
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2000-06

Fidelity optimization in distributed virtual environments

Capps, Michael V.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/26546

«*4!SttSi school

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DISSERTATION

FIDELITY OPTIMIZATION IN DISTRIBUTED
VIRTUAL ENVIRONMENTS

by

Michael V. Capps

June 2000

Dissertation Supervisor: Michael Zyda

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
June 2000

3. REPORT TYPE AND DATES COVERED
Doctor of Philosophy Dissertation

4. TITLE AND SUBTITLE

Fidelity Optimization in Distributed Virtual Environments

5. FUNDING NUMBERS

6. AUTHOR(S)
Michael V. Capps

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those ofthe author and do not reflect the official policy or position of the Department ofDefense

or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT
In virtual environment systems, the ultimate goal is delivery of the highest-fidelity user experience possible. This dissertation

shows that is possible to increase the scalability of distributed virtual environments (DVEs), in a tractable fashion, through a novel

application of optimization techniques. Fidelity is maximized by utilizing the given display and network capacity in an optimal

fashion, individually tuned for multiple users, in a manner most appropriate to a specific DVE application.

This optimization is accomplished using the QUICK framework for managing the display and request of representations for

virtual objects. Ratings of representation Quality, object Importance, and representation Cost are included in model descriptions as

special annotations. The QUICK optimization computes the fidelity contribution of a representation by combining these annotations

with specifications of user task and platform capability.

This dissertation contributes the QUICK optimization algorithms; a software framework for experimentation; and associated

general-purpose formats for codifying Quality, Importance, Cost, task, and platform capability. Experimentation with the QUICK
framework has shown overwhelming advantages in comparison with standard resource management techniques.

14. SUBJECT TERMS
distributed virtual environment, linear programming, computer graphics, resource management

15. NUMBER OF PAGES
262

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT
Unclassified

20. LIMITATION OF ABS I KAC

I

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

FIDELITY OPTIMIZATION IN DISTRIBUTED VIRTUAL ENVmONMENTS

Michael V. Capps

B.S., University ofNorth CaroW at Chapel Hill, 1994

M.S., University ofNorth Carolina at Chapel Hill, 1996

S.M., Massachusetts Institute ofTechnology, 1999

Submitted in partial fulfillment ofthe

requirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2000

201

ABSTRACT

In virtual environment systems, the ultimate goal is delivery of the highest-fidelity

user experience possible. This dissertation shows that is possible to increase the scalability

of distributed virtual environments (DVEs), in a tractable fashion, through a novel applica-

tion of optimization techniques. Fidelity is maximized by utilizing the given display and

network capacity in an optimal fashion, individually tuned for multiple users, in a manner

most appropriate to a specific DVE application.

This optimization is accomplished using the QUICK framework for managing the

display and request of representations for virtual objects. Ratings of representation Quality,

object Importance, and representation Cost are included in model descriptions as special

annotations. The QUICK optimization computes the fidelity contribution of a representa-

tion by combining these annotations with specifications of user task and platform capability.

This dissertation contributes the QUICK optimization algorithms; a software frame-

work for experimentation; and associated general-purpose formats for codifying Quality,

Importance, Cost, task, and platform capability. Experimentation with the QUICK frame-

work has shown overwhelming advantages in comparison with standard resource manage-

ment techniques.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. THESIS STATEMENT 1

B. MOTIVATION 1

C. APPROACH 2

D. CONTRIBUTIONS OF THIS WORK 4

E. DISSERTATION ORGANIZATION 4

H. RELATED WORK 7

A. INTRODUCTION 7

B. FIDELITY DEFINITION AND JOB TASKS IN VIRTUAL ENVI-

RONMENTS 7

C. QUALITY AND THE TIME/SPACE INTERFACE 8

D. INTEREST AND IMPORTANCE GENERATION 10

E. SPATIAL SUBDIVISION 12

F. VISIBILITY DETERMINATION 13

G. DISPLAY COST DETERMINATION 17

H. RESOURCE MANAGEMENT 20

1. Level of Detail (LOD) Generation 20

2. LOD Management 21

3. Hybrid Display Management 24

vn

I. MOTION PREDICTION 26

J. LOCAL CACHING IN GRAPHICS SYSTEMS 27

K. DISTRIBUTED GRAPHICS SYSTEMS 27

1

.

Research Systems 27

2. Internet-Based Graphics Technologies 35

3. Multi-User Entertainment Software 37

L. SUMMARY 39

m. EXPANDED PROBLEM STATEMENT 41

A. THE STANDARD DISPLAY PROBLEM 44

1. Quality 45

2. Importance 46

3. Cost 47

B. COMPLEX DISPLAY PROBLEM 47

C. DISTRIBUTED-MODEL DISPLAY 49

IV. PLATFORM AND APPLICATION 51

A. INTRODUCTION 51

B. CLIENT SPECIFICATION 52

1. Display 52

2. Rendering 55

3. Storage/Transfer 57

C. DYNAMICISM OF TASK 59

Vlll

D. TASK COMPUTATION 62

1

.

Task and Importance 62

2. Task and Quality 63

E. ONTOLOGICAL REPRESENTATION 64

F. SUMMARY 66

V. QUALITY DETERMINATION 67

A. INTRODUCTION 67

B. RELATIVE VS. ABSOLUTE QUALITY 67

C. QUALITY COMPONENTS 69

1

.

Geometric Accuracy 70

2. Color Accuracy 72

3. Texture Resolution 73

4. Subjective Quality 73

D. COMPUTING QUALITY 75

1

.

Platform and Human Factors 75

2. Task Factors 76

3. Dynamic Factors 77

E. HYSTERESIS 77

VI. IMPORTANCE AND COST DETERMINATIONS 79

A. INTRODUCTION 79

B. IMPORTANCE COMPONENTS 79

IX

C. COMPUTING IMPORTANCE 80

1. Dynamic Factors 81

2. Default Computation 87

D. IMPORTANCE ANNOTATION STRATEGIES 88

E. THE COST FACTOR 89

1

.

Cost Components 89

2. Computing Cost 92

VII. SOFTWARE DESIGN 93

A. INTRODUCTION 93

B. SOFTWARE LIBRARIES 93

1. Requirements 94

2. Selected Software 95

C. QUICK SCENE GRAPH AND FILE FORMAT 96

1

.

Scene Graph Elements 96

2. File Format 102

D. SOFTWARE ARCHITECTURE Ill

1. Application Design 112

2. CacheManager Design 113

3. SwitchManager Design 115

VIII. OPTIMIZATION PROCESS 117

A. PROBLEM FORMULATION 119

B. COMPLEXITY ANALYSIS 122

C. SIMPLIFICATION TECHNIQUES 128

1. Dynamic Programming 128

2. Approximation Algorithms 129

3. Continuous Representations 130

IX. SOFTWARE IMPLEMENTATION 131

A. CORE PACKAGE 134

B. CACHE PACKAGE 135

C. SWITCHING PACKAGE 139

D. OPTIMIZATION PACKAGES 141

E. PARSING PACKAGE 142

F. UTILITY PACKAGE 144

G. APPLICATION PACKAGE 146

X. ANALYSIS OF EFFECTIVENESS 151

A. INTRODUCTION 151

B. ANALYSIS OF OPTIMIZATION EFFECTIVENESS 153

1. Correctness 153

2. Optimization Techniques 155

3. Experimental Results 159

4. Conclusions 167

XL CONCLUSIONS AND EVIDENT EXTENSIONS 173

XI

A. CONTRIBUTIONS 173

B. APPLICATION 175

C. FUTURE WORK 176

1. Extensions for Display 177

2. Extensions for Networked Environments 181

D. SUMMARY 185

APPENDIX A. ACRONYMS 187

APPENDIX B. EXAMPLE SCENES WITH ANNOTATIONS 189

1. QUICK FORMAT 190

2. VRML97 QUICK PROTO DEFINITIONS 192

3. EXTERNPROTO FORMAT 194

APPENDIX C. SOFTWARE AVAILABILITY AND DOCUMENTATION ... 197

LIST OF REFERENCES 199

INITIAL DISTRIBUTION LIST 207

xn

LIST OF FIGURES

1. LOD blending in Performer. 10

2. The VILLE importance generator. 12

3. Cell-to-cell visibility using portal stabbing 14

4. Dynamic visibility with largest-occluder algorithm 17

5. Spatial subdivision for hierarchical image caching 18

6. Motion prediction in the Berkeley walkthrough 26

7. Task-based step-function technique 60

8. Error calculation using radial sampling 72

9. Error calculation using surface distances 72

10. LOD selection by threshold distance 82

1 1

.

Importance effects of size can outweigh distance 84

12. Java3D Link and SharedGroup nodes 98

13. A legal QSwitch node 100

14. QNode file format 104

15. QNode file format, using standard VRML PROTO 105

16. QSwitch file format 106

17. QSwitch file format, using standard VRML PROTO 107

18. QQuality file format, and its associated PROTO format 108

19. QCost file format, and its associated PROTO format 109

xin

20. Example QUICK file using all special extension nodes 110

21. Primary functional components in the QUICK framework Ill

22. Cache management components 114

23. Pseudocode for optimal drawing algorithm 116

24. A simple scene graph with QUICK annotations computed 120

25. 0-1 Knapsack transformation to QUICK problem 125

26. The edu.vr.quick.j3d package 133

27. The edu.vr.quick.j3d package 136

28. The edu.vr.quick.j3d.cache package 138

29. The edu.vr.quick.j3d.chooser package 140

30. The edu.vr.quick.j3d.opt and .lpsolve packages 143

31. The com.sun.j3d.loaders.vrml97.impl package 144

32. The edu.vr.quick.j3d.util package 145

33. The edu.vr.quick.j3d.app package 147

34. QCenter screen capture 149

35. QOPT running times with average and maximum resources 163

36. QGRD and QMAX running times with average and maximum resources. ... 164

37. Running times compared with N=l and R=2* 165

38. Running times compared with N=2* and R=l 166

39. Running times compared with N=2 Z and R=4 167

40. Truck Levels of Detail 189

xiv

LIST OF TABLES

I. Subjective quality for the "truck" representation set 74

II. Comparison of drawing optimization complexity 160

III. Running times for QOPT, varying resource availability 162

IV. Running times for QGRD and QMAX, varying resource availability 164

xv

XVI

ACKNOWLEDGMENTS

My thanks to my committee for their excellent guidance. I know this work would

have remained eternally unfinished were it not for the efforts of my dissertation supervisor,

Dr. Michael Zyda.

The National Science Foundation supported this work with a Graduate Research

Fellowship, which allowed me to focus on a single topic through multiple academic insti-

tutions.

This work would not have been completed without the aid of the faculty, staff,

and students of the Naval Postgraduate School. I have been extremely impressed by this

institution. Special thanks to John Locke, for his help with modeling; and to the thesis

processor and graduation administrators for their understanding during a last-minute crisis.

My thanks to the many doctoral students who have influenced my graduate career.

Their guidance regarding this research, and the general process of surviving the dissertation

ordeal, has been invaluable. I am both relieved and saddened to leave this fraternity.

I will be eternally grateful to my wife, Laura Elizabeth Capps, for her understanding

and support throughout this effort.

xvn

XV111

I. INTRODUCTION

A. THESIS STATEMENT

Resource consumption in distributed virtual environments can be optimized given

specialized descriptions of user task, model complexity, model quality, and display plat-

form capability.

B. MOTIVATION

The field of computer graphics has advanced rapidly in recent decades, but there

have always been models and simulations whose complexity outstrips available technol-

ogy. High-end network throughput has continued to improve, but the communications

requirements of popular shared virtual reality systems exceed the capabilities of the latest

networking technology.

In virtual environment systems, the ultimate goal is delivery of the highest-fidelity

user experience possible. Unfortunately, users' fidelity requirements are not met currently,

nor does it appear they will be met for some time. It is therefore of utmost importance that

the capacities of virtual environment client resources are exploited in an optimal fashion.

What is more, it is desirable to manage this optimization such that the fidelity of the user

experience degrades smoothly in the face of additional system stress. That smooth degra-

dation is the dual of system scalability, which is a primary concern in the design of Virtual

Reality (VR) and Collaborative Virtual Environment (CVE) systems.

The desire for graphics optimization has led to the development of several resource

management systems. However, these methods are useful for only limited domains of

graphics models and applications, such as terrain datasets or 2-1/2 dimensional architec-

tural walkthroughs. General purpose optimization techniques are needed.

Network bandwidth has been described as the single largest roadblock in deploy-

ment of CVE systems [Sandin et ai, 1997]. The most effective answer thus far has been to

manage communications so as to only communicate information when necessary. In VR

systems which store environment descriptions on distributed servers, most clients naively

request visual descriptions for all portions of the virtual environment. Large-scale envi-

ronments are rarely displayed in their entirety, a fact which can be exploited to optimize

network communications.

C. APPROACH

The aforementioned efforts to optimize graphics and networking have, until now,

been performed independently. The research described in this dissertation investigated the

development of a unified framework for general-purpose virtual environment optimization.

The results show it is possible to determine how best to display the environment, and how

best to communicate its definition, with a single algorithm. This joint optimization of

graphics and networking leads to systems more capable of supporting distributed collabo-

ration in graphical environments.

This generalized optimization was performed by abstracting concepts of resource

costs and limitations, such that network bandwidth was treated no differently than graphics

pipeline throughput. Similarly, fidelity characteristics were abstracted to allow comparison

between heterogeneous objects. Display decisions and object requests were then optimized

by maximizing fidelity within the various cost thresholds.

Previous forays into cost and fidelity determination have been intended only for

very limited application domains. No general-purpose display management systems use

more than a single floating-point number to describe the very complex factors involved in

the delivery of a high-fidelity user experience. This problem is further complicated by the

fact that high-fidelity need not always correspond to the highest-quality image presentation.

Accordingly, a primary effort of this thesis was the definition of the primary factors that

contribute to the effectiveness of a virtual environment. These factors are divided into the

following categories: quality, importance, cost, task, and platform capability.

Given these factors, it becomes possible to formulate an optimization problem for

driving object display and request. One goal of this dissertation was guaranteed-correct

optimization, but such algorithms were determined to have exponential time complexity.

This encouraged development of approximation algorithms that run in polynomial time.

While the best of these algorithms can only guarantee a solution 50% of optimal, in practice

the results are usually much more useful.

The effectiveness of this optimization framework is demonstrated by a proof-of-

concept implementation.

D. CONTRIBUTIONS OF THIS WORK

This dissertation claims the following contributions to the state of the art:

• combined optimization of graphical and networking resources in virtual environ-

ments

• general-purpose algorithms for exact and approximated CVE optimization

• definition of Fidelity as a function of virtual world objects and their representations

• inclusion of dynamic user task definition in the CVE optimization process

• inclusion of dynamic display platform capabilities in the CVE optimization process

• model annotation formats for codifying quality and cost

• software framework for experimentation with optimization parameters and algo-

rithms

E. DISSERTATION ORGANIZATION

The remainder of this dissertation is organized as follows:

• Chapter II: To provide the reader with a background in the technical areas of

this dissertation, this introduction chapter is immediately followed by a summary

analysis of related work.

• Chapter HE: This chapter presents a more formal statement of the optimization

problem. This includes the description of a typical instance of the display problem,

and defines a novel technique for reaching the solution of that problem: the QUICK

framework. That display problem is then extended by a variety of complicating

factors, in order to demonstrate the general applicability of the QUICK method.

• Chapter IV: This chapter discusses how platform-specific capabilities are provided

to the optimization formulation. Chapter IV also explains the dramatic effect of user

task upon fidelity, and how task affects the computation of each QUICK factor.

• Chapter V: With a specification for platform capability and application task, it

is then possible to detail the form of the various inputs to the QUICK optimiza-

tion algorithms. Chapter V begins this process with the Quality annotation, which

captures the relative accuracy of each representation for an object.

• Chapter VI: This chapter follows Quality with a description of the Importance an-

notation, and how to compute the Importance function from the static and dynamic

characteristics of a given scene object. Chapter VI also explains how the Cost of a

representation is computed relative to a display platform.

• Chapter VII: This chapter explains the selection of graphics software libraries for

the QUICK proof of concept implementation. It additionally introduces the QUICK

scene graph and the QUICK framework's software architecture.

• Chapter VIII: Having defined the problems in virtual environments, as well as the

structure of the QUICK scene graph, it is possible to define the QUICK optimiza-

tion. This chapter begins with a discussion of the problem formulation from a scene

graph instance. That is followed with a complexity analysis of the guaranteed-

correct solution. The chapter concludes with a discussion of techniques for reduc-

ing the complexity of the optimization.

• Chapter IX: This chapter presents the details of constructing a software imple-

mentation which uses the QUICK optimization framework.

• Chapter X: Chapter X analyzes the effectiveness of the contributions of this dis-

sertation. The primary technique is comparison to other related work, which is

performed both with the systems as a whole and with their optimization algorithms

taken independently.

• Chapter XI: The dissertation concludes with a summary of contributions and sug-

gestions for application of those results. A number of promising avenues are pro-

vided for follow-on research.

II. RELATED WORK

A. INTRODUCTION

Graphics management systems have adopted widely disparate approaches to the

display and communications problems. To some extent, this broad range of techniques

reflects the relative lack of experience in developing this class of applications. Additionally,

almost all approaches to date have addressed only a small subspace of the problem, usually

specific to a single application.

This proposal draws heavily upon previous research results in a number of subfields

of computer science. This chapter documents significant research literature in each of those

subfields, with special attention paid to those that are particularly relevant or considered

ground-breaking. Where appropriate, the discussion includes comparison with this work,

so as to demonstrate its contribution to the state of the art.

B. FIDELITY DEFINITION AND JOB TASKS IN VIRTUAL EN-

VIRONMENTS

Reaching fidelity to facilitate tasks in a virtual environment is of utmost importance,

but rarely is a formal definition of fidelity used. Generally designers are content with

systems that maximize resolution and frame rate—i.e., deliver as realistic an experience as

possible. However, the failure of virtual reality in some exercises implies that fidelity may

come from symbolic representation rather than realistic presentation.

Generally job task is inherent in an application, as most optimized virtual reality

applications are designed for a specific job task. Job task in the QUICK system is ab-

stracted, allowing run-time task changes that in turn affect Importance and Quality. There

is surprisingly little supporting research in the area of abstracting or codifying job task.

Chapter IV offers examples of how task can be considered independently of application or

virtual world, and includes a mechanism for task-based modification to the QUICK factors.

C. QUALITY AND THE TIME/SPACE INTERFACE

While human perception and noticeable difference is an active area of psychophys-

ical research, perceptual quality for three-dimensional images in virtual environments is

usually assumed to fit a standard set of simple heuristics. Microsoft's proposed Talisman

graphics architecture [Lengyel and Snyder, 1 997] is an excellent example of using fidu-

cials to estimate fidelity. The Talisman system generates 2D sprites from multiple models

and then composites them with appropriate back-to-front ordering. The authors suggest

that this approach allows better targeting of system resources by exploiting frame-to-frame

coherence with image warps.

The fiducials they suggest for comparing representations are:

• geometric: maximum point-wise distance between original and current characteris-

tic points

• photometric: shading differences between original and current points, with adjust-

ments to normals considered

• sampling: measures how samples are stretched or compressed

• visibility: ensures that occlusion in the eye-direction is resolved properly

These metrics of course were developed to apply specifically to the sprite-based

rendering algorithms of Talisman. Surprisingly, they comprise one of the most comprehen-

sive approaches to image quality in a graphics management system today.

The evaluation of the quality of a single object or representation is itself a complex

process. To further complicate matters, the quality of a representation is affected by sur-

rounding representations. For instance, a very-high resolution image of an building might

appear to be high quality when displayed alone, but if it is included in a geometric scene

generated from a slightly different angle then the unmodified high-resolution image might

be distracting.

The Berkeley Walkthrough system [Funkhouser and Sequin, 1993] uses cost/benefit

analysis for switching between levels of detail. That analysis includes a hysteresis factor,

which reduces the benefit of switching to a new representation by an amount proportional

to the difference in level of detail from the current representation.

SGI's IRIS Performer package [Rohlf and Helman, 1994] also notes the deleterious

effects of switching between levels of detail, and provides two mechanisms to ease the

transition: blending and morphing. Blending draws both the new and old representation

simultaneously, using transparency to fade one from prominence to the other, whenever a

LOD switch is required (illustrated in Figure 1).

;

Figure 1 . LOD blending in Performer.

The obvious drawback is that this method requires rendering both representations

simultaneously. Performer also supports a standard geometric morphing package, which

has additional computation requirements instead of rendering requirements.

D. INTEREST AND IMPORTANCE GENERATION

Using interest to determine quality choice has been used previously in several

limited-domain systems. The aforementioned Virtual Planetary Explorer terrain-display

system [Hitchner and McGreevy, 1993] kept a list of important, modeler-specified geomet-

ric points. Interest falls off with distance from each point; the interest of a region was the

sum of importance contributed by all such points.

The Berkeley walkthrough also incorporates a limited notion of importance in the

Cost/Benefit heuristic [Funkhouser and Sequin, 1993]. The Benefit of display of an object

is computed from standard factors of resolution, screen size, and hysteresis effect. Then,

Benefit is modified by a factor based on the type of the object; for example, walls are more

important than furniture in an architectural walkthrough, and enemy robots might very

10

important in a game. This information was planned to be computed statically, during model

creation time, and there is no record of implementation of any influence of ontological

description upon importance.

Francois Sillion's Ville project [Sillion et al., 1997] for displaying urban models

substitutes simplified triangle meshes for complex building geometry when appropriate.

The system includes modifications by Sami Shalabi [Shalabi, 1998] which use city mor-

phology to determine where best to generate those image impostors. Because the images

must created from only limited number of positions, likely path points must be predicted.

Possible viewpoints are reduced to the streets in the model; the street information is input

during the model generation phase. Besides creating viewpoints at places where visibility

undergoes major changes (for example, street intersections), an importance generator deter-

mines major landmarks such as tall buildings and city squares. Those landmarks are given

additional detail, and therefore more detailed impostor information, as shown in Figure 2.

While the automatic generation of importance can be effective, the process is partic-

ularly model- and application-specific. Excepting only procedurally-generated models, de-

velopment of most virtual world data requires significant human interaction. Even systems

which generate models from images usually contain a significant manual image-registration

step. Rather than spending inordinate programming time developing algorithms for gen-

erating importance, it is likely more sensible to have the modeler—who is already very

familiar with the model and its intended use—spend an extra few minutes labeling impor-

tant areas and objects. Construction time of urban models, for instance, is usually gauged

11

XX2Z-

Figure 2. The VILLE system importance generator for urban scenes [Shalabi, 1998].

in modeler-months; it does not seem unreasonable to add a few modeler-minutes (or hours)

for Importance annotation. Authoring tools can easily be modified to support such im-

provements.

E. SPATIAL SUBDIVISION

The QUICK system requires that virtual environments be arranged in a scene graph

which is a forest of hierarchical trees. The notion of dividing virtual worlds into such

hierarchies was originated by James Clark [Clark, 1976], who contended that spatially-

based hierarchical object definitions, coupled with bounding volumes, can improve the

process of visibility culling. Since that time, spatial partitions have been used as the basis

for optimizing a number of graphics processes, including animation and ray-tracing.

12

The Binary Space Partition Tree, or BSP-tree [Fuchs et al, 1980], is the most gen-

eral hierarchical division; it can reproduce the division of other methods such as Quadtrees

(regularly-divided 4-way trees) and KD-trees (axial binary trees). It does so at a higher cost

of traversal and computation.

Subdivision techniques can also be combined into hybrids, such as in the overlay

method of [Magillo and Floriani, 1995]. Here two hierarchical subdivisions, with varying

level of detail, are used in conjunction to divide a model. This was specifically developed

for terrain applications, where frequently a model comes from a variety of sources in vary-

ing resolutions. Hybrid data divisions are used in many more graphics applications, for

example raytracing acceleration (linetrees with octrees) and radiosity solutions (hierarchi-

cal grids and BSP trees) [Drettakis and Sillion, 1996].

F. VISIBILITY DETERMINATION

It has long been understood that the number of polygons in a complex model far

exceeds the number able to be rendered in an interactive manner. Visibility determination

is the first, and probably most effective, method used to cull polygons from the set to be

rendered. Consequently, nearly all modern graphics systems support hardware implemen-

tations of frustum culling algorithms.

Precomputation of visibility is particularly effective in standard models that can

be subdivided spatially. Research at the University of California [Teller and Sequin, 1991]

and University of North Carolina [Airey et al, 1990, Luebke and Georges, 1995] was par-

ticularly successful in architectural walkthroughs. Buildings are easily divided into logical

13

J
—i i

1

I

1 r-r

—

i

-ri .

Figure 3. Cell-to-cell visibility using portal stabbing [Teller and Sequin, 1991].

spaces (rooms), and the visibility computation is constrained in the 2 1/2 dimensional space

with such a high incidence of axially-aligned occluders. Though the Berkeley authors argue

that their visibility algorithm can be extended to a 3D architectural model; the complexity

of extending to a general-form model, however, has prevented any such an implementation.

The UNC system fired random rays between two cells to determine inter-cell visibility; this

system is an effective approximation but an exact answer requires an infinite number of

rays. The Berkeley system determines sight-corridors between portals (doors and windows

into cells); this is illustrated in Figure 3, which shows the portions of each room visible

from the dark cell containing the eyepoint. This simplification was effective only because

of the constraints on walls and portals, and inevitably was an expensive computation in

terms of memory and processor consumption.

IdSoftware uses the portal-visibility model from the above systems in their ex-

tremely popular 3D video game Quake [IdSoftware, 1996]. Quake was best known for

14

near-perfect utilization of PC hardware capability. Along with other accelerating measures

such as BSP-trees, light maps for precomputed radiosity lighting, and texturing, Quake

uses potentially-visible sets for culling. Each room in a Quake model stores an associ-

ated PVS of rooms which are visible from one or more viewpoints in the room. When

rendering a scene, Quake first eliminates all rooms not in the PVS, and then uses a spe-

cial angular-sweep algorithm to eliminate rooms not in the view frustum. The multi-user

version of Quake uses a centralized server process; the server performs awareness man-

agement by only forwarding visible actions to players. Essentially, if an action (such as

gun fire or motion) occurs outside of a player's PVS, the player is unaware the action

occurred. Permanent actions (player death, door open/shut) are always communicated for

model consistency. For events that cause noise, such as gun fire, each cell also has a PHS

—

a potentially-hearable set—so the action is properly forwarded to players who can hear the

action, even though they might not be able to see it.

Yagel and Ray of the Ohio State University [Yagel and Ray, 1996] use a similar

regular space subdivision into cells; they then classify those cells into interior, exterior,

and wall cells. This method is particularly well suited to environments such as caves,

sky-lines, blood vessel models, and the like. Cells can be discretized into a quad-tree,

grid, or purely data-driven (BSP or KD tree) data structure; the model can use only one

subdivision throughout. Portals are inappropriate for the intended model domain; visibility

is determined using sight corridors, or if necessary, by searching for connected blocking

occluders. Each cell stores a list of other cells visible from it; during the rendering stage,

15

the visible-cell-list for the cell containing the viewpoint is the set to be rendered. Notably

this system was implemented for two-dimensional models only, though the extension to

three dimensions was planned.

Precomputation of visibility is not always the most effective method. Often a pre-

computation is prohibitively expensive; unable to be performed in advance because the

model is generated dynamically; or the model does not lend itself to appropriate segmen-

tation. For instance, it is obviously not feasible to compute visibility from all possible

viewpoints. Determining exactly which polygons are visible in a given frame is likely also

too complex to compute interactively. Satyan Coorg's algorithm [Coorg and Teller, 1996]

determines in real-time the most significant occluding polygons in a scene, and uses only

that subset to test whether other polygons are visible. (In the color version of Figure 4,

major occluders are shown in black.) This conservative algorithm exploits spatial and tem-

poral coherence between frames, making dynamic computation quite cost-effective on an

amortized basis.

Researchers at the University of Genova in Italy have had success in the limited

domain of terrain maps and height fields [Magillo and Floriani, 1994]. A hierarchical

terrain map contains detail stored in a progressive manner, such that searching deeper

into the hierarchical model's tree (with some computation) gives greater and greater de-

tail. Using visibility for culling in this situation requires two stages—an initial compu-

tation at a given resolution level, and an update when the desired resolution is changed.

[Magillo and Floriani, 1994] presents a method for directly traversing the structure to the

16

Figure 4. Dynamic visibility with the largest-occluder algorithm [Coorg and Teller, 1996].

depth of a desired resolution and computing visibility during that traversal, rather than re-

quiring the explicit computation of the model at that resolution. Two traditional methods,

sweep-line and front-to-back traversal, are extended to the hierarchical model without a

significant increase to time or space complexity.

G. DISPLAY COST DETERMINATION

The true cost of displaying primitives with a graphics subsystem is a heatedly de-

bated topic; this is demonstrated by the numerous available methods [Zyda et al, 1990] for

profiling graphics workstation (and PC card) performance. The QUICK model depends

on an accurate approximation of the relative cost of rendering one representation versus

another. Previous systems using cost/benefit rendering have allowed either only geometric

LODs, or geometry and one alternate representation; the QUICK model is more general in

that respect though of course each representation type will require full cost analysis. Cost

17

Figure 5. Spatial subdivision for hierarchical image caching [Shade et al, 1996].

analysis has been especially rigorous in the fields of ray tracing and radiosity calculation,

in which various approaches make narrowly-different cost/performance trade-off decisions

[Appel, 1968, Speer et al, 1985, Danskin and Hanrahan, 1992, Reinhard et al, 1996].

The Berkeley system [Funkhouser and Sequin, 1993] also made a brief investiga-

tion into the cost of displaying geometric objects. Given an object O, a geometric level of

detail selection L, and a rendering algorithm R, the system computed the Cost(0,L,R) func-

tion. With the assumption that all objects are geometric, and that Cost is equal to time spent

rendering, that Cost function can be simplified to be the maximum of the per-primitive pro-

cessing, per-pixel processing, and per-vertex processing times in the graphics pipeline. The

function includes a constant multiplier for each subsystem, based on experimental data for

the given display platform. While this is an excellent first pass at a Cost heuristic, it is

not particularly appropriate for multiple display algorithms nor multiple platforms, and it

allows no consideration for non-polygonal representations.

18

Researchers at the University of Washington and Microsoft Research have devel-

oped two management systems of major significance to this research project (the sec-

ond is discussed in a later section). The first is the hierarchical image caching walk-

through [Shade etal, 1996] by Jonathan Shade et al. This system assumes path coher-

ence, and stores rendered images of nodes in the scene graph so they may be re-used. The

scene graph is divided spatially (with a BSP-tree), and during the rendering traversal their

algorithm decides what form to render. Figure 5 shows an overhead-view of a virtual envi-

ronment and the corresponding spatial division. If an image has been stored and it is still

appropriate, it is used. If an image is not used, the system decides if the cost of rendering

an independent image of the node (and drawing the resulting image) is less than the cost of

rendering the geometry, given an estimate of how long the image is likely to be applicable.

