
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1991-12

A Hopfield network approach to direct adaptive

control of nonlinear systems

Starsman, Raymond Scott

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/26576

NAVAL POSTGRADUATE SCHOOL

Monterey , California

THESIS

A HOPFIELD NETWORK APPROACH TO
ADAPTIVE CONTROL OF NONLINEAR

DIRECT
SYSTEMS

by

Rayrriond Scott

December

Starsman

1991

Th esis Advisor

:

Robe rto Cristi

Approved for public release; distribution is unlimited

T258734

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Form Approved
OMB No 0704-0188

1a REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
1b RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE

3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

6b OFFICE SYMBOL
(If applicable)

EC

7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School
6c. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

7b ADDRESS {City, State, and ZIP Code)

Monterey, CA 93943-5000

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO.

11 TITLE (Include Security Classification)

A HOPFIELD NETWORK APPROACH TO DIRECT ADAPTIVE
CONTROL OF NONLINEAR SYSTEMS
12. PERSONAL AUTHOR(S)

STARSMAN, Raymond Scott
13a TYPE OF REPORT

Master's Thesis
13b TIME COVERED
FROM TO

14 DATE OF REPORT (Year, Month, Day)

1991 December
15 PAGE COUNT
108

16 supplementary notation The views expressed in this thesis are those of the
author and do not reflect the official policy or position of the Depart-
ment of Defense or the US Government

.

17 COSATI codes

FIELD GROUP SUB-GROUP

18 SUBJECT TERMS {Continue on reverse if necessary and identify by block number)

direct adaptive control; nonlinear systems;
Hopfield net; AUV

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

An automatic control system capable of controlling an unknown non-
linear system is designed using a direct adaptive control scheme, imple-
mented with a Hopfield network. The application of this method to an
arbitrary system is discussed in detail and three specific simulation
studies are included. These studies include the implementation of the
Hopfield network based direct adaptive control system to a linear system,
an inverted pendulum, and a nonlinear model of the NPS Autonomous Under-
water Vehicle (AUV) with six degrees of freedom. The AUV simulation
includes a three dimensional trajectory following algorithm and shows the
ability of the Hopfield network to adapt to simultaneous ordered changes
in the AUV's depth, speed, and course.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT

Ljfr UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

TTNrT.ASSTFTFD
22a. NAME OF RESPONSIBLE INDIVIDUAL

CRISTI, Roberto
22b TELEPHONE (Include Area Code)

408-646-2223
22c OFFICE SYMBOL

EC/Cx
DD Form 1473, JUN 86 Previous editions are obsolete.

S/N 0102-LF-01A-6603

i

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

19 cont

.

Additionally, an analog circuit design is proposed which
implements the automatic control scheme without the support of a
microprocessor. The circuit was set up in

i SPICE and the simulation
results as well as some limitations of the analog circuit implementa-
tion of the Hopfield network are presented.

DD Form 1473. JUN 86 (Reverse) SECURITY CLASSIFICATION OF 1HIS PAGE

UNCLASSIFIED
li

Approved for public release; distribution is unlimited

A Hopfield Network Approach
to Direct Adaptive Control

of Nonlinear Systems

by

Raymond Scott Starsman

Lieutenant, United States Navy

B.S.S.E., United States Naval Academy, 1986

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

Si 777*

ABSTRACT

An automatic control system capable of controlling an

unknown nonlinear system is designed using a direct adaptive

control scheme, implemented with a Hopfield network. The

application of this method to an arbitrary system is discussed

in detail and three specific simulation studies are included.

These studies include the implementation of the Hopfield

network based direct adaptive control system to a linear

system, an inverted pendulum, and a nonlinear model of the NPS

Autonomous Underwater Vehicle (AUV) with six degrees of

freedom. The AUV simulation includes a three dimensional

trajectory following algorithm and shows the ability of the

Hopfield network to adapt to simultaneous ordered changes in

the AUV's depth, speed, and course.

Additionally, an analog circuit design is proposed which

implements the automatic control scheme without the support of

a microprocessor. The circuit was set up in SPICE and the

simulation results as well as some limitations of the analog

circuit implementation of the Hopfield network are presented.

TABLE OF CONTENTS

I. INTRODUCTION 1

II. ADAPTIVE CONTROL 4

A. PARTIAL STATE REPRESENTATION 4

B. DIRECT ADAPTIVE CONTROL 5

C. LIMITATIONS OF DIRECT ADAPTIVE CONTROL 9

D. IMPLEMENTATION OF DIRECT ADAPTIVE CONTROL ... 10

III. THE HOPFIELD NETWORK 13

A. THE PROCESSING ELEMENT 13

B. THE HOPFIELD NETWORK 15

C. THE HOPFIELD NETWORK AS A PARAMETER ESTIMATOR . 17

D. THE HOPFIELD NETWORK FOR DIRECT ADAPTIVE

CONTROL 19

E. CONVERGENCE AND STABILITY OF THE HOPFIELD

NETWORK 20

1. The effect of T and C on Eopfield network

convergence 21

2. The Excitation of the Input Signal 22

F. DIGITAL SIMULATION OF A HOPFIELD NETWORK ... 23

1. The Processing Element 23

2. The Hopfield Network 23

IV. THE HOPFIELD NETWORK FOR ADAPTIVE CONTROL 25

A. THE ALGORITHM 25

1. Determination of the System Order 26

2

.

Determination of the Reference Model and the

Observer 27

3. Determination of the Weight Filter Pole . . 28

4

.

Determination of the Input and Output Data

Filters 28

5. Determination of the Control Signal Filter . 29

B. A LINEAR SYSTEM 29

C. THE INVERTED PENDULUM 34

D. THE AUTONOMOUS UNDERWATER VEHICLE 38

1. AUV Fundamentals 38

2. A Control Scheme for the AUV 39

a. The Path Following Algorithm 40

b. A Linear Model of the AUV 4 3

(1) The Course Rate Controller 44

(2) The Depth Rate Controller 46

(3) The Speed Controller 48

c. Summary of Control 49

3. Limitations of the Control Scheme 50

4. The AUV Control Simulation 50

V. THE HOPFIELD NETWORK AS AN ELECTRONIC CIRCUIT ... 59

A. A SIMPLIFIED FIRST ORDER SYSTEM CONTROLLER . . 59

B. THE FIRST ORDER SYSTEM IN ANALOG HARDWARE ... 63

VI

C. THE SPICE SIMULATION 64

1. The CMOS Op Amp 64

2. The CMOS Four Quadrant Analog Voltage

Multiplier 65

3. SPICE Simulation of the Hopfield Network . . 67

D. REMARKS ON THE ANALOG CIRCUIT IMPLEMENTATION . 69

VI. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 70

A. SUMMARY 70

B. CONCLUSIONS 70

C. RECOMMENDATIONS 71

APPENDIX A. MATLAB SOFTWARE 72

APPENDIX B. TUTSIM CODE 88

APPENDIX C. SPICE SOFTWARE 90

LIST OF REFERENCES 94

INITIAL DISTRIBUTION LIST 96

VII

LIST OF TABLES

Table 2-1 - Direct Adaptive Control Polynomials 10

Table 4-1 - System Identification of Course Rate Data . 45

Table 4-2 - System Identification of Depth Rate Data . 47

Table 4-3 - System Identification of Speed Data 49

Table 4-4 - Reference Point Schedule 52

Table 4-5 - Waypoints for AUV Path 56

Vlll

LIST OF FIGURES

Figure 2-1 - Partial State Representation 5

Figure 2-2 - Direct Adaptive Control System 6

Figure 3-1 - A Processing Element 13

Figure 3-2 - Sample Transfer Characteristics 14

Figure 3-3 - Basic Hopfield Net 15

Figure 4-1 - Hopfield Net Adaptive Controller 25

Figure 4-2 - Hopfield control of a Linear System (g not

limited, X=l) 31

Figure 4-3 - Hopfield Control of a Linear System (g

limited, X=l) 33

Figure 4-4 - Hopfield Control of a Linear System (g

limited, A=l, 000,000) 34

Figure 4-5 - Diagram of an Inverted Pendulum 35

Figure 4-6 - Baseline Convergence of the Inverted

Pendulum 37

Figure 4-7 - The NPS AUV 39

Figure 4-8 - Posture Definitions 41

Figure 4-9 - Course Rate Data and Resultant Models . . 44

Figure 4-10 - Depth Rate Data and Resultant Models . . 46

Figure 4-11 - Speed Data and Resultant Models 48

Figure 4-12 - Initial AUV Path Following Simulation . . 53

Figure 4-13 - AUV Control Parameter Vector 54

Figure 4-14 - Improved AUV Path Following Simulation . 55

IX

Figure 4-15 - AUV Traversal of Waypoint Path 57

Figure 4-16 - AUV Traversal of Waypoint Path, Following

Distance Six Feet 58

Figure 5-1 - First Order Direct Adaptive Hopfield

Controller 62

Figure 5-2 - Results of First Order Hopfield Net ... 63

Figure 5-3 - CMOS Analog Voltage Multiplier 65

Figure 5-4 - SPICE Hopfield Net Output 68

I. INTRODUCTION

Apart from a few particular cases, no general theory

exists for the control of nonlinear systems. The simplest

method for the development of a control system for a nonlinear

plant is to linearize the nonlinear plant around an operating

point and derive a linear controller with classical control

methods. These static control algorithms can control

nonlinear systems at specific operating points, but may be

unstable at others. Simple nonlinear systems such as the

inverted pendulum may have stable linearizations at some

operating points and be unstable at others. These facts make

the control of nonlinear systems difficult.

Adaptive control algorithms hold promise in the control of

nonlinear systems. Because an adaptive control system changes

in response to changes in the system, it is able to control

many nonlinear plants. This thesis investigates the use of a

Hopfield net for direct adaptive control of a nonlinear

system.

An interesting application is the adaptive control of an

Autonomous Underwater Vehicle (AUV) . An AUV is an unmanned

submersible vehicle designed to operate independently of human

interaction or support. As such, it must be capable of

responding to changing, dangerous, or unpredictable conditions

much as a manned underwater vehicle would. While many of the

AUV's higher level functions, such as path planning and

obstacle avoidance, use artificial intelligence techniques to

cope with different scenarios, the lower level control remains

unsolved.

The dynamics of the AUV are highly non-linear and are not

easily rendered into a satisfactory linear form. These non-

linearities are particularly evident as the vehicle changes

speeds. Schwartz investigated the use of recursive least

squares (RLS) and an adaptive pole placement scheme to control

the AUV at a given speed [Ref. l:p. 63]. Although this method

produced functional results, the intensive calculations

required by the RLS algorithm would further burden the already

heavily loaded microprocessor. Since robustness to changing

plant parameters (due to changing environmental conditions or

damage) is required, an adaptive controller must be used. As

the processor aboard is already occupied by the path planning,

sensor data processing, and navigation software, a solution to

the nonlinear automatic control problem was sought that

produces a controller that demands less processor time.

Neural networks offer a potential solution to this problem

as there is great promise in the implementation of neural nets

in analog hardware. The Hopfield network in particular is

easily realized in analog circuitry. An adaptive controller

designed using a Hopfield network realized in analog hardware

would not overload the on-board processor and yet would

provide the necessary robustness for the control of the AUV.

The goal of this thesis is to develop an adaptive control

algorithm based on the Hopfield network and to propose a

design in analog hardware.

This thesis is organized in five sections. Chapter II

describes the direct adaptive control algorithm used

throughout this thesis. Chapter III contains a description of

the Hopfield network and its application to direct adaptive

control. Chapter IV consists of three studies of the

implementation of the Hopfield network based direct adaptive

control scheme. Chapter V describes a possible analog circuit

implementation of this control scheme and discusses some of

the problems associated with it. Chapter VI provides a summary

of the results of this work and points out several areas for

further study.

II. ADAPTIVE CONTROL

Adaptive control is a method by which a controller is

adapted to control an uncertain system in a dynamic operating

environment. Two major classes of adaptive control exist:

direct and indirect adaptive control. Direct adaptive control

is characterized by the direct determination of the control

parameters from input and output data collected from the

system. Indirect adaptive control is a two stage process.

First, system identification techniques are used to obtain a

model of the system and then standard control techniques are

used to calculate a controller for the estimated model [Ref.

2:p. 48]. Indirect adaptive control is generally slower than

direct adaptive control and requires greater hardware support

and/or computational effort. In this thesis only direct

adaptive control is considered.

A. PARTIAL STATE REPRESENTATION

In order to proceed with the derivation of the direct

adaptive control algorithm, it is necessary to introduce an

alternate representation of a system called the partial state

representation [Ref 3:p. 209]. The system

y{t) = ^iilu(t) (2-1)
A(S)

where s can be interpreted either as the differential operator

or the complex variable of the Laplace transform and

A(s) =s n+a
l
s""

1
+ ...+a

n
; B{s) =s m+b

l
sa

~ 1
+ . . . +b

m
(2-2)

can be broken into two components as shown in Figure 2-1.

Figure 2-1 - Partial State Representation

The intermediate state z(t) is called the partial state and

the system of equation (2-1) is equivalent to

A(s)z{t) = u(t)

y(t) = B(s)z(t)
(2-3)

The partial state representation is useful in the derivation

of the direct adaptive control algorithm.

B. DIRECT ADAPTIVE CONTROL

As stated earlier, direct adaptive control uses the input

signal to a system and the output signal from a system to

directly determine suitable control parameters. For this work

a pole placement scheme is employed, meaning that the system

[fo), k*), &

_sk

Unknown
Plant

y(t)

Control Parameter

Identifier

output y (t) is

controlled to react to

the reference signal

v(t) as does the

reference model with the

transfer function

l/p*(s). A block diagram

of a direct adaptive
Figure 2-2 - Direct Adaptive

control system is shown Control System

in Figure 2-2. In this diagram, the control parameter

identifier receives data from the input and output of the

system and uses this data to modify the controller.

Assuming the unknown plant can be modeled as a piecewise

linear system, then it may be described at any given operating

point by the linear differential equation:

y{t) = £i£lu(t)
P(s)

(2-4)

where p(s) is an AT*'
1 order monic polynomial and r(s) is an M1*1

order stable polynomial, meaning that the roots of r(s) are

all in the left half-plane. Rewriting equation (2-4) in

partial state form yields:

p(s)z(t) = u(t)
2

y(t) = r(s)z(t).

The goal of the controller is to track the output of a

reference model driven by an external input v(t) , specifically

yjt) = v(t) (2-6)
P*(s)

where p*(s) is the characteristic polynomial of the reference

model and ya (t) is the reference model output. From the pole

placement problem the control input has the following

structure

u(t) = ^lfiy(t)+illflu(t)+g -v(t) (2-7)
q(s) g(s)

where the observer polynomial q(s) is an arbitrary Nth order

stable monic polynomial, h(s) and k(s) are the unknown control

polynomials of order N-l , and gp is the input gain [Ref 4: p.

