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Beyond |

Michael J. Zyda
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ABSTRACT

We present in this paper a look at the future graphics capabilities of the

workstation. We begin by examining the cycles of special hardware development

that have occurred for graphics systems in general. We show how the current

evolution of the graphics workstation is a direct response to applications user

desires for higher performance, graphics systems. The software and hardware lev-

els that perform the input and output graphics operations for the workstation are

described with an eye towards categorizing future graphics capabilities. The
implementation of those levels in the Silicon Graphics, Inc. IRIS is cited as an

example of the leading edge for graphics capabilities in a workstation. Current

research leading to future enhancements of the graphics workstation is presented

as a continuation of the historical response to applications user desires for ever

higher performance, interactive systems.

Categories and Subject Descriptors: 1.3.1 [Hardware Architecture]: architec-

tures, parallel processing. VLSI implementations; 1.3.2 [Graphics Systems]:

multiprocessing systems; 1.3.3 [Picture/Image Generation]: surface visualiza-

tion: 1.3.6 [Methodology and Techniques]: contouring, interactive systems,

parallel processing; 1.3.7 [Three-Dimensional Graphics and Realism]: line

drawings, line generation algorithms, real-time graphics, surface plotting, surface

visualization, surfaces: 1.3.m [Miscellaneous]: VLSI;

General Terms: Algorithms, architecture;

Additional Key Words and Phrases: contour surface display generation, real-time

display generation, graphics workstations;
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1. Introduction

Graphics workstations represent the culmination of a long history of hardware developments

for purposes of real-time, interactive applications systems. The idea behind such systems is to

provide the human user immediate feedback of visual information in response to any physical con-

trol manipulations made. Such capabilities are an integral part of visual training simulators,

command/control situations, and other time-critical applications. Historically, the effort to

improve the capabilities of such systems has been a push-and-pull cycle of increasing applications

user demands driving special hardware additions to the graphics system. In order to understand

the future capabilities of such systems, we must examine the cycles of hardware development.

In the early days of computer graphics, applications users were happy if they could just get

a picture to the display device. It did not to matter that the display device took two to three

minutes for one picture as the alternative was to not be able to get the particular application

done. In those early days, the computer was generally a single user system, with the graphics

applications program consuming all available resources. The key problem with respect to interac-

tive systems was that there was a lot of idle user time during the waits for the next display. Con-

sequently, one of the first problems that was solved with special hardware was the speeding up of

picture delivery. This can be considered the first cycle of special hardware for the graphics sys-

tem.

Applications users readily took to computer graphics once they saw that they could get their

picture to the display device in a reasonable amount of time. In fact, applications users took to

computer graphics with such a fervor that they began demanding what to them seemed like the

next logical development, the addition of matrix multipliers for the real-time operations necessary

for rotating, scaling, and translating vectors. This was the second cycle of special hardware addi-

tions to the graphics system. This addition to the display system was quite important in that it

allowed the development of real-time interactive applications not previously possible without the

special hardware. (One example of this has been the near abandonment in the field of chemistry

of the use of hard models of large molecules for the more readily manipulated computer models).
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Anyone who has spent any amount of time with applications users knows quite well that

they are never completely satisfied. The addition of the special hardware for matrix multipliers

came towards the end of the cycle of single user minicomputer systems. Applications program-

mers momentarily got used to the immediate response of the single user computer graphics sys-

tem, and then almost immediately lost that capability. This capability was lost due to the simple

fact that the applications users outgrew the single user minicomputer systems, and moved onto

the larger, shared super-minicomputers. The third cycle of improvements to the graphics system

was in response to that loss. This cycle is typified by the offloading of the graphics and interac-

tion functionalities from the host computer to a special processor dedicated to the graphics sys-

tem. The goal behind this was to reclaim the real-time, interactive capabilities lost during the

move to the shared super-minicomputer. This cycle created the modern interactive graphics

workstation.

2. Interactive Graphics Workstation Organization

Current high performance graphics workstations have some variant of the organization dep-

icted in Figure 1. In that figure, we see a central bus, typically the IEEE Multibus, off of which

hang the CPU, the terminals, the disk drives, the Ethernet interfaces, and the other miscellaneous

output devices. On the other side of the CPU, we see a bus going to a unit labeled DPU, or

display processing unit, with that bus passing through and towards the actual display device, or

display surface. Connected to the DPU are an array of interactive devices, i.e. mouse devices,

joysticks, dials, buttons, switches, data tablets, light pens, and perhaps, a keyboard. For this

study, we are primarily interested in the part of Figure 1 directly concerned with graphics.

