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ABSTRACT

A model of the behavior of a packed bed nuclear reactor fuel element is developed. It

is capable of predicting the temperature, pressure and velocity fields as a function of position

throughout the fuel element in both transient and steady state conditions. It is the starting

point for the design of a real time analysis module for a reactor power controller.

The fuel element consists of a packed bed of fuel particles between two concentrically

mounted retention elements. It is cooled by hydrogen flowing radially inward through the

bed.

The model is based on the fundamental principles of mass, momentum and energy con-

servation. The balances are applied to a two dimensional array of control volumes, using the

lumped parameter approach, to generate sets of simultaneous linear semi-implicit finite

difference equations. The Pressure Implicit with Splitting of Operators (PISO) algorithm is

then used to advance the model variables in time. An energy balance derived from a single

node model of a fuel particle is performed on the solid phase.

The model code is applied to a series of steady state and transient problems, varying

the peak power density from to 2.1 GW/m3
. The model predicts significant axial flow in

the fuel particle bed. If the proper flow distribution is obtained along the inlet retention ele-

ment, it is not maintained in the particle bed. This redistribution leads to a 300 K tempera-

ture variation along the outlet plenum at high power. The magnitude of the redistribution is a

function of power level. A design change in the shape of the inlet frit may give a more
uniform temperature distribution at the full power condition. The model also predicts signifi-

cant effects from conduction and radiation in the solid phase.

Thesis Supervisor: J. E. Meyer
Title: Professor of Nuclear Engineering
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CHAPTER 1

INTRODUCTION

1.1 PROBLEM STATEMENT

MIT, in conjunction with the Sandia National Laboratory, is developing an automated

control system for a space based reactor. The proposed reactor consists of several annular

packed bed fuel elements cooled by hydrogen flowing radially inward through the fuel par-

ticles. The hydrogen enters from distribution channels in the surrounding moderator block,

Fig. 2.1. The control system under consideration uses a model based algorithm which relies

on an accurate representation of the reactor in calculating the control signals. Because the

design is unique for the application, well established thermal-hydraulic models may not be

directly applicable. The objective of this investigation is to develop a thermal hydraulic

model of a reactor fuel element which can, in turn, be expanded to include the entire reactor

system and be incorporated in the controller.

The thermal hydraulic model serves two purposes in this type of reactor control. One,

it is used to describe the heat transfer processes and provide the information to prevent tem-

peratures from exceeding design limits. Two, it provides the temperature and pressure data

required to quantify the reactivity feedback associated with the hydrogen coolant. It should

be capable of predicting coolant flow distribution, temperature, pressure and density during

steady state and rapid transient operations.





1.2 METHOD

To be an effective part of the controller, the model should function in real time in a

stable and robust manner. These requirements place competing constraints on its form. It

must contain sufficient detail to give an accurate representation of the fluid flow and heat

transfer processes, but yet be simple enough that its outputs are available when required by

the controller. Thus, constructing the model is a stagewise process. First, one must deter-

mine what aspects of the fuel element should be included to give an accurate picture. Then,

given the minimum requirements, the model must be tailored to meet the time constraint.

The work described here addresses the first of these tasks.

A detailed reference model is constructed and used to evaluate the sensitivity of the

model predictions to various simplifications. One example is radiative heat transfer in the

solid phase. The results of the reference case and a simpler version without the effect can be

compared to determine if this mode of heat transfer contributes significantly to the behavior

of the fuel element and if it must be modeled explicitly.

The building of the reference model is the major emphasis of this work. Future devel-

opment can then take the results and perfonn the simplifications required for a real time, pre-

dictive, model.

1.3 ISSUES

The specific issues investigated can be summarized in two categories, hydraulic and

heat transfer.





Hydraulic issues include:

a. Flow distribution: Does the model accurately reflect the flow distribution of

hydrogen?

b. Pressure losses: What are the major sources of pressure loss and how can they

be modeled?

c. Coolant flow: Can coolant flow in the particle bed be considered one dimen-

sional or are two dimensions required?

d. Hydrogen compressibility: Must the model explicitly represent the coolant as

a compressible gas or are pressure changes small enough that incompressible models are ade-

quate?

Heat transfer issues include:

a. Interphase heat transfer: Can heat transfer between the gas and solid phase be

modeled as purely convective? How should the heat transfer coefficient be calculated? Is

radiative heat transfer important?

b. Intraphase heat transfer: Is there significant conduction and radiation between

particles in the solid phase? How should transfer within the fuel panicle be simulated?

c. Discretization: Is a fine node analysis required or can fuel element behavior

be represented with a few or single node model?

The chapters that follow describe the details of the packed bed reactor and then discuss

the development of the mathematical representations of the fuel element. These are then

combined in a computer code to form the reference case used to evaluate the questions

above.
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CHAPTER 2

BACKGROUND AND APPROACH

2.1 OBJECTIVE

Before one can abstract a thermal-hydraulic system to a series of predictive mathemat-

ical relations, the design and operation of the actual system must be clearly understood. The

objective of this chapter is to present the physical details of the packed bed reactor and the

fuel particles within it.

Space based reactor designs have been evolving since the ROVER program of the

1960s and its subsidiary NERVA project. After a lull in the 1970s and early 1980s, United

States interest in the area has been rejuvenated. Major portions of the ongoing studies are

being conducted at the Brookhaven and Sandia national laboratories. The Brookhaven work

(L-l, H-l) analyzes and discusses reactor system designs, capabilities and design philosophy.

Sandia's investigators have constructed prototype fuel elements and tested them in the Annu-

lar Core Research Reactor (ACRR). The former provide the best understanding from a sys-

tem perspective while the Sandia project gives a detailed dimensioned design suitable for

modeling.

2.2 THE REACTOR SYSTEM

2.2.1 Design Philosophy

Space based reactor systems are by necessity constrained to be lightweight and com-

pact. This translates to a design favoring high power density, low material density and large

11





heat transfer surface per unit volume. For example, systems launched by the space shuttle

are limited to a cylinder 4 m in diameter and 17 m long with a maximum mass of 29,500 kg.

(H-l). Particle bed nuclear reactors are ideal for this application, because of their small size

and their ability to deliver twice the specific impulse of a chemical rocket (H- 1 ) in open cycle

applications.

Proposed systems have included both open and closed cycles (L-l ). Open cycle sys-

tems have the advantage of low weight and simplicity, since there is no need for recovery

and reuse of the coolant. However, reactor life is then determined by the amount of coolant

tankage. Typically these systems are considered for pulsed operation or propulsion designs.

Closed systems have been proposed for continuous electrical power generation. Helium and

hydrogen are the usual coolants. Hydrogen is generally preferred for the higher power

pulsed operation systems. The pulsed open cycle variant is of principal interest in this inves-

tigation.

2.2.2 Pulsed Reactor Design

Open system pulsed operation designs are discussed in references P-l, L-l and B-l.

The basic cycle includes compressing liquid hydrogen, providing two stages of heating and

directing the high temperature coolant to the power conversion unit.

The core consists of fuel elements mounted in a moderator block which is in turn sur-

rounded by a series of control drums and a reflector chamber. The entire assembly is encap-

sulated in an aluminum pressure vessel (P-l). The core is a right cylinder .79 m in diameter

and 1.03 m long (P-l). Other designs place the reflector outside the pressure vessel (H-l).

The moderator block (Fig. 2. 1) can be ZrH2 , BeH 2
or LiH. Either a single drilled piece, or an

12
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assembly of smaller modular blocks, the moderator is channeled to create a coolant flow path

and sites for the fuel elements. Nineteen elements are arranged in a hexagonal array around a

central cell (Depending on one's perspective this may be considered a triangular arrange-

ment). Control drums are used in lieu of control rods for compactness and simplicity of

operation. A portion of each drum surface is coated with a strong neutron absorber. Rotating

the absorber away from the fuel assemblies is the equivalent of withdrawing a control rod.

The fuel elements, Fig. 2.2, are composed of two concentrically mounted cylindrical

retention pieces, referred to as frits. The frits are porous enough to allow coolant flow but

strong enough to function as retainers for the fuel particles in the annular space between

them. The space between the outer frit and the moderator block forms an inlet plenum for

the coolant. Similarly, the region inside the inner frit forms an outlet plenum from which the

hot exit gasses are extracted and directed to the energy conversion device, most likely a tur-

bine, or are exhasted for propulsion. The outer cold frit is fabricated by sintering micron

sized stainless steel particles. However, because of the high exhaust temperatures

(approximately 2,000 K) the inner, hot frit poses a material selection problem. Drilled rhe-

nium is used in the currently favored design.

The fuel particles are similar to the coated fuel particles used in high temperature gas

reactors (HTGR). Each consists of a central kernel of fuel coated with two pyrographite lay-

ers and zirconium carbide. But unlike the HTGR the 500 micron particles are used directly

in a packed bed configuration not combined with graphite structure to form a ball or block.

14
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2.2.3 Hydraulics and Heat Transfer

Liquid hydrogen is stored in a separate container When power operation is initiated,

the hydrogen passes from the tank to a turbo pump where it is compressed to a supercritical

fluid with a pressure as high as 6 MPa. It is discharged to the reactor reflector, the first heat-

ing stage. From the reflector, the coolant passes into the reactor core. Once in the core, the

hydrogen flows axially through coolant passages located between the fuel elements and the

moderator block. These channels are slotted lengthwise to create a gas flow path to the mlcX

plenum throughout the entire length of the fuel element. Each coolant channel feeds three

fuel elements and six channels feed each fuel element as shown in Fig. 2.1. The inlet plenum

provides communication for the coolant over the entire surface of the cold frit. Pressure

losses in the core to this point can be considerable, since the flow has made three 90 degree

direction changes in the core by the time it gets to the cold frit. At this point the hydrogen

flows radially inward through the packed bed of fuel and hot frit. Collected in the outlet ple-

num, the hot gas is exhausted to the turbine.

Two alternatives exist for powering the turbopump (S-l,S-2 and S-3), a bleed system

and a topping system. The bleed system takes a small portion of the reflector outlet gas,

expands it through a turbine and exhausts it to the surroundings. The topping system

expands all of the reflector gasses through a turbine and discharges them to the reactor core.

The larger volume is used to reduce the pressure drop.

One of the design imperatives of any reactor is to match coolant flow and power distri-

bution. This matching for a packed bed reactor provides a nearly constant temperature

throughout the length of the outlet plenum. Zoning the fuel, shaping the coolant flow, or

combining the two methods can be used. The cold frit provides the best place to shape the

16





flow distribution. Varying the porosity and/or thickness effectively controls the pressure

drop across the frit to achieve the desired flow characteristic. The cold frit essentially serves

as a distribution manifold. This approach is most easily applied if the flow through the

packed bed of fuel is essentially inward (radial not axial).

The majority of the pressure drop in the open cycle is in the moderator block (B-l ).

Within the fuel assembly, the cold frit is the greatest resistance to flow. The hydrogen enters

the fuel element at approximately 300 K and at 2 to 6 MPa depending on the design. At full

power the exit gas is in excess of 2,000 K. The pressure drop through the element is on the

order of 50 kPa.

The packed bed reactor can operate at very high power with relatively small tempera-

ture changes across the gas film and the fuel particle (because of the close proximity of tiie

coolant and the heat deposition). This design gives a heat transfer area of 7,000 to 10,000

m2/m3
of fuel (P-l). Powell's analysis shows that power densities of 10 GW/m 3

of fuel can

be achieved with gas film ATs of approximately 150 K (P-l). The packed bed design also

responds well to the rapid transients associated with pulsed operation (P-l). The fuel par-

ticles are capable of enduring repeated temperature ramps of 1,000 K/s. The reactor postu-

lated by Sandia is expected to execute a power up ramp with a period of about 0.6 s.

2.3 THE PIPE EXPERIMENT

Investigators at the Sandia National Laboratory are conducting a series of experiments

titled the Pulsed Irradiation of a Particle Bed Element (PIPE). The objective of the tests is to

evaluate a packed bed fuel element and determine if the design is viable from the standpoints

of temperature distributions, flow distributions and coolant/fuel compatibility (V-l). The

17





experiments place a prototype fuel element for the reactor design discussed previously in the

Annular Core Research Reactor and pulse the reactor. This will create power densities up to

2 GW/m3
in the packed bed element. The element is full size in the radial direction; in the

axial direction it has been reduced by two thirds.

The PIPE fuel element is the basis for the model being developed in the work reported

here, since it provides a complete set of consistent dimensions and performance predictions.

18
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A cylinder .35 m in diameter and 4.19 m long houses the experimental apparatus, Fig.

2.3. It consists of a self contained pressurized hydrogen circulation system. The hydrogen

flows from blowers in the upper portion of the cylinder down around the middle section com-

ponents to the lower section. There it enters the top of an inlet plenum formed by the cold

frit and an a/inuius of moderator. Flow continues radially inward through the cold frit, fuel

and hot frit before entering the central outlet plenum. This plenum discharges the hot gas to

a heat sink contained in the middle section. The heat sink is formed by a bed containing a

number of steel balls (originally at a low temperature). From the heat sink it passes through a

flow meter and back to the suction side of the blowers. Parahydrogen is used, because of its

better heat transfer properties.

The coolant entering the inlet plenum is pressurized to 2 MPa and is at a temperature of

300 K. Figure 2.4 shows the dimensions of the PIPE fuel element.

The cold frit acts as a distribution manifold to match the hydrogen flow and axial

power profiles. In this case, the frit is of uniform porosity, .685, but varies in thickness from

1.70 to 2.36 mm to adjust the pressure drop. It is fabricated by sintering 2.5 fim diameter

particles of 316 stainless steel. The hot frit is a uniform rhenium tube with electro-arced

oblong holes which provide 23.3% open area for flow of the 2,000 K exit gasses.

The fuel pellet used for the experiment is shown in Fig. 2.5. The uranium carbide fuel

kernel is enriched to 93% and is coated with two layers of pyrographite. The inner one is

low density to accommodate fission products. An outer coating of zirconium carbide, which

was developed to improve fuel coolant compatibility in the NERVA project, is also present.
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2.4 EXISTING MODELS

Several models have been developed for annular fuel elements. One early model was

formulated in Britain for the design of a gas-cooled fast reactor (A-2, B-2). More recently.

Brookhaven researchers (B-l, L-l)(in conjunction with their designs for space reactors) have

modeled packed bed elements similar to those being tested at Sandia.

Each of these models was targeted to a specific purpose which in turn influenced the

assumptions made and the detail included. The British model was concerned only with flow

distribution calculations and did not address the heat transfer issues. One of the Brookhaven

models coupled the neutronics and heat transfer to create the control codes KINETIC and

SPHEAT (L-l). In these, the fuel element is partitioned radially and axially to allow for vari-

ation in the power distribution. However, hydraulics was handled by assuming that the cool-

ant flow matched the power in each axial slice. The thermal-hydraulic code described in

references (A-l) and (B-l) uses the same partitioning scheme, effectively giving a 2

dimensional model, but again assumes the flow in the fuel matches the power distribution

and uses this to back calculate the required pressure drop characteristic of the cold frit.

The model developed in this investigation is dedicated only to the thermal hydraulics.

Its interaction with the neutronic model is limited to passing results such as hydrogen temper-

atures, pressures and densities. With this in mind, the intention is to build a more general

model that operates using only input information that can be supplied by system

instrumentation (the inlet coolant temperature, the inlet pressure and the discharge pressure).

In this way, one can determine if the flow and power match for actual operating conditions

and not just for expected design conditions. The model is also general enough to allow axial

as well as radial flow and to include heat transfer between the particles of the solid phase.

24





2.5 MODEL STRUCTURE

2.5.1 The Premise

The natural tendency in modeling is break the problem down, look at the individual

pieces and then reassemble them. In the case of the packed bed fuel element, two subdivi-

sion methods are available, separation by component or by phase (solid or gas). These can

be combined in several ways. The most detailed is to consider each phase in each

component. But this makes it difficult to put the components back together. Another option

works with each phase in its entirety and then joins them. The latter lends itself to the appli-

cation of the fundamental laws of physics and easy model unification.

The model developed in this investigation treats each phase independently and joins

them at the common point, solid to gas heat transfer. Thus one could look at the fuel element

as a large heat exchanger. The gas phase represents the shell side and the solid phase with its

heat deposition is the tube side. Heat flow in the gas phase can be convective and/or conduc-

tive and is independent of the solid phase except at the connection point. Similarly, heat flow

by conduction and radiation in the solid phase is only influenced by the gas phase at the point

of heat transfer. This representation is one of the basic tenets of the Momentum Integral Net-

work method developed by Van Tuyle (V-2, V-3).

The model is based on the premise that the fuel element must obey the fundamental

principles described by mass, momentum and energy balances. To facilitate the application

of the balances the element is divided into an array of control volumes. The volumes are

arranged to coincide with the components of the fuel element. The physical features of the

components determine the way the terms of the balance equations are computed in their
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respective volumes. Thus, differences between model components can be easily incorpo-

rated. For example in the momentum balance, a Darcy friction factor for pipe flow is used to

calculate the frictional losses in the plenum control volumes, and an Ergun relation for

packed beds is used in the volumes containing fuel particles. The matrix of control volumes

and the continuity of conditions at the interfaces provide the required unifying structure.

The gas phase model uses all of the balances: mass, radial momentum, axial momen-

tum, and energy. The inclusion of these balances accounts for the coolant compressibility.

However, since the solid phase is fixed and virtually incompressible, only a heat balance is

required. For transient analysis, each phase is advanced through the time steps in parallel.

The connection is made in the source (sink) term of the energy balances. Using the new time

step solid and gas temperatures, the heat transfer is calculated implicitly and used as the

source (sink) term for the current time step calculation.

Although the basic equations are easily derived and manipulated in continuous form, an

analytical solution for the fuel element would be very difficult. Therefore, the balances are

discretized in a finite difference form based on the control volumes. This is readily adaptable

to computer solution.

2.5.2 The Staggered Grid

In flow problems, the discretization process is greatly enhanced by defining the vari-

ables at different points. For example, velocities are defined at points between points at

which pressures are defined. The resulting arrangement is often referred to as a staggered

grid. Its advantage lies in the fact that the variables are defined where they are needed. In

the momentum balances, the pressure difference across the velocity control volume provides
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the source term. Using the staggered grid, pressure is defined on all faces of the velocity

control volume. An aligned grid would require an estimation of the face pressures. This fre-

quently introduces large errors in the numerical solution (P-2). The same is true for the mass

balance where the control volumes are centered on the pressure nodes. The balance requires

the mass fluxes crossing the volume faces. The staggered grid provides a velocity at each

face for computing the required mass flux.

Figure 2.6 shows the staggered grid used in this model and the control volumes used in

each of the fundamental balances. Cylindrical coordinates are be used throughout the model.
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2.6 SUMMARY

Proposed space based reactor designs are centered on the packed bed fuel element with

its high power density. Although the entire reactor has never been built, Sandia National

Laboratory has constructed and tested annular particle fuel elements. These prototypes are

the basis for the modeling and the analysis performed during this investigation.

The model determines the temperature, pressure, density and velocity distributions for

both the gas and solid phases through the solution of discretized mass, momentum and

energy balances applied to the staggered grid of control volumes shown in Figure 2.6.
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CHAPTER 3

THE GAS PHASE

3.1 OBJECTIVE

The gas phase is the most complicated part of the model, since it contains both hydrau-

lic and heat transfer considerations. This chapter describes the underlying assumptions and

modeling of the gas phase. The discussion uses the continuous form of the equations. The

discretized form and solution method wiJl be presented in chapter 4.

3.2 CHARACTERISTICS INCLUDED IN THE MODEL

The model of the packed bed fuel element should include all of the features that signifi-

cantly affect the hydraulic or heat transfer response of the system. Additionally, it should be

able to track transients as well as solve for the steady state condition. So, the time dependent

terms must be considered. The primary physical features of interest are:

a. Friction effects

b. Manifold "action" of the plenums

c. True two dimensional flow

d. Pressure losses due to changes in direction

e. Spatial acceleration due to reduced flow area and due to density changes

f. Gas film temperature differences

g. Enthalpy changes due to pressure changes and heat transfer

In order to incorporate these aspects in the model, the basic equation for each of the balances,

momentum, mass and energy is developed. Then each term is reviewed and modeled includ-

ing these characteristics when appropriate. The description of the model details that follow
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uses a similar approach. However, items strongly affected by the geometry and

approximations used in the solution method are not specifically addressed until the model is

discretized. Spatial acceleration is one example.

Several assumptions are made to keep the problem tractable and eliminate insignificant

effects. Given the fuel elements inherent symmetry, it is assumed that the entire problem can

be treated as cylindrically symmetric. Thus, only the radial and axial variations are included.

Gas velocities are expected to range from one to several hundred meters per second.

As a result, the primary heat transfer mechanism in the gas phase is convection. Conduction

and radiative processes are only considered significant in the solid phase. The model con-

tains other assumptions that are specific to certain aspects. These are discussed when

encountered in the model development

Boundary conditions are also factored into the modeling process. The model assumes

that only the inlet pressure, inlet temperature and outlet pressure are known in addition to the

physical dimensions and the initial temperature, pressure and velocity distributions.

3.3 THE MOMENTUM BALANCES

3.3.1 The General Form of the Equation

The model contains two separate momentum balances, one for radial flow and one for

axial flow. The development and application of the two is identical; the only difference

being the direction of the velocity field. The momentum balance discussed below is the gen-

eral one which can be applied to either the radial or axial velocity field.
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The general form of the balance equation is based on a lumped parameter fixed control

volume approach. It is derived from the General Transport Equation, Eq. 3.1 (T-l).

IJJ \f*>,w =IJ7fa,w +
f
/(?- ,)7

-

•"dS 3 -

'

Dr
s

f(r,r) is a general transport function and v
r

is the velocity of the fluid relative to the control

volume. In this case, since the volume is fixed, it is the just the velocity of the fluid. V,S and

t represent the volume, surface area and time respectively. This equation can then be made

specific to the momentum balance by substituting pv , the linear momentum per unit volume,

for the transport function and realizing that

m --
j> pv, • ndS 3.2

where m is the net mass flow rate into the control volume and m is the mass in the control

volume. The result is:

—mv=\—mv\ - i m,v
;

3.3
Dt dr L .=, '

'

where m
i

is inward the mass flux through the /th face of the control volume (cv) and v, is its

velocity component in the direction of the momentum balance. The product then represents

the momentum flux through the i
,h
face. According to Newton's second law the time rate of
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change in momentum is equal to the sum of the applied forces. Applying this to Eq. 3.3

gives the final form of the momentum equation (This )s a synopsis of the more detailed deri-

vation given in reference T-l).

d J\ K — »

= I^+I m
l

v
i

3.4
* -

1

1-1
mv

dt

In other words, the rate of change of momentum within the control volume is equal to the

sum of the forces acting on the control volume and the net change in the contained momen-

tum due to flow through the boundaries. Therefore, the effects to be included m the model

fall into 2 general categories the source terms (pressure, friction) and the flux term.

The control volume used in the momentum calculations is centered on the appropriate

velocity as shown in Fig. 2.6.

3.3.2 The Source Term

The source term accounts for two effects, friction and pressure. Because of the geome-

try and the variation in the structure of the fuel element components, the evaluation of this

term is dependent on the control volume and the velocity variable involved.

The most easily analyzed force in the source term is the effect of pressure. The net

force in a given direction is simply the pressure difference between opposing faces multiplied

by the effective area. The staggered grid arrangement defines pressure on each of the faces,
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so estimation is not required. However, geometry creates some pitfalls that must be under-

stood to prevent introducing errors. Pressure in particular is difficult to work with in cylin-

drical coordinates and still maintain the proper vector relationships. Therefore, rather than

resolve the pressure forces to an x-y coordinate system, the fuel element is treated as though

it were slit axially and then flattened like a sheet. This way all radial forces act in the same

direction. Care must be taken to ensure that this treatment does not distort other physical

features such as control volume face areas.

The control volumes of the gas and the solid phase are intimately intertwined. The

dimensions of the volume include the space occupied by the gas and the solid. The volume

of the gas and its associated control volume are related by the void fraction, £ , a geometric

parameter of the system.

V,„ = £V^ 3.5a

V^ = d-e)V_, 3.5b

The same relationship also holds for the area of a control volume face and the effective area

of the gas. It must be remembered that in a momentum balance on the gas phase that the

pressure difference of interest acts on the gas area not the combined gas solid area.

This relationship is also important when velocities are being considered. This model

works with the so called "superficial velocity" which is the velocity the gas would have if the

control volume were completely empty. Again, superficial velocity is just the product of the

void fraction and the velocity of the gas in the spaces between the solid phase, the interstitial

velocity.
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The geometrical arrangement of the fuel cell and coordinate system also means that the

differential control volumes shown in Fig. 3.1a are not rectangular parallelepipeds. In a zero

gradient pressure field, a net force would appear to be exerted on the volume if only the top

and bottom faces were included in the area calculation. This is not physically correct as a

zero pressure gradient should yield zero for the pressure force. The model remedies this by

including the side faces in the following manner.

Given the pressure diagram, Fig 3.1b, for a two dimensional differential volume, the

area of the top and bottom faces is approximated by the chords T and B respectively. The

downward direction force balance is:
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Figure 3.1a A Typical Control Volume
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Figure 3.1b Control Volume and Pressure Field





Net Force=P^r - PhonomB - 2aPavg 3.6

This can be reduced to

Net Force = PwpM +PhonomM 3.7

where M is the mean chord length, (T + B)/2. This is not a problem for axial pressure forces,

since the opposing faces are of equal area and the side faces are parallel to the direction of

pressure application.

Two mathematical representations of the friction forces are used, depending on the

location of the control volume being considered. Hie flow m the inlet and outlet plenums is

viewed as pipe flow with friction forces proportional to a friction factor. The frits and the

fuel particles are treated as packed beds using the pressure gradient described by the Ergun

relation.

The inlet and outlet plenum pressure drops due to friction are given by the relation

^y
AP=f - 3.8

where:

P = Pressure

/ = Friction factor (Darcy)
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p = Density

v = Velocity

L = Length over which the pressure drop is experienced

D = Equivalent pipe diameter

Once the pressure drop is known, the fricrional force can be determined by multiplying by

the appropriate area.