5]. Multiplying both sides of equation (2-7) by q(s) and

substituting for y(t) and u(t) from the partial state

equations (2-5) yields the closed loop dynamics

q(s)p{s)z(t) = h(s)r(s)z(t)+k(s)p(s)z(t)+

gp
g(s)v(t). K }

The polynomials h(s) and k(s) are defined to satisfy the

following condition:

q(s)p(s)-k{s)p(s)-h(s)r{s) = _p*(s)r(s)g(s) . (2-9)

Equation (2-9) can be put into the form of the Diophantine

equation [Ref. 2:p. 291] after some simple rearrangement:

h(s)r(s)+k(s)p(s) = g(s) (p(s) -_p'(s)r(s)
) (2-10)

where r2
is the coefficient of the highest order term of the

plant numerator polynomial. If the system (p(s) and r(s))

were known, then the polynomials h(s) and k(s) could be solved

for directly using the Sylvester matrix [Ref. 2:p. 295]. The

MATLAB subroutine FIND_HK.M was written to solve the

Diophantine equation and return a solution for h(s) , k(s) , and

gp . This subroutine can also be used to determine initial

estimates of the coefficients of h(s), k(s) , and gp for a

linearized model of a nonlinear system. The subroutine is

included in Appendix A.

Assuming the estimates of h(s) and k(s) converge to the

solution of the Diophantine equation, then the closed loop

partial state equations of the controlled system become:

1 (2-lla)
—p'(s)q(s)r(s)z(t) = gq(s)v(t)

y(t) = r(s)z(t). (2-llb)

Eliminating the partial state variable, z(t), setting gp to

l/rlf and dividing both sides of equation (2-lla) by q(s)

yields the desired closed loop dynamics:

y(t) = v(t). (2-12)
P'(s)

This transfer function is identical to equation (2-6) and thus

the closed loop system now responds to the input v(t) as would

the reference model given by p*(s). The challenge remains to

find the polynomials h(s) and k(s) and the gain gp that

satisfy equation (2-9) given only the input and output data of

a system.

C. LIMITATIONS OF DIRECT ADAPTIVE CONTROL

The preceding formulation of a direct adaptive control

scheme required several assumptions which are summarized in

Table 2-1. Of note is that the unknown plant need not be

stable, but must be minimum phase. Because r(s) , the unknown

plant numerator polynomial, is essentially canceled out by the

denominator of the controller, any unstable roots of r(s) make

the closed loop system internally unstable [Ref. 2:p. 440].

It should also be noted that a good estimate of the number of

poles N and zeros M of the unknown system must be known in

order to choose properly sized q(s) and p*(s) polynomials.

Polynomia 1 Order Form Must be stable?

P(S) N s
N
+p

1
s
N_1

+...pN No

r(s) M r
i

sM" 1+ '-- r
M Yes

P*(s) N-M
N-M, N-M-l

,

S +P*jS +.. •PVm Yes

q(s) N
N N—

1

s +q
x
s +...q

N Yes

h(S) N-l n.s + . . . n„ No

k(s) N-l kjs""^...^ No

Table 2-1 - Direct Adaptive Control Polynomials

D. IMPLEMENTATION OF DIRECT ADAPTIVE CONTROL

The traditional method of implementing the above direct

adaptive control scheme is to use a recursive least squares

algortihm to estimate the parameters h(s) , k(s) , and gp [Ref.

2:p. 440]. To put this problem into regression form, both

sides of equation (2-7) are multiplied by q(s) yielding:

g(s)u(t) =h(s)y(t)+*(s)u(t)+gr
p
g(s)v(t). (2-13)

Equation (2-12) can be rewritten as:

v(t) =p'(s)y{t). (2-14)

Substituting for v(t) from equation (2-14) in equation (2-13)

10

yields

q(s)u(t) = h(s)y(t)+k(s)u(t)+g
p
q(s)p-(s)y(t) . (2-15)

Equation (2-15) can now be written in regression form

x(t) = Q T
<t>(t) (2-16)

where

x(t) = g(s)u(t); 6 =

V s^ytt)

*
w y(t)

*1 ; ^(t) = s^uit)

*. u(t)

*p.
p-(s)q(s)y(t)

(2-17)

Since x(t) and 0(tj are known, the least squares estimate

of 6 is expressed as [Ref. 5: p. 324]

6= a™N»] (2-18)

where

J(8) = [e-
a(t - r) [x(r)-8 T0(r)) 2dr. (2-19)

11

The value for b is recursively estimated as

P(kT
g
)<t>(kT

e
)[x(kT

s)-<t>
T (kT

e
)§(kT

B)]Q(kT
B
+T

g
) = Q(kT

g
)+.

l+4>
T (kT

e
)P(kT

B
)<P(kT

B)

(2 -20)

P(kT
B
)<P{kT

B
)<p

T (kT
B
)P(kT

g)

P(kT +T) = P{kT
g
)- ! ! ! !_

l+<f)
T (kT

B
)P(kT

B
)<p(kT

B)

based on samples taken at a rate of 1/TB samples per second

[Ref. 5:p. 325]. Although the RLS method converges to a

correct estimate of 6, it requires extensive and intensive

calculations, consisting of several matrix multiplications and

scalar divisions at every iteration. Furthermore, this

process would be difficult to implement in analog hardware

because of the number and the nature of the required

operations.

12

III. THE HOPFIELD NETWORK

A. THE PROCESSING ELEMENT

The processing element is the heart of any neural network

and was conceived as a coarse analogy to the biological neuron

[Ref. 6:p. NC-4]. A diagram of a typical processing element

is shown in Figure 3-1.

Figure 3-1 - A Processing Element

The processing element consists of three major parts: the

input weights t^; the summing junction; and the transfer

characteristic g(*)- The inputs x± are either external

13

signals or signals from other processing elements. The neural

network is defined by its structure and the values of the

weights. The summing junction simply sums the weighted inputs

as well as the weighted bias signal Ct and passes the result

Uj to the transfer characteristic [Ref. 6:p. NC-5]. Figure 3-

2 shows several samples of possible transfer characteristics.

0.5

-5

Sigmoid
t̂00m

—""^

tanH

Saturation
1 1

0.5 h

0.5 r-

-1

Signum

-5

Figure 3-2 - Sample Transfer Characteristics

The transfer characteristic is usually a monotonically

increasing nonlinear function such as a sigmoid or a

hyperbolic tangent [Ref 7: p. 40].

Neural networks are typically constructed by arranging

processing elements in layers and interconnecting the layers.

14

B. THE HOPFIELD NETWORK

The Hopfield network consists of a single layer of

processing elements that are completely mutually

interconnected [Ref. 8:pp. 96-99]. A generic Hopfield network

Figure 3-3 - Basic Hopfield Net

is shown in Figure 3-3. The Hopfield network uses a version

of the processing element introduced in the previous section

modified by the addition of an integrator at the output of

each neuron. Thus the i
fc neuron in a continuous Hopfield

15

network of n elements evolves as:

ti. =

n

Y. t v +C (3-1)

where vi=g('u i j, g(') being the monotonically increasing

transfer characteristic. Arranging the neuron states v± into

vector V, the weight coefficients t
ij7

into matrix T, and the

bias weights c± into vector C, the equation for the entire

Hopfield network becomes

U = TV+C (3-2)

where

T =

fc« fc
12

• fc
ln

fc
21

fc
22

•

• *
ta

t
nl K2

• t
nn

c = (3-3)

An energy function is defined for the Hopfield network of

equation (3-2) as

E(t) = -ivTTV-CTV
2

(3-4)

Hopfield has shown that if T is negative definite and

symmetric, then the energy function, E(t), tends to a minimum

[Ref. 8: p. 99]. This is shown by taking the time derivative

16

of equation (3-4) along the trajectory of the network:

E(t) = -lVTV-ivTTV-CTV. (3-5)
2 2

Since T is symmetric, equation (3-5) is simplified to:

E(t) = -VTTV-CTV

= -(VTT+CT)V (3-6)

= -V
T
(TV+C) .

The definition of the Hopfield network given in equation (3-2)

is substituted in equation (3-6) yielding the time rate of

change of the Hopfield network energy as

£(t)=-V
T
U. (3-7)

Rewriting equation (3-7) in terms of the summation definition

of equation (3-1) yields

N

E(t) = -Eg'tujii,
2

. (3-8)
i = l

Since g(9
) is monotonically increasing, its derivative, g' (*),

must always be nonnegative. The second term in the summation,

d/, is also always nonnegative. Since the derivative of Eft)

is always nonpositive and Eft) is lower bounded, it must tend

to a minimum.

C. THE HOPFIELD NETWORK AS A PARAMETER ESTIMATOR

The energy or cost function of the Hopfield network has

been shown to have a finite minimum. Thus for any given set

17

of connection weights T and biases C the output of the

Hopfield network V converges to a minimizing solution. This

behavior is analogous to the recursive least squares algorithm

whose cost function was defined in equation (2-19). The cost

function J (6) of equation (2-19) is expanded to

J-(6) = (Va(t - r)x(r) 2dr

6 U-a{t - z)
<p{z)<p

T (z)dz 0-2 [e-
a(t - z)

x(z)<f>
T (x)dz

(3-9)

0.

As the first term is not a function of 6 it has no effect on

the minimization of B and may be discarded. Thus an

equivalent cost function for RLS estimation is:

J(0) = 0" [e-
a"- l^(r)^(r)dr 0-2 [e-ait

- z)
x(z)<t>

T (z)dz
(3-10)

0.

A comparison between the Hopfield network energy function,

equation (3-4), to the simplified RLS energy function,

equation (3-10), enables certain equivalencies to be made.

Setting the Hopfield network output V equal to 6, the

18

following equations must be true:

t

T = -|Va(t - r)0(r)0T (r)dr

t
(3-11)

C = fe"
a(t " r,x(r)0(r)dr

Thus if the Hopfield network weight matrix and bias vector are

set according to equation (3-11), the Hopfield network output

will converge to the optimal estimate for 6 as would the RLS

algorithm.

D. THE HOPFIELD NETWORK FOR DIRECT ADAPTIVE CONTROL

As shown above, the Hopfield network will provide an

optimal estimate of 6 provided that T and C are formed as per

equation (3-11). Equation (2-17) specifies the formation of

4>(t) as a vector of y(t) , N-l derivatives of y(t) , u(t), N-l

derivatives of u(t), and the scalar p* (s)q(s)y(t) . However,

these derivatives may not be directly available to the control

parameter identifier. Furthermore, analog differentiation is

not a reliable operation in a real world environment as

differentiators are highly subject to noise [Ref. 9:p. 99].

Rather then using the direct adaptive control equation

directly, both sides of equation (2-15) may be operated on by

19

l/p*(s)q(s) yielding

u(t) = .—

i

y{t) +

p*(s)q(s) p*(s)q(s)
(3-12)

LJ u(t)+gr v(t).
p'(s)g(s)

Equation (3-12) shows that y(t) and u(t) may be filtered by

l/p*(s)q(s) and the resultant control parameters h(s), k(s)

,

and gp remain the same. When y(t) and u(t) are properly

operated on by a state space filter in controllable canonical

form, the necessary derivative states are available without

the need for a differentiator.

E. CONVERGENCE AND STABILITY OF THE HOPFIELD NETWORK

As mentioned earlier, the Hopfield network based direct

adaptive controller will converge to an optimal estimate of 6.

The particular transfer characteristic g(') has no effect on

the steady state value of B unless one or more of the actual

elements of 6 exceed the bounds of the nonlinearity. It is

the responsibility of the designer to ensure that all

controller parameters are within the bounds of the transfer

characteristic

.

This implementation of the Hopfield network attempts to

operate the neurons in their linear region. Therefore, the

terminology Hopfield network rather than neural network is

more appropriate to this implementation.

20

1. The effect of T and C on Hopfield network convergence

Assuming that the Hopfield network output 6 does not

exceed the bounds of the nonlinearity, then the Hopfield

network output states behave as a linear system response to a

step input where T is analogous to the continuous time A

matrix and C is analogous to B. The steady state value of &

is -T~1C and the speed of the convergence is proportional to

the eigenvalues of T. In order to speed convergence it is

desirable to keep the eigenvalues of T as large as possible.

There are several methods to speed the convergence of the

Hopfield network. The first is to be aware of the operating

conditions of the plant in its likely area of operation. The

rate of convergence of the algorithm is determined by the

eigenvalues of T, and therefore by the magnitude of y(t) and

u(t). If these signals are small enough to affect the rate of

convergence then they can be properly scaled to increase the

eigenvalues of T. The next method is to increase both T and

C by a scalar positive constant X. This does not change the

steady state value of # but it does increase the eigenvalues

of T. In a digital simulation the use of X is almost

unrestricted, however in an analog implementation its value is

limited by the voltage and current capacities of the

components and the noise level.

21

2. The Excitation of the Input Signal

The nature of the input signal v(t) is critical to

parameter convergence. The signal v(t) must provide

persistency of excitation in order to guarantee convergence of

the parameters. Persistency of excitation is related to the

frequency content of the signal [Ref. 5:p. 423]. For example,

a sinusoid would not be persistently exciting for a system of

order greater than two in the sense that it does not contain

enough information to estimate the parameters. When an input

signal is not persistently exciting, the eigenvalues of the T

matrix tend to become small, slowing the Hopfield network

convergence. Based on frequency content alone, the best input

for persistent excitation is a white noise signal. However,

white noise signals are not well suited for systems with small

bandwidth. Since white noise is typically zero mean, a system

with small bandwidth filters the white noise to a very small

zero mean signal yielding a T matrix with very small

eigenvalues. A superior input signal for use in these systems

is a square wave of frequency suitable to the system since the

square wave concentrates its energy in a finite bandwidth,

whereas a white noise signal has an evenly spread power

spectrum. The period of the square wave should be determined

to ensure that it is suited to both the reference model and

the plant.

22

F. DIGITAL SIMULATION OF A HOPFIELD NETWORK

1. The Processing Element

The processing element is most easily represented in

software as a single-input single-output system. The input is

the sum of the product of the weights and the inputs to the

neuron added to the bias term. The output of the neuron is

simply the output passed through the transfer characteristic.

This work will consider four different transfer

characteristics: 1) the sigmoid, 2) the hyperbolic tangent, 3)

the identity (a linear neuron), and 4) a saturation

nonlinearity. It should be noted that all four of these

transfer characteristics are monotonically increasing. The

subroutine that applies the nonlinearity to the neuron input

is called SIGMOID. M and is included in Appendix A.

2. The Hopfield Network

Having implemented the neuron, the implementation of

the Hopfield network is a matter of implementing the nonlinear

differential equation that describes a Hopfield network given

in equation (3-2). The function that iterates a Hopfield

network over one sampling period is described below; the

corresponding MATLAB function is included in Appendix A as

HOPFIELD. M. If the neuron is linear (case 3 above), then U=V

and equation (3-2) becomes a simple state space linear

differential equation and may be simulated in a single time

step by converting the continuous model to a discrete model

23

and iterating the discrete model by one time step. The value

returned is the Hopfield network output at the next time step.

The nonlinear neurons are not as simple. The MATLAB

routine ODE45 was written to solve a nonlinear differential

equation written in state space form [Ref 10:pp. 3-137 to 3-

139], This routine was modified to operate directly on the

Hopfield network nonlinear differential equation (3-2). The

only problem with this method is its computational complexity

with respect to the linear method. The sigmoidal and

hyperbolic tangent Hopfield networks were simulated in this

manner.