With respect to high performance graphics, and the top half of Figure 1, there are two

operations with which we are concerned: (1) Getting tht Picturf There (from the applications pro-

gram to the display surface), and (2) Manipulating the Picture (by way of some movement of the

interactive devices such that a picture change is generated). The first operation, Getting the Pic-

ture There, is most often termed the "output" function in the field of computer graphics. This

means that we use some mathematical description encoded in the applications program to put a
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visual display, or output, on the display surface. In order to properly understand the output func-

tion, we need to examine both the software and the hardware currently used to perform that func-

tion.

2.1. Software for the Output Function

A sketch of the levels of software involved in performing the output function is seen in Fig-

ure 2. In that figure, we see an applications program (software) making calls to a graphics pack-

age (software), with those calls being converted into calls to a device driver (low level software).

Beyond the device driver are even lower level software calls, or perhaps, commands directed to

the DPU's hardware.

The applications program is the start of the pathway to the DPU. The applications pro-

gram is the set of computer instructions that maintain the abstract mathematical description, or

model, of the applications user's world. This means that if the applications program is a VLSI

design program, thai it is the set of instructions that knows about transistors, registers, etc.. The

applications program makes calls to the graphics package (Figure 3). The graphics package

makes some transformations on the data passed to it, and passes the transformed data onto the

device driver. Part of this transformation step is putting the data into an opcode format the dev-

ice driver expects. The final operations in the software pathway to the DPU are performed by

the device driver. The device driver converts the data received into the opcode streams required

by the DPU. The next step in the output function is a hardware step. i.e. the DPI 's conversion

of that stream into a form that can be sent to the display.

2.2. Hardware for the Output Function

Once we have a rough idea of the software pathway necessary to perform the output func-

tion, we then need to look at the hardware pathway. The hardware pathway is mostly contained

within the DPU (Figure 4). The only part of the hardware pathway that is outside of the DPU is

the pathway from the refresh subsystem to the display surface. The DPU is comprised of the fol-

lowing pieces of hardware: the display controller, the raster subsystem, the frame buffer, and the
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refresh subsystem. We can best understand the function of these different components of the

DPU if we discuss them in terms of their data flow. At the start of Figure 4, we see an opcode

stream entering the display controller. This stream contains the instructions and data output by

the device driver software. The data that leaves the the display controller for the raster subsys-

tem are lines and polygons, and their associated colors and fills. The raster subsystem, in turn,

converts those lines and polygons into the set of pixels necessary for their representation in the

frame buffer. The frame buffer's pixels are read by the refresh subsystem, which converts those

pixels into electron beam deflections. With the above brief overview of the data flow of the DPU

in mind, we can define the parts of the DPU with respect to the graphics capabilities needed for

the output function. We begin by looking in more detail at the display controller.

2.2.1. Graphics Capabilities for the Output Function: Display Controller

The display controller is best understood in terms of its data flow, and its operational capa-

bilities. As seen in Figure 4, the display controller has an opcode stream coming in, as formatted

by the device driver, and has vectors and polygons going out. The stream coming in is comprised

of opcodes followed by data. The data is a collection of untransformed coordinates, matricies,

text, colors, linestyles, fills, etc.. The data going out from the display controller is comprised of

transformed coordinates in frame buffer space, text, colors, linestyles, fills, etc..

The operations the display controller performs on the input data are the following: (1)

matrix transformations, i.e. rotations, scalings. translations, (2) coordinate system mappings, and

clippings, i.e. world coordinates to frame buffer coordinates. (3) projections, i.e. 3D to 2D,

perspective orthographic, and (4) display list management. Now the first three operations are

familiar to those with a background in graphics The only one that requires some explanation is

the fourth operation, that of display list management. A displax list is a set of instructions

describing the desired image. In reference to the previous discussion, it is the data input as an

opcode stream The display list is interpreted by the display controller. The display controller

determines the operations it needs to perform on the input data from the display list, and passes

on the remainder of the work to the next system in the hardware path, the raster subsystem.
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2.2.2. Graphics Capabilities for the Output Function: Raster Subsystem

The raster subsystem receives lines and polygons that have been transformed into frame

buffer space, text, colors, linestyles, and polygon fillstyles from the display controller. Before we

can discuss the operations performed by the raster subsystem, we must first describe the frame

buffer, the destination for the output from the raster subsystem.