All of the values required to calculate the friction force are either known from the

geometry of the control volume and the previous time step values of the unknowns or are

variables in the final solution. The exception is the friction factor which requires an interme-

diate computation.

Blasius and McAdams proposed two of the more common correlations for the friction

factor of smooth pipe.

/=-0.184Re^ 2
(McAdams) 3.9a

/=-0.316Re^ 25
(Blasius) 3.9b

The McAdams is generally used at Reynolds number, Re, greater than 30,000 and the Blasius

at lower values of Re. However, direct use of these relations can be improved upon. The

Moody diagram shows friction factors as a function of the pipe wall roughness as well as the

Re. As pipe wall roughness increases the exponent becomes less negative.
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In an effort to preserve the easily computed fonn of the McAdams and Blasius equa-

tions and account for the roughness of the frits, a new correlation line was fit to the log-log

based Moody plot. The result was.

-0.151
/=0.138Re"" :"

3.10

This revised correlation also has the advantage that it is applicable over a wider range of Re

values (10
3
to 10

8

), thus preventing the potential problems of discontinuities in the friction

term associated with the standard application of the Blasius and McAdams formulas. For Re

less than 1,000, a constant value of 0.0482 was assumed for the friction factor. A plenum Re

this low should only be encountered near zero flow initial conditions.

The Colebrook equation (C-l) would also have worked and does include the surface

roughness dependence. But its transcendental form makes it difficult to compute. Although

the friction model for the plenums appears crude, it is probably as accurate as required. The

numerical method will use previous time step velocities to calculate the Re as friction losses

in the plenums are small compared to those in the frits and packed bed.

There are two ways to look at flow in packed beds, either as flow through tubes with

irregular cross sections or as flow around objects. The former approach has generally been

more successful (B-3). The Ergun relation, Eq. 3.11, is a widely used example of the tube

model (E-l).

AP 150u.v (i-e)
2 1.75pv |v| (l-e)

L ~
Dl e

3
+ " Dp e

3
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where:

tsPIL = Pressure drop per unit length

D
p

= Particle diameter

v = Component of the superficial velocity in direction of the momentum

balance

|
v

|
= Superficial velocity magnitude

This relation is really the smooth blending of two correlations, the Blake-Kozeny for low Re

and the Burke-Plummer for high Re. So in essence, the first term is a laminar term and the

second is a turbulent term (B-3). In extremes of flow, one of the terms will dominate. As

with the plenum calculations, the force on the control volume is determined by multiplying

the pressure difference by the appropriate area.

Several assumptions are implicit with the use of Eq. 3.1 1. First the cross sectional area

for flow is assumed to be constant. This is approximated in the model by using the mean

cross sectional area of the control volume for radial flow. The condition is satisfied exactly

for axial flow. Second, the packing is uniform everywhere in the fuel element. This removes

the effects of channeling (B-3).

*

Third, the ratio of the particle diameter to the effective bed diameter is small (B-3).

Thus wall bypass effects are assumed to be negligible. These effects arise from the variation

in void fraction as a function of radial position. It is a maximum of 1 at the wall where there

is only a single point of contact between the wall and each sphere. The minimum of 0.2

occurs half a particle diameter in from the wall. The void fraction then shows a damped

oscillatory variation as one moves radially inward and eventually reaches the mean value.
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The unity void fraction at the wall essentially creates a low resistance channel which allows

flow to bypass the bed. Reducing the particle diameter to bed diameter ratio minimizes this

effect.

The Ergun equation uses the superficial velocity. In order to preserve the vector nature

of the calculation, the velocity component in the direction of the balance is used. When

velocity is squared in the second term, the magnitude of the velocity vector as well as the

velocity component along the direction of the balance are used.

The Ergun relation forms the basis of the model's friction calculations in the frits and

fuel particle bed. All of the terms in the Eq. 3.11 are known either from the geometry or the

previous time step. The method of solution discussion will address how the gradient is com-

puted given this basic relation.

Achenbach (A-2) also proposed a relation to predict packed bed pressure drops which

was adopted by the Brookhaven researchers. It gave 25% higher gradients than the Ergun

relation and was chosen as the conservative method (B-l ). This model uses the Ergun which

has worked well in the Sandia PIPE experiment preparations.

3.3.3 The Flux Term

The net momentum flux into a control volume is determined by looking at the mass

flow rate through each face and its velocity then combining them vectorialy. The mass flow

rate is computed by equation 3.12.

41





m, =pv a 3.12a

mv^pVgtfv, 3.12ft

In this case, the area, a , is the overall area of the control volume face. Note also, that v is

the component of the superficial velocity perpendicular to the face of the control volume, m

is positive for flow into the volume and negative for outward flow. Since velocity is a vector

with a sign convention, care must be taken when determining the sign for this term.

Once the mass flow rate is known, multiplying by the velocity component in the direc-

tion of the momentum balance, v,, yields the momentum flux for the face, Eq 3.12b
1

. Figure

3.2 illustrates the momentum flux for a typical control volume and a radial momentum

balance.

Figure 3.2 shows the use of the staggered grid and its complications. Fluids enter the

West face with two different velocities and densities depending on which control volume

they enter from. No attempt is made to model a more detailed gradation of density and

velocity, since the lumped parameter approach assumes the value of a variable to be the same

everywhere in the volume. All variables in Eq. 3.12b are known or are a variable in the final

set of solution equations.

1 v, as used in the model development and results that follow is defined to be the superfi-

cial velocity. This is incorrect. The formulation of the momentum balance used in the model

requires that v, be the interstitial velocity. As a result, the model evaluates the time

derivative and momemtum flux terms incorrectly. Refer to section 7.5, Recommendations.
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3.3.4 The Manifold Effect

One of the principal functions of the inlet plenum and cold frit is to serve as a flow

distribution manifold. Similarly, the outlet plenum serves as a collection manifold. This

raises the question of whether or not the general momentum balance accurately predicts the

radial flow as a function of position and whether or not improvements can be made. This is

especially important given the requirement to match the power and flow distributions.

Rephrasing the question for the inlet plenum, is the average axial component of

momentum of the radial (lateral) stream leaving the control volume in Fig 3.3 the same as

that of the fluid at the center of the volume where the predominant flow is axial? The model

as constructed to this point assumes that the averages are the same. In other words, the axial

velocity component of exiting fluid, vx , is equal to v, in Fig 3.3. The other extreme says v
r

is

and the exiting stream carries no axial momentum. Bajura noted this issue and included it

in his models for piping distribution manifolds (B-4,5 and 6).

Bajura derived an analytical expression for manifold flow based on an axial momentum

balance which included factors to account for deviations from ideal behavior. He then per-

formed a series of experiments to evaluate the constants. He assumed steady state conditions

and started with the following balance for the dividing header volume shown in Fig 3.3:
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f
P^dA-i P

2
dA + i xwdA = i pv2

2
d4 -

<f
pv,

2

d4 + { pvx v v
cL4 3.13A A J*„ Jk J\ j>s

The Left hand side contains the source tenns and the right hand side the flux tenns.

Then he defined two correction factors that involve an area weighting and the relationship

between vx and v,.

P = =^-fv
2
cL4 3.143

Y = ^=— t vvd4 3.14/?
V VyA3 JAj

P and yare the axial momentum correction factors for the axial and radial streams respec-

tively. (3 Accounts for any deviations from a flat flux profile in the axial stream and y is a

measure of the axial momentum of the radial flow stream as a function of the axial

momentum per unit volume in the control volume. Substituting these relations, applying a

continuity constraint and assuming that conditions on opposite sides of the control volume

are related by a first order Taylor series expansion, Bajura's balance becomes after consider-

able algebra:

SourceTerms = -pvl4,5A' -— (2(5 - Y)v pA,5.v— 3.15
dv ax

- accounts for changes in the flux profile due to plenum entrance effects as a function

of position. (3 becomes constant within the first 20% of the header length when fully devel-
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oped flow is established. It is very dependent on the header geometry. (2(3- y) is the overall

momentum correction factor, 9. If vx equals v and the velocity profile is flat across A if then

y equals 1. If the velocity profile across A
t
is flat, then (3 equals 1. A similar analysis can

also be made for the outlet header. This particular condition is exactly that contained in the

model if the momentum correction factors were not included. Bajura's experiments found

that for fully developed incompressible flow the values of y were 0.95 and -0.66 for the inlet

and outlet headers respectively (B-4). The corresponding values of 6 were 1.05 and 2.66

(B-6). These are consistent with plug flow and a (3 of 1.

The fact that y for a dividing header is approximately .95 says that v
t
is less than v

(B-4). This can be explained if one assumes that the lower kinetic energy boundary layer is

preferentially turned to radial flow by the virtue of its position relative to the bulk axial flow

and the radial flow openings, y for a combining, outlet, header tends to -.66 and represents a

fundamentally different interaction between the radial and the axial streams. In a combining

header, the radial stream carries virtually no axial momentum into the plenum control vol-

ume. But it does add to the mass in the header and effectively reduces the flow area avail-

able to axial flow stream entering the volume at the upstream face. This necessitates a

velocity increase and a further pressure drop in addition to that required to accelerate the

incoming flow and counter friction effects, thus the large value of 9 in a combining header

(B-4). y should not be viewed as implying the axial momentum of the radial flow stream is

in the opposite direction of the plenum flow and momentum.

Datta and Majumdar (D-l, M-l) took Bajura's results one step further. They trans-

formed the equation to a finite difference form and relaxed the requirements for constant
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porosity and lateral (radial) flow resistance. Using this and Bajura's recommended values for

9 they found that the entrance effect term,
d
-, did not significantly affect the results and

assumed (3 was constant for a given header configuration and flow.

The model of the fuel element combines the preceding formulations and adds the time

dependency to transform the general momentum equation, 3.4, to the following form for the

inlet and outlet plenums.

*m-Jcv

= Fpress
+ & friction + * pv*dA -

\ pv*&4 -
\ pi

t
v
3
dA

JA, J A, JA,
3.16

Refer to Fig 3.3 for notation. The radial momentum balance for the plenums retains the form

ofEq. 3.4.

Although this model is based on incompressible flow, it still represents an improve-

ment to the unmodified momentum balance. Anticipated gas velocities do not exceed 30 to

40% of the speed of sound, so the compressive effects should be minimal. The value of (3 is

assumed to be 1. However, if solutions indicate flows are near the laminar turbulent trans-

ition p can be adjusted to achieve a better fit of predictions to the data.

From the designer's perspective, the two variables with the greatest influence on flow

distribution are the ratio of axial to total radial flow area and the resistance to radial flow.

Ideally, the larger the radial flow resistance and the smaller the area ratio the easier it is to

achieve the desired distribution of flow (B-6). The fuel element uses the radial flow
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resistance of the cold frit to control the flow distribution. The cold frit pressure drop is over

10 times the pressure drop of the rest of the fuel element. This high pressure drop is the price

of maintaining flow distribution stability under a wide range of operating conditions.

3.4 THE MASS BALANCE

3.4.1 The General Form of the Equation

The mass balance accounts for the amount of hydrogen in the system and ensures That

in steady state the mass entering the system equals the mass leaving of the system.

The general equation describing the mass conservation is derived from the General

Transport Equation, Eq. 3.1. In this case the transport function, f{r,t) is replaced by p, the

density. The equation becomes:

Dm
157 nj"pdv=

d7j~J7
p<H/+

f p7 -" d5 3n

Substituting Eq. 3.3 this reduces to:

Dm
Dr

dm
) -im 3.18

Since the substantial derivative of the mass equals zero, the continuity balance can be stated

as:
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(a \ Id—m = Sm, 3.19
i-

1

The time rate of change of the mass in the control volume is equal to the net mass flux into

the volume.

There are no source terms in the equation. This is consistent with the absence of any

chemical or nuclear reactions that produce a significant amount of hydrogen.

The continuity balance could theoretically be used on any arbitrarily defined control

volume. However, for the convenience of the solution algorithm, it will be applied to a pres-

sure centered control volume as shown in Fig 2.6.

3.4.2 The Flux Term

As done with the momentum balances, the mass flux across a control volume surface

is the product of the density, velocity perpendicular to the face and the face area, Eq. 3.12.

Since it is the superficial velocity, the total face area should be used. The difference from the

momentum case is that the velocities are defined on each face of the control volume in accor-

dance with the staggered grid simplifying the evaluation of the flux tenns. Thus, everything

required is known from geometry or is a defined variable obtained when the overall solution

is completed.

50





3.5 THE ENERGY BALANCE

3.5.1 The General Form of the Equation

The energy balance serves two purposes. First it provides the additional equation

required to solve for the state variables of the hydrogen. The momentum and mass balances

are sufficient to obtain a hydraulic solution for an adiabatic incompressible flow system.

However, for compressible flows, since density is a function of temperature and pressure, the

third equation in conjunction with the equation of state is necessary to obtain velocity, tem-

perature, density and pressure. Second the enthalpy balance is the primary heat transfer rela-

tionship representing the connection between the solid, heat producing, phase and the coolant

gas phase.

The energy balance is also derived from the General Transport Equation, Eq. 3.1. This

time the transport function is ph , where h is the specific enthalpy. Substituting and integrat-

ing Eq. 3.1 yields

DH
Dt

^-imh 3.20

The substantial derivative (follows motion of a given mass) of the total enthalpy, H, is:

™= C+l^ 3.21
Dt * dt
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d/'

where Q , the heat input, and V — , the change in the pressure volume product, are the source

terms. Substituting in Eq. 3.20 and rearranging gives:

/ d ,.) „ dP <

H\ =Q+V— +'Lmh 3.22
{dt )cv dt ,-.

Thus, the time rate of change of the enthalpy in the a fixed control volume is the sum of the

heat input, change in the PV product and the net enthalpy flux into the volume.

The staggered grid defines all the state variables at the same points. Therefore,

enthalpy, pressure, temperature and density are co-located and the control volume is identical

to that used for the continuity equation.

3.5.2 The Source Term

There are two "sources" of enthalpy within the control volume. One is the heat gener-

ated in the solid and transferred to gas phase. The other is the change in control volume pres-

sure.

The pressure dependence is the simpler to analyze. Since the control volume size is

constant, the change in the enthalpy is the product of the volume and the change in pressure.

The change is the pressure increment since the last time the enthalpy was evaluated.
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When the fuel element is in operation, the larger source will be the energy transfer from

the solid phase. As with most transport phenomena, the. he;\t transferred to the hydrogen is

proportional to a driving force. In this case, the driving force is the temperature difference

between the fuel surface and the bulk coolant temperature

Q=hAvV(T,-TG ) 3.23

where Q is the total energy transferred per unit time in the control volume, h is the heat

transfer coefficient and Av is the total particle surface area per unit volume of the bed.

The heat transfer coefficient is a function of the mass flow rate, the shape of the par-

ticles and the physical properties of the hydrogen. Empirical correlations have proven most

effective for determining h. The relation used in this model is (B-3)

;w =0.91Re^
5

V(Re<50) 3.24a

;w =0.61Re^
4

V(Re>50) 3.24b

h
J'h

=
CphG
(W
V

k
/ J

3.24c

G
Re =—

-

3.244

jH = Colbum j factor

C h
= Heat capacity at constant pressure of the gas at bulk temperature

C
f

= Heat capacity at constant pressure of the gas at film temperature
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k = Thermal conductivity of the gas film

[i
f

= Viscosity of the gas film

G = Superficial mass velocity

if = Particle shape factor, 1.0 for spheres

The film is the boundary layer of coolant next to the surface of the fuel particle. The

correlation approximates the film temperature by averaging the solid surface temperature and

the bulk gas temperature. The Reynolds number used in this correlation is different than the

one used in the momentum equation pipe flow friction term. Here, the length term is the

inverse of the particle area per unit volume as opposed to the equivalent diameter for flow.

The result is that the Re should range from 5 to 20 in the packed bed.

3.5.3 The Flux Term

The flux through each face of a control volume is the product of the density, superficial

velocity, area and the specific enthalpy. These are added vectorialy to determine the net

enthalpy flux. The final form of the balance is:

f d ^ dP '

H\ =hAvV(Ts -TG ) + V— +I,m,h
l

3.25
dr I

v a J
df i

All of the terms in the balance can now be either evaluated or expressed as the product

of a constant coefficient and a variable that will be determined when the balances are solved.

The physical properties are generally evaluated using previous time step values for the state

variables.
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3.6 SUMMARY

The gas phase model of the packed bed fuel element consists of four lumped parameter

conservation equations simultaneously applied to an array of control volumes. The balance

equations are shown in Table 3.1.

Table 3.1

The Gas Phase Conservation Equations

Axial Momentum

dr
mv

axial

V Uf J

_ __ I

= F press + Ffriction + 9 .2 W.Vas.a,, notel

Radial Momentum

Jt m V
radial \

= F press + Ffriction + X ™
,
* radiat

.

Mass d \

At
m = X th;

i==\

Energy u ^

dr
H

/ cv

= hAvV(rs -TG) +V—+Zm i
h

dr .
• = i

Note 1: 9: Inlet Plenum 0.95, Outlet Plenum 2.66, Otherwise 1.0

The basic equations are the same for all of the volumes. The differences between com-

ponents are reflected in the way the individual source terms are evaluated and the dimensions

of the control volumes.
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CHAPTER 4

SOLUTION METHOD FOR THE GAS PHASE

THERMAL HYDRAULICS

4.1 OBJECTIVE

The fundamental gas phase balances described in chapter 3 contain sufficient informa-

tion to solve for the hydrogen temperature, pressure, velocity and density as a function of

position when they are combined with appropriate boundary conditions and fuel element

geometry. Many numerical schemes have been developed for the solution of fluid dynamics

problems. This chapter describes the method chosen for this analysis, including the required

transformation of the equations to finite difference form and the approximations imposed on

the model.

4.2 SOLUTION METHODS

4.2.1 Choice of a Numerical Method

The basic problem in computational fluid dynamics is to reduce a highly nonlinear set

of equations to a set of simultaneous linear equations that still retain the properties of the

originals and can be solved using standard matrix techniques. All methods which are applied

to digital computers require transformation of the continuous equations to a discrete form,

finite difference in this model. In the discrete fonn, the variables can not vary continuously.

Rather the values are defined at specific points which are paired with a control volume. Con-

sistent with the lumped parameter approach, the value of the variable is assumed to be the

same everywhere in the associated control volume.
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The discretization is also the step that performs the linearization and determines how

time is handled. Implicit differencing uses the unknown values of the next time step and the

current time step values; where, explicit differencing uses only current and past values to

advance to the next time step. Implicit equations require greater computational effort than

explicit ones.

Solution of the discretized equations can be accomplished by iterative, predictor-

corrector or shooting techniques. Each type has its strengths. In the end, the choice of a

method is a trade off between stability, accuracy and computing time.

Three numerical methods commonly found in the solution of heat transfer and fluid

flow problems are the Semi-Implicit Method for Pressure Linked Equations (SIMPLE)(P-

2,P-3 and P-4). The Pressure Implicit with Splitting of Operators method (PISO) (1-1,1-2)

and the Implicit Continuous-fluid Euierian method (ICE) <H-3). All of these methods use the

same basic balance equations but manipulate them differently to achieve the final solution.

Some degree of implicitness is included in all of them for numerical stability.

The SIMPLE algorithm is an iterative technique developed by S. V. Patankar and his

co-workers (P-2,P-3,P-4). In this method, one first guesses the pressure field values at the

advance time, n+1. Then, the corresponding velocities are calculated using the momentum

equations. The mass and energy balances are used to correct the pressure and velocity fields.

The new pressure is compared to the initial guess and iteration continues until the desired

degree of convergence is obtained.
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The PISO method is similar to SIMPLE except that it starts with the current pressure

field and is noniterative. The technique uses the mass balance and a predictor corrector for-

mat to remove the linkage between the pressure and velocity equations.

ICE is also noniterative and has been employed successfully for the solution of two

phase flow problems in the THERMIT code (K-l).

The PISO algorithm developed by R. I. Issa (1-1,1-2) has been adopted for this model of

a packed bed fuel element. Since it is noniterative, the solution time is expected to be the

shortest giving the greatest potential for use in a real time digital controller. The semi-

implicit structure of the finite difference equations provides the necessary stability. The ICE

method would also be acceptable. Although PISO does not allow the arbitrary accuracy

available in iterative procedures, it is considered as accurate the differencing scheme used to

discretize the equations (1-1).

Unlike SIMPLE and related methods which use density corrections or update density at

the end of an iteration, PISO forces the final pressure and velocity fields to satisfy the

momentum and mass balances simultaneously. This feature is the key to avoiding the need

for iteration (1-1). For a compressible flow test problem, Issa found that PISO required 19%

of the computing time of SIMPLE and that the method was stable over a much wider range

of time step size (1-2).
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4.2.2 The PISO Algorithm

The following summary of the PISO procedure is presented to motivate the discretiza-

tion of the balance equations. Sections 4.6 and 4.7 contain the detailed sequencing of the

equations and the boundary conditions.

PISO uses two predictor corrector stages to advance the values of the variables from

time n to n+1 through a series of ever more refined approximations. The first predictor uses

the momentum balances to make the first estimate of the n+1 velocity field. It uses the cur-

rent (already computed) time n values for all variables except the desired velocity.

The radial and axial velocities calculated in the first predictor satisfy the momentum

balance but usually not the mass balance. The first corrector applies the continuity equation

to the momentum balances. The resulting pressure equation is used to provide she first

approximation to the new pressure and density. The second estimate of the velocities is also

obtained.

The second predictor is accomplished using the energy conservation equation. In this

case, the enthalpy balance is used. It advances the temperature and serves as the heat transfer

link to the solid phase. The new temperature allows one to update the equation of state rela-

tionship between temperature, density and pressure.

The second corrector is similar to the first corrector. It is derived by combining the

momentum equations, mass balance and the new equation of state. The result is the second

determination of the pressure and density at n+1 and the third approximation of the velocity

field.
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If one desired, a third predictor corrector stage could be added. The method discussed

here uses only two stages. Thus, to advance the variables one time step the method makes

three successive estimates of the velocities, two updates of the pressure and density and one

approximation for the new temperature field. To see how this scheme works one must first

look at the discretized form of the equations.

4.3 DISCRETIZATION OF THE MOMENTUM AND ENERGY BAL-

ANCES

4.3.1 The General Equation

The built in stability of the PISO method starts with the transformation of the balance

equations to an implicit finite difference form which is amenable to a computer based numer-

ical solution. The equations are arranged to advance the values of the variables from the cur-

rent time step, n, to the n+1 time step.

A review of Table 3.1 shows a useful similarity in the momentum and enthalpy conser-

vation equations. All of them equate the time rate of change of a quantity in a control vol-

ume to the sum of the sources and the fluxes crossing the control volume surfaces.

Therefore, discretizing a general equation using the dummy variable <j> essentially discretizes

all of the equations. The radial and axial velocities or the specific enthalpy can be substituted

for <|> . Thus, one starts the transformation with the general conservation equation

i

= source +Im(|) 4.1
i =i
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The time derivative can be represented in discrete form by the following implicit finite

difference

4.2

The time n density is used, since the density at n+1 is not determined in the first predictor

step of the PISO method.

The flux terms are the product of the mass flow rate across the control surface and the

quantity <}) . The mass flow is evaluated using the expression

mass flow rate = pva 4.3

where v is the velocity normal to the control volume surface of area a . For the control vol-

ume shown in Fig. 4.1 the
<J)
flow rates across the control volume surfaces are

(p"w><i>),, 4Ac

(PX^*), 4Ad

where the lower case letters identify the surfaces.
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A complication occurs in the momentum equations when <j> represents a velocity. This

results in making the flux term a function of the square of the velocity and hence nonlinear.

Fully implicit differencing would have all of the (j)s, except the one in the time derivative,

evaluated at time n+1 . In order to obtain a linear equation a compromise is made. The

velocity in the mass flow calculation is evaluated at the current time, n, and (1> is evaluated at

the n+1 time step. This also resolves another problem. If the axial momentum balance is

performed before the radial balance, v"a âl is required to compute the flow through the north

and south faces of the control volume but is not known. The compromise allows the use of

the current time value of the radial velocity. The same situation exists in the radial balance.

As a result, the flux term remains a function of velocity squared yet linear in terms of v" .

This approximation is made in the flow calculations in both the momentum and enthalpy

equations.

The question now becomes how to evaluate a variable if it is not defined at the control

volume interface, for example (j) in Fig 4.1. One scheme would be to average the values on

either side the interface. This works in some instances and is done to estimate the current

velocity in the mass flow term. However, this often breaks down when convection due to

fluid flow is present. If the gas phase flows from W to O, the value of the gas density at the

interface much more nearly resembles the density tyw than
(f)

. Several methods, varying

from exact to simple estimations, are available to describe this effect.

For simplicity the donor cell or upwind method is chosen here. This procedure looks at

the direction of the convective flow and assumes that the value of a quantity at the interface

is its value in the upstream control volume. Mathematically, the donor cell method evaluates

<J>
at the west interface by
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(0.5 + ct)<j)
lv + (0.5 - a)<j)

(
, =

(J)|
4.5

Where:

a = 0.5 if the flow is from W to O

a = -0.5 if the flow is from O to W

a is the upwinding factor. It is evaluated using the time n value of the velocity whose sign

indicates the direction of flow. If density is not defined on the interface, the procedure is

followed again using velocity as the flow reference. Combining the results above, Eq. 4.1 is

transfonned to:

5Vp"
5f

." +

1

= source Hp^a )w
((0.5 + a,)^ + (0.5 - aJ<f>o )

-Hp"v^
o{
a)^(0.5 + a.)(t>;

+1
+(0.5-a)(t)^

,

)

+(p"W», «°.5 + v,W;** + (0.5 - a
s)f(;

1

)

Hp
n
vLial

<* )„ ((0-5 + <*M
+

' + (0-5 - V-M+ ') 4.8

Rearranging and making the following substitutions

M
x
=(p"v"a)

x

Aw =(0.5 +aJMw

A
e
=-(0.5-aJMe

A
s
=(0.5 + a

s
)M

s

A n
=-(0.5-an)Mn
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reduces Eq. 4.6 to

5Vp
5r

#i + I= source -$ \A
k
.
+ A.A + A„ + A

5
+ Af, - M

y
.