An eye-point that moves slowly in a straight line, for instance, is much more likely to allow

repeated use of stored images than one that moves and turns erratically.

The error metric for deciding the suitability of a cached image is simply based upon

maximum angular discrepancy of the comers of the node's bounding box. Given a user-

specified error threshold, it is possible to predetermine an area for which all viewpoints

will be within the tolerance for angular discrepancy. When this system is used with a

pregenerated path, it is simple to compute the number of frames a cached image is within

error tolerance. In an interactive setting, current velocity and maximum acceleration can be

used to make a worst-case estimate. Then the comparison is simply the cost of rendering

geometry versus the amortized cost of a single frame of geometry (to create the image

19

cache) plus displaying a quadrilateral with a texture-map of the cached image. The costs

of each were determined experimentally for the test platform.

H. RESOURCE MANAGEMENT

Managing of resources in display systems is not a new concept, though past systems

have addressed only specific application area. This section includes a discussion of com-

plexity reduction methods, such as level-of-detail generators. Following that is a review of

systems that manage complexity and quality trade-offs, first with geometric LOD models

and then with limited hybrid rendering models.

1. Level of Detail (LOD) Generation

Level of detail generation has been an active area of research since the 1970's

[Clark, 1976]. Lately, that research has focused more on the efficient generation of LOD

representations that capture the essence of the information while reducing the cost of dis-

play as much as possible.

The simplification envelope [Cohen et ai, 1996] project is a joint effort between

UNC and Duke University, for generating a hierarchy of level-of-detail approximations

for a given polygonal model. Probably the most impressive point about the research is

that an approximation is guaranteed to have its points within a user-specifiable error-bound

(distance from boundary) of the original model. Their algorithms generate approximations

to triangle meshes that attempt to minimize the total number of polygons required to meet

the user's constraint. Conveniently, this system also automatically generates appropriate

20

LODs and viewing distances for display.

Researchers at Georgia Tech developed a system for generation of continuous-detail

representations of terrain height-fields [Lindstrom et al, 1996]. Rather than pregenerating

those representations, the geometric model is generated dynamically as needed. Within

this framework, minor adjustments in detail are computationally inexpensive. A view-

ing system built to render those models uses bounds on image quality, with standard dis-

tance and pixel-area metrics, for choosing the precision of representations. The work in

[Ferguson et al., 1990] is similar in that it generates continuous levels of detail for terrain

models.

Generation of appropriate levels of detail is a well-explored area. Other systems

include Lodestar [Schmalstieg, 1997], for generating LODs for VRML; and the view-

dependent polygonal simplification method described in [Luebke and Erikson, 1997].

2. LOD Management

Switching between precomputed geometric level-of-details is the most common

method for reducing display cost for a given frame. One of the first complete-solution sys-

tems was VPE, NASA's Virtual Planetary Explorer[Hitchner and McGreevy, 1993]. VPE

was essentially a terrain-display system, though in this case the terrains displayed are those

of entire planets. VPE's stated goal was the display of Martian terrain with a 10 Hz update

rate, yet the terrain data was much too complex to render in such a fashion. The solution

was multiple LOD representations for the terrain; representations were selected based upon

three criteria: 1) distance from the viewpoint, 2) distance from the center of field of view,

21

and 3) user-defined level of interest. The second criterion was based on the assumption that

in a head-mounted display, the user focus is on the center of the display (and that visual

resolution is highest at the focal point). For the interest criterion, the user picked certain

geometric points in the model to be important, based on application scenario. The level

of interest in any region was then computed as the sum of the importance lent by all such

points, where the importance was attenuated by the square of the distance. The VPE system

is certainly an important predecessor to the QUICK model, in that it incorporates ideas of

importance and quality, but its scope is limited to geometric terrain data only.

Probably the most popular method for building LOD-accelerated applications is the

IRIS Performer package by SGI [Rohlf and Helman, 1994]. The Performer automatically

adds such effective procedures as view-frustum culling, multiprocessing, and scene-graph

optimization. Relevant to this discussion, however, is the level-of-detail switching algo-

rithms. The Performer API allows specification of multiple levels of detail for a scene

node, as well as specification of distance, pixel-size, and field-of-view criteria for switch-

ing between those representations. Performer can also track the processing load on the

system, and use that information to switch to less costly representations in the case of over-

load. The Performer toolkit is an excellent general-purpose system for optimal rendering,

but it performs automatic LOD-switching in only a limited manner.

Probably the single project most influential on this research is the Berkeley walk-

through system, specifically Thomas Funkhouser's adaptive display algorithms for inter-

active frame rates [Funkhouser and Sequin, 1993, Funkhouser, 1993]. Using the PVS cell-

22

to-cell visibility techniques described previously, the system was able to greatly reduce the

complexity of the model portion to render. The full system also performed cell-to-object

and eye-to-object visibility checks, and stored multiple levels of detail for each object. Fi-

nally, an optimized data-storage format and prediction mechanism was used to select proper

representations for those objects. This system was the first to use dynamic heuristics for

LOD determination; it tracked frame rate and would adjust detail to bring the frame rate

in line with that desired by the user. That heuristic was a simple Cost/Benefit analysis of

choosing each representation.

This system is again a limited-domain application of many of the concepts of the

QUICK system. There is no notion of quality of representation; user fidelity is defined rudi-

mentarily as frame rate; cost is the number of polygons; representations are only geometry;

the model is limited to 2 1/2 dimensions; and importance is limited to visibility determi-

nation and distance. This is not to say that the Berkeley Walkthrough is not an excellent

application, but rather, to show that its ground-breaking work has natural ramifications for

future work such as the QUICK model.

It is interesting to note that LOD use is particularly well-accepted by the graphics

community as a means of display acceleration. VRML, the specification for the primary

web-based graphics format, includes LOD, a level-of-detail node [Pesce, 1995]. LOD

contains an array of distances and a group of object representations; representations are

switched between based on the distance from the viewpoint to the object.

The second system by the University of Washington particularly relevant to this

23

project speeds rendering of complex environments with a spatial hierarchy. The scene is

divided hierarchically into an octree, and then each octree node is associated with a "color

cube" [Chamberlain et al, 1996]. The color cube is an approximation of the contents, using

a single color and a single level of transparency, as determined from the six axial directions.

The rendering traversal algorithm determines if a given node subtends a pixel area on the

screen greater than some user-specified parameter. If so, the algorithm recursively checks

the node's children; if not, then the color cube approximation is drawn instead. When a leaf

is reached with size greater than the parameter, the geometry drawn normally. The paper

cited above explains that this method is not effective for continuous surfaces, because the

transparency value is particularly view-dependent; the test application was the rendering of

a forest of trees.

3. Hybrid Display Management

Hybrid display technology had its real start in the raytracing community, where

ray-tracing would be used in concert with other methods to generate images either more

quickly or with more realistic lighting effects [Arvo and Kirk, 1990]. Other raytracing ef-

forts traversed multiple representation types simultaneously, for example volume-arrays

and polygons in [Levoy, 1990].

The QUICK model is primarily intended for interactive graphics techniques, rather

than as another method for accelerating raytracing. As such, this section looks at systems

which have been successful in rendering multiple representation types in a single coherent

image.

24

The hierarchical image caching project mentioned previously [Shade et ai, 1996] is

a particularly relevant management system for hybrid rendering technology. For each scene

node, the rendering algorithm chooses between two representations based upon a quality

metric. Additionally, the system actually has the ability to create new representations when

it is cost effective to do so.

Researchers at the University of North Carolina extended their previous work in

architectural walkthroughs by adding image warping [Rafferty et ai, 1998]. Given a parti-

tion of a building into cells, their system renders the nearest cells with geometry and farther

cells as static images. At each portal to a cell, a set of images is pregenerated. In any given

frame, the most relevant images are composited with image-warping techniques to generate

the final scene. This resulted in significant acceleration of frame rate due to the polygonal

complexity of the model.

Paul Debevec at the University of California at Berkeley developed a system to use

geometry and photographs for both modeling and rendering [Debevec et ai, 1996]. In the

limited domain of architectural geometry, photogrammetric modeling is possible to recover

the basic geometry of a scene. The technique uses stereo pairs of images to determine

accurate depth readings at various pixels in an image. The rendering phase dynamically

generates the textures for the base geometry by mapping the photograph taken from the

nearest point to the viewpoint. The authors point out that the depth-image information

extracted in the model-based stereo algorithm can be useful in image-warping Tenderers as

well.

25

Figure 6. Motion prediction in the Berkeley walkthrough [Funkhouser, 1996].

I. MOTION PREDICTION

Motion prediction is not a major focus of this work, and a simplifying set of "mo-

tion classes" will be used. The Berkeley Walk-through [Funkhouser, 1996] used a known

limitation of foot speed, and a user-specified frame rate, to determine the length of time a

user would need to reach rooms in a 2.5 dimensional architectural model. Figure 6 shows

the number of time steps required to reach each room in Soda Hall; those rooms reachable

within five time-steps are shaded. In a model with such tightly constrained user paths as

a building, this is an effective mechanism for culling objects from the list of objects to be

prefetched. Similar work, applied to path-planning for robots in a geometric environment,

can be found in [Canny and Lin, 1993].

26

J. LOCAL CACHING IN GRAPHICS SYSTEMS

The QUICK system employs a novel series of inputs in order to make decisions

in the management of a distributed graphics cache. Disk cache management techniques

have been used to excellent effect in graphics systems in which the extent of a local

model outstrips core memory storage capacity. For instance, the original NPSNET sys-

tem [Falby et ai, 1993] used a hierarchical data cache for swapping between terrain tiles.

The SPLINE system [Waters et ai, 1997] uses region-based segmentation for caching; at

any given time, only the current region and neighboring regions are in main memory. Even

early entertainment software used such techniques, in order to stay within the very tight

memory constraints of early personal computer technology. For example, the first Castle

Wolfenstein software title could only store a single (two-dimensional) room of the castle in

memory; moving through a portal resulted in a cache miss and disk load delay.

K. DISTRIBUTED GRAPHICS SYSTEMS

Computer-supported collaboration, and distribution of graphical data, are mature

areas of computer science. A number of previous efforts share some portion of the goals of

this project, but no system to date has embodied all of its objectives.

1. Research Systems

Many systems have a notion of shared graphical objects and communication of

state changes to those objects. The Reality Built for Two system [Blanchard et ai, 1990],

for example, allowed collaboration between two users; NPSNET [Macedonia et ai, 1995]

27

allowed loose collaboration between thousands. Each of these projects takes a different

approach to the distribution of initial object state, network topology, and collaboration

paradigms, but all assume homogeneous client software. The Distributed Interactive Simu-

lation (DIS) [DIS, 1993] and High-Level Architecture (HLA) [Kuhl et ai, 1999] standards

enable cooperation between heterogeneous clients, as long as they follow a set of network

protocols. Nearly all of these systems could benefit from asset prioritization of the sort

described in this thesis.

A review of networked virtual environment architectures, and a tutorial for these

standard methods of information sharing, can be found in Singhal and Zyda's 1999 text

[Singhal and Zyda, 1999]. A subset of these systems are discussed in detail below.

a. DIVE

The DIVE system [Carlsson and Hagsand, 1993] from the Swedish Institute

of Computer Science is a landmark tool for virtual collaboration and interaction. DIVE was

one of the first to include clients for multiple machine architectures (RS6000, SGI, Sun),

which contributed to its popularity. Each user in DIVE has a replica of a shared database,

which is distributed using the ISIS [Birman et ai, 1985] distributed locking mechanism;

applications appear to only be accessing shared memory, which is transparently updated

by ISIS. A DIVE universe is partitioned into multiple worlds, which are associated with

ISIS process groups; switching between worlds is permitted, but a user can only be aware

of a single world at a time. DIVE uses no loading priority when transferring a virtual

world description. There is support for world segmentation, with scene graph subdivision;

28

additionally the application can perform session management over these segments. There

is no documented case of these facilities being used in combination for asset prioritization.

b. MASSIVE

The family of Aura applications [Benford and Fahlen, 1993] atop the DIVE

system used the intersection of invisible geometrical volumes around objects and avatars

to trigger actions and connections; for example, avatars within a certain range might have

an audio chat channel begun between them. The MASSIVE system from the University of

Nottingham [Greenhalgh and Benford, 1995] greatly expanded the model of those volumes

and used their intersection to define awareness between objects. The aura, which can be

any description of a spatial volume, is used to determine if there should be any interaction at

all between two participants (similar rules can be used with objects); if the auras intersect,

a connection is created between the two participants.

Then a finer grain of granularity takes over, based on additional volume

functions. Observers have a focus, which is a function defining their region of interest,

and a nimbus, which is a measure of their projection's likelihood to be noticed by other ob-

servers. Generally, the auras will be simple functions whose intersection is easy to compute,

such as spheres. Once a connection is created, each participant determines the amount of

intersection that exists between their focus and the other's nimbus, and that implies a level

of awareness.

These functions can be attributed to different media, so for instance a visu-

ally striking but very quiet participant might have a large visual nimbus but small audio

29

nimbus. Of particular note is that awareness need not be equivalent in each direction; many

users might be aware of a loud participant, who could herself have the impression of soli-

tude. Due to the server-less nature of MASSIVE, however, she would continue to receive

constant updates on the other participants because of the aura intersection; the information

would be discarded at the application layer.

It is entirely possible for an observer to have no focus at all for various

media, and this is used as an excellent method to allow logical heterogeneity. A participant

with a full-featured graphical display and no audio simply has a focus size of for audio;

a participant with a text-only console could use a size-0 focus for the visual medium and

simply place an ASCII character in their position in a two-dimensional map.

The level of awareness determined from the amount of focus/nimbus inter-

section, can be used to good effect during rendering. For instance, low visual awareness

can be translated into display of lower-detail geometry. This might also be used for priori-

tization of state transfer. Similar to DIVE, the world description is segmented, and it does

offer internal feedback facilities that would make such prioritization simple to support.

c. SPLINE

SPLINE is Mitsubishi Electric's Scalable Platform for Large Interactive

Networked Environments [Anderson et ai, 1995], the initial implementation of OpenCom-

munity. SPLINE facilitates CVE development by providing a shared world model that is

shared transparently across multiple clients. Applications are then able to interact with each

other by making changes to objects they own, and observing changes in remotely-owned

30

objects. Objects are represented in the world in a hierarchical fashion, such that each object

has a parent and zero or more children. Positions in the world are carried through this re-

lationship, such that if a parent object is translated all of its children are translated in a like

manner. Objects can also have a locale as a parent. Locales are atomic awareness regions

which correspond to an area in the virtual universe.

A typical application might subscribe to a locale, by connecting to its server

and joining that locale. Objects in that locale are placed in the application's world model,

and it begins receiving updates on those objects. The application can publish new objects

in the locale, which are in turn shared among other applications aware of that locale. Any

modifications made by the application are reflected to remote applications as well. When

an object is moved across a locale's boundary, the locale is queried to see if a neighboring

locale exists in that direction. If so, the object is moved to the new locale. Because object

positions act as an offset from the center of its locale, the object's position is modified

(by a special transformation representing the locale crossing) to be appropriate for the new

locale.

Locales are an efficient method of solving problems of data flow by breaking

up a virtual world into chunks that can be described and communicated independently.

Locales divide the world based on three key features: each locale has a separate address,

its own coordinate system, and a list of locally-neighboring locales.

Locale-based relevance serves as a highly-efficient culling mechanism. The

standard awareness model in SPLINE makes a user aware of the locale which contains its

31

avatar, plus the locale's immediate neighbors. Local coordinate systems for locales allow

high positional precision, even in galaxy-sized virtual worlds; small memory representa-

tions of position can be highly accurate. Storing only local neighboring relationships in

a locale facilitates combination of locales from different designers and sources. Separate

worlds need not be designed with each other in mind. Even when differing wildly in size

and shape, they can be combined painlessly. Also, the combination of independent coor-

dinate systems and locally-defined neighboring relationships allows the representation of

non-Euclidean virtual spaces: one-way doors and spaces larger on the inside than outside

are simple examples.

All objects in SPLINE are associated with a single locale. A virtual world

can contain thousands of locales, with each locale having knowledge of only its immediate

neighbors. Yet applications need a way to query about objects in the virtual universe, to

find other users, and the like.

SPLINE solves this with beacons. A beacon is an object with two spe-

cial fields: a tag, and a locale address. The beacons of a virtual world act as a content-

addressable index from tags to locale addresses. Beacons are stored in the world model

normally, as they are associated with some locale, but they also are tracked by a special

beacon server process. SPLINE can find those servers by hashing on the beacon's tag. So,

with just the tag, an application can contact a beacon server and ask for information about

all beacons with a certain tag.

These tags are used by world creators to mark special objects that need to be

32

found. For instance, if an author wanted to ensure that police stations could be found easily,

she could add a beacon with a police tag as a child of each police station object. Then, by

publishing the tag in a public forum (such as the application's help files, or aWWW page),

users could use it to find all the beacons with police-tags (and thereby the police stations).

Beacons can also be used for temporary situations. For instance, one might add a beacon to

a moving object to be able to track it, or users might tag themselves so friends might find

them.

(1) Diamond Park. Diamond Park was the first large-scale

virtual world and application built using SPLINE. The park is a square mile of landscape,

with buildings, lakes, and simple terrain which makes up sixty-two locales. Users interact

while riding computer-controlled exercise bicycles, and conversing via an audio channel.

The design of some Diamond Park structures shows the power and flexibility of a locale-

based world, and they are discussed in detail.

The Desert House is a small building within Diamond Park contain-

ing a much larger desert terrain. The desert locale was in fact designed separately from

Diamond Park, and placed within to illustrate composability. Two difficulties arise in the

addition of the Desert House: first, the polygonal complexity of the interior was such that

most client hardware could draw little else at interactive rates; and second, viewing across

the doorway gives an inconsistent view due to the difference in scale factor. Both problems

were easily solved by adding a vestibule to the entrance of the house, such that two locales

were between the exterior and interior. Because the world model in SPLINE consists of the

33

current locale and its immediate neighbors, at no time are the Desert House and the Dia-

mond Park exterior both in the world model. Additionally, the border-locales are situated

such that there is no sight line that contains both the exterior and interior.

Diamond Park contains twenty-two obelisks which act as a method

to quickly move about the park—without biking a mile each time! The obelisks appear

small from the outside, but upon entering the user sees a room with twenty-two archways

leading out of the other obelisks. This does cause awareness of a large portion of the

model. To avoid an inconsistent view across a boundary between two differently-scaled

locales, each archway is filled with a static pre-generated picture of the exterior of each

obelisk.

d. Shared Scene-Graph Systems

The Distributed Openlnventor (DIV) project [Hesinae/a/., 1999] uses the

scene graph as a shared memory structure, and it encourages the authoring of graphical

applications that are distributed in a manner nearly transparent to the programmer. The

system also includes excellent high-performance networking facilities. GMD's Avocado

system [Tramberend, 1999] similarly distributes data by transparent replication of the scene

graph, in this case that of the Performer graphics library, on sgi systems. The Scene Graph

as Bus approach [Zeleznik et al, 2000], part of the National Tele-Immersion Initiative, is a

proposed mechanism for mapping between heterogeneous scene graphs, in a cross-platform

manner.

34

2. Internet-Based Graphics Technologies

As processing and bandwidth capacity has increased across the Internet, the pos-

sibility of Internet-based graphics has emerged. The QUICK framework is specifically

targeted for the client-server model which is the norm for the World Wide Web, and later

chapters investigate the applicability of QUICK to web-based graphics technologies. The

following sections give a brief overview of some standard formats for Internet-based three-

dimensional graphics.

a. Virtual Reality Modeling Language (VRML)

The Virtual Reality Modeling Language [VRM, 1997] is a file format for de-

scribing interactive three-dimensional objects and worlds. It was designed to be deployed

on the Internet, and from the very first has had HTTP hyperlink capability embedded in

objects. VRML's simplicity has led its growth as a universal interchange format for three

dimensional datasets, as nearly all applications can read and write the VRML ASCII file

format. In addition to this simplicity, the ability to embed dynamic behaviors offers sig-

nificant expressivity, and VRML is used for applications from medical visualization to

multi-user worlds.

Though VRML is not itself a virtual environment system, this discussion

considers VRML-based worlds and browser applications as a whole. Most VRML appli-

cations require that the virtual world be downloaded in its entirety before interaction is

allowed. Author control of this step is permitted using Switch and LOD nodes. VRML

worlds often consist of multiple VRML files, linked via World Wide Web locations; most

35

browsers resolve these links and fetch all included files before passing control to the user.

VRML files already contain excellent inherent model subdivision: each file represents a

standard tree-based scene graph, and files can contain internal switch and Level of Detail

nodes that divide the files further. This indicates that VRML is an immediate possibility for

application of QUICK concepts. In fact, the QUICK file format (discussed in section VII.C

is a non-standard extension of VRML. Those extensions could be similarly accomplished

using VRML's PROTO capability, albeit in a fashion which does not lend as well to efficient

computation in Java3D VRML-parsing software.

b. Extensible 3D (X3D)

Often heralded as the next generation of VRML, X3D [X3D, 2000] is an

XML-based file format for 3D scene description. The X3D specification will be split into

a very small core functionality and profiles atop that core; the intention is that simple

browsers can support only the core, and that more advanced browsers can support addi-

tional extensions. While X3D is not yet complete, it shows much promise; a major design

consideration is the inclusion of an asset prioritization scheme, and it appears that a QUICK

X3D profile could be integrated into advanced performance-conscious browsers.

c. Streaming Geometry

One method to combat the initial delay in interactivity common in net-

worked virtual environments is to stream geometry. In this approach, representations are

sent in a very low detail at first, and then progressively refined. The user is able to interact

with the scene while this refinement process occurs. These representations are considered

36

continuous in that they provide a large number of options for display detail. Continuous

representations can significantly reduce the complexity of fidelity optimization; possibili-

ties are discussed further in the future work section at the end of the dissertation.

d. QuickTime Virtual Reality (QTVR)

QuickTime VR [Chen, 1995] is an image-based format which gives the im-

pression of immersion in a virtual scene. Panoramic cameras are used to generate wide-

angle images, which are stitched together to create a cylindrical image centered on the

viewer's position. The user is then able to rotate in place; minor zoom capability is offered

via image-warping techniques. QTVR scenes can consist of multiple cylindrical nodes,

which the user can then navigate between interactively. There is no notion of asset pri-

oritization in QTVR; however, loading is performed progressively, and the user is able

to navigate partially-loaded scenes during download. Despite these extensibility limita-

tions, QUICK annotations might be integrated in content prior to generating QTVR scenes,

thereby offering an adaptive resolution control mechanism for otherwise-static fidelity.

3. Multi-User Entertainment Software

The release of id Software's entertainment game Quake [IdSoftware, 1996] was

a quantum leap in the availability of distributed virtual reality on the desktop. In 1997, in

fact, their product was hesitatingly labeled the state of the art in the entire field of networked

virtual environments—including research systems [Capps and Stotts, 1997]. In the multi-

player version, each participant connects to a single centralized server. Motion and action

updates are communicated via the server to other players. The server stores the current

37

state of the virtual environment, in order to provide support for late-comers. The original

game comes with a limited number of maze and building maps to play; new environments

can be found on the web, or dynamically downloaded when first joining a session in that

environment.

However, this latter method exposes a major weakness of the network architec-

ture. Most Quake players connect to the server by modem; the application of a number of

advanced techniques in awareness management and client-side simulation make possible

play with such limited bandwidth. A client connecting to an unfamiliar environment au-

tomatically requests the environment description, which is usually about one megabyte in

size. This process nominally takes five minutes on a 28.8kbps modem, but usually requires

closer to fifteen minutes due to the server's double duties. Game play does not begin until

the entire model has been acquired; interestingly, most servers run a game for ten to fifteen

minutes before cycling to a new map. Therefore it is quite possible for a participant to be

stuck in a cycle where each environment file is moot before its download is complete.

Quake environments are purposely divided into rooms with limited connectivity,

so as to allow precomputation of visibility between spaces. This reduces the computa-

tion required for the physics and rendering engines, as in the Berkeley Walk-through sys-

tem [Funkhouser et ai, 1992]. This division is exactly the sort of subdivision required for

asset prioritization: rooms can and should be downloaded in order of importance. Yet

Quake allows absolutely no interaction during the download process—fidelity is zero.

38

L. SUMMARY

This chapter presented work related to the design and implementation of an opti-

mization scheme for virtual environments. Overview summaries were provided for graph-

ics, human factors, virtual environments, and networking issues germane to this effort.

Virtual environments research builds upon the foundations of these and many other dis-

ciplines, and it is therefore neither appropriate nor possible to provide an exhaustive lit-

erature review. Key surveys, as well as more complete bibliographies, are available in

[Durlach and Mavor, 1994] [Singhal and Zyda, 1999] [Keshav, 1997] [Foley etai, 1990]

[Baecker and Buxton, 1987] and [Baecker et al, 1995].

The review presented in this chapter shows that creation of a general-purpose opti-

mization system for distributed virtual environments has not been previously proposed or

attempted. However, many previous efforts have faced issues similar to those that consti-

tute this research; the chapters that follow show how such previous results can be integrated

into the larger scope of this dissertation.

39

THIS PAGE INTENTIONALLY LEFT BLANK

40

III. EXPANDED PROBLEM STATEMENT

In order to present a general-form optimization for display selection, it is necessary

to characterize a generic form of the model display problem: "Optimal display is charac-

terized by the selection of a visual representation for scene nodes in a virtual world,

such that the combined display of those selections provides the highest-fidelity user

experience on a given display platform."

Though the terms of this statement are familiar, their usage bears definition:

• scene node: A denotable unit in a scene graph, usually a single artifact, group of

artifacts, or virtual object represented by visual representations. The terms "scene

node" and "virtual object" are used interchangeably in this document.

• scene graph: A hierarchical structure representing a virtual world or scene, divided

either spatially or logically, consisting primarily of scene nodes.

• visual representation: A computer-parsable graphical description, such as poly-

gons, triangles, images, etc. A single scene node may have multiple representa-

tions, for example, graphical Levels of Detail (LODs). A scene node must contain

at least one visual representation. Therefore, the display selection for any scene

node involves a minimum of two possibilities—the single representation or no rep-

resentation at all.

• combined display: Visual presentation of each scene node's chosen representation.

41

• highest-fidelity user experience: The highest-fidelity user experience is one that

gives the best performance, as defined by the user or model author. A standard

acceptable approximation of "best performance" is a high-resolution view, with a

refresh rate sufficiently rapid to avoid distraction or eye-strain, that includes all ap-

propriate scene nodes. There exist complex simultaneous trade-offs between those

features—usually user- , model-, and platform-dependent—which this dissertation

explores in detail.

• display platform: A combination of software, computer processor(s), and graphics

display hardware.

Mathematically, this optimization problem can be illustrated as follows. Let Sw be the set

of all selection states for drawing the nodes in a virtual world W. That is, for each selection

state s G Sw, all nodes n e W have associated with them a choice of representation r.

Each node representation can be null, meaning node n is omitted and not rendered, or can

be one of the r available representations in node n. s(n, r), then, is the choice r for any

given node n € W.

The display cost of any particular selection is a function of the display platform d

and the representation choice: c(d,s(n,r)). The total cost C for a given selection state

sums across all of the scene nodes, as shown in equation III. 1 . The fidelity function is

42

similar, as shown in equation III.2.

c(s,w,d)= £ C(s(n,r),d) (m-D
new

F(s, W,d)=J2 /(«. *fo 0, d) (III.2)

The optimization function is to choose a selection set s such that fidelity is maxi-

mized:

(3s € 5w)(Vs e 5w)[F(s , W, d) > F(s, VT, d)] A [C(s , W, d) < Td]
(III.3)

and cost does not pass a given threshold Td of the display platform. Chapter VIII

shows how to build a problem model from an instance of the optimization problem, and

how to reach a solution using linear optimization techniques.

This dissertation postulates that Fidelity is a direct function of the quality of each

representation and the importance of the object that it represents. That is the fidelity con-

tribution / of a particular representation choice is:

f(n, s(n),d) = q(n, s(n), d) x i(n) (III.4)

where the quality function q is a factor of the node, representation choice, and display; and

the importance i is a function of the object's impact on the virtual world.

43

It is therefore possible to optimize display and request in a virtual world given the

following information:

• Quality rating of each representation

• Importance rating of each associated scene node

• Cost rating for rendering each representation

Hereafter this general framework is referred to as the QUICK model, where QuICk stands

for Quality, Importance, and Cost.

This relationship implies that all scene nodes have the highest-quality representa-

tion in the case where there is no constraint from limited computational resources. When

resources are limited, the greatest possible Quality can be chosen in the most Important

scene nodes. Boundary cases are logical as well: for example, there is no contribution to

scene fidelity by any node with the null representation or a node with zero importance,

regardless of the chosen representation.

A. THE STANDARD DISPLAY PROBLEM

The QUICK framework is best explained by describing its application to specific

problem types. The first of these is a typical display problem, with the following charac-

teristics:

44

• single display platform

• model is available locally

• model fits entirely within main memory

• representations are polygonal geometry with color information

• multiple representations for a scene node are geometric Levels of Detail

• highest-quality representations of all objects can not all be drawn simultaneously

• fidelity is defined as visual accuracy

Even for the standard display problem, the computation of a guaranteed-optimal selection

set is NP-complete (a proof is available in Chapter VIII). Constructing the optimization

model is straightforward, given the Quality and Importance inputs. However, determining

the appropriate content inputs for the display function is non-trivial. Generation of each of

the three q, i, and c functional inputs is discussed in turn below, with special attention to

the simple display problem stated above.

1. Quality

The quality of a representation is a subjective notion that can vary significantly

between users, applications, and display platforms. It is possible to record with each rep-

resentation all pertinent information about its rendered result: geometric precision, geo-

metric accuracy, color accuracy, and so forth. These values are combined at run-time with

45

platform-specific factors to compute the possible Quality contribution of each representa-

tion. Static platform factors, such as display hardware resolution, are determined during

the program initialization phase. Dynamic factors are significantly more expensive as they

must be tested repeatedly, and recomputed after any change.

Gauging the relative quality of multiple geometric level-of-detail representations is

straightforward, and simple to record in this system. Quantifying the difference between

functional accuracy and visual accuracy is much more complex. QUICK depends on sub-

jective author annotations for such values, and provides a framework for experimentation

in that open research area.

Chapter V contains a much more detailed discussion of the quality factor.

