDP followed by SPR

on the WS through which this midpoint solution passes. Let the resulting path-cost be D. The foci of the

ellipse are the start, S, and goal, G. By definition, P is a point on the ellipse, if and only if the Euclidean

distance of a straight path from S to P to G weighted by p. , is equal to D. Thus, a point, Q, inside the ellipse

obeys the following inequality:

p* (ISQI + IQGI) < D (Eq 4.3)

We compute the exact ellipse as follows. Consider the two vertices, V and V , which define an

*

edge on the map. Compute the cost of direct paths SV G and SV G weighted by the lowest cost, p. . Let these

costs be C and C respectively. In comparing these costs to the ellipse defining costD, there are three cases

to consider, one of which has two subcases. Figure 4.2 outlines each case and the required action. Note that

each boundary edge in the map is considered once. Usually only a small portion of the edges will require

binary search.

74

For each boundary edge let C
1
and C2 be the costs of the SV

1
Gan6 SV2G

paths where V-, and V2 are the vertices defining the edge.

To construct an exact bounding ellipse from initial solution cost D, there

are 3 cases to consider:

1. IF(Cr <D)and(C2 <D)

THEN edge is inside ellipse

Action: none

2. IF(C
7
< Dand C2 > D) or (C7 > Dand C2 < D)

THEN edge intersects ellipse at one point

Action: binary search between v
1
and v^to locate intersection

update map database with new vertex for this edge

3. IF (Cr >D) and (C2 >D)

THEN edge intersects ellipse at two points

OR edge is completely outside ellipse

Action: locate point at which edge would be tangent to ellipse

let that point be 7, the virtual tangent point

compute S-T-G weighted by lowest cost coefficient fi*

let this cost be CT

There are 2 cases:

IF (CT <D)

THEN edge intersects ellipse at 2 points

Action: binary search between V
1 and T

binary search between land V2

ELSEIF(C7 >D)

THEN edge outside ellipse

Action: remove edge from map database

Figure 4.2 Cases of Bounding Ellipse Construction Algorithm

75

The third case of Figure 4.2 indicates that it is sometimes necessary to compute a virtual tangent

point and then binary search for an intersections on both sides of the edge. The virtual tangent point is that

point on the edge of consideration at which a smaller ellipse with similar shape would touch the edge. By

similar shape is meant that the ratio of the major to minor axis lengths remains constant. Simple geometry

and the properties of an ellipse can show that if the virtual tangent point of an edge lies inside the bounding

ellipse, then the edge must intersect the ellipse in two locations (once at entry and once at exit). Note that

relative to all start and goal point locations, every infinitely extended line (edge) in continuous two

dimensional space which does not intersect the segment SG between start and goal points, must have a virtual

tangent point. If the line intersects segment SG, then the virtual tangent is taken to be this point of intersection.

The time required to compute the ellipse by our technique is 0(e log(A//e)) where e is the number

of map edges, M is length of the longest map edge, and e is the maximum allowable error in binary search.

The ellipse bound is most effective in reducing search space when the initial A* solution is a high speed

avenue which uses much of the lowest map weight. If such is not the case, then the ellipse may become fatter

than the map itself. Even so, the time expended to check each boundary edge for the existence of an

intersection is negligible. Furthermore, it is possible to determine if an initial solution cost can generate a

bounding ellipse that lies within the confines of the map border. Given a standard map is 100x100 square

distance units, if the lowest cost on the map p. =1, then an initial path cost of 281 (= 100 * V2 * 2) or more is

guaranteed to generate an ellipse larger than the map. In such cases, there will be no intersections. However,

for an initial path cost less than 281 , ellipse construction is usually worthwhile regardless of the outcome. If

many intersections necessitate binary searches, then search space reduction will usually be significant. If not,

we lose very little time for intersection existence checks.

2. Ellipse Improvement

Once established, if the regions which determined optimal cost coefficient used to compute the

ellipse are no longer contained therein, then a smaller ellipse can be computed on the basis of the new larger

optimal cost coefficient within [Rich87]. Path annealing provides still another way to improve the ellipse.

Since path annealing always examines complete solutions, the upper bound on the cost of the optimal solution

can be reduced whenever a WS is found whose locally optimal path has lower cost than the best known

solution. These upper bound improvements provide more opportunities to recompute and shrink the current

bounding ellipse. Since some reductions to the upper bound may only be slight, it is better to prearrange a

threshold for action on the ellipse. Recomputation of the ellipse should only be initiated when one or more

76

edges will be completely removed from the search space. A new ellipse which only shortens existing

boundary edges without eliminating them does not remove window sequences from the search space.

3. Edge-Pair Elimination

The bounding ellipse is a global constraint on the solution space. On the other hand, we have seen

that Snell's Law is a local constraint on the way optimal paths cross boundary edges. Snell's Law can

determine regions through which globally optimal paths are not allowed to pass. Such regions may be

identified independently of start or goal locations, as long as they do not contain either. This is very valuable

knowledge since it is independent of the problem instance, and thus, computable as a map preprocessing

stage. Such constraints can be used by both systematic and local search algorithms. Although path annealing

is satisfied with finding near-optimal paths, local regions which cannot contain optimal paths have little

potential for containing near-optimal paths. While unusual problem instances are possible, we focus on the

norm.

a. Shortcut Analysis

We generalize and extend a particularly useful constraint that was first proposed in limited

form as a search pruning criterion by [Rich87] and [Rowe90b]. What we refer to as shortcut analysis

determines if any globally optimal path can cross a specified edge-pair. An edge-pair is a pair of crossable

edges which bound a common traversable region, and, therefore, can occur consecutively within a WS. Note

that since obstacle edges are not crossable, then they can never be part of an edge-pair. We can prove that for

edge-pairs with certain geometric arrangements and cost coefficients, no optimal path can ever enter the

region bounded by the pair from interior points of both edges. Note that this does not preclude the possibility

of bypassing interior points and enter the region via its vertices. However, a path segment which crosses a

region on a pair of its vertices is considered to lie in all WS 's that use this path as a left or right defining limit.

Search space redundancy at vertex paths means that bypassing path segments will also be contained within

other window sequences (WS). Interior crossings of edge-pairs eliminated by shortcut analysis need not be

checked for globally optimal paths.

Shortcut analysis considers each edge-pair of the map. Every edge-pair has an associated set

of three cost coefficients. These coefficients correspond to the weights of the three distinct regions which are

bounded by the edges in the pair. Referring to Figure 4.3, consider the edge-pair E -E bounding common

region R. The set of cost coefficients corresponding to E -E is {p
;
,p. ,n

2
} . If |i, < [i

Q
and p2 < \i

Q
, then we

77

consider R a high-cost region relative to E -E . In such a case, conditions developed in Theorems 4. 1 and 4.2

(Appendix A) dictate how to determine if£ -E can be eliminated as an optimal-path crossing site.

^2 p
/y^»\\ d2 V\d2

t^^^rj \ region Ro\ \

" Di
I/

^———\ ^^.

d \ Ho

\

Vi,

O- '--'--fill : VN,. t

S
i^vvvvvvvvvvvyw»vwy»wvvww.'.v'.^6fy a

1
fca

Figure 4.3 Shortcut Analysis on Edge-Pair Ea-Eb

The proofs of Theorems 4.1 and 4.2 permit us to use the following argument. In Figure 4.3

consider the continuous subspace of path segments connecting edge-pair E -E which cross through region

R from interior points on each of E and E . If the unweighted distance of one such path segment is

represented by d , then [id represents its weighted distance. Also connecting each pair of interior points of

E -E are two perimeter paths, which detour around R by following along the edges bounding R , bypassing

its interior points. Let the counterclockwise perimeter path be P and the clockwise path be P . The weighted

distances of P and P. have both a Fixed and variable component. The fixed component for each perimeter

path is the sum of the weighted lengths of the bounding edges traversed by that path which are not in E -E..

Let D and D represent these fixed weighted-length components for P and P respectively (see Figure 4.3).

The variable components are dependent upon the path segment crossing R . Let d and d. represent the

variable-component perimeter-path distances from the crossing points on E and E . Then [id and [id must

represent the corresponding weighted distances.

For the moment we will assume that regardless of the crossing location the cost of using P

will always be less than the cost of using P . To see why it may not be possible for a globally optimal path to

78

cross R using interior points off -£ , consider the implication of proving that the ratio of the cost of P to

the cost of crossing through R is always less than 1

:

1 > — (Eq 4.4)

Mo
Using the interior angle a of £ -£,, the fixed distances s and / from the projected intersection of£ and £,,

a b a b

and the Law of Cosines, Eq 4.4 can be rewritten so that \x is a function of the crossing location on £ -£ as:

Ho*
/

(Eq4.5)

J(s + d
l)

2 + (t + d2)
2 -2(s + d

1)
(t + d2)Cosa

If Eq 4.5 is satisfied for ail values of d and d along £ and £ respectively (i.e. for all path segments in the

subspace), then a path segment through R from interior points of £ -£ will always be more expensive than

a perimeter path. This function has a maximum value which can be found using partial derivatives with

respect to d and d . If the true value of |i exceeds this maximum value, then no optimal path can cross

through region R using interior points of £ -£ because a perimeter path is always cheaper.

Theorems 4.1 and 4.2 in Appendix A cover mathematical details. The constraints provided

by these theorems can tag or eliminate from a weighted-region map edge-pairs which cannot have an optimal

paths crossing them. Eliminating very many edge-pairs can reduce the search effort required of systematic

search algorithms, including the A* search of the edge dual-graph used by path annealing to establish an

initial solution. Though crude, the A* search for an initial solution is a major part of path annealing.

Therefore, constraints on the size of the edge dual-graph which enhance A* search efficiency will benefit path

annealing as a whole. For many problem instances it returns the window sequence very close to or containing

the globally optimal path. The sooner annealing can find an optimal or near-optimal path, the more valuable

the algorithm becomes in the case of time-constrained execution.

b. Critical A ngle A nalysis

Sometimes the geometry of an edge-pair is such that we can avoid tedious computations

required for shortcut analysis, while still eliminating the edge-pair. This is particularly true when the interior

angle a between an edge-pair is close to n radians. Critical-angle analysis is a Snell's-Law based technique

which uses the critical-angle rays from the four vertices of an edge-pair to determine if any reflective path

from either edge can intersect the other. If not, then it follows that no Snell's-Law path can exist between

interior points of the edges because the critical angle is the limiting case of Snell's-Law bending on the high-

cost side of a boundary edge. Since all optimal paths which cross the interior points of a boundary edge (not

79

at a vertex) must obey Snell's Law, then no optimal path can cross between interior points of the edge-pair.

Thus, the edge-pair can be eliminated. This is similar to the concept of shadowing in [Ross89]. Shadowing

refers to the propagation of constraints which restrict possible movement directions.

A typical situation for critical-angle analysis is depicted in Figure 4.4. Note that |i < n and

[i < \i otherwise reflection cannot occur from within region R. An algorithm to implement critical-angle

analysis begins by computing four rays, each of which emanates from a different vertex in edge-pair E -E .

The direction of each ray must be inward toward the interior angle a and must form a critical angle with

respect to the edge from which it emanates. Next, the intersection points P , P , P , and P , of the four rays

with the opposing edges are computed by assuming that edges E and E extend infinitely. Finally, check the

positions of the intersection points relative to the vertices of the edge segments. If both pairs of intersection

points lie completely to one side or the other of their respective line-segment vertices, then no Snell's-Law

path can exist for E -E , and it can be tagged such.

region Ro^\^ 0C2j

'-'...,

Ik c1

// 1

In

V

/ ^1

Ho

' H2

r
\

"'"-.;• \

[.-•''

\ ^f-
P"^

P
T fp2

Figure 4.4 Critical-Angle Analysis of Edge-Pair Ec-Ed

80

c. Virtual Obstacles

A given region cost coefficient may be so high relative to its surrounding environment that

all of its edge-pairs can be eliminated from the solution space. Such regions are called virtual obstacles

[Rowe90b]. Virtual obstacles are equivalent to real obstacles, unless the start or goal resides within. It is

possible to flag such regions and generate obstacle edge-lists so that they may be jumped during annealing.

On the other hand, this may not always be prudent. Recall from Section III.F. 1 that large obstacles can hamper

the ability of annealing to move freely over it because large cost-increasing transitions may be required to do

so. During high-temperature this would be bad for annealing, since the search should explore the solution

space across as broad an area as possible. We discuss other ways of handling this situation in the next section

on heuristics.

C. HEURISTIC IMPROVEMENTS

We have discussed restriction of the WRP search space using both global and local constraints. These

are strong restrictions because they provide an absolute guarantee that no globally optimal solution will be

excluded. We now present several heuristic techniques which can improve the performance of path

annealing. Heuristics are "rules of thumb" which strike a compromise between being simple and making

correct choices [Pear84]. Since it is probabilistic and, therefore, cannot guarantee the global optimum,

simulated annealing is itself a heuristic approach. Furthermore, for other optimization problems, the

annealing technique usually requires larger execution times [Naha85]. However, the heuristic enhancements

to be discussed demonstrate the capability to reduce execution times significantly while improving the cost

of the final solutions. In combination these heuristics make path annealing very competitive with pure A*

search algorithms, particularly in larger problem instances.

1. Rapid Cost Function Evaluation

Recall from Chapter III that to find the locally optimal path within a window sequence is a two

step process. The uniform-discrete-point (UDP) technique returns an optimal path constrained to discrete

points spaced at an interval 5 on each edge in the window sequence. Subsequently, beginning from this

approximation, single-path relaxation (SPR) uses a Snell's-Law lookup table to iteratively adjust crossing

points until no further improvements can be made. For a single window sequence (WS), the procedure is

relatively efficient. However, it becomes less so when we consider that the cardinality of the set of all WS's

is at least 0(v2
v
) where v is the number of interior vertices in the map [Rowe90b]. Thus, we examine heuristic

methods designed to increase the efficiency and frequency of cost function evaluation.

81

a. Relaxation Threshold

In a combinatorial optimization problem the distribution of the number of states having a

given value of cost is called the density of states [Whit84]. For some large complex problems the density of

states resembles the shape of a normal distribution function where the tails represent global extremes - the

number of maximum cost states on the right and minimal cost states on the left (see Figure 4.5). Having

bounded the search space (either by a bounding ellipse or by the natural border of the map) and using a move

generator which tends to remove cyclic WS's, we may expect a WRP instance to have a similar density of

states, where each state is a window sequence (WS) and its cost is the cost of its locally optimal path. The

stochastic nature of the simulated annealing algorithm requires that we evaluate every state (i.e. WS)

encountered in search. However, a relatively low density of optimal and near-optimal solutions suggests that

frequent applications of single-path relaxation are unnecessary. Although upward biased, uniform-discrete-

point (UDP) approximation is fast and gives a reasonable estimate of the single-path relaxation (SPR) result.

For most WS's, UDP approximation suffices to estimate their nearness to a global optimum. Furthermore,

that UDP approximation can still effectively guide an annealing-based search is confirmed by other

researchers who have observed that exact cost function evaluation is not always necessary [Tove88,

Adam85].

Figure 4.5 Density of States: Number of States in Cost Interval Cg

82

On the other hand, we do not want path annealing to overlook an optimal or near-optimal

solution if it happens to sample one. This could happen since the cost returned by UDP is only an

approximation. To control this possibility, we establish the relaxation threshold, C +M, where C is the cost

of the best known solution (also the current upper bound on the optimal solution cost). The second term, Ak,

is a fixed value established at the start of path annealing. The relaxation threshold represents the condition

which triggers single-path relaxation: if the UDP cost is less than or equal to C +Ak, then SPR is applied to

determine if the refined cost of this WS can improve C .

To determine the fixed value of Ak for a given problem instance, we assume a worst case

situation for a UDP approximation based upon the discrete spacing of edge-points, 8. Since UDP must

consider only paths constrained to cross at edge-points, then it can be forced to return an approximation with

path segments which detour in non-optimal directions. For relatively straight WS's, the worst error in UDP

approximation generally occurs where the algorithm must select path segments whose directions are

perpendicular to the optimal direction. The least flexibility for choice of segment usually occurs in the start

and goal-containing regions, because the start and goal are fixed points. Toward the middle of the window

sequence more flexibility is available, and more path segments exist which are less perpendicular to the

optimal direction, and which tend to self-correct and dampen the effects of errors made at the start and goal.

Also, consider the locally optimal path of a window sequence (WS) which has many bends. More bending

generally implies that the locally optimal path will cross many end points (vertices) of boundary edges. Since

the edge-points used by the UDP approximation always include the vertices of a boundary edge, error is

minimal at these locations.

Based on the foregoing discussion, we relate Ak to 8 and the cost coefficients of the start and

goal-containing regions. Figure 4.6 illustrates a WS in which a locally optimal path (dotted) is approximated

by a UDP constrained path (solid). Edge-points are shown as solid circles. We have constructed this figure

so that the locations of start and goal points force initial path segments from start and goal in the UDP

approximation to be almost perpendicular to the true optimal direction. Under the assumption that this is the

worst case UDP approximation for 8 spacing and \i and |i for start and goal-containing regions, then the

maximum difference between the UDP and SPR costs through this WS is 0.58(ji +(i). Our empirical
s g

observations using vertex rotations only (i.e. proper WS's) confirm this calculation. Being conservative, we

define

Ak = 0.58(u +[i) (Eq 4.6)

83

« 1/2 8|X,

true locally
optimal path

edge-points

UDP approximation 1

of locally optimal path

« 1/2 8|ic

Figure 4.6 Uniform-Discrete-Point Approximation of a Locally Optimal Path

The reentrant installation operator has a special relation to the relaxation threshold. ForWS *s

with reentrant paths, the cost difference between its UDP approximation and SPR may grossly exceed Ait.

This happens when a reentrant-installation move is accepted by the annealing process, but this move does not

improve cost. This is because UDP is forced to reflect on edges installed for reentrant paths whether or not

they are improvements, while SPR simply ignores such reentrant edges. This does not invalidate our

84

calculation of relaxation threshold, because these reentrant WS's reside in the middle to upper ranges of the

density distribution, and therefore never contain optimal paths. However, when a cost-improving reentrant

occurs, the cost difference between UDP and SPR for it does not exceed A£. Therefore, an optimal reentrant

path will be recognized if its UDP cost is below the relaxation threshold, C +Ak.

The relaxation threshold provides two advantages for path annealing. First, as implied earlier,

it indicates when a WS cost is far enough from C that a refinement with SPR is guaranteed to be useless.

Furthermore, as C is updated, the frequency of SPR application will tend to decrease. This results in a

significant time savings at high temperature. As temperature T decreases, SPR may be required more

frequently. The second advantage results from the global effect of UDP approximation. It is generally

recognized that simulated annealing performs best in a search space with a smooth cost function [John89].

Although UDP approximation raises the relative costs of all WS's, it tends to raise the larger ones less because

their bending usually causes locally optimal paths to pass through many vertices. Recall that vertices are

always available to UDP as edge-points, and crossings through them will be very accurate. Thus, to the

annealing process the search space tends to be globally smoother, except where there is good potential for

optimal or near-optimal solutions.

2. Caching Path Costs and Window Sequences

It is possible to stumble upon the globally optimal WS and corresponding path during annealing.

So it always makes good sense to maintain a record of the best known path and update it as necessary. At the

conclusion of annealing, the final solution returned will be that with the best known cost, C . While this is

not standard annealing, most researchers use this variation (e.g. [Carr90, John89, John90]).

The number of proper WS's in a map is at least 0(2
V
) where v is the number of interior vertices.

Relative to many of the NP-Hard problems, this is not an exceptionally large search space. Bounds and

constraints (e.g. the bounding ellipse) can shrink the space even more. Therefore, path annealing quite often

can repeat cost function evaluation on a WS it has already evaluated before. Recall that cost function

evaluation is an expensive operation. Therefore, caching path cost for WS's avoids unnecessary uniform-

discrete-point approximations. Before any WS is evaluated (with UDP search or SPR), a hash value is

computed as a function of the edge identifiers in the WS. This function may include all identifiers in the

sequence or some predetermined subsequence. The hash value is used to check the cache of previously stored

WS's and their associated costs. If the WS is found in the cache, then its cost is returned without

recomputation. Otherwise, WS cost function evaluation proceeds, and the results are cached for future use.

85

Although we have explored only a few hash functions, we find that better performance results

from those which are computationally simple rather than those which represent elaborate attempts to

minimize collisions. Our prototype computes a hash value as the sum over all integer edge-identifiers in the

WS (except for 5 and g). Collisions are handled by linear chaining of linked lists. Limited experiments

indicate that use of this hash function results in a 20% to 30% savings in path annealing execution time.

3. Move Generator Heuristics

The generation of transitions generally requires less work than does cost function evaluation. This

is a result of the data structure support discussed in Chapter HI. However, since move operators are the means

by which annealing traverses and samples a large solution space, their design is very important to annealing

results. Good operators are apparently difficult to design because problems and applications vary widely

[John89]. For example, annealing on the Traveling Salesman Problem has been tested with several different

operators, and some perform significantly better than others [Otte89]. In path annealing, we desire that the

move generator be capable of causing rapid movement, over a broad area of the search space, and with as

little repetition as possible. To enhance these qualities, we introduce several heuristic techniques.

a. Reduction ofRepetition

Recall from Chapter III that to maintain transition efficiency, we designed only two very

simple move operators: rotation (over a vertex or an obstacle) and reentrant installation. We also implied that

the cumulative effects of single applications of these operators over time usually result in great movement

across the search space. However, when a single vertex has many edges incident to it, a WS which crosses

several of these edges can often waste time rotating back and forth across the vertex. The effect is similar to

a physical standing wave. In general, the larger the number of edges incident to the vertex, the larger the

probability that this vertex will be chosen as the site of rotation (See Figure 4.7). Caching of WS's helps to

reduce wasted time, but does not prevent each repetition from counting as an attempted transition, thereby

incrementing the annealing chain parameter, L (see Section III.F.3). While some repetition is good and allows

annealing to return to more promising locations for more thorough search, the standing wave effect represents

a stagnation in the sampling effort.

86

Figure 4.7 Vertex V with Many Incident Boundary Edges

To lessen the probability of window-sequence standing waves, for each attempted rotation

we induce one additional rotation. This is done by randomly selecting an edge in the new WS that is incident

to the original rotation vertex, and forcing rotation across its other vertex. With this technique we have

essentially spread the selection probabilities over a wider range of edges, making it more unlikely that a

random rotation will undo the transition of its predecessor.

b. Relation ofMove Operators to Temperature

The double rotation technique discussed in die last section tends to cause broader movement

across the search space than single rotations do. For some problem instances, we find that use of double

rotation results in the discovery of lower cost paths (even the globally optimal path) more often. The

87

explanation for this lies in the relation of the magnitude of the attempted transitions to the annealing

temperature. [Whit84] indicates that better annealing performance results from matching move size to

temperature. High temperature annealing should attempt larger scale moves, while low temperature annealing

should attempt smaller scale moves. The intuitive explanation for this is that at high temperature the higher

acceptance rates will permit uninhibited sampling of the solution space. At this time, large moves are the most

efficient means for moving quickly over a broad area of the space and will be accepted more easily. At lower

temperatures it is inefficient to attempt large moves. Since they usually cause great changes in the cost

function, many will not likely be accepted, especially if the annealing process has already found a reasonably

low cost state. On the other hand, small scale moves can refine such a state efficiently by making local

improvements or by climbing out of localized minimums which are not as good as others close by.

Our prototype does not attempt to dynamically adjust or synchronize the move size with

temperature. The effects of doubling vertex rotations seem to indicate that introducing multiple rotations at

high temperatures could improve path annealing performance. However, the next two sections explore

tunneling and cycling which are alternate methods for scaling up transition size for high temperature.

c. Tunneling

A sequence of neighboring window sequences within the WRP solution space which have

similar costs that are relatively low compared to the surrounding environment is called a high-speed corridor.

A given problem instance may have several high-speed corridors. Furthermore, these corridors may be

separated by short or long physical distance, and by high or low weighted regions. In some instances high-

speed corridors cross over one another, possibly in multiple locations. Path annealing gradually tends to focus

its attention on one or more of these corridors as temperature decreases. The assumption is that during high

temperature, the annealing process will have spent enough time roaming around all high-speed corridors to

determine which would be best to refine at lower temperatures. Thus, at some low temperature the current

WS will have committed to particular corridors from which it will likely not escape.

This is essentially the behavior we desire. However, consider the following question: Have

other high-speed corridors been searched as thoroughly as the one in which the process has settled at low

temperature? The answer to this question depends upon the starting temperature, T' and the annealing chain

length, L, the parameter defining the number of moves that will be attempted at each temperature, T. Recall

from Chapter III that our method of setting T ensures that the transition acceptance rate will be 95%. This

implies that the means for finding virtually all high-speed corridors is available. However, L should be large

enough to ensure exploration of such corridors is sufficient for annealing to select and refine the good ones

at lower temperatures. In theory the parameter L should be some function of (most often equal to)

neighborhood size [Aart89]. However, in practice good values forL apparently vary from one application to

another and should probably be set empirically [John89].

Extending annealing chain length, L, or raising starting temperature, T , only risks longer

execution times with little additional assurance of successfully finding and searching the best high-speed

corridors. Instead, we suggest two techniques which take advantage of the fact that the WRP represented as

a dual edge-graph has a smaller search space relative to many NP-Hard problems.

The initial WS returned by A* search of the dual edge-graph usually corresponds to the

location of a high-speed corridor. As we have said before, this initial WS can, but does not necessarily have

to contain the globally opumal solution. Either way, we assume that it has a relatively high likelihood of being

in close proximity to the optimal path. Now suppose we determine the n shortest midpoint paths and their

corresponding window sequences in the dual edge-graph. Under the above proximity assumption, path

annealing started from each of these window sequences at a lower value of T will have a higher probability

of locating the optimal path. However, we must be careful. The second (and third, etc.) shortest midpoint path

within the dual edge-graph may very well reside within the very same high-speed corridor containing the first

shortest midpoint path. If so, then we are simply wasting time finding n best paths which annealing will

probably examine anyway because they are all very close together. Therefore, what we really desire are the

n most high-speed corridors, which may or may not be the n shortest midpoint paths. This reasoning is very

similar to what [Tove88] refers to as a neighborhood prejudice swindle. The basic objective is to reduce

computing time and increase the likelihood of finding good solutions by concentrating on the most promising

neighborhoods.

To find a second corridor, we can use knowledge within the initial WS. The WRP optimal

paths maps generated by [Alex89] reveal that for a given fixed goal point, the vertices and boundary edges of

low-cost regions tend to attract many opumal paths. Relatively high-cost regions tend to repel them. On the

basis of this observation, we can find a second high-speed corridor which is physically separated from the

initial by forcing a second A* search to avoid the edges of regions most responsible for making the initial

solution low-cost Therefore, by temporarily removing one or more long, low-cost edges from the original

dual edge-graph, a second A* search is driven to find an alternate low-cost midpoint path which is usually in

a different corridor. The procedure is equivalent to temporarily blocking a high-speed corridor with one or

more large obstacles. If the second WS lies very near the initial WS, then this is strong evidence that this

89

corridor contains the optimal path, since A* search was not able to find a corridor with regions low enough

in weight to draw it away from the first.

At least one of the edges chosen for temporary removal from the graph must be within the

initial WS. Otherwise, the second A* search will return the same WS. In general, the edge in the initial (or

previous) WS which bounds the start or goal-containing region is the one whose removal will maximize the

difference in physical location between successive A* search solutions. The reason for this is that removal of

such an edge usually forces a large shift in the initial direction of search from the initial region (containing

the start or goal). Consequently, the resulting midpoint path may have to use low-cost regions in areas of the

map which were not advantageous when leaving the initial region through the removed edge.

Having located several different high-speed corridors, the annealing process may proceed

from a lower temperature either sequentially starting from each or concurrently on all high-speed corridors

together, returning the best path found over all. Concurrent execution would require that one initial WS be

selected as the starting solution. Since there would be n independent current window sequences, several

possibilities exist for concurrency. We could apply random transitions by queuing the current WS's. Or the

move generator could randomly select one current WS on which to apply a move operator. We could control

random selection of a current WS by annealing for a short interval of time (perhaps random), after which

annealing shifts to a WS representing a different corridor. Each time this shift is performed, the algorithm

effectively tunnels through high-cost peaks in the solution space. One way to trigger tunneling is to treat it as

another move operator. It could also be driven by results in the current corridor. For example, tunnel to

anotherWS if the current cost has not improved after n consecutive transitions. There are certainly many other

possibilities for multiple-corridor execution. Our prototype implements only a single initial A* solution.

However, we have observed that a second corridor generated as described above increases the capability to

locate optimal paths.

We can also implement tunneling by relying upon high temperature annealing to locate

several WS's representative of different high-speed corridors. Later at lower temperatures annealing may

tunnel back to these corridors via the WS's. Since we cache each new WS along with its uniform-discrete-

point estimated cost, the process can actually tunnel to any WS of its choosing. One problem with this method

of tunneling is that it may require very high starting temperatures to ensure broad uniform coverage of the

map and discovery of high-speed corridors. Annealing can easily sample WS's which are generally physically

close together in one corridor, separated only by a few small cost gradients. However, movement to other

corridors may require jumping one or more very high cost peaks. Larger transition size can help to induce

90

greater WS movement (for example, by allowing multiple vertex rotations for each transition attempted by

the move generator). But to climb higher cost gradients still requires higher temperatures. We can save time

by finding and caching the locations of WS's representing high-speed corridors at the start of path annealing,

This avoids the time otherwise required by annealing to climb the upward gradients between these corridors.

Recall that for efficient tunneling we desire a set of WS's which lie in, and thus, represent

distinctly different high-speed corridors. Therefore, between WS's, we need some measure of physical

similarity or proximity within the search space. Window sequence (WS) costs alone cannot distinguish

physical location. One simple measurement is to determine the set of regions entered by each WS and

compute the set difference between them. If the resulting set is empty or has very small cardinality, then the

WS's probably belong to the same corridor. Otherwise, they are sufficiendy distinct. With data structures to

support edge to region translation, such a comparison could be relatively efficient.

Our prototype employs a very limited form of tunneling. It records each WS found to contain

a path whose cost is lower than the currendy best known. The program does not check that these WS's

represent distinct corridors. Often they do not; however, if several WS's have accumulated by the time the

freezing temperature, T
f

is reached, then the set usually represents more than one corridor. At temperature

equal to T the program sequentially tunnels to each WS in this set To each WS it applies pure iterative

improvement by attempting L random transitions. At this stage the relaxation threshold is no longer active,

and single-path-relaxation (SPR) is applied to each WS. The best path found overall is returned as the

solution. Although this technique also depends upon the ability of high temperature transitions to reach major

high-speed corridors, it does give some assurance that locations in which good solutions were discovered

early have been more thoroughly explored.

4. Faster Initial Solutions

A* search through the edge dual-graph to obtain a starting solution is a major component of path

annealing. Although its resolution is crude (midpoints only), this phase of the algorithm generally accounts

for roughly 10% of total execution time. In Chapter III we argued that starting annealing from the shortest

midpoint path is most appropriate. However, we also mentioned that the primary purpose of A* search is to

obtain afeasible starting solution. Having one of the best solutions helps, but is not necessary.

Suppose we desire to implement tunneling using A* search to locate five high-speed corridors

(first method of tunneling). Assuming that one A* search requires 10% of the total execution time, the total

amount of time required to locate five corridors now exceeds 50% of the total path annealing execution time.

91

This time may sometimes be reduced by reusing partial paths left on the agenda generated by the first A*

search. However, if the time required to obtain initial corridors approaches 50% (or more), then we might

reconsider whether the time advantages of our stochastic approach are still worthwhile. As Chapter V will

demonstrate, such execution times are still less than the times required for a more refined global A* search

from start to goal with a resolution capable of discovering the optimal path.

However, with heavier dependence on the annealing phase of the algorithm, we can improve the

crude A* search for starting corridors. Recall that admissible A* search computes an underestimate to the

goal for each midpoint it reaches. This underestimate is the product of the straight-line distance remaining to

the goal and the lowest cost coefficient, p. , and ensures that the search returns the shortest (midpoint) path.

If we assume that no path exists between start and goal which can travel exclusively in the regions of weight

* •

(i , then we may relax the value of [i by enlarging it. If our assumption is correct for a higher optimal cost

coefficient, then the A* search remains admissible and still returns the shortest midpoint path. If it is incorrect,

then the A* search will be inadmissable, and the midpoint path may not be the shortest midpoint path.

However, we have saved some time in finding an initial solution in exchange for gambling on the ability of

annealing to start from a possibly bad solution and still find a good one.

In every problem instance some threshold value for the optimal cost coefficient exist which

removes admissibility, and consequendy, the shortest-path guarantee. Values higher than this threshold will

generally cause A* search to overestimate weighted distance to the goal from more of the midpoints. In turn,

the search is driven to the goal more directly and more quickly, because the overestimate increases its depth-

first behavior. Using conservative optimal-cost-coefficient overestimates coupled with temporary removal of

low-cost boundary edges from the dual edge-graph, is a good way to efficiently obtain an initial set of WS's

representing different high-speed corridors.

5. Heuristic Bounds on Search Space

Section B. 1 of this chapter described our method for constructing the bounding ellipse of [Rich87]

and [Rowe90a] which restricts the WRP search space. Recall that we use the lowest cost coefficient, \i , in

this calculation. The use ofn is conservative and safe, and results in a bounding ellipse which cannot exclude

any portion of a globally optimal path. However, more complex maps may have cost coefficients which vary

over a wide range of values. For such maps, we indicated that the bounding ellipses for many problem

instances are often larger than the map itself. This holds true even when the ellipse is computed on the basis

of a globally optimal path. The reason is that for a given arrangement of start and goal, travel through the

92

lowest-cost regions may require detours through high-cost regions which nullify their efficiency.

Unfortunately, determining if or when an arrangement of start and goal can efficiently use the lowest-cost

regions of a particular geometry appears to require solving the WRP.

To constrain a bounding ellipse to its minimal size requires a priori knowledge of the optimal path

cosl Assume that for a given problem instance we have such knowledge. Let the cost of the optimal path be

C . Also, let the total unweighted length of the optimal path be D . We define its average path weight as

\f = CID. (Eq4.7)

Average path weight is a rough measure ofpath efficiency. If the globally optimal path has very low average

path weight, then the locations of start and goal are apparently favorable to use of many low-cost regions

(not necessarily including the lowest cost region) and the optimal path is very efficient. On the other hand, if

the optimal path has very high average path weight, then low-cost regions either do not contribute

significantly or their efficiency is overshadowed by passage through high-cost regions. With the value of fi
+

we can construct a bounding ellipse which is smaller than that which uses the lowest cost coefficient. Figure

4.8 illustrates what we refer to as a \L* -ellipse.

As implied earlier, we cannot compute a |i
+
-ellipse without prior knowledge of the optimal path.

Using the A* search through the edge dual-graph we can obtain a least upper bound for C . Ideally, we desire

a greatest lower bound on |i
+

. However, we settle for a heuristic approximation for |i
+

. Then, in exchange for

a small risk of overlooking the optimal path, we can often achieve a marked performance improvement due

to a more restrictive search space.