4- M„ -MJ

n + 1 n + 1+a,^ +^x'+^c+,+^." +

1

4.7

This is the discretized form of the general equation. However, to put it in a more tractable

form the operator H' and the coefficient AQ are defined and substituted into the equation.

The //' operator is also used in several of the other discrete conservation equations.

Aa =-(Ae
+A n , + A n +As

+M
e
- Mw +Mn -Ms )

H\^=AM +i +A^'w
+x +AX+] +A^ + ]

r
p
nbV . p"<j)"5V

<\> =source+H\§ ) + _ 4.8

Eq. 4.8 is discretized with the exception of the source term which is specific to the bal-

ance being studied. Note, that the superscript * has been used in lieu of n+1. Since the

momentum and energy balances compute only an approximation of the n+1 value, the single

asterisk designates it as the first guess.

4.3.2 The Momentum Balance and Source Terms

The discrete form of the momentum balances can be obtained by substituting the

appropriate velocity for <j> and transforming the source terms.
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Fig. 4.2 shows a control volume associated with radial velocity and locates where the

principal variables are defined. The pressure force acting as a source of radial momentum is

discretized by estimating the derivative and multiplying by the area.
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dP
pressure force = ---La = -(P

n

N -P
n

s )a
dr

4.9

The current time step values of pressure are used since the PISO algorithm solves for veloc-

ity using the momentum conservation equations before advancing the pressure variable. The

mean gas phase area is used as discussed in section 3.3.2.

The other source term in the momentum equations is the friction force. In the frits and

the fuel particles this is characterized by the Ergun relation, Eq. 3.11. Rearranging this to

calculate the pressure force yields

APa =aL(
150uv (i-e)

2 1.75pv |v| (l-e)

D; e
3

+
I),

4.10

Since the friction force is a function of velocity squared, it must be linearized. The same

technique used in the flux term is applied. Using Fig. 4.2

n + i

v = v

I
v"| = V(-25(v;iW + vaV + v

n

aSE + v
n

aSW)f + (vr"o)

2

4.11

4.12

This maximizes the implicitness of the relation. As a result, the left hand side of Eq. 4.8

becomes

?— A + aL
or

(
150*1(1 -e)

2 1.75p|v^|(i-e)
v

D2
e
3

v p
d

p ^ JJ

f
p

nhVZ- A +Fnc
V &

\

4.13
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The friction term for the plenums is treated similarly with the Re calculated based on the time

n velocity.

The discrete form of the radial momentum conservation equation used in the PTSO

solution algorithm is:

%V_^o Fric
n n <?y

PV* +#'(O = (P"N -P"s )a"~— 4.14

Eq. 4.14 has been arranged to facilitate solution of the resulting system of simultaneous equa-

tions when each of the radial velocity control volumes is considered. The left hand side can

be factored into a matrix of coefficients multiplied by a vector containing the radial velocities

for each of the control volumes. The right hand side is a constant vector, since all values are

known for time n. The axial momentum is handled analogously.

4.3.3 The Energy Balance and Source Terms

Heat transferred from the solid phase and the change in the pressure volume product

are the source terms in the energy balance for the control volume shown in Fig 4.3. The

energy transferred from the fuel particles couples the solutions of the solid and the gas phase

models.

The heat source term is simply:

69





* N » "AM ' GN

* l/» "»•» * GW
X W<>

V

X

o

V

iV

n
-Y—

X

u
e

U rS

* 5 » "" S »
*5» f*5

X
GS

State Variables

Axial Velocity

Radial Velocity

' E » ">B* ' GE
X

r

Figure 4,3

The Energy and Mass Balance

Control Volume and Variables

70





Q=hAvVev(T
n

s -TZ) 4.15

The problem is whether to use the time norn+1 values for the temperatures. A heat source

term based on time n would be the easiest to handle. However, this introduces the stability

problems associated with explicit differencing. These are magnified by the small gas volume

and heat capacity. The authors of the THERMIT code (R-l ) developed a fully implicit

method for treating the heat transfer from the fuel which is used in this model.

In order to treat both the solid and gas temperatures implicitly, the procedure consists

of three steps which combine the results of the solid and gas energy conservation equations.

First, the model assumes 7£ equals T£
+ 1

and solves the solid phase energy balance for

T and dTjj* /dT^* where T* is the first approximation to the new solid temperature.

Second with T* substituted for T$
+1

the fluid phase enthalpy balance is solved for the

enthalpy at n+1. To do this, Eq. 4. 15 is modified to account for the fact that 7*is not the final

value of T$
+

'. This results in Eq. 4.16a which is transformed to the conservation variable

used in the rest of the equation by substituting 5.16b. Eq. 5. 16c shows the final form of the

heat source term in the gas phase model.
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Q=hAvVcv(Ts -rG + ]

) + hAvVcv

Tn + I -wi _
n ~ I r-

—

. n + \ r 11

h

y* g
~ l g>

Cp Cc

<2 = hAvvj Ts-—+~rGy hAvK
ar;^-'V/r* 1

f?'

varr' v~p v^p

4.16a

4.16&

4.16c

Lastly, now that the true value of 7£
+ l

is known, T is updated to Tn

s

+l
using Eq. 4.17.

_ arr 1

4.17

Chapter 5 presents the fuel panicle model and how to evaluate T* and the temperature

derivative. The fuel temperature and heat transfer coefficient are further modified and

replaced by T and U when the exact definitions of the solid phase model are applied.

The pressure volume term is less complicated. The discretized form is

V
dP oV(PJ.)

dr bt
4.18

Here (PJ.) is the estimate of the pressure change between n and n+1 calculated by the first

corrector in the PISO method. This value is available, since the energy balance is used as the

second predictor.
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Combining the enthalpy source terms with the general discretized balance equation

results in the following discrete energy conservation equation:

dVp

o>
-4o+l cP

— h
n

<rrr
x 1 cP

4.19

p* is the first approximation of p"
+

' which is calculated in the first corrector step and Av is

the particle surface area per unit volume of the packed bed.

4.4 THE MASS BALANCE

The mass balance is implemented by using the control volumes centered on pressure

and the other state variables. This in conjunction with the staggered grid, which conveniently

defines the velocities on the faces of the control volume as shown in Fig. 4.3, makes the con-

servation of mass flow calculation straight forward.

Since no sources exist within the control volume, only the mass flows and the time

derivative terms of the continuity equation require transformation. The techniques used on

the similar terms in the momentum balances yield Eq. 4.20 which is the form of the mass

balance used in the first corrector.

P ~P
bt

bV + (p*v> )w
- (p'v'a 'a )e

+ (p"v'
r
'a )

s

- (p'v'/a )n
= 4.20
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Note that the second estimate of v" " is used. No requirement for a mass balance was

imposed on the first predictor. As a result, the v" values do not satisfy this relation.

4.5 THE PRESSURE EQUATION

The pressure equation is the core of the PISO method. It is the relation that forces both

mass and momentum to be conserved simultaneously. The derivation of the equation out-

lined below is adopted from references (1-1,1-2).

The continuity equation, 4.20, for the control volume and variables shown in Fig. 4.3

forms the foundation of the pressure equation. To this several substitutions developed from

the momentum equations are made. Focusing on the east face axial velocity for a moment,

the first momentum predictor and corrector relations take the form of Eq. 4.21 and 4.22

respectively. Note that the corrector form is explicit.

& p";

9
n
v:E =ti\v:E)-{AP

n
a)e+9

n
v:E

5V

St

SV

St

4.21

4.22

Subtracting Eq. 4.21 from 4.22 and solving for p'v'aE one obtains:
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-1,
p vaE =K~\AP a)e -K-\AP

n
a)e + p"vaE 4.23

[bt p"J

Multiplying by the area then gives the mass flow rate through the east face of the control vol-

ume. Substituting this and the similar expressions derived from the velocities at the other

faces yields:

-~i? -9n)-{Po-P
n
o)iP^Dw +Dn +Ds)

+D
e
{P*E -P

n

E)+Dw{P*w -P
n

w)

+Dn(P'N - P^)+DS
(P'S - P's) = (p"va\ - (p"v.\ + <p"v,\ - (pV),

Dx
= (FT

la\ 4.24

The last step relates the density difference to the pressure using the equation of state,

P = pRX, to obtain the following:

p=^ 4.25

This combined with Eq 4.24 and some algebra gives the final form of the first corrector pres-

sure equation.
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p"5V

P"bt
+ D. (/>; - p

n

) +De(p;
-p-

E)+ djp'w - p'
w) + dsp'n - p

n

N)

+

d±p; - p
n

s )

=(p"v;),-(P"vj
M.+(p

rr

v;)„-(P"On

D=D+D,+D.+D.

4.26

The pressure equation used in the second corrector is derived in the same fashion. Using Eq.

4.22 and the second corrector for momentum, Eq 4.27, gives Eq. 4.28 which is the second

corrector pressure equation.

5r P
"

y

?T7

4.27

-\(D
e
+D +D_+D

s
)+^^(P;'-P;)+D^Pe-P;)+DjP;:-P^+D^'-P^)w n

.. * (hV A
+D

S
(PS -Ps )

=

Where:

dt
(H '(v* - v*aE) -

H

'(vw - v'aW ) +H \v~ - v'rN ) -H \v* - v*rS)

i t

i
<>

n \

P ~P
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J
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p J

"\ \

v a
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n \

P ~P

V P J

v a
)

+ lo
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p -p n \

V P )

v a ) +
Is
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D. =

i 5f p*J J,

4.28
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The pressure equation roots in the momentum and mass conservation equations force

the pressure and velocity fields to satisfy the two conditions simultaneously, thereby giving

one the option of using a noniterative solution procedure.

4.6 THE SOLUTION ALGORITHM

Sections 4.3 through 4.5 developed the equations required for the PISO solution

scheme outlined in section 4.2.2. The following steps provide the solution sequence used for

the gas phase in the fuel element model.

First Predictor

1. Solve the radial momentum balance, Eq. 4.14, for the radial velocity field, v*.

2. Solve axial momentum balance, Eq. 4.14, for the axial velocity field, va
*.

First Corrector

3. Solve the pressure equation, 4.26, for the pressure increment, P* -P".

4. Calculate the P* field by adding the pressure increment to P"

.

5. Use the equation of state as modeled in the H2EOS program to compute p*

given P * and T"

.

6. Compute the new radial velocities, vr , using Eq. 4.23.

7. Calculate the new axial velocity field, v", using an equation similar to 4.23.

Second Predictor

8. Obtain h* from the enthalpy balance.

9. Use the H2EOS program to get T*G given P* and h*.

77





Second Corrector

10. Solve the second pressure equation, 4.28, for P" - P"

.

11. Calculate P*. This is now P n +

12. Compute p using the equation of state given P" and T"
;

. This is
p*"*"'.

13. Calculate the radial velocity, v"*, using a relation equivalent to Eq. 4.27.

This is the time n+1 value.

14. Calculate the axial velocity, va , using a relation similar to Eq, 4.27. This is

the n+1 time step value.

The equations solved in steps 1, 2, 3, 8 and 10 are actually sets ofM times N simulta-

neous linear equations, where M is the number of radial nodes and N is the number of axial

nodes. These steps are most easily accomplished by treating the equations in matrix form.

[Matrix of Coeff.][Variable Vector] = [Constant Vector]

A wide variety of methods exist to solve this problem. For large numbers of nodes iterative

techniques are probably most efficient. Issa recommends the use of ADI or Stone's Strongly

Implicit Procedure (T2). For smaller matrices direct solution methods such as LU decompo-

sition can be used.

4.7 BOUNDARY CONDITIONS

Once the equations and physical data are available, problem definition is completed by

adding the appropriate boundary conditions. Figures 4.4 a, b and c show the control volume

arrays for typical momentum and pressure equation solutions.
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The user determines the inlet pressure and temperature (PBI and TBI) and the outlet

pressure (PBO) when the transient is defined. The other boundary conditions are imposed by

the fuel element geometry. One constraint common to all equations is that the velocity per-

pendicular to a solid surface is on the surface. Thus, the radial velocities that would be

defined on the outer surface of the inlet plenum (B in Fig 4.4a) are known to be and the

points are not included in the solution matrix. Symmetry also requires this condition on the

fuel element center-line.

A constraint similar to the radial case exists for the axial momentum at the west and

east ends, Fig 4.4b. However, the arrangement of the fuel element and control volumes

impose some complications. The first occurs in the region of the hot frit. The design pre-

vents axial flow in the frit, since it is constructed from a solid piece of metal drilled to allow

radial flow. The second occurs along the west end. The inlet and outlet port control volumes

are separated by a series of control volumes which contain half solid boundary and half par-

ticle bed. The axial velocities are defined on the solid surface and are therefore 0. The prob-

lem is how to maintain an array of control volumes with a solution matrix that retains the

appropriate coupling and mass balances, yet still gives correct solutions for the boundary

values.

Two methods exist to handle this problem. One is to eliminate the control volumes for

known boundary values. The resulting nonrectangular array complicates the programing if

the user still has the option to define the number of axial and radial nodes. It also risks

decoupling the outlet plenum from the rest of the fuel element. The other method, the one

used here, includes the boundary volumes necessary to achieve a rectangular control volume

array and forces the solution to the correct value by controlling the source terms in the

boundary control volumes. Using an artificially high friction term effectively reduces the
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included boundary velocities to 0. This has the advantage that anisotropic friction character-

istics can be used to adjust the axial velocity with minima] effect on the radial velocity. As a

result radial flow is still allowed in the west end volumes and the hot frit.

One other boundary value issue that affects the two pressure equations is the evaluation

of the pressure gradient across the boundary control volumes. The model assumes that there

is no difference between the pressure at the boundary surface and the pressure in the center of

the control volume. If the pressure at the center of the control volume changes, so does the

pressure at the solid surface. This gives a zero pressure gradient at the boundary. The pres-

sure gradient across the opposite side of the control volume can still vary in accordance with

the variable pressure on either side of the interface. This is consistent with the lumped

parameter approach. Figure 4.5 illustrates the principle.
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4.8 SUMMARY

Discretization and linearization of the control volume balance equations results in sets

of simultaneous equations which can be solved for the pressure, velocity, temperature and

density in each control volume. The PISO method is used to accomplish the numerical solu-

tion. It uses a 2 stage predictor corrector technique which advances the variables from one

time step to the next by calculating a series if successively refined approximations. Its

semi-implicit, noniterative structure provides ease of solution and numerical stability.
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CHAPTER 5

THE SOLID PHASE MODEL

5.1 OBJECTIVE

Chapters 3 and 4 present the gas phase part of the model. Equally critical to the suc-

cess of the fuel element code is the modeling of the fuel particles. They are the source of the

heat and contain the majority of the stored energy. This chapter presents the development of

the solid phase model equations and the solution method.

5.2 THE MODEL

The solid phase is simpler than the gas phase, since no motion is present. As a result,

predicting the solid phase temperatures requires only a heat balance. The energy conserva-

tion model must account for three processes, heat deposition, storage and dissipation. The

first two can be described on the scale of a single fuel particle. The third represents the fuel

particle's interaction with surrounding particles and the hydrogen coolant.

The lumped parameter, control volume approach used in the gas phase model is also

used here. Because this method assumes all particles in a control volume are the same, the

single particle processes can be analyzed on an individual basis, then rescaled to account for

the total solid mass in the control volume. The lumped parameter approach is also conve-

nient for the dissipation mechanisms of conduction and radiation. These processes are

dependent on a temperature gradient. Since no gradient exists within a control volume, they

can be considered as occurring between control volumes in the overall energy balance. Eq.

5.1 is the general form of the energy conservation equation for a control volume.
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dTA
mCP

d(
= q- hAvV(Ts - TG ) + I kfi,Vr5(

5.1

k = effectivity conductivity

q = heat source

5.2.1 The Fuel Particle

The temperature distribution within a fuel particle is a function of the heat deposition

rate, heat removal rate and fuel particle dimensions and materials. The most accurate model

would divide a fuel particle into at least four nodes (based on composition), then create and

solve a set of finite difference equations. This process would have to be repeated for one

particle in each control volume, making the model extremely cumbersome To simplify the

particle model, the single node approach is adopted. This reduces the fuel particle to a single

composite control volume which retains all of the properties of the original.

Reference M-2 derives the single node model for a cylindrical fuel pin. The same tech-

nique is used here except that spherical geometry has been substituted. The single node anal-

ysis homogenizes the fuel particle by assuming a steady state temperature distribution and

constant material properties in each region of the fuel particle. The resulting particle heat

balance takes the form of Eq. 5.2

maCpjt T = q"-U(T-TG) 5.2

Where:

m = particle mass per unit outside surface area (kg/m
2

)
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Cp = average particle specific heat (J/kg K)

T = effective fuel particle temperature (K)

q " = heat generation per unit outside surface area {W/m')

U = effective overall heat transfer coefficient (W/m2 K)

The second term on the right side represents the heat transfer to the gas phase. The model

code uses the following equations to evaluate the terms in the single node relation. These are

easily derived using the procedure of reference M-2. The number subscripts refer to regions

identified in Fig 5.1
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Figure 5.1

The Fuel Particle
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3
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3

+1)p,max= 2 m
a = mai +mo2 + m*i + ma 4 5.3a

i

x = region number

CP=I— jj p? U4
= -- 5.3fc

uT =l

7 =I-^K.CPL/I
+wa2Cra (/i +/2) +mja3CP3(/2 +/3) +ma4CP4(/3 + l)] 5.3rf

2maCp

_ UTh
U = =—!— 5.3?

/h + UT

r is, in effect, defined to be the temperature that satisfies the requirements of the single node

heat balance. It is not a true average or associated with any particular point in the fuel par-

ticle. The determination of the heat transfer coefficient, h, is discussed in chapter 3. These

relations assume that the average temperature of a region in the fuel particle can be

approximated by the arithmetic average of the regions inner and outer interface temperatures.

The material properties of the fuel particle components vary with temperature. This

model assumes fixed values for the product of the density and specific heat. Thermal con-

ductivities are allowed to vary with temperature and are evaluated using the correlations of

reference D-2. Even with these correlations, the values of the physical parameters are only

estimates. For example, estimates of the carbide fuel conductivity vary by as much as 30%

between references.
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The single node analysis also pennits easy estimation of the heat flux time constant, T.

If power is increased linearly, Tau is the time delay between achieving a given power level

and having its equivalent steady state flux on the outside surface of the particle. This

assumes that the coolant temperature remains constant (M-2). Fig 5.2 diagrams the relation-

ship. As such, it is a measure of the time for the energy to move from the fuel kernel to the

surface of the particle and into the gas phase.

m°Cp
x= — 5.4

U

In this case, x is a function of coolant flow and temperature and varies from 30 to 105 ms.
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5.2.2 Solid Phase Conduction and Radiation

Heat transfer between adjacent solid particles occurs via several mechanisms. Conduc-

tion can take place through particle to particle contact points or through the gas trapped

between the particles near the points of contact. If temperatures are sufficiently high,

radiative heat transfer also contributes (Y-l). The effective conductivity of the solid phase is

the sum of these components.

The dominant mode of conduction is through the fluid near the point of contact.

Because the fluid is in the boundary layer, its conduction properties are relatively insensitive

to the gas flow rate except at very high Reynolds numbers (Y-l). The packed bed element

Reynolds numbers are low because of the high fuel particle surface area to bed volume ratio.

Direct conduction via the points of contact is only significant at low pressures. As a result,

the conductivity of the solid phase is highly dependent on the fluid and is therefore a function

of the gas and solid conductivities. Kunii and Smith proposed the following relation to deter-

mine the effective conductivity. It is the one incorporated in the fuel element code.

k°=kG 5.5

Where:

k° = effective bed thermal conductivity

kG = gas thermal conductivity

e = bed void fraction
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P = packing parameter, assumed to be one for a randomly packed

bed

(() = a measure of the effective thickness of the liquid film between

particles near the contact pomt

<j) is calculated using the following equation:

— TsiirG 2——

^

r 5 -6
ln(K-(K-l)cose)---(l-cos9) 3k

9 = i
n

n is the number of points of contact with other particles and represents the number of possi-

ble paths for conduction. Because the number of points of contact is not known exactly in a

randomly packed bed, (j> is calculated for the most open packing, ((), , and a maximum close

packing,
<J>2 . The values are averaged, weighting them by the true bed void fraction as shown

in Eq. 5.7.

e - .0260
4> = (4>i-4>2) 0216

+<i>2 5.7
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The temperature required for significant radiative effects is a function of particle size.

For 1 mm particles thermal radiation is important at temperatures greater than 700 K and

1,800 K for .1 mm diameter particles (S-4). With anticipated fuel temperatures of 2,000 K

radiative heat transfer is significant and is included in the model.

Schotte includes two paths in his model of the radiation effects. One is the radiation

across the void space to an adjacent particle, k", and the other is the radiative transfer

between particles in series with conduction through the particles. The applicable equations

for SI units are:

T3

k° =0.229(EM)'eDp
- 5.8a

10
6

k
r
= 5.Sb

- -+ -+ek?

k
r

is the effective radiation conductivity of the bed and EM is the emissivity of the fuel par-

ticles. The fuel element code uses the properties of the outer layer, zirconium carbide, for the

conduction parameters because it is the material in contact with the other particles and its

surface characteristics determine the emissivity. The code uses an emissivity of .78. The

radiation component of conduction is a function of the surface temperature as well. The

model program approximates this with the effective solid temperature, T. The actual surface

temperature is less than T but the size and spherical shape of the particles minimize the AT

within the particle, mitigating the error of the model.
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Combining the conduction and radiation conductivities yields the overall effective con-

ductivity of the solid phase, k^-

k—= k°+k* 5.9

5.2.3 The Solid Phase Solution Method

The solid phase energy balance is solved by applying a discretized form of the energy

balance to an array of control volumes, just as is done with the gas phase model. The control

volumes are coincident with their gas phase counterparts.

Assimilating the discussion of the previous sections into the energy balance requires

rescaling the single node analysis of the heat deposition, storage and transfer to the gas phase

from an isolated particle to a control volume basis. The terms of Eq. 5.2 were derived on a

per unit particle surface area. The rescaling is accomplished by multiplying both sides of the

product of the control volume size, Vcv , and particle surface area per unit volume, Av . The

units for each term in Eq. 5.10 then become Watts.

m
a
cPv„Av|r = ^"v

v
Av -uv„Av(r-rG ) 5.10

The area per volume for spheres is a function of the particle diameter and the void fraction.

Up
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The last step in assembling the continuous form of the control volume energy conserva-

tion equation is to add the conduction terms which account for the heat transferred through

the control volume boundaries. This yields:

^cPvcvAv^r = ^"v,Av-uvfl,Av(r-rG)- i k^.vr,. 5.12
or , = 1

Note that the area used in the conduction term is the area of the control volume face, not the

surface area of the particles.

Equation 5.12 must be discretized to make it compatible with numerical solution tech-

niques. Since the control volumes are the same as those of the gas phase, the solid tempera-

tures are defined at the same points as the gas state variables. Solid Temperatures are not

defined in the plenum areas. No solid exists in these control volumes and conduction to the

moderator block is not considered.

The discretization procedure is the same used in chapter 4. The last term on the right

hand side is the only new term which has not been discretized earlier. The temperature gra-

dient across an interface is approximated by the difference in the temperatures on either side

of the interface divided by the distance between the temperature points. The problem now is

how to evaluate the conductivity at the interface.

Conductivity is a function of temperature, void fraction and material. Therefore, sig-

nificant differences may exist on opposing sides of the interface. The first impulse is to use

the arithmetic average of the two values. However, this has been shown to give erroneous

results (P-2). The harmonic mean is a better choice and has several physical arguments in its
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favor. Patankar equates the heat flow on either side of the interface to derive the relation for

the harmonic mean (P-2). Eq. 5.13 shows the relation for the east face of a control volume. /

is the ratio of the distance between the east interface and TF to the distance between the cen-

ters of the two control volumes. Similar relations can be derived for the other faces.

< k-H£ +i?
. i

5.13

The source term representing the heat transfer from the solid to the coolant is treated

implicitly as discussed in chapter 4. Therefore the n+1 values of the temperatures are used.

In accordance with the THERMIT implicit method, T"
;
is used as an estimate of the T"

;

¥
'

. A

correction is made later in the solution process.

Substituting the discrete forms of the terms into Eq. 5.12 results in the following fonn

of the heat balance:

™,cpv;,a

(-=,n + \ ~n\ (

or
Kc^

K«Ma

U E ~ ' <) )

hz

+ K^

;i + 1 /i + I \ (
y' n

~ 1 o )

5; I

f
^toJal^

,rpK + I rptt + I. ^

OZ

(r;r-rr)"
or

+q"VcvAv-UVcvAJr
+ l -rG 5.14

This can be rearranged into a form similar to the gas phase balances with these substi-

tutions:
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fk a\Notal"
= A.

K.„,,iC7Notal1"

= A.
'total"

5r
= A.

^tota)^
-A.

A =-(A
e +Aw +A n +A s ) B =

waCpVr,Av

5>

^ + 1

/5f'(T
r
-)-4.7;*

,

+A
lr
7^*

,

+A 175
+,
+A.f;

+ l

5.15

Equation 5.16 is the final form of the solid phase heat balance used in the fuel element model

code.

-(B -A - UV
CV
AV)T +H '(F) = -q

' 'V
C
AV - UVCV

A^ - B T" 5.16

Setting up this equation and evaluating the coefficients for each control volume creates

a system of simultaneous linear equations. The model code can now solve these for T with

the same matrix solution techniques used for the gas phase. The vaiues obtained for the solid

temperature are only a first estimate.