The frame buffer is a two-dimensional array of memory. Each position in the frame buffer

has a value, called a pixel. The data at each pixel location corresponds to the color that should

be drawn at that position on the graphics display. The operations performed by the raster sub-

system are all destined for output to the frame buffer. The raster subsystem converts input line

segments into the set of pixels necessary for the display of those segments. The raster subsystem

also converts input polygons to the set of pixels necessary for the display of their boundaries, and

interior fills. The raster subsystem provides a similar treatment for text, i.e. it fills the frame

buffer with the appropriate patterns of pixels.

2.2.3. Graphics Capabilities for the Output Function: The Refresh Subsystem

The final part of the hardware pathway for the output function is the refresh subsystem.

The Tefresh subsystem reads rows of pixels from the frame buffer and produces the necessary elec-

tron beam deflections on the cathode ray tube of the graphics display. It performs this operation

either every sixtieth or every thirtieth of a second, depending on the cathode ray tube driver tech-

nology used.

2.3. Software and Hardware for the Graphics Input Function

Wit h respect to the graphics workstation, the second operation with which we are concerned

is the input function (Figure 5). It is more correctly termed the picture manipulation function

but we stick to the accepted terminology. It is called the input function because the operation

the applications program is performing is reading a value from an interactive device. The input

function is really a feedback function, i.e. we read some control values from the interactive dev-

ices at the DPU, pass those values back to the applications program, make a change in the
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picture at that level, and then send the new picture via the output pathway described above.

This is emphasized in Figure 5 by a pathway of directed arrows from the DPU in the direction of

the applications program, and another set of directed arrows back towards the DPU and then the

display. The values read from the interactive devices are typically passed back to the applica-

tions program in an unchanged, or raw form. In the applications program, the raw values are

utilized in an applications programmer written procedure to modify some aspect of the current

display. An example of this is the conversion of a dial value into an angle, with that angle being

plugged into a rotation matrix, or rotation command passed back to the DPU.

2.3.1. Hardware for the Input Function

Other than the actual interactive device hardware, and the interfaces to support those dev-

ices, there tends not to be much special hardware to support the input function. There are two

major exceptions: (l) direct cursor movement hardware support, and (2) display list parameter

modification hardware. Cursor devices, i.e. mouse devices, data tablet pens, and light pens, some-

times have hardware support that eliminates the need to feed raw data values back to the appli-

cations program to change the position of the cursor. This operation is generally carried out by

the DPU. It does not require much in the way of special hardware.

Display list parameter modification hardware is similar in goal to that of the hardware for

direct cursor movement This hardware provides a mechanism by which modifications of parame-

ters embedded in display lists can be routed directly from the DPU on interactive control move-

ment, rather than through the longer applications program loop. An example of this type of

operation is the routing of a raw control value, or some simple linear modification of that raw

value, as a direct replacement of an argument in an instruction in a display list. i.e. replacing the

angle value in a rotation command. This type of operation is similar in concept to the ill-

thought-of practice of self-modifying code and requires some knowledge of the internal structure of

the selected graphics system's display lists.

Besides hardware for the above two input operations, there is generally no special hardware

for the input function. This lack of hardware limits the sophistication of the types of interactive
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operations we are currently capable of performing in the graphics workstation. Without special

hardware to support special input functions, we are limited to the slow, feedback pathway from

the DPU to the applications program and back.

3. Leading Edge Graphics Workstation Capabilities

To this point we have not talked about commercially available graphics workstations' capa-

bilities. We have only given a generic description of the input and output functions with respect

to the hardware and software subsystems necessary to perform those functions. To show the lead-

ing edge of technology for the graphics workstation, we refer back to some of those descriptions

and point out how they are available on one high-performance graphics workstation.

3.1. The Silicon Graphics, Inc. IRIS Workstation

In the section on graphics capabilities for the output function of the display controller, we

listed the operations that are performed by that part of the DPU. They are (l) matrix transfor-

mations, (2) coordinate system mappings, and clippings, (3) projections, and (4) display list

management. One of the leading edge developments that have been accomplished for this subsys-

tem of the DPU is the addition of a special pipeline processor to perform the first three functions

of the list. The best example of this for a graphics workstation is that of the Silicon Graphics.

Inc. IRIS (Figures 6 and 7, and [2 '). The IRIS system has a "Geometry Pipeline" for these opera-

tions This pipeline has five major components, all implemented via special purpose VLSI chips.