93

H
+ = CVD* [i

+
(|SP|+|PG|) > C*

C* = weighted cost of globally optimal solution

D* = unweighted length globally optimal solution

Figure 4.8 ^-Ellipse

One fast, yet conservative method of approximating p
+

is to use the initial window sequence (WS)

returned by A* search. Although crude (midpoints only), this search has entered most regions of the space in

the immediate vicinity of start and goal, so that, intuitively, it provides a reasonable assessment of the

distribution of cost coefficients between start and goal. Let the locally optimal path cost within this initial WS

be C , and let its total unweighted length beD , an upper bound on the globally optimal path cost. To establish

a conservative estimate for p
+
we make a simple heuristic assumption about the upper bound for the globally

optimal path-cosL Similar to the reasoning used to determine relaxation threshold in Section C.l.a, we

compute

AK = 0.5(p. +P-)/ (Eq 4.8)
s g max ^

where / is the length of the longest edge bounding the start and goal-containing regions with cost

coefficients p. and p. respectively. A heuristic least upper bound on the optimal path cost is C -AK. Figure
S g U

4.6 shows why the discrete interval 6 is used to determine relaxation threshold. Iniual A* search through

94

midpoint paths is much less refined than UDP through edge-points with a spacing of 5. Therefore, the factor

0.56 in Eq 4.6 is replaced by 0.5/ to obtain Eq 4.8. From the above we estimate |i
+

as:

H
+ ~(C -AK)/D (Eq4.9)

This comes from the observation that optimal paths generally do not stray unreasonably far from

the regions between start to goal. In military operations there are often considerations which prohibit

movement along paths with such extreme detours (for example, designated areas of operation or the

requirement for adequate maneuver space between units). Also note that the procedure is useful for both path

annealing and systematic search approaches.

D. SUMMARY

In this chapter we have presented and discussed some techniques which can improve the performance

of path annealing. The prototype we have designed employs most but not all of these enhancements. We have

concentrated on bounds and heuristics which have shown the most potential to maximize execution speed and

probability of location optimal paths.

Throughout the first four chapters we have stressed the performance advantages of path annealing over

purely systematic search methods such as A* search. In Chapter V we will present our own version of a global

systematic search algorithm which is similar to but faster and more accurate than the wavefront propagation

algorithm referenced in Chapter II. It is against this algorithm that we compare path annealing.

We wish to emphasize that path annealing, though primarily a stochastic algorithm, makes important

use of A* search. In fact, it is fair to say that path annealing draws a major part of its performance and power

from its A* search component. Rather than just another application of simulated annealing, we prefer to

describe path annealing as an intelligent marriage of both systematic and local search (both continuous and

discrete) under probabilistic control. Chapter V will present empirical results from testing of our path

annealing prototype.

95

V. EMPIRICAL STUDIES

A. TEST PROCEDURES AND MAPS

1. Input Maps

To gain some understanding of how path annealing performs at different levels of input map

complexity, we tested the algorithm on four maps. These maps (Figures 5.1, 5.2, 5.3, and 5.4) represent three

levels of increasing complexity in terms of resolution and cost coefficient range. Cost coefficients are shown

as integers within resrxxtive regions, and obstacles appear as gray areas in each map.

Mapl (Figure 5.1) is the least complex, and represents synthetic terrain created and used by

[Rich87]. Map2 (Figure 5.2) is of medium complexity and also represents synthetic terrain of our own design.

Map3 and Map4 (Figures 5.3 and 5.4) are the most complex test maps. These maps represent our own

weighted-region interpretation of a 1000 meter grid square of actual terrain extracted from a standard military

map of Fort Hunter-Liggett, California [Defe74]. Using a computer-assisted tool (see Appendix B

mapmaker.pl), we constructed these maps on the basis of combined elevation, vegetation, and terrain feature

data. Figure 5.5 is a plot of the elevation data used to make Map3 and Map4. Figure 5.6 is a magnified

reproduction of this area as it appears on [Defe74]. Figure 5.7 is an aerial photograph of the area taken by

aircraft. Map3 and Map4 represent the same section of terrain in different seasons. Map3 represents a wet

season during which the reservoir (large obstacle in the left half of Map3) is full. Map4 represents a dry season

during which the reservoir is completely dry (the case at the time of this writing). The validity of these maps

was also confirmed by a site visit. However, we wish to emphasize that the cost regions assigned were of

necessity our own interpretation of combined topographic effects.

In an effort to ensure unbiased testing, we have also created three additional test maps (Figures

5.8, 5.9, and 5.10) with the geometry of Map4, but in which cost coefficients have been randomly scrambled.

The topological character of each map is identical to Map4. However, to create Map5, Map6, and Map7 we

randomly assigned integer cost coefficients from the sets {1,2,3,.. .,10}, {1,3,5,7,9}, and {1,4,7} respectively.

These maps are intended to test cost functions with varying degrees of smoothness.

96

Figure 5.1 Mapl

Figure 5.2 Map2

97

Figure 5.3 Map3

Figure 5.4 Map4

98

Figure 5.5 Plot of Elevation Data Used to Create Map3 and Map4
(elevation above sea level; tick marks represent 12.5 meter intervals)

Figure 5.6 Extract of Military Map [Defe74] Used to Create Map3 and Map4

99

Figure 5.7 Aerial Photograph Used to Create Map3 and Map4

Figure 5.8 Map5

100

Figure 5.9 Map6

Figure 5.10 Map7

101

2. Control Algorithm

In Chapter II we discussed previous approaches to solving the weighted-region problem (WRP).

To measure the performance of path annealing, we would like to place it in direct competition with these other

WRP algorithms. However, most of the existing algorithms have limitations which prevent direct comparison

on the test maps we have designed for path annealing. The Continuous Dijkstra Algorithm [Mitc90] has never

been implemented. The Recursive Wedge Decomposition prototype of [Rich87] is limited to maps with two

distinct cost coefficients and obstacles. Furthermore, it is not designed to handle maps in which vertices have

more than two incident boundary edges. A future update to [Rowe90b] and [Alex90] will include a revised

prototype to account for these restrictions. However, this prototype will construct optimal path maps instead

of solving for specified start/goal pairs.

a. Wavefront Propagation

A limited comparison of path annealing to some of the empirical results of [Rich87] is

possible using Mapl. Recall that Mapl is taken directly from the work of [Rich87]. We can compare solution

quality directly in terms of total path-cost and physical location for identical problem instances. However, a

direct comparison of execution times is difficult since different machines and Prolog dialects have been used.

Nevertheless, we can compare timing results with [Rich87] indirectly through the grid-based wavefront

propagation algorithm. To do so, we have written similar code to perform branch-and-bound search on an 8-

neighbor lauice graph representing the homogeneous-cost regions of Mapl.

To provide the maximum advantage to the wavefront algorithm, the search graph and all

weighted distances are precomputed independently of the wavefront algorithm itself. The cost of each arc in

the graph is the product of its Euclidean length and assigned weight. For an 8-neighbor implementation there

are only two lengths: R and RV2, where R is the orthogonal distance between grid intersection points. In the

same manner of [Rich87], we weight each arc in the search graph by the cost coefficient of the region in which

its midpoint resides. For our tests, grid resolution corresponds to a 100x100 cell lattice. Relative to test cases

in [Rich87], our grid is of medium resolution. [Rich87] tested a low resolution (2:1) 64x64 grid and a high

resolution (1:1) 128x128 grid. Thus, we expect solution quality which is generally comparable to [Rich87].

b. Uniform-Discrete-Point Global A * Search

As noted in Chapter II, grid-based wavefront-propagation solution path-cost is generally

greater than optimal path-cost by some added percentage due to the "stair-step" effect. [Rich87] demonstrated

that this added percentage can vary randomly with resolution. Besides the apparent random nature of the

102

percent-added cost on a solution, the wavcfront propagation has other drawbacks. Assuming we know the

window sequence in which a solution resides, then the "stair-step" effect could be eliminated using single-

path relaxation (SPR) to straighten the path. However, single-path relaxation only removes grid effects from

the final solution path. So, path-cost errors resulting from grid bias can cause the systematic wavefront search

to overlook the true optimal path. While higher grid resolution can improve accuracy, this also lengthens

execution times.

To improve solution quality over grid-based wavefront propagation, we have developed our

own simple algorithm, which we also compare against annealing. Uniform-discrete-point global A* search

is a generalization of the uniform-discrete-point (UDP) method for approximating the locally optimal path in

a WS to the whole map. The algorithm bears some resemblance to wavefront propagation but has several

important advantages.

The uniform-discrete-point global A* (UDPGA*) search technique is quite simple and

adapts naturally to the geometry and orientation of the boundary edges in the terrain map. As with wavefront

propagation grid size, UDPGA* resolution is established a priori in the form of a discrete interval, 8. This

concept is identical to that of the same name discussed in Chapter III Section D.2, so the same time trade-off

applies. Along each edge of the map, we locate uniformly spaced discrete points where the spacing is bounded

above by the value of 5. The algorithm proceeds in two phases. The first phase is a fast A* search through the

dual edge-graph (on midpoints only). This is done in exactly the same manner as the A* search for an initial

solution in path annealing. The purpose is to obtain an early upper bound on optimal path cost to construct a

bounding ellipse (again, same manner as path annealing). Once the ellipse has bounded the search space, a

refined A* search begins on the uniformly 5-spaced points. When the shortest path through these points has

been found, it is returned with the WS in which it resides. We apply UDP/SPR once to that WS to find its

locally optimal path. This path is returned as the solution.

UDPGA* is an approximating algorithm in the same sense as wavefront propagation. It

solves the weighted-region problem (WRP) by systematically searching a discrete graph of some

predetermined size. This size is a function of the discrete interval, 8, which sets the resolution of what is

essentially a visibility graph. However, UDPGA* has several important advantages over wavefront

propagation. First, it does not simulate movement through regions as uniform incremental time steps. Instead,

the algorithm takes complete path segments through regions via the weighted arcs of the search graph. It

crosses each region in a single step by selecting a path segment connecting a pair of discrete points on

boundary edges. Second, UDPGA* makes more effective use of the terrain map geometry, because the

103

discrete points lie on boundary edges. Path segments between these points conform to natural arrangements

of edges and vertices in the map. This tends to reduce the error resulting from strict adherence to grid points.

Third, UDPGA* actively searches for and can find reentrant path solutions. Finally, UDPGA* makes more

effective use of the bounding ellipse than wavefronL UDPGA* can obtain an initial solution to compute the

ellipse quickly and exactly because its search graph is oriented on boundary edges instead of a lattice.

3. Validation Criteria

We desire to compare performance in terms of two factors of weighted-region problem solutions:

total weighted path-length and total execution time. As we indicated earlier in this chapter, test maps were

generated to study path annealing performance in several cost function environments ranging from smooth to

hilly. At the same time we wish to vary the size of the problem instance to examine time complexity as a

function of problem size. We establish a fixed set of 12 points in the Cartesian plane of 100x100 units square,

and we generate 66 distinctly different problem instances by pairing these 12 points as start and goal. Figures

5.1 1 through 5.13 illustrate the placement of these points. The general location of the points is based on our

desire to ensure a wide variety in size and situation of problem instances while minimizing the advantage that

either algorithm might gain from a start or goal point that is close to the border. This is an important advantage

for both algorithms because it can reduce the search space up to 75%. Large obstacles can also contribute to

this. In experiments with grid-based wavcfront propagation, [Rich87] refers to the exploitation of this

advantage as the heuristic-selection strategy. A more specific local adjustment of the points was made to

avoid having a start or goal point reside within a real obstacle for any of the maps.

104

1^ •

' v\ / • •

\\ / m
* • / \ Tx

V-~^2^B
/*A WP/

/ ^B*^ V • N, \

•

•

^^ ~^\r^* ./

Figure 5.11 Placement of Start/Goal Points (Mapl)

Figure 5.12 Placement of Start/Goal Points (Map2)

105

Figure 5.13 Placement of Start/Goal Points (Map3 through Map7)

In order to compare the algorithms we need a consistent measure of the size of a problem instance.

The straight distance between start and goal is a rough measure, however it does not account for the resolution

of that area of a map in which the search (path annealing or UDPGA*) is conducted. Both [Mitc90] and

[Rowe90b] determine problem size as a function of the number of vertices searched. The search performed

by our algorithms is oriented on the boundary edges. Thus, we estimate problem size as the total number of

boundary edges reached by the initial A* search through midpoints. We count each edge only once regardless

of how many times it might be visited during this search. This technique for estimating problem size

approximates the number of boundary edges inside the initial bounding ellipse, since we have found that

crude A* search generally expands edges in an area roughly equal to the size of this ellipse. The actual

bounding ellipse is usually smaller because it clips off portions of longer edges at the limits of the A* search

expansion. Note that the Euler equations establish a linear upper bound on the number of vertices that can

exist in a connected planar graph of E edges, if the degree of all vertices is three or more [Prep87].

V < 2/3 E if for all vertices, v., Degree(v.) < 3 (Eq 5. 1 0)

106

Wavefront-propagation problem-size would ordinarily be measured as the number of grid cells expanded in

the search. However, in order to have a common measurement upon which to compare all algorithms, we

use the number of boundary edges for wavefront as well.

Execution time for each algorithm is computed as total central processing unit (CPU) time

expended from the beginning of initial A* search to the return of the final solution. The time required to

preprocess the map and create necessary data structures is not included in these times. We have also excluded

most of the CPU time required to accumulate and summarize statistical data. Both algorithms are capable of

the graphical display of outputs. We found that these facilities were extremely useful in debugging. While

maintenance of these displays expends a significant amount of CPU time, such time is not included in the

timing statistics. Thus, total CPU time for any given run should be a reasonably reliable indicator of relative

search time.

Once we have established a relationship between wavefront propagation and uniform-discrete-

point global A* (UDPGA*) solution's quality and timing, we will use UDPGA* search as our gold standard

and compare solution costs accordingly. To compare the relative goodness of solutions for a given problem

instance we take the ratio of the total weighted path-costs of the path-annealing solution to the UDPGA*

solution. Thus, a ratio value of one indicates that both algorithms have achieved similar optimal cost results

for a given problem instance. A value greater than one favors the UDPGA* technique. However, as results

show, this ratio sometimes dips below one. This happens more often when the value of 5 (the discrete interval

defining the upper bound on spacing between edge-points) is not small enough to ensure that UDPGA* can

find the true optimal solution.

B. ANALYSIS OF TEST RESULTS

1. Testing of Grid-Based Wavefront Propagation vs. UDPGA*

To support the claim that UDPGA* is an effective algorithm for comparing the performance of

path annealing, and to relate both algorithms to the work of [Rich87], we present results which compare our

prototypes with an implementation of grid-based wavefront propagation on Mapl. Figure 5.14 shows the

results of our algorithms for wavefront, UDPGA*, and path annealing on two problem instances tested in

[Rich87]. The UDPGA* solution paths (shown in figure) are identical to those returned by Richbourg's

recursive wedge decomposition algorithm. The path annealing solutions are identical to the UDPGA*

solution paths with the exception of two very short segments in the first problem instance (identified in the

figure). Our wavefront propagation paths (shown in the figure) are somewhat better than those of [Rich87]

107

(not shown). However, recall that we use a lower resolution than the maximum resolution tested by [Rich87]

(see bottom of Figure 5.14). Also, recall that the percent-added cost for wavefront solutions will vary

somewhat randomly with resolution. The large difference in execution times between our wavefront

algorithm and that of [Rich87] can be attributed to at least two factors. First, each algorithm was executed on

different machine architectures with different implementations of Prolog. Therefore, timing results can only

be compared in a relative sense. Second, our wavefront implementation does not use the bounding ellipse,

whereas the wavefront implementation of [Rich87] uses a precomputed bounding box to reduce the search

area. This also accounts for some of the execution time differences between our wavefront algorithm and

UDPGA*. Computation of a bounding ellipse or box requires an initial solution which wavefront cannot

easily obtain. Nevertheless, even if such a solution were provided at no additional cost, it could not adequately

compensate for the execution time disparity. Furthermore, in the more complex maps, the bounding ellipse

often circumscribes the entire map, and therefore, does not help either algorithm.

108

Wavefront
1 Propagation

i

St [8,61] -G n [48,89]

Wavefront

UDPGA*
Path Annealing

* Wavefront [Rich87]

* Wedge Decomposition

S2 [90,10] -G2 [4,92]

Wavefront

UDPGA*
Path Annealing

Cost

60.5

57.8

58.0

62.4

57.7

Time (sec) Resolution

2131.5 100x100

28.0 5=3

7.5

119.1

51.9

128x128

Cost Time (sec) Resolution

131.3 6414.2 100x100

124.9 60.8 6=3

124.9 24.3

* Wavefront [Rich87] 134.0 456.0

* Wedge Decomposition 124.9 117.0

128x128

* Timing results are from different machine
architecture and Prolog implementation

Figure 5.14 Mapl: Two Problem Instances Comparing Algorithm Performance

109

To relate execution times as a function of problem size, we examine the performance of each

algorithm on a set of distinctly different problem instances generated by start/goal pairings of the points

shown in Figure 5.11. Only 52 of the 66 possible paired cases are tested. The remaining 12 cases are trivial

and result in straight-line solutions. In such cases, there is no space to search because the bounding ellipse is

degenerate, and therefore, it actually is the solution. For the uniform-discrete-point global A* (UDPGA*)

algorithm we set the value of the discrete interval as 5=3. This results in a UDPGA* resolution which is

usually more than adequate for finding the globally optimal solution. Also, this value of 5 is consistent with

that used in testing more complex maps.

The first three plots in Figure 5.15a are of running time in CPU seconds vs. problem size in terms

of edges for wavefront propagation (100x100 grid), UDPGA* (at 5=3), and path annealing respectively. The

last plot in Figure 5.15a is a quadratic least-squares curve fit for points associated with all three algorithms.

We use a quadratic fit under the assumption that the area visited by wavefront, and thus execution time,

should grow roughly as the circular area of search state expansion around the start point. Use of a bounding

ellipse and A* search (as in UDPGA*) will tend to flatten this circular area. However, [Pear84] shows that

an admissible A* search still expands an 0(n) number of states. The quadratic curves in Figure 5.15a show

that execution-time growth rate of wavefront is much greater than both UDPGA* and path annealing.

Wavefront (100x100)

o
o

o
E

Q.
O

5889-

4868

3866-

•

2886

1888-

3
0-
o

26 30 46 56 66

Path Annealing

26 36
l * . — t i . 1—
9 48 5P

UDPGA* (5=3)

o

m
o
E
i-

0-

o
"ar

Quadratic
Least-Squares
Curve Fit

Wavefront

Figure 5.15a Mapl CPU Time vs. Problem Size (in Edges)

110

We also compared the timing results of wavefront propagation on the same 52 problem instances as before,

but at reduced resolution. In this case, we run wavefront propagation on a 50x50 cell lattice. The results are

summarized in Figure 5.15b. Note that even after halving the resolution, the execution-time growth rate

remains significantly higher than both UDPGA* and path annealing.

688-

588

468-

Wavefront (50x50)

o
O

O
38BJ E

p
28e| 3

Q.
O

18 28 38 48 58 68 78

688r

588

488+ —
0)

388f Js

288+ 13
0.

186

UDPGA* (5=3)

O

ie 20 38 48 58 G9 78

68Br

598

<188

38fr

Path Annealing

8

©
E

28Bf 3
O.

leet O
.!."•:• ,-

28 56

288

Quadratic
Least-Squares
Curve Fit

"IB 28 38 48 58 66

Figure 5.15b Mapl Cost Ratio vs. Problem Size (in Edges)

We examined the relative solution quality of the systematic search algorithms, by dividing the

solution path-cost of wavefront propagation by that of UDPGA* for the same problem instance (path

annealing will be compared to UDPGA* later). Thus, a value of 1.0 means that both algorithms obtained

solutions with identical cost. Figure 5.16 shows cost ratio vs. problem size for the 52 instances. Note that in

all cases, UDPGA* obtains a solution which is better than wavefront. This is because the "stair-step" effect

of wavefront solution paths results in the percent-added cost discussed earlier. Straightening the wavefront

solution paths would generally result in costs close or identical to UDPGA* as the two instances in Figure

5.14 tend to indicate. However, more computation will be required to locate boundary edge intersections and

establish Snell's-Law crossings.

Ill

Cost Ratio
Wavefront
/ UDPGA*

1.3r

1.2-

1.1-

8.9-

8.8-

8.7-

8.6-

8.5-

Map 1 Wavefront Resolution: 100x100

UDPGA* Resolution: 5 = 3

18 . !.«-.-
40 -58' 68 78

•

Problem Size (Edges)

Mean

0.959

SD

B.B18

Quart Dev Range

6.912 8.874

SE lean

B.B82

Hinimun

0.927

Quart i le 1

0.948

Quartile 2 Quartile 3

6.953 B.971

Maxima
1.001

Figure 5.16 Mapl Cost Ratio (Wavefront / UDPGA*) vs. Problem Size

While, our results tend to highlight the disadvantages of wavefront propagation, we emphasize

that there are some advantages and additional factors to consider. To its advantage, the wavefront algorithm

is relatively easy to implement. If the terrain map is already in digital form, then it is likely well-suited to a

wavefront approach. Conversion of digital terrain data into a connected planar map of homogeneous-cost

polygons can be a very time-consuming task. On the other hand, we have found that lattice generation

(essentially digitizing) of a weighted-region map is also a time-consuming task, depending upon the

resolution required to capture an acceptable level of detail. Defense Mapping Agency provides terrain in both

digital and planametric (points, lines, areas) forms [Digi88]. However, without data compression, digitized

terrain will generally require more raw storage space than planametric format. Furthermore, many map

objects which may affect cost per unit distance are not easily coded in digital form. For example, the location

of a minefield is usually specified by reference coordinates points and boundary lines.

On the basis of the foregoing results, we can say that the UDPGA* algorithm is generally faster

and more accurate than wavefront propagation. Therefore, UDPGA* provides better competition for path

annealing than wavefront. The recursive wedge decomposition algorithm is also faster and more accurate than

wavefront propagation, though it appears that it is not as time-efficient as UDPGA*. However, wedge

decomposition is guaranteed to find the globally optimal path, whereas UDPGA* can overlook it depending

upon the value of 8. Note that wedge decomposition has only been tested on relatively simple maps (such as

112

Mapl). To determine time and solution quality relationships conclusively, wedge decomposition should be

compared directly to UDPGA* and path annealing on identical machine architectures with identical language

implementations. Furthermore, problem instances should vary over a much larger range of sizes, geometric

situations, and cost coefficients.

2. Testing of Path Annealing vs. UDPGA*

a. Testing ofSmall Problem Instances

Having demonstrated that uniform-discrete-point global A* (UDPGA*) search is faster and

more accurate than wavefront propagation, henceforth, we now focus our attention on path annealing

performance using UDPGA* as our gold standard.

In the case of Mapl, resolution could have been finer (for example, 6=2 or 6=1). However,

we chose 6=3 to be consistent with our studies of the more complex maps. (Even UDPGA* at 6=3 requires

over 24 hours of CPU time to solve all 66 cases for the larger maps.)

The path annealing schedule uses fixed value for T , and uses the cost of the initial A*

solution as T .

• T = cost of initial A* solution

• T = 1.0

• R = .80

• L = 5

• L =4
s

First we consider a comparison of the goodness of solutions as measured by the ratio of solution costs. In

Figure 5.17 we plot the ratio of solution costs of path annealing to UDPGA* as a function of the size of a

problem instance in terms of the number of edges. The inset in this figure indicates some key statistics

computed over the 52 cases. Note that the maximum difference from the UDPGA* solution was less than

5%, and that the majority of points lie on the axis (i.e. at a 1:1 ratio).

113

1.3t

1.2-

1.1-

Cost Ratio
PA / UDPGA*

8.9-

8.8-

8.7-

8.6-

8.5-

Map1

5 = 3

18 28 38
.**-*-

48
t

58 B8 78
Problem Size (Edges)

Mean

1.BB3

Minima
i.pfin

SD

1. 689

Quart lie 1

l.BBB

Quart Dev

e.BBB

Quartile 2

l.BBB

Range

8.848

Quartlle 3

l.BBB

SE aean

B.8B1

Maxima
1.B48

Figure 5.17 Mapl Cost Ratio (Path Annealing/UDPGA*) vs. Problem Size

A major advantage of path annealing is execution time savings. Although we designed path

annealing to be most efficient for larger problem instances, it does surprisingly well even for relatively small

instances. Figures 5.18 and 5.19 are plots of central processing unit (CPU) time required as a function of

problem size for UDPGA* and path annealing. These plots contain the same 52 problem instances compared

to wavefront propagation earlier. However, by not displaying the wavefront data, we are able to expand the

CPU time axis to better show the relationship of path annealing to UDPGA*. Even for these smaller instances

the plots indicate that path annealing has lower average time complexity. To partially confirm this, we again

apply a quadratic least-squares curve fit to each plot. The resultant timing curves are shown in Figure 5.20.

A generalization about the quality of path annealing vs. UDPGA* cannot be made on the basis of these

problem instances, since they are relatively small.

114

300r

250-

200-

CPU
Time 150

(sec)

100

50-

Map1
UDPGA*

8 = 3

Problem Size (Edges)

10 20 30 40 56 60 70

Figure 5.18 Mapl UDPGA* CPU Time Required vs. Problem Size (Edges)

300T

250-

200-

CPU
Time 150

(sec)

1081

50-

."" « '

|Hi!-' ;
,

10 20 30 40 50

Mapl
Path Annealing

Problem Size (Edges)

60 70

Figure 5.19 Mapl Path Annealing CPU Time Required vs. Problem Size (Edges)

115

260--

158-

CPU
Time lee-

(sec)

58-

Map1

Quadratic

Least-Squares

Curve Fit

Problem Size (Edges)

78

Figure 5.20 Mapl Quadratic Least-Squares Curve Fit: CPU Time vs. Problem Size

As a final comparison between path annealing and UDPGA* for Mapl , we plot the solution

cost ratio against time ratio for each problem instance in Figure 5.21. This plot provides a rough indication

of the relative time-cost trade-offs between the algorithms. If we consider the point (1,1) as the origin, then

the four quadrants define classes which categorize test results as good, bad, or in between. A test run which

falls in quadrant I (upper-right) indicates bad path annealing performance since both time and cost ratios

exceed one. On the other hand, a point which occurs in quadrant III (lower-left) indicates good path annealing

performance. Keep in mind that this performance measure is always relative to UDPGA* which does not

guarantee optimal solutions either. However, the fact that a large number of test points reside on the time ratio

axis (i.e. path annealing cost / UDPGA* cost = 1 .0) is a reasonably good indication that many true optimal

paths have been discovered.

116

Cost Ratio

PA/UDPGA. 1.3T

1.2

1.1

0.2 0.4 0.6
-*-

*

0.8

0.9

0.8

0.7

0.B'

0.5-

Map1

6 = 3

— \m m • I 1
I

1.2 1.4 1.6

Time Ratio

PA / UDPGA*

Figure 5.21 Mapl Cost Ratio vs. Time Ratio (Path Annealing/UDPGA*)

b. Testing of Moderately Complex Problem Instances

For the remaining tests we use the standard set of start/goal points defined earlier in this

chapter. Recall that this set generates 66 distinct problem instances. The series of plots introduced in the last

section will be the common basis for discussion of results. In this section we examine the results on Map2

which has over twice as many edges and regions as Mapl. This map will compare performance of the

algorithms at a larger, yet intermediate level of complexity.

In these tests, path annealing solutions are compared to UDPGA* solutions with 5=3 and

5=6. We used the following annealing schedule:

m T = 1.5 x (cost of initial A* solution)

• T = 1.0

• R = .90

• L =15

• L =11
s

Figures 5.22a and 5.22b display cost ratio vs. problem size for comparison of path annealing against

UDPGA* at 5=3 and 5=6 respectively. Although very slight, there is a difference between plots in the

general height of the points above the ;c-axis (where cost ratio = 1). This is reflected by the small difference

117

in mean cost ratio between the plots as observed in the inset statistical summaries. We should expect this

since UDPGA* resolution is relaxed. Note also that the quartiles (in statistical summary insets of Figures

5.22a and 5.22b) are very small for both point sets, because the majority of the points rest very close to or on

the x-axis. We attribute tiny deviations to rounding errors accumulated during total path cost computation

more so than physical deviation from an optimal path.

1.3t

1.2-

1.1-

Cost Ratio
PA /UDPGA*

8.9-

8.8-

8.7-

8.6-

8.5-

* » wf w* J.Jm , f-4-—fc ! »

25 58 7T 188 125

Map 2

6 = 3

.58 175 288

Problem Size (Edges)

Mean

1.807

SD Quart Dev

B.B19 B.BB3

Range

B.89B

Minim* Quartile 1 Quartile 2 Quartile 3

0.988 1.800 1.080 1.865

SE aean

8. 802

Max i bub

1.878

Figure 5.22a Map2 Cost Ratio (Path Annealing /UDPGA*) vs. Problem Size (Edges)

1.3-

1.2-

1.1-

Cost Ratio
PA /UDPGA*

8.9-

8.8-

8.7-

8.6-

8.5-

Map 2

5 = 6

'»» almm mm . ».i. Jjfe >» / *
i

"

25 58 5 "188 125 158 175 288

Problem Size (Edges)

Hean

1.BB4

SD

0.015

Quart Dev

000

Range

0.101

SE aean

0.802

Hinlaua Quartile 1

B.978 1.000

Quart 1

1

e 2 Quartile 3

000 1.800 1.879

Figure 5.22b Map2 Cost Ratio (Path Annealing /UDPGA*) vs. Problem Size (Edges)

118

The difference in means between 6=3 and 5=6 is so small that the Figures 5.22a and 5.22b

do not adequately show how the value of 5 can impact on the solution quality of UDPGA*. To see this effect,

we executed UDPGA* on the same 66 problem instances in Map2 for 5=12. Figure 5.23 is a plot of the cost

ratios for solution cost ofUDPGA* at 5=12 over cost at 5=3. This figure shows that solution quality degrades

significantly as 6 increases.

1.3i Map 2

1.2- 6=12/6=3

Cost Ratio
1 * 1 '

B
.

UDPGA* at

6=12/5=3
_-»ir" t : ." - - i- l

'
i

25 58 75 188" "125 158 175
6.9- Problem Size (Edges)

8.8

8.7- Mean

1.013

SD Quart Dev Range SE aean
9 033 0.005 9 244 0.004

8.6-
M i n ilium Quart ile 1 Quart He 2 Quart He 3 Haxlaua

8.5
0.975 1.000 1.002 1.010 1.219

Figure 5.23 Map2 UDPGA* Cost Ratio (6=12 / 6=3) vs. Problem Size (in Edges)

The next set of plots (Figures 5.24 through 5.27) show the effects of varying 5 (resolution) on CPU time.

Recall that 5 defines the upper bound on the distance between edge-points. As we expect, the time required

for UDPGA* at 6=6 is less than that required at 5=3. Comparison of the quadratic curve fits (Figure 5.28)

shows the effect of increasing UDPGA* resolution. The dotted lines indicate that doubling resolution (i.e.

halving the value of 6) results in a four-fold increase in the execution time requirement.

119

CPU
Time

(sec)

25B8-T

2888 -

1589 -

1600 -

500 -

Map 2

UDPGA*

8 = 3

Size (Edges)

25 59 75 199 125 150 175 299

Figure 5.24 Map2 UDPGA* at 8=3: CPU Time Required vs. Problem Size (Edges)

CPU
Time

(sec)

2500

2000

1500

1000 -

500-

Map 2

UDPGA*

6 = 6

Problem Size (Edges)
. «. t%rft «t
25 58 75 100 125 150 175 200

Figure 5.25 Map2 UDPGA* at 5=6: CPU Time Required vs. Problem Size (Edges)

CPU
Time

(sec)

2500-r

2000-

1509

1006

500+

Map 2

UDPGA*

5 = 12

Problem Size (Edges)
L«_e» «• *"\- *-"'"

i.

' r
25 50 75 100 125 150 175 200

Figure 5.26 Map2 UDPGA* at 5=12: CPU Time Required vs. Problem Size (Edges)

120

CPU
Time

(sec)

2508-r

2880 -

1500

1000 -

580

Map 2

Path

Annealing

25
+*' «V

50 75 100 L2T

* • .

150

Problem Size (Edges)

175 200

Figure 5.27 Map2 Path Annealing CPU Time Required vs. Problem Size (Edges)

Quadratic

Least-Squares

Curve Fit

25 56 75 180 125 150 175 280

Figure 5.28 Map2 Quadratic Least-Squares Curve Fit for CPU Time vs. Prob Size

121

Finally, consider Figures 5.29 and 5.30 which are the cost-ratio vs. time-ratio plots when 5=3

and 5=6 respectively. For 5=3 more points reside further to the left, which is consistent with the overall

increased time requirement for UDPGA*. However, the cost ratios change very little between 5=3 and 5=6.

For path annealing, this cost-ratio stability between UDPGA* resolution changes can be attributed to a high

rate of success by initial crude A* search in locating the optimal-path-containing window sequence or one

which is close to it. In the following subsections, we shall examine the results of tests for which the initial

crude A* search is not quite as successful. This will expose a weakness of path annealing - its dependence

on good starting solutions.

Cost Ratio 1.3

PA / UDPGA* „
1.2

1.1

-J~Kv<
b.:

—* !>
8.4 8.8 8.8

8.9

0.8

8.7

8.8

8.5-

1.2

Map 2

5 = 3

1.4 1.6

Time Ratio

PA / UDPGA*

Figure 5.29 Map2 Cost Ratio vs. Time Ratio (Path Annealing/UDPGA*) 5=3

Cost Ratio 1-3

PA / UDPGA*
1.2

1.1

8.2
r

I
*

j
. .«. t. . I . m.

8.4 0^. 6 8.8

0.9

0.8

0.7

0.6

0.5

Map 2

5 = 6

1.2 1.4 1.8

Time Ratio

PA /UDPGA*

Figure 5.30 Map2 Cost Ratio vs. Time Ratio (Path Annealing/UDPGA*) 5=6

122

c. Testing Real Terrain

In this section we present the results of tests conducted on Map3 and Map4 which model

actual terrain. These maps have about three times the number of edges and regions as Mapl. It is important

to realize that the cost functions in these maps are relatively smooth because they approximate the cost of

movement as determined from real elevation and vegetation data. In addition to the large reservoir, there are

also cost coefficient differences between the maps which account for seasonal changes in trafficability.

However, we have assumed that regional topology remains unchanged from wet to dry season. We have not

superimposed tactical data that might induce drastic cost differentials across boundaries, although the

elevation data does tend to cause such in a few locations. In these maps we set 5=3 to achieve relatively high

quality UDPGA* solutions. The path-annealing schedule is adjusted somewhat to account for longer window

sequences which will result from the complexity in these maps. We have extended the annealing chain length

and cutoff to 20 and 15 respectively:

• T = 1.5 x (cost of initial A* solution)

• T = 1.0

• R = .90

• L =20

• L =15
s

Figures 5.27 and 5.28 are plots of cost ratio as a function of problem size for runs on Map3

and Map4 respectively. In both maps path annealing does reasonably well for such complex maps. It is

interesting to note that there does not appear to be any significant decrease in solution quality for path

annealing as the size of problem instances increases. Furthermore, if we assume for a moment that 6=3 is a

fine enough resolution to ensure that UDPGA* does not overlook an optimal path, then all but a few of the

path annealing solutions fall within a 5% margin of error. We attribute this behavior to the success of the

crude initial A* search which often finds a window sequence in the vicinity of the optimal path. We

emphasize that the success of path annealing is often dependent on the power of this initial crude systematic

search.