The THERMIT method for solving the coupling of the gas and solid phases also

requires the evaluation of the temperature derivative, dT" /dT^ 1

. Continuing with the

assumptions that Tn

G and T equal TG
+ l

and T" respectively, the code differentiates Eq. 5.16

to get:

dT
n + i UV

r
,Av

drG + l (B-A -UVCVAV)

5.17
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Before completing the solution for the solid phase temperature, the gas phase energy

conservation equation must be solved for the true value of T£
+

'
• When this is done, all of

the terms in Eq. 5.18 are known and T can be corrected to get T"
vi +

1

1+ J

T
n " = T ^-—-^T-'-n) 5.18

This process is equivalent to saying

Interphase Heat Transfer = UV , A,jf"
+

' - T".
*

')
5.3 9

in both the gas and solid phase equations.

5.3 SUMMARY

An energy balance is applied to the fuel particles to model heat generation, storage,

and transfer. Transfer includes convection to the coolant conduction to surrounding particles

and radiation to adjacent material. To simplify the model a steady state temperature distribu-

tion within the fuel particle is assumed. This allows the state of the solid phase to repre-

sented by a single temperature in each control volume.

The coolant and fuel particle models are coupled by the interphase heat transfer term.

In order to preserve numerical stability, the model treats both gas and solid temperatures

implicitly using the technique developed for the THERMIT code.
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The model of the packed bed fuel element is now complete.
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CHAPTER 6

RESULTS AND CONCLUSIONS

6.1 OBJECTIVE

Chapters 2 through 5 present the details of a mathematical model of a packed fuel ele-

ment. It is based on the momentum, energy and mass conservation equations. These rela-

tions are encoded in a micro computer Fortran program described in appendix B. As a partial

test of the model's validity, the code is applied to a series of steady state and transient

problems. This chapter presents the results of these test cases.

6.2 STEADY STATE

6.2.1 Problem Statement and Methodology

Six steady state problems test the model's ability to reach a reasonable solution under

various conditions. Changing the peak power level provides the simplest means of simulat-

ing the wide range of hydraulic and thermal conditions that the fuel element would experi-

ence during pulsed high power operation. Cases with peak power densities of 2. 1 and 1 .0

GW/m3
are examined as well as a zero power problem. The other boundary conditions are

held constant to permit more meaningful comparisons.

In addition to power density the operator must also specify the following:

1. The physical dimensions of the fuel element

2. The control volume dimensions and arrangement

3. The initial values of all variables
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4. The coolant inlet temperature and pressure

5. The initial and final outlet pressure

6. The initial and final power density

All of the test problems are conducted using a rectangular array of control volumes

arranged with 5 equal sized nodes axially and 10 nodes radially. The radial nodes vary in

size to match the fuel element components. One node was assigned to each plenum and frit

and 6 nodes were assigned to the fuel particle bed. The control volumes and variables are

identified by two indexes, I and J for the radial and axial positions respectively. Figure 6.1

shows the indexing scheme. The origin of the grid is the pressure control volume at the inlet

port (1,1). Note that the velocity control volumes cross component boundaries, because of

the nature of the staggered grid. For example, radial velocity (2,1 ) is defined on the interface

between the inlet plenum and the cold frit.

The sign convention is positive for axial velocities moving from low index to high.

Radial velocities are positive for flow from the outside of the fuel element toward the center.

Thus, increasing I and J represent the positive directions. Under normal flow circumstances

then, axial velocity is positive in the inlet plenum and negative in the outlet plenum. Radial

velocity is positive in the fuel bed under these circumstances.

For steady state cases the initial conditions are arbitrary. However, they should repre-

sent an equilibrium condition to ensure initial numerical stability. The test problems are

started with steady flow, zero power and an element pressure drop of 50 kPa. All

temperatures are 300 K and inlet pressure is 2 MPa. The final outlet pressure is 1.915 MPa.

for all cases.
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The code takes the peak power density and applies a chopped cosine weighting to sim-

ulate the axial power profile. In this case, the factors were .89, .97, 1 .0, .97, and .89 for axial

nodes 1 through 5 respectively.

The cold frit thickness varies with position to match the axial flow profile and the

power distribution. The thicknesses are based on the PIPE element design drawings. Values

of 2.26, 1.93, 1.80, 1.78 and 1.91 mm are used for nodes 1 through 5 respectively.

The problem is completely defined without having to specify the mass flow rate. It

varies as the conditions in the fuel element change.

The steady state solution is actually achieved by conducting a transient for a long

enough period of time that the values of the variables become essentially non-varying. The

transient is initiated by making a step change in the outlet pressure and power density to the

final values. This essentially simulates instantaneously raising power and opening the fuel

element outlet valve.

Steady state is identified by monitoring the overall system mass and heat balances. All

problems are run for 3.75 sec. which insures that the energy transferred to the coolant is

within 5% of the energy deposited by the simulated fission. The mass balances agree within

1% or less.

The test cases also provide a test of the numerical stability of the solution technique.

As expected, the semi-implicit differencing used in the discretization limits the size of the
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time step that can be used. Instabilities can be initiated by raising the power or increasing the

fuel element pressure drop. A time step of .25 ms works well for the power densities and

pressures used in the test problems.

6.2.2 Hydraulic Results

The principle hydraulic issues address the subjects of model complexity, 1 or 2 dimen-

sions, and flow distribution prediction. Figure 6.2 shows the calculated steady state values of

the variables for the 2.1 GW/m3
case (Refer to Fig. 6.1 to meld the arrays). The zeros on the

edges of the velocity arrays represent velocities defined on the fuel element boundaries. The

hot frit shows zero axial velocities due to the modification of the axial friction term to simu-

late the frit's drilled single piece construction. The small diameter of the particles in the cold

frit also result in high friction and negligible axial flow.
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Steady State Fuel Element
Power Density = 2.1 GW/m 3

, Inlet Temp. = 300 K,
Inlet Press. = 2.0 MPa, Outlet Press. = 1.915 MPa

Superficial Radial Velocities (m/sec)

11 .0000 .0000 .0000 0000 .0000
10 6.6141 6.0407 6.0424 5.7759 5.3303
9 6.2537 5.7132 5.7147 5.4678 5.0468
8 5.1095 4.7442 4.7188 4.5146 4.1770
7 4.0823 3.7857 3.8043 3.6624 3.3877
6 3.1475 2.9651 2.9711 2.8551 2.6506
5 2.3003 2.1792 2.1830 2.0985 1.9494
4 1.5059 1.4474 1.4315 1 .3704 1.2725
3 .5821 .5724 .5428 .5111 .4685
2 .5109 .5004 .4703 .4392 .3995
1 .0000 .0000 .0000 .0000 .0000

I/J 1 2 3 4 5

Superficial Axial Velocity (m/sec)

10 -223.3224 -173.2407 -127.9471 -82.7846 -39.6856
9 0000 .0000 .0000 .0000 .0000
8 .0000 -1.4026 -.9275 -.5075 -.1527

7 .0000 -1.5122 -.9882 -.5323 .1485
6 .0000 -1.6399 -1.0684 -.5699 -.1488

5 .0000 -1.7937 -1.1713 -.6236 -.1550

4 .0000 -1.9537 -1.3024 -.7041 -.1697

3 .0000 -2.0629 -1.4397 -.8257 -.2017

2 .0000 -.0017 -.0010 -.0005 -.0001

1 6.4169 5.0037 3.6201 2.3196 1.1048

I/J 1 2 3 4 5

Pressure (MPa)

10 1.92157 1.93258 1.93969 1.94380 1.94538

9 1.92359 1.93461 1.94179 1.94584 1.94724
8 1.92610 1.93716 1.94441 1.94835 1.94952
7 1.92711 1.93822 1.94544 1.94931 1.95037

6 1.92788 1.93904 1.94623 1.95004 1.95102
5 1.92845 1.93966 1.94681 1.95056 1.95147

4 1.92884 1.94010 1.94721 1.95090 1.95177

3 1.92913 1.94045 1.94749 1.95112 1.95194
2 1.96743 1.97277 1.97619 1.97798 1.97849
1 2.00001 2.00002 2.00003 2.00003 2.00003

I/J 1 2 3 4 5

Figure 6.2 Steady State Results - 2.1 GW/m3
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Density (kg/m
3

)

10 .2567 .2464 .2426 .2419 .2443

9 .2976 .2589 .2452 .2404 .2445

8 .2988 .2599 .2462 .2411 .2451

7 .3203 .2773 .2640 .2585 .2618

6 .3551 .3125 .2942 .2861 .2893

5 .4108 .3634 .3426 .3335 .3351

4 .5030 .4555 .4289 .4170 .4170

3 .6855 .6393 .6085 .5934 .5897

2 1.5111 1.5049 1.4913 1.4792 1.4678

1 1.6118 1.6118 1.6118 1.6118 1.6118

I/J 1 2 3 4 5

Coolant Temperature (K)

10 1816.8 1899.2 1931.4 1940.3 1925.0

9 1569.6 1813.3 1915.2 1954.7 1925.1

8 1565.5 1808.9 1911.0 1951.2 1922.5

7 1457.7 1688.1 1787.9 1829.8 1807.6

6 1311.3 1507.0 1603.9 1647.1 1631.8

5 1133.1 1287.8 1371.9 1411.7 1404.6

4 923.8 1027.2 1095.6 1129.4 1129.9

3 679.2 728.5 771.5 792.6 797.8

2 314.8 316.8 320.0 322.7 325.0
1 300.0 300.0 300.0 300.0 300.0

I/J 1 2 3 4 5

Fuel Particle Temperature (K)

10 .0 .0 .0 .0 .0

9 1577.0 1820.3 1921.3 1959.6 1928.7

8 1590.9 1834.2 1935.6 1974.4 1943.9

7 1491.4 1723.0 1823.0 1863.7 1839.1

6 1350.5 1549.2 1646.9 1689.1 1671.2

5 1178.5 1336.5 1423.5 1463.3 1453.3

4 977.3 1083.2 1157.9 1194.3 1192.0

3 742.5 789.2 844.2 876.1 882.0

2 314.8 316.8 320.0 322.7 325.0

1 .0 .0 .0 .0 .0

I/J 1 2 3 4 5

Figure 6.2 Steady State Results - 2.1 GW/m3
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In the fuel bed axial velocities are significant and vary from 17 to 360% of the radial

velocity, with the maximum just inside the cold frit. The associated flow is toward the ported

end of the fuel element (J=l). This implies that the high pressure drop of the cold frit forces

the coolant to distribute itself over the entire surface of the cold frit. Once through the frit,

the coolant redistributes as it follows the many parallel paths through the fuel bed and outlet

plenum to the exit port. The axial flow increases from the closed end to the ported end of the

element.

Figures 6.3a,b and c show the mass flow profiles for the three cases, comparing the

axial distribution at the cold frit and the hot frit. At all power levels, the flow shifts to the

ported end of the element after passing through the cold frit. This is consistent with the axial

velocity field. The redistribution increases with power.
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Figure 6.3c
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The flow distribution through die cold frit is also a function of power. Figure 6.4a

illustrates the shift from a centrally peaked flow profile at zero power to one peaked in the

first axial node at 2. 1 GW/m3
. The hot frit exhibits smiiiar behavior only it is more pro-

nounced, Fig. 6.4b.

The sources of the pressure losses in the element also change with power density. Fig-

ures 6.5 and 6.6 plot the changes in the pressure drop along the length of the outlet plenum

and across the cold frit as a function of power. At zero power, 74 to 82 kPa of the 85 kPa

total element pressure drop occurs across the cold frit. However, at 2.1 GW/m 3
the cold frit

represents only 48 to 71 kPa of the pressure drop. The biggest change is in the closed end of

the element (J=5). The cold frit changes result from increases in the pressure losses in the

fuel bed, hot frit and outlet plenum as the hydrogen heats up. This is expected, since the

lower density of the warmed coolant forces higher velocities to maintain the mass flow rate.

Therefore, frictional losses, modeled as a function of velocity and velocity squared, increase

rapidly.
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The explanation of the hydraulic behavior of the model lends itself to an electrical anal-

ogy. The fuel element can be viewed as an inlet and outlet port connected by an infinite

number of parallel flow paths with different resistances, similar to parallel resistors in an

electrical circuit. Just as the current distribution adjusts to give the same voltage drop across

all of the resistors so does the mass flow distribution adjust to give the same pressure drop

across all possible flow paths. The complication in the fuel element is that resistances are a

function of power and therefore variable. As the hydrogen heats up, the relative resistance of

the flow paths changes forcing a change in the flow profile. These changes favor increasing

the percentage of flow in the more direct paths despite the greater thickness of the cold frit.

The higher axial velocities in the fuel particle bed at high power represent increased flow in

the paths that bypass the outlet plenum. However, it should be noted that the vast majority of

the flow is still collected in the outlet plenum and that the total shift is less than 10% in the

cases studied.

6.2.3 Thermal Results

Thermal issues examined in the test problems include the temperature profile and what

heat transfer processes should be included in the model.

«

The temperature distribution along the hot frit shows significant variation, contrary to

the design objective of approximately equal temperature gasses entering the outlet plenum.

Fig. 6. 9. This is the result of the flow redistribution causing a mismatch in the mass flow and

axial power profiles.
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Figure 6.10 shows the radial coolant mid solid phase temperature distributions in the

J=3 node for a peak power density of 2.1 GW/m3
. Looking at the J=l, 3 and 5 fuel control

volumes next to the hot frit, the model predicts the following heat balance results:

Control Volume

Heat Generation (W)

(8,1) (8,3) (8,5)

19849 22273 19849

15685 14870 12203Power transferred to the

gas phase (W)

The heat transferred to the gas phase is calculated using the overall heat transfer coeffi-

cient and the difference in the fuel and coolant temperatures. If the heat balance is main-

tained and steady state exists, then the difference between the heat generation and the power

generation must represent the energy conducted or radiated to the surrounding fuel particles

and the hot frit. The elevated temperatures in the cold frit are also the result of conduction

from the fuel particles.

The gas film temperature difference is a maximum in the first fuel panicle control vol-

ume inside the cold frit (1=3). The zero temperature difference in the cold frit is indicative of

its excellent heat transfer characteristics, especially the high surface area to volume ratio

(700,000 compared to 7,200 m2/m 3
in the fuel). The smallest film temperature drop occurs

next to the hot frit and is the result of conduction which reduces the power transfer required

to the coolant.
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The heat transfer time constant for the single node model also varies with temperature.

At 300 K it is approximately 100 ms in the fuel particles, while at 1935 K it is 30 ms. Look-

ing at the formula for the time constant, this reflects an increase in the overall heat transfer

coefficient, U.

To further check the effect of conduction and radiation, a case without conduction

between control volumes was run. Figure 6.1 1 shows the difference in the solid phase tem-

peratures with and without conduction included in the model for the J=3 node. The fuel tem-

perature next to the hot frit changed relatively little. However, fuel temperatures in the rest

of the bed decreased significantly. The coolant temperature follows the fuel. Near the hot

frit, the lack of conduction forces higher gas film temperature drops to accommodate the

larger direct heat transfer from the fuel to the hydrogen. This was confumed by the steady

state heat balance where the heat transferred to the coolant equaled the power generated.

The no conduction case also displayed a small increase in the mass flow rate from 36.7

to 37.8 g/sec. The change in flow resulted in a 25 K decrease in the outlet temperature
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6.3 TRANSIENT RESULTS

A rapid up power transient is conducted to test the codes ability to track rapidly chang-

ing conditions. In this case, steady state flow is established then the peak power is ramped

from 0.0 to 2.0 GW/m 3
over a period of one second.

Figures 6.12 through 6.16 show the time variation of the variables. The results are con-

sistent with the trends observed in the comparison of the steady state results at various power

levels.

The power plot, Fig. 6. 12, also provides some insight into the characteristics of the

model fuel element. During the first second of the transient while power is increasing at a

constant rate, the time constant of the system can be estimated from the time difference of the

curves, since they are almost parallel to each other (See section 5.2). In this case the time

constant is probably between .6 and 1.0 seconds which agrees with the times required to

reach steady state. This is only an approximation, because the heat transfer parameters

included in the time constant are themselves functions of temperature.
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6.4 CONCLUSIONS

While the data used in the test problems are representative of the Sandia PIPE experi-

ment fuel element, the numerical results may not be directly applicable due to approxima-

tions made where PIPE data are not readily available. However, from a more general

perspective several basic ideas are demonstrated in the model results.

Two dimensional modeling is required to reflect accurately the axial flow in the fuel

particle bed which is present to some degree in all cases. Mass flow is a function of tempera-

ture for a given pressure drop across the fuel element. It decreases as power increases due to

the increased flow resistance of the hotter, lower density hydrogen coolant.

As power increases, the pressure losses across the hot frit and in the outlet plenum also

increase. Thus, if the total AP remains unchanged, then the pressure loss in the cold frit must

decrease to compensate. This reduces the total mass flow rate and drives a partial redistribu-

tion of the coolant flow to the shorter flow paths which see less of the change in the outlet

plenum pressures. The redistribution is manifested in increased axial flow through the fuel

bed and an increased percentage of the flow through the thicker sections of the cold frit near

the inlet port.

The cold frit flow distribution design is specific to the conditions assumed in the design

process. If power pressure or flow rate are changed the cold frit will not provide the desired

flow profile. Higher power favors the more direct flow paths from the inlet to the outlet port.

This potentially could place the maximum flow in the area of minimum power.
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The cold frit does not act in isolation. Therefore, its design should be approached from

a system perspective that looks at the total fuel element pressure drop and the contributions

from each component in each flow path. Once the coid frit design is fixed, it is the variation

of the pressure losses in the other components with changing conditions that determines the

final flow distribution.

The thermal model demonstrates the necessity to consider conduction and radiation

processes when predicting fuel element behavior.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

7.1 OBJECTIVE AND METHODOLOGY

Considerable work is in progress to design and develop new space based reactors. The

designs by necessity must be lightweight and small with high power densities. One reactor

being studied at the Brookhaven and Sandia National Laboratories uses a hydrogen cooled

packed bed fuel element. The MIT interest in this system is the development of a closed loop

digital controller for reactor power.

In order to control the reactor properly, the controller must evaluate the reactivity

effects of the hydrogen coolant and fuel element temperature distribution. Therefore, in

addition to a good neutronic model, a real time thermal hydraulic analysis capability is

required. The purpose of this investigation is to perform the initial steps in the building of a

thermal hydraulic module for the controller. Specifically, a detailed model of the fuel ele-

ment thermal hydraulic behavior is presented. It forms the reference case against which sim-

pler real time models can be compared.

The first step in the modeling process is to look at the details of the actual fuel element.

This model is based on the element constructed for the Pulsed Irradiation of a Particle-bed

Element (PIPE) experiment being conducted at the Sandia National Laboratory. The cross-

section is shown in Fig. 7.1. The fuel is installed in the annular space between two cylindri-

cal concentrically mounted porous retention elements (frits). Coolant is directed around the
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outside of the outer frit then turns and flows radially through the cold frit, fuel and inner frit

to the collection plenum at the center of the element. The fuel consists of 500 (im diameter

particles with a UC2 core and pyrographite and zirconium carbide coatings.

The form of the model is determined by the identifying the features and processes that

affect the fuel element behavior. The flow portion must accurately represent the velocity and

pressure of the coolant as a function of position. Thus, manifold distribution effects and fric-

tion processes are important. Coolant and fuel particle temperature are also required. As a

result, intra and interphase heat transfer processes must be considered.

The transport mechanisms can be related by fundamental principles of momentum,

energy and mass conservation. Applying these with a lumped parameter approach to an

array of control volumes forms the basis of the fuel element model.

The unifying structure is provided by using a staggered grid, Fig 7.2, to link the control

volumes. The staggered grid is based on placing points where velocity is defined between

the points where pressure is defined. In this arrangement, the control volumes can be

matched to the components of the fuel element. The fuel element model assumes cylindrical

symmetry, allowing the problem to be reduced to two dimensions (radial and axial).
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The final step in constructing the model is the discretization of the control volume con-

servation equations to make them compatible with digital computer solution techniques.

The gas and solid phases are modeled independently except for the interphase heat

transfer term which couples the two models. The coupling is addressed in the solution pro-

cess.

7.2 THE GAS PHASE

7.2.1 The Model

The gaseous hydrogen coolant is highly compressible. As a result, simultaneous

momentum, mass and energy balances are required to define the state of the coolant. The

momentum and energy- balances are identical m form and can be described using the general

variable <j) .

—
<(> = L sources + Xm (j> 7.1

dr

(|> represents the superficial radial and axial velocities in the momentum balances and

the specific enthalpy in the energy balance.

The momentum source terms include the pressure drop across the control volume and

the frictional losses. The pressure drop is easily evaluated, since the staggered grid defines

pressure on the faces of the momentum control volume.
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Two models are used for the friction term. The frits and the packed bed are character-

ized by the Ergun relation which treats flow in the bed as flow through tubes with irregular

cross-sections (E-l).

A/>^ 150n7Q (l-£)
2 1.75pv |v|(i- £)

L ~ D2

P
e
3 ~

+
D

p e
3

From Eq. 7.2 it can be seen that frictional losses are a function of velocity and velocity

squared, v, is the component of velocity in the direction of the momentum balance and
| v| is

the magnitude of the superficial velocity.

Frictional losses in the plenums are described using a pipe flow relation that assumes

they are proportional to a friction factor, /.

1l\
AP = f

-
j {d)

pv
2~ 7.3a

2

/ = 0.138Re^
151

13b

L = length D = equivalent pipe diameter

Eq. 7.3b is a modified form of the McAdams relation to account for surface roughness.

The cold and hot frits and their associated plenums serve as dividing and combining

manifolds respectively. Bajura and other investigators found that direct application of the

momentum conservation equations to manifolds did not accurately represent experimental

behavior because they failed to account for the axial momentum contained in the portion of

the stream which turns in the control volume and leaves it flowing radially (B-4,B-5 and
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B-6). They found that adding two constants to the momentum balance equation which char-

acterize the velocity profile of the axial stream and the axial momentum of the turning stream

significantly improved the accuracy of his model. A similar analysis was applied to the

outlet plenum. The momentum equations are summarized in Table 7.1 where the constants

have been combined to form the turning coefficient, 9 .

The energy balance contains two source terms. The first is a pressure change term.

The second enthalpy source is the heat transferred from the fuel particles to the coolant. It is

a function of the temperature difference across the gas film, the overall heat transfer coeffi-

cient and the surface area per unit volume ratio. The heat transfer coefficient is evaluated

using the Colbum j factor empirical correlation and the single node analysis of the fuel

particles (B-3). The final fonn of the enthalpy balance is shown in Table 7.1.

Table 7.1

The Gas Phase Conservation Equations

Axial Momentum
^^ axial

dr
= Fpress + Ffriction + ^ I ™P axial, i

note a

Radial Momentum

dr
mv. adiat

_ _ /

= F„ess +F friction + I */Vpress
= 1

radial , i

Mass —m = Im

Energy
-H

v dr j

= hAvvrr5 - rG ) +v^ + I mA
at i -

1

Note a: 6: Inlet Plenum 0.95, Outlet Plenum 2.66, Otherwise 1.0

1 v, should be the interstitial velocity. Refer to sec. 7.5.
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The mass balance, also shown in Table 7. 1 , uses only the flux term, since there is no

source of mass in the control volume.

7.2.2 The Solution

Before the variables can be advanced in time using the balance equations, the continu-

ous form of the equations must be discretized. The fuel element model equations are devel-

oped using a semi-implicit five point difference method. A donor cell, upwind, system is

used to evaluate the scalar variables at the control volume interfaces. In the discrete form the

balances are implicit using the time n+1 value of the balance variable. However, the coeffi-

cients (such as the mass flow in the flux term) are evaluated using the time n values. This

introduces a semi-implicit nature to the overall equation. The discretization also serves to

linearize the relations. In cases where squared terms appear, they are approximated by using

the product of the time n+1 and time n values keeping the equation linear in the n+1 variable.

The Pressure Implicit with Splitting of Operators (PISO) method forms the basis of the

solution algorithm (1-1, 1-2). As used in this model, it is a two stage predictor corrector tech-

nique that advances the variables in time by calculating up to three successively more refined

estimates of the n+1 value of the variables. Because it is noniterative and has reasonably

good stability, it is relatively fast and requires less computing effort than competing methods.

Each step of the solution sequence applies the appropriate balance equation to each control

volume to generate a system of simultaneous linear equations which are solved using stan-

dard matrix techniques.

The first predictor solves the momentum balances for the velocity field. Then taking

advantage of the staggered grid, which defines the velocities on the faces of a pressure cen-
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tered control volume, the momentum and mass balances are combined to form a pressure

equation which yields new velocities and pressures that simultaneously satisfy both balances.

The second predictor is the energy balance which contains the coupling to the solid phase

solution. The second corrector applies the pressure equation again with the updated tempera-

tures. At the end of the process three estimates of the velocity field, two of the pressure and

one of the temperature have been made.

7.3 THE SOLID PHASE

7.3.1 The Model

The solid phase is abstracted to mathematical form by using the energy balance. The

balance includes three basic processes, heat generation and storage, energy transfer to the

coolant and heat transfer to the surrounding solid material.

The first two processes are initially modeled on a single particle basis. To simplify the

model, the single node technique of reference M-l is used. This assumes a steady state tem-

perature distribution in the multilayer fuel particle and then homogenizes it to calculate effec-

tive overall properties which are representative of the original particle. The temperature

distribution in the particle can then be described by a single temperature which satisfies the

heat balance equation. Since the lumped parameter approach is being used, only one particle

needs to be modeled in each control volume. The results can then be rescaled to include all

of the particles in the control volume.

Heat transfer to the surrounding particles is modeled on a control volume basis. The

driving force is the temperature difference between adjacent control volumes. Two mecha-
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nisms contribute to the transfer. The conduction process in a packed bed actually occurs

through the gas layer near the points of contact. The Kunii and Smith model is used to

evaluate the control volume conductivities (K-3). In addition to thermal conduction, radia-

tive mechanisms are significant when particle temperatures exceed 1000 K. This is evaluated

using the relation proposed by Schotte (S-4). The effective conductivity of the packed bed is

the sum of the thermal and radiative components. Because of differences between the con-

trol volumes the harmonic mean of the conductivities is used to estimate the effective con-

ductivity at the interface.