The saturation nonlinearity Hopfield network was

implemented similarly to the linear problem. The Hopfield

network was determined for one iteration as described for the

linear case. Following that solution, the output was passed

through a saturation nonlinearity. Although this was not

strictly the solution to the nonlinear differential equation,

it was a very close approximation. If the sampling time was

sufficiently small, the solution arrived at through this

simplified method was indistinguishable from that arrived at

via the more complex ODE45 solution and there was more than a

fifty fold savings in simulation time.

24

IV. THE HOPFIELD NETWORK FOR ADAPTIVE CONTROL

A. THE ALGORITHM

The implementation of the Hopfield network for direct

adaptive control is reasonably straightforward. A schematic

of the Hopfield network controller is shown in Figure 4-1.

u(t), Unknown

Plant

5<t)

Nl^

Generate T and C

JJL ^L
Hopfield Net

Yields 9(t)-[h(B); Kb); f]

u(t) u(t)

v(t)

Form T(t)=

[fity-iit); y(t); u~(t)-5(t);u(t)Mt)l

?F-

r

u(t) y(t)

<l(t)

kt)

_<Kt)

P'(«)q(»)

Form e(t>=

q(«>5t)

y(t)

ftt)

Ht)

i

P'(B)q(«)

Form <x t>-

I*-(t) -$(t) ;ftt); <Ht)" fot)| <fct) *!)]

y(t)

y(t)

f"(t)

s

J

if

l

>
•^

Q(t)

uft)

C'G)

1

!()

^_ii
0"l^«-«ft)W)

J=L
>^w»'(«

JTL JcL

Figure 4-1 - Hopfield Net Adaptive Controller

The first step towards the eventual implementation of the

Hopfield network controller in hardware was a high level

software simulation. This simulation was intended to give

insight into the behavior of a system controlled by a Hopfield

25

network as well as to discover any potential difficulties

inherent in this control implementation. The high level

simulations were written in MATLAB. The next few sections

describe the general steps in the implementation of the

Hopfield network for direct adaptive control.

1. Determination of the System Order

An estimate of the system order N and the number of

system zeros M must be determined. There are a variety of

methods available to the designer, from complex systems

identification tools to a simple educated guess.

An important note in the determination of the system

order is a caution about the modeled system zeros. If the

optimal plant model with N poles and M zeros at a given

operating point has unstable zeros, then the closed loop

system will not be stable at that point. In a linear system

this implies instability, whereas a nonlinear system may

transit to an operating region with stable zeros and oscillate

around the unstable operating point. One possible method to

control this plant is to use a plant model (N and M) of lower

order than the one determined above. For example, if a third

order linear plant with one unstable zero (N=3 , M=l) were

controlled by this direct adaptive control algorithm, it would

be unstable. However, if the direct adaptive controller were

designed with the assumption that the plant was third order

with no zeros (N=3 , M=0) , in some cases the closed loop system

26

would be stable because the unstable zero would never be

canceled. Of course, this reduced form cannot model the

unknown system as well as the full model thus reducing the

accuracy with which the controller can follow the reference

model . The accuracy with which a plant can follow the

reference model is largely determined by how closely the

reduced order optimal model matches the actual system.

2. Determination of the Reference Model and the Observer

The choice of the reference model, p*(s), is clearly

critical to the closed loop system performance. Since it is

desired that the closed loop system behave as the reference

model to the input signal, a reference model must be chosen

that exhibits the desired response. For this work we chose as

reference models the class of Butterworth filters. The

bandwidth a is chosen according to the desired speed of

response. This reference model exhibits fast rise time with

small overshoot.

The observer q(s) was chosen in accordance with

traditional control theory. A fast observer (one with very

large poles) is not necessarily good because it will follow

the noise as well as the signal [Ref. 5:p. 260]. As a rule of

thumb, it is a good choice for the observer polynomial to have

four times the bandwidth of the reference model. In this

thesis the observer was chosen as a Butterworth polynomial

with bandwidth 4o .

27

3

.

Determination of the Weight Filter Pole

The weight filter a/(s+a) is associated with the

forgetting factor used in the calculation of T and C. The

value of a is an important factor in the speed of convergence

of the Hopfield network. For linear systems, the Hopfield

network converges faster when a is made smaller. However,

experimentation has shown that if a is decreased much beyond

the slowest root of the plant, the speed of convergence will

remain about the same. Thus a good choice for a for the

control of a linear or nearly linear plant is the magnitude of

the slowest root of the plant.

The choice of a in a nonlinear plant is somewhat more

difficult. For many nonlinear plants the above guideline for

linear plants for choosing a is still valid. However, if the

plant linearization changes more rapidly than the slowest root

of the linearization, then a should be chosen to be somewhat

larger. This increases the 'forgetting factor' of the

Hopfield network's weights, allowing the network to

concentrate on the more recent inputs to the system and forget

about the older, less valid data.

4. Determination of the Input and Output Data Filters

The filter for the input u(t) and output y(t) data is

determined as shown in equation (3-12). Two vector variables,

4>y (t) and <pu (t) , are formed by filtering y(t) and u(t) through

28

a filter with dynamics l/p t (s)q(s) in controllable canonical

form:

<f>y
(t) =

.2N-M+1
s'"-"

+1
yf

(t)

sy
f
{t)

yf
(t)

„() =

,2N-M*1

Sli
f
(t)

"
f
(t)

(4-1)

where

yf
(t) =

p'(s)q(s)
y(t); u

f
(t) =

p*(s)g(s)
u(t). (4-2)

5. Determination of the Control Signal Filter

The control system output from the Hopfield network

based direct adaptive controller is given in equation (2-13).

Both sides may be divided by q(s) to yield the control signal

u(t) = iilfly(t) + ^lflu(t) +gp
v(t)

<?(s) q(s)
(4-3)

where h(s) , k(s) , and gp are the components of the parameter

vector B. Therefore, y(t) and u(t) must be filtered by l/q(s)

in order to generate the control signal. This is done as

before, with two llq(s) state space filters in controllable

canonical form.

B. A LINEAR SYSTEM

Before proceeding to nonlinear systems, some basic tests

of the Hopfield network based direct adaptive controller were

29

made on a linear system. The linear system chosen was a third

order pitch and depth model of the AUV. The state space form

of this system is

0.07 -0.04

1

-0.12

[<7
i

y +

z

u(t) (4-4)

where q is the pitch rate, y the pitch, and z the depth of the

AUV [Ref. l:pp 27-30]. It is desired to control the depth

state to match a reference model's response to an external

input v(t) . Figure 4-2 shows plots of the baseline run with

the T and C filter pole a set to one radian per second, and X

set to one. Figure 4-2a shows the reference model's and the

actual system's response to the input signal. Figure 4-2b is

an expanded view of the portion of Figure 4 -2a outlined by the

box. Clearly, this is not a satisfactory control as the

output does not follow the reference model. The problem stems

from the fact that the Hopfield network estimation of gp drops

to nearly zero, and because gp is the coefficient that

amplifies the input signal v(t) , this reduces the magnitude of

the input to the plant. The reduction of input yields a T

matrix with extremely small eigenvalues, slowing convergence

of the Hopfield network to a glacial pace.

The solution to this problem is to prevent gp from falling

below a certain threshold. The threshold value may be

30

(a) y, v, ond the model vs. t 0>) Expanded view of y, v, and model vs. t

(c)

0.2

50 100 150 200

Time (s)

Theta vs. t

« 0.1
D

C

o 0-

-0.1

4
A

r

«d 0.2

150

Time (s)

u vs. t

200

0.1

3
Q.
c

-0.1

50 100 150 200

Time (s)

50 1 00 1 50

Time (s)

200

Figure 4-2 - Hopfield control of a Linear System (gp not
limited, k=l)

determined by using system identification routines to estimate

a model for the unknown system. Noting that gp is equal to

l/rir where r_, is the highest order numerator coefficient of

the unknown system, the threshold value may be some fraction

of the estimate of gp or p/r
x

. The value of /S is set according

to the confidence in the estimate of r,. A /3 of one implies

absolute confidence that the actual gp is no lower than the

estimate. A /3 of between 0.1 and 0.5 is more realistic as it

allows some room for error in the initial estimate of gp .

Nonlinear systems should have /3 in this range because the

31

estimate of r
:
may change over time. In practice the value of

/3 has little impact on the convergence as long as it is

reasonably large but does not exclude the actual value of rx

from consideration by the Hopfield network. For the next run

of the linear system the Hopfield network estimate of gp was

limited to 0.2gp where gp was found with the routine FIND_HK.M.

The rest of the system parameters remain the same as the

previous run. Figure 4 -3a shows the reference model output

and the actual plant output due to the input signal v(t) and

Figure 4 -3b shows an expanded view of the outlined area of

Figure 4-3a to more clearly demonstrate the plant convergence.

It is notable that just prior to the Hopfield network

convergence, the AUV's depth state became very large and this

is what caused the convergence to occur so abruptly. Figure

4-3c shows a plot of the parameter vector 6 versus time. This

plot shows that the parameter vector converges in

approximately 45 seconds.

The final simulation that was run on the linear plant was

to demonstrate the effect of increasing X to 1,000,000. The

gp threshold was left in place as it is still required for

rapid convergence. Figure 4-4a shows the reference model and

the actual model and Figure 4 -4b expands the outined area of

Figure 4-4a and shows that the actual output does converge to

the output of the reference model. It is again noted that the

AUV dropped to a large depth value before the parameter vector

32

(a) 9
x104

y, v, ond the model vs. t (b) ..Expanded view of y, v, and model vs. t

jprz

100

<c> 400
Theta vs. t

3 200
*>

'c

I

-5 -4
2 u

(d)
1

x106

E. o

1

J\
.

1

50

Time (s)

100 50

Time (s)

100

Figure 4-3 - Hopfield Control of a Linear System (g limited,

converged. However, the depth excursion in this case is about

100 times less than in the previous simulation. The lower

left plot is that of the parameter vector and shows that the

parameter vector converges in about 10 seconds. This is a two

fold improvement over the previous case where X was unity.

This is as expected because the increase in X increased the

eigenvalues of the T matrix and thus the convergence of the

Hopfield network. Although the use of X is practically

unrestricted in a digital simulation, it is limited by the

33

(a) „„„ y, v, and the model vs. t
* ' 400

200

-200

W 400

S 200

'E
en
o n

-200

r

Input Signal

Rat Output ^-

SyatamOut "

l\ ...^

^Expanded view of y, v, and model vs. t
lOi 1

1 i —

i

5 -

Input Signal

Raf Output

SyttamOut

\r7=tz^=t^

50

Time (s)

Theta vs. t

100 20 40 60 80 100

Time (s)

(d|
0000

u vs. t

5000

Q_

—\
\r

50

Time (s)

-5000
100 50

Time (s)

100

Figure 4-4 - Hopfield Control of a Linear System (g limited,
A=l, 000,000)

available voltage and current magnitudes in an analog circuit

implementation

.

C. THE INVERTED PENDULUM

The inverted pendulum was used as an initial test of the

nonlinear direct adaptive Hopfield network controller. A

simple model will be used with the pendulum swinging on a

stationary axis and a control torque applied at the axis.

Figure 4-5 shows this system. The nonlinear differential

34

Figure 4-5 - Diagram of an Inverted Pendulum

equation that describes this system is

y=— • smy- y+
1 ml 2 ml 2

(4-5)

where b is the frictional coefficient, m is the mass of the

pendulum and 1 is the length of the weightless arm. The goal

of the control effort will be to maintain the position of the

pendulum in a relatively upright position (y~0) . In this

upright position the system of equation (4-5) may be

35

linearized by letting sin(y)=y which yields

y(s) ml 2

±±-± = (4-6)
U(S)

s 2
+-Ls-*
ml 2

1

This linearization shows that the system order N is two, the

number of zeros M is zero, and that the system is unstable at

this operating point. The file PEND.M is the driver file for

this problem and is included in Appendix A.

For this study the following values were used:

jn=.l kg; b=l kg-m /s; 2=1 m. The elements of parameter vector

6 were initialized to 0.1. The sampling time for these

simulations was 0.1 s. The reference model was an (N-M) th

order Butterworth filter of bandwidth 1 r/s. As discussed

earlier, the observer was chosen as an /7
th order Butterworth

filter of frequency 4 r/s. The pole of the filter for T and

C was 1 r/s. The input signal was a square wave of magnitude

0.1 and frequency 0.1 r/s. The pendulum simulation was run

with A=16*10 10
. The large value for X was required to speed

convergence to a reasonable amount of time. Figure 4-6a shows

a plot of the pendulum angular position in radians, Figure 4-

6b shows a plot of the control input u(t) , Figure 4-6c shows

the time history of the Hopfield network output B(t) , and

Figure 4-6d shows the plot of the reference signal v(t) , the

reference model response to v(t) , and the actual output of the

36

(a)

D

'c

o
5

-0.5

y vs. t

r —

Uft/^ft

(b)

'c

2

O^

(c)

0)

C

o
2

100

50

Time (s)

Theta vs. t

-1

-2

u vs. t
1

100

«0

-100

50

Time (s)

v and y vs. t

100

8 0.5
D

'c

o n

-0.5

Input Signal

RrfOutput [_

System Out

^IJTMTl^^

50

Time (s)

100 50

Time (s)

100

Figure 4-6 - Baseline Convergence of the Inverted Pendulum

system. The convergence of B(t) is clearly evident in this

figure. The last plot also shows that the system output

converges to the reference model output as desired.

Several other Hopfield network control simulations were

attempted on the inverted pendulum with mixed results. In

cases where the pendulum fell upside down, the Hopfield

network had difficulty in restoring the pendulum to an upright

position. The problem lies in the fact that this is a model

based implementation and that the Hopfield network must be

able to adjust its weights as quickly as the system changes

its linearization.

37

D. THE AUTONOMOUS UNDERWATER VEHICLE

1. AUV Fundamentals

The model of the AUV that was used in this study is

that of the seven foot NPS AUV [Ref 11] written in C and

compiled for use in MATLAB [Ref. 12:pp. 124-129]. The model

is nonlinear with six degrees of freedom, 12 states, and 5

inputs. The 12 states are:

surge (longitudinal speed)

sway

heave

roll rate

pitch rate

yaw rate

X

Y

Z {depth)

roll

pitch

yaw (course)

(4-7)

The five inputs are: the stern and bow rudder angles, the

stern and bow planes, and the shaft RPM. A diagram of the AUV

is shown in Figure 4-7.

The high level control effort envisioned for the AUV

is to control the posture of the vehicle (the posture is made

up of the course, the x and y position, and the depth) to

38

Roll

X X A. >. /v

Yaw

Depth
Roll rate

Surge

Sway
Heave

Figure 4-7 - The NPS AUV

follow a reference posture. For simplicity, the stern and bow

actuators were treated as one control input, with the bow

actuator receiving the negative of the signal sent to the

stern actuator.

2. A Control Scheme for the AUV

Because the AUV is a multiple-input multiple-output

nonlinear system, the control scheme is complex. The upper

layer of control is the path-following controller which

receives as input the posture of a reference point and the

AUV, and outputs AUV state reference signals for use by the

low level controller. The low level controller receives the

39

state reference signals and determines the appropriate control

force to apply.

a. The Path Following Algorithm

Although the path following algorithm is not a

major issue in this work, it is included as a possible high

level AUV control algorithm. The control scheme implemented

in this model was a three dimensional extension of the two

dimensional path following algorithm described by Kanayama et

al [Ref 13:pp. 384-389]. The path following algorithm

compares the AUV's posture with that of a reference posture

and determines suitable state reference signals to maintain

the AUV on the reference path. A pictorial description of the

postures is shown in Figure 4-8.