123

1.3t

1.2-

1.1-

Cost Ratio

PA/UDPGA*

8.9-

8.8-

8.7-

B.6-

8.5-

Map 3

5 = 3

*
58

ii. . »^.» . < j^ »*»
188 158 288 258

XL
388 358

Problem Size (Edges)

Hean SD Quart Dev Range SE aean

1.0B7 8.821 8.002 8.129 0.663

[lninun Quartile 1 Quartile 2 Quartile 3 Naxiiui

8.988 1.888 1.688 1.865 1.189

Figure 5.31 Map3 Cost Ratio (Path Annealing/UDPGA*) vs. Problem Size (Edges)

1.3t

1.2-

1.1-

Cost Ratio

PA / UDPGA*

8.9}

8.7-

8.6-

8.5-

Map 4

5 = 3

-»• W« m»
58 188

..
'

r * . -••

—

f—«. ««

288 258 388 358

Problem Size (Edges)

Mean SD Quart Dev Range SE aean

1.886 8.817 8.082 0.118 0.002

Minima Quartile 1 Quartile 2 Quartile 3 Haxlaui

0.980 1.000 1.008 1.084 1.098

Figure 5.32 Map4 Cost Ratio (Path Annealing/UDPGA*) vs. Problem Size (Edges)

Algorithm timing comparisons on Map3 and Map4 yield similar results. Therefore, in

Figures 5.33 and 5.34 we present only the plots for Map4. The important difference from what we have

already viewed is the fact that these time plots provide empirical evidence of average time complexities for

124

very large problem instances (300+ edges) without extrapolation. Another quadratic curve fit (Figure 5.35)

shows that path annealing timing requirements rise very slowly and are almost linear as a function of the

problem size. The reason for this behavior is that the annealing algorithm is a random sampling mechanism

whose annealing schedule predetermines to a large extent its running time. The reason why these timing

results actually do vary with problem size is that the general length of window sequences determines how

quickly the locally optimal path can be found. Longer WS's require somewhat more time. Larger problem

instances will generally have to optimize longer WS's.

CPU
Time

(sec)

4088-1-

3588-

3888-

2588-

2888-

1588-

1808-

588-

-U-
58 188 158 288 258

Map 4

UDPGA*
6 = 3

Problem Size (Edges)

388 358

Figure 5.33 Map4 UDPGA* CPU Time Required vs. Problem Size (in Edges)

CPU
Time

(sec)

4888

3588

3888

2580

2888

1588

1800

588

Map 4

Path

Annealing

-U-
i *

58 108 150 208 258 388

v. Problem Size

(Edges)
358

Figure 5.34 Map4 Path Annealing CPU Time Required vs. Problem Size (in Edges)

125

CPU
Time

(sec)

2800--

1508-

1000-

508-

UDPGA*

8 = 3

Map 4

Quadratic

Least-Squares

Curve Fit

Problem Size (Edges)

350

Figure 5.35 Map4 Quadratic Least-Squares Curve Fit: CPU Time vs. Problem Size

The cost-ratio vs. time-ratio plots in Figures 5.36 and 5.37 (for tests on Map3 and Map4

respectively) reflect the reduced CPU time requirement of path annealing. The few points which remain to

the right of the cost-ratio axis (time-ratio = 1) correspond to the smallest problem instances. Also, note that

almost no path annealing runs significantly improve the optimal cosL As demonstrated in the next section,

this is usually a good indication that the UDPGA* solutions are optimal. The reason is that when UDPGA*

overlooks true optimal solutions, some path annealing runs usually discover a few better solutions (even

optimal) than those returned by UDPGA*. The result will be a few points which dip below the time-ratio axis

(cost-ratio =1).

126

Cost Ratio 1.3

PA/UDPGA^
2

l.i

8.2" 8.4 8.6 8.8

0.9

8.8

8.7

8.6

8.5

Map 3

5 = 3

1.2 1.4 1.6

Time Ratio

PA / UDPGA*

Figure 5.36 Map3 Cost Ratio vs. Time Ratio (Path Annealing/UDPGA*)

Cost Ratio 1.3

PA / UDPGA*
1.2-

1.1

X >» ! »>» — • !

8.2 8.4 8.6 8.8

8.9

8.8

0.7

0.6

0.5-

Map 4

5 = 3

1.2 1.4 1.6

Time Ratio

PA /UDPGA*

Figure 5.37 Map4 Cost Ratio vs. Time Ratio (Path Annealing/UDPGA*)

As a final comparison, we present the physical locations of the solution paths returned by the

algorithms. Figure 5.38 and 5.39 illustrate the test maps with all solution paths drawn between respective

start/goal points. We provide these pictures merely as a visual demonstration to show that the location and

shape of annealing solution paths compare favorably with those of UDPGA*. The majority of the solution

paths are identical. A few solutions have slight physical differences which have little impact on corresponding

total path-cost

127

Figure 5.38 Map4 Solution Paths Found by UDPGA*

Figure 5.39 Map4 Solution Paths Found by Path Annealing

128

d. Testing Maps with Highly-Variable Cost Coefficients

The next series of tests is designed to determine how well path annealing performs on maps

with generally hilly cost functions. To some extent, these tests indicate the kind of performance we might

expect if we were to model extremely complicated tactical situations with a variety of overlapping and

interacting cost coefficients (as discussed in Chapter I). Recall that for Map5, Map6, and Map7 we have

randomly assigned region cost coefficients drawn respectively from the three sets: (1,2,3,4,5,6,7,8,9,10},

{ 1,3,5,7,9} , { 1,4,7} . Therefore, we describe the general character of each map as follows:

• Map5 - uniformly choppy; many shallow local minima

• Map6 - choppy but irregular; deeper local minima

• Map7 - high cost peaks and deep valleys; several very deep local minima

For this set of tests we have again chosen 5=3 for the uniform-discrete-point global A* (UDPGA*) search

algorithm. We modify the path-annealing schedule to conduct a more thorough local search at each

temperature by raising the reduction factor R slightly. We also start at a somewhat higher temperature to

delay the onset of freezing, and hopefully, to enable the annealing algorithm to climb out of deeper local

minima. The new schedule is as follows:

• T = 2.0 x (cost of initial A* solution)

• T =1.0

• R = .92

• L =20

• L =15
s

We expect that larger numbers of deeper local minima will severely tax the ability of path annealing

algorithm to find good solutions. This conjecture is partially confirmed by the cost-ratio vs. problem size

plots in Figures 5.40 through 5.42. While path-annealing solution quality on Map5 is somewhat worse than

it was for smoother maps, we can see a noticeable trend going to Map6 and Map7 as more points wander

higher above the Jt-axis. On the other hand, several points below the x-axis indicate that UDPGA* also has

difficulty finding true optimal solutions. The fact that more points lie above than below the *-axis is

reasonable since we consider UDPGA* our gold standard, and because it is a systematic search which looks

everywhere a with finite resolution.

129

Cost Ratio

PA / UDPGA*

1.3

1.2

1.1 -

0.9

8.8

8.7

6.6

0.5

58 188 158 288 258 388

Map 5 5 = 3

Problem Size

~3se (Edges)

Hean

1.830

SD Quart Dev

.855 8.818

Range SE lean

8.231 8.887

Hiniiia Quartile 1 Quart i 1 e 2 Quart i le 3 Haxiiia

8.993 1.888 1.888 1.835 1.224

Figure 5.40 Map5 Cost Ratio (Path Annealing/UDPGA*) vs. Problem Size (Edges)

Cost Ratio

PA / UDPGA*

1.3t-

1.2 -

1.1-

8.9 -

8.8 -

8.7 -

8.6 -

8.5 -

Map 6 5 = 3

Problem Size

58 188 159
""":

-.2e0 . 258 -.388 358 (Edges)

Hean

1.834

SO Quart Dev

.187 8.812

Range

B.765

Niniiui Quartile 1 Quartile 2 Quartile 3

8.912 i.eee i.bbb 1,823

SE lean

8.813

Max ilia

1.677

Figure 5.41 Map6 Cost Ratio (Path Annealing/UDPGA*) vs. Problem Size (Edges)

Cost Ratio

PA / UDPGA*

1.3-r

1.2 -

1 .1

8.9 -

8.8 -

8.7 -

8.6 -

8.5 -

58 "Tee" 158 288 258 388

Map 7 5 = 3

Problem Size

^350 (Edges)

Figure 5.42 Map7 Cost Ratio (Path Annealing/UDPGA*) vs. Problem Size (Edges)

130

Although the solution cost from path annealing is significantly more than UDPGA*, we

emphasize the following two points. First, as mentioned earlier, simulated annealing in general does not

perform well on search spaces whose cost functions have many deep local minima. The reason is that such

deep valleys more easily trap the annealing algorithm, preventing it from sampling other areas of the space.

Second, in these tests we anneal from a single initial solution. If this solution lies within a deep local

minimum, then path annealing might not be able to escape. Raising the starting temperature is one way to

prevent such behavior. However, we believe that this is not the most effective use of time in a simulated-

annealing approach to route-finding. Limited testing indicates that better performance can be achieved for

minimal time penalties by using the tunneling approach discussed in Chapter IV. Instead of annealing from

a single deterministic initial solution, it is more advantageous to begin from several which are physically

scattered around the map. Our concept of crude (boundary-edge midpoint) A* searches can serially find

several such paths relatively quickly. However, more efficient methods for doing so in a single sweep should

be investigated.

An analysis of the CPU time vs. problem size once again illustrates a significant time

advantage for path annealing, even with the annealing schedule modified to search more thoroughly (see

Figures 5.43 through 5.51). With regard to the UDPGA* algorithm, we can identify an interesting trend in

the point spread going from smooth cost coefficients to very rough. Consider the UDPGA* timing results

illustrated in Figures 5.33, 5.43, 5.46, and 5.49, corresponding to Map4 through Map7. We can see more point

scatter as the cost coefficients become more varied. There is also a general downward movement of all points,

indicating that the average time complexity of UDPGA* improves with rougher cost functions. We can

attribute each behavior to an increase in the number of deep local minima, and an indication of bounding

constraint effectiveness. Recall that both algorithms conduct crude initial A* search for an initial solution.

The UDPGA* uses this solution only to compute the bounding ellipse which can sometimes prune a large

amount of search space. If the crude initial A* search locates a deep local minimum then the bounding ellipse

will be tight The spreading of points shows that some bounding ellipses are small enough to dramatically

reduce the work of UDPGA*. Path annealing can also be improved with this bound. However, these

improvements are reflected more in path-annealing solution optimality and not so much in CPU time

requirements, which are more sensitive to the annealing schedule.

131

4888

3588

3888

CPU 2588

Time 2888

(sec) 1588

1888

588

Map 5

UDPGA*

8 = 3

f .*•"

58 188 158 288 258

Problem Size (Edges)

368 358

Figure 5.43 Map5 UDPGA* CPU Time Required vs. Problem Size (in Edges)

CPU
Time

(sec)

4888

3588

3888

2588

2888

1588

1888

588

Map 5

Path

Annealing

.*. - <. •
58 188 158 288 258

Problem Size (Edges)

388 358

Figure 5.44 Map5 Path Annealing CPU Time Required vs. Problem Size (in Edges)

CPU
Time

(sec)

2689-

1500-

1000-

500-

UDPGA*

8 = 3

Map 5

Quadratic

Least-Squares

Curve Fit

Problem Size (Edges)

358

Figure 5.45 Map5 Quadratic Least-Squares Curve Fit: CPU Time vs. Problem Size

132

CPU
Time

(sec)

4000-r

3589 -

3080 -

2500-

2999 -

1500 -

1080 -

500 -

Map 6

UDPGA*

8 = 3

50 108 158 200 250

Problem Size (Edges)

300 350

Figure 5.46 Map6 UDPGA* CPU Time Required vs. Problem Size (in Edges)

CPU
Time

(sec)

4900

3500

3000

2599

2999

1500

1000

500

Map 6

Path

Annealing

.*
,

:** «*•» .<«*/.
... Problem Size (Edges)

50 100 150 200 250 300 350

Figure 5.47 Map6 Path Annealing CPU Time Required vs. Problem Size (in Edges)

CPU
Time

(sec)

2008+

1508-

1008-

500-

UDPGA*

5 = 3.

Map 6

Quadratic

Least-Squares

Curve Fit

Problem Size (Edges)

50 180 158 200 250 300 350

Figure 5.48 Map6 Quadratic Least-Squares Curve Fit: CPU Time vs. Problem Size

133

CPU
Time

(sec)

4888-r

3588-

3808 -

2588 -

2808 -

1588

1888

588

Map 7

UDPGA*

8 = 3

»c» . %**»-

58 188 158 288 258 388

Problem Size

-?5B (Edges)

Figure 5.49 Map7 UDPGA* CPU Time Required vs. Problem Size (in Edges)

CPU
Time

(sec)

4868

3588

3808

2508

2808

1500

1000

500

Map 7

Path

Annealing

50 100 158 280 250 300

Problem Size (Edges)

350

Figure 5.50 Map7 Path Annealing CPU Time Required vs. Problem Size (in Edges)

CPU
Time

(sec)

1750

1580

1250

1080

750

560

250

UDPGA*

8 = 3

Map 7

Quadratic

Least-Squares

Curve Fit

Problem Size (Edges)

350

Figure 5.51 Map7 Quadratic Least-Squares Curve Fit: CPU Time vs. Problem Size

134

The cost-ratio vs. time-ratio plots in Figures 5.52 through 5.54 are consistent with the

foregoing discussions of optimality and time. We see a general trend in favor of the UDPGA* algorithm as

the number of deep local minima in the cost function increases (from Map5 to Map7). However, note that in

Figure 5.54 for Map7 there are several very low points. As implied earlier, these indicate that even UDPGA*

is having trouble finding the true globally optimal path. To fix this problem, one must decrease the value of

8 to increase resolution. However, recall that the CPU time requirement reciprocates as the square. Yet, in

less time we may be able to run a path-annealing schedule set for more thorough local search, and we may

also anneal from multiple starting solutions.

Cost Ratio

PA / UDPGA*
1.3-r

1.2

1.1

8.2 8.4 0.6 8.8

8.9

0.8

8.7

8.6

8.5

Map 5

5 = 3

1.2 1.4 1.6

Time Ratio

PA / UDPGA*

Figure 5.52 Map5 Cost Ratio vs. Time Ratio (Path Annealing/UDPGA*)

: e.2

Cost Ratio

PA /UDPGA*
1.3-r

k

1.2

1.1

8.4 8.6 8.8

8.9

8.8

8.7

8.6

8.5

Map 6

8 = 3

1.2 1.4 1.6

Time Ratio

PA / UDPGA*

Figure 5.53 Map6 Cost Ratio vs. Time Ratio (Path Annealing/UDPGA*)

135

Cost Ratio }.3

PA /UDPGA*
1.2

1.1

8.2
i

t ^A
8.4 8.B 8.8

8.9

8.8

8.7

8.6

8.5

Map 7

5 = 3

1.2 1.4 1.6

Time Ratio

PA / UDPGA*

Figure 5.54 Map7 Cost Ratio vs. Time Ratio (Path Annealing/UDPGA*)

e. Testing of a Difficult Problem Instance

As a final test of path annealing behavior, we have selected one particular problem instance

for which path annealing appears to overlook the globally optimal path fairly often. This problem instance is

on Map6 for start point (15,80) and goal point (80,50). The shortest midpoint path-cost (returned by the initial

A* search) is 239.5 weighted units, while UDPGA* (at 8=3) indicates that the optimal solution cost is 186.9

weighted units. Repeated runs have discovered window sequences (WS) with locally optimal path-cost values

throughout the range (186.9...239.5).

We applied path annealing 400 times on this problem instance. The freezing temperature (7\),

reduction factor (R), annealing chain length (L), and cutoff (L) values were fixed at 1.0, 0.92, 20, and 15

respectively. We used eight different starting temperatures, and 50 runs were conducted for each starting

temperature. These results are summarized in Figure 5.55. This plot indicates the percentage of runs (out of

50) that path annealing returns the optimal path (cost = 186.9) as a function of the starting temperature. The

chart shows that for this particular problem instance, it is more advantageous to begin annealing from a lower

starting temperature. The reason for this is that the initial A* search returns a midpoint path which represents

a high speed corridor containing the global optimum. Higher temperatures allow the annealing process to

easily wander out of this corridor. Recall that since Map6 is very hilly, many relatively deep cost-function

valleys exist. Once out of the corridor corresponding to the initial solution, decreasing temperature may

136

prevent annealing from returning to it. In such cases, if annealing did not discover the optimal solution while

inside this corridor, then it will setUe for a non-optimal solution within some other corridor.

It

%
Optimal

Solutions

Found
(in 50)

8.8

8.6-

8.4-

2.2-

58 160 158 288 258

Starting
Temperature

To

Figure 5.55 Percentage of Optimal Solutions (out of 50) vs. Starting Temperature T

This behavior lends support for the tunneling ideas proposed in Chapter IV, Section C.3.C

Recall that the basic concept of tunneling is to locate a set of initial window sequences representing different

high speed corridors, and permit annealing to search each corridor more intensively by starting at lower

temperature. This method redirects the time necessary to climb out of and move between corridors. Instead,

this time can be devoted to more thorough searching of high speed corridors which have the most potential

to contain optimal solutions. For this particular problem instance, Figure 5.56 provides an indication of the

wide range of solutions on which path annealing can settle. This figure represents a list of all final solutions

sorted by cost for over 400 runs of the path annealing algorithm on this problem instance. Note that even

though the starting temperatures vary, path annealing found the globally optimal solution (cost = 186.9) in

over 33% of these runs, and found better solutions than initial A* (cost = 239.5) in over 75% of the runs.

137

250t

249

2384

«- 2204
V)
o
° 218

288--

190-

Initial A* Midpoint Solution Path-Cost (239.5)

Globally Optimal

Solution Cost (186.9)

100 200 300 400

Final Path Annealing Solutions Sorted by Cost

Figure 5.56 Final Path Annealing Solutions Sorted by Cost for Multiple Runs on a

Particular Problem Instance (Start [15,80], Goal [80,50], Map6)

138

VI. CONCLUSIONS

A. SUMMARY OF SIGNIFICANT RESULTS

In this dissertation we have proposed a stochastic algorithm, path annealing, to solve the weighted-

region problem (WRP), in particular, for large complex problem instances. Based primarily upon the

combinatorial optimization technique known as simulated annealing, path annealing employs systematic and

local search in coordination to obtain good initial solutions that can improve over time. Since the algorithm

is a local search of complete solutions, there are more opportunities to establish and update bounds on the

globally optimal solution. Furthermore, we have designed additional spatial constraints and heuristic

enhancements to reduce search space and increase the performance of path annealing to an extent that it

becomes competitive with other approaches to the WRP. We have implemented and tested a prototype of this

algorithm on maps with over 300 boundary edges and 100 weighted-regions.

We believe that path annealing is a practical approach to weighted-region path planning in a military

setting in which region cost coefficients may model many battlefield parameters. In our review of various

path-planning implementations, we have seen evidence that large problems overwhelm agenda mechanisms

used by systematic techniques such as A* and uniform cost search. Our approach represents an attempt to

focus the strengths of both local search and systematic search to solve a relatively difficult problem in a

reasonable amount of time.

Our investigation of current algorithm implementations reveals that grid-based wavefront propagation

appears to be the only one capable of handling the complexity of our test maps. Recall that this algorithm's

uniform cost search and resulting grid-biased solutions hamper both efficiency and solution accuracy. In

order to provide a faster, more accurate algorithm to compete with path annealing, we designed and

implemented uniform-discrete-point global A* (UDPGA*) search. It appears that this algorithm may also be

significant, since it too is a new approach for solving the weighted-region problem (WRP). It represents a

wavefront propagation approach which employs an adaptive grid that conforms to the geometry of the

homogeneous-cost regions, and essentially forms a visibility graph. With the addition of the single-path-

relaxation technique for finding the locally optimal path in a window sequence, and a few heuristic

improvements, UDPGA* search often finds an optimal path with very good accuracy. While empirical

139

execution times are significantly greater than path annealing, they would quite likely be much lower than

grid-based wavefront propagation.

B. ALGORITHM STRENGTHS AND WEAKNESSES

1. Strengths

Test results indicate that for non-trivial problem instances path annealing has faster average

execution times than uniform-discrete-point global A* (UDPGA*) search. Also, the path-annealing time

advantage appears to increase as problem instances become larger in size. Both algorithms use Snell's Law

to optimize within the window sequence determined to contain the optimal path. Therefore, compared to grid-

base wavefront propagation, path annealing and UDPGA* final solutions can be more accurate, since they

avoid the digital bias problem associated with an orthogonal grid. Furthermore, for similar resolutions, we

believe that the solutions found by UDPGA* are likely much closer to true optimal than will be those found

by wavefront propagation. In this regard, path annealing solutions are also accurate. However, their nearness

to true optimal can be both much worse and much better than UDPGA*.

Significant advantages result from the fact that path annealing examines only complete solutions.

This gives the algorithm the potential to discover and cache many good routes between a given start and goal.

Furthermore, additional opportunities occur to update the upper bound on the optimal solution cost, which

controls the size of the bounding ellipse. Solution quality tends to improve over time after the establishment

of the initial solution. In time-constrained circumstances, we can abort path annealing prematurely and accept

the best known solution. This cannot be done with systematic search techniques because they produce a final

solutions by constructing and comparing many smaller partial solutions.

Since path annealing is probabilistic, its results are non-deterministic. Multiple runs of the same

problem instance may return different solutions. Even if two runs return identical solutions, the sequence of

states processed to reach those solutions are almost never identical. Therefore, every run has the potential to

discover other good routes between designated start and goal. This behavior can be exploited by parallel

execution on multiple processors, to which path annealing is easily adapted. Recall from Chapter IV that by

constraining the A* search in various ways, we can force it to locate several initial solutions corresponding

to different high-speed corridors. Since each processor begins from a different initial solution, we are able to

increase efficiency by annealing at lower starting temperatures, and, at the same time, we broaden coverage

of the search space.

140

Many spatial constraints and heuristics are available to reduce search space and improve execution

times. Some of these are annealing-specific, while others are useful for local search techniques which

examine complete solutions. We have also developed shortcutting analysis and critical-angle analysis. These

are general spatial constraints which can be used by most other weighted-region problem algorithms.

2. Weaknesses

Apparently no practical WRP algorithm can provide an absolute guarantee of finding a globally

optimal path. However, systematic approaches can effectively upper bound the error if the optimum is

overlooked. For example, the total cost of an 8-neighbor grid-based wavefront propagation solution can be

no more than 1.08 of true optimal solution cost. We emphasize that while execution times can be more

practical, the cost of a path annealing solution is bounded above by a function of the initial A* solution cost.

This represents a weaker upper bound, since this is restricted to midpoint paths. While improvements can be

made by increasing the resolution of the initial A* search, tests on UDPGA* indicate that execution times

will rise quite rapidly.

To obtain good results from path annealing requires some general knowledge of the topology and

cost function of the map. Input maps should have reasonably balanced resolution, devoid of boundary edges

which are unusually long in relation to neighboring edges. Regions should not be extraordinarily narrow.

Recall that improper window sequences involving the multiple crossing of such edges and regions may not

be reachable by the simple move generator we have designed. A more elaborate move generator might

remove this restriction. However, this may also increase the time required to generate the next window

sequence.

Path annealing appears to work best on maps with smoother cost functions. This comes as no

surprise since simulated annealing reportedly performs best in such search spaces [John90]. Hilly cost

functions increase the risk of prematurely freezing the annealing process in a bad local minimum. On the other

hand, hilly cost environments appear to require higher resolution of the UDPGA* algorithm in order to obtain

solutions nearer to true optimal. In turn, this results in much longer running times. Though the general

performance of path annealing in such maps tends to be worse, it can still find a few dramatically better

solutions in less time.

Good algorithm performance can be sensitive to the annealing schedule. There are many ways to

establish good annealing schedules. We have suggested some primitive methods on the basis of current

annealing and WRP research. But, our testing does not attempt to determine how best to establish annealing

141

schedules. Instead, we used our own judgement based upon experience with the test maps. However, in most

cases, establishment of an annealing schedule must be done empirically or with some knowledge of the search

space.

Finally, even with the combination of simulated annealing, A* search, relaxation, bound

construction, and heuristic improvements, the path annealing algorithms still only solves a single problem

instance for a specific start/goal pair.

3. Strengths of Uniform-Discrete-Point Global A* (UDPGA*) Search

We have focused on the advantages and disadvantages of path annealing. However, we believe

that the uniform-discrete-point global A* search algorithm provides fairly stiff competition for path

annealing. We reemphasize that UDPGA* search has a few advantages of its own over grid-based wavefront

propagation. Since it employs an adaptive grid similar to a visibility graph, it is capable of more accurate

solutions than orthogonal-grid-based wavefront propagation. Although we have not made direct comparisons,

we conjecture that UDPGA* would be generally faster than wavefront propagation because it is not uniform-

cost search, and therefore does not search in simulated time increments. Furthermore, UDPGA* preserves the

ability to adjust resolution through the establishment of edge-points spaced at a discrete upper bound, 8.

Finally, unlike wavefront propagation, UDPGA* actively searches and detects reentrant-path-containing

solutions.

C. SUGGESTED FUTURE DIRECTIONS

1. Path Annealing Improvements

Our primary focus in this work has been to establish that a simulated-annealing approach to the

weighted-region problem (WRP) is both feasible and practical. In designing a working implementation, we

took steps to streamline particular aspects of the algorithm, such as cost function evaluation and move

generation. In doing so, we designed several methods for extracting performance improvements and we have

suggested several others. However, there are surely other techniques for driving these components which

might be more efficient or more thorough. In particular, more sophisticated move operators could be

developed by relying more heavily on efficient random access data structures (such as arrays). Prolog dictated

our use of list-oriented data structures.

The Snell's-Law table lookup could also be improved. Recall from Chapter III that this technique

reduces ray-tracing to constant-time table interpolation for a single crossing episode, so that an iterative

142

coordinate descent method (single-path relaxation) can find the locally optimal path. The table could be

extended to compute two or more crossing episodes. This might increase the efficiency of single-path

relaxation, particularly for longer window sequences.

The spatial nature of the weighted-region problem suggests that several undiscovered geometric

heuristics may still exist. In particular, the idea of a bounding ellipse originally suggested by [Rich87] and

[Pear84] appears to have potential. We have improved the technique and heuristically extended its usefulness

(e.g. |i
+
-ellipse). However, there are other interesting possibilities. For example, some form of crude

bidirectional search might quickly ouUine a general elliptical but irregular boundary which contains the a

global optimal path.

The determination ofgood annealing-schedule parameter values is another aspect of the algorithm

which may deserve more attention. However, recall that path annealing employs the power of A* search as

well as local search. Therefore, we believe that good performance of path annealing may not be as sensitive

to the annealing schedule as the need to obtain good general coverage of the map. This might be done by

designing a more elaborate move generator. Another way is to find a good set of initial solutions to use as a

basis for tunneling at lower annealing temperatures. We have suggested that several crude A* searches could

be used to find this set. However, some limited or modified algorithm to find the first k shortest paths might

do this more efficiently [Yen71].

If parallel processing is available, then a horizontal asynchronous scheme for path annealing

would require a set of different starting solutions. Each processor would draw one initial solution out of this

set from which to begin annealing at a low starting temperature. Such a parallel scheme could proceed with

very little communication overhead. Annealing can also be parallelized in a vertical sense. Move operator and

cost function evaluation algorithms could be redesigned for parallel execution. The ideas for local

asynchronous iterative parallel procedures (LAIPP) first proposed and implemented by [Smit88] and later

implemented for a transputer by [Garc89] have already laid some of that groundwork.

2. Extensions to Other Route Planning Applications

In his work on shortest paths in three-dimensional space, [Akma87] proposed that Monte Carlo

algorithms may constitute the only reasonable means of solving intractable path-planning problems

associated with higher-dimension space. We share his belief that such algorithms are not always appreciated

by the computer science community. Having demonstrated the feasibility of a stochastic approach to the two-

dimensional weighted-region problem, a logical extension would be to solve a three-dimensional weighted-

143

volume problem. Analogous to aspects of path annealing, the work of [Lewi88] and [Rowe89] attacks this

problem. This implementation finds a sequence of volumes using A* search through volume centroids, then

iteratively improves the path in a manner similar to single-path-relaxation. Follow-on work by [Wren90]

implements random ray-tracing to improve the A* solution paths. However, neither implementation uses

stochastic control.

In practical three-dimensional route planning it is often necessary to consider vehicular

constraints. For example, shortest paths for high performance aircraft differ from those of helicopters because

of turning radius constraints. To account for vehicular direction, extension to a fourth dimensional may be

necessary. Even without weighted volumes, finding optimal paths through fields of obstacles in such search

spaces is another problem for which a simulated annealing approach could be valuable.

Another interesting problem for which annealing might provide significant improvements is one

of locating minimal energy routes through anisotropic terrain [Ross89]. Ideas in this work have inspired some

of our own, particularly those pertaining to definition and representation of the search space. However, we

emphasize that the anisotropic modeling of cost regions precludes a simple translation from path annealing.

In particular, we suspect that a more sophisticated move generation mechanism would be required.

Although we have said that path annealing integrates and coordinates the operations of several

techniques to solve for only a single problem instance, the idea of constructing optimal-path maps [AIex90]

probabilistically remains an interesting question. Particular problem instances have optimal solutions which

appear to be easily found by path annealing. Given a single goal (start), annealing might be capable of

constructing a proposed optimal-path map of these easily found solutions. Call these skeleton paths, that is

suspected (with relatively high probability) optimal paths to several scattered start (goal) locations. The paths

in the skeleton would be assumed optimal until conditions were detected which indicated otherwise. Such

conditions might be the discovery of better paths which cross over one or more of the current skeleton paths.

These conditions would trigger updates to the skeleton. Over time continued annealing would eventually

confirm or correct the skeleton. The algorithm would gradually fill in gaps between skeleton paths and

confirm them until the entire map was complete. The process would essentially learn the optimal-path map

by sampling, assuming, correcting, and confirming.

D. CONCLUDING REMARKS

In this dissertation we have designed, implemented, and tested an efficient path-planning algorithm to

solve the weighted-region problem. This algorithm integrates systematic and local search strategies under

144

stochastic control to obtain solutions which arc optimal or near-optimal. We have demonstrated that an

intelligent, probabilistic approach to the weighted-region problem can obtain faster average execution times

in exchange for the marginal risk of a bad solution. We believe that path annealing represents a successful

endeavor, whose further development and extension to other path-planning problems will be a worthwhile

effort.

145

APPENDIX A - THEOREMS

Definitions:

Planar Straight-Line Graph (PSLG) - a graph which can be embedded in Euclidean ET space without any of

its edges crossing and whose edges are all straight line segments [Prep88]

Monotone PSLG - Consider a PSLG which subdivides Euclidean Er space. A subset of ET is monotone with

respect to the x-axis if the intersection of each region in the subset with any vertical line results in at

most one segment. A subdivision of Er is monotone (with respect to the x-axis) if all of its regions are

monotone [Edel89]. This definition implies that every vertex has degree 2. We relax this definition

slightly by allowing a PSLG to be monotone if any orientation of the reference coordinate system

admits a monotone graph.

Boundary Edge - finite length line defined by two terminating vertices, separating two homogeneous-cost

regions in the map.

Traversable Region or Edge - travel on or within is feasible; cost coefficient p. < <»

Non-Traversable Region or Edge - travel on or within is infeasible; cost coefficient \x = °°; e.g. obstacles and

edges bounding obstacle regions

Crossable Edge - boundary edge between two traversable regions; note that obstacle boundary edges are

traversable but NOT crossable

Border - the outer limits of a finite map beyond which movement is infeasible and cost coefficient p = °°

Border Edge - a single unique non-crossable edge; all edges attached to a border vertex also link to the border

edge; the degree of the border vertex is always > 1.

Edge Chain - connected sequence of vertices such that all vertices have degree = 2, except the first and last

which have degree >

Border Vertex - terminates a traversable edge at the border

Obstacle Vertex - terminates at least one non-traversable edge of an infinite cost region

Interior Vertex - vertex which is not an obstacle or border vertex

Closed Region - traversable region; all boundary edges are traversable

Open Region - traversable region; has at least one non-traversable boundary edge or at least one border vertex

146

Vertex Rotation - move operation defined by shifting window sequence across a neighboring interior vertex,

thereby rerouting it through a different sequence of edges

Adjacent Edge-Pair - two edges which bound a common convex region and share a common terminating

vertex

Non-Adjacent Edge-Pair - two edges which bound a common convex region but do not share a common

vertex

Edge Visibility - edge E and E are visible from one another if and only if for any straight path between

interior points of£ and E all points on the path belong to the interior of the common region bounded

by E and E .

Window Sequence (WS) - any ordered set of boundary edges which a piecewise linear path from the

designated start must cross to reach the designated goal.

Proper Window Sequence - window sequence which does not cross through any region more than once. This

also implies that no edge is crossed more than once.

Improper Window Sequence - window sequence which crosses through at least one region more than once.

Reentrant Window Sequence - improper window sequence which contains at least one reentrant path

Self-Crossing Path - a cyclic path; note that by the Optimality Principle, such paths cannot be globally optimal

Reachable - window sequence WS is reachable from another window sequence WS if and only if there exists

a finite sequence of vertex rotations which transforms WS to WS

n-Reachable - WS is /i-reachable from WS if and only if there exists a sequence of n or fewer vertex rotations

which transforms WS to WS (We also say that WS is an /i-neighbor of WS)

Weighted-Region-Problem Map - a PSLG which satisfies the following constraints:

• All regions are convex polygons.

• All edge-pair interior angles are strictly less than 180 degrees.

• All vertices terminate a minimum of 3 boundary edges.

• All traversable edges are connected.

The following set of theorems are proven for monotone PSLG's. The set of all WRP maps is a more

restrictive class of graphs and is a proper subset of the set of all monotone PSLG's. Therefore, these theorems

also apply to WRP maps. Without loss of generality, we may assume that the infinite non-traversable border

region does not exist, and that edges which would otherwise connect to it extend infinitely. This is not a

problem because locally optimal paths cross such edges at Snell's Law. Since start and goal are well-defined

147

terminal points for all feasible solution paths, then the optimal crossing points on edges which are infinite rays

cannot possibly exist at infinity.

Theorem 3.1:

Consider the set of all proper window sequences (PWS) which cross a monotone edge chain in a finite

PSLG. The edges in the chain partition the set of proper window sequences into disjoint subsets. Each subset

is reachable from the other.

Proof of Theorem 3.1:

The proof is trivial since it is always possible to perform successive vertex rotations in either direction over

the entire length of an edge chain. Therefore, any PWS which can reach one subset can reach all subsets.

QED.

Theorem 3.2:

Given a monotone connected PSLG, it is always possible to remove one monotone edge chain (thereby,

reducing the number of regions by one) and still preserve monotonicity and connectedness.

Proof of Theorem 3.2:

Consider an arbitrary monotone connected PSLG. Since monotonicity implies a well-defined ordering of

regions with respect to the x-axis, then the bottom-most and top-most regions can always be identified.

Without loss of generality, we will remove a chain from the boundary of the bottom-most region, R. Starting

from the left ray, scan right and examine each vertex in sequence which is degree > 2. If no such vertex

exists, then the graph must consist of a single monotone edge chain separating two regions. Merge the

regions by removing this entire chain. Otherwise, find the common chain of edges separating R from its

nearest neighbor above (in the monotonic ordering). This chain must be in one of three classes:

• left ray to right intermediate vertex

• left intermediate vertex to right intermediate vertex

• left intermediate vertex to right ray

We can always identify the terminal locations of this chain by selecting the first vertex of degree > 2 with an

incident edge (not part of the boundary of R) that exits the vertex on the side of a vertical axis through the

148

vertex which opposes our scan direction. This vertex and the last vertex of degree > 2 (or the left ray if this

vertex was the first of degree > 2) are the terminal locations of the chain. Note that the scan may not find a

right vertex with incident edge opposing the direction of scan. In this case, the right ray becomes the right

terminal. The procedure cannot disconnect the graph because vertices defining the chain to be removed are

selected on the basis of incident edges which always have opposing headings with respect to the vertical

axis. Therefore, the chains to which they are connected must be the same, otherwise the graph was not

monotonic to begin with. This means that there will always exist a second chain which links left and right

vertices of the chain to be removed. Therefore, these vertices will still be attached after removal of one

chain. It follows that the graph remains connected. Furthermore, since we always merge the bottom-most or

top-most regions, the PSLG remains monotone. QED.

Theorem 3.3:

If a finite connected PSLG is monotone, and if start and goal he in different regions, then all PWS's are

reachable from any initial PWS.