The solid phase energy balance then becomes:

waCpV .Av

«-,n + I rj-,r
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Ko(Ma

\ l E ~ 1 O )

hz
+

^total^

+
'Notal'3

\* N ~ 1 O )

5/-
i

+
^lolal^7

srpl + 1 rj-,1 + 1 . ^
Wo ~ I w )

~o7"

=n \ 1 ~^n +1. \

\* O " * S )

+q"VcvAy -\JVcvAJT"-rG 5.14

This is discretized in the same fashion as the gas phase relations.

7.3.2 The Coupling of the Gas and Solid Phase Solutions

The last part of the model is the coupling of the gas and solid phases. The heat trans-

ferred between phases is the only term common to both models. The relatively small volume

and heat capacity of the hydrogen require that this term be treated implicitly for numerical

stability. This is accomplished using the technique developed by Reed and Stewart for the
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THERMIT code (R-l ). It first estimates the new fuel temperature assuming the old value of

the gas temperature. The method then solves the coolant energy balance using the estimated

solid temperature plus a correction for the original assumption, based on dTs/dTG which is

calculated in the solid phase energy balance. Finally, the estimate of the solid phase temper-

ature is corrected.

7.4 MODEL VERIFICATION AND RESULTS

The model was encoded in a micro computer based Fortran program and applied to

several steady state and transient problems to test its validity. Required input information

includes the physical dimensions of the element, initial values of the variables, the nodaliza-

tion scheme and boundary conditions. The boundary conditions can be completely specified

by the inlet pressure, inlet temperature, outlet pressure and peak power density, all of which

are easily measured quantities. Transients can be modeled by varying the outlet pressure

and/or the power density.

The steady state cases were identical except for the power density which was varied

from zero to 2.1 GW/m3
. The hydraulic results revealed significant axial flow in the fuel par-

ticle bed which resulted in a redistribution of the coolant mass flow between the frits as

shown in Fig. 7.3. This effect is more pronounced as power increases.

Increasing power also changes the distribution of flow along the inlet plenum and cold

frit. This is illustrated in Fig 7.4. This second redistribution effect was also noted when the

model was altered to prevent axial flow in the fuel bed. Power also affected the mass flow

rate. Flow decreased when power increased for a given pressure drop across the fuel ele-

ment.
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These effects are the direct result of heating the coolant, reducing its density, thereby

increasing its velocity and causing a realignment of the pressure field. In the zero power

case, 85 to 95% of the pressure drop occurs across the cold frit. When power is raised to 2.1

GW/m , only 62% of the pressure drop occurs across the cold frit (at the axial center of the

element). The frictional losses increase due to the higher velocities, especially in the hot frit

and outlet plenum. Looking at the fuel element as a network of parallel paths between the

inlet and outlet ports (the paths must have a common pressure drop), the higher velocities in

the bed and outlet plenum increase the pressure drop in the paths through these elements. In

order to satisfy the total pressure condition, which remains constant, flow must decrease in

the high loss paths. This is reflected by an increase in the flow through the more direct paths

between the ports and an increase in the axial flow in the bed that bypasses the outlet plenum.

The total redistribution was less than 10% in the cases examined.

Although the thickness of the cold frit is varied to force a particular mass flow distribu-

tion, the flow can be significantly altered by the outlet plenum and hot frit. The cold frit does

not act in isolation. The thickness must therefore be chosen to obtain a specified flow pattern

at power in concert with the design of the other fuel element components.

The thermal results predict significant temperature variation along the hot frit, contrary

to the design objective of approximately equal temperatures. This is the direct result of the

mass flow redistribution producing a mismatch in the power and flow profiles. The tempera-

ture distribution is shown in Fig 7.5.
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The test cases also indicate that conduction and radiation are important mechanisms for

heat transfer especially at the higher fuel temperatures near the hot frit. In these locations up

to 30% of the energy generated in the fuel particles is removed from the control volume by

transfer to adjacent solid material in the fuel element.

A transient problem, which raised peak power from zero to 2.0 GW/m3
in one second,

confirmed the trends observed in the comparisons of the steady state results. The system

time constant was estimated at .6 to 1.0 seconds.

7.5 RECOMMENDATIONS FOR FURTHER INVESTIGATION

The model developed in this investigation represents a first step in the design and con-

struction of a thermal hydraulic module of a controller for reactor power. It is the reference

case against which other simpler and faster versions can be compared. Several refinements

would greatly increase its utility.

First, the model predictions should be compared to experimental results. Several

model parameters such as the turning coefficients in the momentum equations may require

adjustment, since the current values, based on the literature, were obtained under much dif-

ferent conditions.

Second, the reference case should be corrected and expanded. The incorrect use of the

superficial velocity instead of the interstitial velocity in the momentum balance time deriv-

ative and flux terms should be corrected. Preliminary calculations based on steady state

results show that the error in the momentum flux term is approximately 3% of the pressure
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source term in the momentum equations shown in Table 7.1. The effect of the error on tran-

sient calculations has not been evaluated. Within the fuel element the effects of conduction

to the moderator block and component expansion due to heating have not been addressed.

The latter could have a significant effect on the hot frit and fuel bed pressure losses. Once

the fuel element analysis is complete, it should be broadened to include the entire core and

reactor system.

The third area for investigation starts the process of designing a real time controller

module. A series of model simplifications should be developed and tested against the refer-

ence case to determine which provide the required prediction accuracy. Areas that should be

looked at are:

1. The numerical scheme. Is the PISO algorithm really the most efficient numerical

technique or would the technique of one of the commercial codes be better?

2. The nodalization. Is a fine node analysis really required or can the fuel element be

adequately represented with just a few control volumes? Can one fuel element be modeled in

detail and the results generalized to the other elements in the core?

3. Model basis. Can the model be simplified by using another approach to the solution

of the basic conservation equations? For example, could the momentum integral method

used in the MLNET code be applied (M-3,V-2,V-3)7

Packed bed reactors have tremendous potential because of their high power density and

inherently safe design. It is hoped that the thennal hydraulic model presented here will con-

tribute to their development.
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APPENDIX A

FUEL ELEMENT MODEL

PROGRAM DESIGN AND OPERATION

A.l OBJECTIVE

HTWOCOOL is a PC compatible program that performs the calculations associated

with the model developed in chapters 3, 4 and 5. This appendix presents the operational

details required to use the code for further analysis.

A.2 PROGRAM DESCRIPTION

The HTWOCOOL code advances the fuel element pressure, velocity and temperature

fields in time using initial values of the variables and a set of boundary conditions. The code

is capable of tracking transients or calculating steady state solutions.

The code is written in Fortran 77 using the Microsoft 4.10 compiler. As such, it is

intended for use on a personal computer. However, the test problems conducted to date indi-

cate that the time step must be restricted to values between .25 and .5 ms. This small time

step requires exceedingly long computing times for PCs (48 hrs or more on an AT

compatible to get to steady state). Therefore, conversion to a mini computer may be more

practical than using a PC

The program's design is modular with a shell program to assemble data and sequence

the subroutines. The following modules comprise HTWOCOOL:
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Shell Program

MAIN: Assembles data, sequences the subroutines, keeps track of the time step,

calculates transient parameters.

Solid Phase Subroutines

ONCNST: Calculates constants for the single node fuel particle model.

SOLID: Performs the solid phase heat balance.

PISQ Subroutines

AXLMOM: Performs the axial momentum balance.

RADMOM: Performs the radial momentum balance.

PRESUR: Solves the first stage pressure equation.

ENTHLP: Calculates the coolant energy balance and corrects the initial estmiate

of solid phase temperature.

PRESII: Solves the second stage pressure equation.

Support Subroutines

H2EOS: Evaluates the parahydrogen physical constants.

LUDCMP and LUBKSB: Matrix equation solution routines.

To advance the variables one time step MAIN establishes matrices for each variable

with its time n value in each control volume. It then passes the appropriate data to each of

the subroutines which calculate the successive approximations to the time n+1 values. Each

of these approximations is maintained in its own array. When the calculation for the time

step is complete and the results recorded, MAIN substitutes the n+1 values into the time n

matrices to set up the calculation of the next time step and advances the time counters.
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The PISO and Solid phase subroutines function in a similar manner. They take the

appropriate conservation equation for each of the control volumes and evaluate the coeffi-

cients of the balance variable using the time n values received from the shell program. This

creates a set of simultaneous linear equations in the following form.

[Coefficient Matrix] [Variable Vector]=[Constant Vector]

The subroutine then calls LUDCMP and LUBKSB including the matrix and constant

vector as arguments. These routines perform an L-U decomposition and back substitution

respectively to solve for the new value of the variable. This result is passed back to the call-

ing subroutine in the forni of a modified constant vector. The PISO or Solid subroutine then

converts the vector to a two dimensional matrix of the updated values and updates other

variables as appropriate. For example, PRESUR calculates the new pressure field then

advances the velocity and density fields. Finally, the results and control are passed back to

the shell program.

The updated variables are identified by the number of Ts in the name. For example VZ

and VZO are the original axial velocity field. VZST, VZSTT and VZSTTT are the first, sec-

ond and third updates of the velocity. The third estimate is the one carried forward to the

next time step. Similar naming schemes have been set up for the other variables.

The nodalization scheme is defined by the user in the input data. The code does require

that one radial node be assigned to the each plenum and frit. Any deviation from this will not

work. However, there is no restriction on the dimensions of these preassigned nodes.
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The sign convention used in the development of the code is positive radially moving

from the outside toward the center-line of the fuel element. Axially velocity is positive mov-

ing away from the inlet end of the element. The north side of a control volume is the side

facing the center-line. The other faces line up according to the compass.

The H2EOS module was developed by the National Bureau of Standards and modified

by the Sandia National Laboratory (R-2). The LUDCMP and LUBKSB routines were taken

from reference P-5.

A.3 PROGRAM OPERATION

The program is simple to run. It is not interactive. The only operator action required is

the assembly of the data set. All operational choices are entered via the data set.

Power and outlet pressure transients can be run as well as steady state calculations.

Transients are either in the form of a step change or ramp and are initiated immediately or

after a time delay. In the case of ramped change the final value is specified and the time over

which the transient is to occur (TOPT or TOQT). The applicable equations are

QTime
Power Density = A+B _^^_J TOQT

PTime , „
Outlet Pressure = -j^;{PinitM -

P

final ) + PMM

where:

QTime = Time - Delay time

B = Final Power Density
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Note that the overall power density is the actual variable used in the transient simu-

lation. Once MAIN determines the power density for the time step, it applies a chopped

cosine function to represent the axial power distribution. Power density is assumed to be

constant radially. Changes to the power distribution function would require program modifi-

cations and recompiling.

Once the data file is prepared, the program is executed by entering the word MAIN. A

MAKE file is also included should program modifications be required. This file is a Micro-

soft utility that contains the compile and link commands. After modifying the source code of

the any of the routines, simply enter "make main" (quotes omitted) and the utility will

recompile the updated modules and relink the program giving a new executable file.

A.4 INPUT-OUTPUT

The input is list directed and the majority of the output is formatted. The list directed

input leaves the operator some freedom to place decimal points and vary the size of the

entries. The values are entered sequentially, in the order the program reads them. Each entry

is separated by a comma. There is no restriction on the number of values per line except that

the program automatically skips to the next line of data when a new READ statement is

executed.

The SI system of units is used exclusively. All lengths are entered in meters, masses in

kilograms, pressures in Pascals and temperature in Kelvin.

The Program looks for the input data in a file called PBR.DAT. This file contains the

following information:
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a. Physical dimension of the cell, fuel and control volumes.

b. User defined boundary conditions.

c. Time step size, number of time steps to be executed.

d. Initial conditions, TGO\ TSG\ PCX VRO, VZO matrices.

e. Transient control parameters.

To define the control volumes the program requires the axial length (DZ) and the a vec-

tor of radii. The axial dimension is assumed to be the same for all nodes. The grid is vari-

able in the radial dimension. While considerable latitude in the fuel element and node

configuration is allowed, some of the geometry has been built into the program. The nodes

for the coolant state variables align with the components of the fuel element. The velocity

nodes, however, may lie across component boundaries (see Fig. 2.6 The Staggered Grid). Up

to ten nodes radially and 10 nodes axially can be defined for a total of 100 control volumes.

The fuel element is pictured to be lying horizontally so that in an I, J array of control

volumes the values of I and J represent the radial and axial positions respectively. I follows

flow, increasing as the position moves inward. J starts at the end of the fuel element with the

inlet and outlet ports and follows flow in the inlet plenum.

The values of the radius vector define the centers and surfaces of the control volumes.

R(l ) is the outside surface of the inlet plenum and R(2*M+1 ) is the center-line of the fuel

element, where M is the number of radial nodes. The radial position of the center of the Ith

node is designated R(2*I) and the north and south faces are R(2*I+1) and R(2*I-1) respec-

tively.
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The program assumes a minimum of 4 nodes radially. Any additional nodes are added

to the fuel region of the element. The fixed control volume assignment assignments are:

I Location

1 Inlet Plenum

2 Cold Frit

M-l Hot Frit

M Outlet Plenum

Table A. 1 gives the order of data entry and a line breakdown.

Output of the velocity, pressure, density, enthalpy and temperature variables is for-

matted and prints as an array. The staggered grid shows the relationship of the variables.

Note that the program as written inverts the order of the points showing the cooiant entering

at the top of the fuel element rather than at the bottom as shown in chapters 4, 5 and 6. The

indexes printed next to the array are correct.

Also included in the output are list directed records of the time step, power level, over-

all heat balance and overall mass balance which facilitate following a transient. Refer to the

MAIN program listing to determine exactly which ones are used. Some of the output is

directed to the screen.

The formatted output is accomplished by the RESULT subroutine. This may be called

at any time during the program, after every time step or at the end of the transient. Program

modifications and recompiling are required to change it.
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The current program is configured to direct the results to an output file and the screen.

However, Fortran does allow the option of going directly to the printer. The required OPEN

statement is included in the program but not activated.

Table A. 1

Input Data Format

Line Data Elements (in required sequence)

1 Number of radial nodes (M), number of axial nodes (N), inlet coolant

temperature, inlet pressure, fuel particle diameter, cold frit particle diam-
eter, axial node length, time step size, number of time steps to advance
variables

2 Void fraction (M values starting with 1=1

)

3 Cold frit thickness (N values starting with J=l)

4 Radii to control volume centers and interfaces (Starting with outside of

inlet plenum and working inward to 2*1+1; this may take several lines)

5 Initial value of the radial velocity (The order should be all the J=l values

from 1=1 to M+l, then all the values for J=2 etc to J=N. This may be

more than one line.)

6 Initial value of the axial velocities (The same order as the radial veloci-

ties except 1=1 to M and J=l to N+l)

7 Initial value of pressure (The same order as the radial velocities except

that 1=1 to M and J=l to M)

8 Initial solid temperature (Use the same entry scheme as pressure)

9 Initial coolant temperature field (Use the same sequence as the pressure)

10 Pressure transient parameters: initial outlet pressure, final outlet pres-

sure, transient duration, time delay for initiation of the transient

1

1

Power transient parameters: initial power density, final power density,

transient duration, time delay for initiation of the transient
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APPENDIX B

PROGRAM LISTING

The following program listing contains the source code for the original segments of the

program. The code for the H2EOS, LUDCMP, LUBKSB modules is contained in references

R-2andP-5.
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C PROGRAM TO EVALUATE THE HYDROGEN COOLANT TEMPERATURE PRESSURE AND
C DENSITY IN A PACKED BED REACTOR

C

C TNITIALIZATION AND DATA INPUT

C

COMMON/ GEOTRY/R (45),EP(20),DZ, THKCF (30) ,DV(20) , DP,DPCF,M, N, DT

COMMON/BOUCON/PBI , PBO, TBI , RHOBI , HBI

REAL DT, DZ, VR ( 1 1 , 10 ) , VZ ( 10 , 1 1 ) , P ( 10 , 10) , TG ( 10 , 10) , TS ( 10 , 10) ,

+ RHO(10, 10) ,RHST(10, 10 ) , VZST ( 10, 11 ) , VRST(11, 10) , VRSTT(11, 10)

,

+ VZSTT(10, 11) , BRAF (11, 10) , BZAF (10,11)

REAL VRSTTT (11, 10) , VZSTTT(10, 11) , TIME, A,B,C, TAU,PWRDEN
REAL PST(10,10),Q(10,10),PIO(10,10)
REAL BVR(11, 10) , ARF ( 1 1 , 10) , AWR ( 1 1 , 10) ,A£R(1I, 10) , ASR(11, 10)

REAL ANR(11, 10)

REAL BVZ(10, 11) , AZF (10,11) , AWZ (10, 11) , AEZ (10,11),ASZ(10,11)

REAL ANZ (10, 11)

REAL H(10,10),R,EP,PBI, PBO, RHOBI, TBI, PI

REAL AOZ (10, 11), BZ (10, 11) , AOR ( 1 1 , 10), BR (11, 10), THKCF

REAL HST(10, 10) ,TGST(10, 10) , PSTT(10, 10) ,RHSTT(10, 10)

REAL VRO(ll, 10) ,VZO (10, 11), PO (10, 10), TSO(10, 10) ,TGO(10, 10)

REAL RHOO(10, 10),HO(10,10),HTI, HTO,NN,KK
REAL PBOI,PBOF, TOPT, PDLAY, PTIME, MAVE

REAL QT IME , TOQT , QDLAY

REAL MA (10) ,CPBAR(10) , UT(10, 10) ,FBAR(10, 10) ,TSST(10, 10)

REAL UBAR(10, 10) , AV(10)

REAL QIN(10, 10) ,TSSTT(10, 10) , ANN (10, 10) ,KZC(1Q, 10)

INTEGER M, N, UNITS, I, J, IT, TSTOP, CT

PARAMETER (PI=3. 14159, UNITS=1)

C NOTE: TO CHANGE THE GRID SIZE THE TYPE STATEMENTS MUST BE MODIFIED

C IN ADDITION TO THE DATA FILE.

C

C ASSIGN PRINTER, INPUT DATA FILE AND OUTPUT DATA FILE

C npEN(3,FILE='LPTl'

)

C OPEN (4, FILE=' C : \LANG\FORBIN\PROG\PBR . DAT'

)

OPEN(4,FILE='PBR.DAT'

)

OPEN (3, FILE=' PBRRES.DAT'

)

C IMPORT GEOMETRY DATA AND CONSTANTS

READ (4,*)M, N, TBI , PBI , DP, DPCF, DZ, DT, TSTOP

READ (4, *) (EP (I) , 1 = 1, M)

READ (4,*) (THKCF (I) , 1=1, N)

READ (4,*) (R(I), I=1,2*M+1)

C TMPORT INITIAL GUESS VALUES FOR VARIABLES

READ (4,*) ((VRO(I,J), 1=1, M+l), J=1,N)

READ (4,*) ((VZO(I,J), 1=1, M), J=1,N+1)

READ (4,*) ((PO(I,J), 1=1, M), J=1,N)

READ (4,*) ((TSO(I,J), 1=1, M), J=1,N)

READ (4,*) ((TGO(I,J), 1=1, M), J=1,N)

C IMPORT TRANSIENT PARAMETERS

READ (4,*) PBOI,PBOF, TOPT, PDLAY

READ (4,*) A,B,TOQT,QDLAY

C TNITIZLIZE TIME

TIME=0.
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RHOBI=PTDENS (PBI, TBI, UNITS)

HBI=PTENTH(PBI, TBI, UNITS)

NN=REAL(N)

CT=0

DO 565 TT=l,TSTOP
C CONSTRUCT THE INITIAL MATRICIES FOR RHOO, HO AND CONTROL VOLUME DV

.

C TNITIALIZE MATRICES USED FOR CALCULATING COEFFICIENTS
DO 200 1 = 1, M

DO 100 J=1,N

IF (I .EQ. 1) TGO(l,J)=TBI
IF (TT .GT. 1) GOTO 10

RHOO (I, J)=PTDENS (PO(I, J) , TGO ( I , J) , UNITS)

HO (I, J)=PTENTH(PO(I, J) , TGO (I, J) , UNITS)

10 P (I, J)=PO(I, J)

TS (I, J)=TSO(I, J)

TG(I, J)=TGO(I, J)

RHO(I, J)=RHOO(I, J)

H(I, J)=HO(I, J)

100 CONTINUE

DV(I)=PI*(R(2*I-1)**2-R(2*I+1)**2) *DZ*EP(I)

200 CONTINUE

DO 202 1=1, M+l

DO 201 J=1,N
VR(I, J)=VRO(I, J)

201 CONTINUE

202 CONTINUE

DO 204 1=1,

M

DO 203 J=1,N+1

VZ (I, J)=VZO(I, J)

203 CONTINUE

204 CONTINUE

C CALCULATE TRANSIENT PARAMETERS

IF (TIME .GE. PDLAY) THEN

PTIME=TIME-PDLAY
ELSE

PTIME=0.

ENDIF

IF (TIME .GE. QDLAY) THEN

QTIME=TIME-QDLAY
ELSE

QTIME=0.

ENDIF

WRITE (6, *) ' TIME' , TIME

WRITE (6, *) 'PTIME' , PTIME, 'QTIME' , QTIME

IF (PTIME .GT. TOPT) GOTO 206

IF (TOPT .EQ. 0.) THEN

PBO=PBOF
GOTO 206

ENDIF

PBO=- (PTIME/TOPT) * (PBOI-PBOF) +PBOI

206 WRITE (6, *) ' PBO' ,PBO

IF (QTIME .GT. TOQT) GOTO 207

PWRDEN=A+B*QTIME
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207 WRITE (6, *) ' PWR DENSITY' ,PWRDEN

DO 220 L=3,M-2

DO 210 K=1,N

KK=REAL(K)

Q(L,K)=PWRDEN* (DV(L) /EP (L) )
* (COS (2*PI- ( 1- ( (2*KK-1 ) /NN)

)

+ *.5886)>

210 CONTINUE

220 CONTINUE

C PERFORM FIRST UPDATE OF SOLID PHASE TEMPERATURE
CALL ONCNST (TSO, MA, CPBAR, UT, FBAR, KZC)

CALL SOLID (MA, CPBAR, UT, FBAR, TSO, TGO, PO, RHO, Q, VRO, VZO, KZC,

+ TSST,UBAR, AV, ANN)

C CALL RESULT (VR, VZ, PO, RHO, TG,H,TSST)

C PERFORM GAS PHASE UPDATE
CALL RADMOM(VR, VRO, VZ, RHO,RHOO,P, TG, BRAF, VRST, BVR, ARF , AWR,

+ AER,ASR,ANR)

300 CALL AXLMOM(VR, VZ, VZO, RHO, RHOO, P , TG, BZAF, VZST,BVZ, AZF, AWZ

,

+ AEZ,ASZ,ANZ)

C CALL RESULT (VRST, VZST,P, RHO, TG, H,TS)

500 CALL PRESUR (VRST, VZST, RHO, RHOO, RHST,P,PO, PST, PIO, TG, BZAF,

+ BRAF, VRSTT, VZSTT)

C CALL RESULT (VRSTT, VZSTT, PST, RHST,TG, H, TS

)

CALL ENTHLP (VZ STT , VRS TT , RHO , RHOO, RHST , P ST , P IO , H , HO , UBAR , T S ST

,

+ TGO, ANN,HST,TGST, AV, QIN, TSSTT)

C CALL RESULT (VRSTT, VZSTT, PST, RHST, TGST, HST, TSSTT)

CALL PRESII (VRST, VZST, VRSTT, VZSTT, P, PST, PO, TGST, RHOO,

+ RHST, VRSTTT, VZSTTT, PSTT, RHSTT, BVZ, BVR, ARF, AZF, AWR,

+ AER,ASR, ANR, AWZ, AEZ, ASZ, ANZ,RHO)

C HEAT BALANCE CHECK

QCONV=0

.

HTI=0.