The first component, as shown in Figure 7, is a special VLSI subsystem to convert uorld, or appli-

cations program coordinates to Geometry Engine floating point format. The second component is

a four chip pipeline for matrix multiplication. This part of the pipeline operates on 4 x 4 matri-

cies setup for rotations, translations, and scalings. The third component is a six chip pipeline of

clippers that perform geometric clipping, i.e. top, bottom, left, right, near, and far clipping. The

fourth component is a two chip pipeline, labeled scalers, that performs a perspective division, the

projection operation, and the mapping of the three-dimensional coordinates to two-dimensional

space. The final component of the pipeline is a VLSI subsystem to convert back from Geometry
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Engine floating point format to world coordinate format. We note here that this operation,

though not directly useful for the graphics output operation, is somewhat useful when utilizing the

Geometry Engine pipeline as a computational engine. The brochure produced by Silicon Graph-

ics, Inc. for the IRIS-2400 model containing this pipeline cites a capability for 80K 4x4 transfor-

mations per second.

The Silicon Graphics, Inc. IRIS-2400 has other leading edge functionalities present in special

hardware. One of these is in the raster subsystem of the DPU, polygon fill hardware. This

hardware converts two and three-dimensional polygon data into the set of textured and colored

pixels that represent the polygon in the frame buffer. The rate cited for the IRIS-2400 is the

capability for filling polygons at approximately 44 million pixels per second.

Another leading edge function of the IRIS is depth cueing hardware. Depth cueing is the

intensity modulation of line segments so that components of the segment near the viewer appear

brighter, and those farther away appear dim. The rate cited for this hardware capability is from

1.5 to 3 million pixels per second.

Gouraud shading is another feature of the IRIS-2400. Gouraud shading is a smooth shading

algorithm useful in depicting surfaces via computer graphics. This algorithm works by taking the

polygons that form the surface and shading those polygons by linear interpolation of the color

intensities specified at the verticies of the polygon This technique eliminates intensity discon-

tinuities and produces a smoother, more realistic surface. The rate cited for this hardware capa-

bility is up to 3 million pixels per second

Hidden surface elimination is provided via special hardware on the IRIS-2400. The

hardware addition, called a Z-buffer. is a special piece of memory the same two-dimensional size

as the frame buffer. Depth information, z coordinate values, is stored into this memory at the

same time as color information is written into the frame buffer. This means that for each pixel in

the frame buffer, there is a matching z coordinate. This information is used in the following

fashion. As each new piece of the picture is processed by the raster subsystem, the pixel values

are compared against those already in the Z-buffer. If the new pixel is closer, the color associated
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with that pixel replaces the old one in the frame buffer, and the new z coordinate is written into

the Z-buffer. If the new pixel is farther away than that indicated in the Z-buffer, the pixel is dis-

carded. This special hardware addition is to the raster subsystem of the IRIS. Though no value

is cited in the IRIS literature for the speed of this Z-buffering technique, it should operate at

approximately the same rate as the polygon fill hardware, with some degradation due to the addi-

tional z coordinate value that needs to be propagated.

4. Trends in Graphics Capabilities for the Workstation

The above is a quick overview of one leading edge graphics workstation. There are others

that exhibit similar capabilities, though most are not nearly the speed of the IRIS. From this

brief look at the leading edge though, we see two trends, (1) the increasing importance of high

performance graphics functionality in the workstation, and (2) the increasing use of VLSI technol-

ogy to implement this functionality. The first trend, the increasing importance of high perfor-

mance graphics functionality, is a continuation of the cycles of hardware additions requested by

the ever unsatisfied graphics applications user. We do not expect this trend to diminish. In the

past, the graphics applications user became accustomed to new hardware additions rapidly, only

to turn around almost immediately with new requests. Given human nature, we do not expect

this to change.

To understand the second trend, the increasing use of the VLSI technology to enhance the

graphics capabilities of the workstation, we need to answer the question, what does VLSI provide?

VLSI provides the capability for the parallel operation of large numbers of relatively inexpensive

processors 8. 111. Currently, we see 2 million transistors per chip in the research laboratory 9 .

We are promised 10 million transistors per chip sometime between the years 1990 and 2001 12;.

From these numbers, graphics researchers tend to see tens of processors per chip, all operating in

parallel on some graphics algorithm $.