Proof of Theorem 3.3 (by induction on the number of regions):

(Base case) Consider a monotone connected PSLG with only two traversable regions, where start lies in one

and goal lies in the other. The theorem holds for this case. To see this observe that for any finite number of

vertices in the chain of common edges which separates the two regions, all PWS's are reachable by vertex

rotations along this common chain. (Inductive hypothesis) Assume that the theorem is true for a finite (n)-

region PSLG where start and goal he in different regions. (Induction) Consider an (n+7)-region map.

Arbitrarily select one region, R, to merge with either start or goal-containing region, T. R must satisfy the

following conditions:

• R does not contain the start or goal.

• R shares at least one edge with T.

• All shared edges form a continuous sequential chain, C.

• Removal of C does not destroy monotonicity.

Theorem 3.2 guarantees that at least one chain exists which satisfies these conditions. Merge R and T into a

single region, T, by removing the entire edge chain common to R and T. Let the set of edges in this chain be

C. The resulting map will have n regions. By inductive hypothesis all PWS's in this (n)-region map are

reachable from any initial PWS between start and goal. We claim that all PWS's in the (n+7)-region map are

149

reachable from any initial PWS between start and goal. To see this, first consider the set C. Since C is an

edge chain, then by Theorem 3.1 any PWS that crosses an edge in C can reach any other PWS that crosses an

edge in C. (We will say that such a PWS is C-crossing.) Next, consider all ordered pairings of boundary

edges between R and T (one taken from the R boundary, and one taken from the T boundary) where neither

is in C. For each such pair, all non-C-crossing PWS's containing this pair in the (n+7)-region map must be

reachable by inductive hypothesis. For each such pair, all C-crossing PWS's containing this pair in the

(n+7)-region map correspond to the same PWS's in the (n)-region map where the edge in C has been

removed. This one-to-one correspondence between (n)-region and (n+7)-region PWS classes means that

removal of the edge chain C does not change the total number of PWS's. Since the inductive hypothesis

guarantees that all PWS's in the (zi)-region map are reachable, then it follows that all PWS's in the (n+1)-

region map must also be reachable. QED.

Definitions:

G - an arbitrary globally optimal path

R. - homogeneous cost region i

[i. - cost coefficient assigned to region /

E.-E- edge-pair consisting of £.and E

p.- arbitrary interior point on p. (i.e. not a vertex)

p. - arbitrary interior point on p (i.e. not a vertex)

a - interior angle formed by an edge-pair

P - clockwise perimeter bypass path

P - counterclockwise perimeter bypass path

Theorem 4.1:

In Figure A.l consider the edge-pair E -E which bounds high-cost region R whose cost coefficient is (i_.

Lei f(p j)) be the function which maps all pairs of interior points p. and p between edge-pair E -E to the

maximum of the two ratios P Id and P Id, where P and P are the weighted costs of the perimeter paths

clockwise and counterclockwise around R from p. to p., and d is the unweighted Euclidean distance

150

between points p. and p. That is,f(p,p) = Max(P /dj*jd). Since the length of each edge in E -E is finite,

then/fy? j>) must reach some maximum value, |_i . If ^i > p. , then no optimal path can cross through region

R from interior points of edge-pair E -E

Proof of Theorem 4.1 (by contradiction):

Suppose there exists a globally optimal path G which crosses R from interior points of edge-pair E -E , and

that [i
Q
> \i

r
For simplicity, let \i = P/d, where P = Max{Pj,P2). Then it must be true that [i > P/d. It

follows that [id > P. But this contradicts the Principle of Optimality, that is all subpaths of a globally

optimal path must be optimal themselves. If [id > P, then the perimeter path, P, must be shorter than the

segment which lies on the globally optimal path, G. Therefore, G cannot be a globally optimal. But P/d

represents the maximum ratio over all crossings of R via edge-pair E -E . We conclude that no globally

optimal path can cross R from edge-pair £ -E because a shorter perimeter path always exists. QED.

Figure A.l Edge-Pair E -E on Homogeneous-Cost Region R

151

The significance of Theorem 4. 1 is that for a given edge-pair on region R , if we can determine p. , the

maximum attainable value of P/d over all interior crossing points, then a simple comparison to \i
fl

tells us if

the edge-pair can ever be crossed by any globally optimal path, whose start and goal points do not reside

within R . Since \i is the maximum attainable value of P/d over all interior crossing points, then any upper

bound on this value which is exceeded by \i , the cost coefficient ofR , can be used to eliminate this edge-

pair as an optimal path crossing site.

It is important to note that we need only concern ourselves with analysis of crossings involving a pair

of interior points on the edge-pair. The reason is that the search space of window sequences is redundant at

boundary edge vertices. That is, any path or portion thereof, which passes through a map vertex must be

within two or more distinct window sequences. Thus, eliminating edge-pair£-£ from region R means that

the value of \i is too large to permit an optimal crossing between any interior points of E -E . It does not

mean that an optimal path cannot cross over £ or £ by using a vertex of the other. However, doing so

constitutes use of a neighboring edge-pair.

The greatest perimeter bypass cost for any edge-pair on any region is bounded above by one half the

total weighted cost of traveling in a closed-loop around the region following its boundary edges. This cost

value is easily computed for any region. We will refer to it as P.. Note that there may exist many pairs of

points p.jy.on an edge-pair for which P = P = P . To obtain the tightest upper bound on P/d we must find

a pair of interior points for which P. = P =P and d is a minimum. On the basis of geometry, it is possible
1 2 h

to find a subspace of crossings through R between E -E which maximizes the ratio P/d. Theorem 4.2

describes how.

Theorem 4.2:

Refer to Figure A.2. If the infinite line extensions of an edge-pair £ -£ bounding region R intersect at a

point A at which an interior angle a is formed, and if p < p and p. < p are the cost coefficients of£ and

E to the outside of /?_, then for any crossing of £,-£, from interior points p. to p the maximum value of PI

d occurs when

s/t = (p.
]
+ \i

2
Cosa) / (ji

2
+ p

y
Cosa) (Eq A. 1

)

where s is the Euclidean distance from A lop. along £ , and t is the Euclidean distance from A to p. along £ .

Proof of Theorem 4.2:

152

We obtain Eq A.l by using Figure A. 3. In this figure the edge-pair is adjacent and so a perimeter bypass path

from p. to p. has weighted distance:

P = \ijS + \i
2

t (EqA.2)

By the Law of Cosines a crossing path from p. to p. through R has unweighted Euclidean distance:

d = Js + r - 2sfCosa

The ratio /7d is now a function of ^ and /:

f(s,t) =

(EqA.3)

(EqA.4)

V^ +r -2«Cosa

Taking the partial derivatives off(s,t) with respect to s and f, setting them equal to zero, and solving for s and

t yields:

sit = (n
y
+ n

2
Cosa)/(u.

2
+ n

y
Cosa) (Eq A.5)

Since f[s,t) reaches its maximum value when the ratio s/t satisfies Eq A.l, then P/d is also maximum when

this condition is satisfied. Although we began with an adjacent edge-pair intersecting at common vertex A,

note that Eq A.l is the maximizing condition for any edge-pair whether adjacent or non-adjacent. The reason

is that only Eq A.2 (cost of the perimeter path) changes if the edge-pair is non-adjacent. In this case, the

addition of a constant term (fixed cost to travel the perimeter edges between the edge-pair) does not effect

the result of taking partial derivatives. QED.

Figure A.2 Non-Adjacent Edge-Pair

153

Figure A.3 Adjacent Edge-Pair

Theorem 4.2 tells us that with respect to P/d, the maximum advantage for an edge-pair crossing on

interior points occurs in a subspace of segments between the edges. Figure A.2 illustrates such a subspace.

The bounds of the subspace are defined by vertices of both edges in the pair. In the case of a parallel edge-

pair angle ct=0. Therefore, Eq A.l tells us that the maximum advantage occurs at perpendicular crossings.

We can employ the concepts of Theorems 4.1 and 4.2 to find the value of p. for a given non-adjacent

edge-pair as follows. Using the values of p , p. , and angle a compute the ratio for s/t by Eq A.l. Using this

ratio we can determine the two segments which bound the subspace of crossings that maximize P/d. A binary

search can locate the segment which divides the clockwise and counterclockwise perimeter bypass path-cost

exactly in half. The value of p = P.ld where d is the Euclidean distance of the segment at half perimeter.

If such a segment does not exist within the subspace, then the subspace boundary segment whose perimeter

paths (clockwise and counterclockwise) have the least difference should be used. Let its smaller perimeter

path-cost be P . Then the value of p = P Id where d is the Euclidean distance of the segment bounding the

subspace.

154

For adjacent edge-pairs the computation is more straight forward. There is no need to find the bounding

segments of the subspace because one end is bounded by a vertex. So we can use Eq A.l to substitute for s or

t directly into Eq A.4. This yields the following equation for adjacent edge-pairs:

V^ + ^-2^n2
Cosa

">- Sin^
****>

Having computed [i for the edge-pair in question, we can now compare to [i , the cost coefficient between

the edges. If |i > n , then the weight in region R is too great to permit an optimal path to cross on interior

points of the edge-pair.

155

APPENDIX B - PROLOG AND C SOURCE CODE

B.l PATH ANNEALING

/*===—=====================

SA.PL - simulated annealing search thru the space of window sequences

Annealing schedule notes:

A schedule is defined in terms of the initial A* solution cost.
The predicate annealing_schedule (TC, TF, TR,NT, NS) defines the parameters
to be used in the call to init_anneal (TS, TF, TR,NT, NS)

.

TS starting temperature in units of cost
TC cost multiplier, ensures high temp (TS=TC*init_soln_cost

)

TR temp reduction factor (geometric schedule) (T2 <- TR*T1)
NT n_limit, total number ATTEMPTED moves at temperature T

NS ns_limit, total number ACCEPTED moves at temperature T

:- dynamic
finished/0,
annealing_schedule/5, % annealing_schedule (TC, TF, TR, NT, NS)

.

starttemp/1,
current/3,
next/1,

best/4,
newbest/4,
ultimate_best/4,
best_count/l,
hash_ws/4

,

hits/1,
hthresh/1,
deltak/1,
t ime / 1

.

annealing_schedule (1 . 5, 1 . 0, . 9, 20, 15)

.

% default schedule

hthresh(lO). % default

hash_fn ([_|L] ,H) :- sumlist (L, H) , !. % sum of E

sumlist ([_] , 0) :- !

.

sumlist ([X| L] , SUM) :- sumlist (L, S) , SUM is X+S, !.

156

prep :-

compute_deltak,
w_initparms,
retractall (finished) ,

retractall (starttemp (_)) ,

retractall (current (_,_,_))

,

retractall (next (_))

,

retractall (best (_, _, _r _)) ,

retractall (newbest l_r_r_r_)) i

retractall (ultimate_best (_, _,
retractall (best_count (_))

,

retractall (hash_ws (_,_>_,_))

,

retractall (hits (_))

,

asserta (best_count (0)) ,

asserta (hits (0)) ,

w_wsinit

,

randinit (_)

,

reset_points,
i

% time, di, st, deltak

)),

remove epts from last run

compute_deltak :-

retractall (deltak (_))

,

start (S,SR)

,

goal (G,GR) ,

rv(SR, SW,_) ,

rv(GR,GW,_) ,

di(DI),
DK is 0.5*DI* (SW+GW)

,

asserta (deltak (DK)) ,

install_best (COST, WS, PATH) :-

retract (best_count (N)) ,

M is N+l,

asserta (best_count (M))

,

asserta (best (N, COST, WS, PATH))

,

i

anneal :-

prep,

ts,

search (WS0,_)

,

dijkstra (WSO, DSEED,_)

,

solve (WS0,DSEED, SEED, COST)

,

avg_path_wt (COST, SEED, APW)

,

asserta (optimal_cost (APW)) ,

write_list ([' Average Weight =',APW]),
ellipse (COST)

,

install best (COST, WSO, SEED)

,

% A* thru midpoints
% approximate w/UDP

% refine w/SPR

% heuristic ellipse

% bounding ellipse

157

asserta (current (COST,WS0, SEED))

,

hash_fn(WSO,H)

,

asserta (hash_ws (H, WSO, SEED, COST))

,

updates (COST, WSO)

,

annealing_schedule (TC, TF, TR,NT,NS) ,

TSTART is TC*COST,
asserta (starttemp (TSTART)) ,

init_anneal (TSTART, TF, TR, NT, NS) ,

anneal_loop,

% hash fn for ws
% insert in hash table

% set annealing parms
% search by annealing

anneal_loop :-

repeat,
current (C1,WS1,_)

,

perturb_ws(WSl,WS2) ,

% perturb_ws (WSA, WS2) ,

% asserta (next (WS2)
)

,

hash_fn(WS2,H) ,

compute_cost (H, WS2, PA2, C2)

,

metrop (C1,C2, I) ,

% (1=1 -> writeln(C2))

,

action (I, C2,WS2,PA2) ,

retract (next (_)) ,

finished,
i

%

% for larger moves
% for debugging only

observation tool only

% for debugging only

hit_rate :

-

hits (K)

,

hthresh (T)

,

hit_msg(K, T)

,

retract (hits (_))

,

asserta (hits (0))

,

i

hit rate : - !

.

hit_msg(K,T) :-

K > T,

writeln (' Rising cache hit rate
best_count (N)

,

return_to_a_previous_best (N) ,

return to a previous best')

,

return_to_a_jprevious_best (1)

return_to_a_previous_best (N)

irand(N,X)

,

replace_current (X)

,

i

- replace_current (0) , !

replace_current (X) :-

retract (current (

best (X,C,W,P)

,

)),

158

assert a (current (C, W,P))

,

i

action(X,C2,WS2,PA2) :-

(X =

; X =

; x =

= -> fail
= 1 -> accept (C2,WS2,PA2) , hit_rate
= -1 -> frozen (C2,WS2,PA2)),

accept (C2,WS2,PA2) :-

retract (current (_,_,_))

,

asserta (current (C2, WS2,PA2)
)

,

compare to best (C2, WS2, PA2)

,

% check vicinity for optimal

frozen(C2,WS2,PA2) :-

compare_to_best (C2,WS2,PA2) ,

asserta (best (C2,WS2,PA2)) ,

update_clock (Tl)

,

write_list ([' iterative improvement begins time',Tl]),
iter_improve,
ultimate_best (N, C, WS, PATH)

,

update_clock (T2)

,

nl,

w_showdata (pacost, C)

,

w_showpath (PATH) ,

write_list ([' finish time =',T2]),
write_list ([N, 'Optimal Cost =',C]),
write_list (

[' WS =',WS]),
write_list (['Path =',PATH]),
nl,

w_clear_ws,
asserta (finished) ,

notrace

.

% reqd by ws display routines

iter_improve :-

best (_,_,_,_) ,

repeat,

get_top_best (N, C, WS, PA)

,

perturb_ws (WS,WS0) ,

hash_fn(WSO,H) ,

compute_cost (H, WSO, PAO, CO) ,

iter_impr (C,C0,X) ,

(X =:= -> fail

; X =:= 1 -> retract (best (N, _,_,_))

,

asserta (best (N, CO, WSO, PAO))

,

fail

; X =:= -1 -> retract (best (NN,CC, WW, PP)
)

,

asserta (newbest (NN, CC, WW, PP)) ,

iter improve) ,

% from top of stack

159

iter_improve :-

retract (newbest (N,C,WS,PA)) ,

asserta (ultimate_best (N,C, WS,PA)) ,

retrieve best,

get_top_best (N,C,WS,PA) : - best (N, C, WS, PA) , !.

retrieve_best :-

retract (newbest (NO, CO, WSO, PAO)) ,

ultimate_best (N,C,WS,PA)

,

(C0=<C -> retract (ultimate_best (N,C,WS, PA)) ,

asserta (ultimatejbest (NO, CO, WSO, PAO)))

,

retrieve_best,
i

retrieve best :- !.

compute_cost (H,WS2,PA,C) :-

hash_ws (H,WS2,PA,C)

,

score (hit)

,

% hash for cost
% hit

compute_cost (H, WS2,PA,C) :-

dijkstra (WS2,PA2,C2)

,

best (_,C0,_,_)

,

refine (WS2,PA2,C2, CO, PA, C)

,

asserta (hash_ws (H,WS2,PA,C)) ,

score (cache)

,

i

% must compute cost
% approx w/UDP

% cache

refine(WS2,PA2,C2,C0,PA,C) :-

deltak(DK)

,

C2-C0 < DK,

solve (WS2,PA2, PA, C) ,

i

refine(,PA2,C2, ,PA2,C2) :- !

% refine w/SPR

% not worth the trouble

score (X) :-

retract (hits (I))

,

(X==hit -> J is 1+1

; X==cache -> J is 1-1
)

,

asserta (hits (J))

,

compare_to_best (C2, WS2, PA2) :-

best (_, C0,_,_)

,

(C2 < CO -> install_best (C2,WS2,PA2) ,

updates (C2,WS2)

; otherwise -> updates (null, WS2)),
i

% install best so far

160

updates (C,WS) :-

update_clock (T)

,

w_show_ws (WS)

,

% display new WS2

(C==null -> true
; otherwise -> best (N,_,_, PA)

,

% must be new best
w_showpath (PA)

,

w_showdata (pacost , C)

,

write_list ([T,sec,N, 'New best cost =',C])),

time_expired,
tm,
i

time_expired :-

time (T)

,

T > 2000.0,
w_clear_ws,
writeln (' Time expired: 2000 sec .. .execution terminates.'),
best (N,C,WS, PATH)

,

% best to date
write_list ([N, 'Optimal Cost =',C]),
write_list (

[' WS =',WS]),
write_list (['Path =',PATH]),
asserta (finished)

,

i

time_expired :- !.

161

/*==:

—

=========r==

ASTAR.PL - A* SEARCH
adapted from Rowe, N.C., "Artificial Intelligence Through Prolog,"
Prentice Hall, 1988, pp. 244-247.

For an application, define 5 predicates:
(a) successor (State, Newstate) (gives state transitions)
(b) goalreached (State) (defines when goal achieved)
(c) eval (State, Evaluation) (estimates cost to the goal)

(d) cost (Statelist, Cost) (computes cost of a path)

(e) top-level predicate that initializes things if needed,
then calls astarsearch with two arguments, the starting
state and variable which will be the solution path

Note that "cost" must be nonnegative. The "eval" should be a lower
bound on cost in order for the first answer found to be guaranteed
optimal, but the right answer will be reached eventually otherwise.

These routines are used to quickly obtain a good initial solution
for annealing. The search is to find the shortest weighted path
through the edge dual graph (midpoints of boundary edges only)

.

At conclusion of processing:
no. of items in agenda - 1 = no. of unexamined states
no. of items in usedstate = no. examined states

Modifications to original code:

In this version, cost is changed to cost (Statelist, 01dCost,NewCost)
to reduce the work required to compute the cost of a new statelist

.

Also, we have replaced pick_best_path rules with a more efficient
version which uses Quintus Prolog hashing on the first atomic
argument. The agenda_index is a sorted list of indices into agenda.
Sorting is accomplished by insertion (since large heaps are not
efficient in prolog)

.

The original code referenced in [Rowe88, pp. 244-247] states that if

the evaluation function is ALWAYS a lower bound on the cost function,
then faster performance results if we delete the first rule of

agenda_check and usedstate_check, and the entire definitions of

fix_agenda and replace_f ront . We have determined that the first

rule of agenda_check IS REQUIRED to guarantee optimality in a

general graph (ie. NOT a tree) . Therefore, we have NOT excluded it.

Since our evaluation function is Euclidean distance to the goal at

lowest cost on the map, then it is a lower bound on cost.
We have, therefore, modified the original code accordingly.

162

: - dynamic
max_e/l,
agendacount/1,
agenda_index/ 1

,

usedstate/2,
agenda/5

.

/*

successor, goalreached, eval, and cost functions CANNOT have cuts !

successor (EO, El) :- (ep (EO, El, _,_,_) ; ep (El, EO, _,_,_)).

goalreached (g)

.

eval (EO, EVAL) :-% direct Euclidean dist to goal at lowest cost
goal(GP,_)

,

edge_data (E0,_,MP)

,

optimal_cost (OC)

,

wdistance (MP, GP, OC, EVAL)

.

cost ([s] ,_, 0.0) .

cost ([EO, El |L] ,OLDCOST, COST) :-

(ep(E0,El,_,_,C) ; ep(El,E0,_,_,C)),

COST is OLDCOST+C.

search (WS, Cost) :-

unknown (_, fail)

,

% required by astarsearch
writeln (' Begin A* search for initial WS . .

.
')

,

astarsearch (s,WS, Cost)

,

write_list ([' Initial WS =',WS]),
write_list ([' Cost thru midpoints =',Cost]),
unknown (_, trace)

,

% reset after astarsearch
w_clear_iter, % DISPLAY
i

search (_,_) :- writeln_b (' ERROR (astar) . . .A* search failed !'), !.

astarsearch (Start, Goalpathlist, C) :

-

cleandatabase,
add_state (Start, [] , 0.0)

,

repeat ifagenda,
pick_best_state (I, State, Pathlist, C, D)

,

add_successors (I, State, Pathlist, C)

,

agenda (I, State, Goalpathlist, C,_)

,

% soln on top of agenda
w_show_ws (Goalpathlist)

,

% DISPLAY
i

pick_best_state (I, State, Pathlist, C,D) :-

agenda_index ([[I,_] |_])

,

163

agenda (I, State, Pathlist, C,D) ,

i

add_successors (_, State, Pathlist, _) :- goalreached (State) , !.

add_successors (_, State, Pathlist, C) :

-

successor (State, Newstate)

,

add_state (Newstate, Pathlist, C)

,

fail.
add_successors (I, State, Pathlist, C) :

-

retract_agenda (I, State, Pathlist, C,D)

,

assert a (usedstate (State, C)) ,

fail.

add_state (Newstate, Pathlist, C) :

-

cost ([Newstate I Pathlist] , C, Cnew) ,

i

• r

agenda_check (Newstate, Cnew) ,

i

• i

usedstate_check (Newstate, Pathlist, Cnew)

,

i

• i

eval (Newstate, Enew) ,

D is Enew + Cnew,

assert_agenda (Newstate, [Newstate I Pathlist], Cnew,D)

,

update_clock (T)

,

max_eval (Enew) ,

display_newstate (Newstate, Pathlist) , % DISPLAY newstate
tm,
i

add_state (Newstate, Pathlist, C) :-

not (cost ([Newstate I Pathlist] ,C,_))

,

write_list_b (

[

'ERROR (astar) . . .cost fn failure' , [Newstate I Pathlist]]) ,

i

add_state (Newstate, Pathlist) :-

not (eval (Newstate, Enew)) ,

write_list_b (

[

'ERROR (astar) .. .eval fn failure' , [Newstate I Pathlist]])

,

i

display_newstate (EO, [El |_]) :

edge_data (E0,_,MP0)

,

edge_data (E1,_,MP1)

,

w show line (MPO, MP 1,2)

,

% DISPLAY

display_newstate (,[]) % for start state

agenda_check (S, C) :-

agenda (I , S ,
_, C2

,
_)

,

C<C2,
retract agenda (I, S,),

164

agenda_check (S,_) :- agenda (_, S, _,_,_) , !, fail.
agenda_check (_,_)

.

usedstate_check (S,_,_) :- usedstate (S,_) , !, fail.
usedstate_check (_,_,_)

.

repeatifagenda

.

repeatifagenda :- agenda (_,_,_,_,_) , repeatifagenda

.

cleandatabase :-

retractall (agenda_index (_))

,

asserta (agenda_index ([])),
retractall (agendacount (_))

,

asserta (agendacount (0))

,

retractall (agenda (_,_,_,_,_)

)

,

retractall (usedstate (_,_))

,

retractall (max_e (_))

,

asserta (max_e (0))

.

/*

routines to maintain a sorted index into the agenda
*/

assert_agenda (State, Pathlist, C, D) :

-

get_index (I)

,

asserta (agenda (I, State, Pathlist, C, D))

,

retract (agenda_index (LI))

,

insert_index ([I, D] , LI, L2)

,

asserta (agenda_index (L2))

,

!

insert_index (ID, [], [ID])

.

insert_index([I,D] , [[10, DO] |L] , [[I,D] , [10, DO] | L]) :- D =< DO.

insert_index(ID, [IDO |L1] , [IDO |L2]) :- insert_index (ID, LI, L2)

.

delete_index(I, [],[]) :- write_list_b (['ERROR. . .delete_index' , I]) .

delete_index(I, [[l,_] |L] ,L)

.

delete_index(I, [ID |L1] , [ID|L2]) :- delete_index (I, LI, L2)

.

retract_agenda (I, State, Pathlist, C,D) :
-

retract (agenda (I, State, Pathlist, C,D))

,

retract (agenda_index (LI))

,

delete_index (I, LI, L2)

,

asserta (agenda_index (L2))

,

get_index(I) :-

retract (agendacount (N))

,

I is N+l,

asserta (agendacount (I))

,

165

I-

ELLIPSE.PL - intersect all edges with bounding ellipse computed from
weighted length (D) of best path found to date; update edge data

: - dynamic
ecost/1,
optimal_cost/l

optimal_cost (1 . 0)

.

% default optimal cost coefficient

ellipse (D) :-

asserta (ecost (D))

,

w_showdata (elcost, D)

,

get_optimal_cost (OW)

,

write_list (
[

' optimal_cost =' , OW])

,

start (S,_)

,

goal (G,_)

,

edge(E, [VI, V2] ,_,_,_) ,

total_dist (S,G,V1,0W,D1) ,

total_dist (S,G,V2,OW,D2) ,

intersect_ellipse (E,D, OW, S, G, VI, Dl, V2, D2) ,

fail, ! .

ellipse (_) :- writeln (' Computed bounding ellipse

get optimal cost (OW) :- optimal cost (OW) , !.

')

% ONLY the top cost

total_dist (S,G,V0,OW,DT) :-

wdistance (S,V0,OW,DS) ,

wdistance (G, V0,OW,DG) ,

DT is DS+DG,
i

intersect_ellipse (_, D, _,_,_,_, D 1, _, D2) :

-

Dl =< D,

D2 =< D,
i

intersect_ellipse(E,D,OW, S,G, V1,D1,V2,D2)
Dl < D,

D2 > D,

elsearch(D,OW, S, G, VI, V2,D2, NV2, LEN)

,

update_db(E,Vl,NV2,LEN) ,

asserta (ovr (NV2, 0))

,

retractall (ve (V2,_))

,

w_point (NV2, 4)

,

% both vertices inside
% VI inside
% V2 inside

% edge crosses once
% VI inside

% V2 outside

166

intersect_ellipse (E,D,OW, S, G, VI, Dl, V2, D2

)

Dl > D,

D2 < D,

elsearch(D,OW, S,G,V2, VI, Dl, NV1, LEN)

,

update_db(E,NVl, V2,LEN)

,

asserta (ovr (NV1, 0))

,

retractall (ve (VI, _))

,

w_point (NV1, 4)

,

% edge crosses once
% VI outside
% V2 inside

intersect_ellipse (E,D,OW, S, G, VI, Dl, V2,D2) :-

vtan_inside (E,D, S,G, VTAN)

,

elsearch(D,OW, S,G,VTAN, VI, Dl, NV1, LEN1)

,

elsearch (D,OW, S,G, VTAN, V2,D2, NV2, LEN2)

,

LEN is LEN1 + LEN2,
update_db(E,NVl,NV2,LEN)

,

asserta (ovr (NV1, 0))

,

asserta (ovr (NV2, 0))

,

retractall (ve (VI, _))

,

retractall (ve (V2,_)
)

,

w_point (NV1, 4)

,

w_point (NV2, 4)

,

edge crosses twice

intersect_ellipse (E f _, _r_r_t_r_t _r_)
remove_f rom_db (E) ,

i

% edge outside ellipse

vtan_inside (E,D, S,G, VTAN) :-

edge(E, [VI, V2] ,_, L,_)

,

vtangent (E,L, S,G, VTAN)

,

between (VI, VTAN, V2)

,

get_optimal_cost (W)

,

total_dist (S, G, VTAN, W, DVT) ,

DVT =< D,
i

% virtual tangent point
must be between VI and V2

% vtan is inside ellipse

vtangent (E,L, S,G, VTAN) :-

perpendicular (S, L, PS)

,

perpendicular (G, L, PG)

,

distance (S, PS, DPS)

,

distance (G,PG,DPG)

,

PART is DPS/DPG,
partition (PART, [PS, PG] , VTAN)

,

i

% perpendicular from s

% perpendicular from g
CAUTION no denominator zero check!

% by similar triangles

update_db(E,Vl,V2,LEN) :-

retract (edge (E, VOLD, W, L, H))

,

asserta (edge (E, [VI, V2] , W, L, H))

,

retract (edge_data (E,_,_))

,

midpoint (V1,V2,MP)

,

assert (edge_data (E, LEN, MP))

,

obstacle_adjust (E, VOLD,W)

,

167

obstacle_adjust (E, [VI, _],[_, 0]) :- ovr(Vl,0), !.% already done
obstacle_adjust (E, [VI, _] , [_, 0]) :-

ovr(Vl,R) ,

re(R,_,ELST) ,

merge_with_ellipse_bound (ELST)

,

i

obstacle_adjust (_,_,_) :- !.

merge_with_ellipse_bound ([]) :- !.

merge_with_ellipse_bound ([E I ELST]) :

-

adjust_ovr (E)

,

merge with ellipse bound (ELST),

adjust_ovr (E) :-

edge(E, [VI, V2] ,_,_,_) ,

retractall (ovr (VI, _))

,

retractall (ovr (V2,_))

,

asserta (ovr (VI, 0))

,

% region considered outside ellipse
asserta (ovr (V2, 0))

,

i

adjust_ovr (_) :- !.% in case edge has already been removed

remove_f rom_db (E) :

-

retract (edge (E, [VI, V2] ,_,_,_))

,

retractall (edge_data (E,_,_)) ,

retractall (er (E,_,_))

,

retractall (ep (E, _,_,_,_))

,

retractall (ep (_, E, _,_,_))

,

retractall (ve (VI, _))

,

retractall (ve (V2,_)
)

,

retractall (link (E, _,_,_)) ,

retractall (link (_,_,_, E)
)

,

i

168

I

SPR.PL - solve for local optimal path through ws by relaxation;
relaxation requires Snell's Law Table loaded by optimal.pl

: - dynamic
iter_limit/l,
stable/0,
st/1.

% iteration limit (prevents infinite looping)
% stability indicator (switch)

% stability tolerance

st (0.1)

I

NOTE: solve guarantees ws and path are ordered consistently in parallel
*/

solve (WSO, [PO IPLST] ,OPLST,COST) :-

ensure_parallel (P0,WS0,WS)

,

make_wtlst (WS,WL)

,

compute_iter_limit

,

ipass (WS,WL, [PO IPLST] ,0PLST)

,

which_direction(OPLST,WS,WL, TWL)

,

Compute_COSt (OPLST, TWL, COST)

,

retractall (iter_limit (_))

,

% create WL - weight list

% iterate thru WS until stable
% orient TWL = either WL or RWL

% solution cost (path length)

compute_iter_limit :-

di(DI) ,

st (ST)

,

F is DI/ST,
ceiling (F, IL)

,

asserta (iter_limit (IL))

,

i

ensure_parallel(PO, [s|WSg] , [s |WSg]) :- start (P0,_), !

ensure_parallel(PO, [glWSs] , [g|WSs]) : - goal (P0,_) , !.

ensure_parallel(_,WS,RWS) :- rev(WS,RWS), !.

make_wtlst ([slWS] , [SW|WT]) :-

start (_, SR)

,

rv(SR, SW,_) ,

make_wtlst2 (WS,WT,SW)

,

i

make_wtlst (tglWS] , [GW|WT]) :-

goal (_, GR)

,

rv(GR,GW,_) ,

make_wtlst2 (WS,WT,GW)

,

i

169

make_wtlst2 ([_],[] ,_) :- !.

make_wtlst2 ([E1,E2 |WS] , [Wl |WT] ,W0)

edge(El,_,W,_,_) ,

next_wt (E1,W0,W,W1,E2) ,

make_wtlst2 ([E2 |WS] , WT,W1) ,

i

% start or goal (end of list)

% rule contained in udp.pl

ipass ([EO |WS] ,WL, [PO IPLSTO] , OPLST) :-

w_show_iter ([PO IPLSTO] , 1) ,

assert (stable)

,

pass2 (WS,WL, [PO IPLSTO] ,PLST2)

,

pass_chk(0, [E0|WS],WL, [PO | PLST2] , OPLST)

,

w_clear_iter,
i

% first pass, do not skip 1

% change direction

pass(I, [E0,E1|WS], [W0|WL], [PO , PI | PLSTO] , OPLST) :-

w_show_iter ([P0,P1 IPLSTO] , 1) ,

assert (stable)

,

pass2(WS,WL, [PI IPLSTO] ,PLST2) ,

pass_chk(I, [E0,E1 |WS] , [WO |WL] , [P0,P1 IPLST2] , OPLST)

,

i

/'

NOTE: pass2 ensures proper reflection; no stability check is made
by this rule since reflections are exact per critical angle

I

pass2([_], [_], [_,P0], [PO]) :-
!

.

pass2 ([E1,E1,E2 |WS] , [W1,W2 |WL] , [P0,P1,P2,P3 |PLST] , [NEWP1,NEWP2 |PLST2])
:-

Wl > W2,

reflect (PO, El, PR1, PR2)

,

reflect (P3, El, PR3, PR4)

,

closest_pair (PR1, PR2, PR3, PR4, TPA, TPB) ,

ref l_crossover (PO, TPA, P3, TPB, TTPA, TTPB) ,

vertex_check (El, TTPA, TTPB, NEWP1, NEWP2) ,

pass2 ([E2 |WS] ,WL, [P2,P3 IPLST] ,PLST2)

,

i

pass2 ([E1,E1,E2 |WS] , [W1,W2|WL] , [PO ,_,_, P3 I PLST] , [P0,P0 IPLST2]) :-

pass2 ([E2 |WS] ,WL, [P0,P3 IPLST] ,PLST2)

,

% ignore reentrant
I

pass2 ([El |WS] , [W0,W1 |WL] , [P0,P1,P2 IPLST] , [NEWP1 |PLST2]) :- % CROSSING
optimal (P0,P2, [W0,W1] ,E1,NEWP1)

,

stable_check(P0,Pl,P2,NEWPl) ,

pass2 (WS, [Wl |WL] , [P1,P2 IPLST] ,PLST2)

,

i

pass_chk(I,WS,WL, PLST, OPLST)
not (retract (stable))

,

iter_limit (IL)

,

I < IL,

% if NOT stable,

% and < iteration limit

170

rev(PLST,RPLST)

,

rev(WS,RWS) ,

rev(WL,RWL) ,

J is I + 1,

pass (J,RWS,RWL,RPLST,OPLST) ,

% then reverse PLST,

% and continue w/ RWS

pass_chk (_,_,_, OPLST, OPLST)
w_show_iter (OPLST, 2) ,

!

else stable, return OPLST
highlight stable solution

which_direction ([PO IOPLST] , [s |WSg] , WL, WL)

which_direction([PO IOPLST] , [g|WSs] ,WL,WL)
which direction (, , WL,RWL)

- start (P0,_) , !

- goal(P0,_) , ! .

rev(WL,RWL) , ! . reverse wt list

compute_cost ([_],[], . 0) :- !.

compute_COSt ([P0,P1 IOPLST] , [WO |WL] , TCOST)
wdistance (PO, PI, WO, CO),

compute_cost ([PI I OPLST] , WL, COST)

,

TCOST is COST+C0,
i

re fl_c rossover (PO, PA, P3, PB, MP, MP)

sqr_dist (P0,PA,SDA)

,

sqr_dist (PO, PB, SDB)

,

SDA > SDB,

midpoint (PA, PB, MP)

,

if reflection crossover

ref l_crossover (_, PA,_, PB, PA, PB)

stable_check(NPl,_,_, NP1) :- !.

stable_check(_,_,NPl,NPl) :- !.

stable_check(_,Pl,_,NPl) :-

not (stabilized(Pl,NPl))

,

retract (stable)

,

stable check

(

)
_ i

stabilized([X0,Y0] , [XI, Yl])

DX is X1-X0,
DY is Y1-Y0,
absolute (DX, AX)

,

absolute (DY, AY)

,

st (TOL)

,

i

• i

AX < TOL,

AY < TOL.