2. Importance

It is possible to reduce the complexity of a scene without significantly reducing the

viewing fidelity by dropping detail only from unimportant areas. For example, in a virtual

painting gallery the paintings might have a very high relative importance, while floor tiles,

benches, and the like might be low. Likely a user viewing this world would ignore such

accouterments anyway, and definitely would prefer that in a resource-limited situation that

the paintings' nodes were the last to be degraded. Other common heuristics for detail

elision, such as screen size and virtual distance, can also be included in the Importance

factor. Further details on the definition and computation of Importance are available in

Chapter VI.

46

3. Cost

In a model where each representation is a list of indexed face set polygons, an

appropriate cost approximation is the number of polygon vertices. If the display platform

is polygon-limited, optimization to the threshold is straightforward. A number of graphics

systems have explored complex cost evaluations that include multiple related resources

such as rendering hardware, texture memory, and central processing. The characterization

and consumption of these resources is left to the graphics hardware community, and note

that QUICK can easily incorporate any such approach. Further details on the cost factor

are available in Chapter VI.

B. COMPLEX DISPLAY PROBLEM

The QUICK model is sufficient for the solution of more complex cases of the dis-

play problem as well. The complex display problem is defined with the following charac-

teristics, in addition to those from the standard display problem:

• single display machine with entire model available

• display platform capabilities change during execution

• model cannot necessarily fit entirely within main memory

• multiple, dynamic user tasks

• representation display can require multiple independent resources

• considerable visual occlusion of model from some viewpoints

47

In this situation, QUICK factors are now multi-dimensional; for example, the re-

source Cost of a representation involves both its polygonal processing requirements and

its memory footprint. Additionally, the resource limitations set by the display platform

for those Costs also vary dynamically. For example, in a multi-tasking system, available

memory might be reduced by allocations in unrelated processes. The addition of new re-

source constraints adds no asymptotic complexity to the optimization step, but does make

the optimization formulation slightly more involved.

The major difference between the complex display problem and the previous is

the allowance of user tasks that do not necessarily require visual realism. In QUICK ,

user tasks define their own computations for the Quality and Importance factors. Through

this process, tasks specify what comprises a high-fidelity user experience. The QUICK

optimization then maximizes Fidelity within resource limitations, according to the task's

definition of Fidelity, without any modifications to the optimization algorithms.

A brief example of a task-specific Quality computation serves to illustrate these

concepts. A color-perception task might consider color resolution the only major factor in

the Quality of a representation. Such a task might compute Quality as the color depth of a

representation's textures, divided by the maximum color depth, with a maximum value of

1 .0. The maximum color depth is a static platform-specific factor determined by the display

software and hardware. On a platform that supports only 16-bit color, the Quality of 16-bit

textures would be 1.0, the same as for a 24-bit texture. Likely, the optimization would

choose the 1 6-bit representation, since it offers the same Quality with reduced memory-

48

storage and display complexity. Note this task ignores the issues of geometric accuracy

considered paramount for a standard walkthrough application.

Further information about task definition, with more detailed examples, is presented

in Chapter IV.

C. DISTRIBUTED-MODEL DISPLAY

With only minor modifications, the QUICK model can be used to optimize the

actions of a client in a distributed graphics system. The distributed case is defined as an

extension of the complex display problem, in which:

• the virtual environment definition is stored on a special server machine

• that server is different from the display platform, and is reachable by a network

connection

The clients still must solve their local display problem, but now face a considerable

delay between the time an unavailable representation is requested and the time it can be

displayed. This distributed-cache management is essentially the same issue as that faced

in the complex display problem; namely, unloaded representations arrive via some limited-

bandwidth transfer path, with a (generally) predictable delay.

Supporting transfer ordering with the QUICK framework requires only minor mod-

ification to the optimization formulation. At each stage after initialization, the optimization

process has access to the characteristics of all nodes in memory, and some nodes which

49

have not been requested. (Chapter VII explains the process by which annotations and

nodes are requested and cached in the QUICK software package.) The display optimiza-

tion is performed as if unrequested nodes were available; their transfer costs are kept below

the network capability threshold, and their storage costs are included in the primary stor-

age allocation. Once a working selection set is generated, the missing nodes are requested.

The display optimization is then repeated with only the currently available nodes; with

memoization techniques, the second computation is greatly accelerated.

To support transfer ordering and optimization, Cost information must also include

memory footprint and bandwidth consumption. This same information is required for ob-

jects in secondary storage; disk and network transfer paths are functionally equivalent. In

conjunction with a specification of machine capability threshold, these values are used to

optimize consumption of the network and disk resources. Memory footprint values are vital

to local cache management, as well as for computing the cost of a cache fetch action.

50

IV. PLATFORM AND APPLICATION

A. INTRODUCTION

Quality and Cost cannot be computed without detailed knowledge of the capabilities

of the display platform. A representation easily rendered on one platform might present a

major obstacle to real-time interaction for another. The difference between two textures

might be stunning on a high-resolution platform, but imperceptible in low resolution.

All applications, and adjustments to applications such as the QUICK optimization,

are best judged by task performance. The exact user task can often be difficult to ascertain,

as the user's intent may often transcend the original design of an application. For instance,

a terrain-display application might be used for both mission rehearsal and for navigation

training. The user's purpose is the only true means for evaluating the effectiveness of any

optimization process. Accordingly, Task has a profound effect upon the input factors of the

QUICK framework.

This chapter discusses the Client Specification, which contains all of the platform-

specific information needed for the QUICK optimization process. Also included are the

means by which user task defines subjective performance of an application. All QUICK

factors can vary by platform and task, so this chapter also explains methods for encoding

such data into the optimization.

51

B. CLIENT SPECIFICATION

Each display platform has myriad properties which dictate its ability to manage and

display virtual environments. The QUICK optimization attempts to select a subset of the

the virtual environment that maximizes fidelity and can be managed within the constraints

of the given display platform. The QUICK Client Specification, also referred to as the

ClientSpec, contains the details of these constraints.

The method for determining the ClientSpec values is forced by the particulars of

the software implementation. Some values can be tested by the software, often by querying

the operating system or the graphics library. Some values should be provided by the user;

this can be done statically, in the form of start-up arguments, or dynamically as the user's

tolerance for resource consumption varies.

The remainder of this section describes a set of system capabilities included in the

ClientSpec, which are divided into categories of Display, Rendering, and Storage/Transfer.

This list is not exhaustive, nor is it likely to be sufficient for all types of hardware or rep-

resentation formats. However, these values have been found to offer sufficient information

for the QUICK optimization process in the implementation described in Chapter IX.

1. Display

The Display values are those related to graphical presentation of the virtual world.

The Display category specifically omits values of rendering capability, such as polygons

per second, that are affected by the complexity of chosen representations. Instead, these

values describe the capability of the hardware display device, its drivers, and its current

52

settings. These constant values can affect the rendering pipeline; for example, monitor

settings with high color depth can significantly slow rendering. Not all Display values are

static; for example, display resolution is affected by the virtual field-of-view, which some

applications change during program execution.

The Quality chapter explains how many of these values are used in the Quality

computation (see section V.D.I).

a. Display Resolution

The hardware display resolution sets the upper limit for useful precision in

the virtual environment. This is particularly useful when computing the Quality of a rep-

resentation, because often the screen resolution will be too low for noticeable differences

between two high-precision representations.

This value can be stored in many formats; the most useful thus far has been

a ratio of screen pixels to the field-of-view angle, in both horizontal and vertical directions.

The window size in pixels is stored in the client specification, and the display resolution is

recomputed whenever the viewing field of the virtual environment changes. That ratio is

compared at run-time with the precision of a representation and its subtended screen angle.

The lower ratio of the two is chosen for the Quality computation.

This formulation is not dependent upon the type of display device. Head-

mounted displays and monitors have similar viewing characteristics, except for the distance

between pixels and the eye. For small pixels, human eye precision can be inadequate; in

such cases, it is appropriate to include viewing distance and pixel size as a similar ratio.

53

b. Display Update Rate

Modern display hardware updates the screen at a constant rate, regardless

of the graphics processing pipeline. QUICK assumes that a double-buffering solution is

applied to allow construction of an image across multiple frame updates. The display

update rate is stored as the maximum possible refresh speed; drawing the scene graph more

quickly has no visible effect.

c. Stereoscopy

The ability to present stereoscopic image pairs offers a more immersive

sense of three-dimensional object placement, usually at the trade-off of halving the dis-

play update rate. This value does not present a platform constraint; rather, it is included to

specify a platform's capabilities. A review of the benefits of stereoscopy in virtual environ-

ments is available in [Hodges, 1992].

d. Color Depth

The Color Depth value reflects the current display settings for color reso-

lution. The value is stored as an integer three-tuple which holds the number of bits of

precision for red, green, and blue color values. When determining Quality, representations

with color precision greater than the display platform are limited to the platform specifica-

tion.

e. Alpha Depth

Most displays restrict the precision of transparency settings, similar to color

depth. This value stores the number of bits of precision available for declaring transparency,

54

and is treated similarly to Color Depth for Quality computations.

2. Rendering

The Rendering factor includes values that reflects a platform's capability to dis-

play virtual environments, especially its ability to scale to larger data sets. These values

are usually determined in a preprocessing stage by evaluating performance over a series

of computational and display tasks. Performance benchmarks are a well-explored area;

standard benchmarks are available from organizations such as the Standard Performance

Evaluation Corporation.

Chapter VIII explains how these Rendering specifications are used, in conjunction

with Cost computation, for the optimization process.

a. Polygonal Rendering Performance

Certainly the single most important display platform is its capability to ren-

der geometric primitives. The fact that this value is constrained, and usually beneath the

amount needed to display complex scenes at interactive rates, is a primary motivation for

the QUICK system.

Polygonal performance can be measured with industry standard benchmarks

such as SPEC viewperf and SPEC glperf (SPEC benchmarks are available online through

http://www.spec.org). Alternatively, this value can be a fixed value representing the number

of primitives that can be drawn at an acceptable frame rate. Such values can be determined

empirically with simple test programs by choosing a target frame rate and increasing scene

complexity until the target is missed. Initialization in the QUICK implementation offer

55

similar functions that can be executed at run-time, but their accuracy of course is lower

than that available in full test suites.

Because rendering performance and frame rate are so central to the opti-

mization, the user will frequently desire more direct control of those constraints. The user

interface in the sample implementation described in Chapter IX includes sliders for inter-

actively adjusting the maximum allowable polygons. In this way, the complexity/speed

trade-off can be made much more accurately.

Depending on hardware characteristics, rendering performance may require

division into subcategories. For instance, image texture processing capability might be best

treated as its own system constraint. The QUICK test implementation uses a single value

for Rendering Performance, and it has proven to be much more effective than competing

scene management systems (as shown in Chapter X).

b. Computational Performance

All display platforms offer general-purpose computational resources in ad-

dition to the graphical rendering pipeline. While traditional polygonal representations are

usually fed directly to the graphics pipeline, other representation formats can require pre-

processing. For example, fractally-defined geometry requires dynamic computation of ap-

propriate detail. First, this value indicates the number of physical processing units. Second,

processing performance is be measured with standard benchmarks such as SPEC CPU2000,

which measures floating-point and integer operation performance. While those benchmarks

are proprietary, results for almost all hardware/operating system combinations are publicly

56

available. Similar to polygonal performance, the QUICK implementation includes ini-

tialization functions that can test computational performance dynamically with reduced

accuracy.

The QUICK optimization treats processor and polygonal performance as

independent values. This is a deliberate over-simplification; most platforms use the main

processor in the graphics pipeline for geometric transformations and lighting. Fortunately,

commodity graphics hardware designs are evolving towards a "graphics processing unit"

in which all rendering-related functions take place in the graphics subsystem.

3. Storage/Transfer

The Storage/Transfer values represent a platform's performance as a node in a dis-

tributed cache system. These values reflect the capability for retaining objects in the local

cache, whether in memory or on disk, as well as the capability to move objects between

those caches and networked repositories. While these values can remain static for simplic-

ity, network conditions and available memory will often change during the execution of an

application. Still, a static configuration file with average values is often sufficient.

Chapter VIII explains how these specifications are used as limitations in the opti-

mization process.

a. Available Disk Storage

Disk space usually far outstrips the size of virtual environment models, so

the available file cache size is rarely a constraint. However, for very long-lived or complex

scenes, this can be a concern. Disk space must be considered a dynamic value. In mul-

57

masking operating systems, such as Windows and UNIX, other processes (or even other

computers) may be sharing the disk storage resource.

b. Available Memory

The price of memory modules has dropped significantly in recent years,

with a resulting increase in the capacity of main memory in the average workstation. Con-

veniently, growth of virtual environment model descriptions has out-paced that capacity

increase, leaving a need for cache management systems like QUICK. To optimize request

and deletion of representations, the QUICK optimization must have up-to-date informa-

tion on memory allocation limitations—especially in multiprocessing systems, in which

memory availability is particularly volatile.

c. Latency to Server

Latency information is critical when making prediction-based object re-

quests, as the accuracy of prediction techniques usually drops exponentially with time (see

section VI.C for more detail). While this value is included in the client specification, it is

difficult to consider without representation-specific information. In the worst case, each

representation is served from a different network location with individual network delay.

In the optimal case, servers containing representations being considered for request could

be pinged for latency. Since limitations on network bandwidth usually affect latency more

than round-trip communication times, a single average network delay value has been suffi-

ciently accurate in practice.

58

d. Available Bandwidth

The client specification includes the available network bandwidth, in both

directions, from the display platform to the Internet. This value is necessarily myopic in

scope, since network throughput between client and server is usually limited by the lowest-

bandwidth connection on the path between them. Determining current throughput between

two points on the Internet usually requires more traffic than a representation transfer, so

such detail is only useful on a frequently-accessed server. The Total Entertainment Net-

work, a closed client-server system, used such evaluation techniques to improve networked

game interactivity.

The Available Bandwidth value can also include internal bandwidth, espe-

cially between the secondary and tertiary cache (main memory and disk storage). While

internal bandwidth is usually not a factor in networked virtual environments, it should be

considered when navigating large local datasets that require significant paging. The Berke-

ley Walkthrough offers an excellent introduction to the issues involved in disk database

management [Funkhouser, 1996].

C. DYNAMICISM OF TASK

User task is both highly variable and highly subjective. The QUICK framework

is able to capture that variability in the virtual environment optimization process. This

section shows that user task and intent cannot be extrapolated from knowledge of the virtual

environment world model, or even of the application interacting with that model.

59

Define QIC for Lamp:

switch (Task) {

case Hide-and-seek:
{

set Quality = q'

set Importance = i'

}

case Lighting-visualization
{

set Quality = q'

'

set Importance = i' * .5

}

Cost = c

Figure 7. Task-based step-function technique.

A virtual environment model can be used for a variety of user tasks; examples

abound. For example, SGI's Performer library is packaged with a city model, known as

PerformerTown. That town, and its derivatives, have been used for performance testing,

vehicular-navigation training, and even large-scale military exercises. This reuse is even

more prevalent with smaller graphical models: a lamp designed for a VRML virtual of-

fice design program might well be found populating databases used for a variety of other

applications.

Originally, a task-based step-function approach was considered, as illustrated with

the pseudo-code below. In such an approach, every virtual object contains different QUICK

annotations for each planned task. But the reuse patterns of objects indicate that it is not

always possible to know all tasks for which a model might be used.

60

A second approach considered was to break down each task into component parts,

and define QUICK factors for each of those components. A given task might, for example,

be a mix of "fast fly-through" and "precision targeting". Brief exploration was convincing

that no such breakdown is likely to exist; and, if those categories were to exist, they would

likely be analogous to the standard QUICK factors themselves.

It is evident that a single virtual object model can be used in multiple applications,

and therefore, for multiple tasks. Additionally, a single application may be applied to

multiple tasks, and those tasks may change during a single incarnation of the application.

Complicating matters is the fact that only the user has an accurate understanding of task at

any given instant—and that the user may be engaged in more than one task at that instant.

The goal of QUICK is to optimize with respect to the current task. The first step

towards that goal is to inform the optimization system constantly of that task. Since only

the user has that information, the application must provide an interface for the capture of the

tasks and their priority. It is generally possible, in designing an application, to presuppose

what general tasks it will enable; a list of those common tasks is then included in the

interface. Certain classes of applications might simply force task changes, without direct

user input; for example, a plot-point in a computer game might necessitate a change in task

from "navigate" to "avoid detection."

The second step towards the optimization goal is to use tasks in asset prioritization.

The next section gives examples of how task might modify quality and importance factors.

61

D. TASK COMPUTATION

In the QUICK system, the Task (note capitalization) is defined as an algorithmic

representation of user preferences and application priorities. The current value of each

QUICK factor (Quality, Importance, and Cost) is computed at run-time as a combination

of model annotations, application state, and platform state. The algorithms for this combi-

nation process are defined within the Task specification.

An explanation of how this fact is incorporated into the optimization computation

must wait until the QUICK factors and optimization are explained in following chapters.

However, it is still possible to justify the discussion of task via anecdotal evidence. The

following two sections illustrate the reliance of quality and importance upon task.

1. Task and Importance

A change in task is most noticeable with the Importance metric. Importance reflects

the contribution to fidelity that can be made by any virtual object. When a task does not

require a given object, its presence or absence has little impact on fidelity and consequently

the object has equally little importance.

A virtual museum yields an excellent example in which task can have tremendous

impact upon Importance. A likely task would be a sight-seeing walk-through of the mu-

seum's various exhibits. In that case, the user would require high-fidelity viewing of (for

instance) colonial furniture exhibits, while other patrons of the museum would have no

importance to the task. A switch of task to finding an art thief would likely invert that

relationship; suddenly, detail of the museum patrons would be essential, and the furniture

62

is needed only for its properties of visual occlusion. It is clear that properly generating the

Importance of scene objects requires current information on user task.

In most systems, the Importance of a scene object is based upon simple heuristics

such as distance from the viewpoint or the area of pixels the object subtends. (Chap-

ter VI will demonstrate that these techniques alone are insufficient.) Task is the factor such

heuristic-based systems ignore. In the case of distance, a sniper training exercise would

likely rank a faraway target as far more important than a nearby rock. Similarly, for pixel-

area, a virtual bird-watcher would find a small bird on a tree limb much more important

than the much larger tree. Yet a system such as Performer would prioritize geometric detail

for the tree under the assumption that fidelity is most easily increased with large objects.

Clearly, task overwhelms factors such as distance and screen-area subtention.

2. Task and Quality

Quality is also dependent upon user task, though in a manner that is both less no-

ticeable and less suitable for computation. As in the previous section, this dependency

is demonstrated by giving examples of tasks which would the invert priority ordering im-

plied by standard heuristics. For instance, the real-time rendering engine in the forthcom-

ing PC video game "Vampire" uses multiple representations for anthropomorphic figures.

Representation choice is made based on using simple distance to determine Importance,

and polygon count to determine Quality. Low-polygon models in this system assume an

anterior view, so special care is given to keep that view constant across the various rep-

resentations. (This assumption is valid for general game play, wherein anthropomorphic

63

characters usually face the player.) The slightest change in the user task invalidates the

polygon-based Quality value. For instance, a task such as silhouette identification (from all

perspectives) would require most low-polygon models have a Quality of zero, since their

silhouette information is not only imprecise but occasionally fully misleading.

Misleading information seems to be a theme in task-adjusted Quality ratings. Most

virtual environment systems equate visual realism with fidelity, and therefore assign high-

est Quality ratings to those representations with the most visual complexity. But in some

cases, there is an unintuitive need for less-precise models. For instance, research at the

Naval Postgraduate School [Goerger, 1998] has shown that visual detail can have a nega-

tive impact on some training tasks; mental correlation between virtual representation and

real object can be confounded by misleading precision. That research found that, at least

for a virtual environment of a real space, that the use of inaccurate high-detail models to

represent real-world objects caused confusion in the user's ability to correlate virtual and

real objects.

These findings imply that fidelity can stem from symbolic representation as well

as realistic presentation, which points to the need for some codification of the purpose an

object serves in a virtual world.

E. ONTOLOGICAL REPRESENTATION

The previous sections of this chapter demonstrate the need for task-specific adjust-

ment of QUICK factors. Hard-coding all possible tasks into a virtual world description is

not a candidate method, as it is impossible to extrapolate all user tasks for which any virtual

64

object will be used. In fact, it is equally foolhardy to presuppose all future uses for a single

virtual environment application. (In the case that an environment is designed expressly for

a particular purpose, task information can be included, but this should not interfere with

general use.)

First it is assumed that the application can determine the current user task(s), or

be informed by the user of the task(s). This puts the responsibility on the application

to query virtual objects about their function, such that task-based adjustments to Quality

and Importance can be made. For this reason, it is necessary to include a virtual object's

functional definition in its description.

Functional definition requires a precisely defined common terminology; the com-

bination of terminology and definitions is known as an ontology. This is the well-explored

area of knowledge representation, and is generally acknowledged to be unsolvable except

in limited domains. The QUICK framework makes no claims to original work in ontol-

ogy, but rather is designed to incorporate outside research with ease. There exists excellent

prior work, such as the Stanford Knowledge Systems Laboratory [Farquhar et al, 1995]

online ontological databases, and a recently proposed ontology for virtual world objects

[Soto and Allongue, 1997], that can and should be integrated.

In the QUICK proof of concept system discussed later in this thesis, virtual object

files include a simple array of zero of more textual descriptions. For example, a virtual

apple object might include:

65

Plant :Tree : Fruit : Apple
MassedObject :0 .25kg
Food: Fruit : Apple

This information is used by tasks to adjust QUICK factors; for example, a "for-

aging" task might increase the Importance of all Food objects. This simple mechanism

is sufficient for demonstrating the need for task-based asset prioritization, though plainly

would need to be replaced before for general-purpose use.

The Extensible Markup Language (XML) was designed for conveying structured

data [Consortium, 1998]. As explained in Chapter II, the X3D graphics format is based

upon XML. There exists an opportunity to integrate an XML-based ontological system

into X3D object descriptions, which could then feed directly into the QUICK optimization.

F. SUMMARY

The capabilities of the display platform dictate both the resources available for pre-

sentation of a virtual environment and the limitations on precision of perception. Therefore,

QUICK includes a mechanism known as the client specification, or ClientSpec, for defining

those capabilities.

Fidelity is not always defined by visual accuracy; a user may prioritize objects or

presentation differently, based upon their goals for the application. In the QUICK frame-

work, this profile information is stored in the Task. The Task contains the algorithms by

which the current Quality, Importance, and Cost are computed from available annotation

and application state information.

66

V. QUALITY DETERMINATION

A. INTRODUCTION

This chapter provides a more detailed description of the composition and computa-

tion of the QUICK Quality factor. This discussion is limited to the visual domain, as that is

the primary media for virtual environment clients, but QUICK should be equally applicable

to other media.

This chapter begins with an annotated list of the Quality factor components. The

next section shows how Quality is computed, by integrating specifications of the display

platform, application task, and application state. This also includes a discussion of relative

and absolute Quality, and the problems with building a virtual world with representations

from heterogeneous sources.

The Quality computation can be greatly complicated by inter-representation inter-

action. While such issues are specifically excluded from the initial QUICK implementation,

they are explored briefly at the end of this chapter for completeness.

B. RELATIVE VS. ABSOLUTE QUALITY

Outside of this optimization, the term "quality" is generally applied as a relative

measure between two comparable items. In the QUICK system, the quality factor must

serve as both absolute and relative measure. If only one can be eaten, apples and oranges

must be compared; the fruit chosen should be that most appropriate to the situation. Any

67

comparison between two apples would certainly be simpler, but both comparisons can be

performed in deterministic fashion if the needs and tastes of the diner are known.

In graphical terms, the Quality factor is applied in two ways. First, given two

representations for the same object, the higher fidelity representation should have a higher

Quality rating. Second, given two representations for different nodes, the most appropriate

representation should have a higher Quality rating. The techniques for computing that

Quality rating, incorporating application task and display platform, are discussed in the

remainder of this chapter.

For the first task, comparing two representations for the same object, it is reasonable

to suppose there exists an objective test for determining relative accuracy. However, this is

only the case if the two representations are labeled in quality order. That is, if representation

1 is labeled of higher quality, then the quality of representation 2 should be a factor of

its deviance from representation 1 . Without an a priori ordering, the determination is

impossible; though one representation may have higher precision, or greater Cost, it is

not necessarily more accurate. Fortunately, most secondary representations of models are

generated from an original by repeated application of polygonal simplification techniques.

Therefore, advance knowledge of the most accurate representation is rarely required; for

homogeneous representations , accuracy generally increases monotonically with Cost and

precision.

68

C. QUALITY COMPONENTS

The Quality factor describes the visual accuracy of an individual representation of

an object. Representations with average Quality are those that adequately describe the

intended object. Low Quality representations give only a general impression of the ob-

ject, or include significant error. High Quality representations are the best available visual

descriptions, and often contain original data. Two representations with equal Quality are

implied to be interchangeably appropriate for the given application. Frequently, equality is

an indication that the human eye cannot discern any differences between them on the given

display platform.

When describing a representation, values generally fall into two categories—those

that record the precision of the representation, and those that record the accuracy of the

representation. (Precision i considered as the total amount of information available, and

accuracy i only being the significant part of that information.) Quality components origi-

nally incorporated values from both categories, but it has since been determined that only

accuracy values are needed. When comparing a certain facet of two representations, the

precision has no bearing except when it limits denotable accuracy. When computing Qual-

ity for a certain display platform, the issue is not whether the platform can convey all of

the precision information in the representation. Rather, the task is to determine whether

the platform can convey all of the significant information in the representation. Precision

information is indirectly recorded in the Cost factor (as discussed in Chapter VI) since

additional precision is usually reflected in higher representation Cost values.

69

It should be noted that this is not an exhaustive list, but rather an acceptable gen-

eralization for the subset of representations used in the initial QUICK implementation,

representations. Many changes and additions to this list will likely be required as different

representation types and platforms are incorporated into QUICK

.

The Quality information for a representation includes the following components:

1. Geometric Accuracy

The primary metric for Quality of standard representations is geometric accuracy.

This component reflects the spatial difference, if any, between two representations. It con-

sists of two values: the average error for any point on the surface, and the standard deviation

in that error. Both error values are recorded in meters. Meters are the standard unit for most

web-based graphics formats, and nearly all other formats provide conversion routines that

yield data in meters.

Measuring the error between two geometric models can be a time-consuming pro-

cedure. Likely the best method is to avoid measurement altogether and create levels of

detail with known accuracy values. Many Level of Detail generators, such as the Simplifi-

cation Envelopes algorithm [Cohen et al, 1996], accept the geometric error tolerance as a

parameter.

Complete analysis of geometric error for externally-generated representations can

be intractably difficult, as it requires total matching between distinct topologies. Instead,

error is usually accomplished by subset sampling, either using a fixed number of points or

enough points to generate an acceptable estimate of error. One method is to choose a set of

70

characteristic points on both representations and to determine the point-wise differential in

their positions, similar to the geometric fiducials of Talisman [Lengyel and Snyder, 1997].

Matching characteristic points on both surfaces usually requires either human intervention

or a priori knowledge of the generating algorithm.

While there are techniques to determine geometric error without a human in the

loop, they are useful in only limited cases. One method is to cast a ray radially outward

from the center of each representation and determine the distance at which the object sur-

face was crossed. (For concave objects, or those of genus greater than 0, multiple crossings

might occur.) Differences between the intersection distances for the two representations

would indicate geometric error. This can indicate false error unless all differences between

the two objects are radial. In Figure 8, point Q has been deleted in the lower-detail rep-

resentation; the error distance on the (dashed grey) radial arrow shows a significant error

distance. However, the desired value distance is shown magnified in the rightmost figure.

This suggests the possibility of measuring average surface distances, rather than

radial error. Sample points on the surface of one representation are selected randomly, or

distributed evenly using a relaxation algorithm similar to that in [Turk, 1991]. For each

point, the distance to the closest surface in the other representation is computed. Those

values are averaged to yield the geometric error. This method generally yields more rea-

sonable results than ray cast sampling. However, it can miss large errors by corresponding

a point with an incorrect surface, as shown in Figure 9.

71

p p

Error

Distance

center

Representation 1

Error

Distance

center

Representation 2 Actual error,

magnified

Figure 8. Error calculation using radial sampling.

2. Color Accuracy

Geometry has no intrinsic visual description; geometric surfaces generally have an

associated coloration. That color can be specified with widely varying precision, usually

with between 22 and 232 possible values. That precision is an upper bound on the accuracy,

which can often be less than available precision. Depending on the authoring technique, a

Representation 1 Representation 2 Calculated Error

Figure 9. Error calculation using surface distances.

Actual Error

72

high-precision color may be down-sampled into a smaller color space, or a low-precision

indexed color may be translated into a larger color space.

The Quality annotation contains an integer value for color depth. This specifies the

number of bits of color accuracy, and is independent of (but bounded by) color precision.

Similarly, the annotation contains an integer value for alpha-channel depth, which specifies

the number of bits of transparency accuracy.

3. Texture Resolution

Color can be replaced or blended with image textures to give the impression of

additional geometric detail. The resolution of such textures is an important factor in the

visual quality of a representation. This value is stored in the Quality annotation as a single

integer, the number of pixels in the texture image. In the case of multiple-resolution tex-

tures such as a mip-map, the highest resolution is used. If multiple textures adom a single

representation, the pixel count for the lowest-resolution image is used.

4. Subjective Quality

While the above (and other) values can measure model accuracy, they cannot always

convey the subtle differences in visual impact between two representations. This indicates

there is not always a direct relationship between geometric accuracy and representation

Quality. Research such as the view-dependent geometry project [Rademacher, 1999] shows

that accurate geometry can in some cases even reduce display fidelity. Artists build careers

around the process of conveying information, and it is impossible to capture that knowledge

73

Representation:

Triangle count:

Avg. Geometric Error:

Subjective Quality

1

603 1184 1816 2360

189m .169m .051m 0m
65% 90% 95% 100%

Table I. Subjective quality for the "truck" representation set (see Appendix B.

in a handful of numerical values. Extensive research has been performed to determine the

capability of the human eye and brain to process visual information—which has shown

that visual capabilities can vary extremely depending on the nuances of situation. For

example, minor differences in color accuracy can be both obvious and impossible to detect,

depending on the portion of the color spectrum and the luminosity [MacDonald, 1999].

Given this, it has been convenient in practice to incorporate human judgment into

the Quality factor. A single floating-point value is inserted into the annotation which re-

flects the author's estimation of the "visual perfection" of the representation. Traditional

LOD management systems behave as if the cost ratio between two representations dictates

the Quality ratio. However, an object can often be adequately described with significantly

less detail, and the Subjective Quality value can be useful in that situation. Table I shows an

example set of LOD representations for an object, with Subjective Quality values included.