The AUV is controlled by ordering the course rate,

depth rate, and forward speed determined by the path following

algorithm from the reference posture and the posture error.

The path following algorithm produces three command signals

based on the error posture between the actual vehicle and a

reference model:

u
command

command

command

u ^cosilr +K x
ref 'e x e

r +u AK y +K sinilr
)ref ref x y* e * Te

'

z +K z
ref z e

(4-8)

40

A

Reference

Posture

:e (Xwfjywf)

ye

Vehicle

Posture
(^b.y^jj,)

^

X

Reference

Posture
(a-) €

Depth Rate

Vehicle

Posture
(Z-u)

f
Depth Rate

Depth

Figure 4-8 - Posture Definitions

41

where the error posture is

_

X
e cosi|/ sim|j

x -x
ref

y. -sinij; cosijj Vref-y

*e
1 *„,"*

Z
e

1 Z
r*f~

Z
.

(4-9)

It should be noted that the third command is depth change rate

and not the heave of the vehicle and therefore it is not a

state of the AUV model. This signal may be calculated

analytically as

z - -u sin8+w cos8sin0+v cos6cos0

or readily estimated as

(4-10)

z(kT) -
z(kT)-z(kT -T

)

(4-11)

where Tg is the sampling interval. The goal of the control

system is to follow the three command signals given in

equation (4-8) by properly adjusting the control inputs.

When the heading error is much less than one radian

the coefficients Kx , Ky , K
t , and Kt may be interpreted and

determined in the following manner. 1/KX is the time constant

for the correction of the position error along the AUV's

longitudinal axis. Ky and K
$
are related coefficients that

determine a second order transfer function of the error

42

resolution across the AUV's longitudinal axis. The

differential equation for the cross range error is

y+V«^+V«^=0 - (4"12)

Assuming the desired transfer function is to be critically

damped, then Ky and K$
are related as

K^lJtT. (4-13)
V y

Lastly, 1/KZ is the time constant for the correction of the

depth error.

b. A Linear Model of the AUV

There are three system outputs that are

controlled by the path-following algorithm described

previously. The surge of the vehicle is controlled by the RPM

command input while the depth rate is controlled by the stern

and bow planes and the yaw rate by bow and stern rudders. The

system order N, the number of zeros M, and an estimate of the

gain r
x
must be known for each of the three sub-systems before

proceeding with the Hopfield network control system. These

values were estimated by generating an input and corresponding

output sequence for each of the sub-systems and using a system

identification routine to estimate a linear model for the sub-

system. The routines used to determine the system model were

GET_MOD.M and FIND_MOD.M included in Appendix A.

43

(1) The Course Rate Controller

An input signal for the rudders was generated

as a square wave of magnitude 0.4 radians and frequency 0.075

r/s with the vehicle travelling at 2 ft/s. The input signal

was applied to the AUV model and the course rate output was

observed. Figure 4-9a shows a plot of the input/output data

used to determine a linear model of the rudder to course rate

transfer function. Figures 4-9b and c present comparisons of

the two best models. A summary of the results of the

(a)

0.5

0-

-0.5

Input and Output Goto
1

1

* >

InputMi

CMpuDm

10 20 30 40 50 60 70

(b) Model/Plant Comparison N=1 M=0 (c) Model/Plant Comparison N=3 M=2
0.2

1

1 1 1
1 0.2

-0.2 -0.2

20 40 60 80 20 40 60 80

Figure 4-9 - Course Rate Data and Resultant Models

system identification are shown in Table 4-1. Table 4-1 shows

that the mean absolute state error for the first order system

44

is the second lowest. A

third order system with

two zeros had the

smallest error. Figures

4-9b and c show a

comparison between the

first order model and the

third order

Although the third order

N M Mean Abs Error

1 0.0095
2 00

2 1 0.0148
3 00

3 1 00

3 2 0.0060

Table 4-1 - System Identification
model, of Course Rate Data

model is more accurate, the first order model is satisfactory.

This reduction of model order significantly reduces the size

of the computational problem because the size of the T matrix

and thus the size of the Hopfield network varies as (2N+1) 2
.

The transfer functions of the first and third order models of

the AUV's course rate state were estimated as

coui-se
is)

u
rudder

(s)

-0.1672

s+0.499
(4-14)

and

coui-se (s) -0.1875s 2 -0.1021s-0. 01724

rudder
(s) s 3+1.313s 2 +0.3859s+0. 05419

(4-15)

45

(2) The Depth Rate Controller

A square wave of amplitude 0.4 radians and

frequency 0.025 r/s was applied to the dive planes with the

vehicle travelling at 2 ft/s. The resultant depth rate as well

as the input signal are shown in Figure 4- 10a.

(a) Input/Output Depth Data
1 i i \ r i i

\ i

\

„^~~

/ :

/ : :

/ ' :

\ :

V :

\

\

\ ;

\

hputCm

OUpUOCt
i ^-~-__

' '

20 40 60 80

0>) Model Comparison N=1 M=0

-1

i i

InpuCwa

OutpJDati

i i •

100 120 140 160 180 200

(c) Model Comparison N=4 M=2

-1

1 — T

l

i

Oupi*D«t»

j

50 100 150 200 50 100 150 200

Figure 4-10 - Depth Rate Data and Resultant Models

The output data suggests that the system is first order. The

input and output data used with the system identification

routine GET_M0D.M and the results are shown in Table 4-2. A

graphic comparison of the first and fourth order model is

shown in Figures 4- 10b and c. Again the first order model has

the second smallest summed absolute state error. A fourth

46

order model with two zeros had

the smallest error. Although

the fourth order model is

slightly more accurate in terms

of mean absolute error, the

first order model performance is

almost indistinguishable from

that of the fourth order model.

The transfer functions of these

models for the AUV's depth rate

were estimated as

N M Mean Abs Error

1 0.000341
2 0.000895
2 1 0.000895
3 0.000687
3 1 0.000661
3 2 0.000661
4 00

4 1 0.00101
4 2 0.000120
4 3 0.000120
5 0.000873

Table 4-2
Identification
Rate Data

System
of Depth

and

u
,

(s)
planes x

'

0.1832

s+0. 08809
(4-16)

ydePtn (
s

)

planes * '

0.1006s 2 +1.607s+0.4324

s 4 +6.522s 3 +8.238s 2 +3.131s+0.2079
(4-17)

47

(3) The Speed Controller

The input signal for the speed model was a

square wave with a maximum magnitude of 480 RPM, a minimum

magnitude of 260 RPM, and a frequency of 0.05 r/s. The AUV

model was driven with this signal and the resultant input and

output signals are shown in the Figures 4-lla and b

respectively

.

(a)

500
Input (b)

400

300

200

3
Output

/C.2 _ r... . n \

v 1
\

1
i

n
\

50 100 150 200 50 100 150

(c) Model N=1 M=0

20 40 60 80 100 120 140 160

200

-

/
A

1 I !

s^""""" : .y^. i v.V __r^ V
ActualOutput

MoMOutput

i i
i i

'

180 200

Figure 4-11 - Speed Data and Resultant Models

The system identification routine GET_MOD.M was

again used to generate a set of linear models for the above

input and output data sequences. The results of the system

identification are shown in Table 4-3.

48

Since the first order model had

the smallest mean absolute state

error of the models considered,

no higher order models were used

for comparison. The estimated

transfer function of the first

order model of the AUV's surge

state is

N M Mean Abs Error

1 0.00110
2 0.00147
2 1 0.00110
3 0.00445
3 1 00

3 2 0.00128
4 0.00468
4 1 00

4 2 00

Table 4-3
Identification
Data

System
of Speed

y„^A s
) 0.0007173speed

U
*pm(

S
)

s+0.1566
(4-18)

A comparison of this model to the actual system are shown in

Figure 4-llc.

c. Summary of Control

The path follower outputs command signals for the

control of the AUV's course rate, depth rate, and surge. Three

first order direct adaptive control Hopfield networks were

used to provide a suitable control signal to the actuators.

Each of the three states is modeled as a first order system

(N=l , M=0) and the estimated models of these systems may be

used with the routine FIND_HK.M to determine initial estimates

of the control polynomial parameters output by the Hopfield

network

.

49

3

.

Limitations of the Control Scheme

The piecewise linearity of the AUV is highly dependent

upon its forward speed [Ref. 1: pp. 25-62]. At very low

forward speeds (i.e. at less than 1 ft/s) the control surfaces

have little effect on the motion of the AUV making the system

appear uncontrollable and rendering the Hopfield network

controller and path follower ineffective. Provisions must be

made to prevent attempted convergence of the Hopfield network

under these poor conditions.

4. The AUV Control Simulation

For the control simulation, a reference point moves

along a prescribed path in a three dimensional space. The

goal of the path following control is to generate three

reference signals to keep the AUV as close to the reference

point as possible. These three reference signals were passed

to the Hopfield network controller in order to maintain the

course rate, depth rate, and forward speed at the level of the

reference signal filtered by the appropriate reference model

l/p*(s). Thus the Hopfield network based direct adaptive

control of the AUV requires three reference models to be

denoted p'
c (s) for course rate control, p*

d (s) for depth rate

control, and p*
B (s) for the surge control. The determination

of these reference models is clearly critical to system

performance.

50

As in any real world application the available control

force is limited. In the case of the AUV, the control force

for course rate and depth rate control is limited by the

physical geometry of the control surfaces. The control

surface input is limited to about 23° or 0.4 radians of

rotation. The shaft RPM input is limited to range between

110 RPM and 750 RPM. The lower limit on shaft RPM prevents

the vehicle from slowing to speeds where the control surfaces

lose effect. These control force limits restrict the choices

available for the reference models. If a reference model is

too fast, the control surface is unable to meet the model and

the system oscillates around the ordered state. The designer

must ensure that the reference models are reasonable for the

system to be controlled. Initially, the three models were

chosen as Butterworth polynomials with a cut-off frequency of

0.2 r/s. The three observer polynomials were chosen as

Butterworth polynomials of frequency 0.8 r/s.

The path-following parameters are also important to

ensure accurate reference point tracking. If the path-

follower attempts to drive the physical system beyond its

capability to respond, the system cannot properly follow the

path. However, if the path follower does not drive the system

hard enough, the path following is slow to react to errors.

The initial choice of parameters was: Kx=0.5, Ky=0.01, K
$
=0.2,

and K=0.5.

51

The AUV was started at coordinates X=0 , Y=0 , and Z=0 .

The reference point was started at Xrt)f=20, Yref=20, and Zrttf
=20

generating an initial position error of 28 ft and an initial

depth error of 20 ft. The reference point course rate, depth

rate, and forward speed were changed according to the schedule

in Table 4-4:

time course rate depth rate forward speed
(s) (r/s) (ft/s) (ft/s)

2

75 rr/20 0.5 2

85 0.5 2

95 n/20 2

105 -0.5 3

110 3

200 n/50 2

250 2

Table 4-4 - Reference Point Schedule

The simulation was run and the resultant motion of the AUV in

the XY plane is shown in Figure 4-12a. Figure 4-12b shows

the motion of the AUV in the depth plane. Figure 4-12c shows

the time history of the range from the vehicle to the

reference point. These plots show that the AUV follows the

reference point fairly well throughout the circuit. The AUV

corrects well for the initial range error of 28 ft. The first

two 90° turns are made at turn rates faster than the AUV model

can match since the AUV's turn rate with full rudder

deflection at 2 ft/s is n/25 r/s. The AUV cannot keep up with

these tight turns and the AUV's distance from the reference

52

(a)

100

50-

0-

-50

XY position
1

-200 200

(b)

40

20

Depth vs. t (c)

a
Q

....,,, ,

__J
- /:•

4 — RefPath

AUV Pa*

1

t
1~

i

30

£ 20

v
zr
c
o
or

10

Range vs. time

100 200

Time (s)

300 1 00 200

Time (s)

300

Figure 4-12 - Initial AUV Path Following Simulation

point increases. After two tight turns the AUV resolves its

position error during the long straight leg of the path. The

last 180° turn is at a turn rate slow enough for the AUV to

follow and yet there is still significant cross range error,

inferring that the cross range error coefficients are not

properly set. The plot of the AUV's depth reveals that the

depth control is effective with small overshoot and reasonable

settling time. The plot of the AUV's range from the reference

position reveals that once the initial error has been resolved

the AUV remains within eight feet of the reference point with

the error increasing during reference point maneuvers.

53

Although the output of the Hopfield network was

initialized to the predetermined coefficients of the h(s) and

k(s) polynomials and the gain gp , the linear models are not

necessarily good representations of the AUV at varying speeds.

Since the AUV is a nonlinear system, the Hopfield network

output changes to adjust to new plant linearizations. Figure

4-13 shows plots of the parameter vectors for each of the

(a) c Parameters of the course mode (b) Parameters of the depth mode
5

i

1 1
1 10

1

V)

<u

%
E
o
L.

o
a.

=

-5-

-10

to
l_
v

E
o
i_

o
0-

5-

-5

xr

1 00 200 300

Time (s)

(c) onnn Parameters of the speed mode

1 00 200

Time (s)

300

Parameters

D

O

C

D

O

O

C

i

A

i i

1 00 200 300

Time (s)

Figure 4-13 - AUV Control Parameter Vector

three controls versus time. The plot of the parameter vectors

shows the dynamic nature of the control parameter vectors.

The control vectors are continually adjusted to best match the

defined reference models.

54

Figure 4-12 showed that the AUV did not satisfactorily

follow a slow turn with the given path-following parameters.

In order to improve the response the cross range error

parameters were increased to Ky=0.1 and K
$
=0.63. The path and

initial conditions remain the same as the previous simulation.

A plot of the system performance is shown in Figures 4-14a, b,

and c.

(a)
100

50

XY position

>-

1 1 1 — —
1 1

/" "l

(.
)

— RefPath

— AUV Path
\ 1 1 1 J

—^—

—

i
^

l i i

(b)

-150 -100

40

-50 50

x (ft)

100 150 200

£ 20
Q.
<D

Q

Depth VS. t

A
A /l
1

/ !

i :

/ ;

— RefPath

— AUV Path

1 i
i

(c)

30

20

Range vs. time

M-

i

c
10

a:
\

n V- A) \ r

100 200

Time (s)

300 100 200

Time (s)

300

Figure 4-14 - Improved AUV Path Following Simulation

The AUV's path in this simulation is clearly superior

to that of the previous run. The AUV has completely overcome

the initial position error within 30 seconds and maintains a

much smaller range error during the wide turn.

55

The next group of simulations are run with a different

form of path description. The preceding path was described by

vehicle speeds, course rates, and depth rates. Although this

method describes a path that is fairly easy for the vehicle to

follow, it is relatively difficult for the path planner to

input the path. A more typical form of path description is to

define a set of waypoints and the time of arrival at each

waypoint. This is a far easier method for a path planner to

output a path description.

A set of waypoints were defined as shown in Table 4-5.

The AUV simulation was run

with the same constants and

initializations as the

previous run. The resultant

path of the AUV in the XY

plane is shown in Figure 4- Table 4-5 - Waypoints for AUV
Path

15a and it shows that the AUV

overshoots the waypoint and accumulates significant error at

every turn.