% DO NOT try another stability tolerance

171

vertex_check (E, TPA, TPB, PA, PB)

edge(E, [VI, V2] ,_,_,_) ,

v_chk(Vl,V2,TPA,PA) ,

v chk(Vl,V2,TPB,PB)

,

v_chk (VI , V2 , TP , TP

)

v_chk(Vl,V2,TP,Vl)
v chk(Vl,V2,TP,V2)

- between (VI, TP, V2)

,

- between (TP, VI, V2)

,

- between (VI, V2, TP)

,

/
reflect - computes reflection points, critical angles, etc.

xload('lib/util')

,

xloadC lib/line') .

reflect (FP, ER, PR1, PR2) :-

edge(ER,VR, [W1,W2] ,LR,_) ,

crit_angle (W1,W2,THC) ,

ray_line_angle (FP, LR, THC, PI, P2)

,

endpt_check(Pl, VR,PR1)

,

endpt_check (P2,VR,PR2)

,

i

crit_angle (W1,W2,CRIT) :-

Wl =< W2,

R is W1/W2,
asin (R,CRIT)

,

crit_angle (W1,W2,CRIT) :-

R is W2/W1,
asin (R,CRIT)

,

/
relative angle - computes small relative angle between lines L1,L2

relative_angle (L, L, GAMMA) :-

f zero (GAMMA)

,

writeln ('WARNING (spr) coincident edges .

')

,

relative_angle ([A1,B1,_] , [A2,B2,_] , GAMMA)
Ml is -Al/Bl, M2 is -A2/B2,
DEN is 1.0 + M1*M2,
NUM is M1-M2,
rel_ang2 (NUM, DEN, GAMMA)

,

172

rel_ang2 (NUM, DEN, +1 .57080)
f zero (DEN)

,

NUM>=0.0,
i

rel_ang2 (NUM, DEN, -1 . 57080)
fzero (DEN)

,

NUM< 0.0,

I

rel_ang2 (NUM, DEN, GAMMA) :-

TN is NUM/DEN,
atan (TN, GAMMA)

,

fzero(O.O) :- !

.

fzero(X) :-

fabs (X,AX)

,

AX < 0.0001,

/*

ray_line_angle - computes left, right intersections P1,P2 for a ray
from fixed point X0,Y0 at angle TH from normal to line [A,B,C]

ray_line_angle (_,_, TH,_,_) :- % TH = pi/2
DIF is TH-1. 57080,
fzero (DIF)

,

writeln (' WARNING (spr)...no intersect, parallel ray.'),
i

ray_line_angle(P,L,TH, II, II) :- % TH = .

fzero (TH)

,

perpendicular (P, L, II)

,

i

ray_line_angle ([X0, Y0] , [A,B,C] , TH, [XI, Yl] , [X2, Y2]) :-

THI is 1.57080-TH, % convert to angle from normal
tan(THI,TAN)

,

L0 is A*X0 + B*Y0 - C,

DEN is (A*A + B*B) *TAN,

E0 is A*Y0 - B*X0,

El is TAN/DEN,
E2 is L0/DEN,
R is (C*A - B*E0) *E1,

S is (C*B + A*E0) *E1,

T is A*E2,

U is B*E2,

XI is R + U,

Yl is S - T,

X2 is R - U,

Y2 is S + T,
i

173

/*

closest_pair - determines which pair of points on reflection edge
are true points of reflection (they must be the closest pair)

closest_pair([XI, Yl], [X2,Y2], [X3,Y3], [X4,Y4] , [XI, YI] , [XO,YO]) :

DXI is X3-X2, DXO is X4-X1,
fabs(DXI,AXI) , fabs (DXO,AXO)

,

AXI > 0.0005, AXO > 0.0005,
return_pair (AXI, AXO,

[XI, Yl], [X2,Y2], [X3,Y3], [X4,Y4], [XI, YI], [XO,YO]),
i

closestjpair([XI, Yl] , [X2,Y2], [X3,Y3] , [X4,Y4] , [XI, YI], [XO,YO]) :

DYI is Y3-Y2, DYO is Y4-Y1,
fabs(DYl,AYI) , fabs (DYO, AYO)

,

AYI > 0.0005, AYO > 0.0005,
return_pair (AYI, AYO,

[XI, Yl], [X2,Y2], [X3,Y3], [X4,Y4], [XI, YI], [XO,YO])

,

return_pair (AI,AO, [XI, Yl] ,_,_, [X4, Y4] , [X1,Y1] , [X4, Y4]) :- AI >= AO, !

return_pair(_, _,_, [X2, Y2] , [X3, Y3] ,_, [X2, Y2] , [X3, Y3]) :- !.

.*
/

174

I

OPTIMAL.PL - compute Snell's Law optimal crossing point by either
table lookup or golden search (selected by C routine snell)

xload('lib/util') ,

xloadC lib/line') ,

xload (
' lib/ foreign')

.

% also loads Snell's Law Table

optimal ([XI, Yl] , [X2, Y2] ,_,_,0P) :-

DX is X2-X1, fabs(DX,AX), AX <

DY is Y2-Y1, fabs(DY,AY), AY <

midpoint ([XI, Yl] , [X2, Y2] ,0P)

,

i

001,

001,

optimal(Pl,P2,WW,E,OP) :- %

edge(E,V,W, L,_),

line (PI, P2, LP)

,

intersection (LP, L, ITMP)

,

optimal2 (Pl,P2,WW, [V,W,L] , ITMP, OP)

,

WW are weights from weight list

% W are weights from edge

% straight-line intersection

optimal2 (P1,P2,WW, [V,_,_] , coincide, OP) :-

coincident_intersection (P1,P2,WW, 10)

,

endpt check (10, V, OP)

,

% parallel ==> P1-P2=E

optimal2 (_,_, [W0,W0], [V,_,_] , 10, OP) :-

endpt_check (1 , V, OP) ,

i

optimal2 (P1,P2,WW, [V, W, L] , 10, OP) :-

match_regions (WW, W, PI, P2, PW1, PW2) ,

perpendicular (PW2, L, 12)

,

optimal3 (PW1, PW2, V, W, L, 10, 12, OP) ,

i

phantom edge IO=OP, unless
% outside edge vertices

% else, setup table lookup
% PW* consistent with W

coincident_intersection (PI, P2, [Wl, W2] , P2)

coincident_intersect ion (P1,P2, [W1,W2],P1)

coincident_intersection (P1,P2, [W0, W0] ,OP)

optimal3(_,_,V,_,_, 10, 12, OP) :-

vertex_crossing (V, 10, 12, OP)

,

i

optimal3 (PW1, PW2, V, W, L, 10, 12, OP) :-

perpendicular (PW1, L, II)

,

snell (PW1,PW2,W, II, 10, I2,OPO) ,

endpt_check (OP0, V,OP) ,

- Wl < W2, ! .

- W2 < Wl, !

.

- midpoint (PI, P2, OP) , !

175

vertex_crossing([VI, V2] , 10, 12, VI)

between (10, VI, V2)

,

between (12, VI, V2)

,

I

vertex_crossing([VI, V2] , 10, 12, V2)

between (VI, V2, 10)

,

between (VI, V2, 12)

,

i

match_regions (W,W,P1,P2,P1,P2)

.

match_regions (_,_, PI, P2, P2, PI)

.

% ensure point between vertices

endpt_check(I, [V1,V2] ,V2) :- between (VI, V2, I) , !

endpt_check(I, [VI, V2] ,V1) :- between (I, VI, V2) , !

endpt_check (I, [_,],I) :- !.

176

I-

UDP.PL - approximates locally optimal path through a WS using
Dijkstra's Algorithm through a constrained graph of discrete
points evenly distributed on each edge with upper bound di;

used for coarse approximations, and as a preprocessor to
the more accurate single-path relaxation (SPR) algorithm.

= */

:- dynamic
di/1,

epts/3,
pe/2.

% di (i) .current discrete interval = i

% epts (eO, di, [pi, . . ,pn]) . edge-points on eO

% pe (eO, [[vl, sl,pl] , . . , [vn,sn,pn]]) .

% edge-point record eO

- use module (library (lists) , [rev/2]

)

di(8) % default discrete interval

I

dijkstra - path returned is REVERSED with respect to WS edges

dijkstra ([_,_], [SP,GP], COST) :-

start (SP,SR) ,

re(SR,SW,_) ,

goal(GP,_)

,

wdistance (SP,GP, SW,COST)

,

% trivial soln s-g

dijkstra ([EO, El |L] , PATH, COST) :-

start_goal (E0,P0,W0)

,

edge (El,_, W,_,_) ,

di(INT)

,

epts (E1,INT,PTS1)

,

process_routes (WO, [[PO, 0, 0]] , PTS1, PTLST1)

,

asserta (pe (E1,PTLST1))

,

next_wt (_, WO , W, WN, _)

,

i

• i

di jkstra2 ([El |L] , WN, PATH, COST)

,

w clear iter,

% ws begins EO = s;g

dijkstra2 ([E1,E0] ,_, [PO IPATH] ,D) :-

pe(El,PTLSTl)

,

start_goal (E0,P0,W0)

,

process_routes(WO,PTLSTl, [PO], [[P0,D, BG]])

,

back_pointer (PO, [[PO, D, BG]],BP),

ws end EO = s;g

177

w_show_line (PO, BP, 4)

,

retrieve_min_path (BP,PATH) ,

i

dijkstra2 ([E1,E2,E3 |L] ,W1,PATH,D) :- % mid ws
pe(El,PTLSTl)

,

edge (E2,_,W,_,_) ,

di(INT)

,

epts (E2, INT,PTS2)

,

process_routes (Wl, PTLST1, PTS2, PTLST2)

,

asserta(pe(E2,PTLST2))

,

next_wt (E2 , Wl , W, WN, E3)

,

i

dijkstra2 ([E2,E3 |L] , WN,PATH,D) ,

di jkstra2 (WS, W,_,_) :- % catastrophic failure
current (_,WS0,_)

,

retract (next (WS1))

,

writeln('WS ERROR (udp) . . .di jkstra2 failed !'),

write_list (['weight :
f ,W]),

write_list (['partial: ',WS]),

write_list (['current : ',WS0]),
write_list (['next : ',WS1]),
writeln (' Corrective action .. .continuing from current WSO...'),

!, fail, !.

start_goal (s,P,W) :- start(P,R), re(R,W,_), !.

start_goal (g, P, W) :- goal(P,R), re(R,W,), !.

back_pointer (P, [[P,_,BP] |_] ,BP) :- !.

back_pointer (P, [_| L] ,BP) :- back_pointer (P, L, BP) , !

retrieve_min_path(SP, [SP]) :- start (SP,_) , !.

retrieve_min_path (GP, [GP]) :- goal(GP,_), !.

retrieve_min_path (P, [P IPATH]) :-

retract (pe (_, PTLST))

,

back_pointer (P,PTLST, BP) ,

w_show_line (P, BP, 4) ,

retrieve_min_path (BP, PATH) ,

/*

process_routes - establishes all routes between an edge-pair;
Wl = weight of the region separating the edges
PTLST1 = list of point records [V, S,P] for the "from" edge
PTS2 = list of points on the "to" edge
PTLST2 = new list of point-records [V, S,P] for the "to" edge
min_route finds shortest accumulated distance S and the pointer
P back to the appropriate "from" edge point-record labeled V.

*/

178

process_routes (_,_,[],[]) :- !.

process_routes (Wl, PTLST1, [V|L] , [[V, S,P] IPTLST2]

)

min_route (Wl, PTLST1, V,_, [S,P]),

process_routes (W1,PTLST1, L,PTLST2) ,

i

next_wt (_,W0, [W0,W2] ,W2,_)

next wt (, WO, [W1,W0] ,W1,)

_ I

_
;

next_wt (EC,_, chk, WN,EA) :- % EC choke vertex ==> look ahead at EA
chr (EC,VC,_)

,

er (EA, RR,_)

,

next_wt2 (RR, VC,WN)

,

i

next_wt2 ([Rl,_] ,VC,WN) :- rv (Rl, WN, VLST) , member (VC, VLST) , !.

next_wt2 ([_,R2] , VC,WN) :- rv (R2, WN, VLST) , member (VC, VLST) , !.

/*

min_route - updates the point record [D,P] for point V by computing
weighted distance from each point in list L (points on the last

edge in the window sequence) and returning the min total weighted
distance D and the point P from which it was measured to V.

*/

min_route (_,[],_, [D,P], [D,P]) :- !.

min_route(W, [[V,D,_] |L] ,V0, [D0,P0] , [DF,PF]) :-

wdistance (V, V0,W,DV)

,

w_show_line (VO, V, 1)

,

DT is D + DV,

update_point

(

[D0,P0] , [DT, V]

,

[D1,P1])

,

min_route(W, L,V0, [D1,P1], [DF,PF]),
!

update_point ([D,_] , [DT,V] , [DT,V]) :- (var(D) ; DT<D), !.

update_point ([D,P] ,_, [D,P]) :- !.

/*

get_pts - uses a fixed interval (di) to space points uniformly across
each edge; this interval is an upper bound on the point spacing,

ie . spacings on some edges may be < di (never greater than)

.

*/

epts (E, I,PLST) :- gen_epts (E, I, PLST) , !. % non-exist ==> generate pe

gen_epts (E, INT,PLST) :-

edge (E,V, _,_,_) ,

get_pts (E, V,PLST)

,

asserta (epts (E, INT, PLST))

,

i

179

reset_points :- % for subsequent program runs
retractall (edge_pt (_,_)) ,

retractall (epts (_,_,_))

,

asserta((epts (E, I, PLST) :- gen_epts (E, I, PLST))),
i

get_pts (_, [V0,V0] , [VO]) :- !. % choke vertex
get_pts (E, [VI, V2] , [NV1 |L]) :- % fixed interval size INT

edge_data (E, LENG,_)

,

LENG > 0.0, % in case VI, V2 too close
di (INT)

,

R_INTS is LENG/ INT,

ceil(R_INTS, INTS)

,

% di(INT) LUB on dist to next point
PART is 0.001/INTS, % pull in slightly from vertex
partition (PART, [VI, V2] ,NV1)

,

% w_point (NVl, 3)

,

% show point spacing/coverage
divisions (INTS, VI, V2, L)

,

I

get_pts (_, [VI, _] , [VI]) :- !. % VI, V2 too close for precision

divisions (INTS, VI, V2, [NV2]) :-

INTS =< 1,

PART is 0.999/INTS, % pull in slightly from vertex
partition (PART, [VI, V2] , NV2)

,

% w_point (NV2, 3)

,

% show point spacing/coverage
i

divisions (INTS, VI, V2, [P0 |L]) :-

PART is 1/INTS,
partition (PART, [VI, V2] , P0)

,

% w_point (P0, 3)

,

% show point spacing/coverage
NX_INTS is INTS-1,
divisions (NX_INTS, P0, V2, L)

,

i

all_epts :- % generate all edge-points
edge(E,V, [_,W],_,_),
W =\= 0,

get_pts (E, V, L)

,

fail,
i

all epts :- !

.

180

/
PERTURB.PL - move generator; generates random WS transitions

(vertex/obstacle rotation and reentrant installation)

:- dynamic
single_jump/0,
lock_path_class/0

% flag to set single rotation
flag to lock between obstacles

perturb_ws ([S,G] ,WS1) :-

repeat,

select_type (TYPE) ,

special sg move (TYPE, [S, G] ,WS1)

,

% [s,g] or [g,s] ==> same region
% until [S,G] changes

% compute range

until move from WSO is found

perturb_ws (WS0,WS3) :-

length (WSO, LEN)

,

RANGE is 2*LEN-5,
repeat,
select_edge_which (RANGE, EDGE, WHICH)

,

sp_nthO (EDGE,WS0,E0,C1,C2)

,

% NTH edge is EO between C1,C2
select_type (TYPE)

,

Sub_selections (TYPE, WHICH, EO, [Cl,C2,LOC] , ITEM)

,

take_action (TYPE, ITEM, LOC,WSO,WS1)

,

cycle_chk(WSl,WS2)

,

f ix_ws (WS2, WS3)

,

% strip out dumb turn edges
% ws_integrity (WS0,WS, WS1, WS1)

,

% for debugging only

select_type (TYPE) :-

irand (2, X)

,

(X=:=0 -> TYPE=0
; otherwise -> TYPE=1)

,

i

% reentrant
% vertex cross

special_sg_move (0, [S,G], [S,E0,E0,G])
start (_, R0)

,

re(R0,W0,ELST) ,

select (ELST,E0)

,

not (edge (E0,_, [_, 0] ,_,_))

,

i

special_sg_move (1, [S, G] , WS1) :-

start (_,R0)

,

rv(R0,_,VLST)

,

select (VLST,V0)

,

% special reentrant

% no border or obstacle edge

% special vertex cross

181

border (BRD)

,

not (ovr (VO, BRD))

,

% cannot jump a border vertex
ve(VO,VELST) ,

re (R0,_, RELST) ,

set_intersect (RELST, VELST, EE) ,

split_ee (EE, VELST, [S,G] ,WS1) ,

i

set_intersect ([] , A, []) .

set_intersect ([A|B] ,C,D) :-

memberchk (A, C) ,

i

D=[A|E],
set_intersect (B,C,E)

.

set_intersect ([A|B] ,C,D) :- set_intersect (B, C, D)

.

split_ee ([El, E2] , VELST, [S,G] ,NEWSEQ) :- % shift E1,E2 to ends of VELST
shift_list (El, VELST, [E1,E|LST]) ,

(E==E2 -> append([E|LST], [El] , SUB)

; SUB=[E1,E|LST]),

irand (2, X)

,

(X=:=0 -> append ([s I SUB] , [g] ,NEWSEQ) % insert SUB between s,g
; X=:=l -> append ([g | SUB] , [s] ,NEWSEQ)),

select_edge_which (RANGE, EDGE, WHICH) :

-

irand (RANGE, J) ,

I is J+2, % NOT at s or g
EDGE is I//2, % pick edge
WHICH is I mod 2, % lf/rt vertex or fwd/bck region

sub_selections (0, WHICH, EO, [CI, C2, LOC] , ER) :- % reentrant move
(WHICH=:=0 -> er (EO, [R0,_] ,_) % which region

; WHICH=:=1 -> er(E0, [_,R0] ,_)),

re (R0,_,ELST)

,

(memberchk (CI, ELST) -> LOC=[Cl,E0]
; memberchk (C2, ELST) -> LOC=[E0,C2]), % failure ==> s or g
subtract (ELST, LOC, RELST)

,

% remove EO and C*
select (RELST, ER)

,

% select ER from region elist
i

sub_selections (0,_, E0,_, VO) :- % failed reentrant ==> vertex
irand (2, WHICH)

,

sub_select ions (1 , WHICH, EO
,
_, VO)

,

I

sub_select ions (1, WHICH, E0,_,V0) :- % vertex move

(WHICH=:=0 -> edge(E0, [V0,_] ,_,_,_) % select VI or V2

; WHICH=: = 1 -> edge (EO, [_,V0] ,_,_,_)),

182

select (L, ITEM) :-

length (L, LEN)

,

irand(LEN,X)

,

nthO (X, L, ITEM)

,

i

% select random ITEM from list L

% do NOT select again

sp_nthO(Nl, [A,B,C|WS],E0,C1,C2) :-

(Nl=:=l -> E0=B, C1=A, C2=C
; NO is Nl-1,
sp nthO (NO, [B,C|WS] ,E0,C1,C2)),

take_action(0,ER,LOC,WS0,WSl) :-

possible_reentrant (ER,LOC, WSO)

,

reentrant_install (ER, LOC,WS0, WS1) ,

i

take_action(l,VO,_,WSO,WSl) :-

single_jump,
get_elst (V0,ELST)

,

move ws (WSO, ELST, WS1,),

% reentrant
% legit reetrant path ?

% single vertex rotation
% flag for single jumps

take_action(l, V0,_, WSO, WS1) :-

get_elst (V0,ELST)

,

move_ws (WSO, ELST, WSA, E)

,

second_move (E, VO, WSA, WS1)

,

i

% double vertex rotation

second_move (null,_, WS, WS) :- !.

second_move (E, VO, WSA, WS1) :-

new_vertex(E, VO, VI)

,

get_elst (V1,ELST2)

,

move_ws (WSA, ELST2, WS1,_)

,

i

new_vertex(E,VO,Vl) :- edge (E, [VO, VI]

,

new vertex(E,VO,Vl) :- edge (E, [VI, VO]

,

possible_reentrant (ER, [E1,E2],WS0) :-

(ep(El,ER,_,W0,_) ; ep(ER,El,_,W0,_)),

(ep(E2,ER,_,W0,_) ; ep(ER,E2,_,W0,_)),

not (consec_reentrants ([E1,E1,E2] ,WS0))

,

not (consec_reent rants ([El, E2, E2] , WSO))

,

i

% exists ?

consecutive reentrants

183

consec_reentrants ([A,B,C] , [A,B,C,D I LIST]) :- !.

consec_reentrants (SUBLST, [A, B, C I LIST]) :-

consec_reentrants (SUBLST, [B, C I LIST])

,

i
m

reentrant_install(ER, [E1,E2] , [E1,E2 |WSO] , [E1,ER,ER,E2 |WSO]) :- !

reentrant_install(ER, LOC, [E3,E4|WS0], [E3,E4|WS1]) :-

reentrant_install(ER,LOC, [E4 |WS0] , [E4 |WS1])

,

i

get_elst (V0,ELST) :-

ovr(V0,R) ,

i

not (lock_path_class)

,

not (border (R))

,

not (ovr (V0,0))

,

(chr(E,V0,_), che(E,ELST)
; oe(R,ELST)),
i

% if obstacle vertex

% NO lock on path subclass
% NO border jumps

% NO ellipse bound jumps
% choke vertex

% regular obstacle vertex

get elst (V0,ELST) :- ve(V0,ELST), !.% else non-obstacle vertex

move_ws (WSO, ELST, WS1, E) :-

slice (WSO, ELST, WF, SI, S2,WB)

,

make_new_seq(ELST, SI, S2,NEWSEQ)

,

append (WF, NEWSEQ, TEMP)

,

append (TEMP, WB,WS1)

,

(NEWSEQ = [E]

I
NEWSEQ = [] -> E = null

I
otherwise -> select (NEWSEQ, E)),

i

% extract critical edges
S1=[EF,E1,R1] S2=[EB,E2,R2]

slice (WSO, ELST, WF, SI, S2,WB) :-

extract (WSO, ELST, WF, SI)

,

rev(WS0,RWS0)

,

extract (RWSO, ELST, RWB, S2)

,

rev(RWB,WB)

,

% from front of WSO

% from back of WSO

extract ([A,B,B|WS] ,ELST, [A] , [A,B, 1]) : - memberchk (B, ELST) , !.% reentrant
extract([A,B | WS] , ELST, [A] , [A, B, 0]) :- memberchk (B, ELST) , !. % crossing
extract ([A, B|WS] , ELST, [A|WF], [EF,E1,R]) :-

extract ([B|WS] ,ELST,WF, [EF,E1,R])

,

I

make_new_seq(ELST, [EF,E1,_] , [EB,E2,_] , SEQ) :-% shifts El to front
Shift_list (El, ELST, [_|OLST])

,

split list (0LST,E1,E2,L1,L2)

,

184

order_list (EF, EB, El, E2, L1,L2,SUB) ,

back list (EB,E2, SUB, SEQ)

,

back_list(_,_, [],[]) :- !.

back_list (EB, E2, SUB, NEWSEQ) :-

last (FB,SUB)

,

(continuous (FB,EB) -> NEWSEQ=SUB
; cross_continuous (FB,E2,EB) -> append (SUB, [E2] , NEWSEQ)),

special_conditions (_,_, E, E,_) :- !, fail.

special_conditions (EF, EB,_,_, F) :

-

continuous (EF, EB)

,

not (continuous (EF, F)) ,

not (continuous (EB, F)) ,

order_list (EF, EB, El, E2, [], [F|_], []) :-

special_conditions (EF, EB, El, E2, F) ,

i

order_list (EF, EB, El, E2, [F|_], [], []) :-

special_conditions (EF, EB, El, E2, F)

,

i

order_list (EF, EB, El, E2, LI, L2, SUB) :-

first_elt (LI, Fl)

,

first_elt (L2,F2) ,

(continuous (EF,F1) -> SUB=L1

; continuous (EF,F2) -> SUB=L2

; continuous (El, Fl) -> SUB=[E1|L1]

; continuous (El, F2) -> SUB=[E1|L2]

; rev(Ll,RLl),
rev(L2,RL2) ,

order_list (EF, EB, El, E2, RL1, RL2, SUB)) ,

i

order_list (EF, EB, El, E2, LI, L2,_) :-

writeln_b ('ERROR. .. (perturb) order_list failed !'),

writeln_b([EF, EB, El, E2, LI, L2]) ,

abort

.

first_elt ([] ,null) .

first_elt ([F|_],F)

.

split_list (OLST,El,El,OLST,ROLST) :- % if E1==E2 (single)

rev(OLST,ROLST)

,

i

split_list (OLST,_, E2,L1,L2) : - break_list (OLST, E2 , LI, L2) ,!.

185

break_list ([E|OLST] ,E2,L1,L2) :-

(E==E2 -> Ll=[], L2=OLST
; L1=[E|LL], break_list (OLST, E2, LL, L2)),

I

continuous (El, E2) :- (ep (El, E2, _,_,_) ; ep (E2, El, _,_,_)), !.

cross_continuous (El, E2, E3) :- % crossing
(ep(El,E2,Rl,_,_) ; ep(E2,El,Rl,_,_)) ,

(ep(E2,E3,R3,_,_) ; ep (E3, E2, R3,_,_)) ,

not (same (R1,R3))

,

i

cycle_chk(WSl,WS2) :-

cycle_clear(WSl,WS2) ,

% irand(2,X),
% (X=:=0 -> all_cycle_clear (WS1,WS2)

% ; otherwise -> cycle_clear (WS1, WS2)),
i

cycle_clear (WS1,WS2) :-

triple (WS1,T)

,

save_front (T,WS1, FRONT, BACK) ,

rev (BACK, RBACK)

,

save_f ront (T, RBACK, RRBACK,_) ,

rev(RRBACK,BAK) ,

close_gap (FRONT, BAK,T,WS2) ,

i

cycle clear (WSL,WSL) :- !.

triple ([_,_],_)
triple([A|L], A)

triple([A|L], B)

- fail.
- double (L, A) , !

- triple(L,B) , !

double ([_] ,_) :- fail.

double ([A | L] , A) :- memberchk (A, L) , !.

doublet [A|L] ,B) :- double (L,B), !.

save_front (T, [T|WS1] , [] ,WS1) :- !.

save_front (T, [EIWS1] , [E|WS2] ,WSB) :- save_f ront (T, WS1, WS2, WSB) , !

close_gap (FRONT, [El | BAK] , T, WS2) :-

last (EO, FRONT)

,

(cross_continuous (E0,T,E1) -> append (FRONT, [T, El | BAK] ,WS2)

; otherwise -> append (FRONT, [El | BAK] , WS2)),
i

186

all_cycle_clear (WS, WS1) :- % removes ALL cycles except reentrants
f ind_f irst_dup(WS, E)

,

remove_cyc le (E , WS , WS 1)

,

I

all_cycle_clear (WS,WS) :- !.

f ind_first_dup ([] ,_) :- fail.

find_first_dup ([A, A|B] ,C) :- not (member (A, B)) , f ind_f irst_dup (B, C) , !.

f ind_first_dup ([A|B] , A) :- member (A, B), !.

find_first_dup([A|B] ,C) :- find_first_dup (B, C) , !.

remove_cycle (_, [],[]) : - !

.

remove_cycle(E, [E|WST] , [E|WS1]) :- remove_cycle2 (E, WST, WS1) , !.

remove_cycle(E, [El |WST] , [El |WS1]) :- remove_cycle (E, WST, WS1) , !.

remove_cycle2 (_,[],[]) :- !. % pinch off cycle
remove_cycle2 (E, [E|WST] , [E|WST]) :- !.

remove cycle2 (E, [El | WST] , WS1) :- remove_cycle2 (E, WST, WS1) , !.

ws_integrity (WSO, WSC, WS1, [E1,E]) :- continuous (E, El) , !. % end ws

ws_integrity (WSO, WSC, WS1, [E1,E2,E2,E3 |WS]) :- % reentrant
(ep(El,E2,R,_,_) ; ep(E2,El,R,_,_)) ,

(ep(E2,E3,R,_,_) ; ep (E3, E2, R,_,_)) ,

ws_integrity (WSO, WSC, WS1, [E2,E3|WS])

,

i

ws_integrity (WSO, WSC, WS1, [E1,E2,E3 |WS]) :- % crossing
cross_continuous (El, E2, E3) ,

ws_integrity (WSO, WSC, WS1, [E2,E3 |WS])

,

i

ws_integrity(WSO,WSC,WSl, [El, E2, E3 |_]) :-

write_list (['ERROR (perturb) ... Invalid WS at ' , [El, E2, E3]])

,

start (S,_)

,

goal (G,_)

,

write_list (['start =',S,' goal =',G]),

write_list (['WSO =',WS0]),
write_list (['WSC =',WSC]),
write_list (['WS1 =',WS1]),
writeln (' Taking corrective action ... returning to WSO.'),

fail.

fix_ws ([S |WS] ,CW) :- correct_ws (S, [S |WS] , CW) , !.

correct_ws (EO, [El] , [El]) :-

(ep(El,E0,R,_,_) ; ep(E0,El,R,_,_)) ,

I

correct_ws (El, [E2, E2, E3 I WS] , Z) :-

(ep(El,E2,R,W,_) ; ep (E2, El, R, W,_)) ,

(ep(E2,E3,R,W,_) ; ep (E3, E2, R, W,_)) ,

(edge(E2,_, [_,W],_,_) -> EN=E2, Z=[E2,E2| CW]

187

; otherwise -> EN=E1, Z=CW) ,

correct_ws (EN, [E3 |WS] ,CW)

,

t

correct_ws (El, [E2,E2, E3 I WS] , CW) :-

(ep(El,E2,Rl,_,_) ; ep (E2, El, Rl,_,_)) ,

(ep(E2,E3,R2,_,_) ; ep (E3, E2, R2,_,_))

,

correct_ws (El, [E2,E3 |WS] ,CW)

,

i

correct_ws (EO, [E1,E2 |WS] ,CW) :-

(ep(E0,El,R,_,_) ; ep (El, EO, R,_,_)) ,

(ep(El,E2,R,_,_) ; ep (E2, El, R,_,_)) ,

correct_ws(EO, [E2 |WS] f CW)

,

I

correct_ws (_, [E1,E2 |WS] , [El |CW]) :-

correct_ws(El, [E2 |WS] ,CW)

,

i

correct_ws (_, WS, CW) :-

writeln ('ERROR (perturb)

write_list ([' WS =',WS]),
write_list (['CW =' ,CW])

,

fail, !

.

% strip out

% faulty reentrant

% remove El

failed to correct WS !'),

188

B.2 C INTERFACE AND C CODE

FOREIGN.PL - Prolog to C interface routines

distance* [XI, Yl] , [X2,Y2] ,D) :-

distance* XI, Yl, X2,Y2, D) , !.

wdistance ([XI, Yl] , [X2, Y2] , W, WD) :-

wdistance(XI, Yl, X2,Y2, W,WD), !.

snelK [PX1,PY1] , [PX2,PY2], [W1,W2],

[IX1,IY1], [IX0,IY0], [1X2, IY2], [X0P,Y0P]) :-

snellc (PX1,PY1, PX2,PY2, W1,W2,
IX1,IY1, IX0,IY0, 1X2, IY2, X0P,Y0P), !.

elsearch(D,OW, [SX,SY], [GX,GY], [V1X,V1Y], [V2X, V2Y] , D2, [X,Y],LEN) :-

elsearch (D,0W, SX, SY, GX,GY, V1X,V1Y, V2X,V2Y, D2, X, Y, LEN) , !.

foreign_file (' /n/ai9/work/kindl/sa/lib/heap .o' , [

init_heap,
del_min,
del_heap,
ins_heap
]) .

foreign_f ile (
' /n/ai9/work/kindl/sa/lib/snells_law.o' , [

getable,
distance,
wdistance,
snellc,
elsearch
]) •

foreign_file (' /n/ai9/work/kindl/sa/lib/rnd. o'
, [

irand,

randinit,
init_anneal,
metrop,
iter_impr,
total_ws
]) •

189

/*

heap
*/

foreign (init_heap, c, init_heap ([-integer]))

.

foreign (ins_heap, c, ins_heap (+float , [-integer]))

.

foreign (del_min, c, del_min ([-integer])) .

foreign (del_heap, c, del_heap (+integer))

.

/*

snellc calls require that getable has been called to load tabledump;
getable accesses tabledump directly in the current directory

.*
/

foreign (i rand, c, i rand (+integer, [-integer])) .

foreign (randinit, c, randinit ([-integer]))

.

foreign (init_anneal, c,

init_anneal (+f loat, +f loat, +f loat, +integer, +integer)) .

foreign (metrop, c,metrop (+float,+float, [-integer]))

.

foreign (iter_impr, c, iter_impr (+ f loat, +f loat , [-integer])) .

foreign (total_ws, c, total_ws ([-integer])) .

/*

INITIALIZATION
*/

load_foreign_files ([

' /n/ai9/work/kindl/sa/lib/heap.o'

,

' /n/ai9/work/kindl/sa/lib/snells_law.o'

,

' /n/ai9/work/kindl/sa/lib/rnd.o'
] ,

[' -lm'])

,

% lm = lib math
abolish ([foreign_f ile/2, foreign/3]) ,

getable (_)

.