One major drawback of subjective labeling is consistency among model authors, which

is needed when constructing virtual environments from distributed sources. This limits its

utility in the distributed case. Still, on display platforms with few technical limitations (e.g.,

74

a high-resolution, true color display) this percentage value has been sufficient for use as the

final Quality value with no computation. This experience is discussed further in Chapter X.

D. COMPUTING QUALITY

This section describes the process by which the Quality value is computed. Annota-

tion values alone can be adequate for determining the actual Quality of a representation

—

not unlike a clock that is correct twice a day. In the general case, however, factors external

to the description of a virtual environment can have significant influence upon the perceived

Quality.

Each Task includes its own algorithm for computing Quality as a function of the

annotation values, client specification, and application state. Most Tasks assume a human

sensor, so the Quality determination frequently includes human capability as a factor, which

is discussed below.

1. Platform and Human Factors

Most visual-quality metrics are specific to a certain display platform. For instance,

while doubling the resolution of an image would normally have a significant impact on per-

ceived Quality, there might be no noticeable difference between a high- and low-resolution

texture on a low-resolution display device. Systems such as head-mounted displays typi-

cally offer low screen resolution, and therefore additional geometric detail may offer little

benefit.

The practical result of this is that when computing Quality, the annotation values are

75

modified for the display platform. For example, if the geometric accuracy for a represen-

tation is higher than can be detected with the resolution in the ClientSpec, the accuracy is

reduced to reflect that limitation. Similarly, the color accuracy annotation is limited by the

color depth of the display; there is exactly zero visual difference between representations

accurate to 24 or 32 bits when the display supports only 8-bit color.

Similarly, human capacity for detecting color and detail offer additional upper

bounds on the amount of useful representation detail. In general, available display tech-

nology rarely is able to present detail undetectable by the human eye. However, one can

envision a high-resolution display presented at a large distance from the eye, such that the

ability to resolve detail is constrained not by the screen resolution but the visual angle.

Another example is detection of color variation; if the human threshold is less than the dif-

ference in color accuracy between two representations, then that difference is not a factor in

their Quality difference. Human color variation detection thresholds vary significantly by

the spectral qualities of the color. In general, these constraints are not needed for Quality

computation due to hardware limitations. For more information on display design for the

human eye, see [Banks and Weimer, 1992].

2. Task Factors

Each Task includes its own algorithm for computing the Quality value, because dif-

ferent Tasks may have widely different needs in a representation. For example, while a

representation with high-resolution texture and simple geometry may be considered high-

quality for a predominantly visual task, it would be nearly useless for a Task requiring

76

highly precise haptic feedback. Another Task might raise the computed Quality for rep-

resentations modeled in a certain theme—for instance, those labeled "Cartoonish"—that

matched the application. Section IV.D.2 addressed in more detail how and why Tasks

might influence a given Quality computation.

3. Dynamic Factors

There is no general correspondence between geometric accuracy and screen reso-

lution. These data must be related with a geometric transformation between the virtual en-

vironment space and screen space. That information is only available during the execution

of an application, based upon the eye position in the virtual world. Therefore, for proper

incorporation of screen resolution, Quality must be continuously recomputed at run-time.

Distance attenuation of Fidelity is incorporated into the default computation for

Importance (see section VI.C). Therefore, distance-sensitive computation of Quality is

often omitted in the default Quality computation.

E. HYSTERESIS

The Quality of a representation can also be affected by its spatial and temporal

interfaces with other representations. For instance, the well-known hysteresis effect occurs

when swapping between representations of a scene node—even between various LODs of

geometry. Popping between low and high detail versions can be detrimental to the user

experience, even if the change results in greater view realism.

The interface in space is equally important to the user experience. Two scene nodes

77

that join seamlessly in an original high-resolution version will likely have distracting dis-

continuities if presented in varying resolutions. The discontinuity is even more pronounced

if the representations are of varying form, for instance, when a building is drawn with a

geometric half and a warped depth-image half. Proper division of a model into scene nodes

can ameliorate this problem in some instances, but rarely in all possible instances.

The Quality of each representation can be adjusted dynamically based on its in-

teraction with other representations. Issues such as thrashing, where an object oscillates

between two representations, can be prevented by increasing the Quality of the currently

selected representations. Unfortunately, the optimization process is already NP-complete

(see Chapter VIII); incorporating Quality changes based upon previous or neighboring rep-

resentation selections would increases the optimization complexity tremendously.

78

VI. IMPORTANCE AND COST DETERMINATIONS

A. INTRODUCTION

This chapter gives a detailed presentation of the Importance and Cost QUICK fac-

tors. These factors are presented together because their specification and computation is

considerably less complex than for Quality. In fact, the Cost computation rarely includes

any application-specific or dynamic factors, and is based purely upon the platform speci-

fication. Similarly, the Importance computation is only rarely affected by the display plat-

form, instead relying on the state of the virtual world.

For each factor, this chapter first presents the components that make up the factor.

It then shows how a Task combines those components (with application state and display

platform where appropriate) to compute a single final value. When no Task is specified, the

default computation is used; each factor's default algorithms are explained here. Finally,

the annotation and computation processes can often be automated, and so each factor's

description concludes with suggestions for that procedure.

B. IMPORTANCE COMPONENTS

The Importance factor describes the impact an object has upon a virtual world

scene. An object with very low Importance has little effect upon the overall Fidelity of

a scene, so therefore unimportant objects are usually represented by low Quality versions.

Objects with high Importance are essential to the integrity of a scene, and therefore are

79

usually represented by the highest Quality possible.

In QUICK , the Importance annotation for an object is given as a single floating-

point number between zero and one. That value represents the relative Importance of an

object within a world, with one being the highest possible value. No single absolute value

indicates "important" or "not important"; rather, it is the difference between Importance

values that impacts optimization selections for a scene. The value is clamped in the range

[0..1] to simplify the computation of Fidelity. Since Fidelity is computed by multiplying

Quality and Importance together, objects with zero Importance offer zero Fidelity no matter

the Quality of the chosen representation.

It is intended that the chosen Importance values be consistent throughout a virtual

world. However, there are no facilities for normalization in the case of independently-

authored world components. The default value for Importance is .5; recommended practice

suggests that Importance values follow a bell curve distribution around .5, with standard

deviation of . 1 , to ensure that extreme values are very rare. .

C. COMPUTING IMPORTANCE

The annotation described above makes up just one part of the final Importance

value. Similar to the Quality factor, a number of issues external to the world description

can influence the Importance computation. While the platform capability plays only a

small role, the application task and state quite nearly obviate the need for any Importance

annotation. In fact, while the Importance computation is the simplest of the three QUICK

factors, its significant dependence upon dynamic application state information makes it the

80

most costly computation in terms of run-time system resources.

The major contribution to Importance comes from the application Task, combined

with the ontological object description. This reflects the fact that the information which

is essential to the user varies by application task. (An explanation of these issues, with

example scenarios, is available in Chapter IV).

Each Task uses its own algorithm for combining object description, annotation, and

application state to compute Importance. The following section describes the dynamic

application state information which is made available by the QUICK library for that com-

putation.

1. Dynamic Factors

The spatial arrangement of objects and viewpoint in a virtual world has a major

impact on the Fidelity contribution made by any object. Most LOD management systems

depend solely upon spatially-based heuristics to make representation decisions. QUICK

makes the results of similar computations available to the application so that they can be

combined as appropriate for the current task. This section explains how each of those vari-

ables is determined; the Task defines how these variables are combined in the Importance

computation.

a. Distance Attenuation

Simple LOD management systems, such as VRML and Java3D, use prox-

imity as the sole measurement for object importance. Traditionally, LOD node definitions

include a series of distances that indicate which representation should be chosen, as shown

81

No Low Medium

Detail Detail Detail

Threshold Threshold Threshold

No
Detail

_J3

Low Medium High

Detail Detail Detail

Figure 10. LOD selection by threshold distance.

in Figure 10. When the object is less distant than the first distance, the highest-detail object

is selected; as the object moves farther from the viewpoint, representations with less detail

are selected. This mimics the real-world effect of angular resolution.

These arbitrary distance settings are constant regardless of task or surround-

ing virtual environment. While such techniques have proven adequate for a singular pur-

pose, they negatively impact the composability of virtual world content. (A full comparison

of QUICK and traditional resource management systems can be found in Chapter X.)

Essentially, the desired outcome is attenuation of Importance over distance.

This attenuation can be modeled with a step function, as in Figure 10, or as a continu-

ous polynomial. The Virtual Planetary Explorer project [Hitchner and McGreevy, 1993],

for example, determined importance by summing the square of the distances from certain

fiducial points.

In QUICK , the distance attenuation function is incorporated in a Task defi-

nition rather than embedded in each object description. Tasks can query the current distance

82

between an object and the viewpoint, and then adjust the Importance as desired.

b. Screen Position

The difference in acuity in the human eye between foveal and peripheral

perception is striking. Rich Gossweiler's dissertation [Gossweiler, 1996] included a frame-

work that used such psychophsycial metrics to make decisions of rendering complexity. In

the absence of eye-tracking hardware, that systems and others generally assume that eye

focus is on the center of the screen and optimize appropriately. Accordingly, QUICK offers

functions to determine screen coordinates for virtual objects. Without eye-tracking capabil-

ities, this information is rarely useful and is therefore omitted from the default Importance

computation.

c. Subtended Screen Area

Distance attenuation attempts to reflect the change in subtended visual angle

caused by object motion. However, it does not account for the fact that objects can vary

significantly in size. For example, an object at distance 2d with view-perpendicular cross-

section size 3s subtends 1.5 more visual angle than an object at distance d with cross-

section length of s (see Figure 1 1).

Arguably, large objects make a significant impact upon the fidelity of the

scene, regardless of their distance from the viewpoint. Of course, the cost of displaying

those objects is equally significant, especially in display platforms limited by pixel-fill.

The QUICK system is able to determine the number of pixels covered by an object (or,

more cheaply, the object's bounding volume) if that information is required by a Task.

83

3s

X
X N

v. X
X x
X

/

Eye

Point

^ 2d

Figure 1 1 . Importance effects of size can outweigh distance.

d. Visibility

Using visual occlusion to reduce graphics processing load is an active area

of research in computational geometry. Determination of visibility is a complex operation

(general-form exact visibility is considered to be an 0(n9
)
problem). Therefore, point-

to-object visibility is often determined in a precomputation stage, such as was used in

the Berkeley Walkthrough [Funkhouser and Sequin, 1993]. In the QUICK model, such

informatin can be used by adjusting a node's Importance if it is occluded.

84

It is worthwhile to note that most existing visibility engines return only

boolean information, stating simply whether an object is or is not visually occluded. Values

of a continuous nature would be more effective in combination with QUICK. For instance,

when appropriate to a Task, an object's Importance could be multiplied by its visibility; an

80% visible object would have its Importance reduced by 20%. Any such opportunity to

add information to the QUICK inputs invariably results in added expressivity for applica-

tion Task programmer.

The Graduated Visibility Set (GVS) determines a "percentage" of visibility

between two spaces in a model [Capps and Teller, 1997]. The GVS could be adapted for

inclusion in the QUICK framework, though it is best suited for virtual environments in

which the set of possible viewpoints is constrained.

Occlusion determination is often used in conjunction with visibility culling,

which is significantly less expensive to compute. Most modern graphics hardware incorpo-

rates frustum culling, in which objects are culled if they exceed a distance from the eyepoint

or are outside the viewing area. View-frustum culling is usually excluded from Importance

determinations because changes in viewing direction can occur more rapidly than optimiza-

tion passes. However, facilities are available for determining whether an object is within

the viewing frustum.

e. Motion Prediction

Optimization in QUICK is used both for display decisions and representa-

tion request decisions. While a change of representation choice is evident within at most

85

two frame display cycles, a representation request may not be evident for considerably

longer. A request incurs round-trip network latency to begin the transfer, and then the

transfer itself is constrained by available network bandwidth. The representation file is

parsed into a scene graph in memory, and that graph is attached to the virtual world be-

tween draw traversals. For large representations requested over a poor network connection,

this delay can take seconds.

By the time a requested representation arrives, it may no longer be pertinent,

and in fact never be selected for display. In that case, the memory, network bandwidth, and

parsing resources have all been wasted—hardly an optimal strategy. The standard approach

for avoiding such wasteful operations is to request representations such that they will be

needed at the time of their arrival. This requires knowledge of the optimal world state at a

time in the future, which requires a prediction algorithm.

Prediction of world state can be performed with varying degrees of accu-

racy. For an animated path, the prediction can be made with perfect certainty. Constrain-

ing the possible paths in a virtual environment increases prediction accuracy. Controlling

the intrinsic navigational motion range (velocity, acceleration, and rotational velocity and

acceleration) has a similar effect. The Berkeley Walkthrough system allows only human-

range motion, inside an architectural space, so tolerable motion prediction was possible.

Even with such constraints, accuracy of motion prediction techniques usually drops expo-

nentially with increasing time, due to the ever-increasing space of options.

In the QUICK framework, motion prediction can be used when determin-

86

ing Importance, as that value is highly proximity-dependent. As discussed above, motion

prediction is a function of both the virtual environment and the navigation method, and

general-purpose motion prediction techniques are generally not useful. Therefore, all mo-

tion prediction models are incorporated into specialized Tasks, and then used when com-

puting distance attenuation and visibility for Importance.

2. Default Computation

It is strongly suggested that application programmers write Task specifications for

each significant use of their application. The QUICK framework offers a standard Task that

offers reasonable performance for general-purpose applications. The default computation

for Importance is straightforward: the annotation value is modified for object distance only.

The Importance value / is computed by:

_ (far — d\ ,__ ,.

I = l *{
L
T^r)

(VU)

where i is the annotated Importance value, far represents the far clipping distance, and d

is the object's distance from the eyepoint.

The other factors discussed above are not incorporated for a variety of reasons.

Screen area is closely related to distance, and should therefore be needed only for special

purpose tasks or environments. Visibility is much too expensive to compute dynamically

and so is not included in the default case. Visibility preprocessing is not feasible, or even

useful, for arbitrary models which are not completely available locally. For similar reasons,

motion prediction is not useful for general-purpose systems. In the default case, there is no

87

path constraint, since collision between avatar and environment is not supported. Addition-

ally, the user motion model allows near-infinite rotational acceleration and velocity, which

makes prediction highly inaccurate.

D. IMPORTANCE ANNOTATION STRATEGIES

Generating Importance information should be a trivial addition to the authoring pro-

cess. In most scenes, the majority of nodes have average importance. Some objects would

be annotated as varying from average if they were especially important (or unimportant)

to the intended usage of the scene. A model author cannot possibly foresee all possible

applications of a scene, which is why the author annotation information is used in only the

most general-purpose systems.

Automatic Importance generation methods usually hinge upon visibility and sight-

lines; for instance, landmarks might be identified as those objects which can be seen from

many places in the virtual environment. Certainly the visibility preprocessing discussed

above is a form of automated Importance generation. The Ville project, mentioned in

section II.D, uses morphological analysis to determine areas of interest in city models. It

is important to note that any of these mechanisms can be incorporated into the QUICK

framework by building a Task which knows how to apply that information appropriately

in generating an up-to-date Importance for a scene object. While QUICK includes several

common mechanisms for generating Importance, it has been designed as a framework for

the exploration of existing and new algorithms rather than a definitive library of techniques.

88

E. THE COST FACTOR

The remainder of this chapter describes the components of the Cost annotation.

The QUICK Cost factor is a multi-dimensional value that reflects a representation's con-

sumption of the various limited system resources. The available amounts of each of these

resources for a given display platform are described by its client specification. The opti-

mization process selects the highest-fidelity representations whose summed resource costs

are below the specified limitations.

1. Cost Components

The Cost tuple consists of two primary sections: storage requirements and process-

ing requirements. Storage requirements relate to memory footprint and file storage, while

processing costs are those related to rendering a representation. It should be noted that

while the components of these costs are discussed individually below, many new and dif-

ferent system limitations will likely become important as new types of representations and

platforms are incorporated into QUICK

.

The storage cost of a representation includes the following factors:

• Disk footprint. Text-based graphics file formats are generally designed for read-

ability rather than compression. Accordingly, the file size is included as a separate

resource Cost. Available disk file-cache space is rarely a constraint, but can be im-

portant for very large environments or long-lived sessions. This can be determined

by simple inspection of the completed file.

89

• Memory footprint. Each representation has a memory space requirement after

it has been parsed into a scene graph and geometric description. An exact value

requires knowledge of the display platform and graphics library. Sinking memory

costs have reduced the likelihood of main memory constraints, but knowledge about

storage size is required for cache management for large environments. This infor-

mation is usually determined by the author in an experimental application, or the

disk footprint is used as the default.

• Network footprint. The transmission size of a graphics file is generally the same

as the disk footprint. This component can be different if a chosen file format in-

cludes any sort of network compression. Network bandwidth is frequently a tightly-

constrained resource, and the network footprint is used to prioritize network re-

quests.

• Texture size. Most modem graphics hardware systems include special-purpose

cache memory for storing textures. Exceeding the limitations of that cache will

often significantly degrade performance by requiring additional bus transfers be-

tween main memory and the graphics subsystem. This information can usually be

determined with modeling tools.

The processing cost of a representation includes the following factors:

90

• Primitive Count. For traditional graphics hardware, the primary limitation on scal-

able virtual environments is polygon throughput. Polygon flow reduction has been

a primary research focus since the onset of computer graphics. While lit triangles

are certainly no longer the only way to describe three-dimensional geometry, they

are still the primary standard for benchmarking hardware performance. While this

value is a simplification which does not include optimization information (such as

the organization of the primitives, which can greatly enhance throughput), primitive

count is still the most effective gauge of the processing requirements for a model.

This information can be determined with a variety of public-domain modeling tools.

• Pixel area. Graphics systems can also be limited by their capability to rasterize tri-

angles into filled pixels on the screen. The pixel area gives the number of pixels that

must be filled to display a representation. Pixel area can be estimated by transform-

ing the representation's bounding volume to the appropriate distance and projecting

to screen space. This information can only be ascertained during execution, when

the object's position is available, so this Cost component is often omitted from the

optimization process.

Non-standard representations, such as fractally-defined geometry, require computations

that cannot be performed with graphics hardware. The Cost annotation originally included

a FLOPS (float-point operations) component which specified the amount of processing

needed to generate displayable geometry from the memory description. The great variety

91

of possible representations, and the equally great variety of algorithms for their compu-

tation, made that component's use infeasible. There is currently no way to specify what

graphics library will be used to process a representation, and without that information

format-specific processing estimates are not useful. This topic requires additional inves-

tigation, and is discussed further in Chapter XI.

2. Computing Cost

Because the Cost factor is a vector instead of a single value, there is usually no

need for a computation step. When formulating the optimization problem, each represen-

tation requires a certain amount of each system resource. The client specification gives

the limitation for each resource, and therefore, the limitation to the cost constraints in the

optimization.

The default computation of Cost does not perform any computation. Tasks can

override this behavior if desired. For instance, Cost components can be dependent upon

dynamic application state; pixel area is a prime example, which requires updated viewpoint

information. In general, Tasks should avoid excessive computation in the Cost determina-

tion stage, as it affects the system processing load but cannot be included or omitted from

the optimization process.

92

VII. SOFTWARE DESIGN

A. INTRODUCTION

This chapter explains the software implementation of the QUICK framework. It

begins with an discussion of available graphics software libraries, and a rationale for the

selection of Java and Java3D. Following is a description of the scene graph file format,

which combines geometric descriptions of representations with the QUICK annotations.

The chapter concludes with a review of the software architecture for managing the model

cache, that is, the process by which models are loaded, parsed, and displayed.

B. SOFTWARE LIBRARIES

The choice of graphics library software is complicated by the availability of a num-

ber of effective but disparate solutions. Choosing a particular graphics library brings con-

comitant choices of scene graph format, available high-order geometric representations,

hardware and operating system choices, and more.

This section describes the QUICK system's requirements of a graphics library, as

well as the reasons for the selection of graphics library for the primary QUICK implemen-

tation.

93

1. Requirements

Because the selection of graphics software library has such pervasive effects on the

system architecture, a list of requirements were established at an early stage:

• Cross-Platform: The QUICK system is intended to be a general form solution

which reduces client display platforms to a set of important characteristics. There-

fore, the implementation itself should support heterogeneous platforms. Cross plat-

form windowing support is not a requirement, but is preferred.

• Free, or Ubiquitous: QUICK itself is intended to be distributed freely, so it is

appropriate that the chosen graphics subsystem be widely, or freely, installed.

• Extensible: No scene graph or library will contain all possible representation types.

Most, but not all, graphics libraries are extensible.

• Multi-threaded: Support for concurrent access to the scene structure is required in

order for QUICK to perform optimizations while drawing. Single-threaded execu-

tion would lead to a notable lack of interactivity.

• High-level: A library with its own high-level scene graph gives an excellent start-

ing point for QUICK development. Additionally, the benefit of a low-level only

graphics API (flexibility) is not necessarily helpful in this instance.

94

2. Selected Software

Initially, the creation of a new scene graph library was considered. That option was

discarded because it would likely negatively affect the use of QUICK as either a system

foundation or learning tool. Therefore, a number of graphics libraries were investigated for

use in the QUICK framework. This section summarizes the findings of that investigation.

The Performer, Fahrenheit, and Direct3D Retained-mode libraries were all rejected

due to lack of portability. Performer currently is available for only SGI Irix and Linux

platforms; the Linux release has only limited functionality. Fahrenheit and Direct3D are

available only for Microsoft Windows platforms.

Openlnventor is implemented upon a number of platforms, though for some plat-

forms there is a fee for third-party implementations. However, Openlnventor is by nature

a single-threaded application, which makes it infeasible for real-time applications with

QUICK

.

At the time of this decision, the Fahrenheit and X3D libraries were not fully speci-

fied, so they were not fully considered as options.

OpenGL meets many of the needs for QUICK , in that it is widely-available, freely

distributed, high-performance, and cross-platform. OpenGL does not support both Imme-

diate and Retained mode rendering. Therefore it has no high-level scene-graph interface.

Many scene-graph libraries (such as Inventor, Performer, and Java3D) sit atop OpenGL and

those choices seemed preferable.

95

PLIB [PLI, 2000], a cross-platform library similar to Performer, was seriously con-

sidered. It offers reasonably high-performance, and is in Open Source. The Java3D li-

brary [Sowizral et ah, 1997] is similarly cross-platform, and has a much more active de-

velopment community. Java3D is written atop Sun's Java programming language, whereas

PLIB is a C++ library. Java is generally preferred over C++ when rapid prototyping and

development is more of a concern than run-time performance, so it is naturally preferred

for implementing a thesis proof-of-concept system. Because of the language difference,

and its more supportive development community, Java3D was selected for the prototypical

implementation of the QUICK framework.

C. QUICK SCENE GRAPH AND FILE FORMAT

To contain the QUICK annotations, and store the relationships between objects and

their representations, it was necessary to create a number of special scene graph nodes.

This section describes those nodes, the syntax for their specification, and their semantic

interactions. Sun's Java3D graphics library was used for the QUICK software implemen-

tation (see Chapter X for an explanation of that decision). Although nodes in the Java3D

scene graph cannot be directly modified, subclassing is allowed to permit extension and

variation.

1. Scene Graph Elements

Each individual object in the virtual environment is represented in the QUICK scene

graph by a QSwitch node. In a Java3D scene graph, Group nodes are interior tree nodes

96

that include an ordered set of children. The Java3D Switch node extends Group by adding

the ability to designate which of the children are included in traversals. That designation

can include zero, all, or any combination of the child subtrees. The QUICK QSwitch node

extends the Java3D Switch with the Importance information for its related virtual object.

Each representation of an object in a virtual environment is included in the scene

graph with a QNode. The QNode is an extension of the Java3D TransformGroup, which

is simply a Group node that includes a geometric transformation which is applied to all

children. The QNode contains Cost and Quality annotations in special data structures;

these are included as nodes in the file format, but are not scene graph nodes included in the

traversal. The geometric data for a representation is stored in the children of the QNode.

This information is often not available at initialization, but is instead kept in a separate file

to allow demand-based loading. Each QNode includes a location field, which is a string

representation of a (possibly networked) file location, which is used to locate the geometry.

Because that geometric data for a QNode is usually stored in a separate file, it is incumbent

upon the author of the QNode to ensure that the each representation of a virtual object

share physical characteristics (size, position, etc.). QNode extends TransformGroup, and

therefore contains its own transformation, to facilitate that process.

The geometric data stored beneath a QNode is often similar or identical across

multiple occurrences of objects. To prevent repeated storage cost for each use, the Java3D

scene graph supports instancing for repeated lightweight reuse of nodes. A subgraph can

be loaded once into memory, and then symbolically linked into multiple points in the scene

97

/

)

y i i

n _L

\y Null

SharedGroup

(subtree)

Figure 12. Java3D Link and SharedGroup nodes.

graph (see Figure 12). Java3D uses the SharedGroup node to mark the root of a sharable

subgraph. The Link node is a special Group node that allows exactly one child, which must

be a SharedGroup.

Each QNode contains a single Link node which points to the SharedGroup contain-

ing the representation geometry. The QUICK system defers loading that geometry until it is

needed, so at initialization a QNode usually will have not have a subgraph. The proper pro-

cedure would be to add a Link to the SharedGroup when the geometry becomes available,

but this is not permitted by the graphics library. In order to accelerate rendering, Java3D

puts strong restrictions on run-time modifications to scene graph structure. To reliably

circumvent this restriction, the QUICK implementation uses a special 'null' SharedGroup

node. Each Link is initialized to point to the null node, which has no effect on the draw

traversal; the Links are adjusted when their geometry becomes available.

98

Both the QNode and the QSwitch nodes include an array of strings which serves

as the functional description. This information is required for task-based adjustment of

the QUICK factors, as discussed in Chapter IV section E. Most objects serve a variety of

roles in a virtual world, and therefore any given task might gauge the Importance of an

object differently. The utility of a content description to describe the roles of a scene object

(and its related QSwitch) is obvious. Less clear is the need for a content description of

an individual geometric representation (the QNode). Actually, the capability to annotate

a representation with qualitative remarks gives great power of expression. For example,

there is no straightforward method for comparing the Quality of a artist's non-photorealistic

representation of a hotel with the Quality of a geometric CAD model. Depending on the

user or task, either might be considered the superior. Labeling each a representation as

"cartoonish" or "dreary" can adequately inform a task for proper discrimination. (Use of

ontological descriptions in fidelity computation was discussed in Chapter IV.)

The structure of the QUICK scene graph is tightly constrained in order to minimize

the complexity of the optimization process. These topographical constraints do not cause

any loss in generality for scenes which can be depicted, because the topology of a scene

graph does not need to be related to visual arrangement. These constraints are listed and

explained below; additionally refer to Figure 13.

• QSwitch allows only QNode children. For simplicity, QUICK assumes that only

QNodes will be attached to a QSwitch grouping node. Each child of a QSwitch is

assumed to be a different representation of the same virtual object. Allowing any

99

^Link/7 ^MJnk/7 ^Link/7

_L

Null

Geometry Geometry

Figure 13. A legal QSwitch node has only QNode children, which each contain a single

Link child.

other type of node as a child implies that the QUICK system would not have the

annotation information needed for the linear optimization model. A single child

without those annotation is enough to make optimal child selection impossible.

• Only one QSwitch allowed on any path. Allowing nested QSwitch nodes greatly

increases the complexity of the computation. Nested decision points would require

solution of optimization sub-problems in the overall optimization, increasing the

already-exponential complexity of an n-QSwitch optimization by a factor of n\.

Therefore, only one QSwitch is allowed on a path from the scene root to any leaf.

100

• Qnode has one Link child. QNode supports only a single child, which is a Link

node as discussed above. When the geometry for a representation is not in memory,

the Link points to the null node. Any other children of the QNode are ignored by the

QUICK engine, and their presence could cause unwanted behavior. Accordingly,

the file parsing system rejects files with more than one child in a QNode; these

are syntactically correct, but semantically flawed. Chapter VIII contains a more

detailed discussion of this issue.

• No extraneous Link nodes. To identify the top-down inherited state at any given

node, it is necessary to trace upwards to the scene root. Most scene graphs are

simple hierarchical trees, meaning that exactly one path exists from the root to

any node. Link nodes and instanced SharedGroups add variability to the structure

of a scene graph. To define a root-to-node path uniquely, it is then necessary to

include each Link node on that path. The QSwitch node, and therefore the QNode,

is constrained to not be nested. This limits the number of Links on any path to one,

making the problem of tracking node paths much less complex. Since most QUICK

path queries (such as world-coordinate position of an object) point to the QSwitch

or QNode, no Link is included in the path at all. To simplify the path generation

process, QUICK requires that the scene graph not include Link nodes from other

sources. The VRML97 loader for Java3D does not use instancing, so this constraint

does not restrict the authoring process.

101

2. File Format

This section describes the QUICK file format, and includes examples of the special

QUICK control nodes. The QUICK file format is a derivative of the Virtual Reality Mod-

eling Language (VRML) 1997 ISO standard [VRM, 1997]. The selection of VRML is a

straightforward decision, for a number of reasons:

• ASCII file format. VRML models are traditionally expressed in plain-text, facili-

tating QUICK modifications to pre-existing VRML files. This also simplified file

processing, as Java includes excellent functions for reading and parsing text.

• Ubiquitous acceptance. VRML is the lingua franca of three-dimensional models;

almost every major authoring package includes a VRML export facility. Most web

browser applications include a VRML browsing module, or offer one as an option.

QUICK optimization techniques might have a tremendous impact on 3D on the

Internet through VRML. By initially proving QUICK 's effectiveness with practical

testing on VRML models, it is more likely that the recommendations of this thesis

might be applied to that domain.

• Free model libraries. VRML's popularity led to the construction of many thousands

of models. Many of these models are publicly available on the World Wide Web;

in the absence of copyright restrictions, any can be annotated and included in a

QUICK virtual environment.

102

• Inherently networked. VRML was designed from the beginning for client/server

networking on the Internet. VRML's Inline node, which contains a web location for

another VRML file, gives world authors the flexibility to incorporate models which

are distributed across the Internet. QUICK is most effectively used with models

segmented in exactly this fashion.

• Java3D loader. The Java3D & VRML Working Group of the Web3D Consortium

established interoperability between the VRML format and the Java3D API. The

program source for the loader is publicly available. Further development continues

via that Consortium's X3D and Source Task Groups.

The VRML standard allows for extension with new node types, using the PROTO

(prototype) and EXTERNPROTO (externally-defined prototype) nodes. The QUICK an-

notations and additional nodes are defined within the VRML97 standard using these con-

structions. PROTO-handling in the Java3D VRML97 loader does not lend itself to the

QUICK optimization process. Therefore, for convenience, the initial QUICK implemen-

tation uses a special extension of VRML97 with non-standard node definitions. QUICK

node definitions using the PROTO construction are included below for completeness.