JSome landmarks for transistor count are 68,000 transistors in the Motorola MC68000 (16,000 in the processor,

50,000 in the PLA and ROM) [4j, 18,000 transistors in the Z8000 14], 40,000 transistors in one Geometry Engine

chip |3|, and 194,000 transistors in the Motorola MC68020 [7].
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4.1. Fourth Cycle of Hardware Improvements to the Graphics System: Research

Besides the improvement of the capabilities of the standard hardware that performs the

input and output functions of the graphics workstation, we see the start of a fourth cycle of spe-

cial hardware developments also utilizing the VLSI technology. In this new cycle, the prominent

work is the design of special, application dependent VLSI architectures for the real-time display

generation of select graphics algorithms. The thrust of this research is the development of a

methodology for taking a graphics algorithm and producing a silicon system that performs that

algorithm. (The need for a methodology is quite simply to save time for the next algorithm

through the hardware development process.) The scope of this work is quite large in comparison

to the other cycles of special graphics hardware development. It encompasses the areas of real-

time graphics software engineering, and VLSI computer architectures. Real-time graphics

software engineering is part of this effort in that before one commits to implementing a particular

graphics algorithm in silicon, one needs to be able to evaluate whether or not that algorithm can

be computed in real-time on a currently available, high-performance graphics system. The

research effort is to produce a system that can automatically model the desired algorithm such

that runtime parameters can be obtained for hypothetical architectures, i.e. known processors like

the MC68000 for subparts of the larger algorithm.

VLSI computer architectures are part of this effort in that the hypothetical architectures

modeled are those capable of being implemented in VLSI. The research effort is twofold. The

first part is the determination and evaluation of a special architecture for the studied algorithm.

The detcrminat ion of the architecture is accomplished through iterative design refinement driven

by previous experience with such special processors. The evaluation of the architecture is both a

runtime evaluation, and a technological evaluation. The runtime evaluation determines if the stu-

died algorithm is capable of being executed in real-time on the hypothetical architecture. The

technological evaluation determines if the proposed architecture is capable of being built within

current technological constraints. Part of this effort is the examination of the changes required in

the design of the graphics system that receives the output of the real-time display generator.
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The second part of the research effort in the area of VLSI computer architectures is the

evaluation and refinement of the software tools available for putting an architecture on silicon.

Since VLSI technology is relatively new, the available software tools for producing special purpose

VLSI chips and systems are crude. The research of the fourth cycle presupposes the existence of

such software. Since this is clearly not the case, this research effort necessarily encompasses the

refinement and development of such software tools.

4.2. Where We Are Today in the Fourth Cycle

The initial special hardware efforts of the fourth cycle are the construction of single board

VLSI multiprocessors compatible with commercially available, high-performance graphics works-

tations. The selection of the commercially available workstation as the bed for the special

hardware additions cuts the research effort with respect to real-time display generators in half, by

delaying for later consideration possible changes to the design of the display system \. Such a

sectioning of the research effort allows the design and testing of single board parts of perhaps

much larger VLSI systems. One such effort underway at the Naval Postgraduate School is the

design of a Multibus compatible, single board VLSI multiprocessor for generating contour surface

displays in real-time 13i.

4.2.1. Contour Surface Display Generator

The goal of the contour surface display generator is to produce and deliver to the display

surface of a graphics workstation, in one-thirtieth of a second, the complete contour surface

display generated from a 30 x 30 x 30 three-dimensional grid. The application in mind for this

system is one directly from X-ray crystallography, the determination of molecular structures from

electron density data 1 . Such an operation is executed interact i\ ely by using a computer graph-

ics program that displays a Dreiding (stick) model of the molecule, inside a contour surface

display of the corresponding region of the molecule's electron density grid. In addition to the

graphics function, the computer program monitors a series of signals generated by the user, while

t There are currently substantial research efforts in the direction of the redesign of the graphics system |5, 10i



Figure 8

Contour Surface Display Generated from a Hydrogen Atom
Wavefunction Squared (3dz2 orbital)
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the user is turning the various knobs on a control console 16,. The values read from these knobs

are interpreted by the program as modifications to either the molecule or the surface display.

Modifications to the molecule take the form of bond rotations or bond lengthenings. Modifica-

tions to the contour surface display take the form of an increase or decrease of the contour level.

The goal of this process is to produce the stick model of the molecule that best fits inside the

given electron density data set. The user can determine whether or not the model fits the density

grid by modifying the contour level, shrinking the contour surface to the molecule. Similarly, the

user can expand the contour surface from the stick model for better visibility. This function

requires that the hardware have the capability to rapidly change the contour display as its con-

tour level changes.