% load Snell's Law Table
% tabledump MUST be in current directory

190

/*=====—=============—==

GLOBAL. C - C definitions - determine table size and range
========== =================== ===================================*/

#include <stdio.h>
#include <math.h>

/*

if P,Y,R are adjusted, then revise PSIZE, YSIZE, RSIZE for ocp[][][];
also, remember to recompile with revised global.

c

*/

tdefine TOLERANCE 0.000001

#define PLO 1

tdefine PHI 10

#define YLO 0.0

fdefine YHI 1.00
#define YINC .05

#define RLO 0.00
fdefine RHI 10.00
fdefine RINC 0.05

#define PSIZE 45

#define YSIZE 21

#define RSIZE 201

float ocp[PSIZE] [YSIZE] [RSIZE] , ***ptbl - 0;

/* NOTE: ptbl=0 ==> table was NOT loaded */

int pidx[PHI] [PHI] , **px;

int i_lim = PHI-PLO+1;
int j_lim = 1.01 + (YHI-YLO) /YINC;

int k_lim = 1.01 + (RHI-RLO) /RINC;

FILE *fp, *fopen()

;

/* */

191

SNELLS_LAW.C - table lookup or golden search for Snell's Law crossing
==*/

#include "global. c"

/*

GETABLE - initialize table of x values by loading table core dump
*/

getable ()

{

int *pd = & (pidx [] [])

;

float *oc = & (ocp[0] [0] [0])

;

float **occ = &oc;

FILE *infile = fopen ("tabledump", "r")

;

read (fileno (inf ile) ,pidx, sizeof (pidx))

;

read(fileno (inf ile) , ocp, sizeof (ocp))

;

ptbl = &occ;
px = &pd;

return;

}

/*

XLOOKUP - linear interpolation into Snell's Law table
x=f(p,y,r) ==> interpolation of ix=f(i,j,k); table index p is

obtained indirectly from 2D triangular table indexed by iwl,iw2
*/

double
xlookup (iwl, iw2, y, r)

int iwl, iw2;

double y, r;

{

int i,j,k;
double x, jy,kr, rfactor,yfactor,dxrl, dxr2, dxl, dx2;

/* get table index i for appropriate rho = iw2/iwl
by convention this routine ASSUMES that iw2>iwl ! ! ! */

i = pidx[iw2-l] [iwl-1]

;

192

/* compute indices of square interval for interpolation */

jy = (y-YLO) /YINC; kr = (r-RLO) /RINC;

j = (int) jy; k = (int)kr;/* safer way to floor *•/

/* compute orthogonal distances from lower corner of square */

yfactor = jy- (float
) j ; rfactor = kr- (float) k;

/* planar interpolation (or linear in 2 dimensions) */

dxrl = ocp[i] [j] [k+1] - ocp[i] [j] [k]

;

dxr2 - ocpti] [j+1] [k+1] - ocp [i]
[
j+1] [k]

;

dxl = ocp[i] [j] [k] + dxrl * rfactor;
dx2 = ocp[i] [j+1] [k] + dxr2 * rfactor;
x = dxl + (dx2-dxl) * yfactor;

if (ptbl==0) printf ("WARNING. . . Snell's Law table is NOT loaded !!! \n")

;

return (x)

;

} /* end XLOOKUP */

/*

WDISTANCE - weighted Euclidean distance between 2 points
DISTANCE - UNweighted
WSQRDIST - weighted, squared"
SQRDIST - UNweighted, squared"

double
wdi stance (xl, yl, x2, y2, w) double xl, yl, x2, y2, w;

{ return (w * sqrt ((x2-xl) * (x2-xl) + (y2-yl) * (y2-yl))) ; }

double
distance (xl, yl, x2, y2) double xl,yl,x2,y2;
{ return (sqrt ((x2-xl) * (x2-xl) + (y2-yl) * (y2-yl))) ; }

double
sqrdist (xl, yl, x2, y2) double xl,yl,x2,y2;
{ return ((x2-xl) * (x2-xl) + (y2-yl) * (y2-yl)); }

double
wsqrdist (xl, yl, x2, y2, w) double xl, yl, x2, y2, w;

{ return (w*w *
((x2-xl) * (x2-xl) + (y2-yl) * (y2-yl))) ; }

193

/*

GOLDEN - golden ratio search for minimum

define R 0.61803399
#define C (1.0-R)

#define SHFT (a,b, c,d) (a) = (b) ; (b) = (c) ; (c) = (d) ;

golden (pxl,pyl, px2, py2, wl, w2, vxl, vyl, vx2, vy2 f xop, yop)

float pxl, pyl,px2,py2, wl, w2, vxl, vyl, vx2, vy2, *xop, *yop;

{

float ff,f0,fl,f2,f3;
float dx, xO, xl, x2, x3;

float dy,y0,yl,y2,y3;

xO = vxl; yO = vyl;

x3 = vx2; y3 = vy2

;

dx = vx2-vxl; dy = vy2-vyl;

xl = C*dx+vxl; yl = C*dy+vyl;
x2 = R*dx+vxl; y2 = R*dy+vyl;

fl = wdistance (pxl, pyl, xl, yl, wl) + wdistance (px2, py2, xl, yl, w2)

;

f2 = wdistance (pxl, pyl, x2, y2, wl) + wdistance (px2, py2, x2, y2, w2) ;

while (fabs(x3-x0) > TOLERANCE* (fabs (xl) +fabs (x2)

)

II fabs(y3-y0) > TOLERANCE* (fabs (yl) +fabs (y2))) {

if (f2 < fl) {

SHFT(xO,xl,x2,R*xl+C*x3)

;

SHFT(yO,yl,y2,R*yl+C*y3)

;

ff = wdistance (pxl, pyl, x2, y2, wl) + wdistance (px2, py2, x2, y2, w2)

;

SHFT(fO,fl,f2,ff) ;

}

else {

SHFT(x3,x2,xl,R*x2+C*x0)

;

SHFT(y3,y2,yl,R*y2+C*yO)

;

ff = wdistance (pxl, pyl, xl, yl, wl) + wdistance (px2, py2, xl, yl, w2)

;

SHFT(f3,f2,fl,ff)

;

}

}

xop =0.5 (xl+x2)

;

yop =0.5 (yl+y2)

;

return;

} /* end GOLDEN */

194

/*

SNELLC - computes Snell's Law crossing point (xop, yop)
*/

snellc (pxl, pyl, px2, py2, wl, w2, ixl, iyl, ixO, iyO, ix2, iy2, xop, yop)

float pxl, pyl,px2, py2, wl, w2, ixl, iyl,ix0,iy0,ix2, iy2, *xop, *yop;

{

int iwl, iw2

;

double x, xt, y, yt , r, part

;

iwl = nint(wl); iw2 = nint(w2);

if (iwl == iw2) {/* should NEVER be used, computed in Prolog */

*xop = ixO;

*yop = iyO;

return(-l); /* -1 = NO computation performed */

}

xt = distance (ixl, iyl, ix2, iy2)

;

y = distance (pxl, pyl, ixl, iyl)

;

yt = y + distance (px2,py2, ix2, iy2)

;

Y = y/yt; /* compute normalized y */

r = xt/yt;

if (y>0.01 && y<YHI && r>0.01 && r<RHI) {/* check if in table */

if (iwl > iw2) /* check correct orientation */

x = 1.0 - xlookup (iw2, iwl, 1 . 0-y, r)

;

else
x = xlookup (iwl, iw2, y, r)

;

part = x/r; /* optimal partition of edge between il,i2 */

xop = part (ix2-ixl) + ixl;

yop = part (iy2-iyl) + iyl;

return (1); /* 1 = table lookup was performed */

}

else {

golden (pxl, pyl, px2, py2, wl, w2, ixO, iyO, ix2, iy2, xop, yop) ;

return (0); /* = golden search was required */

}

} /* end SNELLC */

195

/*

ELSEARCH - binary search for intersection of ellipse and line (edge)

*/

float
elsearch (bestc, ow, sx, sy, gx,gy, xin, yin, xout, yout, cout, xO, yO)

float bestc, ow, sx, sy, gx, gy, xin, yin, xout, yout, cout, *x0, *y0;

{

float x,y,c,xl,yl,tol=0 .001;

xl=xin; yl=yin;
c=cout

;

while (fabs (c-bestc) > tol) {

x = . 5* (xin+xout)

;

y = . 5* (yin+yout)

;

c = wdistance (sx, sy, x, y, ow) + wdistance (gx, gy, x, y, ow)

;

if (c > bestc) { xout = x; yout = y;)

else { xin = x; yin = y; }

}

*x0=x; *y0=y;

return (distance (xl, yl, x, y)); /* new length of edge */

} /* END elsearch */

196

/'

RND.C - annealing primitives and random number generation routines

#include <stdio.h>
#include <math.h>
#include "statel.h"

fdefine DIGIT 4

#define MAXINT 0x7FFFFFFF

FILE *fp, *fopen()

;

unsigned seed = 1;

float fmaxint = (float) MAXINT;

/* random list of numbers */

/* file pointers for seed5 */

I-

Annealing parameters (global)

:

Define change in cost function as: dc = c[i] - c[i+l]
Then dc > 0.0 implies cost improvement, accept at p = 1.0

and dc < 0.0 implies cost degradation, accept at p = exp(dc/t)
Thus, function metrop(dc,t) should operate as follows:

return ((dc >= 0.0) || (randOK) < exp(dc/t)) ? 1:0)

7

float tfactor;
float temp;
float tfrozen;

/* temp reduction factor (eg .9)*/

/* current temperature*/
/* current temperature*/

int n_total = 0; /* total attempted moves all t*/

/* The following stats are accumulated at each temperature temp*/

int n_limit;
int ns_limit;
int n = 0;

int ns = 0;

int n_imp = ;

float sum_dc_deg = 0.0;

float mean_dc_deg;

float sum_c = 0.0;

float ss = 0.0;

float mean;
float sd;

/* max attempted moves (eg 100)*/
/* max successful moves (eg 10)*/

/* attempted moves*/
/* successful moves*/

/* attempted moves Q dc >= 0.0*/
/* n_deg = n - n_imp*/

/* sum of dc degrading*/
/* <dc degrading> = exp val dc-*/

/* sum of c*/
/* sum of c~2*/

/* <c> = expected value c*/
/* std deviation of c*/

197

/*

IRAND(K) - generate random integer in range [0..K)

int

irand(k) int k; {

if (k>0) return (random () % k) ;

else print f ("ERROR. . .attempt to call irand(k) for k<=0\n");

} /* END irand */

/*

INITSEEDO - generate a new seed from the system clock

unsigned
initseedO {

unsigned t, curtime, loctime, save, oldsave;

/*

MUST call time(O) (ie. arg = NIL pointer) to ensure that time
does NOT store return structure on top of program variable space.
*/

curtime = (unsigned) time (0) ; /* no of seconds since 1 Jan 1970 */

if (fp = fopen("seed5","r")) {

f scanf (fp, "%d", &oldsave)

;

fclose (fp)

;

}

else
oldsave = 2311; /* some large prime number */

t = (unsigned) explO ((float) DIGIT)

;

loctime = curtime % t; /* last DIGIT digits */

seed = loctime*oldsave + loctime + 13;

save = seed % t; /* last DIGIT digits */

fp = fopen("seed5", "w")

;

fprintf (fp, "%d", save)

;

fclose (fp)

;

printf ("\ncurtime = %12d\n", curtime)

;

printf("loctime - %12d\n", loctime)

;

printf ("t = %12d\n",t);
printf ("oldsave = %12d\n", oldsave)

;

printf (
" (new) save = %12d\n", save)

;

printf ("seed = %12d\n\n", seed)

;

return (seed)

;

} /* END initseed */

198

/*

RANDINITO - initialize new random seed and statel for random()

unsigned
randinit () {

int n = 256; /* total no. bytes in statel = 4*64 */

initseedO; /* to change seed */

initstate (seed, statel, n)

;

/* to initiate state with seed */

setstate (statel)

;

/* to use statel */

/* srandom(l)

;

/* generates SAME sequence each execution */

srandom (seed)

;

/* generates NEW sequence each execution */

return (seed)

;

} /* END randinit */

/*

GENSTATEO - generate a new statel

genstateO {

int i, size = 64;

randinit ()

;

fp = fopen ("statel. h", "w")

;

fprintf (fp, "static long statel [64] = {\n");

for (i=l; i<size; i++)

fprintf (fp, "%15d,\n",irand(1000000000))

;

fprintf (fp, "%15d }; \n", irand (1000000000))

;

fclose (fp)

;

} /* END genstate */

/*

randOlO - uses random () to generate random number on [0,1)

float
randOK)

{ return ((float) random () / fmaxint);)

/* to extend range returned by randOl, use this call:

return ((float) random () / (float) 0x7FFFFFFF * range); */

199

ANNEAL. C - simulated annealing control routines and statistics
========== ==*/

/*

init_anneal () - initialize annealing parameters
*/

init_anneal (ts, tO, tfac, nO, nsO)

float ts, tO, tfac;
int nO, nsO;

{

temp = ts;

tfrozen = tO;

tfactor = tfac;
n_limit = nO;

ns_limit = nsO;

n = 0;

ns = 0;

n_total = 0;

printf ("\n") ;

printf (" starting temp = %8 . 2f \n", ts) ;

printf (" freezing temp = %8 .2f \n", tO) ;

printf (" temp reduction factor = %8 .2f \n", tfac)

;

printf ("max perturbations per temp = %8d\n",n0);
printf (" max successes per temp = %8d\n",ns0);
printf ("\n")

;

printf (" temp n ns dc+ dc- <dc-> <c> sd cum\n");
printf (" ") ;

printf ("\n")

;

}/* END init_anneal */

/*

cool() - reduce the temperature (temp) per annealing schedule;
may be modified for more elaborate cooling schemes

*/

cooK) {

int den;

den = n - n_imp;
if (den == 0) mean_dc_deg = 0.0;
else mean_dc_deg = sum_dc_deg/ (float) den;
sum_dc_deg = 0.0;
mean = sum_c/ (float) n;

sd = sqrt ((ss/ (float) (n-1))- (mean*sum_c/ (float) (n-1)));

sum c = 0.0;

200

ss = 0.0;

n_total = n_total + n;

printf ("%7.1f %3d %3d %3d %3d %8.1f %7 . If %7.1f %4d\n",
temp, n, ns, n_imp, n-n_imp,mean_dc_deg,mean, sd, n_total)

;

temp = t factor * temp;
n = 0;

n_imp = ;

if (ns ==
| | temp <= tfrozen) (

printf (" freezing temp = %8 .2f \n", temp)

;

printf ("total perturbations evaluated = %8d\n", n_total)

;

return (0); /* HALT - effectively frozen */

}

else {

ns = ;

return (1); /* continue annealing */

)

} /* END cool */

/*

metrop (cl, c2) - returns l-accept/0-re ject or -1 if frozen
cl = current cost; c2 = new cost;

*/

metrop (cl, c2) float cl,c2; {

int determ; /* determinant = accept 1 or reject */

int improve; /* 1 if dc non-negative */

float dc;

dc = cl-c2;
n++;

sum_c = sum_c + c2;

ss = ss + (c2*c2)

;

improve = (dc > 0.0) ? 1:0;

if (improve) n_imp++; /* n_deg = n - n_imp */

else sum_dc_deg = sum_dc_deg + dc;

determ = (improve
I I

(randOlO < exp (dc/temp))) ? 1:0;

ns = ns + determ;

if (n >= n_limit II ns >= ns_limit) (

if (coolO) return (determ) ; /* continue annealing */

else { n=0; return (-1); }
/* HALT - effectively frozen */

I

return (determ)

;

} /* END metrop */

201

/*

iter_impr (cl, c2) - iterative improvement; returns 1-improves/O-re ject
cl = current cost; c2 = new cost;

*/

iter_impr (cl, c2) float cl,c2; {

n++;

if (n <= n_limit) return ((cl-c2 >= 0.0) ? 1:0);

else { n=0; return (-1); }

} /* END iter_impr */

/*

total_ws() - returns total number of window sequences evaluated
*/

total ws () { return (n total); }

202

HEAP.C - routines to operate a heap data structure

#include <math.h>

#define NULL
#define MAXHEAP 100000

struct heap_item { int cost, hash; };

struct heap_item heap [MAXHEAP]

;

int i, hashcount = 0, heap_size = 0;

/*

INIT_HEAP
*/

init_heap() {

heap_size = 0;

hashcount = 0;

for (i=0;i<MAXHEAP;i++) (

heap[i].cost = -1;

heap[i].hash = -1;

}/

}
/* END INIT_HEAP */

/*

SIFT_UP - heap routine
*/

sift_up(k) int k; {

int parent;

if (k > heap_size)
pr int f ("ERROR. . .Attempted to sift_up an element not in heap!\n");
while (k > 1) {

parent = floor ((double) k/ (double) 2)

;

if (heap [parent] .cost > heap [k] . cost) {

interchange (parent, k)

;

k = parent;

}

else return (NULL)

;

};

} /* end SIFT UP */

203

/*

INS_HEAP - insert into heap

ins_heap (cost) int cost; {

int hash;

hashcount++;
heap_size++;
hash = hashcount;

if (heap_size >= MAXHEAP)
print f ("ERROR. . .Over-extended heap!")

;

heap [heap_size] .hash = hash;
heap [heap_size] . cost = cost;
if (heap_size > 1) sift_up (heap_size)

;

return (hash)

;

}
/* END INS_HEAP */

/*

SIFT_DOWN - heap routine

sift_down(k) int k; {

int j ;

if (k > heap_size+l) { /* k might be the old last element */

print f ("ERROR. . .Attempted to sift_down element not in the heap!\n");
printf("k = %d heap_size = %d\n", k, heap_size)

;

}

do {

j = k;

if (2*j <= heap_size && heap [2* j] . cost < heap [k] . cost

)

k = 2*j;

if (2*j < heap_size && heap [2* j+1] . cost < heap [k] . cost

)

k = 2*j+l;
interchange (k, j)

;

) while (j != k)

;

}
/* end SIFT DOWN */

204

/*

DEL_MIN - returns top of heap (minimum) and restores heap property
_ */

del_min() {

int root;

if (heap_size > 0) {

root = heap [1] .hash;

interchange (1, heap_size)

;

heap [heap_size] .hash = NULL;
heap [heap_size] . cost = NULL;
heap_size--;
if (heap_size > 1) sift_down (1) ;

return (root)

;

)

else {

print f ("ERROR. . .Attempt to delete from empty heap!\n");
return (NULL)

;

};

}
/* end DEL_MIN */

/*

DEL_HEAP - delete from anywhere in heap; requires linear search

del_heap(k) int k; {

int i = 1

;

if (heap_size > 0) {

while ((heap [i] .hash != k) && (i < heap_size)) i++;

interchange (i, heap_size)

;

heap [heap_size] .hash = NULL;

heap [heap_size] . cost = NULL;

heap_size--; /* heap [heap_size] is now last element */

if (heap_size > 1) sift_down (i)

;

}

else printf ("ERROR. . .Attempt to delete from empty heap!\n");

}
/* end DEL HEAP */

205

/*

INTERCHANGE - swap elements in heap

interchange (parent, child) int parent, child; {

struct heap_item hold;

hold = heap [parent]

;

heap [parent] = heap [child];
heap [child] = hold;

} /* end INTERCHANGE */

206

TABLE. C - table generation, read, dump, get routine
== */

#include "global. c"

/*

GENTABLE.C - generate Snell's Law lookup table for crossing episodes
*/

gentableO {

float vl, v2, r, pO,p, x, y, el, e2;

int i, j, k, m, n, i_lim;

fp = fopen("sldataO","w")

;

i_lim = PHI-PLO+1;
i_lim = (i_lim*i_lim - i_lim)/2;

i = -1;

for (m=PLO-l; m<PHI; m++)

for (n=PLO-l; n<m; n++) {

pO = (float) (m+1) / (float) (n + 1) ;

i++;

pidx [m] [n] = i;

fprintf (fp,"%d\n",pidx[m] [n])

;

for (j=0; j<j_lim; j++) {

y = (float) j*YINC+YLO;

for (k=0; k<k_lim; k++) {

r = (float) k*RINC+RLO;

vl = 0.0; v2 = r;

el = 1.0; e2 = 1.0;

while (el>TOLERANCE && e2>TOLERANCE) {

x = 0.5* (vl+v2)

;

p - cos (atan (y/x)) /cos (atan ((1 .0-y) / (r-x)))

;

if (p<p0) vl = x;

else v2 = x;

el = fabs (pO-p)

;

e2 = fabs(v2-vl)

;

} /* end while */

207

fprintf (fp,"%8.6f\n",x)

;

fflush(fp)

;

} /* end for */

}
/* end for */

} /* end for */

fclose (fp)

;

} /* end GENTABLE */

/*

READTABLE.C - read table in ascii format (sldataO;

readtableO {

int m, n, i, j, k;

ptbl = (float ***) malloc ((unsigned) j_lim*k_lim*sizeof (float**))

;

px = (int**) malloc ((unsigned) (PHI-PLO+1) *sizeof (int*))

;

fp = fopen ("sldataO", "r")

;

printf ("Loading Snell's Law table... ");

fflush(stdout)

;

for (m=PLO-l; m<PHI; m++) {

for (n=PLO-l; n<m; n++) {

fscanf (fp, "%d",&pidx[m] [n])

;

i = pidx [m] [n]

;

for (j=0; j<j_lim; j++)

for (k=0; k<k_lim; k++)

fscanf (fp, "%f",&ocp[i]
[j] [k])

;

}

printf ("%d ",m+l)

;

f flush (stdout)

;

}

printf ("
. . .done . \n")

;

fflush (stdout)

;

fclose (fp)

;

return;

} /* end READTABLE */

208

/*

DUMPTABLE.C - read 'sldata' in ascii, dump core image to 'tabledump'
*/

dumptableO {

FILE *outfile = fopen ("tabledumpO", "w")

;

readtableO; /* requires table in ascii form (sldataO) */

write (f ileno (outf ile)
, pidx, sizeof (pidx))

;

write (fileno (outf ile) , ocp, sizeof (ocp))

;

fflush (outfile)

;

return;

} /* end DUMPTABLE */

/*

GETABLE.C - reads core dump of table (tabledump)
*/

getableO {

int *pd = & (pidx[0] [0])

;

float *oc = & <ocp[0] [0] [0])

;

float **occ = &oc;

FILE *infile = fopen ("tabledumpO", "r")

;

read (f ileno (in file)
,
pidx, sizeof (pidx))

;

read (f ileno (inf ile) , ocp, sizeof (ocp))

;

ptbl = Socc;

px = &pd;

return;

}
/* end GETABLE */

/* */

main() {

gentableO; /* generate sldataO (ascii) */

dumptableO; /* execute readtableO and dump tabledumpO (binary) */

getableO; /* load to check for correctness */

} /* END main */

209

B.3 UTILITIES AND PRIMITIVES

/ * ===============================—==.—===========._

PROLOG.INI - makes custom version of Quintus Prolog

Run Quintus Prolog in your root with this file called prolog.ini and
your regular prolog.ini file renamed to init.pl. After you receive
the normal Q-Prolog opening message and prompt, enter 'make (name) .'

to save the state in executable form as 'name' . Henceforth, you must
start Quintus Prolog by entering 'name' in Unix. This will rapidly
load compiled versions of all libraries requested below, and give you
the prolog prompt

.

compile (' lib/init') , % contains root and xload definitions

use_module (library (math) , all) , % append, member, memberchk, nonmember
use_module (library (basics) , all) ,

use_module (library (lists) , [

last/2,
rev/2,
is_list/l,
nthO/3,
nthl/3,

delete/3]),

use_module (library (sets) , [subtract/3, subset/2])

,

use_module (library (strings) , [concat/3, concat_atom/3])

,

use_module (library (files) , [f ile_exists/l])

,

use_module (library (ctypes) , [is_endf ile/1])

,

use_module (library (dialog)) ,

use_module (library (interpret_messages))

,

use_module (library (messages)) ,

xload('lib/util') ,

xloadC lib/line') ,

xload (
' lib/pwin')

,

xload ('lib/pre')

,

xload (' lib/ell ipse')

,

xload ('lib/udp')

,

xload (' lib/optimal')

,

xload('lib/spr') ,

xload (' lib/ foreign') ,

xloadC lib/start') ,

xload (
' lib/mouse')

,

210

xloadC lib/stats') ,

nl, writeln (' Enter ''make(P).'' to create executable "P" .') .

make(P) :-

save(P,l), % remaining statements execute at start-up of P

nl,

writeln ('Q-Prolog Rel 2.5 (SPARC) ... custom vers 5 Nov 90').

make(P) :-

nl, write ('Created custom vers of Q-Prolog: '),

writeln (P)

,

halt.

make_exec(P) :- save(P,l), background.
make_exec (_) :- halt.

background :- f ile_exists (' run .pi') , compile (run) . % background
background :- start. % interactive

211

INIT.PL - primitive routines

/*

Library pointers and file manipulation
*/

library_directory (' /usr/local/quintus/generic/qplib2 . 5/library')

.

libra ry_di rectory (' / us r/ local /quintus /pwl . 1/ library')

.

root (' /n/ai9/work/kindl/sa/')

.

xconsult(F) :- filepath (F, PATH) , consult (PATH)

.

xload(F) :- f ilepath (F, PATH) , ensure_loaded (PATH)

.

filepath(F,PATH) :-

root (D)

,

name (D, LI), name(F,L2),
append (LI , L2 , L)

,

name (PATH, L)

.

/*

Primitives
*/

not (X) :- \+ X.

% :- unknown (X, fail)

.

% call to unknown predicate simply fails
% :- unknown (X, trace)

.

% (default) trap to debugger

% append ([] , L, L)

.

% append([X| L] ,R, [XIList]) :- append (L, R, List)

.

sys (STRING) :- unix (system (STRING))

.

writeln(X) :- write (X) , nl

.

writelnln(X) :- write (X) , nl, nl.

writeln(S,X) :- write(S,X), nl(S).
writelnln(S,X) :- write(S,X), nl(S), nl(S).

writeln_b(X) :- bold, write (X) , nl, alloff, !.

write_list ([]) :- nl, !.

write_list ([X|L]) :- write (X) , write (' '), write_list (L) , !.

write_list b(X) :- bold, write list (X) , alloff, !.

212

same (X,X)

.

els :- display (' *L') . % clearscreen or page
nt :- notrace. % shorthand code
ns :- nospyall.
1(X) :- listing(X)

.

dump(P) :- % dump listing of predicate to file
open (P, write, S)

,

tell(S) ,

listing(P)

,

told.

/*

Enhancements to On-Line Help / Manual

man :- manual.

m :- manual.
m(X) : - manual (X)

.

m(S,N) :- sect(S,SEC), manual (- (SEC, N)) .

m(S,N,P) :- sect(S,SEC), manual (-(- (SEC, N) , P))

.

m(S,N,P,Q) :- sect(S,SEC), manual (-(-(- (SEC, N) , P) , Q)

)

sect (u, user)

.

sect (r, ref)

.

sect (s, sysdep)

.

sect (1, lib)

.

sect (p, pw)

.

h(X) :-

name (X, L) ,

char_list (L,CL) ,

append ([m] , CL, MLIST) ,

M =. . MLIST,
call(M)

,

i

h(_) :-

writeln ('ERROR. . .Invalid use of h(X)...'),
writelnC X must be form of ' ' sd' '

,
' ' sdd' '

, or ' ' sddd' ' '
) ,

writelnC s = u(user), r(ref), s(sys), or l(lib)'),
writelnC d = digit . . 9 [if d>9, use form m (s, d, d, d)]') .

char_list([], []) .

char_list ([NIL] , [C|CL]) :-

name (C, [N]
)

,

char list (L,CL)

.

213

VT-100 Terminal escape sequences

7

eb :- esc, lbrack.
clear :- eb, two, u j

.

home :- eb, uh

.

reverse :- eb, ques, five, lh.

normal :- eb, ques, five, 11.

smooth :- eb, ques, four, lh

.

scr_norm :- eb, ques, four, 11

backup :- esc, urn.

save_cur :- esc, seven.
rest_cur :- esc, eight.
cur(L,C) :- esc, uy, write(L),
alloff :- eb, zero, lm.

bold :- eb, one, lm.

under :- eb, four, lm.

blink :- eb, five, lm.

rvideo :- eb, seven, lm.

write (C)

% escape, left bracket
% clear screen
% home cursor

% reverse screen
% normal screen
% smooth scroll
% normal scroll
% reverse index

turn off all attributes
% bold attrib

% underline attrib
% blinking attrib

% reverse video attrib

/

ASCII display codes (used above)

/

esc : - put (27)

zero : - put (48) .

one :
- put (49) .

two :
- put (50) .

three :- put(51)
four : - put (52) .

five : - put (53) .

six :
- put (54) .

seven :- put (55)

eight :- put (56)

nine :
- put (57) .

% escape

% numerical digits

ques :- put (63) .

lbrack :- put (91)

% ?

la - put (97)

lh - put (104)

11 - put (108)

lm - put (109)

uh - put (72)

.

uj - put (74)

.

um - put (77) .

uy - put (89) .

% lowercase alpha

% uppercase alpha

214

UTIL.PL

irandom (A,

B

f IR) :- % random integer range A..B inclusive
RNG is B-A+l,
irand(RNG,N)

,

IR is N+A,

/*

timing - CPU sec

timestart :- statistics (runtime, _) , !.

timemark (TIME) :-

statistics (runtime, [_,T]),

% format ('-3d sec CPU tirne~n' , [T]) ,

TIME is T/1000,

ts :- timestart.

tm :- timemark (_)

.

tm(T) :- timemark(T).

/*

tolerance - between a pair of points

:- dynamic tolerance/1.

tolerance (0 . 000001)

.

% default tolerance, change with asserta

within_tolerance ([[XI, Yl] , [X2, Y2]]) :-

abs_diff (X1,X2,DX) , abs_diff (Yl, Y2,DY)

,

tolerance (Spec)

,

!, % do NOT get another tolerance Spec */

DX < Spec, DY < Spec.

abs_diff (X1,X2,AD) :- X1=<X2, AD is X2-X1, !.

abs diff (X1,X2,AD) :- AD is X1-X2, !.

215

/*

Constants /Convers ions
*/

pi(3. 14159) .

half_pi (1.5708)

.

rad_deg (R,D) :-

not(var(R)), var(D),
D is R*180. 0/3. 14159,
i

rad_deg(R,D) :-

var(R), not(var(D)),
R is D*3. 14159/180.0,
i

rad_deg(_,_) :- writeln (' ERROR (util) . . . rad_deg needs a constant.'), !.

/*

absolute - prolog type-independent absolute value
*/

absolute (X,X) :- X>=0, !.

absolute (X, AX) :- AX is -X, !.

/*

miscellaneous routines - common to table lookup and search
*/

between ([XI, Yl] , [XM, YM] , [X2, Y2]) :-

number_between (XI, XM, X2)

,

number_between (Yl, YM, Y2)

,

t

number_between (A, B, C) :- A=<B, B=<C, !.

number_between (A, B, C) :- A>=B, B>=C, !.

number_between (A, B, C) :-

close_enough (A, B)

,

close_enough (B, C)

,

i

close_enough (Nl, N2) :-

D is N1-N2,
fabs (D,AD)

,

AD<0.0001,

wtd_path(Pl,P2, [W1,W2],P,C)
wdistance (P1,P,W1,C1) ,

wdistance(P2,P,W2,C2) ,

C is C1+C2,

216

/*

closest - determines which of {P1,P2} closest to ref point PR

closest (PR, PI, P2, PC) :-

sqr_dist (PR,P1,SD1) ,

sqr_dist (PR,P2,SD2)

,

nearer (PI, SD1,P2,SD2, PC)

,

i

sqr_dist ([XI, Yl] , [X2, Y2] ,SD) :-

DY is Y2-Y1, DX is X2-X1,
SD is DX*DX + DY*DY,

nearer (PI, SD1,_, SD2, PI) :- SD1=<SD2, !

nearer (, ,P2, ,P2) :- !

.

217

/'

LINE.PL - geometric routines

ensure_loaded (library (math))

,

xload('lib/util') .

intersect (PI, P2,P3,P4, I) :-

line (P1,P2,ABC)

,

line(P3,P4,DEF)

,

intersection (ABC,DEF, I)

,

I

line ([X, Y] , [X, Y] , [0, 0, 0]) :- % degenerate line - point
write list (['WARNING (line) .. .degenerate line at' , [X, Y]])

,

line([X,_], [X,_], [1.0,0.0,X]) :- !.

line([_,Y], [_,Y], [0. 0,1.0, Y]) :- !.

line([XI, Yl], [X2,Y2], [A,B,C]) :-

DX is X2-X1,
line2 (DX, [XI, Yl], [X2,Y2], [A,B,C]),
i

% infinite slope line = vertical
% zero slope line = horizontal

line2 (DX, [Xl,_], [X2,_], [1 . 0, . 0, XM]) :-

fabs (DX, ADX)

,

ADX < .001,

XM is 0.5* (X1+X2)

,

i

line2(DX, [XI, Yl], [X2,Y2], [A,1.0,C]) :-

A is (Y1-Y2) /DX,

C is (Y1*X2-Y2*X1) /DX,

% near vertical

/*-

INTERSECTION CONDITIONS:
DEN = B*D-A*E = AND B*F-C*E =

==> coincident or degenerate lines

DEN = B*D-A*E = AND B*F-C*E /=

==> parallel lines

intersection ([A, B,C] , [D,E,F],I) :-

DEN is B*D-A*E,
intersection2 (DEN, [A,B,C], [D,E,F],I),
i

218

intersection (DEN, [A, B, C] ,_, coincide) :-

DEN =:= 0.0, % DEN requires explicit zero check
% write_list (['WARNING (line) ... coincident lines L ='

, [A, B, C]])

,

i

intersection2 (DEN, [A,B,C], [D,E,F], [X,Y]) :-

X is (B*F-C*E) /DEN,

Y is (A*F-C*D) / (-DEN)

,

!

midpoint ([XI, Yl], [X2,Y2], [MX, MY]) :-

MX is 0.5* (X1+X2)

,

MY is 0.5* (Y1+Y2)

,

i

partition (P, [[XI, Yl] , [X2, Y2]] , [PX, PY]) :-

PX is P* (X2-X1) + XI,

PY is P* (Y2-Y1) + Yl,
i

perpendicular ([PX, PY] , [A, B,_] , [PX, PY]) :

-

A =:= 0.0, B =:= 0.0,

writeln (' WARNING (line) .. .perpendicular to degenerate line'),
i

perpendicular ([PX, PY] , [A, B, C] , [X, Y]) :

-

T is B*PX - A*PY,
D is A*A + B*B,

X is (A*C + B*T) /D,

Y is (B*C - A*T) /D,

/*

heading - returns bearing 0..359+ for ray from [XI, Yl] thru [X2,Y2]
*/

heading([X,Y], [X,Y],_) :-

write_list (

[
' WARN (line) . . .degen line' , [X, Y] ,' has no heading']),

!, fail.

heading([XI, Yl] , [X2, Y2] ,H) :-

Y2<Y1, X2<X1,
heading2 ([X2, Y2] , [XI, Yl] ,H2)

,

H is H2+180.0,
i

heading([XI, Yl] , [X2,Y2] ,H) :-

Y2<Y1,

heading2 ([X2, Y2] , [X1,Y1],H2),
H is 180.0-H2,
i

heading([XI, Yl] , [X2,Y2] ,H) :-

X2<X1,
heading2 ([X2, Y2] , [XI, Yl] ,H2)

,

H is 360.0-H2,

219

heading ([XI, Yl], [X2,Y2],H) :-

heading2 ([XI, Yl] , [X2, Y2] ,H)

,

i

heading2 ([XI, Yl] , [X2,Y2] ,H) :-

DX is X1-X2, DY is Y1-Y2,
fabs (DX, ADX) , fabs (DY,ADY) ,

ADX>ADY,
Q is ADY/ADX, atan(Q,AT),
H is 90. 0-(57. 29577951 * AT),
i

heading2 ([XI, Yl] , [X2,Y2],H) :-

DX is X1-X2, DY is Y1-Y2,
fabs (DX, ADX) , fabs (DY,ADY) ,

Q is ADX/ADY, atan(Q,AT),
H is 57.29577951 * AT,

/*

relative_heading - clockwise difference (0..359+) between 2 headings
back_heading - used to link edges and find regions

relative_heading(Hl,H2,H3) :- H3 is H2-H1, H3>=0, !.

relative_heading(Hl,H2,H3) :- H3 is 360-(Hl-H2), !.

back_heading(H,HB) :- H < 180.0, HB is H+180.0, !.

back_heading(H,HB) :- HB is H-180.0, !.

.*
/

220

B.4 USER INTERFACE

START.PL - general start sequence and user interface

:- use_module (library (files) , [file_exists/l])

,

use_module (library (ctypes) , [is_endf ile/1])

.

% shorthand(s, start, sO, 1)

.

% for reference only
% shorthand (g, goal, gO, 2)

.

start :- % interactive session
els,

bold, nl,

prompt (_,' Enter MAP name: '), read (MAP),

root (ROOT)

,

concat (ROOT, ' lib/' , LIB)

,

concat (LIB, MAP, LIBMAP)

,

alloff, nl,

pre (LIBMAP)

,

start_prowindows, % contained in pwin.pl
writeln ('Coordinate format is [x,y] . Range [0 . . 100, . . 100] .

')

,

enter_point (s)

,

enterjpoint (g)

,

tail_sequence,

start (N, MAP, S,G) :- % background job

root (ROOT)

,

concat (ROOT, ' lib/' f LIB)

,

concat (LIB, MAP, LIBMAP)

,

pre (LIBMAP)

,

set_sg (s, S)

,

set_sg(g,G)

,

show_parms,
go,

stats (N)

,

i

start (N, MAP, S,G) :-

writeln('WARN (start)... failed to start!'),
write_list (

[
' Prob No .