The format for each of the new QUICK nodes is discussed in turn below. Each line

of these specifications includes the field type, the field tag, and the default value for the

field. Field types are given in the same format as the VRML97 specification [VRM, 1997],

and the reader is strongly recommended to consult that document. (Briefly, the prefixes

"SF' and "MF" indicate a single field and a multiple-member field, respectively. "Vec3f

'

103

QNode
{

fields common to the VRML Group and Transform nodes
SFVec3f bboxCenter 0.0 0.0 0.0

SFVec3f bboxSize -1.0 -1.0 -1.0

MFNode children []

fields used in the VRML Transform node:
SFVec3f center 0.0 0.0 0.0

SFRotation rotation 0.0 0.0 1.0 0.0

SFVec3f scale 1.0 1.0 1.0

SFRotation scaleOrientation 0.0 0.0 1.0 0.0

SFVec3f translation 0.0 0.0 0.0

new fields
MFString contents
SFString url
SFNode cost
SFNode quality

[]

NULL # a QCost node
NULL # a QQuality node

Figure 14. QNode file format.

indicates a vector containing three floating-point numbers, and "Rotation" is an axis-angle

representation analogous to a quarternion vector.)

The QNode representation format using VRML is given in Figure 15 (the modified

VRML version used in the QUICK implementation is given in Figure 14). Most fields are

inherited from its base Transform node. The VRML Transform node is in turn a subclass

of the Group node, so those fields are listed as well. The children node list is used when the

geometry for a representation is included in the same file. Generally, it is preferred to use

the url string to specify where to find that geometry, because this gives the QUICK frame-

work the option to defer loading and parsing. In the case of small geometric descriptions,

104

PROTO QNode [

fields for the VRML Transform node
field SFVec3f qbboxCenter 0.0 0.0 0.

field SFVec3f qbboxSize -1.0 -1..0 -

exposedField SFVec3f qtranslation 0.0 0.0 0.

exposedField SFRotation qrotation 0.0 0.0 1.

exposedField SFVec3f qscale 1.0 1.0 1.

exposedField SFRotation qscaleOrientation 0.0 0.0 1..0

exposedField SFVec3f qcenter 0.0 0.0 0.

exposedField MFNode qchildren []

new fields

:

MFString contents []

SFString url ii M

SFNode cost NULL # a QCost node
SFNode quality NULL # a QQucility node

1.0

0.0

0.0

Transform {

bboxCenter IS qbboxCenter
bboxSize IS qbboxSize
translation IS qtranslation
rotation IS qrotation
scale IS qscale
scaleOrientation IS qscaleOrientation
center IS qcenter
children IS qchildren

}

Figure 15. QNode file format, using standard VRML PROTO.

105

QSwitch
{

fields from the VRML Switch node
SFInt32 whichChoice -1

MFNode choice []

new fields:
SFFloat importance . 5

MFString contents []

Figure 16. QSwitch file format.

it is often preferable to include the information directly as a child of the QNode, to avoid

the overhead of restarting the parsing engine.

The url field is a character-string containing an Internet URL or a local file system

reference. This field is ignored if the children field is not null. The contents field is a

list of strings, as specified in the previous section and in Chapter IV, which describe this

QNode's representation. The cost field contains a single node, which must be a QCost

node; similarly, the quality field contains a single QQuality node. If either field is left

blank, the correct node will be created and initialized to its default values.

The QSwitch description is given in Figure 16. The QSwitch is a simple extension

of the VRML Switch node, with two added fields. The VRML Switch includes an array

of children, similar to a Group, with the added whichChoice field to designate which of

the children should be initially drawn. The default value is to display none of the children,

which is the preferred setting when authoring a QUICK model. The whichChoice setting is

only used as the initial setting for a QSwitch; any subsequent optimizations may change the

106

PROTO QSwitch [

fields from the VRML Switch node:
exposedField SFInt32 whichChild -1

exposedField MFNode children []

new fields:
exposedField SFFloat importance .5

exposedField MFString contents []

]

{

Switch {

whichChoice IS whichChild
choice IS children

}

}

Figure 17. QSwitch file format, using standard VRML PROTO.

rendered child without regard to that value. The importance value is a single floating-point

number, whose purpose is described in Chapter VI. Lastly, the QSwitch contains a contents

field for task-based optimization. Figure 17 gives the same description in a more standard

VRML PROTO format.

The QQuality node indicates the Quality for a QNode representation. The format

given in Figure 1 8 includes only a workable subset of the possible values that could be

included in a Quality computation. QUICK is intended to serve as a framework for explo-

ration in that area; this research does not purport to offer a general-purpose formulation for

Quality, which can vary by application task. The QCost node is designed similarly (see

Figure 19); it does not necessarily include all possible costs of a QNode representation, but

it does allow sufficient flexibility for most models. All fields in the QQuality and QCost

107

QQuality
{

SFFloat geomError -1.,0

SFFloat geomStdev -1.

SFInt32 colorDepth -1

SFInt32 textureResolution -1

SFInt32 alphaDepth -1

SFFloat subjective -1.

}

PROTO QQuality
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField

SFFloat geomError -1.

SFFloat geomStdev -1.

SFInt32 colorDepth -1

SFInt32 textureResolution -1

SFInt32 alphaDepth -1

SFFloat subjective -1.

Worldlnfo {

There is no standard
analog for QQuality,
node is added.

}

VRML scene node
so a comment

Figure 18. QQuality file format, and its associated PROTO format.

nodes default to —1, which is recognized by the QUICK framework to mean that the value

should not be included in the optimization formulation. Note that the PROTO forms of the

QQuality and QCost nodes add only a comment node to the VRML scene graph. All field

access is performed directly through the PROTO.

The example file in Figure 20 shows all of these nodes used in combination. It is

important to note that, in VRML files, the field ordering within a node is insignificant. The

108

QCost {

SFInt32 triangles -1

SFInt32 flops -1

SFInt32 f ilesize -1

triangles -1

flops -1

f ilesize -1

}

PROTO QCost [

exposedField SFInt32
exposedField SFInt32
exposedField SFInt32

]

{

Worldlnfo {

There is no standard VRML scene node
analog for QCost , so a comment
node is added.

}

}

Figure 19. QCost file format, and its associated PROTO format.

file contains a P-38 airplane with two representations, one with full geometry and the other

just a simple box. The airplane object is modeled with a QSwitch to allow the QUICK

system to decide between these two representations; each representation is placed in a

QNode child of the QSwitch. The ordering of the QNodes in the QSwitch is not important,

and is ignored in the optimization process. (The second QNode is the higher resolution

model in this case.) The two representations do not have the same orientation or scale, so

the second QNode uses its Transform capability to make those adjustments before loading.

109

QSwitch
{

importance 1 .

contents [

"Vehicle : Air : Plane : P38

"

]

choice [

QNode {

quality QQuality
{

textureResolution
alphaDepth
geomError 5 .

5

}

cost QCost {

triangles 12

filesize 154

}

url "http : //vr. edu/quick/models/box.wrl

"

contents [

"Geometry : Box"

]

} # end QNode
QNode

{

quality QQuality {

alphaDepth 8

textureResolution
geomError .

1

}

cost QCost {

triangles 2404
filesize 34552

}

rotation 1 -1.57

scale 15 15 15

url "p38.wri"

} # end QNode
] # end choice

} # end QSwitch

Figure 20. Example QUICK file using all special extension nodes.

110

Application

request

optimization

request

task/client

information

Cache
Manager

request nodes

Switch

Manager

Figure 21. Primary functional components in the QUICK framework.

D. SOFTWARE ARCHITECTURE

This section explains the architecture of the components of the QUICK frame-

work software system. This architecture is presented in a language- and implementation-

independent manner to facilitate additional implementations. This architecture for QUICK

optimization was designed to be general enough for application to any graphical browser

paired with a scene graph offering thread-safe access. Details of the Java/Java3D proof-of-

concept implementation built for this dissertation can be found in the following section.

The architecture consists of four major modules, as shown in Figure 2 1 . The Ap-

plication maintains, and possibly updates, the client specification and task definition. It

also contains the user's graphical interface to the virtual environment. The visual data for

111

the virtual environment is contained in a hierarchical scene graph, which all other modules

can access or modify concurrently. The SwitchManager is attached to the scene graph to

control display. The SwitchManager chooses which QNode child of each QSwitch is to be

displayed. One method for making that choice is linear optimization, but SwitchManagers

can be based on standard heuristics as well. The SwitchManager is also responsible for

requesting new representations via CacheManager, the final module. The CacheManager

controls the local store of objects; it handless all access to objects in secondary disk storage

and the network. When a node is requested, the CacheManager locates, loads, and parses

the node and inserts it into the scene graph.

1. Application Design

The Application module contains the graphical display engine which handles nav-

igation of the virtual environment. A typical QUICK application can be built atop a pre-

existing walkthrough program, adding two Manager modules and giving them partial ac-

cess to the scene graph.

The Application holds task and client specification information, and must offer ac-

cess to the SwitchManager module. QUICK applications designed for a specific purpose

may keep the task static, whereas others may allow the user to switch between multiple

tasks as the situation warrants.

Each type of Task is represented by a separate program class responsible for com-

putation of the QUICK factors. When the SwitchManager performs an optimization, it

requires up-to-date Quality and Cost for each QNode and Importance for each QSwitch.

112

The algorithm for determining these values is dependent upon the application goal, so there

is no useful method that can suffice in all cases. Therefore, each Task class embeds its own

program code for computing the QUICK factor values. The SwitchManager delegates all

computations to the current Task, so that it can return values that are properly modified.

2. CacheManager Design

The CacheManager module must manage all of the multiple sources and stores for

representations—including the network, local disk, and main memory. The CacheManager

does not necessarily make any decisions about which files to request; it only needs to

carry out the commands of the SwitchManager. The CacheManager can be charged with

selecting nodes for deletion when necessary. The deletion process can be optimized in

nearly the exact same fashion as the request process; a combination of the Least-Recently-

Used strategy, with lowest-Importance / highest-storage-Cost, seems appropriate.

The CacheManager consists of a number of subcomponents which help with storage

and network access. Those components, shown in Figure 22, operate as follows:

• CacheManager. The CacheManager component provides the disk and network in-

terface to the SwitchManager. It contains a LoadManager and a buffer of nodes to

be returned to the SwitchManager.

• LoadManager. This component offers a sparse interface to the CacheManager for

nodes: LoadQ, UnloadQ, and DeleteQ. It handles the platform-specific details of

113

Loaded

Nodes

x
Load Manager

Cache
Manager

Disk

Manager
Network

Manager

a
t

ni
T

Net 1

Figure 22. Cache management components.

loading files with the DiskManager and NetworkManager. It additionally contains

the parsing elements for building scene graphs from files.

• DiskManager: The DiskManager controls transfer of nodes to and from the local

disk; these can be either files on the local drive or files cached locally from previous

network activity. The simple API includes the following: Load(), Save(), Delete(),

and a test to see if a node is already in the disk cache.

• NetworkManager: The NetworkManager implements a single Fetch() method used

to download a node from a network location. NetworkManager, DiskManager, and

LoadManager need to observe the Singleton pattern; that is, only one instance of

each can exist in any process space.

114

3. SwitchManager Design

The SwitchManager module performs the optimizations that drive the modifications

to the scene graph. It offers both single-pass and ongoing optimization, depending on the

needs of the application. Internally, it traverses the scene graph (in-order) and runs special

helper functions whenever QNode or QSwitch nodes are encountered. The SwitchManager

usually needs up-to-date QUICK factor information for these helper functions. To compute

those values, it queries the Application for the current Task and delegates the computation

as desired. The resulting QUICK values are cached whenever possible; for example, if the

Task and client specification have not changed, and the Quality algorithm is not sensitive

to application-state (such as user's head position), those values need not be recomputed.

Different classes of SwitchManagers might exhibit radically different behavior on

the same scene graph. One might request all unloaded QNodes when it encounters them,

while another might compute an optimal pre-caching request order based upon a predicted

navigation path. The key to these differences lies in the implementation of the QNode and

QSwitch processing functions that are invoked during traversal. In the example in which all

nodes are automatically requested, the QSwitch processing function would be empty, and

the QNode processing function would request the QNode's representation if not already

available.

An optimal draw process is slightly more complex, as is illustrated in Figure 23. In

this case, the optimization function creates a linear programming problem instance, then

uses the traversal process to add the variables and constraints to the problem. At each

115

optimize

:

create a new optimization problem instance;
traverse tree;

solve problem;
where result differs from current,

change the displayed QNode;

to process QSwitch:
compute Importance for this node;
add new QSwitch and its Importance to problem;

to process QNode:
compute Quality;
compute Cost;
inform problem to add this QNode to the current

QSwitch, with its Quality and Cost;

Figure 23. Pseudocode for optimal drawing algorithm.

QNode and QSwitch, the QUICK factors are dynamically computed and submitted to the

optimization problem. After the traversal is complete, the problem is solved, and its results

are applied by changing the drawn QNode where directed.

116

VIII. OPTIMIZATION PROCESS

The optimization problem can be stated as multiple instances of the following ques-

tions:

• Display. Given a series of QSwitch nodes, and associated QNode children, which

available QNodes should be displayed?

• Child request. Given a QSwitch node, which QNode children (if any) should be

loaded into memory, and in what order?

The discussion below demonstrates that these problems can be reduced to the same prob-

lem, given the special constraints on QUICK scene graph construction.

Display. Each QNode node in the scene graph has associated with it QUICK annotation

information. Given a constraint on total allowable cost (which is based on the capability

of the display platform), the Display problem is a straightforward linear optimization to

maximize fidelity. The programming model for that optimization is discussed further in

section VIII.A below. The result yields a selection set which chooses zero or one QNodes

for display at each QSwitch.

Child request. To perform asset prioritization for virtual world transfer, the system must

create a preference ordering for the unloaded subtrees of each QSwitch node. This process

cannot be performed in an optimal manner without QUICK annotations for each node in

117

each (as yet unloaded) subtree. The decision to download a subtree must certainly be

made in advance of making the download; an optimal decision may not include loading the

subtree at all. Even downloading a skeleton of the subtree's scene graph, including QUICK

annotations but omitting geometry, is not possible for some instances of the problem; for a

large database, the skeletal subtree can itself be too great for local replication.

One logical approach is to record summary annotation information at each level

of the scene graph hierarchy, and to fetch only the summary information at each level.

Unfortunately, this is difficult to support because there is no straightforward method for

summarizing the annotations. For instance, given three nodes with very different Quality

annotations, there is no way to give a summary that is both accurate enough for optimization

and smaller than a complete listing.

To make the optimization problem tractable, QUICK scene graphs are constrained

to have no more than one QSwitch and one QNode, on any path from scene root to any

scene leaf. In practice, this constraint is not overly restrictive. Multiresolution models

traditionally do not contain multiresolution submodels; resolution selections are usually

internally complete. This indicates that a QSwitch subtree will generally be homogeneous

in Quality; that it represents one version of the object denoted by its parent QSwitch object,

so it can be represented by the QSwitch's Importance; and its homogeneity allows its Cost

to be aggregated as well.

This restriction on scene graph construction thus reduces the Child Request prob-

lem to be similar to the Display problem. First the Display problem is solved over the set

118

of available representations. Then the Display problem is recreated, but QNodes holding

both available and unavailable representations are included in the formulation. If the result

of this new optimization is the same as previous, no nodes need fetching into the cache.

If the result differs, all unavailable nodes that were chosen in the optimization needs to be

considered for request. Those requests can be prioritized by transfer cost, fidelity contribu-

tion, or whatever manner a given optimization scheme prefers given the current availability

of resources.

A. PROBLEM FORMULATION

The formulation of the QUICK optimization model is performed in three steps:

1

.

Build maximizing objective function

2. Add total cost constraint

3. Add object constraints

The following simple example illustrates the process of building an optimization

problem from a small scene graph. Figure 24 shows a scene graph with two objects. Each

object is represented by a QSwitch (trapezoid); at the time of the optimization, Objl has a

dynamically computed Importance value of 0.5, and Obj2 has an Importance of 0.7. Each

object has four possible representations, or QNodes, shown as the circular "Reps" in the

graph. The Quality (Q) and polygonal Cost (C) of each representation has already been

computed, and are also included in the graph.

The given optimization task is an instance of the display problem, within a polygo-

nal cost of 30. That is, all four representations for each object are already in memory, and

119

// 1\ // \\
nteplj ^Rep2j MRep3

j
(Rep4j (Repl

j
(Rep2) (Rep3

J
(Rep4j

Q = .3 Q = .5 Q = .8 Q=l Q = .l Q = .3 Q = .7 Q=.8
C= 9 C=15 C=16 C=18 C= 5 C=10 C=15 C = 20

Figure 24. A simple scene graph with two objects with different importance values and

representations.

the optimization will be used only to decide which representations to display. The steps

enumerated above are used to build the linear optimization model. There is one variable

for each representation, where each variable is boolean and can be set to (do not draw) or

1 (draw). The representation choice vector is labeled X, consisting of variables Xij where

i is the QSwitch and j is the QNode child of QSwitch i.

Step 1 : Build maximizing objective function.

To maximize total Fidelity, it is first necessary to determine the Fidelity contribution

of any particular representation choice. Most of the computation of the QUICK factors has

already been completed; the only remaining step is multiplicative combination of Quality

and Importance. This step includes the "empty" representation for each object, to allow the

possibility that an optimal situation could include no representation for a given object. The

120

Fidelity for the possible representations is given below.

That yields the following objective function for this instance:

.15xi,i + .25xi,2 + -4x1,3 + -5.21,4 + .07x2,i + .21x2,2 + -49x2 ,3 + .56x2)4 (VIII. 1)

Note that variables with 0.0 coefficients, namely the empty representations, have

been omitted from equation VIII. 1. The general-form equation is shown below in VIII.2.

Functions I and Q are the Importance and Quality functions, respectively; n is the number

of QSwitches and k is the variable number of QNodes for each QSwitch.

hQl,lXl,l + IlQl,2Xl,2 + + hQ\,kX\,k + + InQn,lXn,l ++ InQn,kXn ,k (VIII.2)

which equates to maximizing the summation

EE^y <VIIL3)

Step 2: Add total cost constraint.

The cost constraint includes each variable with its cost as a coefficient. The empty

representations have no cost, so again they are omitted.

9xi,i + 15xi,2 + 16x1,3 + 18.Xi,4 + 5x2,i + 10x2>2 + 15x2 ,3 + 20x2,4 < 30 (VIII.4)

The general-form is similar to the general-form objective function:

C,

i,iXi, 1 -fCi,2x 1 ,2 + ... + Ci,^x 1 , A;
+ ... +Cn,ixn ,i + ... + Cn , fc

xn)fc < MaxCost (VIII.5)

which equates to the summation

n k

J2 J2 ^,jxij < MaxCost (VIII.6)

121

In instances where more there is more than one type of limited resource, this step

will generate multiple cost constraints.

Step 3: Add object constraints.

The last step is to constrain the values of the variables to ensure exactly one repre-

sentation is selected for each object. Each object yields a separate constraint of the form:

Xi,o + Xi,\ + . . . + Xijg = 1 (VIII.7)

This constraint would still allow for fractional combinations of the variables, or

combinations of positive and negative coefficients. It is assumed that all variables have

already been constrained to {0, 1}; this is discussed further in the complexity analysis in

the next section.

The optimal solution for the simple problem instance discussed above has a Fidelity

of .74. That value is reached by selecting variables x\$ and x2 ,3, which have fidelity of .25

and .49 respectively, and a total cost of 30.

B. COMPLEXITY ANALYSIS

This section gives a complexity analysis of the optimization problem encountered

in the QUICK framework. For a full discussion of time and space complexity theory, the

reader is urged to consult [Sipser, 1997, Garey and Johnson, 1979].

Most standard linear optimization problems are known to be solvable in polynomial

time (P-time) [Bertsimas and Tsitsiklis, 1997]. Unfortunately, linear optimization prob-

lems that constrain variables to integer values, known as integer programming problems,

122

often require significantly more computation to solve. The variables in the QUICK opti-

mization problem (hereafter labeled Qopt) are each associated with a certain representation,

and dictate whether it is selected in an optimal subset. Since representations are either cho-

sen or not chosen, those variables are all constrained to integer values in {0, 1}, where

1 indicates those representations to be included in the optimal set. Q^t is therefore an

instance of the zero-one integer programming problem (commonly called ZOIP).

Any optimization problem has two closely-related corresponding problems: eval-

uation and recognition [Bertsimas and Tsitsiklis, 1997]. The evaluation problem is to de-

termine the value of the objective function, that is, the value of the optimal assignment of

variables. A solution to the evaluation problem specifically does not yield the preferred

assignment of the variables. The recognition problem is a slight simplification of the eval-

uation problem; it determines whether the value of the objective function meets or exceeds

a given threshold, and does not even yield the actual value of the objective function.

A P-time solution to the optimization problem guarantees a P-time solution to the

evaluation problem, since the value of the objective function can be computed in P-time

from the variable assignments that result from the optimization solution. Similarly, a P-time

solution to the evaluation problem leads to a P-time solution of the recognition problem,

since the evaluation result must only be compared to the threshold in an 0(1) operation.

When applied to the QUICK optimization, these problems can be stated as follows:

• Qopt - { < G >
|
determine assignment of variables X which yields the maximum

fidelity, given the scene-graph optimization problem G }

123

• Qevai = { < G >
|
determine the fidelity / of the optimal solution to the scene-graph

optimization problem G }

• Qrecog = { < G,f >
\
determine whether there exists a solution to the scene-graph

optimization problem G whose fidelity is > / }

The QUICK optimization library uses an exponential-time algorithm to maximize the fi-

delity of a given scene graph, which indicates that the problem scalability is less than would

be desirable. In fact, it is highly unlikely that a faster solution to Q^ exists, since it can be

shown to be an NP-complete problem. A proof follows; it begins by showing that Q TeCog is

NP-complete, and then extending that result to show Q^ is also NP-complete.

To show Qrecog is NP-complete, it is necessary to show that Q rec0g is in the class

NP, and that it is NP-hard.

1: ShowQrecog € NP.

A language is in NP if and only if it is decided by some nondeterministic polynomial

time Turing machine, or equivalently, has a polynomial-time verifier. Consider Turing

machine Tr which nondeterministically branches on each representation variable, such that

for each possible assignment of variables, one computation branch computes the cost and

fidelity for that assignment. The cost and fidelity computations for a single representation

requires 0(1) time, and therefore each branch of computation would require 0(n) time

where n is the number of representations. Thus, Tr runs in polynomial time, and Qrecog is

inNP.

124

Q = v(u)

C= s(u)

Q = v(U])

C= s(Ul)

Q = v(u)

C = s(u)v
rr

Figure 25. An instance of the 0-1 Knapsack problem converted to an instance of the QUICK
recognition problem.

2: Show Qrecog is NP-hard.

This proof is accomplished by polynomial-time reduction from the 0-1 Knapsack

problem. An instance of the 0- 1 Knapsack problem is defined as positive integers B and K,

a finite set U, and functions s(u) and v(u) over U such that s(u) € Z+ and v(u) € Z+
. The

problem is to determine whether there exists a subset U' C U such that (Huec/' s
(
u)) ^ &

and CEuev v (u)) > K.

The related optimization problem is stated more colloquially as the thief's dilemma;

given the desire to maximize his gain, and a knapsack of limited capacity, and varyingly-

valued items to steal, which items should the thief place in his knapsack. The version of the

problem generally called 0-1 Knapsack is the recognition problem, namely whether there

is a way to fill the knapsack that gives the desired value within a limited capacity. The

125

"0-1" refers to the binary-constrained problem, where the solution allows only zero or one

of each item.

0-1 Knapsack [Garey and Johnson, 1979] is a problem widely known to be NP-

complete. Any instance of 0-1 Knapsack can be easily transformed to an instance ofQTecog

in polynomial time (see Figure 25). For each u G U, the transformation creates a QSwitch

with Importance = 1, and a single QNode child with Quality = v(u) and Cost = s(u). The

Cost limit is set to B, and the fidelity minimum / is set to K. A solution to this instance

of Qrecog is exactly analogous to a solution of the original instance of the 0- 1 Knapsack

problem. Moreover, the transformation of the problem instance can be completed in poly-

nomial time (specifically, 0(n) time). Therefore, since 0-1 Knapsack is NP-complete, and

Qrecog can be used to solve 0-1 Knapsack, Qrecog must be NP-hard.

Similar tactics can be used with the 0- 1 Knapsack recognition problem to show that

Qopt and Qeva i
are NP-hard. An instance of the 0- 1 Knapsack problem is polynomially

transformed to a QUICK scene graph. Solving Qeva i
yields the optimal fidelity, which is

compared with K to give the solution to the Knapsack problem. Similarly, the variable

assignments resulting from Q^ can be evaluated in P-time to determine if the total fidelity

is greater than K.

All three classes of QUICK problems have been shown to be NP-hard, and Qrecog

has been proven NP-complete. The following steps use these conclusions to prove the

NP-completeness of the evaluation and optimization problems.

126

As before, to show that QeVai is in NP, it is necessary to show the existence of

a nondeterministic Turing machine that solves the evaluation problem in P-time. Turing

machine Te accepts an instance G of the QUICK scene graph. In its first step, Te computes

the maximum possible fidelity F of any variable assignment. This can be determined easily,

in 0(n) time, by summing the fidelities of the highest-fidelity representation from every

QSwitch. In the second step, Te makes a binary search of the possible solution space,

from to F, using the Turing machine Tr (which was earlier shown to solve Qrecog) as

a subroutine. On each invocation of Tr, Te eliminates half of the remaining possible

results of the objective function, so it calls the Tr subroutine [log F] times. Since Tr has

already been determined to run in polynomial time, Te must also run in polynomial time.

Therefore Qevai
must be in NP; since it has already been shown to be NP-hard, QeVai is

therefore NP-complete.

Armed with this knowledge, it is at last possible to prove that Q op4 is NP-complete.

Turing machine To accepts an instance G of the QUICK scene graph problem. The ma-

chine's first step is to create a modified instance of G, labeled G', in which the first represen-

tation is constrained to 0. Turing machine Te is run as a subroutine on both G and G', and

the fidelity results are compared. If the results are the same, then clearly that representation

can be removed from the optimization problem without loss of optimality. If the results are

different, then the optimal variable assignment must include that representation set to 1 . So

in either case, the representation can be removed from G. This process is repeated for each

variable (that is, for each representation) until no variables remain. This process requires

127

0(n) invocations of the Te machine, which has been shown to run in polynomial time. So,

nondeterministic Turing machine To solves Qopt
in polynomial time, indicating that Qopt is

in NP. Since Q^t has been previously shown to be NP-hard, Q^t is therefore NP-complete.

This coincides with general knowledge about the complexity of integer programming prob-

lems and zero-one integer programming problems [Garey and Johnson, 1979].

C. SIMPLIFICATION TECHNIQUES

By definition, NP-complete algorithms do not scale to large data sets. This section

presents techniques for for simplifying the optimization process, either through approxima-

tion techniques or by constraining the problem. An introduction to dynamic programming,

approximation algorithms and greedy algorithms can be found in [Cormen et ai, 1990].

1. Dynamic Programming

Dynamic programming solves optimization problems by solving its subproblems;

it can be applied only to problems which exhibit optimal substructure traits. The 0- 1 Knap-

sack problem, for instance, can be reformulated as a series of subproblems which determine

the maximum value for a subset of the possible objects. The solution to those subproblems

can be combined to determine the maximum value over the whole set of objects. Each

subproblem can be computed in 0(\U\s(u) max) where \U\ is the size of the set of objects

and s{u)max is the maximum cost value for any object. Since there are \U\ subproblems,

the total running time for the dynamic programming algorithm is 0(\U\ 2
s(u)max). For all

but very large values of s(u) max , this is a significant improvement.

128

2. Approximation Algorithms

Approximation algorithms provide a suboptimal solution to an optimization prob-

lem in polynomial time. They include a guarantee of their maximum error; some such

algorithms even yield customizable speed/accuracy trade-offs. The 0-1 Knapsack algo-

rithm, for example, can be approximated by reducing the cost values in the s(u) function.

Since the complexity of the dynamic programming solution hinges upon s(u) max, reduc-

ing that value yields an equivalent reduction in running time. By scaling down the values in

s(u), some optimization accuracy is of course lost, but the solution complexity is reduced

to 0(^- where a is the bound on the error ratio. A full discussion of this algorithm is

available in [Bertsimas and Tsitsiklis, 1997].

The QUICK implementation includes an approximation algorithm based on the

"greedy" technique. For each optimization pass, the representations are sorted by a benefit-

to-cost ratio; in this case the ratio is Fidelity to Cost. In the (standard) case of multi-dimen-

sional Cost, multiple ratios are recorded. By using the merge sort algorithm, the worst-case

and average-case running time of this greedy algorithm is 0(nlogn). Scene coherency can

improve the expected running time further, since merge sort runs more quickly on nearly-

sorted lists. This requires that the sorted list is stored between optimization passes, that

few representations change Fidelity / Cost ratios, and that few representations are added or

deleted.

Even this worst case of 0(nlogn) is a substantial improvement over the dynamic

programming solution, even for low values of s(u) max . The difference, of course, is that the

129

greedy algorithm cannot guarantee an optimal solution. According to Garey and Johnson,

the similar greedy approximation algorithm for the 0-1 Knapsack problem can guarantee a

relative error no better than 2 [Garey and Johnson, 1979].

3. Continuous Representations

The complexity of the QUICK optimization stems from the integer constraint on

representation selections. In the common case, the optimization task is to select from a set

of discrete levels of detail. However, representations that offer continuous levels of detail

do exist. Progressive meshes and fractal geometry, for instance, both can be dynamically

computed to a exact level of accuracy. The available precision is usually limited by the

geometric description technique (triangles, for instance).

This flexibility completely changes the optimization formulation. Instead of a list

of static representations, each QSwitch would contain the maximum accuracy supported,

and a function specifying the Fidelity/Cost ratio. The QUICK problem is then reduced

to the fractional knapsack problem; each continuous representation must only be set to

the complexity that maximizes overall Fidelity. This can be optimally solved by the greedy

technique, by choosing the maximum allowable accuracy for those representations with the

highest Fidelity/Cost ratio. Therefore, constraining objects to continuous representations

allows optimization in 0(nlogn) time.

130

IX. SOFTWARE IMPLEMENTATION

The QUICK architecture discussed in Chapter VII has been implemented in Java in

a proof-of-concept system which demonstrates the effectiveness of the optimization frame-

work. Java was selected primarily because of the Java3D scene graph library. Java is also

a natural choice for networked applications, as it was designed with web-based data, code

transport, and portability in mind. Additionally, Java's simple memory and thread manage-

ment facilities significantly reduced the programming burden.