DO 54 2 K=3,M-2

DO 541 L=1,N

HTI=Q(K,L)+HTI

QCONV=QCONV+QIN (K, L)

541 CONTINUE

542 CONTINUE

MAVE=(ABS (VZSTTT (M, 1)
) *RHSTT(M, 1) *PI* (R(2*M-1) **2)

+ +ABS (VZSTTT (1, 1)
) *RHOBI*PI* (R(l)**2-R(3)**2))/2

HTO=MAVE* (HO (M, 1
) -HBI

)

C WRITE (3, *)' HEAT BALANCE' , HT I, HTO, QCONV

WRITE (6, *) ' HEAT BALANCE' , HT I, HTO, QCONV

WRITE (6, *)QIN(M-2, 1) ,QIN(M-2, 3) ,QIN(M-2,5)

WRITE (6, *)Q(M-2, 1) ,Q(M-2, 3) ,Q(M-2, 5)

IF (CT .EQ. 20) THEN

WRITE (3, *) TIME, HTO, QCONV, VZSTTT (M, 1) *RHSTT(M, 1) *PI* (R(2*M-1) **2

+ ) , TGST(M, 1) , HTI, TSSTT (M-2, 3) ,TGST(M-2, 3)

CT=1

ELSE

CT=CT+1

ENDIF

WRITE (6, *) HST (1,3) ,PST(5, 3) , PSTT (5, 3)

560 CONTINUE
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TIME=TIME+DT

DO 563 L=1,M

DO 561 K=1,N

VRO (L, K) =VRSTTT (L, K)

VZO (L, K) =VZSTTT (L, K)

RHOO (L, K) =RHSTT (L, K)

PO(L,K)=PSTT(L,K)
HO(L,K)=HST(L, K)

TGO(L,K)=TGST(L,K)
TSO(L, K)=TSSTT(L,K)

561 CONTINUE
563 CONTINUE

565 CONTINUE
600 WRITE (3, 9001)

9001 FORMAT (' 0' , 6X, 'RADIAL VELOCITY')
WRITE (3, 9002)

9002 FORMAT('0' , 10X, ' l',TR6,' 2',TR6,' 3',TR6,' 4',TR6,' 5',TR6,

+ ' 6')

DO 9004 1=1, M+l
WRITE (3, 9003) I, (VRSTTT(I, J) , J=1,N)

9003 FORMATC 0'
, 6X, 12, 3X, 5 (F8.4, 3X) )

9004 CONTINUE

WRITE (3, 9005)

9005 FORMATC 0'
, 6X, 'AXIAL VELOCITY')

WRITE (3, 9002)

DO 9007 1=1,

M

WRITE(3, 9006) I, (VZSTTT ( I , J) , J=l , N+l

)

900 6 FORMATC 0'
, 6X, 12, 3X, 6 (F10 . 4 , IX) )

9007 CONTINUE

WRITE (3, 9008)

9008 FORMATC 0' , 6X, 'PRESSURE' )

WRITE (3, 9020)

9020 FORMATC 0' , 10X, ' l',TR6,' 2',TR6,' 3',TR6,' 4',TR6,

+ ' 5'
)

DO 9010 1=1,

M

WRITE (3, 9009) I, (PSTT ( I , J) , J=l , N)

9009 FORMATC 0' ,6X,I2,3X,1P,6(E11.5,1X))
9010 CONTINUE

WRITE (3, 9011)

9011 FORMATC 0' , 6X, 'DENSITY' )

WRITE (3, 9002)

DO 9013 1=1,

M

WRITE (3, 9012) I, (RHSTT(I, J) , J=1,N)

9012 FORMATC 0'
, 6X, 12, 3X, 5 (F6 . 4 , 3X) )

9013 CONTINUE

WRITE (3, 9014)

9014 FORMATC 0'
, 6X, 'COOLANT TEMPERATURE')

WRITE (3, 9002)

DO 9016 1=1,

M

WRITE (3, 9015) I, (TGST(I, J) , J=1,N)

9015 FORMAT ('0' , 6X, 12, 3X, 5 (F6 . 1 , 4X)

)

9016 CONTINUE

WRITE(3, 9017)
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9017 FORMAT (' 0' , 6X, ' ENTHALPY'

)

WRITE (3, 9020)

DO 9019 1=1,

M

WRITE (3, 9018) I , (HST ( I, J) , J=l , N)

9018 FORMAT (' ' , 6X, 12 , 3X, IP , 5E10 . 4

)

9019 CONTINUE
WRITE (3, 9021)

9021 FORMAT (' 0' , 6X, ' SOLID TEMPERATURE'

)

WRITE (3, 9002)

DO 9022 1=1,

M

WRITE (3, 9015) I, (TSSTT(I, J) , J=1,N)

9022 CONTINUE

570 STOP

END

590 SUBROUTINE RESULT (VR, VZ , P , RHO, TG, H, TSST)

COMMON/ GEOTRY/R (4 5) , EP (20) , DZ,THKCF (30) ,DV(20) , DP , DPCF, M, N, DT

COMMON/BOUCON/PBI , PBO, TBI , RHOBI , HBI

REAL VR(11,10),VZ(10,11),P(10,10) , RHO (10, 10),TG(10,10),H(10,10)

REAL R, EP,DZ, THKCF, DV, DP , DPCF , DT, TSST ( 10, 10

)

REAL PBI, PBO, TBI, RHOBI, HBI

INTEGER I,J,K,L,M,N

600 WRITE (3, 9001)

9001 FORMAT (' 0' , 6X, 'RADIAL VELOCITY')

WRITE (3, 9002)

9002 FORMAT (' 0' , 10X, ' l',TR6,' 2',TR6,' 3',TR6,' 4',TR6,' 5',TR6,

+ ' 6'
)

DO 9004 1=1, M+l

WRITE (3, 900 3) I, (VR(I, J) , J=1,N)

9003 FORMAT (' '
, 6X, 12 , 3X, 5 (F8 . 4 , 3X) )

9004 CONTINUE

WRITE (3, 9005)

9005 FORMAT (' 0' , 6X, 'AXIAL VELOCITY'

)

WRITE (3, 9002)

DO 9007 1=1,

M

WRITE (3, 900 6) I , ( VZ ( I , J) , J=l , N+l

)

9006 FORMAT ('0' , 6X, 12 , 3X, 6 (F10 . 4 , IX)

)

9007 CONTINUE

WRITE (3, 9008)

9008 FORMAT (' 0' , 6X, 'PRESSURE'

)

WRITE (3, 9020)

9020 FORMAT (' 0' , 10X, ' l',TR6,' 2',TR6,' 3',TR6,' 4',TR6,

+ ' 5')

DO 9010 1=1,

M

WRITE (3, 9009) I , (P ( I , J) , J=l , N)

900 9 FORMAT ('0' ,6X,I2,3X,1P,6(E11.5,1X))

9010 CONTINUE
WRITE (3, 9011)

9011 FORMATCO' , 6X, 'DENSITY' )

WRITE (3, 9002)

DO 9013 1=1,

M

WRITE(3, 9012) I , (RHO ( I , J) , J=l , N)

9012 FORMATCO' , 6X, 12, 3X, 5 (F6 . 4 , 3X) )

9013 CONTINUE
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WRITE (3, 9014)

9014 FORMAT (' 0'
, 6X, ' COOLANT TEMPERATURE')

WRITE (3, 9002)

DO 9016 1=1,

M

WRITE (3, 9015) I , (TG ( I , J) , J=l , N)

9015 FORMAT (' ' , 6X, 12 , 3X, 5 (F6 . 1 , 4X)

)

9016 CONTINUE

WRITE (3, 9017)

9017 FORMAT (' 0' , 6X, ' ENTHALPY'

)

WRITE (3, 9020)

DO 9019 1=1,

M

WRITE (3, 9018) I, (H ( I , J) , J=l , N)

9018 FORMAT (' ' , 6X, 12 , 3X, IP , 5E10 . 4

)

9019 CONTINUE

WRITE (3, 9021)

9021 FORMAT (' 0'
, 6X, ' SOLID TEMPERATURE')

WRITE (3, 9002)

DO 9022 1=1,

M

WRITE (3, 9015) I, (TSST(I, J) , J=1,M)

9022 CONTINUE

PETURN

END

C

C .SUBROUTINE TO CALCULATE CONSTANTS USED IN EVALUATION OF SOLID PHASE

C TEMPERATURES

C

SUBROUTINE ONCNST (TSO, MA, CPBAR, UT, FBAR, KZC)

C

COMMON/GEOTRY/R (4 5) , EP (20) , DZ,THKCF (30) ,DV(20) , DP , DPCF, M, N, DT

REAL MAZ,RHZC,MACI,RHCI,MACII,RHCII,MAF,RHF,MA(10) , CPZ, CPCI

REAL CPCI I, CPF, UZC(10, 10) ,UCI (10, 10) , UCII (10, 10) , UF (10, 10)

PEAL KZC (10, 10) , KCI (10, 10) , KF (10, 10) , PI

REAL CPBAR (10) , UT ( 1 , 10) , FONE (10, 10) , FTWO (10, 10) , FTHP (10, 10)

PEAL FBAP.(10, 10) ,TSO(10, 10)

PEAL PR1,PR2,PR3,PP4

PARAMETER (PI=3 . 1 4 159, PR1= . 000250 , PR2= . 0002 , PR3= . 00015)

PARAMETER (PR 4= . 000 1 1 7, PHZC=6300. , RHC 1=1 900 ., RHCI 1=1000 .

)

PAPAMETEP (PHF=10500. , CPZ=200 . , CPCI=3000 .
,CPCII=3000. ,CPF=200.)

PAPAMETER (KZC=40 . , KCI=3 . 0, KCII=1 . 5,KF=30.)

C

DO 60 1=2, M-l

C CALCULATE MASS PER UNIT OUTSIDE SURFACE APEA

MAZ=(PR1**3-PP2**3) *RHZC/ (3* (PR1**2) )

MACI=(PP2**'3-PP3 ,"'3) *PHCI/ (3*(PR1**2) )

MACII=(PP.3**3-PP4"«'3) *RHCII/ (3* (PR1**2) )

MAF=(PP.4**3) "PHF/ (3* (PR1**2) )

MA ( I ) =MAZ +MAC I +MAC I I +MAF

IF (I .EQ. 2) MA(2)=.0072

IF fl .EQ. M-l) MA(M-1)=5.73

C

C ''ALCULATE AVERAGE SPECIFIC HEAT

CPBAR (I) = ( (MAZ*CPZ+MACI*GPCI+MACII*OPCII+MAF*CPF) /MA (I) )

IF (I .EQ. 2) CPBAR(2)=422.
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IF (I .EQ. M-l) CPBAR(M-1)=155.

C

DO 50 J=1,N

KF(I, J) =1.73 07*26.0* (AMAX1 (TSO(I, J) * 1 . 8-459 . 67 , 2 60 . ) )

+ **(-0.1093)

KZC(I, J)=2 2.67+.00 8 67*TSO(I, J)

KCI (I, J)=AMAX1 (1 .7307* ( 179 .
1 -1 9 . 7*ALOG ( 1 . 8*TSO(I, J)

+ -459.67)
) , 10.0)

IF (I .EQ. 2) THEN

UT(2, J)=l .

FBAR(2, J)=l

.

KZC(2, J)=15.

GOTO 50

ENDIF

IF (I .EQ. M-l) THEN

UT(M-1, J)=l.

FBAR(M-1, J)=l

.

KZC(M-1, J)=47.

GOTO 50

ENDIF

C -'ALCULATE INTERNAL PARTICLE HEAT TRANSFER COEFFICIENTS
UZC(I, J)=(PR2*PR1/ (PR1-PR2) ) *KZC(I, J)/ (PR1**2)

UCI (I, J)=(PR3*PR2/ (PR2-PR3) ) *KCI (I,J)/(PR1**2)

UCII (I, J)=(PR4*PR3/ (PR3-PR4) ) *KCI (I, J) / (PR1**2)

UF (I, J) = (2*KF(I, J) )/ (3*PR4)

UT(I, J) = ( (1/UZC(I, J) ) + (1/UCI (I,J))+(1/UCII(I,J))

+ +(1/UF(I, J) ) )
** (-1)

C

C CALCULATE THE SINGLE NODE FRACTIONS FOR TEMPERATURE DISTRIBUTION
FONE (I, J)=UT(I, J) /UZC(I, J)

FTWO(I, J)=FONE (I, J) + (UT(I, J) /UCI (I, J)

)

FTHR(I, J)=FTWO(I, J) + (UT(I, J) /UCII (I, J) )

FBAR(I, J)=(l/ (2*MA(I) *CPBAR(I) )
)
* ( (MAZ *CPZ *FONE ( I , J)

)

+ +(MACI*CPCI* (FONE ( I , J) +FTWO ( I , J) ) )

+ + (MACII*CPCII* (FTHR(I, J)+FTWO(I, J) ) )+(MAF*CPF

+ * (FTHR(I, J)+l) ) )

50 CONTINUE

60 CONTINUE

C THE FOLLOWING MATERIAL PROPERTIES ARE ASSUMED FOR THE COLD FRIT
C DENSITY=7.95 E03 kg/m**3

C SPECIFIC HEAT=422 J/kg K

C CONDUCTIVITY=15 W/m K

C THE FOLLOWING MATERIAL PROPERTIES ARE ASSUMED FOR THE HOT FRIT
C DENSITY=2.10 E04 kg/m**3

C SPECIFIC HEAT=155 J/kg K

C CONDUCTIVITY=47 W/m K

RETURN

END
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c

C SUBROUTINE TO ADVANCE SOLID PHASE TEMPERATURES ONE TIME STEP

C

SUBROUTINE SOLID (MA, CPBAR, UT, FBAR, TSO, TGO, PO, RHO, Q, VRO, VZO,

+ KZC,TSST,UBAR,AV, ANN)

COMMON/GEOTRY/R (4 5) , EP (20) , DZ,THKCF (30) ,DV{20) , DP , DPCF, M, 3, DT
COMMON/BOUCON/PBI, PBO, TBI , RHOBI , HBI
COMMON/SOLVER/SOLSLD(10 0, 100)

INTEGER I, J,K,M,N,UNITS

REAL KG (10, 10) , KAP (10, 10) , PHI , PHI I , PH, KEO, KRO, EMM, EDP

REAL DP,DPCF,KR,RE,THI,THII,CTHI,CTHII,MA(10) , CPBAR (10)

REAL UT(10, 10)

REAL FBAR (10, 10) , TSO (10, 10) , TSST ( 10 , 10 ) , TGO (10, 10) ,KSOL(10, 10)

REAL AV(10) , EP, VIS,GSO, FJH, TFLM, CPB , CPFLM, VISFLM, KFLM

REAL HLOC (10,10),PO(10,10),Q(10,10) , VRO ( 1 1 , 10) , VZO (10, 11)

REAL KW(10,10),KE(10,10),KS(10,10),KN(10,10)

REAL ACW(10, 10) , ACE (10, 10) , ACN(10, 10) , ACS (10, 10) , ACO(10, 10)

REAL CONVC(IOO) ,BC(10, 10) ,UBAR(10, 10) ,KZ,RHO(10, 10)

REAL ANN(10, 10) , KZC (10, 10)

PARAMETER (PI=3 . 1 4 1 59 , UNITS=1 , EMM= . 78

)

C INITIALIZE THE SOLUTION MATRIX

DO 2 1=1, M*N

DO 1 J=1,M*N

SOLSLDd, J)=0.

1 CONTINUE

2 CONTINUE

C

C CALCULATE GAS AND SOLID CONDUCTIVITIES

THI=.68

CTHI=.565
THII=.144

CTHII=.925

DO 20 1=2, M-l

DO 10 J=1,N

C CALCULATE THE GAS PHASE CONDUCTIVITY

KG (I, J)=PTCOND (PO(I, J) , TGO (I, J) , UNITS)

C CALCULATE THE THERMAL CONDUCTIVITY IN THE SOLID

KZ=KZC(I, J)

IF (I .EQ. M-l) THEN

KEO=KZ

GOTO 5

ENDIF

KAP (I, J)=KZ/KG(I, J)

PHI=.5* ( ( ( (KAP (I, J) -1) /KAP (I, J) ) **2) *THI)/ (ALOG (KAP ( I , J)

+ -( (KAP (I, J)-l) *CTHI) )- (KAP (I, J)-l) *(1-CTHI)/KAP(I, J)

)

+ -(2/3) *(1/(KAP(I, J)) )

PHII=.5* ( ( ( (KAP (I, J) -D/KAP (I, J) ) **2)*THII)/ (ALOG (KAP (I, J)

+ -( (KAP (I, J)-1)*CTHII) ) -(KAP (I, J)-l)* (1-CTHII)/KAP(I, J)

)

+ -(2/3) *(1/ (KAP (I, J))

)

PH=PHII+( (PHI-PHI I) MEP(I)-.2 60)/.216)

KEO=KG(I, J)* (EP(I)M (l-EP(I) )/ (PH+((2/3) *KAP(I, J) ) ) ) )

5 IF (I .EQ. 2) THEN
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EDP=DPCF ELSE

EDP=DP

END IF

C CALCULATE THE RADIATION CONTRIBUTION TO SOLID CONDUCTIVITY
KRO=0.22 9*EMM*EP (I) *EDP* (TSO(I, J) **3) / (10**6)

KR=(1-EP (I) ) / ( (1/KZ) +(l/KRO) ) +EP (I) *KRO

C COMBINE THERMAL AND RADIATION CONDUCTIVITIES TO GET OVERALL VALUE

KSOL(I, J)=KEO+KR

C CALCULATE HEAT TRANSFER COEFFICIENT FOR SOLID TO GAS HEAT TRANSFER

C CALCULATE THE RE

AV(I)=3* (1-EP (I) )/ (EDP/2)

IF (I .EQ. M-l) AV(M-1)=3659.

VIS=PTVISC(PO(I, J) ,TGO(I, J) , UNITS)

GSO=SQRT (AMAX1 (ABS ( ( (VRO(I, J) +VRO(I+l, J) )/2) **2) +ABS ( (

(

+ VZO(I, J) +VZO(I, J+l) )/2)**2), .00001)) *RHO(I, J)

RE=GSO/ (AV(I) *VIS)

C DETERMINE RELATION FOR THE COULBURN FACTOR ON THE RE

IF (RE .LT. 50.) THEN

FJH=0.91* (RE** (-. 51) )

ELSE

FJH=0.61* (RE** (-.41)

)

END IF

TFLM=. 5* (TSO(I, J) +TGO ( I , J) )

CPB=PTCP (PO(I, J) ,TGO(I, J) , UNITS)

CPFLM=PTCP (PO(I, J) , TFLM, UNITS)

VISFLM=PTVISC(PO(I, J) , TFLM, UNITS)

KFLM=PTCOND(PO(I, J) , TFLM, UNITS)

HLOC(I, J)=FJH*CPB*GSO/ ( ( (CPFLM*VISFLM) /KFLM) ** (2/3) )

C CALCULATE UBAR

C UBAR FOR THE FRITS IS ASSUMED TO BE EQUAL TO HLOC

IF (I .EQ. 2) THEN

UBAR (2, J)=HLOC (2, J)

GOTO 9

ENDIF

IF (I .EQ. M-l) THEN

UBAR (M-l , J) =HLOC (M-l , J)

GOTO 9

ENDIF

UBAR (I, J)=UT(I, J) * HLOC (I, J)/ (FBAR(I, J) *HLOC(I, J) +UT(I, J)

)

IF (I .EQ. 2) UBAR(2, J)=HLOC(I, J)

9 CONTINUE

C WRITE (3, *) I,KSOL(I, J) ,KRO,KR, KEO, HLOC (I, J) , UBAR (I, J)

,

C + AV(I) ,RE, PHI, PHII,PH, GSO

10 CONTINUE

20 CONTINUE

C CALCULATE EAST AND WEST FACE CONDUCTORS AND COEFFICIENTS BASED ON

C THE HARMONIC MEAN OF THE CONDUCTIVITIES ON EITHER SIDE OF THE

C INTERFACE

DO 40 1=2, M-l

DO 30 J=2,N

KW(I, J)=2*KSOL(I, J) *KSOL(I, J-l)/ (KSOL(I, J) +KSOL(I, J-l) )

KE(I, J-1)=KW(I, J)

ACW(I, J)=KW(I, J) * (R (2*1-1 ) **2-R (2*1+1 ) **2) *PI/DZ
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ACE (I, J-1)=ACW(I, J)

30 CONTINUE

KW(I, 1)=0.

ACW(I, 1)=0.

KE(I,N)=0.

ACE (I,N)=0.

40 CONTINUE
C CALCULATE NORTH AND SOUTH FACE CONDUCTANCES AND COEFFICIENTS
C BASED ON THE HARMONIC MEAN CONDUCTIVITY

DO 60 J=1,N

DO 50 1=3, M-l

F=(R (2*1-2) -R (2*1-1) )/ (R (2*1-2) -R (2*1))

KS(I, J)=( ( (l-F)/KSOL(I, J) )+(F/KSOL(I-l, J) )
) ** (-1)

KN(I-1, J)=KS (I, J)

ACS (I, J)=KS (I,J)*2*PI*R(2*I-l)*DZ/(R(2*I-2)-R(2*I))
ACN(I-1, J)=ACS(I, J)

50 CONTINUE

KS(2, J)=0.

ACS (2, J)=0.

KN(M-1, J)=0.

ACN(M-1, J)=0.

60 CONTINUE

C CALCULATE THE CENTRAL POINT COEFFICIENT
DO 80 1=2, M-l

DO 70 J=1,N

ACO ( I , J) =- ( ACW ( I , J) +ACE ( I , J) +ACS ( I , J) +ACN ( I , J) )

C CALCULATE TIME DERIVATIVE COEFFICIENT

BC(I, J)=MA(I) *CPBAR(I) *DV(I) *AV(I) / (DT*EP(I) )

ANN (I, J) = (BC(I, J) -ACO (I, J)+UBAR(I, J) * (DV(I) /EP (I) ) *AV(I) )

70 CONTINUE
80 CONTINUE

C BUILD THE SOLUTION MATRIX AND CONSTANT VECTOR

DO 100 1=2, M-l

DO 90 J=1,N

K=(I-2) *N+J

SOLSLD (K, K) =-ANN ( I, J)

IF (J .LT. N) SOLSLD(K, K+1)=ACE (I, J)

IF (K+N .LE. (M-2)*N) SOLSLD (K, K+N) =ACN ( I , J)

IF (J .GT. 1) SOLSLD(K, K-1)=ACW(I, J)

IF (K-N .GT. 0) SOLSLD (K,K-N)=ACS (I, J)

CONVC(K)=-Q(I, J)-UBAR(I, J) * (DV(I) /EP (I) ) *AV(I) *TGO(I, J)

+ -BC(I, J) *TSO(I, J)

90 CONTINUE

100 CONTINUE

C CALL SOLUTION ROUTINES

NP=100
CALL LUDCMP (SOLSLD, ( (M-2 ) *N) , NP , INDX, D)

CALL LUBKSB (SOLSLD, ( (M-2 ) *N) , NP , INDX, CONVC)

C UPDATE THE SOLID PHASE TEMPERATURES

1=2

J=l

DO 110 K=l, ( (M-2) *N)
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TSST(I, J)=CONVC (K)

IF ((K-(I-2)*N) .EQ. N) THEN
J=l

1 = 1 + 1

ELSE

J=J+1

END IF

110 CONTINUE
TMC0N1=MA(3) *CPBAR(3) /UBAR(3, 1)

TMCON2=MA(3) *CPBAR(3) /UBAR(M-2, 3)

WRITE ( 6
,
*

)
' TMCON1

' , TMCON1 ,
' TMCON2 ' , TMCON2

RETURN

END

C SUBROUTINE TO PERFORM THE AXIAL MOMENTUM BALANCE
C

SUBROUTINE AXLMOM (VR, VZ , VZO , RHO, RHOO, P, TG, BZAF, VZST, BVZ , AZF

,

+ AWZ, AEZ, ASZ, ANZ)

COMMON/GEOTRY/R(4 5) , EP (20) , DZ,THKCF (30) ,DV(20) , DP,DPCF,M,N, DT

COMMON/BOUCON/PBI , PBO, TBI , RHOBI , HBI

COMMON/SOLVER/SOLZ(100, 100)

INTEGER M,N, I, J, K, UNITS

REAL VR(11,10),VZ(10,11),R, EP,RHO(10, 10) , P (10, 10) ,TG (10, 10)

REAL MEZ (10, 11) , MWZ (10, 11) , MNZ(10, 11) ,MSZ (10, 11) , VZST (10, 11)

REAL AEZ (10, 11) , AWZ (10, 11),ANZ(10,11) , ASZ (10,11) , AOZ(10,ll)

REAL BZ (10, 11) , ALF, ALFB, ALFC, ALFD , GAM, GAMB, GAMC, SZ (10, 11)

REAL DT,DZ, VSR, THKCF, DVZ , SOLZ , CONVZ (100) , BZAF (10, 11) , ARI, ARO

REAL FRIC (10, 11) , RE I , REO, VI SI , VISO, HDI,HDO,BVZ (10,11) , AZF (10, 11)

REAL VZO (10, 11) , RHOO (10, 10),BZO(10,11) , RHOOS

PARAMETER (PI=3. 14159, UNITS=1)

C INITIALIZE THE COEFFICIENT MATRIX

DO 8 1=1, M*N

DO 4 J=1,N*M

SOLZ (I, J)=0.

4 CONTINUE

8 CONTINUE

C GENERAL FORM OF THE EQUATION:

C - (BZ-AOZ) *VZ0 + AEZ*VZE + AWZ*VZW + ANZ*VNZ + ASZ*VZS = -SZ - BZ*VR

C

C CALCULATE CONTROL VOLUME FACE MASS FLUXES AND VELOCITY COEFFICIENTS

C

C SOUTH AND NORTH

DO 16 J=2,N

DO 12 1=2,

M

C UPWIND FACTORS FOR DENSITY

IF (VR(I,J-1) .GE. 0.) THEN

ALFB=0.5

ELSE

ALFB=-0.5

ENDIF

IF (VR(I,J) .GE. 0.) THEN

ALFC=0.5
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ELSE

ALFC=-0.5

END IF

C FACE FLUX

MSZ (I, J)=( ( (0.5+ALFB) *RHO ( 1-1 , J-l ) + (0 . 5-ALFB) *RHO(I, J-l)

)

+ *VR(I, J-l) + ( (0.5+ALFC) *RHO(I-l, J) +(0.5-ALFC) *RHO(I, J>

)

+ *VR(I, J) ) *PI*R(2*I-1) *(D2)

MNZ (1-1, J)= MSZ (I, J)

C UPWIND FACTOR FOR MOMENTUM
IF ( (VR(I, J-1)+VR(I, J) ) .GE. 0.) THEN

ALFD=0 .

5

ELSE

ALFD=-0.5

END IF

C VELOCITY COEFFICIENT
ASZ (I, J)=MSZ (I, J) * (0.5+ALFD)

ANZ (1-1, J)=-MNZ (1-1, J) * (0.5-ALFD)

12 CONTINUE
C BOUNDARY CONDITIONS

MSZ (1, J)=0

.

ASZ (1, J)=0.

MNZ(M, J)=0.

ANZ (M, J) =0

.

16 CONTINUE

MSZ (1, 1)=0

ASZ (1, 1)=0

IF (VR(2,1) .GE. 0.) THEN

ALFC=0.5

ELSE

ALFC=-0.5

END IF

MNZ (1, 1)=( (0.5+ALFC) *RHO(l, 1) +(0.5-ALFC) *RHO(2, 1) ) *VR(2, 1) *PI

+ * (DZ) *R(3)

ANZ (1, 1)=-MNZ (1,1)* (0.5-ALFC)

IF (VR(M, 1) .GE. 0.) THEN

ALFC=0.5

ELSE

ALFC=-0.5

END IF

MSZ (M, 1)=( (0. 5+ALFC) *RHO(M-l, 1) + (0.5-ALFC) *RHO(M, 1) ) *VR(M, 1)

+ *PI*R(2*M-1) * (DZ)

C EAST AND WEST FACE FLUXES AND COEFFICIENTS

DO 28 1=1,

M

DO 24 J=2,N

MWZ (I, J)=RHO(I, J-l) *
( (VZ (I, J-D+VZ (I,J))/2)*(R(2*I-1)**2

+ -R(2*I+1) **2) *PI

MEZ (I, J-1)=MWZ (I, J)

C UPWIND FACTOR FOR MOMENTUM

IF ( (VZ (I, J)+VZ (1-1, J) ) .GE. 0.) THEN

GAMB=0 .