' , N])

,

write_list (
[' Map =',MAP]),

write_list (['Start =',S]),
write_list (

[' Goal =',G]),
i

221

new :- new(s), new(g), !.

new(X) :-

nl,

retractall (ep (X, _,_,_,_)

)

,

mapname (MAP)

,

shorthand (X,XXXX,_,_)

,

write_list (['Reinitialize' ,XXXX, 'for' ,MAP]) ,

writelnC Coordinate format [x,y]. Range [0 . . 100, . . 100] . ') ,

enter_j?oint (X) ,

tail_sequence,

enter_jpoint (s) :-

bold, nl,

prompt (_, 'Enter new START: '), read(P),
alloff,
set_sg (s, P)

,

w_showsg (s)

,

i

enter_point (g) :-

bold, nl,

prompt (_, 'Enter new GOAL: '), read(P),
alloff,
set_sg(g,P)

,

w_showsg (g)

,

store :- mapname (M) , store (M)

.

store (M) :-

concat (M, ' .pre' ,MPRE)

,

save(MPRE, 1) ,

reinitial

.

store (_)

.

reinitial :- w_init, tail_sequence

recall :- mapname (M) , recall (M)

.

recall (M) :-

concat (M, ' .pre' ,MPRE)

,

recall2 (MPRE)

.

recall2 (MPRE) :-

f ile_exists (MPRE) ,

kill_prowindows

,

restore (MPRE) ,

i

222

recall2 (MPRE) :-

write_list_b(['WARN. . .state' ,MPRE, 'cannot be loaded']),
writeln (' Issue ''start.'' command.').

tail_sequence
show_pa
nl,

writeln
writeln
writeln
writeln
writeln
writeln
writeln
writeln
writeln
writeln
writeln
writeln

rms,

_b (
' COMMANDS '

) ,

'go. begin execution'),
'new(s). reset start'),
'new(g). reset goal'),
'store, save preprocessed map'),
'recall, recall this map'),
'gtrace(X). graphics tracing:'),
' 1 ALL algorithms')

,

' d DISCRETE approximations'),
' i RELAXATION (iteration)'),
' trace OFF')

,

b(' ') .

show_parms :-

w_showdata (time, 0.0),
di(DI) ,

w_showdata (di, DI) ,

deltak (DK)

,

w_showdata (deltak, DK) ,

i

show_jparrns :- ! .

% order is SIGNIFICANT

/'

SET_SG - given s (S) and g(G), finds RS,RG regions containing them;

algorithm is based upon fact that a convex region cannot have
2 consecutive vertices whose heading difference from an

arbitrary interior point exceeds pi radians (180 deg)

dynamic
hd/2,

start/2,
goal/2

.

% hd(v,h) . heading from s/g to v is h

% start (pO, rO) . start and region containing it

% goal (pi, rl). goal and region containing it

set_sg(X,P) :-

retractall (hd(_,_))

,

f ind_region (X, P, R) ,

shorthand (X,XXXX,_,_)

,

OLD =. . [XXXX,_,_]

,

retractall (OLD)

,

NEW =. . [XXXX,P,R]

,

asserta (NEW)

,

set_sg_arcs (X) ,

223

f ind_region (X, P, R) :-

rv(R,W, VLST) ,

fanout (P, VLST)

,

not (same (W, 0))

,

shorthand (X, XXXX,),

write_list ([XXXX, P, ' in region' , R])

,

i

f ind_region (_, P,_) :-

write_list_b([' ERROR (start) ... invalid instance ...', P, ' is'])

,

writeln_b(' inside obstacle, outside border, or on vertex.'),
prowindows_exists,
I

fanout (P, [V0 IVLST]) :-

get_heading (P, V0, HO)

,

fanfwd([V0,H0] , P, V0, HO, VLST)

,

i

get_heading(_, V,H) :- hd(V,H), !.

get_heading (P, V, H) :- % else
heading (P, V, H) , % compute heading from P to V
asserta (hd (V, H)) , % cache result
i

% return if already computed

fanfwd{ [V0,H0] ,P,V1,H1, []) :-

deltah(Hl,H0,DH)

,

% close the circle

DH < 180.0,
i

fanfwd(VH,P, VI, HI, [V2 IVLST]) :-

get_heading (P, V2, H2)

,

deltah (HI, H2,DH)

,

i

DH < 180.0,
fanfwd(VH,P,V2,H2,VLST)

,

i

deltah(Hl,H2,DH) :- H2 > HI, DH is H2-H1, !

deltah(Hl,H2,DH) :- DH is H2-H1+360.0, !.

set_sg_arcs (X) :-

retract_old_sg_arcs (X) ,

get_p_r(X,P,R) ,

re(R,W,ELIST) ,

asserta (edge (X, [P,P], [w,W],x,X)),
asserta (edge_data (X, . 0, P)) ,

asserta (er (X, [R,R] , [W,W])) ,

gen_sg_ep(X, P, R, W, ELIST) ,

224

rv(R,_,VLIST)

,

gen_sg_choke_ep(X,P,R, W, VLST) ,

straight_line_ep,
i

set_sg_arcs (_) :- writeln (' set_sg_arcs failed.')/ !

retract_old_sg_arcs (X) :-

retractall (edge (X, _,_,_,_))

,

retractall (edge_data (X,_,_))

,

retractall (er (X,_,_))

,

retractall (ep (X, _,_,_,_))

,

retractall (ep (_, X, _,_,_))

,

straight_line_ep :-

start (S,R) ,

goal (G,R) ,

re(R,W,_),
wdistance (S,G, W, WD)

,

asserta(ep(s,g,R,W,WD)) ,

I

straight_line_ep :- !.

gen_sg_ep (_,_,_,_, [])

.

gen_sg_ep(X,P,R,W, [E|ELIST]) :-

not (edge (E,_, [_, 0] ,_,_)) ,

edge_data (E,_,MP) ,

wdistance (P,MP, W, WD)

,

assert a (ep (X, E, R, W, WD))

,

gen_sg_ep(X,P,R,W,ELIST)

.

gen_sg_ep(X,P,R,W, [_|ELIST]) :-

gen_sg_ep(X,P,R,W, ELIST) .

gen_sg_choke_ep (_,_,_,_, []) .

gen_sg_choke_ep(X,P,R,W, [v
I
VLST]) :

chr (EC,V,_) ,

wdistance (P, V, W, WD)

,

assert a (ep (X, EC, R, W, WD))

,

gen_sg_choke_ep (X, P , R, W, VLST

)

gen_sg_choke_ep(X,P,R,W, [V | VLST]) :

gen_sg_choke_ep (X, P , R, W, VLST)

225

/*==

MOUSE.PL - mouse driver for UDPGA* and Path Annealing with ProWindows
=== =============*/

:- dynamic mse/1.

mse(sO). % designate start point first by default

use_module (library (dialog)) ,

use_module (library (interpret_messages)) ,

use_module (library (messages))

.

pixels (500) . % total number of map pixels in x and y directions

map_size (100) . % total number of map units in x and y directions

map_item(@xcoord, text_item(' X: ', 0, none) , below, [width : 4]).

map_item(@ycoord, text_item (' Y: ', 0, none) , below, [width : 4]).

map_item(@mstart , button (' Start Pt' ,m_start) , below, []).

map_item(@mgoal, button('Goal Pt',m_goal), below, []).

map_item(@mgo, button('GO', m_go) , below, []).

map_item(@mstore, button (' Store' , m_store) , below, []).

map_item(@mrecall, button (' Recall' ,m_recall) , below, []).

map_item (@mpost , button (' Print' ,m_post) , below, []).

map_item (@mwinit , button (' W_Init' ,m_w_init) , below, []).

map_item (@mnewmap, button ('New Map' ,m_newmap) , below, [])

.

map_item(@mkill, button('Kill Mouse' ,m_kill) , below, []).

map_item (@msusp, button (' Suspend' ,m_suspend) , below, []) .

map_item(@mhalt, button (' Quit ' ,m_quit) , below, []).

calculate_dim :-

pixels (P)

,

map_size (C)

,

G is P/C,

IG is P//C,
assert (pm_ratio (G))

,

assert (ipm__ratio (IG)) .

exterminate :-

destroy (@map_dialog)

,

destroy (@mstart)

,

destroy (@mgoal)

,

destroy (@mkill)

,

destroy (@mgo)

,

destroy (Qmstore)

,

226

destroy (@mrecall)

,

destroy (@mwinit)

,

destroy (@xcoord)

,

destroy (@ycoord)

,

mouse :-

exterminate, % exterminate old mouse stuff
calculate_dim,
send (@pic, smart, of f)

,

new_dialog (@map_dialog, 'Mouse Ctrl' ,map_item)

,

send (@map_dialog, open, point (510,470)),
mloop.

mloop :-

send (@pic, cursor_x, cascade (Sxcoord, adjustx, 0))

,

send (@pic, cursor_y, cascade (Gycoord, adjusty, 0)) ,

send (@pic, left_up, cascade (@pic, clicked, 0))

,

interpret_messages (fail)

.

clicked(PIC,_) :-

mse (P0)

,

get_ref (@PIC, last_click, PT)

,

get (PT,x,XPIX)

,

get (PT,y,YPIX) ,

convert_pt ([XPIX, YPIX] , [X, Y])

,

click_sg(P0, [XPIX, YPIX], [X,Y]),

I

click_sg(s0, [XPIX, YPIX], [X,Y]) :-

set_sg(s, [X,Y])

,

% retractall (start (_,_))

,

% asserta (s([X, Y]))

,

send (@s0,pen, 1)

,

send(@s0, center, point (XPIX, YPIX)) ,

w_showdata (start, [X, Y])

,

I

click_sg(g0, [XPIX, YPIX], [X,Y]) :-

set_sg(g, [X,Y])

,

% retractall (goal (_,_))

,

% asserta (g([X,Y]))

,

send (@g0, pen, 2)

,

send(@g0, center, point (XPIX, YPIX))

,

w_showdata (goal, [X, Y])

,

227

m_start (_,_) :- retractall (mse (_)) , asserta (mse (sO)) , !.

m_goal(_,_) :- retractall (mse (_)) , asserta (mse (gO)) , !.

m_go(_,_) :- go.

m_store(_,_) :- store.
m_recall (_,_) :- recall.
m_j)ost(_,_) :- w_post

.

m_w_init (_,_) :- w_init

.

m_kill(_,_) :- exterminate, abort.
m_newmap (_,_) :- start.
m_suspend (_,_) :- writeln ('Mouse suspended. . .hit ~D to return.'), break,

m_quit(_,_) :- halt.

adjustx(XITEM,X) :-

pm_ratio (R)

,

XX is X*10/R,
floor (XX, RX)

,

send (@XITEM, selection, RX)

% display transformed x in dialog box

adjusty (YITEM, Y) :-

pm_ratio (R)

,

map_size (M)

,

YY is (10*M) -Y*10/R,
floor (YY,RY) ,

send (0YITEM, selection, RY)

% display transformed y in dialog box

convert_pt ([PX, PY] , [X, Y]

)

pixels (W)

,

pm_ratio (G)

,

XX is PX/G,
YY is (W-PY) /G,

round (XX, X) ,

round (YY, Y)

.

convert_pix ([X, Y] , [PX, PY])

pixels (W)

,

pm_ratio (G)

,

TPX is G*X,

TPY is W-G*Y,
round (TPX, PX)

,

round (TPY, PY)

.

228

PWIN.PL - ProWindows: windows and tracing of algorithms

dynamic
timer/0,
ws_switch/0,
wnos/0,
rnos/0,
enos/0,
detail_d/0,
detail i/0.

% time display for interactive runs w/o ProWindows

% switch: display region weights
% switch: display region index numbers

% switch: display edge index numbers
% discrete point (udp) tracing switch

% iteration (spr) tracing switch

% enos

.

% rnos

.

wnos % default

/*

graphical tracing 0N(1) / OFF(O) default == all OFF(O)
*/

- retractall (detail d) , retractall (detail i)

.

% init switches

gtrace :- gtrace(l)

- t_set (detail_d) , t_set (detail_i)
- gtrace (0), t_set (detail_i) .

- gtrace (0), t set (detail d)

.

gtrace (1)

gtrace (i)

gtrace (d)

gtrace (0)

retractall (detail_d) ,

retractall (detail_i) ,

destroy (@iter) .

% both ON
% iteration ON
% discrete ON

% both OFF

t_set (D) :-

prowindows_exists,
retractall (D) ,

assert (D) ,

warn (0)

,

create_iter,
warn (1) .

t_set (_) :-

writeln (' CANNOT trace graphics.
fail.

.ProWindows NOT running.').

create_iter :- new (@iter, figure (0, 0, 0)) , send (@pic, display, @iter)

.

create iter. % already exists

229

warn(l) :- prowindows_exists, send (@sys, warnings, on)

.

warn(O) :- prowindows_exists, send (@sys, warnings, of f)

.

warn ()

.

start_prowindows :-

prowindows, nl,

w_init

,

i

start_prowindows :-

writeln (user, ' NOTE
i

% attempt to start prowindows

% prowindows CANNOT be started
All screen output will be textual.'), nl,

w_init :-

kill_prowindows,
prowindows,
mapname (MN)

,

grey_bitmap,
black_bitmap,
display_map (MN, Qpic)

,

showtitle,
w_initlbls,
reestablish_detail_status,
create_sg (sO) ,

create_sg (gO) ,

w_showsg (s) ,

w_showsg (g) ,

w_initparms,
% new (@path, path) ,

mouse,
% used when erasing and replacing paths

w init % Prowindows warns if it cannot start

create_sg (CIR) :-

shorthand (_,_, C I R, TH)

,

new (@CIR, circle) ,

send(@CIR, radius, 5) ,

send(@CIR,pen,TH) ,

initial_place (CIR) ,

send (@pic, display, @CIR) .

initial_place (sO) :- send (@s0, center, point (425, 565))

initial_place (gO) :- send (@g0, center, point (425, 585)

)

reestablish_detail_status :-

(detail_d ; detail_i) ,

new (@iter, figure (0,0,0)) ,

send (@pic, display, Giter) ,

i

reestablish detail status :- !.

230

w_showsg(SG) :-

prowindows_exists,
get_p_r (SG,P,_)

,

shorthand (SG, STRING, CIR, TH) ,

convert_pix (P, [XPIX, YPIX])

,

send(@CIR,pen,TH)

,

send (@CIR, center, point (XPIX, YPIX)) ,

w_showdata (STRING, P)

,

i

w_showsg(SG) :-

get_j>_r (SG,P,_) ,

shorthand (SG, XXXX,_,_)

,

write_list ([XXXX, ' =' , P])

,

I

w_showsg(SG) :-

shorthand (SG, XXXX, _,_)

,

write list b (

[
' NO' , XXXX, '

point established.']),

get_p_r (s,P,R) :- start (P,R), !

get_p_r (g,P,R) :- goal(P,R), !.

shorthand (s, start, sO,l)

shorthand (g, goal, g0,2)

w_pin(P) :- % used to highlight a point X,

Y

prowindows_exists,
ptransform(P, [SX,SY])

,

XI is SX+12, % diagonal arrow
Yl is SY-12,
new (@P, circle (XI, Yl, 5))

,

send(@P,pen, 4)

,

send(@pic, display, @P)

,

new (@L, line (XI, Y1,SX,SY))

,

send(@pic, display, @L) ,

i

w_pin(P) :- write_list (['WARNING. . .pin point placed on',P]), !.

w_point (P, RADIUS) :- % used to highlight a point X,

Y

prowindows_exists,
ptransform(P, [SX, SY])

,

new (@PT, circle (SX,SY, RADIUS)) ,

con^((3DT -Fill fflhla^VIsend(@PT, fill,@black)

,

% option to fill

send(@PT,pen, 5)

,

% option to thicken
send(@pic, display, @PT) ,

% EXT is RADIUS+2, % option to extend crosshairs
% crosshairs ([SX, SY] , EXT)

,

% option for crosshairs
i

w_point(_,_) :- !.

231

crosshairs ([SX, SY] , EXT) :-

XI is SX+EXT,
X2 is SX-EXT,

Yl is SY+EXT,

Y2 is SY-EXT,
new(@LH,line(Xl,SY,X2,SY)) ,

new (@LV, line (SX, Yl, SX, Y2))

,

send(@pic, display, @LH) ,

send (@pic, display, @LV)

,

% crosshairs

w_edge(E) :-

prowindows_exists,
edge_data (E,_,MP)

,

ptransform(MP, [SX,SY])

,

new (@ RING, circle (SX,SY, 9)) ,

send(@pic, display, 0RING) ,

% used to highlight an edge E

w_edge (_) : - !

.

w_clear_iter :-

(detail_d ; detail_i)

,

send(@iter, destroy) ,

new (@iter, figure (0, 0,0)),
send(@pic, display, @iter) ,

i

w_clear_iter :- !.

w_show_iter (PATH,TH) :-

detail_i,
new(@ITER,path)

,

append_points (0, @ ITER, PATH)

,

send (0ITER, pen, TH)

,

send(@iter, append, @ITER)

,

i

w_show_iter (_,_) :- !.

w_show_line (P1,P2,TH) :-

detail_d,
ptransform(Pl, [SX1,SY1]) ,

ptransform(P2, [SX2, SY2])

,

new (@L, line (SX1,SY1,SX2,SY2)) ,

send(@L,pen,TH) ,

send (@iter, append, @L)

,

w show line (,)
_ i

w_showpath (PATH) :-

prowindows_exists,

232

destroy (@path)

,

% used when erasing and replacing paths
display_path (@path, PATH, @pic, 2) ,

% display_path(@P, PATH, @pic, 3) ,

i

w_showpath (_) :- !.

w_showdata (CAT, DATA) :-

prowindows_exists,
code (CAT, _,X,Y) ,

spacing (S)

,

XD is X+S,

type_convert (DATA, SDATA)

,

destroy (@CAT)

,

new (@ CAT, text (SDATA, XD, Y, left)) ,

send(@CAT, font, font (screen, b, 14)) ,

send (@pic, display, @CAT) ,

i

w_showdata (time, DATA) :- screen_timer (DATA) , !.

w_showdata (pacost,_) :- !. % displayed by sa.pl
w_showdata (CAT, DATA) :- write_list ([CAT, '=', DATA]) , !.

screen_timer (DATA) :- timer, writeln (DATA) , backup, !.

screen_timer (_) :- !.

type_convert (DATA, SDATA) :

-

is_list (DATA)

,

concat_atom (DATA, '
,

' , SDATA)

,

i

type_convert (DATA, SDATA) :- make_string (DATA, SDATA) , !.

/*

window sequence display routines

w_wsinit :-

prowindows_exists,
w_clear_ws,
new (@ws2, path)

,

i

w_wsinit : - !

.

w_clear_ws :-

prowindows_exists,
retractall (ws_switch)

,

destroy (@wsl)

,

destroy (@ws2)

,

i

w_clear_ws :- !.

destroy (OBJ) :- object (OBJ) , send (OBJ, destroy) , !

destroy (_) :- !

.

233

w_show_ws(L) :-

prowindows_exists,
get_midpts (L, LM)

,

swap_ws (LM)

,

i

w_show_ws (_) : - !

.

get_midpts([], []) :- !

.

get_midpts ([E I LE] , [M| LM]

)

edge_data (E,_,M)

,

get_midpts (LE, LM)

,

swap_ws (LM) :- retract (ws_switch) , w_ws (@wsl, @ws2, LM) , !.

swap ws(LM) :- assert (ws switch), w_ws (@ws2, @wsl, LM) , !.

w_ws (@WS1, @WS2, LM) :-

new (@WS2, path)

,

append_points (, @WS2 , LM)

,

send(@WS2,pen,2)

,

% send (@WS2, smooth, on)

,

send(@WSl, destroy)

,

send (@pic, display, @WS 2)

,

i

% smoothing option

append_points (_,_,[]) :- !.

append_j)oints (SW, @PATH, [[_, [X, Y]] | L])

ptransform([X, Y] , [IX, IY])

,

new(@PT, point (IX, IY)) ,

send (@PATH, append, @PT) ,

turn_mark(SW, [IX, IY])

,

append_points (SW, @PATH, L) ,

% discrete paths

SW=1, mark turns by '+'

append_points(SW, @PATH, [P|L]) :-

ptransform(P, [IX, IY])

,

new (@PT, point (IX, IY)) ,

send (@PATH, append, @PT) ,

turn_mark(SW, [IX, IY])

,

append_points (SW, @PATH, L) ,

% SW=1, mark turns by '+'

turn_mark(l, [IX, IY]) :-

TXTIY is IY+1,

new (@TXT, text ('+' , IX, TXTIY, center)) ,

send(@TXT, font, font (screen, b, 12)) ,

send (@pic, display, @TXT) ,

% correct text center
% turn marks are '+'

turn mark(0,)

234

I-

print routines

w_post :- prowindows_exists, w_post(ssl)

w_post (PRT) :-

prowindows_exists,
send (@pic, postscript, pspicf ile) ,

send_to (PRT) ,

% unix (system (' rm pspicf ile'))

,

concatenate (' lpq -P' , PRT, QPRT)

,

unix (system(QPRT)) .

w_post (_) .

send_to (ssl)

send_to (upl)

send_to (up2)

send_to (sees)

send_to (phd)

- unix (system (' lpr -Pssl pspicf ile')) .

- unix (systemC lpr -Pupl pspicf ile')) .

- unix (system (' lpr -Pup2 pspicf ile'))

.

:- unix (system(' lpr -Psecs pspicfile')

)

- unix (systemC lpr -Pphd pspicfile')).

I

preparation of map display

display_map(MAP, PIC) :-

algorithm_type (ALG) ,

name (ALG,NALG) ,

nameC - ',NSPC),
name (MAP,NMAP) ,

append (NALG, NSPC, NLBL1) ,

append (NLBL1 , NMAP , NLBL2) ,

name (LABEL, NLBL2) ,

new (PIC, picture (LABEL, size (500, 700))),
send (PIC, horizontal_scrollbar, 0) ,

send (PIC, vertical_scrollbar, 0)

,

send (PIC, open, point (620,70)) ,

ticks,
new (@map, figure (0,0,0)),
send (@map, can_move, off)

,

append_edges (@map)

,

send (PIC, display, @map)

,

fill obstacles,

% set in make file

ticks :-

xticks (100, 0)

,

yticks (0, 100)

,

235

xticks(X,Y) :-

X >= 0,

xtransform(X,TX)

,

ytransform(Y,TY) ,

new (@TXT, text (' |' , TX, TY, center))

,

send(@TXT, font, font (cour,b, 10))

,

send (@pic, display, @TXT) ,

X2 is X-10,

xticks(X2,Y)

,

i

xticks (_,_) : - !

•

yticks(X,Y) :-

Y >= 0,

xtransform(X,TX) ,

ytransform(Y, TY) ,

new (@TXT, text ('-'
, TX, TY, center)) ,

send(@TXT, font, font (cour,b, 18)) ,

send(@pic, display, @TXT) ,

Y2 is Y-10,

yticks(X,Y2)

,

i

yticks (_,_) : - ! .

append_edges (@FIG) :-

edge(E, [VI, V2], [Wl, W2] ,_,_)

,

% not (same (Wl, W2))

,

% phantom edges not displayed
not (same (E, s))

,

not (same (E,g))

,

midpoint (VI, V2,MP)

,

ptransform(Vl, [PX1,PY1])

,

ptransform(V2, [PX2,PY2])

,

ptransform(MP, [PXM,PYM])

,

new (@LIN, line (PX1, PY1, PX2, PY2)) ,

% send (@LIN, arrows, first)

,

% visual check edge consistency
send (@FIG, append, @LIN)

,

enos,
new (@TXT, text (E, PXM, PYM, center)) ,

send(@TXT, font, font (cour,b, 10)) ,

send(@pic, display, @TXT) ,

fail.
append_edges (_) :- (enos ; region_lbls), !.

region_lbls :-

rv(R,W,VLST) ,

not (same (W, 0)) ,

avg_vlst (VLST,V0) ,

ptransform(V0, [PX,PY])

,

get_region_lbl (R, W, L)

,

new (@RWT, text (L, PX, PY, center)) ,

send(@RWT, font, font (cour,b, 10)) ,

236

send (@pic, display, @RWT) ,

fail.
region_lbls :- !.

get_region_lbl (R,_, R) :- rnos, !.

get_region_lbl (_, W, W) :- wnos, !.

nos (N) :
-

retractall (enos)

,

retractall (rnos)

,

retractall (wnos)

,

(N == e -> assert (enos)

I
N == r -> assert (rnos)

| N == w -> assert (wnos)) .

avg_vlst (VLST, [X, Y]) :-

accum_vlst (VLST, [TX, TY])

,

length (VLST, L)

,

X is TX/L,

Y is TY/L,
I

accum_vlst ([] , [0.0, 0.0]) :- !.

accum_vlst ([[X, Y] | VLST] , [XCM, YCM]) :

-

accum_vlst (VLST, [XSB, YSB])

,

XCM is XSB+X,
YCM is YSB+Y,
I

display_path(@PATH,L,PIC,TH) :- % L= [[xl, yl] , [x2, y2] , . . . , [xn, yn]

]

new (0PATH, path)

,

append_jpoints (0, 0PATH, L) ,

% append_points (1, 0PATH, L) ,

send (@PATH, pen, TH)

,

% TH = thickness in pixels (1 default)
send(PIC, display, @PATH) ,

ptransform([X,Y] , [SX,SY])

xtransform(X, SX)

,

ytransform(Y, SY) ,

i

xtransform(X, IX) :-

XX is X*5,

round (XX, IX)

,

i

ytransform(Y, IY) :-

YY is (100-Y) *5,

round (YY, IY)

,

i

237

grey_bitmap :

-

new(@PATTERN,bitmap(2,2)) ,

send_list (0PATTERN, set, [point (0, 0) , point (1,1)]),
new (@grey, bitmap (64, 64)) ,

send (@grey, replicate, 0PATTERN)

.

black_bitmap :-

new(@PATTERN,bitmap(2,2)) ,

send_list (@PATTERN, set,

[point (0, 0) , point (0, 1) ,
point (1, 0) ,

point (1, 1)])

,

new (@black, bitmap (64,64)),
send (Gblack, replicate, 0PATTERN)

.

% send_list (0PATTERN, set, [])

,

% what white would look like

w_initlbls :-

code (CAT, LABEL, X, Y) ,

new (@LBL, text (LABEL, X, Y, left)) ,

new(@CAT, text (' ' , 0, 0, lef t))

,

send(@LBL, font, font (screen, b, 14)) ,

send(@pic, display, @LBL) ,

fail.
w_initlbls : - ! .

decode (TERM, SDATA, CAT, XD,Y) :-

TERM =.. [CAT, DATA],
make_string (DATA, SDATA) ,

code (CAT, _, X, Y)

,

spacing (S)

,

XD is X+S,
i

make_string (DATA, STRING) :-

number (DATA)

,

number_chars (DATA, CLIST) ,

atom_chars (STRING, CLIST) ,

i

make_string (DATA, STRING) :-

atom (DATA) ,

name (DATA, CLIST) ,

atom_chars (STRING, CLIST) ,

i

make_string(DATA,_) :-

var (DATA)
,

writeln (' ERROR (pwin) ... cannot make string from variable'),
i

make_string (DATA,_) :-

write_list (['ERROR (pwin) ... unknown data type :', DATA])

,

238

concatenate (SI, S2, S3) :

name (SI, LI) ,

name (S2, L2)

,

append (LI, L2, L3) ,

name (S3, L3) ,

i

showtitle :-

mapname (MN)

,

algorithm_type (ALG) ,

concatenate (ALG, ' - ', TITLED,
concatenate (TITLE1,MN, TITLE) ,

new (@ttl, text (TITLE, 250, 530, center))

,

send(@ttl, font, font (screen, b, 16)) ,

send (@pic, display, @ttl) ,

new (@datestmp, text (' ',250,660, center)) ,

send (@datestmp, font, font (screen, b, 14)) ,

send (@pic, display, @datestmp)

,

spacing (150)

.

code(pacost, 'best path ', 10,560)
code(elcost, 'ellipse cost ... ', 10,580)
code(di, 'discrete int ... ', 10,600).
code(deltak, 'delta k ', 10,620)

code (start, 'start point ', 260,560)
code (goal, 'goal point ', 260,580).
code(blankl, ' ', 260,600).
code (time, ' cpu time used .. ', 260,620).

update_clock(NEWTIME) :-

tm(ETIME)

,

retract (time (TIME))

,

NEWTIME is TIME+ETIME,
assert (time (NEWTIME)) ,

w_showdata (time, NEWTIME)

,

tm,
i

w_initparms :-

retractall (time (_))

,

asserta (time (0.0)),
w_showdata (time, 0.0),
di(DI) ,

w_showdata (di,DI)

,

deltak(DK)

,

w_showdata (deltak, DK)

,

i

w_initparms :- !.

239

ds :- datestamp (X) , ds2 (X) , !.

ds2(X) :-

prowindows_ex i st a

,

send (@datestmp, string, X) ,

fail, !

.

da2(X) :-

a lgoi '. t hm t ypo (ALG) ,

nl,

writelnC ') ,

write (ALG), I algorithm id

wiiteC '
) ,

writeln(X^, % time stamp
i

datestaivp^i :-

sys (
' dat oMate') ,

open (date, read, S)

,

see (S)

,

fili_st

i

Lng (nlist) ,

name(X,NLIST) ,

seen,

sys (' rm date')

,

I

fill_string([CINLIST]) :-

getO(C^
,

not (is_endf ile (C))

,

f ill_string(NLIS ,n ,

I

fill_string([]) :- ! .

fill_obstaclea :-

CV(R, 0, [VIVLST]) ,

not (bordei (R)) (

append (;v |VLST] , [V] ,vl) ,

f ill_poly (VL)

,

fail.
f i l i_ob a t a clea : - !

.

fill_poly(VL) :-

i'.ow (6P01 1, path) ,

app«nd_pointa (0, 8POLY, vd ,

3«nd(6POLY, fill,@grey> ,

send (@pic, display, i?FO: Yi
,

240

B.5 UNIFORM-DISCRETE-POINT GLOBAL A* (UDPGA*) SEARCH

/*==================—====================

—

==========================

UDPGA.PL - Uniform-Discrete-Point Global A* (UDPGA*) Search
Approximates the globally optimal path by using A* search
on the graph of evenly spaced points on each boundary edge,

connected by arcs (segments) through common cost regions.
Parameter di(I) is the upper bound for point to point spacing.
uses HEAP in C to maintain agenda

==*/

/*====== ===

A* SEARCH
adapted from Rowe, N.C.,
"Artificial Intelligence Through Prolog,

"

Prentice Hall, 1988, pp. 244-247.

For an application, define 5 predicates:
(a) successor (State, Newstate) (gives state transitions)
(b) goalreached (State) (defines when goal achieved)
(c) eval (State, Evaluation) (estimates cost to the goal)

(d) cost (Statelist, Cost) (computes cost of a path)

(e) search: top-level predicate that initializes things,
then calls astarsearch with two arguments, the starting
state and variable which will be the solution path

Note that "cost" must be nonnegative. The "eval" should be a lower
bound on cost in order for the first answer found to be guaranteed
optimal, but the right answer will be reached eventually otherwise.

At conclusion of processing:
no. of items in agenda - 1 = no . of unexamined states
no. of items in usedstate = no. examined states

Modifications to original code:

In this version, we modified cost to cost (Statelist , OldCost, NewCost)
to reduce the work required to compute the cost of a new statelist.
Also, we have replaced pick_best_path rules with a more efficient
version which maintains heap to find the minimum cost+eval on agenda
more efficiently. Since heaps are not efficient in Prolog, the heap
routines have been coded in C.

The original code referenced in [Rowe88, pp. 244-247] states that if

the evaluation function is ALWAYS a lower bound on the cost function,
then faster performance results if we delete the first rule of

241

agenda_check and usedstate_check, and the entire definitions of
fix_agenda and replace_front . We have determined that the first rule
of agenda_check IS REQUIRED to guarantee optimality in a general
graph (ie. NOT a tree). Therefore, we have NOT excluded it. Since
our evaluation function is Euclidean distance to the goal at lowest
cost on the map, then it is a lower bound on cost.
We have, therefore, modified the original code accordingly.

:- dynamic
edge_pt/2, % edge_pt (e, [x,y]) .

usedstate/2, % usedstate ([e, [x, y]] , cost).
agenda/5, % agenda (i, [e, [x, y]] , [[e, [x, y]],..], cost , eval+cost)

.

% dynamic: crude and refined versions
successor/2,
goalreached/1,
eval/2,
cost/3, % cost (state, oldcost, newcost)

.

t ime / 1

,

% t ime (t) .

di/1, % overrides udp.pl
deltak/1, % used for compatibility w/ pwin.pl, start.pl
solution/4. % solution (ws, path, cost, time) .

di(8). % default setting
deltak(O.O). % for compatibilty (NOT used in this algorithm)

clean_ops :-

retractall (successor (_,_)) ,

retractall (goalreached (_))

,

retractall (eval (_,_))

,

retractall (cost (_,_,_))

,

i

/*

Crude search through midpoints in order to compute bounding ellipse
NOTE: successor, goalreached, cost, and eval fns CANNOT have cuts !

*/

set_crude_ops :-

clean_ops,
asserta (

(

successor (EO, El) :-

(ep(E0, El, _,_,_) ; ep(El,E0, _,_,_))

)),

asserta ((goalreached (g))),

asserta (

(

242

eval (EO,EVAL) :-

goal(GP,_)

,

edge_data (EO,_,MP)

,

distance (MP, GP, EVAL)

)),

asserta (

(

cost ([EO, El |_] ,OLDCOST, COST) :-

(ep(E0,El,_,_,C) ; ep (El, E0,_,_, C)),

COST is C+OLDCOST

)),

asserta ((cost ([s] ,_, . 0))),
i

/*

Refined search through uniformly spaced (interval di) edge-points

set_ref ined_ops :-

clean_ops,
asserta (

(

successor ([E0,P0] , [El, PI]) :-

(ep(E0, El, _,_,_) ; ep(El,E0, _,_,_)
; ref l_edge (EO, El)), % or reflection
edge_pt (El, PI)

,

% PI must be a point on EO

not (same (P0, PI)

)

% same points ==> no progress

>),

asserta ((goalreached([g,_]))),

asserta (

(

eval ([_, P0] , EVAL) :- % Eucl dist to goal at coef = 1

goal(GP,_)

,

optimal_cost (W)

,

wdistance (P0, GP, W, EVAL)

)),

asserta((cost ([SO, SI |_] , OC, C) :- rcost (SO, SI, OC, C))),

asserta((cost ([[s, _]],_, . 0))),

refl_edge(E0,E0) :- not (edge (E0,_, [W, W] ,_,_))

.

rcost ([E0,P0] , [E0,P1] ,OLDCOST,COST) :-

edge(E0,_, [WO, _],_,_)

,

wdistance (P0, PI, WO, C) ,

COST is OLDCOST + C.

rcost ([E0,P0] , [El, PI] , OLDCOST, COST) :-

(ep(E0,El,_,W,_) ; ep(El,E0,_,W,_)),

wdistance (P0,P1,W,C)

,

COST is OLDCOST + C.

243

/

refined search data structure generation

gen_all_points :-

edge(E,V, [_,W],_,_),
not (same (W, 0))

,

get_pts (E, V, PLST)

,

make_records (E, PLST)

,

fail, !.

gen_all_points :- !.

% also generates records for s and g

make_records (_, []) :- !.

make_records (E, [[X, Y] IPLST]) :-

asserta (edge_pt (E, [X, Y]))

,

make_records (E, PLST) ,

!