One method of reducing the overshoot is to reference

the X and Y position error from a point that travels a fixed

distance behind the reference point. This allows the AUV to

'look ahead' at the reference point and anticipate maneuvers.

Several different following-ranges were tried and it was found

that following six feet behind the reference point produced

the best path based on mean range error. The system was

Time X Y Z

(s) (ft) (ft) (ft)

20 20 20
75 160 20 25

105 160 70 20
200 -60 70 20
250 -60 -80 20

56

(a)
100

XY position

-100

i I — —

r

- -
1

\ ! ^
-<-—

'
—

'
"^~

)
s

— RefPath

— AUV Path

1 1 1 1

-100 -50

Depth vs. t

50

X (ft)

(c)

cr>

c
o

100 150

Ronge vs. time

-50
100 200

Time (s)

300 100 200

Time (s)

200

300

Figure 4-15 - AUV Traversal of Waypoint Path

simulated again with the waypoints from Table 4-5 and the

resultant path in the XY plane is shown in Figure 4- 16a.

The AUV follows this path more closely because the AUV

is able to begin turning priore to reaching the waypoints.

However, if it is necessary for the AUV to pass through the

waypoints this range-following modification should not be

used.

57

(a)
100

XY position

-100

—r —i
1 1 r—

\

s

^
'

\ 1 : i I

— fWPtfi

— AUVPalh

i i i i

-100

(b)

30

20

-50

Depth vs. t

a.

a 10-

wJ7m

Z

RefPHh

AUVPrih

-50

Range vs. time

200

Following

Range 6 ft

1 00 200

Time (s)

300 100 200

Time (s)

300

Figure 4-16 - AUV Traversal of Waypoint Path, Following
Distance Six Feet

58

V. THE HOPFIELD NETWORK AS AN ELECTRONIC CIRCUIT

The major impetus for the use of a Hopfield network for

direct adaptive control was the ability to implement the

Hopfield network in analog hardware. This implementation was

a straightforward translation of the Hopfield network based

direct adaptive controller shown in Figure 4-1. The two

fundamental components used were an operational amplifier (op

amp) and a four-quadrant analog voltage multiplier. Since the

controller was intended for use in a Very Large Scale

Integrated (VLSI) circuit the op amps and multipliers were

designed with complementary-symmetry metal-oxide semiconductor

(CMOS) field-effect transistor technology [Ref 9:p. 773].

A. A SIMPLIFIED FIRST ORDER SYSTEM CONTROLLER

Since all three AUV controls were modeled as first order

systems this was the system order simulated. Before

proceeding, we considered a simplified first order direct

adaptive controller.

Given the uncertain first order system

y(t) = -a y{t)+b u{t) (5-1)

where a and b are unknown constants and the reference model

y(t) = -p* y(t)+v(t) (5-2)

59

and equating them yields

-a y(t)+b u(t)=-p' y(t)+v(t) . (5-3)

The solution of u(t) from equation (5-3) is

u(t)=±y(t)+l(-p' y(t)+v(t)). (5-4)
b b

When u(t) is determined by equation (5-4), then the output

y(t) tracks the output of the reference model given by

equation (5-2). Since a and b are unknown they must be

estimated.

The Hopfield network was used to estimate these parameters

much as it was used to estimate the parameters for the higher

order systems. Equation (5-1) was rearranged solving for u(t)

and filtering both sides by an arbitrary first order stable

monic polynomial q(s)

.u(t) = *_L_y(t) +l-J—y{t). (5-5)
g(s) bq(s) b q(s)

It was seen that the coefficients alb and lib present in

equation (5-5) were the same as the unknown control

coefficients in equation (5-4). Equation (5-5) is in the RLS

60

estimation form of equation (2-15) where

x(t)=.
g(s)

U(t)} 0(t) =
y(t)

y(t)
= (5-6)

Thus a two neuron Hopfield network may be used to estimate the

parameters alb and lib necessary for the controller. A

diagram of the first order Hopfield network controller is

shown in Figure 5-1.

A simulation of this implementation was conducted using

the simulation tool TUTSIM. The code for this simulation

implementing the flow diagram of Figure 5-1 is included in

Appendix B. The plant to be controlled was

y(t)=— u(t)
s+5

(5-7)

and the reference model was

y(t)= v(t)
s + 1

(5-8)

The pole of the observer q(s) was -2 r/s, the pole of the

filter for T and C was 100 r/s, and both outputs of the

Hopfield network were initialized to 0.1. The reference input

v(t) was a unit magnitude square wave of frequency 0.05 r/s.

The plot of the input and output of the system as well as the

Hopfield network output are shown in Figure 5-2.

61

Unknown plant

s+a

^0

W±

Hopfield Network

s+q

Figure 5-1 - First Order Direct Adaptive Hopfield Controller

62

(a)

1

System npu t and Output
1

\

1

1
I

(
1 i

i

i

/
/

1 i

I :

:

1— NmOm

OutMDaa

1 I
1

x
^-

i i

(b).

0.5

10 20 30 40 50 60 70 80 90 100

Time (s)

Convergence of Control Parameters

10 20 30 40 50 60

Time (s)

70 80 90 100

Figure 5-2 - Results of First Order Hopfield Net

Figure 5-2a shows the input square wave v(t) and the

system output y(t) . The system output converges to the

reference model output. Figure 5-2b shows the convergence of

the parameters of the Hopfield network. The Hopfield network

output converge to the vector [0,13333 .66667

]

T which is the

actual value of 6.

B. THE FIRST ORDER SYSTEM IN ANALOG HARDWARE

Figure 5-1 was converted to an analog circuit by replacing

the integrators, summers, and gain blocks with the

corresponding operational amplifier circuits [Ref. 14:pp. 35-

63

125]. The multiplier blocks were replaced by Analog Devices

internally trimmed precision IC multipliers, model number

AD534 [Ref. 15:pp. 6-27 to 6-35]. The actual Hopfield

network portion of the circuit worked as expected, converging

to the expected value of 6 for a set value of T and C.

However, when the closed loop system was run, the output

of the Hopfield network tended to saturate. Once the Hopfield

network output was saturated, the entire system saturated

until the system was reset. A remedy for this problem is to

scale the reference signal to maintain lower voltage levels in

the system. Unfortunately, this would also tend to reduce the

eigenvalues of the Hopfield network, slowing convergence. A

SPICE simulation of the Hopfield network controller was

designed to more closely analyze this problem.

C. THE SPICE SIMULATION

The eventual goal of this work is to generate a single

integrated circuit (IC) that holds the aforementioned

circuitry. Since a CMOS design is best suited to analog VLSI

circuits, all components were designed using CMOS technology.

1. The CMOS Op Amp

The CMOS op amp is a fairly common device. The

example used in this work was chosen because of its simplicity

as well as the availability of the SPICE parameters for the

transistors [Ref 9:pp. 774-775]. General principles for the

design of CMOS op amps are found in Reference 16.

64

2. The CMOS Four Quadrant Analog Voltage Multiplier

The design of the multiplier is based on the square

law characteristic of the current-voltage curve of the CMOS

transistor in saturation [Ref. 17:pp. 531-532]. Figure 5-3 is

a diagram of the CMOS multiplier.

Vdd

VI

V2

Rl Ml
-vww
R2

Ml J—

"

.i VWW—t-

jVVWv—

'

M2J—

"

R3 M2
AA/Wv

M3J—

"

R6 M3
^WWV
R6

-VWW—

'

R8
-WWv-

K

V3

R7
-wwv-

Vout

Vr«f

Figure 5-3
Multiplier

CMOS Analog Voltage

The resistors R
1
through R

6
are identical and transform

the input voltages V
t and V2 into the transistor input signals

V2 /2, V2 /2, (Vj+V2)/2 for input into transistor M
x , M

2 , and M
3

respectively. Transistor M
4
's gate is grounded to provide a

zero voltage reference signal.

The four CMOS transistors are p-channel devices that

operate in saturation. The source currents of these

65

transistors are

and

I^K

I
2
=K

I
3
=JC

\2

2

V7
2_i 1-V*-V.

V

I
4
=K (-^-V

fc)

2

2L

(5-9)

(5-10)

where W and L are the length and width of the transistor gate,

}jp is the mobility of holes, and Cox is the capacitance per

unit area of the silicon dioxide gate. The output voltage

referenced to Vref is

V =—VVR
out

2
1 2

(5-11)

where R is the resistance value of R
7
and R

8
.

Thus the output of this device is a voltage difference

proportional to the product of the two input voltages. A

major problem with this implementation is that the voltage

output requires a high gain differential amplifier on the

output. Although this multiplier design is not completely

66

satisfactory, it was used in the SPICE simulation to gain

insight into the difficulties of building an analog circuit

direct adaptive Hopfield network controller.

3 . SPICE Simulation of the Hopfield Network

The first step in the SPICE implementation was the

simulation of the linear two element Hopfield network noted in

Figure 5-1. The inputs to the system were the T matrix and

the C vector and were set to

T =
-1 0.1

0.1 -2
C =

1

0.5
(5-12)

The theoretical solution of the Hopfield network was

determined by solving for the steady state output of the step

response of a state space system where A=T and B=C. The

steady state output was calculated as [Ref. 18 :p. 688]

y = -T^C =
1.0302

0.3015
(5-13)

The SPICE simulation was run with B initially set to [0.1

0.1] T
. A plot of the Hopfield network output is shown in

Figure 5-4 . The output of the Hopfield network converges to

[0,9968 0.2865] T which is within five percent of the

theoretical values shown in equation (5-13) demonstrating that

a Hopfield network is easily implemented with analog

components.

67

1 9

Convergence of Hopf leld Network Output

1

0.8

- / t | ; !-

(0

£j 0.6
-

SPICE Value

Theoretical Value

....

0.4

/ i i i i i

0.2

n i i i i !

6 8 10

Time (s)

12 14 16

Figure 5-4 - SPICE Hopfield Net Output

A SPICE circuit was designed to implement Figure 5-1

and is included in Appendix C. The major components of the

circuit were written as subcircuits to improve the clarity of

the code. The SPICE simulation showed that the multipliers

representing the T and C matrices saturated causing the

Hopfield network output to saturate as seen in the analog

circuit mentioned earlier. One remedy to this problem is to

scale the reference signal so that the internal signals do not

saturate the analog devices at the cost of slowed convergence

rate.

68

D. REMARKS ON THE ANALOG CIRCUIT IMPLEMENTATION

The analog circuit implementation of this controller is

theoretically possible, but the actual implementation in

analog hardware proved more difficult. Since the multipliers

and op amps saturate at relatively low levels, the system

input signals may need to be scaled to ensure that all

internal signals remain within saturation limits of the

hardware. While the scaling process is straightforward, it

tends to slow the rate of convergence of the Hopfield network.

There are other possible solutions to this problem that

may not slow the convergence rate which need to be

investigated before a reliable analog implementation of the

Hopfield network based direct adaptive controller can be

completed.

69

VI. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

A. SUMMARY

The stability and convergence of a direct adaptive

Hopfield network controller was shown for linear minimum phase

systems. This result was extended to include nonlinear

systems that could be modeled as piecewise linear minimum

phase systems. Simulation studies of a linear system, an

inverted pendulum, and the NPS AUV were included to examine

the capabilities and limitations of the Hopfield network

control scheme. Work on a suitable path following algorithm

was included as a possible implementation of the direct

adaptive Hopfield network control scheme.

The design of an electronic circuit to act as a Hopfield

network was investigated. Computer simulations of a

functional model of the circuit revealed no significant

defects in the theory. However, an actual hardware model and

a SPICE simulation of the controller did uncover several

severe problems in the physical implementation of the circuit.

B. CONCLUSIONS

The simulations of the direct adaptive Hopfield network

controller revealed the following:

70

• In a digital simulation, the Hopfield network approach to
direct adaptive control behaves similarly to the recursive
least squares approach.

• The speed of convergence is highly dependent upon the
magnitude and frequency content of the reference signal.

• The Hopfield network controller is a suitable controller
for use with a complex multiple input multiple output
nonlinear system. This controller also works well within
the framework of a higher level controller such as the
path following algorithm.

• The analog circuit implementation of the direct adaptive
Hopfield network controller is feasible but is subject to
the effects of the non-ideal analog components.

C. RECOMMENDATIONS

This thesis laid the foundation for further work in the

use of Hopfield networks for direct adaptive control. There

remains a great deal of ground uncovered including:

• Improving the speed of convergence of the Hopfield
network.

• The effect of disturbance and measurement noise on the
convergence of the Hopfield network.

• Implementing the Hopfield network for control of non-
minimum phase systems.

• Optimizing the AUV path follower parameters with respect
to the Hopfield network controller reference models.

• Improving the analog circuit design of the direct adaptive
Hopfield network controller to improve the circuit's
resilience to non-ideal components.

• Generating an analog VLSI design for the Hopfield network.

• Writing code to provide for the automatic generation of a
Hopfield network given the reference model, the observer
polynomial, the system order, and the pole for the weight
matrix filter.

71

APPENDIX A. MATLAB SOFTWARE

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FINDJBK.M %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [h,k,gp]=find_hk(a,b,pstar,q)
% FIND_HK.M - USAGE: [h, k, gp] =find_hk(a,b,pstar , q)
% " This function determines the direct adaptive control polynomials
% h(s) and k(s) and the input gain gp given the system denominator
% and numerator polynomials a(s) and b(s) respectively, the
% reference model polynomial pstar(s), and the observer polynomial
% q(s).
%
% R. Scott Starsman 11-25-91

b=rlz(b); % Remove leading zeros
bpstar=conv(b,pstar)

;

n=length(a)-l; % System Order
m=length(b)-l; % Number of Zeros

% Set up the Sylvester Matrix
Sa= [

a
• ; zeros (n-1 , 1)]

;

Sb= [zeros (n-m, 1) ;
b

' ; zeros (n-1 , 1)]

;

for k=2:n
Sa= [Sa [zeros (k-1 , 1) ;

a
' ; zeros (n-k, 1)]]

;

Sb=[Sb [zeros (n-m-l+k, 1) ;b' ;zeros(n-k, 1)]]

;

end
S=[Sa Sb]; % The Sylvester Matrix

f=conv(q, a-bpstar/b(1)
)

*

;

% Determine solution to Diophantine Equation
hk=inv(S)*f (2:length(f

))

;

% Determine controller polynomials and gain
h=hk(n+l:2*n)

;

k=hk(l:n)

;

gp=l/b(l);

72

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SIGMOID.M %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [Y]=sigmoid(X, sigtype)
%SIGMOID This function subjects the input vector X to the transfer
% characteristic designated by sigtype. The function is called
% by: Y=sigmoid(X, sigtype)

.

%
% sigtype specifies the transfer characteristic:
% 1 - Sigmoid
% 2 - tanH
% 3 - Linear
% 4 - Saturation
%
% R. S. Starsman 5-1-91
% Copyright (c) R. S. Starsman, 1991
% All Rights Reserved

[n,m]=size(X)

;

if (sigtype==l)
Y=ones(n,m) . /(ones(n,m)+exp(-X))

;

elseif (sigtype==2)
Y=(ones(n,m)-exp(-2*X)) . / (ones (n,m)+exp(-2*X))

;

elseif (sigtype==3)
Y=X;

elseif (sigtype==4)
Y=hard_lim(X,-l, 1) ;

end

73

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HOPFIELD.M %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [VI] = hopfield(VO,T,C,Tf ,sigtype,maxval, lambda)
%HOPFIELD Iterates a Hopfield net for Tf seconds given the initial state

of the Hopfield net VO, the weight matrix T, the bias vector C,
the sigmoid type (sigtype), the scale factor, lambda (optional),
and the neuron saturation level, maxval (optional).