5

ELSE

GAMB=-0.5

END IF
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C VELOCITY COEFFICIENT

AWZ (I, J)=MWZ (I, J) * (0.5+GAMB)

AEZ (I, J-1)=-MEZ (I, J-l) * (0.5-GAMB)

24 CONTINUE

28 CONTINUE

C BOUNDARY CONDITIONS

DO 29 1=2, M-l

IF (VR(I,1) .GE. 0.) THEN

ALFC=0.5

ELSE

ALFC=-0.5

ENDIF

MSZ (I, 1) =
( (0.5+ALFC) *RHO(I-l, 1) +(0.5-ALFC) *RHO(I, 1) )

+ *VR(I, 1) *PI*R(2*I-1) *DZ

MNZ (1-1, 1)=MSZ(I, 1)

ASZ (I, 1)=MSZ (I, 1) * (0. 5+ALFC)

ANZ (1-1, 1)=-MNZ (1-1, 1) * (0 .5-ALFC)

MWZ (I, 1)=0.

AWZ (I,1)=0.

29 CONTINUE

C BOUNDARY FLUXES AND COEFFICIENTS
C EAST FACES NOT CO-LOCATED WITH WEST FACES

DO 32 1=1,

M

MEZ (I,N)=RHO(I,N) *(VZ(I,N)/2)*PI*(R(2*I-1)**2-R(2*I+1)

+ **2)

IF (VZ(I,N) .GE. 0.) THEN

AEZ (I,N)=0.

ELSE

AEZ (I,N)=-MEZ (I,N)

ENDIF

32 CONTINUE
C INLET AND OUTLET TO PLENUMS

MWZ (1, l)=RHOBI*VZ (1,1)*(R(1)**2-R(3)**2)*PI
MWZ (M, l)=RHO(M, 1) *VZ (M, 1) * (R(2*M-1) **2) *PI

AWZ (1, 1)=0.

AWZ (M, 1)=0.

C CALCULATE NODE CENTRAL POINT COEFFICIENT

DO 44 1 = 1,

M

DO 40 J=1,N

AOZ (I,J)=-(AEZ(I,J) +AWZ (I, J)+ANZ (I, J) +ASZ (I, J) +MEZ ( I , J)

+ -MWZ (I, J) +MNZ (I, J)-MSZ (I, J) )

40 CONTINUE

44 CONTINUE

C CALCULATE CONSTANT TERMS

DO 52 J=2,N

DO 48 1 = 1,

M

C UPWIND FACTOR FOR DENSITY

IF (VZ(I,J) .GE. 0.) THEN

GAM=0 .

5

ELSE

GAM=-0.5

ENDIF

RHOS=(0.5+GAM) *RHO(I, J-l ) + (0 . 5-GAM) *RHO(I, J)
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RHOOS=(0. 5+GAM) *RHOO(I, J-l) +(0.5 -GAM) *RHOO(I, J)

DVZ=PI* (R(2*I-1)**2-R (2*1+1) **2) *DZ

BZ (I, J)=RHOS*DVZ*EP (I)/DT

BZO (I, J)=RHOOS*DVZ*EP (I) /DT

BVZ (I, J)=DVZ*EP (I) /DT

C SUPERFICIAL VELOCITY
VZS=( ( ( .25* (VR(I+1, J) +VR(I+1, J-l) iVR(I,J) -f-VR<I r J-l) ))**2

+ +VZ (I, J) **2) **0.5)

C CORRECTION FOR COLD FRIT VARIABLE THICKNESS
IF (I .EQ. 2) DVZ=(THKCF(J) +THKCF (J-l) ) *PI*R(2*I) *DZ

C SOURCE TERM

SORC= (P (I, J-l) -P (I, J) ) * (DVZ/DZ) *EP (I)

C FRICTION TERM

PS=(0. 5+GAM) *P (I, J-l) +(0.5-GAM) *P (I, J)

TS=(0. 5+GAM) *TG(I, J-l) + (0.5 -GAM) *TG(I, J)

VIS=PTVISC(PS,TS, UNITS)

IF (I .EQ. 2 .OR. I .EQ. (M-l)) THEN

DPA=DPCF

ELSE

DPA=DP

ENDIF

FRIC(I, J)=DVZ* ( (150*VIS* ( (1-EP (I) ) **2) / ( (DPA**2)

*

+ (EP(I)**3))) +(1.7 5*RHOS*ABS (VZS) * (1-EP (I) ) / (DP A*

+ (EP (I) **3) ) ) ) *EP (I)

SZ (I, J)=SORC

C WRITE(3, *) I, J,DPA,EP (I) , DVZ

C WRITE(3, *) SORC, VZS, VZSUP, VIS

48 CONTINUE

52 CONTINUE

C INLET AND OUTLET PLENUMS

C SOURCE TERMS

ARI=PI* (R(l)**2-R(3)**2)

ARO=PI* (R(2*M-1) **2)

SZ(1, 1)=(PBI-P (1, 1) ) *ARI

SZ(M, l)=(PBO-P (M, 1) ) *ARO

BZ (1, 1) =RHOBI*ARI*DZ/DT

BZO(l, 1)=BZ (1, 1)

BZ (M, l)=RHO(M, 1) *ARO*DZ/DT

BZO(M, l)=RHOO(M, 1) *ARO*DZ/DT

BVZ (1,1) =BZ (1,1) /RHOBI

BVZ (M, 1)=BZ (M, l)/RHO(M, 1)

C FRICTIONAL LOSSES IN THE PLENUMS

C CALCULATE HDI, HDO, THE HYDRAULIC DIAMETERS

HDI=2* (R(l) -R(3)

)

HDO=2*R(2*M-l)

C CALCULATE REYNOLDS NUMBERS, UPWINDING OF DENSITIES CONSIDERED

C UNNECESSARY

DO 53 J=1,N

VISI=PTVISC (P (1, J) , TG(1, J) , UNITS)

REI=RHO(l, J) *ABS (VZ (1, J) ) *HDI/VISI

VISO=PTVISC (P (M, J) , TG (M, J) , UNITS)

REO=RHO (M, J) *ABS (VZ (M, J) ) *HDO/VISO

C CALCULATE FRICTION FORCE USING ACURVE FITTED TO THE MOODY DIAGRAM
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C FOR FRICTION FACTOR CALCULATIONS
IF (REI .LT. 1000.) THEN

FRIC(1, J)=.04 82*RHO(1, J) *DZ*ARI/ (2*HDI)

GOTO 531

ENDIF

FRIC(1, J) =.13 8* (REI** (-.151) ) *RHO ( 1 , J) *DZ*ARI *ABS (VZ (I, J)

)

+ /(2*HDI>

531 IF (REO .LT. 1000.) THEN
FRIC(M, J)=.04 82*RHO(M, J) *DZ*ARO/ (2*HDO)

GOTO 53

ENDIF

FRIC(M, J) = . 13 8* (REO** (-.151) ) *RHO(M, J) *DZ*ARO*ABS (VZ (M, J)

)

+ /(2*HDO)

53 CONTINUE

DO 55 1=1,

M

DO 54 J=2,N

BZAF(I, J)=BZ (I, J) -AOZ (I, J) +FRIC (I, J)

AZF (I, J)=-(BZAF (I, J) -BZ (I, J)>
C WRITE(3,*) BZ (I, J) , FRIC(I, J) , BZAF (I, J)

54 CONTINUE

55 CONTINUE

BZAF(1, 1)=BZ (1,1) -AOZ (1, D+FRIC (1,1)

BZAF(M, 1)=BZ (M, 1) -AOZ (M, 1)+FRIC(M, 1)

AZF(1, 1)=-(BZAF (1,1) -BZ (1,1))

AZF(M, 1)=-(BZAF (M, 1) -BZ (M, 1)

)

C WRITE (3, *)BZAF (1,1),BZ(1,1),SZ(1,1),FRIC(1,1)

C WRITE (3, *)BZAF (M, 1 ) , BZ (M, 1 ) , SZ (M, 1 ) , FRIC (M, 1

)

C FORCE WALL VZ TO ZERO

DO 56 1=2, M-l

SZ (I, 1)=0.

RHOS=RHO(I, 1)

RHOOS=RHOO(I, 1)

DVZ=PI* (R (2*1-1) **2-R (2*1+1) **2)*DZ

BZ (I, l)=RHOS* (DVZ/2) *EP (D/DT
BZO(I, l)=RHOOS* (DVZ/2) *EP (I) /DT

BVZ (I, 1)=DVZ*EP (I)/ (2*DT)

VZS=.5* (VR(I, 1) +VR(I+1, 1)

)

DPA=DPCF

FRIC (I, 1)=DVZ* ( (150*VIS* ( (1-EP (I) ) **2) / ( (DPA**2)

*

+ (EP (I) **3) ) ) + (1.7 5*RHOS*ABS (VZS) * (1-EP (I) ) / (DPA*

+ (EP (I) **3) ) ) ) *EP(I)

BZAF (I, 1) =(BZ (I, 1) -AOZ (1,1) +FRIC(I, 1)

)

AZF (I, l)=AOZ (1,1) -FRIC (I, 1)

56 CONTINUE

C CONSTRUCT THE SOLUTION MATRIX AND CONSTANT VECTOR

C ENTERING THE MANIFOLD TURNING COEFFICIENT FOR THE INLET AND

C OUTLET PLENUMS

CTD=1 .05

CTC=2.66

DO 64 J=1,N

SOLZ (J, J)=- (BZ (1, J) -(CTD*AOZ (1, J) )+FRIC(l, J)

)

IF (J .LT. N) SOLZ(J, J+1)=CTD*AEZ (1, J)
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IF (J .GT. 1) SOLZ (J, J-1)=CTD*AWZ (1, J)

SOLZ (J, J+N)=ANZ (1, J)

CONVZ (J)=-SZ(1, J) -(BZO(l, J) *VZO(l, J)

)

DO 60 1=2, M-l

K=(I-1) *N+J

SOLZ (K,K)=-BZAF (I, J)

IF (J .LT. N) SOLZ (K,K+1)=AEZ (I, J)

IF (K+N .LE. HM-2)*N)> SOLZ (K, K+N) =ANZ (I , J)

IF (J .GT. 1) SOLZ(K,K-l)=AWZ(I, J)

IF (K-N .GT. 0) SOLZ(K,K-N)=ASZ (I, J)

CONVZ (K)=-SZ (I, J) -(BZO(I, J) *VZO(I, J)

)

60 CONTINUE

64 CONTINUE

C SKIP OVER HOT FRIT SINCE THERE IS NO AXIAL MOTION AND THIS WOULD

C RESULT IN A SOLUTION MATRIX WITH A ROW OF ZEROS WHICH IS

C INCOMPATIBLE WITH THE SOLUTION METHOD USED.

DO 65 J=1,N

K=(M-1) *N+J

SOLZ (K, K) =- (BZ (M, J) - (CTC*AOZ (M, J) ) +FRIC (M, J)

)

IF (J .LT. N) SOLZ (K,K+1)=AEZ (M, J) *CTC

IF (J .GT. 1) SOLZ(K,K-l)=AWZ (M, J) *CTC

CONVZ (K)=-SZ (M, J) -(BZO(M, J) *VZO (M, J)

)

65 CONTINUE

NP=100

DO 66 K=l,45

C WRITE(3,*) K,SOLZ(K,K)

66 CONTINUE

C CALL SOLUTION SUBROUTINES

C NOTE THET THE UPDATED VELOCITIES ARE RETURNED AS A MODIFIED CONVZ

C VECTOR

CALL LUDCMP(SOLZ, (M*N) , NP , INDX, D)

CALL LUBKSB(SOLZ, (M*N) , NP , INDX, CONVZ)

C CONVERT CONVZ TO I, J FORM

1 = 1

J=l

DO 68 K=l, (M*N)

VZST(I, J)=CONVZ (K)

IF( (K-(I-l) *N) .EQ. N) THEN

J=l

1=1 + 1

ELSE

J=J+1

ENDIF

68 CONTINUE

C CORRECTIONS TO CONSTANTS USED IN LATER PARTS OF THE PROGRAM TO

C REFLECT THE TURNING COEFFICIENTS

DO 69 J=1,N

AZF(1, J)=AOZ(l, J) *CTD-FRIC(1, J)

AZF (M, J) =AOZ (M, J) *CTC-FRIC (M, J)

BZAF ( 1 , J) = (BZ ( 1 , J) - (AOZ ( 1 , J) *CTD) +FRIC ( 1 , J) )

BZAF (M, J) = (BZ (M, J) - (AOZ (M, J) *CTC) +FRIC (M, J)

)

AEZ (1, J)=AEZ(1, J) *CTD

AWZ ( 1 , J) =AWZ ( 1 , J) *CTD
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AEZ (M, J) =AEZ (M, J) *CTC

AWZ (M, J) =AWZ (M, J) *CTC

69 CONTINUE

RETURN

END

C SUBROUTINE TO PERFORM THE RADIAL MOMENTUM BALANCE
C

C MODIFIED TO WORK IN SUPERFICIAL VELOCITIES
C

SUBROUTINE RADMOM (VR, VRO, VZ , RHO, RHOO, P, TG, BRAF, VRST, BVR,

+ ARF, AWR, AER, ASR,ANR)

COMMON/GEOTRY/R(4 5) , EP (20) ,DZ,THKCF (30) ,DV(20) , DP , DPCF, M, N, DT

COMMON/BOUCON/PB I , PBO, TBI , RHOBI , HBI

COMMON/ SOLVER/SOLR( 100, 100)

INTEGER M,N, I, J, K, UNITS

REAL VR(11,10),VZ(10,11) , R, EP , RHO ( 10, 10),P(10,10),TG(10,10)

REAL MER(11, 10) , MWR ( 1 1 , 10) ,MNR(11, 10) ,MSR(11, 10) , VRST (11, 10)

REAL AER (11, 10) , AWR (11, 10) , ANR(11, 10) , ASR(11, 10)

REAL AOR(ll, 10), BR (11, 10) , ALF, ALFB, ALFC, ALFD, GAM, GAMB, GAMC
REAL SR(11, 10) , FRIC,BRAF(11, 10) , BVR ( 1 1 , 10) , ARF (11, 10)

REAL DT,DZ, VSR, THKCF,DV, SOLR, CONVR(IOO)

REAL VRO (11, 10) , RHOO (10, 10) ,BRO(ll, 10) , RHOOS

PARAMETER (PI=3. 14159, UNITS=1)

C

C GENERAL FORM OF THE EQUATION:

C - (BR-AOR) *VRO + AER*VRE + AWR*VRW + ANR*VRN + ASR*VRS = -S - BR*VR

C

C CALCULATE CONTROL VOLUME FACE MASS FLUXES AND VELOCITY COEFFICIENTS

C

C INITIALIZE SOLR

DO 2 1=1,

M

DO 1 J=1,N

SOLR ( I, J) =0

1 CONTINUE

2 • CONTINUE

C SOUTH AND NORTH
DO 10 1=2,

M

DO 8 J=1,N

C SOUTH

C ESTIMATE VELOCITY AT THE INTERFACE USING:

C VRi*AREAi=VR* (R (21-1 ) /R (2 1-2 ) ) *R (2 1-2) *2*PI*DZ

MSR(I, J)=RHO(I-l, J) *VR(I, J)*R(2*I-1)*2*PI*

+ DZ

C NORTH

7 MNR(I-1, J)=MSR(I, J)

IF ( (VR(I, J)+VR(I-1, J) ) .GE. 0.) THEN

ALFB=0.5

ELSE

ALFB=-0.5

ENDIF

C COEFFICIENTS
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ASR(I, J)=MSR(I, J) * ( .5+ALFB)

ANR(I-1, J)=-MNR(I-1, J) * (.5-ALFB)

8 CONTINUE

10 CONTINUE

C BOUNDARIES

DO 12 J=1,N

MNR(M, J)=RHO(M, J) *VR (M, J) *2*PI*R(2*M) *DZ

ANR(M, J) =0.0
12 CONTINUE

C EAST AND WEST

DO 20 1=2,

M

DO 18 J=2,N

C FLUX UPWIND FACTORS
IF (VZ(I,J) .GE. 0.) THEN

GAMB=0 .

5

ELSE

GAMB=-0.5

ENDIF

IF (VZ(I-1,J) .GE. 0.) THEN

GAMC=0.5

ELSE

GAMC=-0.5

ENDIF

C WEST FACE FLUX

MWR(I, J) = ( ( . 5+GAMB) *RHO(I, J-l)+ ( .5-GAMB) *RHO(I, J) ) *VZ (I, J)

+ *PI*(R(2*I-l)**2-R(2*I)**2)+(( .5+GAMC) *RHO < 1-1 , J-l )

+

+ (0.5-GAMC) *RHO(I-l, J) ) *VZ(I-1, J) *PI* (R (2 * 1-2} **2-R (2*1-1)

+ **2)

C EAST FACE FLUX

MER(I, J-1)=MWR(I, J)

C MOMENTUM UPWIND
IF ( (VZ (1-1, J)+VZ (I, J) ) .GE. 0.) THEN

GAMBC=0 .

5

ELSE

GAMBC=-0.5

ENDIF

C WEST VELOCITY COEFFICIENT

AWR(I, J)=MWR(I, J) * (0.5+GAMBC)

C EAST VELOCITY COEFFICIENT

AER(I, J-1)=-MER(I, J-l) * (0.5-GAMBC)

18 CONTINUE

20 CONTINUE

C BOUNDARY CONTROL VOLUMES

C VZ(1,1) ASSUMED GE AND VZ (M, 1) LT

MWR(2, l)=RHOBI* (R(2)**2-R(3)**2) *PI*VZ(1, 1)

AWR(2, 1)=MWR(2, 1)

MWR(M, l)=RHO(M, 1) *PI* (R (2*M-1) **2-R(2*M)**2) *VZ (M, 1)

AWR(M, 1)=0.

MER(2,N)=0.

AER(2,N)=0.

MER(M,N)=0.

AER(M,N)=0.

DO 24 1=3, M-l
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MWR(I, 1)=.0

AWR(I, 1)=0.

MER(I,N)=0.

AER(I,N)=0.

24 CONTINUE

C CALCULATE THE CENTRAL POINT COEFFICIENT
DO 32 1=2,

M

DO 28 J=1,N

AOR ( I , J) =- ( AER ( I , J) +AWR ( I , J) +ASR ( I , J) +ANR ( I , J) +MER ( I , J)

+ -MWR(I, J)+MNR(I, J) -MSR(I, J) )

28 CONTINUE

32 CONTINUE
C CALCULATE THE CONSTANT TERMS

DO 40 J=1,N

DO 36 1=2,

M

IF (VR(I,J) .GE. 0.) THEN

ALF=0 .

5

ELSE

ALF=-0.5

ENDIF
C CALCULATE GAS VOLUMES USED TO CALCULATE BR (I, J)

DVA=(R (2*1-2) **2-R (2*1-1)* *2) *PI*DZ*EP (1-1)

DVB=(R (2*1-1) **2-R(2*I)**2)*PI*DZ*EP(I)
RHOS=( (0.5+ALF) *RHO(I-l, J) +(0.5-ALF) *RHO(I, J)

)

RHOOS=( (0.5+ALF) *RHOO(I-l, J) +(0.5-ALF) *RHOO(I, J)

)

C FIND SMALLER VOID FRACTION IN THE CONTROL VOLUME
EPS=MIN(EP (1-1) , EP (I>)

BR (I, J)=RHOS* (DVA+DVB)/DT

BRO(I, J)=RHOOS* (DVA+DVB) /DT

BVR ( I , J) =BR ( I , J) /RHOS

C SUPERFICIAL VELOCITY WEIGHTED BY VOLUMES
VRSB=( (0.5* <VZ (I, J)+VZ (I, J+l) ) **2) +VRSC**2) **0.5

VRSA=( (0.5* (VZ (1-1, J)+VZ (1-1, J+l) ) **2) +VRSC**2)

+ **0.5

PS=( 0.5+ALF) *P (1-1, J)+(0.5-ALF) *P (I, J)

TIS=( 0.5+ALF) *TG(I-1, J) + (0.5-ALF) *TG(I, J)

VIS=PTVISC (PS, TIS, UNITS)

C CALCULATION OF THE SOURCE TERM

AREAA=PI*DZ* (R(2*I-2)+R(2*I)

)

C PRESSURE DIFFERENCE ACTS ON SMALLEST GAS AREA OF THE CONTROL VOLUME
SORC=AREAA* (P (1-1, J) -P (I, J) ) *EPS

C FRICTION TERM

THKA=R (2*I-2)-R(2*I-l)

THKB=R (2*1-1) -R(2*I)

C CORRECTION FOR THE VARIABLE THICKNESS OF THE COLD FRIT

IF (I .EQ. 2) THEN

THKB=THKCF(J) /2

DPB=DPCF

DPA=DP

ELSE

DPA=DP

DPB=DP

ENDIF
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IF (I .EQ. 3) THEN

THKA=THKCF(J) /2

DPA=DPCF

DPB=DP

ENDIF

FRICA=THKA* ( (150*VIS* ( (1-EP (1-1) ) **2) / ( (DPA**2)

*

+ (EP (1-1) *+3>> }+(1.75*RHOS*VRSA* (1-EP (1-1) )/ (DPA*
+ (EP(I-1)**3)) ))

FRICB=THKB* ( (150*VIS* ( (1-EP (I))**2)/((DPB**2)*
+ (EP(I)**3))) + (1 .75*RHOS*VRSB* (1-EP (I) )/ (DPB*

+ (EP(I)**3)) ))

FRIC=(FRICA+FRICB) *AREAA*EPS
SR(I, J)=SORC

BRAF(I, J)=(BR(I, J) -AOR(I, J)+FRIC)

ARF(I, J)=-(BRAF(I, J) -BR (I, J) )

C WRITE (3, *) I, J, DPA, DPB, EP (I)

C WRITE (3, *)THKA,THKB
C WRITE (3, *) SORC,FRICA, FRICB,FRIC
C WRITE(3, *) VRSA, VRSB, VRSC, SR(I, J)

36 CONTINUE
40 CONTINUE
C CONSTRUCT THE SOLUTION MATRIX AND CONSTANT VECTOR

DO 48 1=2,

M

DO 44 J=1,N

K=(I-2) *N+J

SOLR(K,K)=-BRAF(I, J)

IF (J .LT. N) SOLR(K,K+l)=AER(I, J)

IF ( (K+N) .LE. (M-1)*N) SOLR (K, K+N) =ANR (I , J)

IF (J .GT. 1) SOLR(K, K-1)=AWR(I, J)

IF (K-N .GT. 0) SOLR(K,K-N)=ASR(I, J)

CONVR(K)=-SR(I, J) -(BRO(I, J) *VRO(I, J)

)

44 CONTINUE

48 CONTINUE

NP=100
C CALL SOLUTION SUBROUTINES

C NOTE THAT THE UPDATED VELOCITIES ARE RETURNED AS A MODIFIED CONVR
C VECTOR

CALL LUDCMP (SOLR, ( (M-l) *N) , NP , INDX,D)

CALL LUBKSB(SOLR, ( (M-l ) *N) , NP , INDX, CONVR)

C CONVERT UPDATED VELOCITIES TO I , J FORM
1=2

J=l

DO 52 K=l, (M-l) *N

VRST ( I , J) =CONVR (K)

IF ((K-(I-2)*N) .EQ. N) THEN

J=l

1 = 1 + 1

ELSE

J=J+1

ENDIF

52 CONTINUE

RETURN

END
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C THE FIRST MOMENTUM CORRECTOR - THE PRESSURE EQUATION

C

SUBROUTINE PRESUR (VR, VZ , RHO, RHOO, RHST, P , PO, PST, PIO, TG,

+ BZAF,BRAF,VRSTT,VZSTT)

COMMON/GEOTRY/R(4 5) ,EP(20) , DZ, THKCF (30) ,DV(20) , DP,DPCF , M, N, DT

COMMON/BOUCON/PBI, PBO, TBI , RHOBI, HBI

COMMON/ SOLVER/SOLP (100, 100)

C GENERAL FORM OF THE EQUATION
C NOTE THAT THIS SUBROUTINE SOLVES FOR THE PRESSURE INCREMENT
C - (RHO*DV/ (DT*P)+DO) *PIO + DE*PIE + DW*PIW + DS*PIS + DN*PIN =DIVFLUX
C

INTEGER M,N, I, J, K, UNITS, IPVT(IOO)

REAL VR(11,10),VZ(10,11) , RHO (10, 10) , RHST (10, 10),P(10,10),

+ TG(10, 10) ,AOZ (10, 11), BZ (10, 11) , AOR(ll, 10), BR (11, 10), SOLP,

+ CONVP (100) , VRSTT(11, 10) , VZSTT(10, 11) ,3RAF(11, 10) ,BZAF(10, 11)

REAL R,EP,DZ,DV

REAL GAM,PST(10, 10)

REAL DC(10,10),DE(10,10),DW(10,10),DS(10,10),DN(10,10),
+ FLUXE(10, 10) , FLUXW(10, 10) , FLUXS (10, 10) , FLUXN(10, 10), PIO (10, 10),

+ DIVFLX(10, 10)

REAL RHOO(10, 10) , PO(10, 10)

PARAMETER (P 1=3. 14 15 9, UNITS=1

)

C INITIALIZE THE COEFFICIENT MATRIX
DO 4 1=1, M*N

DO 2 J=1,M*N

SOLP (I, J)=0.

2 CONTINUE

4 CONTINUE

C CALCULATION OF THE FLUXES AND PRESSURE INCREMENT COEFFICIENTS

C

C EAST AND WEST FACES

C WEST BOUNDARY
DO 8 1=2, M-l

DW(I, 1)=0.

FLUXW(I, 1)=0.