4.2.2. Decomposable Algorithm for the Contouring Operation

The algorithm around which the design of the contour surface display generator is con-

structed is presented in 14'. That algorithm is constructed from a two-dimensional contouring

algorithm that is used to contour all the possible planar, orthogonal, two-dimensional grids of a

larger three-dimensional grid. The two-dimensional contouring algorithm of that study is

comprised of components, called algorithm components, that operate on individual 2x2 subgrids

of a larger two-dimensional grid. (Note: a 2 x 2 subgrid is defined to be that portion of the two-

dimensional grid bounded by four adjacent grid points.) In the algorithm, the computations neces-

sar> for generating the contour lines for a single 2x2 subgrid are independent from those

required for any other 2x2 subgrid. If we compute the contours corresponding to contour level k

for all 2x2 subgrids of a two-dimensional grid, then we will have determined the complete set of

contours for that grid. If we compute the contours corresponding to contour level k for all possi-

ble 2 \ 2 subgrids of the larger three-dimensional grid, then we will have the complete contour

surface display for that grid. The assemblage of the contours created by this process, i.e. the

simultaneous display of all the contours created for all 2x2 subgrids of the larger three-

dimensional grid, produces a "chicken-wire-like" contour surface display (Figure 8). The full

development of this algorithm can be found in 14 . V\ e refer to the results of those studies, and
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do not cover the algorithm here in great detail. We only note that for the largest three-

dimensional grid of interest for the above application, a 30 x 30 x 30 grid, this means the poten-

tial for 75,690 parallel operations (Figure 9).

4.2.3. Architectural Goals for the Contour Surface Display Generator

The first goal in the design of the contour surface display generator is to build a system that

meets the performance requirements, i.e. a new contour surface display computed from a

30 x 30 x 30 grid, and delivered to a display device in one-thirtieth of a second. This is an ambi-

tious goal but it must be noted that one-thirtieth of a second is the maximum amount of time

allowable for the operation. Any longer amount of time does not provide the viewer smooth tran-

sitions between successive contour surface displays. This goal says nothing about the load time of

the 30 x 30 x 30 grid to the special piece of hardware that computes the contour surface display.

Consequently, we allow solut ions that pre-load the grid.

The second goal for the construction of the contour surface display generator is the one

mentioned above, that we be able to plug it into an existing graphics system with minimal

hardware and software changes. For the purposes of this study, the target graphics system is

chosen to be the Silicon Graphics, Inc. IRIS workstation [2j. The Silicon Graphics, Inc. IRIS is

currently the highest performance graphics system that best matches the selected application's

goals.

4.2.4. Architectural Outlines

Given that we have a highly decomposable algorithm for contour surface display generation.

and given that our goal is a single board \ LSI multiprocessor, there are some simple statements

wo can make about the system's architecture. The first statement is that it is comprised of an

arra\ of independent processors, each processor containing some subpart of the total algorithm

(Figure 10) (Note: we call these processors, algorithm component processors.) In the case of the

contour surface display generation algorithm, this means that each processor contains one or more

2x2 subgrids taken from the larger three-dimensional grid It also means that each processor is



System Bus
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Multibus

Figure 10 Contour Surface Display Generator
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responsible for computing the pari of the surface" display represented by its subgrids. The system

performs these eornput at ions in parallel.

The second statement we can make about the architecture for the contour surface display

generator, is that, even though we compute the subparts of the contour surface display generation

algorithm in parallel, we need to output the coordinates and drawing instructions generated in

each processor in a serial, one processor at a time, fashion. This statement is based upon the

requirement that the contour surface display generator be plugged into an existing graphics sys-

tem (Figure 11). Currently available graphics systems only have a single data path into their

display processing units. Consequently, some mechanism needs to be provided to output the data

generated from the algorithm component processors, one at a time, to the display processing unit

of the graphics system.

A third statement we can make about the architecture is that we need some mechanism for

delivering the 2x2 subgrids. Subgrid delivery is qualified by the necessity for algorithm com-

ponent processor addressability . i.e. we need to be able to put each set of subgrids in a pre-

determined processor. A qualification to ihi^ processor addressability capability is that n must be

a simple mechanism that doesn't require a large number of control lines and arbitration circuitry.

The reason for this qualification is that v\e expect the addressing mechanism to run between mul-

tiple VLSI chips This qualification is based upon the knowledge that package pins for control

lines between \ LSI chips arc a scarce resource. The output mechanism for the coordinates and

drawing instructions of the contour surface display generator needs a similar processor addressa-

bilit y capability

A fourth statement we ran make about the architecture is that we need some mechanism for

delivenne the new contour level? to the algorithm component processors. The new contour levels

can be delivered either in parallel, to the complete system of processors during one cycle, or in

serial, to each processor on a separate cycle. Since we are already putting one mechanism in the

system for loading data into the processors, we expect that it can also be used to deliver the new

contour levels. Consequently, the new contour levels are delivered in serial, in a manner similar
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to the subgrid load mechanism.