This chapter describes the various packages that comprise the QUICK system, as

well as their high-level interactions. It follows with a detailed examination of the classes

in each package and their relationships. Diagrams of class relationships are given using

the Unified Modeling Language (UML); a primer for UML can be found in the short refer-

ence book, UML Distilled [Fowler et ai, 1999]. Actual class names are given in fixed

-

width font. In color-printed versions of the diagrams, pure abstract interfaces are drawn in

red, abstract classes are drawn in salmon-orange, and standard classes are drawn in yellow.

The QUICK system consists of a series of Java packages, each labeled (in the stan-

dard Java form) with an Internet domain and the system name. Because this is a Java3D

implementation of QUICK , the names are of the form "edu.vr.quick.j3d. [package name]".

The packages are:

• edu.vr.quick.j3d contains the core classes needed for any Java3D QUICK applica-

tion, such as QNode and QSwitch.

131

• edu.vr.quick.j3d.cache contains the CacheManager and LoadManager classes

that manage the QUICK cache of representations, including the memory cache, disk

cache, and the scene graph.

• edu.vr.quick.j3d.chooser contains the SwitchManager classes that decide when

and how to modify the application scene graph.

• edu.vr.quick.j3d.opt contains the classes which formulate and solve the zero-one

integer programming problem from a QUICK scene graph.

• edu.vr.quick.j3d.opt.lpsolve contains classes for solving general-form linear opti-

mization problems.

• edu.vr.quick.j3d.opt.test contains tests for both the lpsolve and opt packages.

• com.sun.j3d.loaders.vrml97.impl contains the classes needed to modify the stan-

dard Java3D loader to load and parse QUICK files.

• edu.vr.quick.j3d.util contains miscellaneous classes that do not fit in any other pack-

age.

• edu.vr.quick.j3d.app contains the main application components, including the GUI

elements and the Java3D scene graph.

132

Cost

I
from &du ur quick.j3d)

#_filesize

#_flops

#_tnangles

+getFilesize

+getFlops

+getTnangles

+setFilesize

+setFlops

+setTnangles

+toString

Dated

(from edu.vr.quick.j3d)

#JastChangeTime

+getChangeTime

+setChangeTime

«uses, creates*- __ .

QSwitch

(from edu.urquick j3d)

#_importance

+addContent

+findDistance

+findDistanceFromHead

+firstAvailableQNode

+getAvailable

+getlmportance

+getLocalToVworld

+isAvailable

+isDefinedBy

-HsDQscribedBy

+isRequested

+optimizeDraw

+optimizeFinish

+optimizeStart

+setAvailable

+setlmporlance

+setUnAvailable <
+setWhichChild *'

QCost

(from »du.urquic!c-j3d]

+defaultCompute

+getCost

setLastComputedCost

+toString

_qcost 0..1

R-
Uuses, creates*

\

cirrtertace*

Described N

(from eduurquick j3d)

+isDetinedBy

+isDescnbedBy

Description

(from eduur quick]3d)

+add

+equals

+isDefinedBy

+isDescnbedBy

+toStnng

QNode
(from edu or quick j3d)

Jocation

+addContent

+addLink

+childLoaded

+childUnloaded

+getCost

+getLocation

+getMyParent

+get QCost

+getQQual

-i-getQuality

+getReplD

+initializeQCost

+imtializeQQual

+isAvailable

+isContent

+isDefinedBy

+isDescnbedBy

+isRequested

+setLocation

+settvlyParent

+setPreLoaded

+setQuality

+setReplD

+setRequested

-i-toString

QQual

(from «du.urquick.j3d)

+defaultCompute

t-getQuality

setLastComputedQuality

+toString

_qqual 0.1

NodelD

(from eduur.quick.j3d)

+NodelD

+equals

getLocation

+hashcode

+isNetworkName

+toString

A
«creates» i

< _
«uses»

•uses, creates

+_requestors

+addRequ8stor

+deleteMemory

+getCachedFile

+getlD

+getLoca1ion

-r-getOngFile

-HsInDiskCache

-> -Hslnitialized

+islnMemory

+isUnked

+isOnDisk

-nsOngOnDisk

+isRemote

+isRequested

+setCachedFile

+setFile

+setlnitialized

+setRemote

+toStnng

Figure 26. Class hierarchy diagram of scene graph-related classes in the edu.vr.quick.j3d

package.

133

A. CORE PACKAGE

This package contains the core classes needed for any Java3D QUICK application.

It holds the basic scene graph elements, QUICK annotations, and central elements for build-

ing Applications. Figure 26 shows the QUICK scene graph nodes, QNode and QSwitch

and their included classes. The RepID class, contained by QNode, serves as the primary

identifier and handle for representations in the virtual world. A RepID is constructed upon

first discovering a representation's URL. After loading, it is used to find that representation

in memory or the file cache; it is also used by the CacheManager and SwitchMan-

ager classes to identify a representation for loading or unloading. The RepID class in

turn contains a Node ID; this is currently only the Internet URL, but other environments

may use different globally-unique identifier schemes.

The QQual and QCost classes contain QUICK annotation information, as dis-

cussed in section C; their values are computed dynamically based upon the current client

situation. (QQual is the name of the class which implements QQuality functionality.) The

content description information for task-based modification of QUICK values is stored in a

Description instance. The QSwitch and QNode classes each store a Description

via the Described interface. Interface indirection is used because the Description

class uses a Java Vector to store the definition terms; another implementation would be

needed for better-than-linear search and insertion times.

The Dated class marks an object whose computed value ages with time. In the

QCost class, this is used to track the time since the last dynamic cost computation. When

134

the current cost is requested, the time of the last update is compared against the last change

times to the current task and client specification. If the cost has been computed more

recently, the cached value is used and no additional computation is required. This technique

is used throughout the core and cache management packages.

The other classes in this package are provided for application development. The

aptly-named Application class provides the basis for all QUICK applications. (The

review of the edu.vr.quick.j3d.app package shows its relationships in the prototype sys-

tem.) The Application instance contains the task and client specification, which de-

scribe the application's platform and current state. The Task abstract class includes meth-

ods for computing Quality, Importance, and Cost given a client specification. This dia-

gram includes two concrete subclasses of Task: StandardTask and FlyTask (from

the edu.vr.quick.j3d.app package). The StandardTask simply uses default calculation

methods for the QUICK factors, while the FlyTask computes a special Cost instance

for optimization purposes. The client specification is contained in the ClientSpec class,

which contains fields for all of the various display platform characteristics important to the

optimization process. The ClientSpec is a Dated class, like QCost and QQual, to

encourage re-computation of QUICK factors when platform characteristics change during

program execution.

B. CACHE PACKAGE

The cache package contains the implementation of the architectural components

outlined in Chapter VII, section D.2 above; its primary internal interactions are shown in

135

Dated

(from edu.ur.quick.j3d)

#JastChangeTime

+getChangeTime

+setChangeTime

A
ClientSpec

(from edu.vr.quick.j3d)

-_screenSize

-_windowSize

+getScreenSize

+getWindowSize

+setScreenSize

+setWindowSize

+toString

A
\

\

\

\

\

\

i*>

«uses»

«uses»

Task

[from edu.gr.quick.j3d)

+computeCost

+cornputelmportance

+computeQuality

+getName

+toString

#update

«uses, creates*

FlyTask

(from edu.ur.quick.j3d.app)

+computeCost

+computeQuality

+getName

,
«uses, creates*

Cost

(from edu.ur quick j3d)

#_filesize

#_flops

#_triangles

+getFilesize

+getFlops

+getTriangles

+setFilesize

r +setFlops

+setTnangles

— ^

StandardTask

(from edu.vr.quick.j3d.app)

+getName

Application

(from edu.urquick.j3d)

virtualworld

+qetClientSpec

+qetCostLimit

+getLocale

+getTask

#initClientSpec

+setTask

+setVirtualWorld

Figure 27. Class hierarchy diagram of application classes in the edu.vr.quick.j3d package.

136

Figure 28. The CacheManager is the only class which is externally visible, and it is used

by the QUICK Application package. The CacheManager contains a reference to a

LoadManager, which is an interface (a pure-virtual abstract class) for loading, unload-

ing, and deleting representations. Interface indirection is used frequently in this QUICK

implementation to encourage decoupling in design. The implementation of the LoadMan-

ager, LoadMgrlmpl, contains an instance of a class implementing the DiskManager

and NetworkManager interfaces, thereby giving access to disk and network resources

for loading files. Those interfaces are implemented by the LoadMgrlmpl and DiskM-

grlmpl classes respectively.

A typical load process is initiated by a SwitchManager invoking the Cache

-

Manager . request method. The CacheManager checks to make sure the represen-

tation hasn't already been loaded, or previously requested, and then calls the LoadMan-

ager . loadRep method. The LoadMgrlmpl ensures that the designated file isn't al-

ready in the disk cache, and then determines whether the URL refers to a network or disk

location. If it does refer to a local disk file, the DiskMgrlmpl loads and parses the file and

returns a Java3D scene graph to the CacheManager via the requesting LoadMgrlmpl.

If the file is located remotely, the NetMgrImpl class fetches the file and writes it into the

filecache; the file is then handled as if it had been a local file originally. This "download,

write, parse" scheme ensures that the secondary cache (those representations in memory

but not in the scene graph) is always a subset of the tertiary cache (the local disk).

137

« interface* CacheManager

LoadThread

(from edu.vr quick j3d cache)
1

LoadManager

(from edu vr quick.pd.cache)

(from edu vr quickpd.cache)

-_cache

0.1 -_nodesToProcess

+run

Jmgr +defeteRep

+loadRep

-JoadManager -createRep

+find

+IoadRepSynch +nodeAvailable

+unfoadRep +request

+run

-Jnstance 0.1

LoadMgrlmpi

(from edu vr quick.|3d.cache)

-_threadpool

+deleteRep

-initRep

+loadRep

«i interface »

DiskManager

(Jrom edu.vr quick.]3d.cache)

JD..1

-_diskmgr

+loadRepSynch

+unloadRep 0.1 «interface»

- netmgr NetworkManager

(from edu vr.quick.j3d.cache)

+delete +download

+getFi!ePtr «uses» +fetch

+load

DiskMgrlmpI

(from edu.vr quick j3d cache)

-_filecache

-_vrmlLoader

NetMgrlmpI

(from edu vr.quick j3d cache)

+delete

+getFilePtr

+ioad

+download

+fetch

Figure 28. Class hierarchy diagram of the edu.vr.quick.j3d.cache package.

138

C. SWITCHING PACKAGE

The chooser package contains the implementation of the SwitchManager module

discussed above in section VII.D.3. The abstract base class, conveniently named Switch-

Manager, can be extended to build managers for any purpose. The class is Runnable

and can therefore be spawned into its own thread of execution; otherwise, the pulse

function can be used for a single optimization pass. Either method uses the Switch-

Manager . traverseTree function, which walks through the scene graph processing

the QUICK relevant control nodes (QNode, QSwitch, and Link). SwitchManager also

contains a reference to the cache manager for requesting or deleting representations.

Figure 29 shows the contents of the package, which includes a number of con-

crete subclasses of SwitchManager. For example, the LoadAllMgr class overrides

the SwitchManager .processQSwitch method such that each time a QSwitch is

encountered on a traversal, any unavailable children are automatically requested. The

more complex DrawOptMgr class overrides handlers for both QNode and QSwitch nodes,

and uses them to construct a linear programming problem instance (member .problem).

DrawOptMgr is in turn extended by the DrawMaxMgr class, which draws the highest

Fidelity children of each QSwitch regardless of Cost. This is accomplished by using the

structure of DrawOptMgr, building the optimization problem in the exact same manner,

but at the last using an infinitely large Cost constraint.

139

DrawAIIMgr

[from edu.ur.quick.j3d.chooser)

tfprocessQSwitch

+run

LoadAIIMgr

(from edu.ur.quick.j3d.chooser)

tfprocessQSwitch

+run

SwitchManager

(from edu.ur.quick.j3d.«hooser)

#_cachemgr

#_root

+getName

+needsUpdate

#processLink

#processQNode

#processQSwitch

+pulse

+requestStop

+run

#traverseTree

LoadOptMgr

(from edu.ur.quick.j3d.chooser)

#_novelty

#_problem

+optimize

#processQNode

#processQSwitch

+pulse

+run

DrawOptMgr

(from edu.ur.quick.j3d.chooser)

#_problem

optimize

fprocessQNode

#processQSwitch

+pulse

+run

A

DrawMaxMgr
(from edu.ur.quick.j3d.chooser)

optimize

DumbSwitchMgr

(from edu.ur.quick.j3d.chooser)

#processQSwitch

+run

Figure 29. Class hierarchy of sample classes in the edu.vr.quick.j3d.chooser package.

140

D. OPTIMIZATION PACKAGES

This package contains the classes for building a linear programming problem from

a QUICK scene graph. The lpsolve package is a Java port of the popular C linear

programming library, LP.SOLVE. The port was performed by the Java group at Wash-

ington University at St. Louis; the code is available via http://www.cs.wustl.edu/java-

grp/help/LinearProgramming.html. This library was chosen primarily because the source

code was freely available; this decision was fortuitous because modifications to the code

were required to allow access to the final variable coefficients for the objective function.

Additionally, the algorithms of the LP.SOLVE package have undergone significant com-

munity testing, and are considered to be more robust and scalable than most.

Figure 30 shows the relationship between those two packages and an optimizing

switch manager. DrawOptMgr contains an instance of QProblem; as it traverses the

scene graph, it calls the registerQSwitch and addRep methods to add the QUICK

control nodes to the problem formulation. When adding a QSwitch, the set Importance

method is used; the function for adding a QNode representation, addRep, expects argu-

ments which indicate the computed Quality and Cost. When the problem formulation is

complete, DrawOptMgr calls the QProblem. solve method and then one of the ap-

ply* methods to apply the new optimization to the scene graph.

During the traversal process, the QProblem class internally builds a switches

Vector of SwitchEntry instances. These are used both for translating the optimization

data into the linear programming matrix, and for translating the solution vectors back into

141

changes to QUICK nodes. When QProblem. solve is invoked, the LP.SOLVE class

from the lpsolve package is created, solve is the API for the problem formulation, and

offers methods for adding constraints, constraining variables to integer values, and setting

the optimization objective. An instance of lprec is passed to all of solve's problem-

building functions, and it contains the matrix representing the problem constraints.

E. PARSING PACKAGE

These classes take advantage of Java's guaranteed file loading order to interpose a

slightly-modified parser into the Java3D VRML97 loading library. By placing this version

of the library earlier in the CLASSPATH, certain classes can be made QUICK -conversant

without replacing the entire package. Figure 31 shows a portion of the modified Parser's

interface. The Parser encounters node names in a text file and delegates the text contents

of that node to a special class-specific parser of the same name. Therefore, the only modi-

fication needed was to register the four QUICK node names: QNode, QSwitch, QCost,

and QQual. Since the Parser creates these classes indirectly, through their class names,

their relationships are shown as a dashed line in the diagram instead of a standard "Creates"

relationship.

The QSwitch parsing class shares many functions of the other grouping nodes,

and so it inherits from the unmodified GroupBase class as shown. QNode is a superset

of the VRML Transform node, and so its parser inherits from the unmodified Transform

parsing class.

142

DrawOptMgr

(from edu.w.quick.j3d.chooser)

solve

(from edu.ur.(tuick.j3d.optlpsolue)

SwitchEntry

(from edu.ur.quick.j3d.opt)

{local to package}

+_importance

#_numinstances

#_reps

#_switch

+addRep

+anotherlnstance

+getCost

+getFidelity

+getQNode

+getQSwitch

+getRepCount

+numlnstances

0..1-

currswitch

+optimize

#processQNode

#processQSwitch

+pulse

+run

0..1 #_problem
I

QProblem

(from edu.ur.quick.j3d.opt)

#_switches

+addRep

+applyDrawSolution

+applyRequestSolution

+re g i sterQSwitch

+setlmportance

+solve

I

0..1 iMpMatrix
It-

/
/

/
/

«uses»

Iprec

(from edu.ur.quick.j3d.optlp$olue)

+lprec

+getBestSolution

+getColumns

+getRows

+add_column

+add_constraint

+del_column

+del_constraint

+getAssignments

+getSolution

+get_column

+get_reduced_costs

+get_row

+print_duals

+print_lp

+print_scales

+print_solution

+reset_basis

+S6t_col_name

+set_constr_type

+set_int

+set_mat

+set_maxim

+set_minim

+set_obj_fn

+set_rh

+set_rh_vec

+set_row_name

+solve

+str_add_column

+str_add_constraint

+str_add_lag_con

+str_set_obj_fn

+str_set_rh_vec

+unscale

+unscale_columns

+write LP

Figure 30. Class hierarchy diagrams for the edu.vr.quick.j3d.opt and ...opt.lpsolve pack-

ages.

143

QNode
(from com sun.j3d loaders urml97impl)

contents

cost

impl

location

quality

initFields

initlrnpl

+replaceChildren

-updateCost

-updateQuality

updateTransform

Transform

(from com.sun.j3d.loaders.urml97 impl)

center

irnpl

rotation

scale

scaleOrientation

translation

+getType

initFields

initlrnpl

initTransformFields

updateTransform

Parser

(from com sun.jSd loaders i>rml97.imp I)

loader

^_ _ +token

vrmlNodes

+Fieldlnit

+getNexfToken

+Node

+NodeBody

GroupBase

(fromcom.5un.j3dJoaders.ijrml97.impl)

addChildren

bboxCenter

bboxSize

children

implGroup

removeChildren

+getNumTns

initFields

mitGroupBaseFields

replaceChildren

£>

QCost

(from com.sun.j3d loaders urml97 impl)

filesize

flops

irnpl

triangles

initFields

initlrnpl

QQual

(from com sun j3d loaders urml97 impl)

alphaDepth

colorDepth

impl

precision

textureResolution

initFields

initlrnpl

QSwitch
(fromcom.sun.j3d.loaders.«rml97.impl)

choice

contents

irnpl

importance

whichChoice

+getNurnTris

initFields

initlrnpl

replaceChoices

+setWhichChild

Figure 31. Added and rewritten classes in package com.sun.j3d.loaders.vrml97.impl.

F. UTILITY PACKAGE

This package contains utility and convenience classes used in packages throughout

the system, shown in Figure 32. The PushOnlyStack is a special interface for a stack

data-structure that does not allow "pop" actions. The special Stack class in this package

is empty, but both implements the PushOnlyStack interface and extends the standard

Java Stack class. This allows the creator of such a stack to use all normal stack functions,

144

inter T-nce

PushOnlyStack

(from edu.ur.quick.j3d.util)

+push

Pool

(from edu.ur.quick.j3d ufil)

-Joprocess

-_waiting

+forcePerformWork

+p9iformWork

WorkerThread

(inner class of eduur.quick.j3d.util.Pool)

v {local to package)

~"«uses» _j ata

+run

Stack

(from edu.ur.qukk.j3d.u(il)

LoadThread

tj3d.«acrie)

Jmgr
+run

Traverse

(from edu.ur.quick.j3d.utJI)

isPrint

+printTree

+setChildren

+setReadBits

0..1 -juvorker

«interface>

Worker

(from eduur.quick.j3d.ufil)

+run

- worker 0..1

WorkOnceThread

(inner class of edu.ur.quick.j3d.utl.Pool)

{local to package}

-_data

+run

Figure 32. Class hierarchy diagram for edu.vr.quick.j3d.util.

but also to control access of client classes to the internals by offering only the restricted

interface.

The Traverse class offers scene-graph traversal methods for standard tasks, such

as printing the nodes in a tree. Another example, the Traverse . setReadBits method,

searches a scene graph and makes the children of all group nodes accessible (which is not

the default in Java3D).

An early version of QUICK made use of Java's thread facilities inefficiently. Rapid

creation and lapsing of execution threads requires significant overhead that can be avoided

145

if the computation needs are understood in advance. The loading and parsing functions

occur in separate threads of execution, which reduces lapses of interactivity when wait-

ing on a network or disk response. The LoadManager class now uses the Pool class

to manage these loading threads. The Pool begins empty, and new threads are created

as needed up to a certain maximum. When that maximum is reached, thread requests

are placed in a FIFO queue; as threads become available, they take up the work requests

in the queue. A review of threads and related operating system concepts is available

in [Silberschatz and Galvin, 1994].

The threads in the Pool are WorkerThreads, which are created internally and

not exposed to the application programmer. The application programmer creates a sub-

class of the Worker interface, such as LoadThread of the cache package. To initi-

ate a Worker, it is passed an object argument of the data to operate upon; in the case

of the LoadThread, a RepID identifier is passed in and the LoadThread runs the

representation-loading process.

G. APPLICATION PACKAGE

This final package contains the application-specific classes for presenting a virtual

environment client optimized for a specific task. The VirtualWorld interface contains

methods for accessing the environment scene graph. All parts of the system can reach the

singleton Application instance, and it contains a reference to the current Virtual

-

World, so all parts of the system have read-only access to virtual world data.

In this case, VirtualWorld is implemented by the Java graphical user interface

146

Dated

Ifrom edu or <iuiQk|Sd|

<UastChangeTime

+getChangeTirne

+setChangeTime

A

I «uses»

ClientSpec

(frcii.jdu.iii'oiijitlcjSdl

-_screenSize

-_wndowSize

+getScreenSize

4-getVVindowSize

4-setScteenSize

-t-setWindowSize

ttoSlting

•^creates*

Task

ifrrm^duur'iuKkiSdl

, +computeCost

I +computeliripottanc9

' +compuleOualily

+getName

+loStnng

^update

I

I

/

/

I «uses, creates*

Cost

Ifrom «duurqui&r.j3d|

fjilesize

tfjlops

.Mriangles

+getFilesize

+getFlops

+getTnangles

+setFilesize

+setFlops

+setTnangles

A
•creates* \

\

\

V-
\

<F

o..t_

#_clientSpec

FlyTask

I'frcm -edu or quhkjSd 3MP

I

i-computeCost

+i;ompu!eOuali1y

+getName

StandaulTask

I' 1 -
'

<
'

i '
I I '

i
'. ' . I lj

| I

+ge(Name

<interiace»

ViitualWoild

Ifrom ^Ju.or.'iufcLpd)

+getJ3QLoc3ie

±g*rSc9r>eGroup

+aetUserHead7oVwric'

-r-qetClientSpec

+ci»;tCostLirnil

+aetLocaJe

+qetTasl<

jfirutClientSpec

+setTask

t-setVirlualWotId

OCenter

Ifrom erlu tir.quick |3d apr>|

+_controlPanel

+_iTiainFrarni?

tfcreateControlPanel

-r-main

virtualworld 0.1

/

FlyCanvas3D

I from edii.ur qukkjSd app)

+_cacheManager

+_examineGroup

+_sceneBounds

+_sceneGroup

+_sceneRool

+jjniverse

+_view

+_viewer

+_viewingPlatform

+_vpTransGroup

q 1
FlyCanvas3D

i-_canVas" +getlnstance

y +gelJ30Locale

+getSceneGioup

+getUsetHeadToVwoild

»main

-setupBehavior

setViewpoint

I

S instance

Figure 33. Class hierarchy diagram for apphcation-building classes in edu.vr.quick.j3d.app.

147

component which contains a Java3D canvas: the FlyCanvas3D. That class contains its

own main loop, so it can be run as the basis for an independent application, but its default

behavior does not include any loading or switching capabilities. FlyCanvas3D controls

access to the scene graph; it also contains user interface components such as navigation,

frame-rate reports, and the like.

The QCenter class is the primary application for this QUICK implementation. It

contains a control panel which allows the user to change almost all facets of the system dur-

ing runtime—load managers, drawing optimizations, user task, cost thresholds, and even

client specification. This design supports the experimental nature of this proof-of-concept

system by offering a simple mechanism for adding new selections in those categories. Fig-

ure 34 shows a screen capture of the QCenter user interface.

A comparative analysis of the effectiveness of this implementation is available in

Chapter X.

148

X

D
i

13

o

o
I*

>l S~~
CTI SI ois
^ Jl I
03 CTi ^ 03m k_ »- si s m
73 ra ^-o: S •a
CD 52 mij m
0)

O 11 s>j| s
O S O: BO

5 1 £ £ %
CTJ TO TO TO qjl TO

Q Q Q Qi • Q

Ul

O
<
z
<
2

£

71

UJ
O
<z
<

a
<
o

[71

E °>

j5 o

m c

i

Figure 34. QCenter screen capture.

149

THIS PAGE INTENTIONALLY LEFT BLANK

150

X. ANALYSIS OF EFFECTIVENESS

A. INTRODUCTION

This chapter compares the QUICK system to other resource optimization systems

by analyzing the complexity and effectiveness of their algorithms and implementations.

This section contains a brief description of each analyzed system; most systems have been

introduced in previous chapters. The next section contains a discussion of the drawing

and request optimization processes. Each system is evaluated in turn with regards to both

complexity and correctness. These evaluations are combined into recommendations for

both preferred core algorithms and available implementations.

The analysis in this chapter focuses on the following six techniques, which were

selected both for optimization effectiveness and to ensure adequate coverage of the tech-

nology space. The four-letter codes below are used throughout the chapter to designate

both the systems and their resource-management algorithms.

PERF: SGI's Iris Performer [Rohlf and Helman, 1994] is a toolkit for building virtual envi-

ronments that take advantage of SGI hardware rendering. Performer used a closed

feedback loop to manage display resources.

BERK: The Berkeley Walkthrough [Funkhouser and Sequin, 1993] was the first project to

investigate optimization for virtual environments. A Cost/Benefit heuristic was used

151

to make display and cache request decisions. Further details on the Berkeley Walk-

through and Iris Performer are available in section II.H.

J3DV: Sun's Java3D [Sowizral et ai, 1997] graphics library, which serves as the basis

for the initial QUICK implementation, has been described throughout this work.

Java3D uses the same techniques as most VRML browser technology, so Java3D

and VRML management techniques are combined into this single category. Further

description is available in sections II.K and VII.C.

SPLN: Mitsubishi Electric's SPLINE [Anderson etal., 1995] was designed for efficient

navigation of distributed virtual environments. A user in a SPLINE environment

navigates between multiple connected locales; management techniques operate on

locales at the high level, and similarly to VRML at the lowest level. Further de-

scription is available in section ILK.

QGRD: The QUICK framework includes a Greedy optimization algorithm, as discussed in

section C, which selects representations based on their Fidelity to Cost ratio.

QOPT: The final QUICK algorithm is the linear optimization method, as discussed at length

in Chapter VIII.

152

B. ANALYSIS OF OPTIMIZATION EFFECTIVENESS

This section looks at the effectiveness of the QUICK optimization for managing the

draw and request processes. It includes the exact computation using linear optimization,

as well as the approximating algorithms from Chapter VIII. The discussion begins with a

definition of correctness, which provides a basis for comparison between these disparate

resource management systems. A description of the structure and complexity of the opti-

mization techniques follows. Where applicable, those techniques are evaluated with respect

to the given definition of correctness. Finally, this section draws upon these evaluations to

provide an analysis of the comparative effectiveness and merit of the QUICK system.

1. Correctness

Defining the correctness of a subset of nodes selected for display has proven a

frustrating experience. There is no definitive notion of what constitutes the correct as-

signment for switch-based scene graph elements. Generally, the highest-fidelity version is

assumed to be the preferred selection for rendering—unless there are constraints on display

resources. When resources are limited, lower-cost (concomitantly, these are usually lower-

fidelity) nodes must be selected. Similarly, the preferred behavior for request management

is to immediately request all available objects. When transfer bandwidth or local storage

are limited, some representations must be omitted. Correctness in either case requires an

absolute priority order that dictates the appropriation of the limited resource.

No such absolute priority order exists in the general case. Any scheme must account

for the user task and current application state; a change in either can invalidate the priority

153

ordering. This is exactly the lesson of the preceding chapters describing the QUICK frame-

work: correctness cannot be obtained without incorporating dynamic factors. Correctness

cannot be generalized accurately.

QUICK is the first customizable virtual environment management system designed

to address the problem of correctness. This makes validation of the QUICK framework dif-

ficult, as there is little basis for comparison to previous work. QUICK incorporates factors

omitted from other optimization methods, so it is trivial to find a problem configuration

for which QUICK outperforms other algorithms. For example, many tasks yield priority

orderings which are different from an ordering based on straightforward visual accuracy.

One contrived example is an Obfuscation application, in which the user must guess about

environment details from artificially-limited data. While that task can easily be factored

into the QUICK optimization, general-purpose systems would fail by incorrectly striving

for visual accuracy.

Therefore, this work postulates that the best definition for correctness is likely that

which results from a properly-informed QUICK optimization. This is the only known

technique which incorporates notions such as subjective quality and user task with ob-

jective information such as geometric precision and platform capabilities. In an effort to

make fair comparisons with previous technology, the analysis below involves partially-

disabled versions of QUICK. Complexity analysis for QUICK computations assumes that

task-dynamicism is disabled, and that the default computations are used for each QUICK

factor.

154

2. Optimization Techniques

The resource management strategies listed in the introduction use widely varying

means for maximizing resource consumption. This section explains the drawing and re-

quest optimization processes in each of those systems, as well as the complexity of those

processes. In all systems below that do perform request optimization, the optimization

algorithm is the same as is used for drawing optimization.

Complexity results are given in terms of the number of scene objects, n, and the

total number of representations, r. The r is generally larger than n, but since objects with

no representations are legal, these values are reported separately below.

These complexity analyses are broken into four phases:

• Precomputation Phase. Some systems depend on a preprocessing step before ex-

ecution. While this does not directly affect rendering times, the significant com-

plexity of precomputation can often play an important role in algorithm selection.

Generally, no precomputation phase is necessary, and its discussion is therefore

omitted for many of the systems below.

• Initialization Phase. The setup phase in which the problem is formulated. Deter-

mining coefficients in constraints might require only a straightforward memory ac-

cess, or may involve some computation such as in the case of distance-attenuation.

Generally, the more exact the optimization, the longer the initialization phase.

• Optimization Phase. This is the process that decides which objects are included in

the display set, as well as which representation will be used.

155

• Application Phase. The final phase is to apply the results of the optimization phase

to the display set, or to request new nodes from the environment server. This is

usually an ©(n) operation, and is only included in the descriptions below if there is

significant variance from that complexity.

For the considered systems, the optimization complexity is as follows:

a. PERF

Performer LOD nodes each include distance values similar to that shown in

Figure 10 in Chapter VI. Each representation has an associated distance from the eye at

which it is displayed. The application specifies a target frame rate; if that frame rate is not

met, the draw load is reduced by modifying LOD transition distances. The initialization

phase, which requires determining the distance to the eye from each object, is 0(n). The

optimization phase takes 0{r) time because transition distances can overlap, so more than

one representation may be drawn per object.