The matrix T must be negative definite.

sigtype specifies the transfer characteristic:
1 - Sigmoid
2 - tanH
3 - Linear
4 - Hard limited saturation

maxval is an optional parameter that specifies the upper and lower
bound on bounded neural outputs (sigtype=l, 2, or 4). The
default value is 1.

lambda is a scale function that multiplies the T and
The larger lambda is, the faster the convergence,
value is 1.

USAGE

:

V=hopfield (U , T , C , Tf , sigtype , maxval , lambda

)

C matrices

.

The default

% Set default values if necessary
if nargin<7

lambda=l;
end
if nargin<6
maxval=l;

end

% Scale T and C by lambda
T=lambda*T;
C=lambda*C;

if sigtype==3
[Phi , Del] =c2d (T , C , Tf)

;

Vl=Phi*VO+Del;
else

% Linear Neuron
% Discretize net
% Iterate one step

if sigtype==4
[Phi,Del]=c2d(T,C,Tf) ;

Vl=hard_lim(Phi*VO+Del, -maxval, maxval)

;

else

% Saturating Neuron
% Discretize net

% Iterate and limit output

% Sigmoidal or tanH Neurons
% Routine based upon a modified version of MATLAB function ODE45.M

% The Fehlberg coefficients:
alpha = [1/4 3/8 12/13 1 1/2]

•

j

beta =
[

gamma =
[

pow = 1/5;

10
3 9

1932 -7200 7296
8341 -32832 29440

-6080 41040 -28352
902880 3953664
-2090 22528

-845
9295 -5643

3855735 -1371249
21970 -15048

0]/4
0]/32
0]/2197
0]/4104
0]/20520]•;

277020J/7618050
-27360]/752400]•;

74

trace = 0;
tol = l.e-6;

% initialization
t0=0;
tfinal=Tf;
y0=V0;
t = tO;
hmax = (tfinal - t)/5;
hmin = (tfinal - t)/20000;
h = (tfinal - t)/100;
y = y0(:);
f = y*zeros(1,6)

;

tout = t;
yout = y .

'

;

tau = tol * max(norm(y, 'inf'), 1);

% The main loop
while (t < tfinal) & (h >= hmin)

if t + h > tfinal, h = tfinal - t; end

% Compute the slopes
% Call to neuron function sigmoid substituted here for
% nonlinear function
f (: , l)=T*maxval* sigmoid (y/maxval,sigtype)+C;
for j = 1:5

f

(

: ,
j+l)=T*maxval*sigmoid((y+h*f*beta(: , j))/maxval,sigtype)+C;

end

% Estimate the error and the acceptable error
delta = norm(h*f*gamma(: ,2)

,
' inf

•)

;

tau = tol*max (norm (y, 'inf •), 1 .0)

;

% Update the solution only if the error is acceptable
if delta <= tau

t = t + h;

y = y + h*f*gamma(: , 1)

;

tout = [tout; t]

;

yout = [yout; y.'];
end

% Update the step size
if delta ~= 0.0

h = min(hmax, . 8*h* (tau/delta) *pow)

;

end
end;

if (t < tfinal)
disp('SINGULARITY LIKELY.')
t

end
Vl=maxval*sigmoid(yout (length (tout) , :) /maxval, sigtype)

•

end
end

75

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HOPINIT.M %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% HOPINIT

This is the initialization script file for the direct
adaptive control Hopfield net problem files

.

Variable set in this file include:

Ts - The sampling time
Tf - The final time
ZOH - the number of time steps in the zero order hold
sigtype - The neuron transfer characteristic (see SIGMOID. M)
lambda - The Hopfield net weight matrix gain
alpha - The pole of the filter for the T and C matrices in r/s
maxval - The maximum value the neurons are allowed to attain.

This is used for the saturating neurons
a - System denominator discrete time polynomial
b - System numerator discrete time polynomial
v - Reference signal

R. Scott Starsman 11-25-91

Ts=.l;
Tf=100;
t=0:Ts:Tf

;

its=length(t)

;

ZOH=10;
sigtype=4;
lambda=l;
alpha=l;
maxval=inf

;

rand('normal')

;

% Sampling time
% Final time

% # of iterations
% Length in Ts of ZOH
% Sigmoid type
% T and C matrix gain
% Filter pole for T and C matrices

% Set up the test system (the system to be controlled is defined here)

% The depth model of the AUV
al=.07;
bl=.04;
v=3;
K=l;
Zd=l;

% Forward speed

% Initial depth error

% State space model of the system
A=[-al -bl 0;1 0;0 -v*bl 0];
B=[1;0;0];
C=[0 1];
D=0;
xO=[0;0;Zd];
[bc,ac]=ss2tf (A,B,C,D, 1)

;

[Phi,Del]=c2d(a,b,Ts)

;

[b,a]=ss2tf (Phi ,Del,c,d,l)

;

% Condition a and b
a=fliplr(a(2:length(a)

))

;

b=fliplr(rlz(b));

% Initial conditions
% Continuous time TF model
% Discrete time SS model
% Discrete time TF model

% Set system order and
n=length(a)

;

mc=length(rlz(bc))-l;
md=length (b) - 1

;

number of zeros
% System order
% Number of continuous time zeros
% Number of discrete time zeros

% Set the number of controller parameters
numparms=2 *n+ 1

;

76

% initialize system
y=Zd*ones (its , 1)

;

u= [zeros (2*n-l, 1) ;0.1]

;

sigmay=0; % Set measurement noise strength
noise=sigmay*rand(t)

;

T=zeros (numparms , numparms)

;

C=zeros (numparms , 1)

;

clear theta
theta (: , 1) = . 1 *ones (numparms , 1)

;

% Determine the reference signal
%
% unit step
%v=ones (t)

;

%
% sin wave
%v=sin(t)

;

%
% Zero
%v=zeros (t)

;

%

% Whit Noise
%v=rand(t)

;

%
% Square wave
v=sign(sin(.2*t))

;

77

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H0PPR0B4.M %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% HOPPROB4.M
% This script file simulates the direct adaptive
% Hopfield net control of a system. The initialization
% routine HOPINIT must be run prior to running this file.
%
% R. Scott Starsman 11-18-91

rand('normal'

)

% Initialize copies of T and C for use in the ZOH
T1=T; C1=C;
tl=clock; % Set a timer

pstar=butterw(n-mc, 1)

;

% Determine the reference model
q=butterw(n,2)

;

% Determine the observer
pstarq=conv(pstar,q)

;

[hl,kl,gl]=find_hk(ac,bc,pstar,q)

;

% Find the actual controller

% Determine th model's response to the input signal
model=lsim(l,pstar,v(l:length(t)) *pstar(length (pstar)) ,t)

;

% Filter for derivatives of y and u
[Af ,Bf ,Cf ,Df]=tf2ss(l,pstarq)

;

Cf=eye(Af)

;

Df=zeros(Bf)

;

[Phif ,Delf]=c2d(Af ,Bf ,Ts)

;

ybar=zeros(2*n-mc, 1)

;

% Initialize the filters
ubar=zeros(2*n-mc, 1)

;

% Filter for Calculating u
Aqs=[-q(2 :n+l) ;eye(n-l) zeros (n-1, 1)]

;

Aq=blokdiag (Aqs)

;

Bqs=[1 ; zeros (n- 1,1)]

;

Bq=blokdiag(Bqs)

;

[Phiq,Delq]=c2d(Aq,Bq,Ts)

;

xq=zeros(2*n, 1)

;

% Initialize the filter

% Filter for the T and C matrices
pole=alpha;
A=-pole;
B=pole;
[PhiTC,DelTC]=c2d(A,B,Ts)

;

% This loop is to initialize the filters and the system
for k=n+l:2*n
ybar=Phif*ybar+Delf*y(k-l)

;

ubar=Phif*ubar+Delf*u(k-l)

;

xq=Phiq*xq+Delq*[y(k-l) ; u(k-l)]

;

u (k) =theta (: , 1
)

' * [xq ; v (k)]

;

y (k) =-a*y (k-n : k- 1) +b*u (k-md- 1 : k-1)

;

end

% simulate the Hopfield net direct adaptive controller
for k=2*n+l:its
y(k)=-a*y(k-n:k-l)+b*u(k-md-l:k-l); % Iterate the system

% Prepare phi(t) and s(t)
ybar=Phif*ybar+Delf*y(k-l)

;

% Update the filtered versions
ubar=Phif*ubar+Delf*u(k-l); % of y(t) and u(t) and derivs
phi=[ybar(n-mc+l:2*n-mc) ;ubar(n-mc+l:2*n-mc) ;y(k)] ; % Formphi(t)
s=q*ubar(n-mc:2*n-mc)

;

% Form s(t)

78

% Determine T and C and apply ZOH
Tl=hard_lim(-DelTC*phi*phi*+PhiTC*Tl,-maxval,maxval)

;

% Update T
Cl=hard_lim(DelTC*phi*s+PhiTC*Cl,-maxval,maxval)

;

% Update C
if (k<20)

|
(rem(k,ZOH)==0) T=T1; C=C1; end % Apply ZOH

% Iterate the Hopfield net
theta(:,k-2*n+l)=hopfield(theta(: ,k-2*n) ,T,C,Ts, lambda, maxval,sigtype)

;

% Limit the estimate of gp from falling below gl/5
if theta(numparms,k-2*n+l)>gl/5 theta(numparms,k-2*n+l)=gl/5; end

% Filter y(t) and u(t) for calculating the control signal
xq=Phiq*xq+Delq*[y(k-l) ; u(k-l)]

;

u(k)=theta(:,k-2*n+l) ' * [xq;v(k)*pstar(length(pstar))]

;

end

etime (clock, tl) % Stop the timer

79

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PEND.M %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PEND.M
% This is the MATLAB program for the Hopfield net control of
% an inverted pendulum.
%
% R. Scott Starsman 11-13-91

Ts=.02;
Tf=100;
t=0:Ts:Tf

;

its=length(t)

;

ZOH=l;
ZOHstart=500;
sigtype=4;
lambda=160000000000;
pole=l;
maxval=inf

;

rand('normal')

;

b-1;
m=.l;
1=1;
g=9.8;

n=2;
mc=0;

numparms=2 *n+ 1

;

% System initial conditions
y=.01*ones (its, 1)

;

yd=zeros(y)

;

u= [zeros (2*n-l , 1) ; . 1]

;

sigmay=0;
sigmau=0;
noise=sigmay*rand(t

•)

;

T=zeros (numparms , numparms)

;

C=zeros (numparms , 1)

;

theta (:,!)=. 1 *ones (numparms , 1)

;

% This is the reference signal - square wave
v=.l*sign(sin(.5*t))+.0*rand(t)

;

% Hopfield Problem for upside down pendulum

% Sampling time
% Finish time

% Number of iterations
% Set the ZOH length
% Set the iteration # to start ZOH
% Transfer characteristic type
% Gain for T and C
% Pole of filter for T and C

% Pendulum damping
% Pendulum mass
% Pendulum length
% gravity

% Estimated system order
% Estimated continuous system zeros

% Number of parameters to estimate

% y
% y dot

tl=clock;
modfreq=l;
pstar=butterw(n-mc,modfreq)

;

q=butterw(n, 4*modfreq)

;

pstarq=conv (pstar , q)

;

% Set a timer
% Set frequency of the reference model
% The reference model
% The observer

% Estimate the value of h(s), k(s), and gp
[hl / kl,gl]=find_hk([l b/m/l A

2 -g/1] , l/m/l"2,pstar,q)

;

model=lsim(l,pstar,v(l:length(t)) ,t)

% Filter for derivatives of y and u
[Af ,Bf ,Cf ,Df]=tf2ss(l,pstarq)

;

Cf=pstarq(length (pstarq))*eye(Af)

;

Df=zeros(Bf)

;

[Phif ,Delf]=c2d(Af f Bf ,Ts);

% The reference model output

80

ybar=zeros(2*n-mc, 1)

;

ubar=zeros(2*n-mc, 1)

;

% Filter for Calculating u
Aqs=[-q(2:n+l) ;eye(n-l) zeros (n-1, 1)]

;

Aq=blokdiag (Aqs)

;

Bqs= [1 ; zeros (n-1 , 1)]

;

Bq=blokdiag (Bqs)

;

Cq=q(length (q))*eye(Aq)

;

[Phiq,Delq]=c2d(Aq,Bq,Ts)

;

xq=zeros (2*n, 1)

;

% Filter for the T and C matrices
A=-pole;
B=pole;
[PhiTC,DelTC]=c2d(A,B,Ts)

;

% Initialize the system and filters
for k=n+l:2*n

% The pendulum
yd(k)=yd(k-l)-b/m/l*2*yd(k-l)*Ts+g/l*sin(y(k-l))*Ts;
y(k)=y(k-l)+yd(k-l)*Ts;

ybar=Phif*ybar+Delf *y (k-1)

;

ubar=Phif *ubar+Delf *u(k-l)

;

phi=[ybar(n-mc+l:2*n-mc) ;ubar (n-mc+l:2*n-mc) ;y (k-1)]

;

s=q*ubar (n-mc :2*n-mc)

;

T=hard_lim(-DelTC*phi*phi ' +PhiTC*T, -maxval, maxval)

;

C=hard lim(DelTC*phi*s+PhiTC*C, -maxval,maxval)

;

xq=(Phiq*xq+Delq*[y(k-l) ; u(k-l)
])

;

u (k) =theta (: , 1
) • * [xq ; v (k)]

;

end

% Simulate the system
for k=2*n+l:its

% The pendulum
yd(k)=yd(k-l)-b/m/l*2*yd(k-l)*Ts+g/l*sin(y(k-l))*Ts+u(k-l) /m/l"2*Ts;
y(k)=y(k-l)+yd(k-l)*Ts;

% Determine the phi vector and s(t)
ybar=Phif*ybar+Delf *y(k-l)

;

ubar=Phif *ubar+Delf *u(k-l)

;

phi=[ybar(n-mc+l:2*n-mc) ;ubar (n-mc+1 :2*n-mc) ;y(k-l)]

;

s=q*ubar(n-mc:2*n-mc)

;

% Update T and C
T=hard_lim (-DelTC*phi*phi ' +PhiTC*T , -maxval , maxval)

;

C=hard_lim(DelTC*phi*s+PhiTC*C,-maxval,maxval)

;

% Iterate the Hopfield net
theta(: ,k-2*n+l)=hopfield(theta(: ,k-2*n) ,T,C,Ts,sigtype, maxval, lambda)

;

% Prevent the estimate of gp from falling too low
if theta(numparms,k-2*n+l)<gl/2 theta(numparms,k-2*n+l)=gl/2; end

% Filter y(t) and u(t) for the output calculations
xq=(Phiq*xq+Delq*[y(k-l) ; u(k-l)])

;

% Determine the system control signal
u(k)=hard_lim(theta(:,k-2*n+l) • *[xq;v(k)] ,-30,30)

;

end

81

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% GET_MOD.M %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GET_MOD.M
% This file is used to determine a set of system models for
% the input/output data held in the vectors y and u
% respectively. These vectors are assumed to exist upon entry
% into this routine. The routine finds a set of continuous time
% transfer function models for varying plant order and numerator
% order

.