4.2.5. Architecture of the Contour Surface Display Generator

The contour surface display generator is comprised of four subsystems: (1) the array of algo-

rithm component processors, (2) the controller for that array of processors, (3) the algorithm com-

ponent processor itself, and (4) the interface to the graphics system. Figure 11 shows how the

four subsystems relate to the target graphics system.

4.2.5.1. The Array of Algorithm Component Processors

Figure 11 depicts the array of algorithm component processors as a single box, with three

connections to the outside environment, an input bus for contour levels and subgrids, an output

bus for coordinates and drawing instructions, and a bus for controlling the array of processors. A

dual bus configuration is chosen to maximize the amount of concurrency in the system due to the

autonomous nature of the input with respect to the output.

The input bus is the medium responsible for delivering subgrid definitions and contour levels

to the array of algorithm component processors. Because ihis is the only data required to be

transmitted on the bus. the bandwidth of the input bus does not need to be very high. The rate

at which subgrid definitions are loaded into the algorithm component processors does not directh

affect the real-time capabilities of the system. The real-time capabilities of the contour surface

displax generator are determined b> the rate at which data can be produced in each algorithm

component processor. This, in turn, directly affects the rate of output to the display processing

unit. The output bus is responsible for delivering the coordinates and drawing instructions to the

display processing unit.

The control bus for the contour surface display generator contains all the control lines neces-

sar\ to manage the data flow on the input side of the system (Figure 12). Two additional control

lines are required on the output side of the system to coordinate the two wire handshake between

the algorithm component processors and the display processing unit (Geometry Engines). Figure

12 shows the signals that are needed for all the pin assignments of the algorithm component
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processor.

4.2.5.2. Systems Controller

Control of the array of algorithm component processors involves the integration of several

different components. The one which coordinates the operation of all other components is the

systems controller. The systems controller converts incoming signals from the Multibus bus mas-

ter of the Silicon Graphics, Inc. IRIS workstation into signals which make sense to the algorithm

component processors. The Multibus bus master is the board in the Multibus Backplane which

places the commands on the Multibus. The systems controller is a slave in that it reacts to com-

mands placed on the Multibus.

4.2.5.3. Algorithm Component Processor

The component that is responsible for the production of the coordinates and drawing

instructions for the contour surface display generator is the algorithm component processor. Each

of these processors is identical and functions independently in the production of the outputs. Fig-

ure 1?. is an overview diagram of the key components of that processor. We do not go into great

detail about that processor other than to point out the items that appear in Figure 13. It should

be noted that the processor is a full microprocessor of the Motorola MCG8000 class. The reader

interested in a more complete treatment is referred to 13

4.2.5.4. System Interfaces

The contour surface display generator is connected to the Silicon Graphics. Inc. IRIS graph-

ic K system b> means of the IEEF. standard Multibus Backplane Bus 6 . This Multibus connection

provide.* all inputs to the contour surface displa\ generator. The Multibus interfaces to basically

two different classifications of bus modules: (1) Masters - those modules which generate com-

mands, and (2) Slaves - those which respond to commands. The parent processor (MC68000) is

the Master module for the graphics system. The contour surface display generator is a slave

module in that svstem.



L
0)

P.-H to

3 rt c
C-H

co
O
PQ

O

O
o

CO

co

CO

u
p
c
o
o

to

en

to

c

-D

<

u /1

(0
\

(0 •H \
QJ hD
O

J
Pi

Cu

t d d c
C-H

. "bO
*H c
(1) •H

Q bD

3> T3 T3 P
<, •H a CO
tf P «j

hD 43

Xi 3
3 a
CO -p
^^

o

-p
u

Du

+3

a
c

CO

DQ

S

H

+3

u
V
C
CD

O
>,
ci

(X
tO

CD

ci

*H

CD

43

c

CO o

2S

H
CO

CD

0)

-P

(0

to

u

Pu

P
C

c

a

o
e

43
•H
Jh

bD



- IM -

The output of the contour surface display generator is to the Private Bus of the IRIS system

(Figure 11). The Private Bus is a unidirectional. 16 bit bus dedicated to the provision of coordi-

nate and drawing instructions to the high speed Geometry Engines. Coordination of the transfer

of data between the algorithm component processors and the Geometry Engines is done via a two

line handshake protocol.