Performer does not support networked environments, so it does not include

request optimization. It does support paging between disk and memory for large models.

b. BERK

The Berkeley Walkthrough makes LOD decisions based on a Cost/Benefit

ratio similar to (and inspiration for) the QUICK Greedy algorithm. The Walkthrough uses

a multi-step approach to determine the benefit gained from any given representation. The

first step is the removal of objects not within the potentially visible set (PVS), which is

determined in a precomputation step. Static cell-to-object visibility is combined with the

156

current viewing frustum to find all visible objects. For each visible object, the Cost and

Benefit are determined in a manner quite similar to the QUICK factor computation. Cost is

based upon number of primitives and pixels; Benefit is based upon nearness to the screen

center (to approximate focus), precomputed model accuracy, and screen area.

The precomputation phase is costly; in experimentation, building environ-

ments able to be rendered in real time took hours to preprocess. Given a division of a model

into c cells, cell inter-visibility is an 0(c3
logc) computation, followed by an 0(clogn) de-

termination for cell-to-object visibility. Because cells are generally created for a fixed num-

ber of objects, this equates to 0(n3logn + nlogn) = 0(n?logn). These steps presuppose

the existence of the cellular spatial subdivision of the environment, an extremely complex

operation. The runtime initialization phase requires screen position and size information,

as well as memory accesses for precomputed descriptions of each representation, yielding

a total running time of 0(n +r) = 0(r). Of course, if the visible object set is small, there

is a significant constant factor reduction.

The computation phase uses a greedy algorithm, which sorts the represen-

tations by Cost/Benefit ratio in a manner similar to the QGRD algorithm. Representations

are selected by ratio; any remaining Cost is used to replace original selections with repre-

sentations that give higher benefit. The optimization phase is 0(rlogr); additionally, some

coherence in values between optimization passes means that this value is usually lower in

practice.

157

The Berkeley Walkthrough made a number of advances to the state of the art

in database management for large-scale virtual environments. Such environments require

precaching of objects and asynchronous disk management to prevent lapses in interactiv-

ity. By combining tightly-constrained environments, precomputed visibility, and motion

parameters the system is able to predict the minimum time until an object could possibly

be within view. The request process computes the shortest path to each cell and combines

the computed prediction times with the Cost/Benefit optimization. The shortest path com-

putation uses Dijkstra's method, hence the complexity of 0(c2
) = 0(n2

).

c. J3DV

Java3D and VRML both offer distance-based LOD selection similar to Per-

former. However, neither system incorporates any adaptation to changing resource avail-

ability. There is no initialization phase, as there are no dynamic variables in the deci-

sion. The draw optimization phase is 0(r), since the distance interval for an object is

determined by linear search of the representation distance values. These systems usually

load networked resources (Inline nodes) immediately upon discovery, with no real decision

process—hence a O(l) running time in the table.

d. SPIN

SPLINE is included in this chapter because of its network management; it

offers little in the way of display optimization. It uses a visibility step similar to that in the

Berkeley Walkthrough, but at a the much higher granularity of environment regions rather

than rooms. That step is combined with VRML LOD processing for each object in those

158

worlds, similar to J3DV above. The initialization phase is an 0(1) adjustment to top-level

scene graph branch nodes; when a locale is not visible, all of its constituent objects are

removed from the display subset in single step. The optimization phase complexity is the

same as for J3DV, 0(r) for draw and 0(1) for request.

e. QGRD and QOPT

The complexity for these algorithms has been discussed in Chapter VIII,

and is only summarized here. Only the default computation is included in the complexity,

in an attempt to normalize the comparison with other systems. The two QUICK algo-

rithms share a precomputation phase, which is the annotation process for representations;

since there is no interaction between representations at this stage, it is considered 9{r).

Similarly, they share an initialization phase; the primary dynamic component is distance

attenuation, which is computed on a per-object basis, yielding complexity 0(n). The opti-

mization phase for QGRD is the same as BERK, 0(rlogr) for the sort prior to the greedy

algorithm. QOPT is NP-complete, and therefore its running time is exponential: 0(2 n
).

While the request optimization can incorporate motion prediction algorithms, the default

task computation for request is identical to the drawing optimization.

3. Experimental Results

Because of the hidden constant factors, any complexity comparison between these

optimization algorithms would be improved by comparing implementation performance.

However, a direct computational comparison of program execution with identical models

on identical architectures is not possible. The Berkeley Walkthrough, for instance, has only

159

ALGORITHM PERF BERK J3DV SPLN QGRD QOPT

Precomputation Phase: n/a 0(n3logn) n/a n/a 0(r) 0(r)

Initial Phase: 0(n) 6(r) n/a 0(1) 0(n) 6(n)

Draw Optimization: 0(r) 0(rlogr) 0(r) 0(r) 0(rlogr) 0{2n)

Request Optimization: n/a 0(n2
)

O(l) 0(1) O(rlogr) 0(2n)

Application Phase: 0(n) 0(n) 0(n) 0(n) 0(n) 0(n)

Table II. Comparison of drawing optimization complexity.

been used on the Soda Hall model which was modified expressively for that system. The

code is no longer actively maintained, and all published execution times were recorded

on SGI machines which are no longer in production. SPLINE is limited to the Microsoft

Windows platform. While it uses VRML models, giving some basis for comparison, it too

is no longer supported.

The remaining systems all are capable of displaying VRML models. In fact, Iris

Performer is an actively-developed commercial product which has been optimized for the

SGI platform for nearly ten years. It has been performance-tuned for the SGI Irix operating

system, threading model, and graphics pipeline. All of Performer's libraries and applica-

tions are natively-compiled C++.

Java3D is available on many platforms, SGI included; however, the SGI implemen-

tation is an unoptimized preliminary release. No portable Java program can compare in

run-time efficiency to natively compiled libraries, especially when it requires frequent ac-

cess to system resources. In this case, the gap in implementation effort has an even greater

impact: for years, SGI hardware has been designed specifically to accelerate Performer,

while the SGI port of the Java3D library has not yet reached full functionality.

160

Therefore, while Performer and Java3D share a platform and a model format, there

is little to be gained by directly comparing their application performance. The QUICK

proof-of-concept implementation is based upon Java3D, so QUICK and Performer execu-

tion times are not compared for similar reasons.

a. Execution Times

Asymptotic complexity gives a useful basis for comparison, and as previ-

ously stated, the only possible basis for comparing these resource management systems.

However, it is possible to directly compare computation times of the multiple QUICK al-

gorithms in the Java3D implementation. This section compares the QOPT and QGRD

algorithms, as well as a third QFST algorithm. The QGRD algorithm sorts representations

by their Fidelity/Cost ratio, and then makes selections with replacement to maximize usage

of available resources. The QFST ("QUICK-FAST") algorithm does not allow replace-

ment, so it stops when a valid representation has been chosen for each QSwitch, regardless

of any remaining available resources.

All timing results were determined on an SGI 320 WindowsNT workstation,

with dual 450Mz Pentium II processors, 96MB of graphics memory,and 160 MB of main

memory. Missing timing values for QOPT are due to memory limitations; those limita-

tions were usually a factor only after the running time had exhibited exponential growth.

In all cases, only the display optimization phase is included in the timing results, since

initialization is identical for the three algorithms.

161

Number of Zero Average No
QSwitches Resources Resources Constraints

100 80 1120 80

200 140 4090 130

500 380 23200 390

1000 1220 n/a 1220

2000 4770 n/a 4860

3000 11190 n/a 11280

Table III. Running times for QOPT (in milliseconds), varying resource availability.

The QUICK problem has far too many free variables to allow testing of all

possible instances. However, some variables have little influence on algorithm running

time, so it is possible to simplify this comparison by picking representative values in those

cases.

The first set of experiments explores the effects of resource availability on

computation time. Table III shows the running times, in milliseconds, of the QOPT algo-

rithm. In the experiment, each QSwitch was given four associated representations, with

varying Fidelity and Cost values. The "zero resources" and "no constraints" cases al-

lowed no and any representations to be selected, respectively. The "average resources"

case included more than enough for one representation to be chosen for each object, but

not enough for the costliest to be chosen in each case. Even though the implementation

could not compute the running times for all instances, the graph in Figure 35 shows a

clear difference between the average and boundary cases. This difference is expected with

branch-and-bound linear optimization techniques such as are used in this implementation;

prediction of running time for a given instance is in itself an NP-complete problem.

162

QOPT by constraint

25000

20000 -

V)
-a

E 15000
o

M 10000

5000 -L

100

AVG
MAX

-1-

200 500 1000 2000 3000

number of QSwitch nodes

Figure 35. QOPT running times with average and maximum resources.

In testing running times for the QGRD and QFST algorithms, it was nec-

essary to use much larger problem instances to have statistically significant timing infor-

mation. Table IV and Figure 36 show a small but noticeable difference between the two

algorithms, even though the asymptotic complexity for both algorithm is 0(rlogr). How-

ever, the sorting step hides the 0(r) replacement step in QGRD, which clearly has a high

constant coefficient. The important result for this data, though, is that there is no major

impact on computational complexity from variance in resource availability.

Combined with the data regarding QOPT, it now seems appropriate to

choose an average resource complexity for direct comparison of these algorithms. Each

of the algorithms is run with three cases:

163

Algorithm,

QSwitches

QGRD, 10000

QGRD.20000
QMAX, 10000

QMAX,20000

Zero Average No
Resources Resources Constraints

480

810

470

820

520

890

480

820

540

930

490

830

Table IV. Running times for QGRD and QMAX (in milliseconds), varying resource avail-

ability.

QGRD and QMAX by constraint

-a

1000 -

900

800

700

QMAX- 1 0K

QGRD- 1 0K

QGRD-20K

QMAX-20K

o
o
0)

£ 600

I 500

400

300

ZERO AVG MAX

Resource Availability

Figure 36. QGRD and QMAX running times with average and maximum resources.

• One object, with a varying number of representations

• A varying number of objects, each with one representation

• A varying number of objects, each with four representations

The last case is the most typical instance, in which each object has a small

number of possible representations. In each case, variation is done by exponential steps

164

Number of Objects set to 1

QMAX QGRD QOPT

6000 i

5000

m 4000

C

8 3000
to

2000

1000

4

t 30000

25000

:

i ii ii i i i T^T^T^T* i i i

to

20000 1o
o
0)

15000 |

10000 O
O

5000

N 1£ & n<£
\^

R

$r p̂ fl* «s?
N*" <£

Figure 37. Running times compared with N=l and R=2\

over the values 2° to 2
17

. As is expected, the QOPT algorithm was rarely able to provide

values for the most complex problems in each case—either due to memory restrictions, or

the limitations of a human life-span.

In the graphs, two oddities merit mention. The first is a reminder that the

x-axis increases logarithmically. The second is that, in order to combine values, the QOPT

algorithm is graphed against the right-most y-axis. Therefore, QOPT complexity outpaces

the other algorithms much more rapidly than a casual glance would indicate.

165

Number of Representations set to 1

800

700

600

g 500
o
& 400

| 300

200

100

QMAX QGRD QOPT

-

i i i i i i i i i i i i i ~i i r

3000000

2500000
(A

2000000 o
o

1500000 |

1000000 g
o

500000

N * K* ^ J3 J* ^ ^ J>v & & tf #

Figure 38. Running times compared with N=2* and R=l.

These results have a number of indications for the use of the QUICK frame-

work. For instance, the QGRD and QMAX algorithm perform identically in the case

where there is only one representation per object. This reflects the fact that both algorithms

must visit every representation after sorting. While it is not surprising that the QOPT algo-

rithm does not scale well, given its NP-complete nature, it is heartening to see that problem

instances with one thousand objects or more can be optimized interactively. This led to

changes in the current implementation to support adaptive algorithm selection.

166

Number of Representations set to 4

9000

8000

7000

6000
to

o 5000
u

| 4000
E

3000

2000

1000

QMAX QGRD QOPT

"

T 2500000

-- 2000000

-- 1500000

i i c i i i i i i i i i r ~t ~i r~

N
* * * # <& ^^#

1000000

tAo
c
o
u
VI

a.
o
o

- 500000

Figure 39. Running times compared with N=2* and R=4.

4. Conclusions

Given the analysis above, it is possible to consider the effectiveness of the QUICK

framework. First, the resource management algorithms are considered independently of

their implementations; the systems as a whole are compared later.

a. Algorithm Comparison

The PERF algorithm has the best asymptotic running time of any of the

algorithms considered, and in fact runs as quickly as systems which do not incorporate

resource load. However, the Performer algorithm bases all of its optimization decisions on

167

a single floating-point value for each representation. These distances are a pale indication

of a cost/quality trade-off, and are insensitive to client capability. The use of a total order-

ing for representations, defined by the viewing distance thresholds, assumes that Quality

and Cost scale directly. While this is often true in polygonally-defined environments, this

dissertation has demonstrated a large space of problems in which Quality and Cost are not

related.

The Berkeley Walkthrough (BERK) algorithm provides excellent run-time

interactivity: 0(r + nlogn) for draw optimization, and 0(n3
) for request optimization.

However, it is limited to environments filled with axial occluders. That, coupled with

the requirements for preprocessing, make it inappropriate for use in a distributed system

with general-form environments. If taken independently of the complete Berkeley system,

the BERK Cost/Benefit algorithm is essentially a functional subset of QGRD. For exam-

ple, BERK includes platform capability in the Cost determination, but those values are

computed statically prior to execution. Similarly, the algorithm does not provide for task

adaptability; visual realism was always the primary intent of the Berkeley Walkthrough.

The J3DV algorithm, shared by Java3D and most VRML browsers, is rec-

ommended only when bare simplicity is needed. The model annotations it requires are

the same as those needed for PERF—which has similar asymptotic complexity but yields

a resource-conscious optimization. The SPLINE algorithm is the same as J3DV from a

rendering perspective.

168

By comparison, the linear-optimization QUICK algorithm offers the most

customization choices. It is sensitive to all major factors which impact display and request

correctness, and all of those factors can change during execution if necessary. The initial

problem formulation is not significantly more expensive than those of the PERF or BERK

algorithms. However, the worst-case complexity of the QOPT optimization phase is pro-

hibitive for interactive display of very large models. The QGRD reduces that running time

to tractable levels, at the cost of reduced accuracy in the optimization. Still, for approxi-

mately the same running time, the accuracy of QGRD is greater than BERK or PERF, as

it has more data to guide the optimization.

In summary (assuming constant complexity), the algorithm recommenda-

tions are:

• When correctness is the primary concern, use the QUICK linear optimization algo-

rithm (QOPT)

• When correctness and speed are both important, use the QUICK greedy algorithm

(QGRD)

• When speed is vital, especially when no annotation information is available, use the

Performer algorithm (PERF)

169

6. Implementation Comparison

A comparison of the available implementations of these algorithms requires

a separate discussion. Separating algorithm from implementation is most cases straightfor-

ward; reimplementing the algorithms is certainly not.

Both the Berkeley Walkthrough and SPLINE systems are no longer sup-

ported, nor are they publicly available. Iris Performer requires a license fee, and is limited

to the SGI platform, but as previously mentioned the implementation is well tuned for

performance. Performer has a large support base and extensive documentation is available.

Binaries and source code for Java3D and QUICK are freely available, as is

the VRML specification. The QUICK implementation is a super-set of the Java3D VRML

library, and therefore contains all functionality of J3DV described above. For optimal

performance, QUICK requires additional annotation information; it relies on Java3D for

scene management of unannotated VRML files. Because QUICK is a functional superset

of J3DV, it is recommended in all instances over plain Java3D or other open-source VRML

browsers such as blaxxun's contact.

The QUICK implementation was designed in a modular fashion to simplify

incorporation of new algorithms. Any of the algorithms discussed above could be added

to the QUICK implementation, much more quickly than by designing a complete system.

For instance, the PERF algorithm could be used by adding a distance threshold annota-

tion to each representation (QNode), and writing a special task that would query resource

consumption before each optimization pass. Other algorithms could be incorporated with

170

similar effort.

In summary, the implementation recommendations are:

• When licensing fees are not a factor, model annotation is not possible, or robustness

and support are of primary concern, use the Performer implementation (PERF)

• When extensibility or source code are required, correctness is paramount, or net-

work support is required, use the QUICK implementation (either QGRD or QOPT

depending on the situation)

171

THIS PAGE INTENTIONALLY LEFT BLANK

172

XI. CONCLUSIONS AND EVIDENT EXTENSIONS

This final chapter provides a summary of the findings presented in this dissertation.

The first section highlights the major contributions of this work, with special attention to re-

sults and implications relevant to other virtual environment resource management systems.

This is followed by a discussion of the practical impact of this dissertation, and strategies

for how these techniques might be applied in production systems.

The worth of a research effort of any magnitude can be judged both by the prob-

lems it solves and the new questions it raises. Accordingly, this chapter concludes with an

annotated list of recommended extensions and avenues of further inquiry.

A. CONTRIBUTIONS

The QUICK framework offers a fundamentally new approach to resource manage-

ment for virtual environment display and transfer. The underlying concept is simple: to

maximize representation Quality for the most Important objects, while keeping the to-

tal representation Cost within defined constraints. Allowing the computation process for

Quality, Importance, and Cost to vary during run-time allows tremendous expressivity in

the resulting optimization.

It is uninteresting, however, to claim universality by merely including a program-

ming interface for customization. The QUICK framework is so named because it defines

the conventions necessary to make customizing optimization a straightforward process.

The annotations recommended herein are practical and demonstrated, and are needed to

173

determine the three QUICK factors.

Traditional resource management techniques attempt to support a single overriding

application purpose—the user task. The QUICK framework allows dynamic modifica-

tion of user task parameters, thereby encouraging reusability of algorithms and software.

Similarly, QUICK tracks display platform capabilities during execution, so that updated

constraints can be incorporated into the optimization. The combination of the two yields

a new class of flexibility in virtual environment applications. QUICK defines conventions

for specifying both user task and platform capability, as well as general-form ontological

content description to support task computations.

The more data available for an optimization, the higher the accuracy of the re-

sult (assuming the optimization formulation and data are correct). The closest predeces-

sor system, the Berkeley Walkthrough, uses only a fraction of the QUICK data set for its

cost/benefit algorithm—and most of those values are not allowed to vary during execution.

QUICK yields more accurate results, with equivalent or less. time, than any competing al-

gorithm. For a large portion of the problem space (generally, any tasks in which visual

accuracy is not the sole concern), QUICK is the only viable algorithm available.

This dissertation includes the description of an architecture, and associated imple-

mentation, for virtual environment optimization. It includes a linear optimization algorithm

which guarantees correct assignment (and slow computation), as well as faster approxima-

tion algorithms. This initial implementation was designed for experimentation with new

types of tasks, annotations, optimization algorithms, and platforms. It is therefore hoped

174

that the public release of this fully documented application framework will spur follow-on

research.

B. APPLICATION

During the history of computer graphics, the growth of desired model complexity

has generally out-paced improvements in rendering technology. Yet while this disserta-

tion effort was accomplished, the polygon processing capability of commodity graphics

hardware has increased more than anyone could have foreseen—by two orders of magni-

tude. Some argue that algorithms which trade accuracy for speed (such as level of detail

techniques) will soon become unnecessary.

The utility of QUICK for optimizing consumption of the rendering resource will

likely diminish over time, except in narrow problem spaces such as the visualization of

very large graphical databases. Availability of network bandwidth and other vital resources

are not increasing as quickly, however, so QUICK is therefore expected to remain a useful

method for management of distributed virtual environment systems.

For client-server systems such as VRML environments, the primary hurdle for

adoption of QUICK is content annotation. Chapters V and VI explained how QUICK an-

notations can be determined automatically to modify pre-existing content. Even automated

processing is inconvenient given the many and varied VRML models already in existence.

An intelligent browser might determine much of the annotation information during run-

time after requesting a file, but that implies that the QUICK optimization cannot be used

for object request.

175

For distributed worlds, decoupling annotations from the files they describe can lead

to synchronization problems. This is especially true in the case of heterogeneously authored

environments. Content inclusion in VRML worlds is normally performed by specifying

solely an Internet location; there are no guarantees that the contents of that location will

remain unchanged between sessions. In such an uncontrolled Web-based architecture, it is

appropriate to store annotations within the files they describe, and make a query for those

characteristics during execution. Further work in the creation, usage, and maintenance of

CVE databases (and meta-databases) is warranted.

Modifying VRML to support QUICK annotations is possible with the PROTO node

format, but is inconvenient and inefficient. This dissertation does not recommend general

use of the modified version ofVRML used in the QUICK implementation. Rather, the next

generation of VRML (X3D) allows incorporation of multiple execution profiles for exactly

this purpose. X3D is specified in XML, which additionally lends itself to communication

of structured data of the sort needed by QUICK

.

C. FUTURE WORK

As with most dissertation efforts, the original expectations for this project were

higher than was realistic for timely completion. Also, issues arose during this research

that were out of the project scope but merited further exploration. This section lists both

suggestions and plans for future efforts in this area.

176

1. Extensions for Display

The first set of extensions pertain to the display optimization, both for improving

its results and increasing its utility.

a. Annotations

The set of model annotations often grew or changed in response to the ad-

dition of new tasks. The QUICK framework currently includes approximately ten different

task computations. Additional tasks will likely lead to further refinement of the annotation

set.

b. Quality from Human Performance

While no exact specification of human capability exists, sufficient psycho-

metric testing has been performed in narrow application domains. The process of military

vehicle spotting, for example, involves a combination of visual and semantic information

which leads to identification. Through experimentation, the United States military was

able to determine the distances at which a vehicle's type, nationality, or even model might

be identified [O'Connor et ai, 1996]. Incorporation of such information into the QUICK

framework might provide a scientific, quantitative basis for Quality.

c. Semantic World Rules

By their very nature, virtual environments are not constrained to mimic

physical reality. World rules define the action and interaction of objects and entities in a

virtual environment; examples range from altered gravity and inelastic collisions to context-

sensitive social rules. The definition and implementation of such semantic interactions is

177

an open problem for all but the most limited domains. Such information, when available,

could significantly enhance the QUICK Importance generation process.

d. Graduated Visibility Set

The Graduated Visibility Set (GVS) is a technique similar to the Potentially

Visible Set: it determines visual occlusion between two finite geometric spaces. The Grad-

uated Visibility Set is so named because it stores visible nodes in graduated levels—full

visibility, totally occlusion, and steps in between. QUICK optimizations are best performed

on continuous data values, rather than the binary on/off information of a PVS. The addi-

tional granularity of the GVS facilitates improved dynamic Importance determination.

e. Hybrid Representations

The original impetus for this work was to extend the hierarchical image

caching efforts of the University of Washington, which combined billboarded textures with

geometric representations, by adding additional representation types. In approaching that

larger problem, it became clear that too many unresolved issues still remained in the man-

agement of geometric representations alone. QUICK gives the foundation upon which

management of hybrid representations may be possible. This would require the factor

computations to be individualized to each representation type. Also, the issue of spatial

interface between representations becomes much more vital in the hybrid case.

/. Computational Representations

Commodity hardware has recently moved transformation and lighting to

the graphics hardware, removing any computational burden from the CPU when drawing

178

polygonal representations. In contrast to this are those representations, such as fractals,

progressive meshes, and subdivision surfaces, which require computation before transmis-

sion to the graphics pipeline. These formats, which here are termed computational repre-

sentations, also offer continuous (or nearly continuous) display options. Additional rep-

resentations usually increase the complexity of the optimization. However, a continuous

range of options (or a representation with enough options to simulate continuity) reduces

the guaranteed-correct optimization problem to tractability.

To support these computational representations, new Quality and Cost func-

tions and annotations will be required. It is likely environments will combine these formats

with standard polygonal representations. The naive combination of the 0- 1 and fractional

knapsack problems is still NP-complete; some reformulation will be in order to benefit

from the reduced complexity.

g. Object Elision

Two standard methods for reducing the set of visible objects are fog effects

and the finite view frustum. Accordingly, experienced users of virtual environment systems

are accustomed to the elision of far-field objects. In the QUICK system, however, any ob-

ject can be omitted. From a resource conservation standpoint, object elision is appropriate

whenever global Fidelity would be reduced by selecting any of that object's representations.

As has been demonstrated in this dissertation, Fidelity is not always related to distance. The

effect of this is that distant objects may be rendered and near-field objects removed.

The Fidelity/Cost ratio is usually highest for low resolution representations,

179

so such elision is rare in practice. The option can be removed completely by severely

reducing the Quality of the "empty" representation. Still, this near-field elision technique

merits further investigation, likely in the form of user studies to determine the deleterious

effects, if any, of its use.

h. Annotation Tools

The annotation process would be much more convenient if the appropriate

analysis tools were included in modeling packages. While most of the annotation informa-

tion is already available in such programs, output formatted for QUICK would be especially

useful.

i. Optimized Cache Management

Display management and cache requests both take advantage of the QUICK

algorithms. In the case of networked transfer, cache requests must be made predictively

—

otherwise the requested representation may no longer be pertinent by the time of its arrival.

Such prediction can be accomplished easily by modifying Importance to reflect future val-

ues; however, this has been accomplished in only a rudimentary fashion thus far in the

QUICK implementation. This could be improved easily by using current predictive fetch-

ing algorithms in Importance generation.

The other half of cache management, cache deletion, is currently performed

with a standard Least Recently Used algorithm in the QUICK implementation. Depending

on the algorithm used, the optimization process can yield a list of both the representations

offering the most Fidelity and the representations offering the least Fidelity. Information of

180

that type could be used to optimize clearing of cache memory.

2. Extensions for Networked Environments

A second set of extensions pertain specifically to improved integration with, or

novel application to, networked virtual environments.

a. System Integration

A primary claim of this dissertation is that virtual environment traffic can

be optimized by designing the client around an intelligent caching system. The initial

implementation supports the theoretical grounds of that claim, but for true validation a full

system design is needed. The Naval Postgraduate School's NPSNET-V [Capps et ah, 2000]

is a Java-based virtual environment system which supports dynamic content and protocols.

The architecture includes only rudimentary object request management, as it is intended

that QUICK will serve that purpose. This will provide an excellent practical test of the

framework's capabilities.

b. X3D Profile

With the lessons learned from the NPSNET-V integration, it will be possible

to design an X3D profile to support QUICK annotations and processing. The componen-

tized design of X3D encourages the incorporation of pervasive additions of this sort. The

design of that profile will necessarily require an X3D-friendly XML specification of the

QUICK annotations. Additional work is needed to ensure that this methodology is im-

plemented in a manner compatible with other meta-data and annotation conventions, such

as the forthcoming Resource Description Framework recommendation of the World Wide

181

Web Consortium.

c. Intelligent Service

Client-side optimization can improve transmission characteristics in a dis-

tributed virtual environment. However, modern large-scale virtual environments repeatedly

find themselves constrained not by client bandwidth but by the capability of the server to

process requests. Therefore, it seems logical for the serving process to optimize allocation

of its resources amongst its multiple clients. This global optimization requires the client

specification information from those clients; therefore a format and protocol for communi-

cating up-to-date platform capability is required.

Server-side optimization does create new possibilities, such as factoring

world state into the model service process. For instance, if a certain object is requested

very frequently, or by nearly all users, the server can assume that delivering a representa-

tion for that node is especially useful for the user experience, and can adjust its Importance

accordingly. Another example is that a server being used for a virtual chat area might

temporarily increase the Importance of objects with avatars in close proximity, under the

assumption that inhabited areas are more Important that uninhabited ones.

d. Awareness Management

QUICK is additionally applicable to filtering of inter-entity communications

in a collaborative virtual environment (CVE). The QUICK system can integrate with, or

even contain as a subset, algorithms for awareness management. While this capability is a

primary motivation for the development of the QUICK system, this thesis specifically does

182

not include proof of the applicability of QUICK to CVE communications.

For the purposes of this study, a CVE is defined as a shared environment in

which many participants fetch models from servers and communicate special messages to

each other. These messages can represent a variety of occurrences, such as avatar position

changes, simple actions (such as a firing event in a military simulation), or complex actions

(such as a introducing a new object and its behavior into the world). Central to making

such systems scalable is managing the awareness each participant has of these messages.

Broadcasting each message to all participants is convenient, but the bandwidth consump-

tion required in large-scale systems makes it infeasible.

Computationally, selectively forwarding communications to participants is

similar to the display serving problem. In this case, rather than having multiple representa-

tions of scene objects, there are multiple classes of service for entities acting in the virtual

world. These classes of service for an avatar might be a combined position, velocity, angu-

lar velocity, and acceleration update thirty times a second—or just heartbeat messages sent

every five seconds. When interacting closely with an avatar, the high update rate is needed,

but such detail about an avatar a mile away in a fogged valley is not useful. And of course,

similar to occluded areas in a model, no visual position updates are required for an avatar

on the other side of an opaque wall.

The only new computation in this case is at the communications server.

Given the communications capabilities and interests of its clients, and complete (highest

class of service) information about entity actions, it determines what information is needed

183

and how to forward it to the participants. The local display problem is unchanged; the only

difference at the client is that object state may affect (or be affected by) interaction with the

communications server. The model server also operates the same as before, either totally

by request or with the traffic optimization discussed above.

(1

)

Quality. Defining Quality for classes of service for com-

munications is an open and current area of research. Quality depends very closely upon

the possibilities for informing a participant of an action, and upon the action itself. Some

assumptions can be made, such as that Quality increases directly with update rate. Still, the

strong analogy to Quality and Cost for rendering indicates caution before drawing general

trends. It may be possible to develop some standard classes of service for common actions

like physical motion; in general, however, Quality ratings will likely be task-specific.

(2) Importance. In the shared virtual environment case, the

notion of Importance is similar to the Interest factor used in Awareness and Interest Man-

agement systems. Several different methods for determining and expressing interest have

been incorporated into state of the art systems. A full review is available in Singhal and

Zyda's Networked Virtual Environments text [Singhal and Zyda, 1999].

(3) Cost. The Cost of transmission for a class of service is

the network capacity consumed per second. Network bandwidth is the primary resource

limitation. The central processor resource is also consumed by processing many incoming

messages, but CPU is rarely the bottleneck at the client.

184

D. SUMMARY

This chapter highlights the major contributions of this work: a definition of dy-

namic fidelity in distributed virtual environments, and a framework for maximizing fidelity

through resource management. Significant opportunities for future work remain—both for

the practical application of this optimization, and for the extension of its detail and scope.