% ensures hashing on E edge no,

/*

search driver

I

% display initial parameters
% required by astarsearch

% reset epts and edge-pt for udp.pl

SPR =' , SCost])

,

search :-

w_initparms,
unknown (_, fail)

,

reset_points,
set_crude_ops,
writeln (' Stage 1: Crude A* search (init solution)...'),
ts,

astarsearch (s,WS,_) ,

writeln (WS)

,

optimize_ws (WS, CrudePath, UCost, SCost)

,

write_list (['Crude path costs UDP =', UCost,'
update_clock (Tl)

,

write_list ([' time =',T1]),
w_showpath (CrudePath)

,

avg_path_wt (SCost, CrudePath, APW) ,

asserta (optimal_cost (APW)) ,

write_list ([' Average Weight
tm,

ellipse (SCost)

,

update_clock (T2)

,

write_list ([' time =',T2]),
writeln (' Stage 2: Refined A

set_ref ined_ops,
gen_all_points,
start (SP,_)

,

astarsearch ([s, SP] , StateList, ACost) ,

write_list ([' A* search path cost =', ACost]),
separate (StateList, AWS,_)

,

writeln (AWS)

,

% heuristic ellipse
,APW]),

search (UDPGA*) '),

244

writeln (' Check WS for inconsistencies...'),
fix_ws (AWS,FixedWS) ,

writeln (FixedWS)

,

optimize_ws (FixedWS, SolutionPath, UOCost, Opt Cost)

,

write_list (['Optimal Path costs UDP =', UOCost]),
write_list (

[' SPR =' , OptCost])

,

update_clock (T3) , nl,

% Cleanup and Housekeeping
unknown (_, trace)

,

% reset after astarsearch
w_showpath (SolutionPath) ,

w_showdata (pacost , OptCost)

,

write_list (['UDPGA* Optimal cost =', OptCost])

,

write_list (['Finish time =',T3]),
asserta (solution (FixedWS, SolutionPath, OptCost, T3))

,

notrace, % in case trace was on
i

search :- writeln_b (' ERROR (astar) . . .A* search failed !'), !.

optimize_ws (WS, PATH, C, COST) :-

writeln ('UDP. . .'
)

,

dijkstra (WS,P,C)

,

writeln (' SPR. . .'
)

,

solve (WS,P, PATH, COST)

,

i

separate ([],[],[]) :- !

.

separate([[E,P] |SL] , [E|WS] , [P I PA]) :- separate (SL, WS, PA) , !

fix_ws ([S |WS] ,CW) :-

correct_ws (S,WS,WS0)

,

remove_bad_reentrant ([S |WS0] ,CW)

,

i

correct_ws (EO, [El] , [El]) :-

(ep(El,E0,R,_,_) ; ep(E0,El,R,_,_)) ,

% end of ws

correct_ws (El, [El, El |WS] ,CW) :-

correct_ws(El, [E1|WS] ,CW)

,

i

correct_ws(EO, [E1,E2 |WS],CW) :-

(ep(E0,El,R,_,_) ; ep(El,E0,R,_,_)) ,

(ep(El,E2,R,_,_) ; ep(E2,El,R,_,_)) ,

correct_ws (EO, [E2 |WS] ,CW)

,

i

correct_ws (_, [El,E2 |WS] , [El |CW]) :-

correct_ws (El, [E2 |WS] , CW)

,

I

correct_ws (E,WS,CW) :-

writeln bCERROR (astar) ... failed to fix WS !'),

% unnecessary El

% unnecessary El

% OK, continue

245

writeln_b(E)

,

writeln_b(WS)

,

writeln_b(CW)

,

t

remove_bad_reentrant ([EO] , [EO]) :- !.

remove_bad_reentrant ([El,EO] , [El,EO]) :- !.

remove_bad_reentrant ([El, E2, E2, E3 I WS] , Z) :-

(ep(El,E2,Rl,Wl,_) ; ep (E2 , El, Rl, Wl,_)),

(ep(E2,E3,R3,W3,_) ; ep (E3, E2, R3, W3,_)),

(not (same (R1,R3)) -> Z=[E1,E2|CW]

I
edge(E2,_, [_,W3] ,_,_) -> Z= [El, E2, E2 | CW]

I
otherwise -> Z=[E1|CW]),

remove bad reentrant ([E3 I WS] , CW)

,

% continuous
% OK

% remove

remove_bad_reentrant ([El |WS] , [El |CW]

)

remove bad reentrant (WS, CW)

,

% OK, continue

astarsearch (Start , Goalpathlist , C) :-

c leandat abase,
add_state (Start, [] , . 0)

,

repeat ifagenda,
pick_best_state (I, State, Pathlist, C)

add_successors (I, State, Pathlist, C)

,

agenda (I, State, Goalpathlist, C,_)

,

% iterative loop

soln at top of agenda

pick_best_state (I, State, Pathlist, C)

del_min (I)

,

agenda (I, State, Pathlist, C,_)

,

i

% delete top of heap
% retract in add succ

% add successors succeeds only when best state on agenda includes goal

add_successors (_, State, _,_) :- goalreached (State) , !.

add_successors (_, State, Pathlist, C) :
-

successor (State, Newstate) ,

proper (Newstate, Pathlist) ,

add_state (Newstate, Pathlist, C)

,

fail.

add_successors (I, State, _,C) :-

retract (agenda (I,_,_,_,J) ,

assert a (usedstate (State, C))

,

fail.

fail, add successors

remove cur state, fail
% pick_best (top heap)

proper ([E0,PR2] , [[E0,PR1], [El, PI] |_]

)

i

• i

er (E0,R0, [WO,]) ,

% reflection ?

% fail rule if head match

246

er(El,Rl,_) ,

match_r (RO, Rl)

,

edge(EO,_, [WO, _],_,_)

,

sqr_dist (P1,PR1,D1) ,

sqr_dist (P1,PR2,D2) ,

D2 > Dl,

% reflective side of edge ?

% reasonable reflection ?

proper (,) : no match to rule 1 head ==> no reflection, succeed

match_r([R,_], [_, R]

)

match_r([R,_], [R,_])

match_r ([_, R] , [_, R])

match r([,R], [R,]

)

add_state (Newstate, Pathlist, C) :

-

cost ([Newstate|Pathlist] , C, Cnew) ,

agenda check (Newstate, Cnew)

,

usedstate check (Newstate, Pathlist , Cnew)

,

% fail if on agenda

% fail if seen before

eval (Newstate, Enew)

,

D is Enew + Cnew,
ins_heap (D, I) ,

assert a (agenda (I, Newstate, [Newstate I Pathlist] , Cnew, D))

,

update_clock (T) ,

display_newstate (Newstate, Pathlist) ,

tm,
i

add_state (Newstate, Pathlist, C) :

-

not (cost ([Newstate IPathlist] ,C,_))

,

write_list_b(['ERROR (astar) . . .cost fail' , [Newstate IPathlist]]),

add_state (Newstate, Pathlist ,_) :

-

not (eval (Newstate, _))

,

write_list_b(['ERROR (astar) ... eval fail' , [Newstate I Pathlist]])

,

i

% FOR DISPLAY DEBUG ON VT-10 WITHOUT PROWINDOWS
% display_newstate ([_, PO] , [[_, PI] |_]) :- write_list ([PI, ' —>',P0]).
% display newstate ([s,],[]).

display_newstate([_, PO] , [[_,P1] |_])
:

-

w_show_line (P1,P0, 2)

,

I

display newstate! [s,],[]) :~ !•

% refined DISPLAY

ignore refined start

247

display_newstate(EO, [El |_]) :- % crude DISPLAY
edge_data (EO,_,MPO)

,

edge_data (E1,_,MP1)

,

w_show_line (MP 0, MP 1,2) ,

i

display_newstate (_, []) :- !. % ignore crude start

/*

agenda_check - check for state S already on agenda;
linear search for S which has greater cost back to start;
remove and replace with shorter route;
linear search to delete from heap;

*/

agenda_check (S,C) :-

agenda (I , S ,
_, C2

, _)

,

C<C2,
retract (agenda (I f _ f _, _, _))

/

del_heap (I)

,

i

agenda_check (S,_) :- agenda (_, S, _,_,_) , !, fail.

agenda_check (_,_) .% else, if not on agenda, succeed and put on

usedstate_check (S,_,_) :- usedstate (S,_) , !, fail.

usedstate_check (_,_,_)

.

repeatifagenda

.

% repeat while agenda NOT empty
repeatifagenda :- agenda (_,_,_,_,_) , repeatifagenda

.

cleandatabase :-

retractall (agenda (_i _, _,

_

t _))

,

retractall (usedstate (_»_)) ,

init heap ()

.

248

B.6 MAP MAKER

MAPMAKER.PL - mouse assisted weighted-region problem map making tool;

create/edit simple line maps for the weighted region problem;
capture screen points, convert to map coordinates, and store
as edge predicates; requires special version of ProWindows
created with particular libraries from Quintus ProWindows

.

:* /

library_di rectory (' / us r/ local /quint us/generic/qplib2 . 5 /library')

.

libra ry_di rectory (' / us r/local /quint us /pwl . 1 /library') .

make :- save (mm, 1), go.

make :- writeln (' Created executable: mm'), halt.

pixels (700)

.

% number pixels in one dimension

map_size (100)

.

% number map units in one dimension

: - dynamic
weights/1,
point/1,
pm_ratio/l,
ipm_ratio/l,
pix_edge/5

.

weights ([1, 1])

.

% initial default weight setting

go :-

kill_prowindows

,

retractall (pix_edge (_i _,_,_, _))

,

precalc,
make_map

.

kill :- kill_prowindows

.

use_module (library (basics)) ,

use_module (library (dialog)) ,

use_module (library (interpret_messages)) ,

use_module (library (messages))

,

use_module (library (strings)) ,

use_module (library (math))

.

writeln (X) :- write (X) , nl, !.

249

midpoint ([XI, Yl] , [X2,Y2], [XM,YM])

XM is 0.5* (X1+X2)

,

YM is 0.5*(Y1+Y2)

,

i

map_item(@xcoord, text_item(' X: ', 0, none) , below, [width: 4]).
map_item(@ycoord, text_item(' Y: ', 0, none) , below, [width : 4]).
map_item(@new_line,button (' New Ln' , cascade (@pic, new_line, 0)) , below, [])

.

map_item(@mclear, button (' Clear' , mmclear) , below, []).

map_item(@wtl, text_item(' Wl : ' , 1, cascade (@pic, setl, 0)) , below, [width: 2]

)

map_item(@wt2, text_item('W2: ' , 1, cascade (@pic, set 2, 0)) , below, [width :2]

)

map_item(@blankl, label ('
' , 0) , below, []) .

map_item(@lf ile, text_item(' Load: ' ,map, cascade (@pic, stay, 0))

,

below, [width: 8]) .

map_item(@rnload, button (' Load' , mmload) , below, []).

rnap_item(@blank2, label (" , 0) , below, []) .

map_item(@sf ile, text_item(' Save : ' ,map, cascade (@pic,stay,0)),
below, [width: 8])

.

map_item(@msave, button (' Save' , mmsave) , below, []).

map_item(@blank?, label ('
' , 0) , below, [])

.

map_item (@mprint, button (' Print' , mmprint) , below, []).

map_item(@blank4, label (' '
, 0) , below, []) .

map_item(@mquit, button (' Quit' , mmquit), below, []).

stay(_,_) :-

send (@sf ile, advance, none) ,

send (@lf ile, advance, none)

.

setl (_, STRW1) :-

name (STRW1, L)

,

number_chars (Wl, L)

,

retract (weights ([_,W2])) ,

assert (weights ([Wl, W2])) ,

send (@wtl, advance, next) .

set2 (_, STRW2) :-

name (STRW2,L) ,

number_chars (W2, L) ,

retract (weights ([Wl,_])) ,

assert (weights ([W1,W2])) ,

send (@wt2, advance, previous) .

250

ticks :-

pixels (W)

,

T is W//10,

WO is W-T,

ticks2 (W0,T)

,

ticks2(X,T) :-

X >= 1,

new (@TXT, text CI' ,X,0, center)) ,

send(@TXT, font, font (screen, r, 12)) ,

send (0pic, display, @TXT) ,

X2 is X-T,

ticks2 (X2,T)

,

i

ticks2(_,T) :-

pixels (W)

,

ticks3(W,T) ,

i

ticks3(Y,T) :-

Y >= 1,

AY is Y-6,

new (@TXT, text (' -' , 0, AY, lef t))

,

send (@ TXT, font, font (screen, r, 12)) ,

send (@pic, display, @TXT) ,

Y2 is Y-T,

ticks3(Y2,T)

,

i

ticks3(_,_) :- !.

precalc :-

pixels (P)

,

map_size (C)

,

G is P/C,

IG is P//C,

assert (pm_ratio (G))

,

assert (ipm ratio(IG)).

make_map :

-

pixels (P)

,

pm_ratio (G) ,

new (@pic, picture (none, size (P, P)))

,

send (@pic, horizontal_scrollbar, 0) ,

send (@pic, vertical_scrollbar, 0) ,

send (0pic, smart, of f) ,

round(G, IG)

,

send (@pic, grid, size (IG, IG)) ,

new_dialog (8map_dialog, none,map_item)

,

251

send (@map_dialog, right, @pic)

,

PX is 1000-P, % screen = 1150x900 pixels; dialog = 150 wide
send(@rnap_dialog, open, point (PX, 80)) ,

send (@map_dialog, label, 'MAP MAKER')

,

stay (_,_)

,

draw_border,
ticks,
new(@status,text_block(' ' , area (430, 480, 70, 20) , center))

,

send (@pic, display, @ status) ,

send (@pic, cursor_x, cascade (@xcoord, adjustx, 0)) ,

send(@pic, cursor_y, cascade (@ycoord, adjusty, 0)) ,

send (@pic, moved, cascade (@pic,moved_line, 0)) ,

send (@pic, left_down, cascade (@pic, clicked, 0)) ,

send (@pic, middle_click, cascade (@pic, del_line,))

,

interpret_messages (fail)

.

new_line (_,_) :- retractall (point (_)) . % start new line

del_line (_,FIG) :-

send (FIG, destroy)

,

retract (pix_edge (FIG, WTLBL, _,_,_)) ,

send (WTLBL, erase)

.

moved_line (PIC, FIG) :-

retract (pix_edge (FIG, WTLBL, [XI, Yl] , [X2,Y2] ,W)
)

,

send (WTLBL, erase)

,

get (FIG, reference_point, REF) ,

send (FIG, destroy) ,

REF =. . [_, XR, YR]

,

NX1 is Xl+XR, NY1 is Yl+YR,
NX2 is X2+XR, NY2 is Y2+YR,
new(@L, line (NX1,NY1, NX2, NY2)) ,

% send (@L, arrows, first)

,

% option for arrowheads
new(@FIG2, figure (0,0,0)),
send (@FIG2, append, @L) ,

send(@PIC, display, @FIG2) ,

wt_label([NX1,NY1] , [NX2,NY2] ,NWTLBL,W)

,

asserta (pix_edge (@FIG2,NWTLBL, [NX1,NY1] , [NX2,NY2] , W))

.

wt_label([XI, Yl] , [X2, Y2] , @WTLBL, W) :-

midpoint ([XI, Yl] , [X2, Y2] , [XM, YM])

,

round (XM, IXM)

,

round (YM, IYM)

,

weights (W)

,

place_lbl (W, WSTR) ,

new (@WTLBL, text (WSTR, IXM, IYM, center)) ,

send(@WTLBL, font, font (cour,b, 10)) ,

send (@pic, display, @WTLBL) ,

252

place_lbl ([W,W] ,WSTR) :- number_chars (W, STR) , name (WSTR, STR) , !

place_lbl (W,WSTR) :- concat_atom (W,
:

, WSTR) , !.

round_pix(POS,X, Y) :-

pm_ratio (G)

,

round (G, IG)

,

get (POS,x,X0) , get (POS, y, YO)

,

XI is XO/G, Yl is YO/G,

round(Xl,X2) , round(Yl, Y2)

,

X is X2*IG, Y is Y2*IG,
i

clicked(PIC,@POS) :-

(retract (point (LASTPT)) ->

round_pix(@LASTPT,Xl, Yl)

,

round_pix(@POS,X2,Y2) ,

new(@L,line(Xl,Yl,X2, Y2)) ,

send(0L, arrows, first) ,

new(8FIG, figure (0, 0,0)),
send(@FIG, append, @L)

,

send(@PIC, display, @FIG) ,

wt_label ([XI, Yl] , [X2, Y2] ,WTLBL,W)

,

asserta(pix_edge(@FIG,WTLBL, [XI, Yl] , [X2,Y2] ,W))

,

assert (point (POS)

)

% mouse cannot find simple line
% so, must append to a figure.

assert (point (POS)

)

)

convert_pt ([PX, PY] , [X, Y]

)

pixels (W)

,

pm_ratio (G) ,

XX is PX/G,

YY is (W-PY) /G,

round (XX, X)

,

round (YY,Y)

.

convert_pix ([X, Y] , [PX, PY]

)

pixels (W)

,

pm_ratio (G) ,

TPX is G*X,

TPY is W-G*Y,
round (TPX, PX)

,

round (TPY, PY)

.

adjustx(XITEM,X) :-

send(@status, string, ' '
) ,

pm_ratio (R) ,

XX is X*10/R,
floor (XX, RX)

,

send(@XITEM, selection, RX)

% display transformed x in dialog box
% clear status line

253

adjusty (YITEM, Y) :- % display transformed y in dialog box
pm_ratio (R)

,

map_size (M)

,

YY is (10*M) -Y*10/R,
floor (YY,RY)

,

send (0YITEM, selection, RY)

.

mmsave(_,_) :-

send (@status, string, 'SAVING')

,

get (@sfile, string, FILE)

,

send (@sf ile, advance, none)

,

open (FILE, write, S)

,

tell(S)

,

pix_to_coord,
% insert_border,

told,

send (@status, string, 'READY')

.

concat (S1,S2,S3) :-

name (SI, LI)

,

name (S2, L2)

,

append (LI , L2 , L3)

,

name (S3, L3)

.

pix_to_coord :-

nl,

writelnC:- dynamic mapname/1, edge/6.'), nl,

get (@sfile, string, MAP) ,

concat (
' mapname (

' , MAP , Ml) ,

concat (Ml, ')
.

' ,M2)

,

writeln (M2) , nl,

pix_edge(F,W, [PX1,PY1] , [PX2,PY2] , [W1,W2])

,

convert_pt ([PX1,PY1] , [CX1,CY1])

,

convert_pt ([PX2,PY2] , [CX2,CY2])

,

EDGE =.. [edge, CXI, CY1, CX2, CY2, Wl, W2] ,

portray_clause (EDGE) ,

fail.

pix_to_coord.

insert_border :-

nl, writeln ('% border edges'), nl,

b_edge(Xl,Yl,X2,Y2,Wl,W2) ,

port ray_clause (edge (XI, Yl, X2, Y2, Wl, W2)) ,

fail.
insert_border :- nl.

draw_border :-

b_edge(Xl,Yl,X2,Y2,_,_) ,

convert_pix([XI, Yl] , [PX1,PY1]),
convert_pix([X2, Y2] , [PX2,PY2])

,

new(@L, line (PX1, PY1, PX2, PY2)) ,

254

send (@pic, display, @L) ,

fail.
draw_border

.

b_edge(0, 0,100, 0,1,0).
b_edge(100, 0,100,100,1,0).
b_edge (100, 100, 0,100,1,0)

.

b_edge(0,100, 0, 0,1,0).

mmprint (_,_) :
-

send (@pic, postscript
,
picfile)

,

unix (systemC lpr -Pssl picfile')),
unix (system (' rm picfile')),
unix (system (' lpq -Pssl')),
send (@ status, string, 'READY')

.

mmclear(_,_) :-

retractall (pix_edge (_, _, _, _,_))

,

send(@pic, clear)

,

retractall (edge (_, _»_»_*_»_)

)

i

send (@status, string, ' '),

send(@pic, display, @status)

.

mmload(_,_) :-

send (@status, string, ' LOADING')

,

get (@lfile, string, FILE)

,

send(@lfile, advance, none) ,

consult (FILE)

,

draw_edges,
abolish (edge/6)

,

send(@status, string, ' READY') ,

i

draw_edges :-

edgeO (XI, Yl, X2, Y2, Wl, W2)

,

retractall (weights (_))

,

assert a (weights ([Wl, W2]))

,

convert_pix([XI, Yl] , [PX1,PY1]
)

,

convert_pix([X2,Y2] , [PX2,PY2])

,

new (@L, line (PX1, PY1,PX2, PY2))

,

send (@L, arrows, first) ,

new (@FIG, figure (0, 0,0)),
send (@FIG, append, @L) ,

send(@pic, display, @FIG) ,

wt_label ([PX1,PY1] , [PX2,PY2] ,WTLBL,_)

,

assert (pix_edge (@FIG,WTLBL, [PX1,PY1] , [PX2,PY2] , [W1,W2]))

,

fail.

draw_edges : - !

.

mmquit (_,_) :- send (@map_dialog, destroy) , halt.

255

LIST OF REFERENCES

[Aart85] Aarts, E.H.L. and van Laarhoven, PJ.M., "A New Polynomial-Time Cooling Schedule,"

Proceedings of the International Conference on Computer-Aided Design, pp. 206-208,

IEEE, November 1985.

[Aart89] Aarts, E.H.L and Korst, J., Simulated Annealing and Boltzmann Machines, John Wiley and

Sons, 1989.

[Adam85] Adams, M., Deutsch, O., and Harrison, J., "A Hierarchical Planner for Intelligent Systems,"

Proceedings of SPIE Applications of Artificial Intelligence II, vol. 548, pp. 207-218,

International Society for Optical Engineering, Bellingham, WA, 9-11 April 1985.

[Akma87] Akman, V., Unobstructed Shortest Paths in Polyhedral Environments, pp. 90-92, Springer-

Verlag, 1987.

[Alex90] Alexander, R.S. and Rowe, N.C., "Path Planning by Optimal-Path-Map Construction for

Homogeneous-Cost Two-Dimensional Regions," Proceedings of the IEEE International

Conference on Robotics and Automation, Cincinnati, OH, May 1990.

[Barr81] Barr, A. and Feigenbaum, E.A., The Handbook of Artificial Intelligence, vol. 1, Morgan-

Kaufman, 1981.

[Baza77] Bazaraa, M.S. and Jarvis, J.J., Linear Programming and Network Flows, John Wiley and

Sons, Inc., 1977.

[Bono84] Bonomi, E. and Lutton, J., "The N-City Travelling Salesman Problem: Statistical Mechanics

and the Metropolis Algorithm," SIAM Review, vol. 26, no. 4, pp. 551-568, Society for

Industrial and Applied Mathematics, October 1984.

[Bras88] Brassard, G. and Bratley, P., Algorithmics Theory and Practice, p. 247, Prentice Hall, 1988.

[Carr90] Carriker, W.F., Khosta, P.F., and Krogh, B.H., "The Use of Simulated Annealing to Solve the

Mobile Manipulator Path Planning Problem," Proceedings of the IEEE International

Conference on Robotics and Automation, vol. 1, pp. 204-209, Cincinnati, OH, May 1990.

[Cern85] Cerny, V., "A Thermodynamical Approach to the Traveling Salesman Problem: An Efficient

Simulation Algorithm," Journal of Optimization Theory and Application, vol. 45, pp. 41-45,

1985.

[Char87] Chamiak, E. and McDermott, D., Introduction to Artificial Intelligence, p. 435, Addison-

Wesley Publishing Co., 1987.

[Clev84] Cleva, S3., "High-Tech Maps," Army, pp. 33-38, November, 1984.

[C0II88] Collins, N.E., Eglese, R.W., and Golden, B.L., "Simulated Annealing - An Annotated

Bibliography," American Journal ofMathematical and Management Sciences, vol. 8, nos. 3

and 4, pp. 209-307, American Sciences Press, Inc., 1988.

256

[Defe74] Defense Mapping Agency, Hunier-Liggett Special, edition 1-DMATC 1:50000, slock no.

V795SHUNTERLI, Topograhic Center, Washington, D.C., 1974.

[Dent84] Denton, R.V. and Froeberg, P.L., "Application of Artificial Intelligence in Automated Route

Planning," Proceedings of SPIE Applications of Artificial Intelligence, vol. 485, pp. 126-

132, International Society for Optical Engineering, Arlington, VA, May 1984.

[Digi88] Digitizing the Future, 2d ed., DMA stock no. DDIPDIGITALPAC, Defense Mapping

Agency, 1988.

[Edel89] Edelsbrunner, H., Algorithms in Combinatorial Geometry, pp. 244-245, Springer-Verlag,

1987.

[Garc89] Garcia, I., Solving the Weighted Region Least Cost Path Problem Using Transputers, M.S.

Thesis, Naval Postgraduate School, Monterey, CA, December 1989.

[Gree84] Greene, J. and Supowitz, K., "Simulated Annealing without Rejected Moves," International

Conference on Computer Design, pp. 658-663, IEEE, October 1984.

[Grov86] Grover, L.K., "A New Simulated Annealing Algorithm for Standard Cell Placement,"

Proceedings of the International Conference on Computer-Aided Design, pp. 378-380,

IEEE, 1986.

[Haje85] Hajek, B., "A Tutorial Survey of Theory and Applications of Simulated Annealing,"

Proceedings of the 24th Conference on Design and Control, pp. 755-760, December 1985.

[Huan86] Huang, M.D., Romeo, E, and Sangiovanni-Vincentelli, A., "An Efficient General Cooling

Schedule for Simulated Annealing," Proceedings of the International Conference on

Computer-Aided Design, pp. 381-384, IEEE, 1986.

[Iyen89] Iyengar, S.S. and Kashyap, R.L., "Autonomous Intelligent Machines," Computer, vol. 22,

no. 6, pp. 14-15, IEEE, June 1989.

[John89] Johnson, D.S., Aragon, C.R., McGeoch, L.A., and Schevon, C, "Optimization by Simulated

Annealing: An Experimental Evaluation; Part I, Graph Partitioning," Operations Research,

vol. 37, no. 6, pp. 865-892, November-December 1989.

[John90] Johnson, D.S., Aragon, C.R., McGeoch, L.A., and Schevon, C, "Optimization by Simulated

Annealing: An Experimental Evaluation; Part II, (Graph Coloring and Number

Partitioning)," to be published in Operations Research, 1990.

[Keir84] Keirsey, D.M., Mitchell, J.S.B., Payton, D.W., and Preyes, E.P., "Multilevel Path Planning

for Autonomous Vehicles," Proceedings ofSPIE Applications of Artificial Intelligence, vol.

485, pp. 133-137, International Society for Optical Engineering, Arlington, VA, May 1984.

[Keir88] Keirsey, D., Payton, D.W., and Rosenblatt, J., "Autonomous Navigation in Cross-Country

Terrain," Proceedings of DARPA Image Understanding Workshop, pp. 411-416, Defense

Advanced Research Projects Agency, 1988.

[Kirk83] Kirkpatrick, S., Gelatt, CD., and Vecchi, M.P., "Optimization by Simulated Annealing,"

Science, vol. 220, no. 4598, pp. 671-680, 13 May 1983.

257

[Lewi88] Lewis, D.H., Optimal Three-Dimensional Path Planning Using Visibility Constraints, M.S.

Thesis, Naval Postgraduate School, Monterey, CA, May 1988.

[Lin65] Lin, S., "Computer Solutions of the Traveling Salesman Problem," Bell System Technical

Journal, vol. 44, no. 10, pp. 2245-2269, Bell Laboratories, December 1965.

[Lind87] Lindsay, C, "Automatic Planning of Safe and Efficient Robot Paths using Octree

Representation of Configuration Space," paper presented at the IEEE International

Conference on Robotics and Automation, Raleigh, NC, 2 April 1987.

[Lund86] Lundy, M. and Mees, A., "Convergence of an Annealing Algorithm," Mathematical

Programming, vol. 34, pp. 111-124, North-Holland, 1986.

[Metr53] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E., "Equation

of State Calculations by Fast Computing Machines," Journal of Chemical Physics, vol. 21,

no. 6, pp. 1087-1092, June 1953.

[Mitc84] Mitchell, J.S.B. and Keirsey, D.M., "Planning Strategic Paths Through Variable Terrain

Data," Proceedings of SPIE Applications of Artificial Intelligence, vol. 485, pp. 172-179,

International Society for Optical Engineering, Arlington, VA, May 1984.

[Mitc87] Mitchell, J.S.B., "Shortest Paths Among Obstacles, Zero-Cost Regions, and Roads,"

Technical Report No. 764, School of Operations Research and Industrial Engineering,

Cornell University, December 1987.

[Mitc90] Mitchell, J.S.B. and Papadimitriou, C.H., "The Weighted Region Problem: Finding Shortest

Paths Through a Weighted Planar Subdivision," Technical Report No. 885, School of

Operations Research and Industrial Engineering, Cornell University, January 1990, to

appear in Journal of the ACM.

[Naha85] Nahar, S., Sahni, S., and Shragowitz, E., "Experiments with Simulated Annealing,"

Proceedings of the 22rd Design Automation Conference, pp. 748-752, IEEE, 1985.

[Naha86] Nahar, S., Sahni, S., and Shragowitz, E., "Simulated Annealing and Combinatorial

Optimization," Proceedings of the ACM/IEEE 23rd Design Automation Conference, pp.

293-299, June 1986.

[Otte89] Otlen, R.HJ.M. and van Ginneken, L.P.P.P, The Annealing Algorithm, Kluwer Academic

Publishers, 1989.

[Papa82] Papadimitriou, C.H. and Steiglitz, K., Combinatorial Optimization: Algorithms and

Complexity, Prentice-Hall, Englewood Cliffs, NJ, 1982.

[Papa85] Papadimitriou, C.H., "An Algorithm for Shortest-Path Motion in Three Dimensions,"

Information Processing Letters, vol. 20, p. 259-263, North-Holland, 15 June 1985.

[Pear84] Pearl, J., Heuristics: Intelligent Search Strategies for Computer Problem Solving, Addison-

Wesley Publishing Co., Reading, MA, 1984.

[Prep87] Preparata, F.P. and Shamos, M.I., Computational Geometry: An Introduction, Springer-

Verlag, 1988.

258

[Pres88] Press, W.H., Flannery, B.P., Teukolsky, S.A., and Wettcrling, W.T., Numerical Recipes in C,

Press Syndicate of the University of Cambridge, 1988.

[Quin90] Quintus Prolog Reference Manual, Release 2.5, Quintus Computer Systems, Inc., Mountain

View, CA, January 1990.

[Rich87] Richbourg, R.F., Solving a Class of Spatial Reasoning Problems: Minimal Cost Planning in

the Cartesion Plane, Ph.D. Dissertation, Naval Postgraduate School, Monterey, CA, June

1987.

[Rome84a] Romeo, F. and Sangiovanni-Vincentelli, A., "Probabilistic Hill-Climbing Algorithms:

Properties and Applications," ERL College of Engineering, University of California,

Memorandum No. UCB/ERL M84/34, 13 March 1984.

[Rome84b] Romeo, R, Sangiovanni-Vincentelli, A., and Sechen, C, "Research on Simulated Annealing

at Berkeley," Proceedings of the International Conference on Computer Design, pp. 652-

657, IEEE, October 1984.

[Ross89] Ross, R.S., Optimal Grid-Free Path Planning Across Arbitrarily-Contoured Terrain With

Anisotropic Friction and Gravity Effects, Ph.D. Dissertation, Naval Postgraduate School,

Monterey, CA, June 1989.

[Rowe88] Rowe, N.C., Artificial Intelligence Through Prolog, p. 321 , Prentice-Hall, Inc., 1988.

[Rowe89] Rowe, N.C. and Lewis, D.H., "Vehicle Path-Planning Using Optics Analogs for Optimizing

Visibility and Energy Cost," NASA Jet Propulsion Laboratory Publication 89-7, vol. IV, pp.

217-226, NASA Conference on Space Telerobotics, Pasadena CA, January 1989.

[Rowe90a] Rowe, N.C, "Roads, Rivers, and Obstacles: Optimal Two-Dimensional Route Planning

Around Linear Features for a Mobile Agent," International Journal of Robotics Research,

vol. 9, no. 6, December 1990.

[Rowe90b] Rowe, N.C. and Richbourg, R.F., "An Efficient Snell's-Law Method for Optimal-Path

Planning Across Multiple Two-Dimensional Irregular Homogeneous-Cost Regions,"

International Journal ofRobotics Research, 6 December 1990.

[Rowe90c] Rowe, N.C. and Ross, R.S., "Optimal Grid-Free Path Planning Across Arbitrarily-Contoured

Terrain with Anisotropic Friction and Gravity Effects," IEEE Transactions on Robotics and

Automation, vol. 6, no. 5, pp. 540-553, October 1990.

[Rowe90d] Rowe, N.C, "Plan Fields and Real-World Uncertainty," AAAI Workshop on Planning in

Uncertain, Unpredictable, or Changing Environments, Stanford, CA, March 1990.

[Rowe90e] Rowe, N.C, "Construction of Optimal-Path Maps for High-Level Path Planning across

Weighted Regions," Computer Science DepL, Naval Postgraduate School, in preparation,

December 1990.

[Sech86] Sechen, C and Sangiovanni-Vincentelli, A., "TimberWolf 3.2: A New Standard Cell

Placement and Global Routing Package," Proceedings of the 23rd Design Automation

Conference, pp. 432-439, ACM/IEEE, June 1986.

259

[Smit88] Smith, T.R., Peng, G., and Gahinet, P., "A Family of Local, Asynchronous, Iterative, and

Parallel Procedures for Solving the Weighted Region Least Cost Path Problem," University

of California at Santa Barbara, 20 April 1988.

[Tove88] Tovey, C.A., "Simulated Simulated Annealing," American Journal of Mathematical and

Management Sciences, vol. 8, nos. 3 and 4, pp. 389-407, American Sciences Press, Inc.,

1988.

[VanL87] Van Laarhoven, PJ.M and Aaris, E.H.L, Simulated Annealing: Theory and Applications, D.

Reidel Publishing Co., 1987.

[Vecc83] Vecchi, M.P and Kirkpatrick, S., "Global Wiring by Simulated Annealing," IEEE

Transactions on Computer-Aided Design, vol. CAD-2, no. 4, pp. 215-222, October 1983.

[Whit84] While, S., "Concepts of Scale in Simulated Annealing," Proceedings of the International

Conference on Computer Design, pp. 646-651, IEEE, November 1984.

[Wilb89] Wilbcr, R., "Expert Systems Aid On-Board Mission Management," Defense Computing, vol.

2, no. 1, pp. 27-30, Cardiff Publishing Co., January/February 1989.

[Wren90] Wrenn, L.R. Ill, Three-Dimensional Route-Planning for a Cruise Missile for Minimal

Detection by Observers, Technical Report NPS52-90-028, Department of Computer

Science, Naval Postgraduate School, Monterey, CA, May 1990.

[Ycn71] Yen, J.Y., "Finding the K Shortest Loopless Paths in a Network", Management Science, vol.

17, pp. 712-716, 1971.

260

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Cameron Station

Alexandria, VA 22304-6145

2. Library, Code 52

Naval Postgraduate School

Monterey, CA 93943-5002

3. Man-Tak Shing, Code CS/Sh

Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943

4. Neil C. Rowe, Code CS/Rp

Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943

5. Vincent Lum, Code CS/Lm
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943

6. Walter M. Woods, Code OR/Wo
Department of Operations Research

Naval Postgraduate School

Monterey, CA 93943

7. Clyde Scandrett, Code MA/Sc
Department of Mathematics

Naval Postgraduate School

Monterey, CA 93943

8. Robert E. McGhee, Code CS/Mz
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943

9. MAJ(P) Mark R. Kindl

3560 Eagle Landing Drive

Lithonia, GA 30058

261

)-5

Thesis
KA2455 Kindl
c.l A stochastic approach

to path planning in the

Weighted-Region Problem.

Thesis
K42455 Kindl
c.l A stochastic approach

to path planning in the
Weighted-Region Problem.