4.2.5.5. System Implementation

The IRIS graphics workstation is comprised of the UNIX operating system, the Ethernet

communications network and a real-time three-dimensional color-raster graphics system. The

hardware elements that make up the workstation are connected to one another via the Multibus

(Figure (3). Graphics commands are issued by a host terminal on the workstation. The terminal

uses the Motorola MCoSO(K) as a controller and a Geometry Engine pipeline for matrix operations

whose output is destined for a high-resolution color raster-scan display. The communications

between devices is done on the Multibus. Graphics pipeline data is transferred on the Private

Bus.

Graphical output is initiated l>\ the ('PI l>\ sending commands and data to the graphics

pipeline. The Geometry Engines perform matrix transformations, clipping and scaling. The

frame buffer controller interprets characters, controls fonts, and constructs lines and polygons.

The update controller does scan conversion of polygons, lines and characters. The results of those

operations an- placed into the frame buffer. The display controller fetches the picture-element

values from ihe frame buffer and draws them on the face of the color monitor 2'.

4.2.5.G. Integration of the Contour Surface Display Generator

The Multibus Backplane of the IRIS supplies t In- power and inter-board communications

capabilities required to implement an integrated graphics system. The contour surface display

generator is constructed as a peripheral board and is added to the IRIS graphics system as a slave

I and memory device. Figure 6 shows the contour surface display generator as an integral part

of that s\ stem.
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The use of the contour surface display generator in the graphics system involves the estab-

lishment of a physical connection between the peripheral board containing the algorithm com-

ponent processors and the display system. This connection involves the Private Bus port which

transports the data directly to the Geometry Engines. In its present configuration, the IRIS sys-

tem has a connecting cable that directly connects the system processor to the Geometry Engines

(J3 connection of Figure 14a).

When the contour surface display generator is added to the system, this physical connection

must be shared by both itself and the system processor. To enable the user to alternatively route

processor and generator data to the Geometry Engines, a hardware switch is added to the system.

This hardware provides the system with a way to multiplex the direct path of the Private Bus. A

software switch then provides the control of the Private Bus :

origin and configuration. When

activated, this switch establishes a path from the contour surface display generator (Figure 14b).

If it is not activated, the IRIS system remains in its original configuration.

4.2.6. Hardware Complexity Estimate

The above is a quick overview of the architecture of the contour surface display generator.

One of the key components in this system is obviously the algorithm component processor. In

13 . it is determined that 50 algorithm component processors are all that are needed in the sys-

tem to generate and deliver the average sized picture for a 30 x 30 x 30 grid. In order to deter-

mine the feasibility of the complete system, we need a circuit complexity estimate for the size of

the algorithm component processor. Figure 15 is a summary of the number of transistor

equivalent devices necessary. The derivation of the numbers on that' figure is in 13 . We note

only that the total number of devices required for one algorithm component processor is about

660K devices This number is well below the two million devices per chip level that is currently

being produced in research laboratories J9'. For this level of chip complexity, the array of algo-

rithm component processors can be built in less than 25 VLSI chips. At the ten million devices

per chip level, this is less than 5 VLSI chips. The design of this system is therefore within the

grasp of current technology.



(1) RAM space - (2 devices 'bit)

8192 x 32 bits 524,288 devices

(2) ROM space -- (1 device 'bit)
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5. Conclusions

The above is but one example of the fourth cycle of hardware developments for the graphics

system The purpose behind the presentation of this effort is to highlight the possibilities and

limitations of research in this cycle. One of the key points described at the start of this paper is

that applications users are never satisfied with the graphics capabilities of the currently available

system. We need to reexamine this notion in light of the production of the contour surface

display generator. We can be assured that once we produce such a system that the applications

user will return to us with further demands for either other algorithms, or additional capabilities

in the already manufactured system. In order to respond to these desires for special hardware for

select applications graphics algorithms, we need to either justify the special hardware effort on the

basis of widespread demand, or make the production of that special hardware inexpensive. We

cannot count on the widespread demand for any algorithm for which we desire real-time perfor-

mance. The only solution then is to make the production of that special hardware inexpensive.

The first step in that process is to put together a methodology based upon experience with design-

ing such special purpose display generators. Once that methodology is sufficient ly developed, we

can then set standards for the production of such systems. We can see an analogy in the world of

VLSI design. The design and production of special VLSI chips came within the possibilities of the

university communit) after standard interfaces were defined for rhip production. Hence, we saw

the establishment of "silicon foundries". If we extend this idea to that of the production of spe-

cial hardware for select graphics algorithms of the applications user, this means that somewhere in

the future there will be "real-time, graphics foundries". It is toward* this direction that we can

expect future developments for workstation graphics capabilities to proceed.
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