185

THIS PAGE INTENTIONALLY LEFT BLANK

186

APPENDIX A. ACRONYMS

2D/3D Two-Dimensional / Three-Dimensional

API Application Programming Interface

ASCII American Standard Code for Information Interchange

BSP Binary Space Partition

CAD Computer Aided Design

CPU Central Processing Unit

CVE Collaborative Virtual Environment

DIS Distributed Interactive Simulation

DIV Distributed Openlnventor

DIVE Distributed Interactive Virtual Environment

DVE Distributed Virtual Environment

FLOPS Floating Point Operations

GMD German National Research Center for Information Technology

GVS Graduated Visibility Set

HLA High-Level Architecture

HTTP Hyper Text Transfer Protocol

KD K-Dimensional [Tree]

LOD Level of Detail

NP Non-Polynomial

NPSNET Naval Postgraduate School NETworked environment

QUICK Quality, Importance, and Cost

PC Personal Computer

PHS Potentially Hearable Set

PVS Potentially Visible Set

QTVR QuickTime Virtual Reality

SGI Silicon Graphics, Inc.

SPEC Standard Performance Evaluation Corporation

SPLINE Scalable Platform for Large Interactive Networked Environments

UML Unified Modeling Language

UNC University of North Carolina at Chapel Hill

URL Uniform Resource Locator

VPE Virtual Planetary Explorer

VR Virtual Reality

VRML Virtual Reality Modeling Language

WWW World Wide Web
X3D Extensible Three-Dimensional [Model, specification]

XML Extensible Markup Language

ZOIP Zero-One Integer Programming

187

Acronyms appropriate only within this dissertation:

BERK Berkeley Walkthrough

J3DV Java3D and VRML
QGRD QUICK algorithm using greedy approximation

QMAX QUICK algorithm using greedy approximation without replacement

QOPT QUICK algorithm using linear optimization

PERF Iris Performer

SPLN SPLINE

188

APPENDIX B. EXAMPLE SCENES WITH
ANNOTATIONS

This appendix contains a complete description of the 18-wheeler truck model used

in many of the scenes in this dissertation. Many other example models, including all those

used in test scenes, are available electronically as part of the QUICK software distribution.

The truck model file contains a single QSwitch that contains four level-of-detail

nodes, with annotations. For visual clarity in demonstrations, the geometry is colored

according to its detail. Colors are selected on a spectrum from green to red, with green for

highest quality, yellow for median representations, and red for lowest quality. Figure 40

shows the four versions of the model side-by-side.

Figure 40. Truck Levels of Detail.

189

1. QUICK FORMAT

This model uses the non-standard QUICK extensions to VRML. This version was

used with the initial QUICK implementation for convenience. The PROTO version, which

follows, is generally preferred.

#QUICK VI. utf8
contains a QSwitch that incorporates
four LODs for an 18 -wheel cargo truck

QSwitch {

contents [

"Vehicle : Ground : Truck : 18_Wheeler

"

]

choice [

QNode {

quality QQuality {

subjective 1 # author annotation
colorDepth 4 # number of significant bits
alphaDepth 1 # number of significant bits
geomError # error in meters
geomErrorMax # maximum error in meters

}

cost QCost {

triangles 2360 # number of triangles
filesize 133259 # ASCII uncompressed

}

url "18Wheel_l_2.4k.wri"

}

QNode {

quality QQuality {

subjective .95

colorDepth 4

alphaDepth 1

geomError 0.05086 # missing wheels
geomStdev 0.103 6

}

cost QCost {

triangles 1816
filesize 118078

190

}

url "18Wheel_2_1.8k.wri"

}

QNode {

quality QQuality {

subjective .9

colorDepth 4

alphaDepth 1

geomError 0.16949
geomStdev 0.19098

}

cost QCost {

triangles 1184

filesize 58123

}

url "18Wheel_3_1.2k.wri"

}

QNode
{

quality QQuality {

subjective .75

colorDepth 4

alphaDepth 1

geomError 0.18882
geomStdev 0.19628

}

cost QCost {

triangles 603

filesize 51582

}

url "18Wheel_4_0.6k.wri"

}

191

2. VRML97 QUICK PROTO DEFINITIONS

This section gives the VRML97 file which defines the PROTO nodes needed for

QUICK

.

.OTO QCost [

exposedField SFInt32 triangles -1

exposedField SFInt32 flops -1

exposedField SFInt32 f ilesize -1

Worldlnfo
{

There is no standard VRML scene node
analog for QCost, so a comment
node is added.

}

}

PROTO QQuality [

exposedField
exposedField
exposedField
exposedField
exposedField
exposedField

]

{

Worldlnfo
{

There is no standard VRML scene node
analog for QQuality, so a comment
node is added.

}

}

PROTO QNode [

fields for the VRML Transform node:

SFFloat geomError -1.

SFFloat geomStdev -1.

SFInt32 colorDepth -1

SFInt32 textureResolution -1

SFInt32 alphaDepth -1

SFFloat subjective -1.

field SFVec3f
field SFVec3f
exposedField SFVec3f
exposedField SFRotation
exposedField SFVec3f
exposedField SFRotation

qbboxCenter
qbboxSize
qtranslation
qrotation
qscale
qscaleOrientation 0.0

0.0 .0 0,.0

-1.0 -1 .0 -1.0

0.0 . 0..0

0.0 .0 1

,

.0 0.0

1.0 1. . 1..0

0.0 0..0 1

.

.0 0.0

192

exposedField SFVec3f
exposedField MFNode

new fields:
MFString contents
SFString url
SFNode cost
SFNode quality

qcenter
qchildren

[]

ii ti

NULL
NULL

0.0 0.0 0.0

[]

a QCost node
a QQuality node

Transform
{

bboxCenter IS qbboxCenter
bboxSize IS qbboxSize
translation IS qtranslation
rotation IS qrotation
scale IS qscale
scaleOrientation IS qscaleOrientation
center IS qcenter
children IS qchildren

}

} # end PROTO QNode
PROTO QSwitch [

fields from the VRML Switch node:
exposedField SFInt32 whichChild
exposedField MFNode children

-1

[]

new fields:
exposedField SFFloat
exposedField MFString

importance
contents

.5

[]

Switch
{

whichChoice IS whichChild
choice IS children

}

} # end PROTO QSwitch

193

3. EXTERNPROTO FORMAT

#VRML V2.0 utf8
contains a QSwitch that incorporates
four LODs for an 18 -wheel cargo truck
includes QUICK PROTOs using EXTERNPROTO mechanism
EXTERNPROTO QCost [

exposedField SFInt32 triangles
exposedField SFInt32 flops
exposedField SFInt32 filesize

] "http://. . ./quick. wrl#QCost"

EXTERNPROTO QQuality [

exposedField
exposedField
exposedField
exposedField
exposedField
exposedField

SFFloat
SFFloat
SFInt32
SFInt32
SFInt32
SFFloat

geomError
geomStdev
colorDepth
textureResolution
alphaDepth
subjective

] "http://. . .
/quick. wrl#QQuality"

EXTERNPROTO QNode [

field SFVec3f
field SFVec3f
exposedField SFVec3f
exposedField SFRotation
exposedField SFVec3f
exposedField SFRotation
exposedField SFVec3f
exposedField MFNode
MFString contents
SFString url
SFNode cost
SFNode quality

] "http://. . ./quick. wrl#QNode"

qbboxCenter
qbboxSize
qtranslation
qrotation
qscale
qscaleOrientation
qcenter
qchildren

EXTERNPROTO QSwitch [

exposedField SFInt32
exposedField MFNode
exposedField SFFloat
exposedField MFString

whichChild
children
importance
contents

194

] "http://. . . /quick. wrl#QSwitch"

QSwitch {

contents [

"Vehicle : Ground : Truck : 18_Wheeler

"

]

children [

QNode
{

quality QQuality
{

subjective 1 # author annotation
colorDepth 4 # number of significant bits
alphaDepth 1 # number of significant bits
geomError # error in meters
geomErrorMax # maximum error in meters

}

cost QCost {

triangles 2360 # number of triangles
filesize 133259 # ASCII uncompressed

}

url " 18Wheel_l_2.4k.wri"

}

QNode {

quality QQuality {

subjective .95

colorDepth 4

alphaDepth 1

geomError 0.05086 # missing wheels
geomStdev 0.1036

}

cost QCost {

triangles 1816
filesize 118078

}

url "18Wheel_2_1.8k.wri"

}

QNode {

quality QQuality
{

subjective .9

colorDepth 4

alphaDepth 1

geomError 0.16949
geomStdev 0.19098

195

}

cost QCost
{

triangles 1184

filesize 58123

}

url "18Wheel_3_1.2k.wri"

}

QNode {

quality QQuality {

subjective .75

colorDepth 4

alphaDepth 1

geomError 0.18882
geomStdev 0.19628

}

cost QCost {

triangles 603

filesize 51582

}

url "18Wheel 4 0.6k.wri"

]

}

196

APPENDIX C. SOFTWARE AVAILABILITY AND
DOCUMENTATION

All documentation for the QUICK software implementation is in a hypertext for-

mat, which does not lend itself to fiat printing. Additionally, the software is projected to be

under continuous development. Therefore, the material is included in this dissertation only

by reference.

Readers interested in the QUICK software are encouraged to visit the following

Internet address:

http : //npsnet . org/quick

197

THIS PAGE INTENTIONALLY LEFT BLANK

198

LIST OF REFERENCES

[Airey et ai, 1990] John M. Airey, John H. Rohlf, and Frederick P. Brooks, Jr. Towards

image realism with interactive update rates in complex virtual building environments,

volume 24, pages 41-50, March 1990.

[Anderson et ai, 1995] David Anderson, John Barrus, John Howard, Charles Rich, Chia

Shen, and Richard Waters. Building multi-user interactive multimedia environments at

merl. IEEE Multimedia, 1995.

[Appel, 1968] Arthur Appel. Some techniques for shading machine renderings of solids.

In AFIPS 1968 Spring Joint Computer Conf., volume 32, pages 37-45, 1968.

[Arvo and Kirk, 1990] James Arvo and David B. Kirk. Particle transport and image syn-

thesis. In Forest Baskett, editor, Computer Graphics (SIGGRAPH '90 Proceedings),

volume 24, pages 63-66, August 1990.

[Baecker and Buxton, 1987] Ronald Baecker and William Buxton, editors. Readings in

Human-Computer Interaction: A Multidisciplinary Approach. Morgan-Kaufmann, Los

Altos, CA, 1987.

[Baecker et ai, 1995] Ronald Baecker, , Jonathan Grudin, William Buxton, and Saul

Greenberg, editors. Readings in Human-Computer Interaction: Towards the Year 2000.

Morgan-Kaufmann, Los Altos, CA, 1995.

[Banks and Weimer, 1992] William W. Banks and Jon Weimer. Effective Computer Dis-

play Design. Prentice Hall, 1992.

[Benford and Fahlen, 1993] Steve Benford and L. Fahlen. A spatial model of interaction

in large virtual environments. In Proceedings ofECSCW '93, September 1993.

[Bertsimas and Tsitsiklis, 1997] Dimitris Bertsimas and John Tsitsiklis. Introduction to

Linear Optimization. Athena Scientific, Belmont, MA, 1997.

[Birman et ai, 1985] Kenneth Birman, Thomas Joseph, T. Rauechle, and A. El Abbadi.

Implementing fault-tolerant distributed objects. IEEE Transactions on Software Engi-

neering, SE-1 1:502-508, June 1985.

[Blanchard etal., 1990] Charles Blanchard, S. Burgess, Young Harvill, Jaron Lanier, and

A Lasko. Reality built for two: A virtual reality tool. In Proceedings of the 1990

Symposium on Interactive 3D Graphics, March 1990.

[Canny and Lin, 1993] John F. Canny and Ming C. Lin. An opportunistic global planner.

Algorithmica Special Issue on Computational Robotics, 10(2-4): 102-220, August 1993.

199

[Capps and Stotts, 1997] Michael Capps and David Stotts. Research issues in develop-

ing networked virtual realities. In Proceedings of the Sixth Workshops on Enabling

Technologies: Infrastructurefor Collaborative Enterprises, pages 205-2 1 1 , Cambridge,

MA, June 1997.

[Capps and Teller, 1997] Michael Capps and Seth Teller. Communications visibility in

shared virtual worlds. In Proceedings of the Sixth Workshops on Enabling Technolo-

gies: Infrastructure for Collaborative Enterprises, pages 187-192, Cambridge, MA,
June 1997.

[Capps etai, 2000] Michael Capps, Don McGregor, Don Brutzman, and Michael Zyda.

Npsnet-v: A new beginning for dynamically extensible virtual environments. IEEE
Computer Graphics and Applications, 2000.

[Carlsson and Hagsand, 1993] C. Carlsson and Olaf Hagsand. Dive: A multi-user virtual

reality system. In Proceedings ofthe IEEE Virtual Reality Annual International Sympo-

sium, pages 394-401, September 1993.

[Chamberlain et ai, 1996] Bradford Chamberlain, Tony DeRose, Dani Lischinski, David

Salesin, and John Snyder. Fast rendering of complex environments using a spatial hier-

archy. In Wayne A. Davis and Richard Bartels, editors, Graphics Interface '96, pages

132-141. Canadian Information Processing Society, Canadian Human-Computer Com-
munications Society, May 1996. ISBN 0-9695338-5-3.

[Chen, 1995] Shenchang Eric Chen. Quicktime VR - an image-based approach to vir-

tual environment navigation. In Robert Cook, editor, SIGGRAPH 95 Conference Pro-

ceedings, Annual Conference Series, pages 29-38. ACM SIGGRAPH, Addison Wesley,

August 1995. held in Los Angeles, California, 06-1 1 August 1995.

[Clark, 1976] J. H. Clark. Hierarchical geometric models for visible surface algorithms.

Communications of the ACM, 19(10):547-554, October 1976.

[Cohen etai, 1996] Jonathan Cohen, Amitabh Varshney, Dinesh Manocha, Greg Turk,

Hans Weber, Pankaj Agarwal, Frederick Brooks, and William Wright. Simplification

envelopes. In Proceedings ofSIGGRAPH 96, pages 1 19-128, New Orleans, LA, August

1996.

[Consortium, 1998] World Wide Web Consortium. Extensible markup language (xml) 1.0

recommendation, 1998.

[Coorg and Teller, 1996] Satyan Coorg and Seth Teller. Temporally coherent conservative

visibility. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 78-87, 1996.

[Cormen et ai, 1990] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.

Introduction to Algorithms. McGraw Hill, 1990.

200

[Danskin and Hanrahan, 1992] John Danskin and Pat Hanrahan. Fast algorithms for vol-

ume ray tracing. 1992 Workshop on Volume Visualization, pages 91-98, 1992.

[Debevec etal, 1996] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling

and rendering architecture from photographs: A hybrid geometry- and image-based ap-

proach. In Holly Rushmeier, editor, SIGGRAPH 96 Conference Proceedings, Annual

Conference Series, pages 11-20. ACM SIGGRAPH, Addison Wesley, August 1996.

held in New Orleans, Louisiana, 04-09 August 1996.

[DIS, 1993] IEEE standard for information technology-protocols for distribute dsimual-

tion applications: Entity information and interaction. IEEE Standard 1278-1993. New
York: IEEE Computer Society, 1993.

[Drettakis and Sillion, 1996] George Drettakis and Francois Sillion. Accurate visibility

and meshing calculations for hierarchical radiosity. In Xavier Pueyo and Peter Schroder,

editors, Eurographics Rendering Workshop 1996, pages 269-278, New York City, NY,

June 1996. Eurographics, Springer Wein. ISBN 3-211-82883-4.

[Durlach and Mavor, 1994] Nathaniel I. Durlach and Anne S. Mavor, editors. Virtual Re-

ality: Scientific and Technological Challenges. National Academy Press, 1994.

[Falby et al, 1993] John S. Falby, Michael J. Zyda, David R. Pratt, and Randy L. Mackey.

NPSNET: Hierarchical data structures for real-time three-dimensional visual simulation.

Computers & Graphics, 17(l):65-70, 1993.

[Farquhar et al, 1995] Adam Farquhar, Richard Fikes, Wanda Pratt, and James Rice. Col-

laborative ontology construction for information integration. Technical report, Stanford

University, 1995.

[Ferguson et al, 1990] R. L. Ferguson, R. Economy, W A. Kelley, and P. P. Ramos. Con-

tinuous terrain level of detail for visual simulation. In Proceedings of the 1990 Image V
Conference, pages 145-151. Image Society, Tempe, AZ, June 1990.

[Foley et al, 1990] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer

Graphics: Principles and Practice. Addison-Wesley, Reading, MA, 1990.

[Fowler et al, 1999] Martin Fowler, Kendall Scott, and Grady Booch. UML Distilled: A
Brief Guide to the Standard Object Modeling Language. The Addison-Wesley Object

Technology Series. Addison-Wesley, 2nd edition edition, 1999.

[Fuchs et al, 1980] H. Fuchs, Z. M. Kedem, and B. F Naylor. On visible surface genera-

tion by a priori tree structures, volume 14, pages 124-133, July 1980.

[Funkhouser and Sequin, 1993] Thomas A. Funkhouser and Carlo H. Sequin. Adaptive

display algorithm for interactive frame rates during visualization of complex virtual en-

vironments. In James T. Kajiya, editor, Computer Graphics (SIGGRAPH '93 Proceed-

ings), volume 27, pages 247-254, August 1993.

201

[Funkhouser etal, 1992] Thomas A. Funkhouser, Carlo H. Sequin, and Seth J. Teller.

Management of large amounts of data in interactive building walkthroughs. In David

Zeltzer, editor, Computer Graphics (1992 Symposium on Interactive 3D Graphics), vol-

ume 25, pages 11-20, March 1992.

[Funkhouser, 1993] Thomas Funkhouser. Database and Display Algorithms for Inter-

active Visualization ofArchitectural Models. PhD thesis, Computer Science Division

(EECS), University of California, Berkeley, 1993.

[Funkhouser, 1996] Thomas A. Funkhouser. Database management for interactive display

of large architectural models. In Wayne A. Davis and Richard Bartels, editors, Graphics

Interface '96, pages 1-8. Canadian Information Processing Society, Canadian Human-

Computer Communications Society, May 1996. ISBN 0-9695338-5-3.

[Garey and Johnson, 1979] Michael Garey and David Johnson. Computers and In-

tractability: A Guide to the Theory ofNP-Completeness. W.H. Freeman and Company,

New York, 1979.

[Goerger, 1998] Simon Goerger. Spatial knowledge acquisition and transfer from virtual

to natural environments for dismounted land navigation. Master's thesis, Naval Post-

graduate School, Monterey, CA, 1998.

[Gossweiler, 1996] Richard Gossweiler. Perception-Based Time Critical Rendering. PhD
thesis, University of Virginia, January 1996.

[Greenhalgh and Benford, 1995] Chris Greenhalgh and Steve Benford. Massive: a col-

laborative virtual environment for teleconferencing. ACM transactions on CHI, 2(3),

September 1995.

[Hesina et al, 1999] Gerd Hesina, Dieter Schmalstieg, Anton Fuhrmann, and Werner Pur-

gathofer. Distributed open inventor: A practical approach to distributed 3d graphics. In

Proceedings ofACM VRST '99, London, England, December 1999.

[Hitchner and McGreevy, 1993] Lewis Hitchner and Michael McGreevy. Methods for

user-based reduction of model complexity for virtual planetary exploration. In SPIE

Vol. 1913, pages 622-636, 1993.

[Hodges, 1992] Larry Hodges. Time-multiplexed stereoscopic computer graphics. Com-

puter Graphics and Applications, 12:20-30, 1992.

[IdSoftware, 1996] IdSoftware. Quake software package, 1996.

[Keshav, 1997] S. Keshav. An Engineering Approach to Computer Networking: ATM Net-

works, the Internet, and the Telephone Network. Addison-Wesley, 1997.

[Kuhl etal, 1999] Frederick Kuhl, Richard Weatherly, and Judith Dahmann. Creating

Computer Simulation Systems. Prentice Hall, 1999.

202

[Lengyel and Snyder, 1997] Jed Lengyel and John Snyder. Rendering with coherent lay-

ers. In Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings, Annual Confer-

ence Series, pages 233-242. ACM SIGGRAPH, Addison Wesley, August 1997. ISBN
0-89791-896-7.

[Levoy, 1 990] Marc Levoy. A hybrid ray tracer for rendering polygon and volume data.

IEEE Computer Graphics and Applications, 10(2):33-40, March 1990.

[Lindstrom et ai, 1996] Peter Lindstrom, David Koller, William Ribarsky, Larry F.

Hughes, Nick Faust, and Gregory Turner. Real-Time, continuous level of detail render-

ing of height fields. In Holly Rushmeier, editor, SIGGRAPH 96 Conference Proceed-

ings, Annual Conference Series, pages 109-118. ACM SIGGRAPH, Addison Wesley,

August 1996. held in New Orleans, Louisiana, 04-09 August 1996.

[Luebke and Erikson, 1997] David Luebke and Carl Erikson. View-dependent simplifi-

cation of arbitrary polygonal environments. In Turner Whitted, editor, SIGGRAPH
97 Conference Proceedings, Annual Conference Series, pages 199-208. ACM SIG-

GRAPH, Addison Wesley, August 1997. ISBN 0-89791-896-7.

[Luebke and Georges, 1995] David Luebke and Chris Georges. Portals and mirrors: Sim-

ple, fast evaluation of potentially visible sets. In Pat Hanrahan and Jim Winget, editors,

7995 Symposium on Interactive 3D Graphics, pages 105-106. ACM SIGGRAPH, April

1995. ISBN 0-89791-736-7.

[MacDonald, 1999] Lindsay W. MacDonald. Using color effectively in computer graphics.

Computer Graphics and Applications, 19(4):20-35, July/August 1999.

[Macedonian ai, 1995] Michael Macedonia, Donald Brutzman, Michael Zyda, David

Pratt, Paul Barham, John Falby, and John Locke. Npsnet: A multi-player 3d virtual

environment over the internet. In Proceedings ofthe 1995 Symposium on Interactive 3D
Graphics, pages 9-12, Monterey, California, April 1995.

[Magillo and Floriani, 1994] Paola Magillo and Leila De Floriani. Computing visibility

maps on hierarchical terain maps. In Proceedings of the 2nd ACM Workshop on Ad-

vances in Geographic Information Systems, pages 8-15, Gaithersburg, Maryland, De-

cember 1994. ACM Press.

[Magillo and Floriani, 1995] Paolo Magillo and Leila De Floriani. Maintaining multiple

levels of detail in the overlay of hierarchical subdivisions. Technical report, University

of Genova, December 1995. hierarchical structure with two subdivisions overlayed, at

diferring resolutions- good for GIS where overlapping two maps can happen.

[O'Connor etai, 1996] John O'Connor, Barbara O'Kane, Christopher Royal, Kathy

Ayscue, David Bonzo, and Beth Nystrom. Recognition of human activities using hand-

held thermal systems. Technical report, U.S. Army CECOM Research Night Vision and

Electronic Sensors Directorate, Ft. Belvoir, VA, April 1996.

203

[Pesce, 1995] Mark Pesce. VRML—Browsing and Building Cyberspace. New Riders,

Indianapolis, IN, 1995.

[PLI, 2000] Plib portable graphics library, http://plib.sourceforge.net, 2000.

[Rademacher, 1999] Paul Rademacher. View-dependent geometry. In Proceedings ofSIG-

GRAPH 99, Los Angeles, CA, 1999.

[Rafferty et ai, 1998] Matthew Rafferty, Daniel Aliaga, and Anselmo Lastra. 3d image

warping in architectural walkthroughs. In Proceedings of VRAIS '98, pages 228-233,

Atlanta, GA, Month 1998.

[Reinhard et al, 1996] Erik Reinhard, Arjan J. F. Kok, and Frederik W. Jansen. Cost pre-

diction in ray tracing. In Xavier Pueyo and Peter Schroder, editors, Eurographics Ren-

dering Workshop 1996, pages 41-50, New York City, NY, June 1996. Eurographics,

Springer Wein. ISBN 3-21 1-82883-4.

[Rohlf and Helman, 1994] John Rohlf and James Helman. IRIS performer: A high perfor-

mance multiprocessing toolkit for real-Time 3D graphics. In Andrew Glassner, editor,

Proceedings ofSIGGRAPH '94 (Orlando, Florida, July 24-29, 1994), Computer Graph-

ics Proceedings, Annual Conference Series, pages 381-395. ACM SIGGRAPH, ACM
Press, July 1994. ISBN 0-89791-667-0.

[Sandin et al, 1997] D. Sandin, G. Olson, and Michael Macedonia. Panel: Distributed,

interactive collaboration-where is it? In Proceedings of1997 Symposium on Interactive

3D Graphics, Providence, RI, April 1997.

[Schmalstieg, 1997] Dieter Schmalstieg. Lodestar: An octree-based level of detail gener-

ator for VRML. In Rikk Carey and Paul Strauss, editors, VRML 97: Second Symposium

on the Virtual Reality Modeling Language, New York City, NY, February 1997. ACM
SIGGRAPH / ACM SIGCOMM, ACM Press. ISBN 0-8979 1-886-x.

[Shade et al., 1996] Jonathan Shade, Dani Lischinski, David Salesin, Tony DeRose, and

John Snyder. Hierarchical image caching for accelerated walkthroughs of complex envi-

ronments. In Holly Rushmeier, editor, SIGGRAPH 96 Conference Proceedings, Annual

Conference Series, pages 75-82. ACM SIGGRAPH, Addison Wesley, August 1996.

held in New Orleans, Louisiana, 04-09 August 1996.

[Shalabi, 1998] Sami Shalabi. High performance visualization of complex urban scenes.

Master's thesis, Massachusetts Institute of Technology, Cambridge, MA, 1998.

[Silberschatz and Galvin, 1994] Abraham Silberschatz and Peter Galvin. Operating Sys-

tem Concepts. Addison Wesley, 1994.

204

[Sillion et al, 1997] Francois Sillion, George Drettakis, and Benoit Bodelet. Efficient im-

postor manipulation for real-time visualization of urban scenery. In D. Fellner and

L. Szirmay-Kalos, editors, Computer Graphics Forum (Proc. ofEurographics '97), vol-

ume 16, pages 207-218, Budapest, Hungary, September 1997.

[Singhal andZyda, 1999] Sandeep Singhal and Michael Zyda. Networked Virtual Envi-

ronments. Addison-Wesley, 1999.

[Sipser, 1997] Michael Sipser. Introduction to the Theory of Computation. PWS Publish-

ing Company, Boston, MA, 1997.

[Soto and Allongue, 1997] Michel Soto and Allongue. Semantic approach of virtual

worlds interoperability. In Michael Capps, editor, Proceedings ofIEEE WET-ICE '97,

Cambridge, MA, June 1997. IEEE Press.

[Sowizral et al., 1997] Henry Sowizral, Kevin Rushforth, and Michael Deering. The Java

3D API Specification. Java Series. Addison Wesley, December 1997.

[Speer et al., 1985] L. R. Speer, T. D. Derose, and B. A. Barsky. A theoretical and em-

pirical analysis of coherent ray-tracing. In M. Wein and E. M. Kidd, editors, Graphics

Interface '85 Proceedings, pages 1-8. Canadian Inf. Process. Soc, 1985.

[Teller and Sequin, 1991] Seth J. Teller and Carlo H. Sequin. Visibility preprocessing for

interactive walkthroughs. In Thomas W. Sederberg, editor, Computer Graphics (SIG-

GRAPH '91 Proceedings), volume 25, pages 61-69, July 1991.

[Tramberend, 1999] Henrik Tramberend. Avocado: A distributed virtual reality frame-

work. In Proceedings ofIEEE Virtual Reality '99, pages 14-21, Houston, Texas, March

1999.

[Turk, 1991] Greg Turk. Generating textures for arbitrary surfaces using reaction-

diffusion. In Proceedings ofSIGGRAPH 91, pages 289-298, July 1991.

[VRM, 1997] The virtual reality modeling language. International Standard ISO/IEC

14772-1:1997,1997.

[Waters et al., 1997] Richard Waters, David Anderson, John Barrus, D. Brogan, M Casey,

S McKeown, T Nitta, and William Yerazunis. Diamond park and spline: Social vir-

tual reality with 3d animation, spoken interaction and runtime extendability. Presence,

6(4):461-481, 1997.

[X3D, 2000] X3d task group, http://www.web3d.org/, 2000.

[Yagel and Ray, 1996] R. Yagel and W. Ray. Visibility computation for efficient walk-

through of complex environments. Presence, 5(l):45-60, Winter 1996.

205

[Zeleznik et al, 2000] Bob Zeleznik, Loring Holden, Michael Capps, Howard Zbrams,

and Tim Miller. Scene-graph-as-bus: Collaboration between heterogeneous stand-alone

3-d graphical applications. In Proceedings of Eurographics 2000, Interlaken, Switzer-

land, August 2000.

[Zyda et al, 1990] Michael J. Zyda, Mark A. Fichten, and David H. Jennings. Mean-

ingful graphics workstation performance measurements. Computers and Graphics,

14(3/4):5 19-526, 1990.

206

INITIAL DISTRIBUTION LIST

1

.

Defense Technical Information Center 2

8725 John J. Kingman Road., Ste 0944

Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2

Naval Postgraduate School

411 DyerRd.

Monterey, CA 93943-5101

3. CAPT Steve Chapman, USN 1

N6M
2000 Navy Pentagon

Room 4C445

Washington, DC 20350-2000

4. George Phillips 1

CNO,N6Ml
2000 Navy Pentagon

Room 4C445

Washington, DC 20350-2000

5. Assistant Professor Don Brutzman, Code UW/Br 1

Undersea Warfare Academic Group

Naval Postgraduate School

Monterey, CA 93940

6. Research Assistant Professor Michael Capps, Code CS/Cm 5

Computer Science Department

Naval Postgraduate School

Monterey, CA 93940-5000

7. Assistant Professor Rudolph Darken, Code CS/Da 1

Computer Science Department

Naval Postgraduate School

Monterey, CA 93940-5000

8. Professor Ted Lewis, Code CS/Le 1

Computer Science Department

Naval Postgraduate School

Monterey, CA 93940-5000

207

9. Professor Michael Zyda, Code CS/Zk 1

Computer Science Department

Naval Postgraduate School

Monterey, CA 93940-5000

10. MOVES Research Center, Code CS/Fa 1

MOVES Academic Group

Naval Postgraduate School

Monterey, CA 93940-5000

1 1

.

Associate Professor Kevin Jeffay 1

UNC Computer Science

CB #3175, Sitterson Hall

Chapel Hill, NC 27599-3175

12. Brian C. Ladd 1

Mathematics Department

Valentine 118

St. Lawrence University

Canton, NY 13617

13. Justin Legakis 1

Laboratory for Computer Science

NE43-247

Massachusetts Institute of Technology

Cambridge, MA 02139

14. Henry Sowizral 1

Distinguished Engineer

Sun Microsystems, Inc.

901 San Antonio Road, MS MPK27-101

Palo Alto, CA 94303-4900

15. Associate Professor P. David Stotts 1

UNC Computer Science

CB #3175, Sitterson Hall

Chapel Hill, NC 27599-3175

208

60 ^2313
6/02 22527-200 nlb