%
% R. Scott Starsman 11-25-91

% Clear these variables for later use
nt=[]; dt=[]; results=[];

% Nested loop to determine the system order and number of zeros
for n=l:5 % First to fifth order

for m=0:n-l % # of zeros less than number of poles
% Find the model
[num,den,theta]=find_mod(y,u* ,n,m,Ts)

;

y2=lsim(num,den,u,t) ; % The model's response to the input
e=y-y2; % Generate an error vector
nt= [nt ; zeros (1,6 -m) num] ; % Save the model numerator
dt=[dt; zeros (1,6-n) denj; % Save the model denominator

% Plot the actual data vs the model
clg
subplot (2 11)
plot(t,y,t,y2,t,e)
subplot (2 12)
% Plot the convergence of the model parameters
plot (t (1 : length (theta)) , theta

)

% Save the model order, # of zeros, and summed absolute error
results=[results;n m sum(abs(e)

)]

;

end
end

82

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FIND_MOD.M %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [num, den , theta , P] =find_mod

(y , u , n , m , Ts

)

% FIND_MOD.M - USAGE: [num, den, theta, P]=find_mod(y ,u, n,m, Ts

)

% " This routine returns a continuous time transfer function
% model of order n with m zeros for the input /output data y
% and u. The time interval between data points is given by Ts.
%
% y - y is a column vector of system output data
% u - u is a column vector of the system input
% n - n is the model system order
% m - m is the number of modeled zeros
% Ts - Ts is the time interval between data points
%
% num - num is the numerator polynomial of the modeled TF
% den - den is the denominator polynomial of the modeled TF
% theta - theta is the vector of parameters over time. This is
% useful for examining the convergence of the parameters
% p - p is the error covariance matrix.
%
% R. Scott Starsman 11-15-91

numparms=n+m+l; % Number of parameters to find

theta=zeros (numparms, 1)

;

% Initialize theta

% Estimate n-1 derivatives of y and store them all in yprime
yprime=y;
for k=2:n
yprime=

[
[dif f (

yprime (: , 1)) /Ts ;
]
yprime]

;

end
ydot= [dif f (yprime (: , 1))/Ts;0]

;

% Estimate m derivatives of u and store them in uprime
uprime=u;
for k=2:m+l;
uprime=[[dif f (uprime (: , 1)) /Ts; 0] uprime]

;

end

% Set up a matrix of y and its derivatives and u and its derivatives
phi= [-yprime uprime]

;

% Initialize error covariance matrix
P=le 8 *eye(numparms, numparms)

;

% Estimate system parameters using RLS
for k=l : length (y) -numparms

den=l+phi(k, :)*P*phi(k, :
)

•

;

theta(: ,k+l)=theta(: ,k)+P*phi(k, :
) • * (ydot (k) -phi(k, :

)*theta(: ,k))/den;
P=P-P*phi(k, :

) «*phi(k, :)*P/den;
end

% Return the numerator and denominator of the system
den= [1 theta (1 : n , length (theta)

)
•]

;

num=theta (n+ 1 : numparms , length (theta)
)

'

;

83

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% AUVPATHl.M %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% AUVPATHl.M
% This file is the driver for the direct adaptive Hopfield
% net control of the AUV. This file uses the Kanayama
% path planning algorithm to generate state reference
% signals for the course rate, depth rate, and surge of the
% AUV. These state control signals are passed to the Hopfield
% net controller for actuation of the control surfaces

.

% Initialize the system
dt=.25;
Tf=300;
t=0:dt:Tf

;

its=length(t)

;

Z0H=1;
lambda= 1;
sigtype=3;
maxval=inf

;

rand('normal'

)

% Sample time
% Final time

% Number of iterations
% ZOH time in numbers of time steps
% T and C matrix gain
% Sigmoid type
% Neuron output limit

% Since three states need to be controlled, three Hopfield
% nets are required. Variables dealing with the course rate
% are appended with 'c*, with the depth rate are appended 'd',
% and with the surge are appended '

s

'

% Set the system order and the size of the Hopfield net
nc=l; mc=0; numparmc=2*nc+l;
ns=l; ms = 0; numparms=2*ns+l;
nd=l; md=0; numparmd=2*nd+l;

% Initialize T, C, the input, the output, and the auv position
Tc=zeros(numparmc,numparmc) ; Cc=zeros(numparmc, 1) ; gc=-5.6;
Ts=zeros (numparms , numparms) ; Cs=zeros (numparms, 1) ; gs=855.7;
Td=zeros(numparmd,numparmd) ; Cd=zeros (numparmd, 1) ; gd=3.973;
yc=0*ones (t) ; uc=zeros (yc)

;

ys=2*ones (t) ; us=400*ones (t)

;

yd=0*ones(t) ; ud=zeros (yd)

;

d0=0;
auvx=zeros(t) ; auvy=zeros(t)
% Initial AUV state
x0=[ys(l);0;yd(l);O;0;yc(l);0;0;d0;0;0;0];

% Initial depth
auvd=dO*ones(t)

;

tl=clock; % Start a timer

% The first order system models for the three subsystems
numc=-0. 167;denc=[1 0.5];
nums=0.00065;dens=[l 0.128];
numd=0.183;dend=[l 0.088];
% The system reference models and observers
pstarc=butterw(nc-mc, .5) ; qc=butterw(nc, 1) ; pstarqc=conv(pstarc,qc)

;

pstars=butterw(ns-ms, .2) ; qs=butterw(ns, .8) ; pstarqs=conv(pstars,qs)

;

pstard=butterw (nd-md , . 5) ; qd=butterw (nd , 1) ; pstarqd=conv (
pstard

,
qd)

;

% Estimate the control parameters from the system models
[he , kc ,

gc] =find_hk (dene , numc , pstarc , qc) ; thetac= [he ; kc ;
gc]

;

[hs , ks ,
gs] =find_hk (dens , nums , pstars ,

qs) ; thetas= [hs ; ks ;
gs]

;

[hd , kd , gd] =find_hk (dend , numd , pstard , qd) ; thetad= [hd ; kd ;
gd]

;

% Parameters and IC's for path follower
% Kanayama path follower
Kx= . 1

;

Ky=.l;

84

Ktheta=sqrt(4*Ky)

;

% Critically damped system in CRE
Kd= . 5

;

R0=0; % Following range in ft
vref=2; % Initial reference speed
wref=0; % Initial reference course rate
targddot=0; % Initial reference depth rate
% Initial reference position in X, Y, Z

targxyd=[20 20 20 20 20;
20 20 20 20 20;
20 20 20 20 20];

thetaref=0; % Initial reference heading
vc=wref*ones(yc) ; vs=vref*ones (ys) ; vd=targddot*ones(yd)

;

% Filter for derivatives of y and u
[Afc f Bfc,Cfc,Dfc]=tf2ss(l,pstarqc)

;

[Phifc,Delfc]=c2d(Afc,Bfc,dt)

;

[Afs,Bfs,Cfs,Dfs]=tf2ss(l,pstarqs)

;

[Phifs,Delfs]=c2d(Afs,Bfs,dt)

;

[Afd,Bfd,Cfd,Dfd]=tf2ss(l,pstarqd) ;

[Phifd,Delfd]=c2d(Afd,Bfd,dt)

;

ybarc=zeros(2*nc-mc, 1) ; ubarc=zeros(2*nc-mc, 1)

;

ybars=zeros (2*ns-ms, 1) ; ubars=zeros(2*ns-ms, 1)

;

ybard=zeros (2*nd-md, 1) ; ubard=zeros (2*nd-md, 1)

;

% Filter for Calculating u
Aqs=[-qc(2 :nc+l) ;eye(nc-l) zeros (nc-1, 1)]

;

Aqc=blokdiag (Aqs)

;

Bqs= [1 ; zeros (nc-1 , 1)]

;

Bqc=blokdiag (Bqs)

;

[Phiqc,Delqc)=c2d(Aqc,Bqc,dt)

;

Aqs=[-qs(2:ns+l) ;eye(ns-l) zeros (ns-1, 1)]

;

Aqs =b lokdi ag (Aqs)

;

Bqs=[1; zeros (ns-1, 1)]

;

Bqs=blokdiag (Bqs)

;

[Phiqs,Delqs]=c2d(Aqs,Bqs,dt)

;

Aqs=[-qd(2 :nd+l) ;eye(nd-l) zeros (nd-1, 1)]

;

Aqd=blokdiag(Aqs)

;

Bqs=[1; zeros (nd-1, 1)]

;

Bqd=blokdiag (Bqs)

;

[Phiqd,Delqd]=c2d(Aqd,Bqd,dt)

;

xqc=zeros(2*nc, 1)

;

xqs=zeros (2*ns , 1)

;

xqd=zeros(2*nd, 1)

;

% Filter for the T and C matrices
pole=l;
A=-pole;
B=pole;
[PhiTC,DelTC]=c2d(A,B,dt)

;

% Determine necessary length of initialization
n=max ([nd ; nc ; ns])

;

% Initialize the filters and the system
for k=n+l:2*n
ybarc=Phifc*ybarc+Delfc*yc(k-l)

;

ubarc=Phifc*ubarc+Delfc*uc(k-l)

;

xqc=Phiqc*xqc+Delqc*[yc(k-l) ; uc(k-l)]

;

uc(k)=hard_lim(thetac(
: , 1) '*[xqc;vc(k)] ,-.4, .4)

;

ybars=Phifs*ybars+Delfs*ys (k-1)

;

85

ubars=Phifs*ubars+Delfs*us (k-1)

;

xqs=Phiqs*xqs+Delqs*[ys(k-l) ; us(k-l)]

;

us(k)=hard_lim(thetas(: , 1) • *[xqs;vs(k)
] ,0,750)

;

ybard=Phifd*ybard+Delfd*yd(k-l)

;

uharHsPhi fd*ubard+Del fd*ud / k-1 \

t

d0=x0(9)
auvx(k)=x0(7) ; auvy (k)=x0(8) ; auvd(k)=x0 (9)

;

thetaref=thetaref+wref*dt;

targxyd(: ,k+l)=targxyd(: , k)+[cos (thetaref)*vref; sin (thetaref)*vref;targd
dot]*dt;
end

% Simulate the AUV
for k=2*n+l:its

x0=auv2 (xO, inputs, dt)

;

% Iterate the AUV one step
% Pick out the course rate, depth rate, and surge
yc(k)=x0(6); ys (k)=x0 (1) ; yd(k)=(x0(9) -dO) /dt;
d0=x0(9); % Keep track of the old depth
% Update the AUV' s position
auvx(k)=x0(7) ; auvy (k)=x0(8) ; auvd(k)=x0 (9)

;

% Path follower definitions
if t(k)==70 vref=2; targxyd(3,k)=25; thetaref=pi/2; end
if t(k)==9 5 vref=2; thetaref=pi; end
if t(k)==105 vref=3; targxyd(3,k)=20; end
if t(k)==110 vref=2; end
if t(k)==200 vref=3; thetaref=-pi/2; end
if t(k)==250 vref=2; thetaref=0; end

% Update the path follower
% Range from AUV to reference point
R(k)=sqrt((targxyd(l,k)-auvx(k)) "2+(targxyd(2,k)-auvy (k)

)

"2)
;

% Determine the error posture
temp=[cos(x0(12)) sin(x0(12)) ;-sin(x0(12)) cos(x0(12))]

;

xyfollow=targxyd(l:2,k)-R0*[cos(thetaref) ;sin(thetaref)]

;

e=temp* (xyfollow-[auvx(k) ;auvy(k)
])

;

thetae=thetaref -xO (12)

;

% Determine the command signals
vc(k)=wref+vref *(Ky*e(2)+Ktheta*sin(thetae))

;

vs(k)=hard lim(vref*cos(thetae)+Kx*e(1) ,0,5)

;

vd (k) =targ3dot+Kd* (targxyd (3 , k) -xO (9))

;

% Update the reference points posture
thetaref=thetaref+wref *dt;
deltarg= [cos (thetaref) *vref ; sin (thetaref) *vref ; targddot] *dt

;

targxyd(: ,k+l)=targxyd(: ,k)+deltarg;

% Course Rate controller
% Determine phi and s
lrkor^-D^ f ,-. * t t K * -w- r- J. r\^ 1

% Determine phi and s

ybarc=Phifc*ybarc+Delfc*yc (k-1)

;

ubarc=Phifc*ubarc+Delfc*uc (k-1)

;

phi=[ybarc(nc-mc+l:2*nc-mc) ;ubarc(nc-mc+l:2*nc-mc) ;yc(k)]

;

s=qc*ubarc(nc-mc:2*nc-mc)

;

86

% Determine T and C and iterate the Hopfield net
Tc=hard_lim (-DelTC*phi*phi ' +PhiTC*Tc , -maxval , maxval)

;

Cc=hard_lim(DelTC*phi*s+PhiTC*Cc, -maxval, maxval)

;

thetac(: ,k-2*n+l)=. .

.

hopfield(thetac(: ,k-2*n) ,Tc,Cc,dt, sigtype, maxval, lambda)

;

if thetac(numparmc,k-2*n+l)>gc/5 thetac(numparmc,k-2*n+l)=gc/5; end

% Determine the system control signal for the course rate
xqc=Phiqc*xqc+Delqc*[yc(k-l) ; uc(k-l)]

;

uc(k)=thetac(: ,k-2*n+l) *[xqc;vc(k) *pstare (length (pstare)
)]

;

uc (k) =hard_lim (uc (k) , - . 4 , . 4)

;

% Speed Controller
% Determine phi and s

ybars=Phifs*ybars+Delfs*ys(k-l)

;

ubars=Phifs*ubars+Delfs*us(k-l)

;

phi=[ybars (ns-ms+1 :2*ns-ms) ;ubars (ns-ms+1 :2*ns-ms) ;ys (k)]

;

s=qs*ubars (ns-ms:2*ns-ms)

;

% Determine T and C and iterate the Hopfield net
Ts=hard_lim(-DelTC*phi*phi ' +PhiTC*Ts , -maxval, maxval)

;

Cs=hard_lim(DelTC*phi*s+PhiTC*Cs, -maxval, maxval)

;

thetas(: ,k-2*n+l)=. .

.

hopfield (thetas(: ,k-2*n) ,Ts,Cs,dt, sigtype, maxval, lambda)

;

if thetas(numparms,k-2*n+l)<gs/5 thetas(numparms,k-2*n+l)=gs/5; end

% Determine the control signal for the surge
xqs=Phiqs*xqs+Delqs*[ys(k-l) ; us(k-l)]

;

us(k)=thetas(: ,k-2*n+l) ' * [xqs;vs (k) *pstars (length (pstars
))]

;

us(k)=hard_lim(us(k) ,110,750)

;

% Depth Controller
% Determine phi and s

ybard=Phifd*ybard+Delfd*yd (k-1)

;

ubard=Phifd*ubard+Delfd*ud (k-1)

;

phi=[ybard(nd-md+l :2*nd-md) ;ubard(nd-md+l :2*nd-md) ;yd(k)]

;

s=qd*ubard(nd-md:2*nd-md)

;

% Determine T and C and iterate the Hopfield net
Td=hard_lim(-DelTC*phi*phi +PhiTC*Td, -maxval, maxval)

;

Cd=hard_lim(DelTC*phi*s+PhiTC*Cd, -maxval, maxval)

;

thetad(: ,k-2*n+l)=. .

.

hopfield (thetad(: ,k-2*n) , Td,Cd,dt, sigtype, maxval, lambda)

;

if thetad(numparmd,k-2*n+l)<gd/5 thetad(numparmd,k-2*n+l)=gd/5; end

% Determine the control signal for the depth rate
xqd=Phiqd*xqd+Delqd*[yd(k-l) ; ud(k-l)]

;

ud(k)=thetad(:,k-2*n+l) • *[xqd;vd(k) *pstard(length (pstard))];
ud(k)=hard_lim(ud(k) ,-.4, .4)

;

% Form the input vector for the AUV model
inputs=[uc(k) ; -uc(k); ud(k); -ud(k); us(k)];

end
etime (clock, tl) % stop the timer

87

APPENDIX B. TUTSIM CODE

PROFESSIONAL VERSION OF TUTSIM

DELTA ; ,100.0000,

Model File: hopfield
Date: 11/ 23 / 1991
Time: 22:
Timing: 0.0100000 ,

PlotBlocks and Scales :

Format :

BlockNo , plot-MlNimum, Plot-MAXimum;
0,0000 , 100.0000 ; Time
Yli 26 , -1,5000 , 1.5000 ; y
Y2: 27 , -1.5000 , 1.5000 ; v
Y3: 20 , -1,5000 , 1.5000 ; thetal
Y4: 21 , -1.5000 , 1.5000 ; theta2

RANGE

Comment Horz: ,

2.0000
0.0000

1.000
0.010
-0.10
1.000
0.010
-0 10
1.000
0.010
-0.10

000
010
100
000
010

0.100

0000
00000

0000
00000

0000
00000

0000
0000

0000
0000

0.1000000
0.1000000

1.0000
0.5000000
0.0000

10

11

12

13

14
15
16
17
18
19
20
21
22
23
24
25

GAI
INT
SUM
MUL
MUL
MUL
MUL
MUL
FIO

FIO

FIO

MUL
MUL
MUL
MUL
SUM
SUM
INT
INT
MUL
MUL
SUM
FIO

2

3
-1 30
3 3

2

3

2
2

-4

FIO -5

FIO -7

3

25
2

25

20 9

20 10
21 10
21 11
13 14 16
12 15 17
18
19
20
21
22
24

29
26
23

y HAT
y HAT dot

Til

T12 or T21

T22

C2

Cl

thetal
theta2

u
u HAT

88

1.5000 26 FIO 28
0.2000000
0.0000

27 SGN 31
1.0000 28 GAI 24

29 SUM -26
30 GAI 26

0.0500000 31 FRQ
1.0000

27

89

2 -> yHAT
3 -> yHATDOT

9 10 |
->

| Til T12
10 11 |

->
! T21 T22

12 1 -> ' Cl !

13 1 -> ' C2 '

APPENDIX C. SPICE SOFTWARE

FIRST ORDER HOPFIELD NET CONTROLLER

* IMPORTANT NODES:
* 1 -> y

* 20 -> THETA1
* 21 -> THETA2
* 24 -> U
* 25 -> UHAT
* 27 -> v

XI 24 101 102 1 SYSTEM
X2 1 101 102 2 3 YFILTER
X3 3 3 101 102 4 MULT
X4 2 3 101 102 5 MULT
X5 2 2 101 102 6 MULT
X6 3 25 101 102 7 MULT
X7 2 25 101 102 8 MULT
X8 4 101 102 9 TFILTER
X9 5 101 102 10 TFILTER
X10 6 101 102 11 TFILTER
XII 7 101 102 12 CFILTER
X12 8 101 102 13 CFILTER
X13 9 20 101 102 14 MULT
X14 10 20 101 102 15 MULT
X15 10 21 101 102 16 MULT
X16 11 21 101 102 17 MULT
X17 12 14 16 101 102 18 SUMMER3
X18 13 15 17 101 102 19 SUMMER3
X19 18 101 102 20 INTEG
X20 19 101 102 21 INTEG
X21 20 26 101 102 22 MULT
X22 1 21 101 102 23 MULT
X23 22 23 101 102 24 SUMMER2
X24 28 101 102 24 INVERTER
X25 24 101 102 25 UFILTER
X26 27 1 101 102 26 DIFFW 27 PULSE (-55.10048)
VDD 101 DC 12V
VSS 102 DC -12V
.TRAN 100MS 20S
.PLOT TRAN V(l) V(27)

90

.SUBCKT SYSTEM 3 12 4

* u Vdd Vss y
* FIRST ORDER SYSTEM —> y/u=G/(TS+l)
* G=(R1+R2)/R1; T=R3*Cl
Rl 6 100K
R2 4 6 50K
R3 3 5 200K
CI 5 1U
XI 5 6 12 4 MOPAMP
.ENDS SYSTEM

.SUBCKT CFILTER 3 12 4
* Cin Vdd Vss Cout
* FILTER FOR C VECTOR —> COUt/Cin=G/ (Ts+1

)

* G=l; T=R3*C1
Rl 4 100K
R3 3 5 100K
CI 5 1U
XI 5 4 1 2 4 MOPAMP
.ENDS CFILTER

.SUBCKT TFILTER 3 12 4

* Tin Vdd Vss Tout
* FILTER FOR T MATRIX —> Tout/Tin=-G/ (Ts+1

)

* G=l; T=R1*C1; Rl=R2=R3; R4=2*Rl
Rl 3 7 100K
R2 6 7 100K
R3 4 6 200K
R4 5 200K
CI 7 1U
C2 4 6 .5U
XI 5 6 12 4 MOPAMP
.ENDS TFILTER

•SUBCKT YFILTER 11 1 2 8 3
* y Vdd VSS yHAT yHATDOT
* FILTER TO DERIVE yHAT AND yHATDOT —> yHAT/y=l/ (TS+1)

;

yHATDOT/y=s / (Ts+ 1

)

* T=R2/R1=R4/R3
Rl 11 12 10K
R2 12 20K
R3 9 8 10K
R4 9 3 20K
XI 12 9 1 2 3 MOPAMP
X2 3 1 2 5 INTEG
X3 5 1 2 8 INVERTER
.ENDS YFILTER

.SUBCKT UFILTER 3 12 4
* Uin Vdd Vss Uout
* FILTER FOR C VECTOR —> Uout/Uin=G/ (Ts+1

)

* G=l; T=R3*C1
Rl 4 500K
R3 3 5 500K
CI 5 1U
XI 5 4 1 2 4 MOPAMP
.ENDS UFILTER

91

.SUBCKT INVERTER 3 12 4
* Vin Vdd Vss Vout
* INVERTER —> Vout=-G*Vin
* G=R2/R1; R3=RljjR2
Rl 3 6 100K
R2 4 6 100K
R3 5 50K
XI 5 6 1 2 4 MOPAMP
•ENDS INVERTER

.SUBCKT DIFF 3 4 1 2 5
* x y Vdd VSS X-Y
* DIFFERENCE CIRCUIT
Rl 3 6 100K
R2 4 7 100K
R3 6 100K
R4 5 7 100K
XI 6 7 1 2 5 MOPAMP
•ENDS DIFF

.SUBCKT SUMMER2 3 4 12 5
* X Y Vdd Vss -(X+Y)
* 2 INPUT SUMMER CIRCUIT
Rl 3 7 100K
R2 4 7 100K
R3 5 7 100K
R4 6 33K
XI 6 7 12 5 MOPAMP
.ENDS SUMMER2

•SUBCKT SUMMER3 3 4 5 12 6

* X Y Z Vdd Vss -(X+Y+Z)
* 3 INPUT SUMMER CIRCUIT
Rl 3 8 100K
R2 4 8 100K
R3 5 8 100K
R4 6 8 100K
R5 7 25K
XI 7 8 12 6 MOPAMP
.ENDS SUMMER3

.SUBCKT INTEG 3 12 4

* Vin Vdd Vss Vout
* INTEGRATOR —> VOUt/Vin=G/s
* G=1/(R1*C1); R2=R1
Rl 3 5 1MEG
R2 6 1MEG
CI 4 5 1U
XI 6 5 1 2 4 MOPAMP
.ENDS INTEG

.SUBCKT MULT 3 4 1 2 12
* X Y Vdd Vss Vout
ANALOG VOLTAGE MULTIPLIER FROM HONG & MELCHIOR (ELEC LTTRS 6 JUN 85)
Rl 3 5 5K
R2 5 5K
R3 4 6 5K
R4 6 5K
R5 4 7 5K
R6 3 7 5K
Ml 1 5 8 1 CMOSP L=32U W=16U

92

M2 1 6 8 1 CMOSP L=32U W=16U
M3 1 7 9 1 CMOSP L=32U W=16U
M4 1 9 1 CMOSP L=32U W=16U
XI 9 8 1 2 10 MOPAMP
R7 11 9 10K
R8 10 8 10K
El 12 10 11 297
ROUT 12 1M
V2MINUS 11 DC -10
.ENDS MULT

.SUBCKT COPAMP3 3 4 12 5
* V+ V- Vdd VSS Vout
CMOS OPAMP FROM MICROELECTRONIC CIRCUITS (SEDRA AND SMITH)
Ml 9 4 6 1 CMOSP L=8U W=120U
M2 8 3 6 1 CMOSP L=8U W=12 0U
M3 9 9 2 2 CMOSN L=10U W=50U
M4 8 9 2 2 CMOSN L=10U W=50U
M5 6 7 1 1 CMOSP L=10U W=150U
M6 5 8 2 2 CMOSN L=10U W=100U
M7 5 7 1 1 CMOSP L=10U W=150U
M8 7 7 1 1 CMOSP L=10U W=150U
CI 8 10 10PF
R4 10 5 10K
M9 7 7 2 2 CMOSN L=250U W=5U
.ENDS COPAMP

3

.SUBCKT MOPAMP 1 2 98 99 3

* V+ V- Vdd Vss Vout
RIN 1 2 6MEG
ROUT 4 3 75
El 4 1 2 200K
* Rl AND R2 ARE USED TO MAKE THE OPAMP IDEAL MODEL PIN COMPATIBLE
* WITH THE CMOS OPAMP
Rl 98 10M
R2 99 10M
•ENDS MOPAMP

.MODEL CMOSN NMOS LEVEL=2 . 00000 LD=0.6U TOX=8.5E-8
+NSUB=1E+16 VTO=l JS=lE-6 UO=750.000 UEXP=.14 UCRIT=5E4 UTRA=0 PB=.7
+VMAX=5E4 XJ=1U CGBO=2E-10
+RSH=15 CGSO=4E-10 CGDO=4E-10 CJ=4E-04 MJ=2 CJSW=8E-10 MJSW=2
.MODEL CMOSP PMOS LEVEL=2 . 00000 LD=0.6U TOX=lE-7 NSUB=2E+15 VTO=-l JS=lE-6
+UO=100.000 UEXP=.03 UCRIT=1E4 UTRA=0 PB=.7 VMAX=3E4 XJ=.9U CGBO=2E-10
+RSH=75 CGSO=4E-10 CGDO=4E-10 CJ=1.8E-04 MJ=2 CJSW=6E-10 MJSW=2
.END

93

LIST OF REFERENCES

1. Schwartz, M. A., Kalman Filtering for Adaptive Depth,
Steering, and Roll Control of an Autonomous Underwater
Vehicle (AUV) , Master's Thesis, Naval Postgraduate
School, Monterey, CA, March 1991.

2. Astrom, K. and Wittenmark, B., Computer Controlled
Systems: Theory and Design, Prentice-Hall, 1990.

3. Kailath, T., Linear Systems, Prentice-Hall, 1989.

4. Cristi, R., Notes for EC4360 (System Identification),
Naval Postgraduate School, 1991 (unpublished)

.

5. Soderstrom, T. and Stoica, P., System Identification,
Prentice-Hall, 1989.

6. NeuralWare Inc., Neural Computing, 1991.

7. Kosko, B., Neural Networks and Fuzzy Systems,
Prentice-Hall, 1992.

8. Hecht-Nielsen, R. , Neurocomputing , Addison-Wesley
Publishing Co., 1990.

9. Sedra, A. and Smith, K., Microelectronic Circuits

,

Holt, Reinhart, and Winston, 1987.

10. The MathWorks Inc., MATLAB Programmer's Manual, 1986.

11. Warner, D., Experimental Verification of a Computer
Model and Enhanced Position Estimator for the NPS AUV
II, Master's Thesis, Naval Postgraduate School,
Monterey, CA, December, 1991.

12. Miller, C, An Application of Extended Kalman
Filtering to a Model-Based Short-Range Navigator for an
AUV, Master's Thesis, Naval Postgraduate School,
Monterey, CA, December, 1991.

13. Kanayama, Y., and others, "A Stable Tracking Control
Method for an Autonomous Mobile Robot", paper presented
at the IEEE International Conference on Robotics and
Automation, Cincinnati, Ohio, 13-18 May, 1990.

94

14. Horn, D., How to Design Op Amp Circuits with Projects
and Experiments , TAB Books Inc, 1984.

15. Analog Devices, Analog Signal Processing Components,
Vol I, 1989.

16. Gregorian, R. and Temes, G. C, Analog MOS Integrated
Circuits of Signal Processing, John Wiley and Sons,
1986.

17. Hong, Z. and Melchior, H., "Analogue Four Quadrant
CMOS Multiplier with Resistors", Electronics Letters, v.
21, pp. 531-532, June 6, 1985.

18. Ogata, K., Modern Control Engineering, Prentice-Hall,
1970.

95

INITIAL DISTRIBUTION LIST

No. of Copies
1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia, 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California, 93943-5002

3. Chairman, Code EC 1

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California, 93943

4. Dr. A. J. Healey, Code ME 1

AUV Project
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, California, 93943

5. Dr. Roberto Cristi, Code EC/Cx 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California, 93943

6. Dr. Murali Tummala, Code EC/Tu 1

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California, 93943

7. Dr. Yutaka Kanayama, Code CS/Ka 1

Department of Computer Science
Naval Postgraduate School
Monterey, California, 93943

8. Mr. Robert Wilson 1

Head, Systems Engineering Branch
David Taylor Research Center
Carderock, Bethesda, Maryland, 20084-5000

9. Mr. Dan Steiger, Marine Systems Group 1

Naval Research Laboratory
Washington, D. C, 20032

96

10. Mr. Kirk Dye
Naval Coastal Systems Center
Panama City, Florida, 32407-5000

11. Technical Library
Naval Surface Warfare Center
Silver Spring, Maryland, 20901

12. RADM Evans, Code SEA-92
Naval Sea Systems Command
Washington, D. C, 20362

97

Wb-an

1

1 Thesis
S67775 Starsman
c.l A Hopfield network

approach to direct
adaptive control of

nonlinear systems.

Thesis
S67775
c.l

Starsman
A Hopfield network

approach to direct
adaptive control of

nonlinear systems.

r i