8 CONTINUE

C INLET, ASSUMING THE VELOCITY IS POSITIVE

DW(1, l)=RHOBI* ( ( (R(l) **2-R(3) **2)*PI)**2) /BZAF(1, 1)

FLUXWd, l)=RHOBI*VZ (1,1)*PI*(R(1) **2-R(3) **2)

C OUTLET, ASSUMING VELOCITY IS NEGATIVE

DW(M, l)=RHO(M, 1) * ( ( (R(2*M-1) **2) *PI) **2)/BZAF(M, 1)

FLUXW(M, l)=RHO(M, 1) *VZ (M, 1) *PI* (R(2*M-1) **2)

C EAST BOUNDARY
DO 16 1=1,

M

DE(I,N)=0.

FLUXE (I,N)=0.

C CO-LOCATED EAST AND WEST FACES

DO 12 J=2,N

C UPWIND FACTOR FOR DENSITY

IF (VZ(I,J) .GE. 0.) THEN

GAM=0 .

5

ELSE

GAM=-0.5
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ENDIF

C WEST - EAST PRESSURE INCREMENT COEFFICIENTS
DW(I, J)=( (0.5+GAM) *RHO(I, J-l) +(0.5-GAM) *RHO(I, J)

)

+ *( (PI* (R (2*1-1) **2-R (2*1 + 1 ) **2) ) **2) *EP (I) /BZAF(I, J)

DE(I, J-1)=DW(I, J)

FLUXW(I, J) =
( (0.5+GAM) *RHO ( I , J-l ) + (0 . 5-GAM) *RHO(I, J) )

+ *VZ (I,J)*PI*(R(2*I-1)**2-R(2*I+1)**2)
FLUXE ( I , J- 1 ) =FLUXW ( I , J)

12 CONTINUE

16 CONTINUE

C SOUTH AND NORTH FACES

C BOUNDARY CONDITIONS
DO 28 J=1,N

DN(M, J)=0.

FLUXN(M, J) =0.0

DS (1, J)=0.

FLUXS(1, J) =0.0

C CO-LOCATED NORTH AND SOUTH FACES

DO 24 1=2,

M

C UPWIND DENSITY

IF ((VR(I,J)) .GE. 0.) THEN

ALF=0.5

ELSE

ALF=-.5

ENDIF

EPS=MIN(EP (I) ,EP (1-1) )

C NORTH SOUTH PRESSURE INCREMENT COEFFICIENTS

DS (I, J)=( (0.5+ALF) *RHO(I-l, J)+(0.5-ALF) *RHO(I, J)

)

+ *((2*PI*R(2*I-1) *DZ) **2) *EPS/ (BRAF(I, J)

)

DN(I-1, J)=DS(I, J)

FLUXS (I, J)=( (0.5+ALF) *RHO ( 1-1 , J) + (0 . 5-ALF) *RHO(I, J)

)

+ *VR(I, J) *2*PI*R(2*I-1) *DZ

FLUXN(I-1, J)=FLUXS (I, J)

24 CONTINUE

28 CONTINUE

C CENTRAL POINT COEFFICIENTS AND FLUX DIVERGENCE

DO 36 1=1,

M

DO 32 J=1,N

DC (I, J)=DE (I, J)+DW(I, J)+DS (I, J)+DN(I, J)

DIVFLX(I, J)=FLUXE(I, J) -FLUXW ( I , J) +FLUXN ( I , J) -FLUXS (I, J)

C CONSTRUCT SOLUTION MATRIX AND CONSTANT VECTOR

K=(I-1) *N+J

SOLP (K,K)=-( (DV(I)/DT) * (RHOO ( I , J) /PO ( I , J) ) +DC(I, J)

)

IF (J .LT. N) SOLP (K,K+1)=DE(I, J)

IF ((K+N) .LE. (M*N) ) SOLP (K, K+N) =DN ( I , J)

IF (J .GT. 1) SOLP (K,K-1)=DW(I, J)

IF ((K-N) .GT. 0) SOLP (K,K-N)=DS (I, J)

CONVP (K) =DIVFLX ( I , J)

C WRITE (3, *) I, FLUXS (I, J) ,FLUXN(I, J) , FLUXW (I, J) , FLUXE (I, J)

C WRITE (3, *)DS(I, J) ,DN(I, J) , DW ( I , J) , DE ( I , J) ,DC(I, J)

C WRITE (3, *)DV(I) , RHOO (I, J) ,PO(I, J) ,BZAF(I, J) ,BRAF(I, J)

32 CONTINUE

36 CONTINUE
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NP=100

MP=1

MPP = 1

NR=M*N

C CALL SOLUTION SUBROUTINES

CALL LUDCMP (SOLP,NR,NP, INDX,D)

CALL LUBKSB (SOLP,NR,NP, INDX, CONVP)

C SOLUTION RETURNED AS MODIFIED CONVP VECTOR
C UPDATE PRESSURES

1 = 1

J=l

DO 40 K=1,M*N

PST(I, J)=PO(I, J) +CONVP (K)

PIO(I, J)=CONVP (K)

C WRITE (3, *)P (I, J) ,PIO(I, J)

IF ((K-(I-1)*N) .EQ. N) THEN

J=l

1=1 + 1

ELSE

J=J+1

ENDIF

40 CONTINUE

C UPDATE DENSITIES BASED ON NEW PRESSURES

DO 52 1=1,

M

DO 4 4 J=1,N

RHST(I, J)=PTDENS (PST ( I , J) , TG ( I , J) , UNITS)

4 4 CONTINUE

C UPDATE VELOCITIES

C AXIAL VELOCITIES

C GENERAL FORM OF THE EQUATIONS

C VZSTT(I, J)=(DW(I, J) * (PIO(I, J-l)-PIO(I, J) )+VZ (I, J) *RHZOLD*AREA)

C /(RHZ*AREA)

C IF (I .EQ. M-l) GOTO 52

DO 4 8 J=2,N

C UPWIND TO COMPUTE DENSITY AT VZ

IF (VZ(I,J) .GT. 0.) THEN

RHZOLD=RHO(I, J-l)

RHZ=RHST(I, J-l)

ELSE

RHZOLD=RHO ( I , J)

RHZ=RHST(I, J)

ENDIF

C COMPUTE AXIAL VELOCITY, SECOND ESTIMATE

VZSTT(I, J)=(DW(I, J) * (PIO(I, J-l)-PIO(I, J) )/ (RHZ*PI

+ *(R(2*I-1)**2-R (2*1+1) **2) ) )+VZ(I, J) *RHZOLD/RHZ

48 CONTINUE

52 CONTINUE
C VELOCITY AT THE BOUNDARY, J=l

VZSTT(1, 1)=DW(1, 1) * (-PIO(l, 1) )/ (RHOBI*PI* (R ( 1
) * *2-R (3 ) * *2 )

)

+ +VZ(1,1)

VZSTT(M, 1)=DW(M, 1)* (-PIO(M, 1) )/ (RHO (M, 1
) *PI * (R (2*M-1 ) **2) )

+ +VZ (M, 1) * (RHO(M, 1) /RHST(M, 1)

)

DO 56 1=2, M-l
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VZ (I, 1)=0

56 CONTINUE

C RADIAL VELOCITY

C GENERAL FORM OF THE EQUATION

C VRSTTd, J) = (DS(I, J) * (P 10(1-1, J) -P 10(1, J) +R ( I, J) *RHZOLD *AREA) /

C (RHZ*AREA)

DO 64 1=2,

M

DO 60 J=1,N

C UPWIND TO DETERMINE DENSITY AT VR

IF (VR(I,J) .GT. 0.) THEN

RHZOLD=RHO(I-l, J)

RHZ=RHST(I-1, J)

ELSE

RHZOLD=RHO(I, J)

RHZ=RHST(I, J)

END IF

C COMPUTE RADIAL VELOCITY, SECOND ESTIMATE

VRSTTd, J) = (DS(I, J) * (P 10(1-1, J) -P 10 (I, J) )/(RHZ*2*PI*
+ R(2*I-1)*DZ)) +VR(I, J) *RHZOLD/RHZ

60 CONTINUE

64 CONTINUE

C CHECK OVERALL SYSTEM MASS BALANCE

GI=RH0BI*VZSTT(1, 1)*PI*(R(1)**2-R(3)**2)
GD=RHST(M, 1) *VZSTT(M, 1) *PI* (R(2*M-1) **2)

C WRITE(3,*) GI,GD

WRITE (6,*) GI,GD

RETURN
END

C

C SUBROUTINE TO PERFORM THE ENTHALPY BALANCE

C

SUBROUTINE ENTHLP (VZSTT, VRSTT, RHO, RHOO, RHST, PST, P 10, H, HO,

+ UBAR, TSST, TGO, ANN, HST, TGST, AV, QIN, TSSTT)

COMMON/GEOTRY/R(4 5) , EP (20) ,DZ,THKCF (30) ,DV(20) , DP , DPCF, M, N, DT

COMMON/BOUCON/PBI , PBO, TBI , RHOBI , HBI

COMMON/ SOLVER/ SOLH( 100, 100)

INTEGER M,N, I, J, K, L, UNITS , NP

REAL VZSTT (10, 11) , VRSTT (11, 10) , RHST (10, 10) , RHO (10, 10)

REAL PST (10, 10) ,MWH(10, 10) ,MEH(10, 10) ,MSH(10, 10) ,MNH(10, 10)

REAL AWH(10, 10) ,AEH(10, 10) , ASH (10, 10) ,ANH(10, 10) , AOH(10, 10)

REAL Q(10, 10) ,PIO(10, 10) ,H(10, 10) , HST (10, 10) , TGST (10, 10)

REAL CONVH(IOO) , GAM, HSP , QUAL ( 10 , 10)

REAL RHOO (10, 10) , HO (10, 10)

REAL UBAR (10, 10) , TSST (10, 10 ) , AV ( 10) , QIN ( 10 , 10 ) , TGO (10, 10)

REAL ANN (10, 10) , MIKE (10, 10) , CONST (10, 10) , TSSTT (10, 10)

PARAMETER (PI=3. 14159, UNITS=1)

C INITIALIZE THE COEFFICIENT MATRIX

DO 10 1=1, M*N

DO 5 J=1,N*M
SOLH(I, J)=0.

5 CONTINUE

10 CONTINUE
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C CALCULATE ENTHALPY FLUX AND ENTHALPY COEFFICIENTS
C EAST AND WEST FACES

DO 30 J=2,N

DO 20 1=1,

M

C UPWIND DENSITY

IF (VZSTT(I,J) .GT. 0.) THEN
GAM=0 .

5

ELSE

GAM=-0.5

ENDIF

C WEST FACE MASS FLUX
MWH(I, J)=( (0.5+GAM) *RHST ( I , J-l ) +(0.5 -GAM) *RHST(I, J) ) *PI

+ *(R(2*I-1)**2-R (2*1+1) **2) *VZSTT(I, J)

IF (I .EQ. (M-l) ) MWH(I,J)=0.
C WEST FACE COEFFICIENT

AWH(I, J)=MWH(I, J) * (0.5+GAM)

C EAST FACE MASS FLUX

MEH ( I , J- 1 ) =MWH ( I , J)

C EAST FACE COEFFICIENT

AEH(I, J-1)=-MEH(I, J-l) * (0.5-GAM)

20 CONTINUE

30 CONTINUE

C BOUNDARIES, EAST AND WEST FACES NOT CO-LOCATED

C INLET PORT ASSUMING VELOCITY IS POEITIVE
MWH(1, l)=RHOBI*VZSTT(l, 1) *P I* (R ( 1 ) * *2-R (3 ) * *2

)

AWH (1,1) =MWH (1,1)

C OUTLET PORT ASSUMING VELOCITY IS NEGATIVE

MWH(M, 1)=RHST(M, 1) *VZSTT(M, 1) *PI* (R(2*M-1) **2)

AWH(M, 1)=0.

DO 40 1=2, M-l

MWH(I, 1)=0.

AWH ( I , 1 ) =0

.

MEH(I,N)=0.

AEH(I,N)=0.

40 CONTINUE

MEH(1,N)=0.

AEH(1,N)=0.

MEH(M,N)=0.

AEH(M,N)=0.

C NORTH AND SOUTH FACES

DO 60 J=1,N

C BOUNDARY FACES

MNH(M, J)=0.

ANH(M, J)=0.

MSH(1, J)=0.

ASH(1, J)=0.

DO 50 1=2,

M
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C UPWINDING DENSITY

IF (VRSTT(I,J) .GE. 0.) THEN
ALF=0.5

ELSE

ALF=-0.5

END IF

C SOUTH FACE MASS FLUX
MSH(I, J)=( (0.5+ALF) *RHST ( 1-1

,

J) +(0.5-ALF) *RHST(I, J)

)

+ *VRSTT(I, J) *2*PI*R(2*I-1) *DZ

C SOUTH COEFFICIENT

ASH (I, J)=MSH(I, J) * (0.5+ALF)

C NORTH FACE MASS FLUX
MNH(I-1, J)=MSH(I, J)

C NORTH COEFFICIENT

ANH(I-1, J)=-MNH(I-1, J) * (0.5-ALF)

50 CONTINUE

60 CONTINUE
C CALCULATE CENTRAL COEFFICIENT AND HEAT INPUT FROM THE SOLID PHASE

DO 80 J=1,N

AOH ( 1 , J) = - ( AEH ( 1 , J) +AWH ( 1 , J) +ANH ( 1 , J) +ASH ( 1 , J) +MEH ( 1 , J)

+ -MWH(1, J)+MNH(1, J) -MSH(1, J) )

MIKE ( 1 , J) = (DV ( 1 ) *RHST ( 1 , J) /DT-AOH ( 1 , J) )

CONST (1, J)=(DV(1) /DT) * (P 10 (1 , J) +RHO ( 1 , J) *HO(l, J)

)

AOH (M, J) = - (AEH (M, J) +AWH (M, J) +ANH (M, J) +ASH (M, J) +MEH (M, J)

+ -MWH(M, J)+MNH(M, J) -MSH (M, J)

)

MIKE (M, J) = (DV (M) *RHST (M, J) /DT-AOH (M, J)

)

CONST (M, J) = (DV(M) /DT) * (P 10 (M, J) +RHO (M, J) *HO(M, J) )

DO 70 I=2,M-1

CPEE=PTCP (PST(I, J) ,TGO(I, J) , UNITS)

AOH ( I , J) = - (AEH ( I , J) +AWH ( I , J) +ANH ( I , J) +ASH ( I , J) +MEH ( I , J)

+ -MWH(I, J)+MNH(I, J) -MSH (I, J)

)

MIKE (I, J) = (DV(I) *RHST(I, J) /DT-AOH (I, J) +UBAR(I, J) *DV(I)

+ *AV(I) /(CPEE*EP(I) )-( (UBAR(I, J) *DV(I) *AV(I)/EP (I) ) **2)

+ / (ANN(I, J) *CPEE)

)

CONST (I, J)=UBAR(I, J) * (DV(I)/EP(I) ) *AV(I) * (TSST(I, J)

+ -TGO(I, J) + (HO(I, J) /CPEE) )-( ( (UBAR(I, J) *DV(I)/EP(I) )
*

+ AV(I) ) **2) *( (HO (I, J) /CPEE) )/ANN(I, J) + (DV ( I ) /DT)

+ *(PIO(I, J)+RHO(I, J)*HO(I, J) )

70 CONTINUE

80 CONTINUE

C CONSTRUCT SOLUTION MATRIX AND CONSTANT VECTOR

DO 100 1=1,

M

DO 90 J=1,N

K=(I-1) *N+J

SOLH(K,K)=-MIKE(I, J)

IF (J .LT. N) SOLH(K,K+l)=AEH(I, J)

IF (K+N .LE. M*N) SOLH (K, K+N) =ANH ( I , J)

IF (J .GT. 1) SOLH(K,K-l)=AWH(I, J)

IF (K-N .GT. 0) SOLH(K,K-N)=ASH(I, J)

CONVH (K) =-CONST (I , J)

90 CONTINUE

100 CONTINUE
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C0NVH(1)=C0NVH(1) -(AWH(1, 1) *HBI)

C CALL SOLUTION SUBROUTINES

C NOTE THAT THE UPDATED ENTHALPIES ARE RETURNED AS A MODIFIED
C CONVH VECTOR

NP=100
CALL LUDCMP (SOLH, (M*N) , NP , INDX, D)

CALL LUBKSB(SOLH, (M*N) , NP , INDX, CONVH)

C CONVERT UPDATED ENTHALPIES TO I, J SUBSCRIPTED FORM
1=1

J=l

DO 101 K=1,M*N

HST(I, J)=CONVH(K)

IF ((K-(I-1)*N) .EQ. N) THEN

J=l

1=1+1

ELSE

J=J+1

END IF

101 CONTINUE

C UPDATE GAS PHASE TEMPERATURE MATRIX

DO 103 1=1,

M

DO 102 J=1,N

TGST(I, J)=PHTEMP (PST (I, J) , HST(I, J) , QUAL ( I , J) , UNITS)

102 CONTINUE

103 CONTINUE

C UPDATE TSST TO TSSTT AND CALCULATE HEAT TRANSFERRED FROM THE SOLID

C TO THE GAS PHASE

DO 105 1=2, M-l

DO 104 J=1,N

TSSTT (I, J)=TSST(I, J) +UBAR(I, J) *DV(I) *AV(I) * (TGST(I, J)

+ -TGO(I, J) )/ (EP (I) *ANN(I, J) )

QIN(I, J)=UBAR(I, J) * (DV(I) /EP (I) ) *AV(I) * (TSSTT (I, J)

+ -TGST(I,J))

104 CONTINUE

105 CONTINUE

RETURN

END

C

C THE SECOND MOMENTUM CORRECTOR - THE PRESSURE EQUATION

C

SUBROUTINE PRESII (VRST, VZST, VRSTT, VZSTT, P , PST, PO, TGST, RHOO, RHST,

+ VRSTTT , VZ STTT , P STT , RHSTT , BVZ , BVR , ARF , AZF , AWR , AER , ASR , ANR , AWZ

,

+ AEZ, ASZ, ANZ,RHO)

COMMON/GEOTRY/R(4 5) , EP (20) , DZ,THKCF(30) ,DV(20) , DP , DPCF, M, N, DT

COMMON/BOUCON/PB I , PBO, TBI , RHOBI , HBI

COMMON/SOLVER/SOLC(100, 100)

INTEGER M,N, I, J,K,UNITS,NP

REAL VRST (11, 10) , VRSTT (11, 10) , VZST (10, 11) , VZSTT (10, 11)

REAL RHOO (10, 10) , RHST (10, 10 ) , P ( 10, 10) , PO ( 10, 10) , TGST (10, 10)

REAL HPRK10, 10) ,HPRIZE(10, 10) ,HPRIZW(10, 10) ,HPRIRN(10, 10)

REAL HPRIRS(10, 10) ,RHO(10, 10)

REAL BVR (11, 10) , BVZ (10, 11) , ARF (11, 10) , AZF (10, 11)
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REAL DTC(10, 10) , DTW(10, 10) , DTE (10, 10) , DTS (10, 10) , DTN(10, 10)

REAL VRSTTT(11, 10) , VZSTTT(10, 11), PI ST (10, 10) ,RHSTT(10, 10)

REAL PSTT(10, 10) , EPS, RHIN, FAEW ( 10 ) , FAS (10) , FAN (10)

REAL AVEL(10, 10) ,
AVELW(10, 10) , AVELE (10, 10) , AVELS(10, 10)

REAL AVELN(10, 10) ,CONVC(100) ,PST(10, 10)

REAL ANR(11, 10) , ASR(11, 10) , AER(11, 10) ,AWR(11, 10)

REAL ANZ (10,11),ASZ(10,11),AEZ(10,11) , AWZ (10, 11)

PARAMETER (PI=3. 14159, UNITS=1)

C INITIALIZE THE COEFFICIENT MATRIX
DO 4 1=1, M*N

DO 2 J=1,M*N

SOLC(I, J)=0.

2 CONTINUE

4 CONTINUE

C GENERAL FORM OF THE EQUATION
C - (DTO-RHST*DV/ (PST*DT) ) *PIST + DTW*PISTW + DTE*PISTE + DTS*PISTS
C + DTN*PISTN =

( (DV/DT-AO/RHST) ** (-1) )
* (DEL(H' (VXSTT-VXST) ) *A

C + DEL (AO ( (RHST-RHO) /RHST) *VXSTT*A) ) -DV/DT* (RHST/PST-RHO/P)

C

C CALCULATE THE PRESSURE INCREMENT COEFFICIENTS
C EAST AND WEST FACES

C BOUNDARIES

DO 10 1=2, M-l

FAEW(I)=PI* (R(2*I-1)**2-R(2*I+1)**2)

DTW(I, 1)=0.

C DTW(I, 1)=(FAEW(I) **2)*EP (1)/ (BVZ (1,1)- (AZF(I, 1) /RHST (I, 1) )

)

10 CONTINUE

C INLET, ASSUMING THE VELOCITY IS POSITIVE

FAEW(1)=( (R(1)**2-R(3)**2)*PI)

DTW(1, 1)=(FAEW(1) **2) / (BVZ (1,1)-(AZF(1,1) /RHOBI)

)

C OUTLET, ASSUMING THE VELOCITY IS NEGATIVE

FAEW(M)=( (R(2*M-1) **2) *PI)

DTW(M, 1) = (FAEW(M) **2) / (BVZ (M, 1) -(AZF(M, 1) /RHST (M, 1) ) )

C EAST BOUNDARY

DO 30 1=1,

M

DTE(I,N)=0.

C CO-LOCATED EAST AND WEST FACES

DO 20 J=2,N

C UPWIND FOR DENSITY
IF (VZSTT(I,J) .GE. 0.) THEN

GAM=0 .

5

ELSE

GAM=-0 .

5

ENDIF

C WEST AND EAST PRESSURE INCREMENT COEFFICIENT

RHIN= (0 . 5+GAM) *RHST ( I , J-l ) + (0 . 5-GAM) *RHST (I , J)

DTW(I, J) = (FAEW(I) **2) *EP(I) / (BVZ ( I , J) - ( AZF (I , J) /RHIN)

)

DTE(I, J-1)=DTW(I, J)

20 CONTINUE

30 CONTINUE

C NORTH AND SOUTH FACE COEFFICIENTS

C BOUNDARY CONDITIONS

C CALCULATE THE FACE AREAS
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DO 50 1=2,

M

FAS(I)=(2*PI*R(2*I-1) *DZ)

FAN(I-1)=FAS(I)

50 CONTINUE

FAN(M)=0.

DO 70 J=1,N

DTN(M, J)=0.

DTS(1, J)=0.

C CO-LOCATED NORTH AND SOUTH FACE COEFFICIENTS
DO 60 1=2,

M

C UPWIND DENSITY

IF (VRSTT(I,J) .GE. 0.) THEN
ALF=0.5

ELSE

ALF=-0.5
END IF

EPS=MIN(EP(I) , EP(I-l)

)

C NORTH AND SOUTH COEFFICIENTS

RHIN=(0.5+ALF) *RHST ( 1-1 , J) + (0 . 5-ALF) *RHST(I, J)

DTS (I, J) = (FAS (I) **2) *EPS/ (BVR(I, J) - (ARF(I, J) /RHIN)

)

DTN(I-1, J)=DTS(I, J)

60 CONTINUE

70 CONTINUE

C CENTRAL POINT COEFFICIENT

DO 90 1=1,

M

DO 80 J=1,N

DTC ( I , J) =DTE ( I , J) +DTW ( I , J) +DTS ( I , J) +DTN ( I , J)

+ +( (RHST(I, J) *DV(I) )/ (PST(I, J) *DT)

)

C CONSTRUCT THE COEFFICIENT MATRIX

K=(I-1) *N+J

SOLC(K,K)=-DTC(I, J)

IF (J .LT. N) SOLC(K,K+l)=DTE(I, J)

IF ((K+N) .LE. (M*N)) SOLC (K, K+N) =DTN (I , J)

IF (J .GT. I) SOLC(K,K-l)=DTW(I, J)

IF (<K-N) .GT. 0) SOLC(K,K-N)=DTS(I, J)

80 CONTINUE

90 CONTINUE

C THE CONSTANT TERMS

DO 110 1=2, M-l

DO 100 J=2,N-1

C UPWIND FOR DENSITY

IF (VZSTT(I, J+l) .GE. 0.) THEN

RHE=RHST(I, J)

RHEE= ( RHST ( I , J) -RHO ( I , J) ) / RHO ( I , J)

ELSE

RHE=RHST(I, J+l)

RHEE=(RHST(I, J+l) -RHO (I, J+l) ) /RHO (I, J+l)

END IF

IF (VRSTT(I+1, J) .GE. 0.) THEN

RHN=RHST(I, J)

RHNN=(RHST(I, J) -RHO (I, J) ) /RHO (I, J)

ELSE

RHN=RHST(I+1, J)
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RHNN=(RHST(I+1, J) -RHO ( 1+1 , J) )/RHO(I+l, J)

END IF

C CIRCULATION OF THE CONSTANTS ON CO-LOCATED FACES

HPRIZEd, J) = (AWZ(I, J+l) *(VZSTT(I, J)-VZST(I, J) )

+ +AEZ (I, J+l) * (VZSTT(I, J+2)-VZST(I, J+2)

)

+ +ANZ (I, J+l) * (VZSTT(I+1, J+l) -VZST(I+1, J+l)

)

+ +ASZ (I, J+l) * (VZSTT(I-1, J+l) -VZST(I-1, J+l) )

)

+ *FAEW(I) / (BVZ (I, J+l) - (AZF(I, J+l) /RUE)

)

HPRIZW(I, J+1)=HPRIZE(I, J)

HPRIRN(I, J)=(AWR(I+1, J) * (VRSTT(I+1, J-l) -VRST ( 1+1 , J-l)

)

+ +AER(I + 1, J) * (VRSTT(I+1, J+l ) -VRST ( 1 + 1 , J+l)

)

+ +ASR(I+1, J) * (VRSTT(I, J) -VRST (I, J)

)

+ +ANR(I + 1, J) * (VRSTTd+2, J) -VRST (1+2, J) ) )

+ *FAN(I)/ (BVRd + 1, J)-(ARF(I + 1, J) /RHN) )

HPRIRS (1+1, J) =HPRIRN(I, J)

AVELE (I, J)=AZF(I, J+l) *RHEE*VZSTT ( I, J+l)

+ *FAEW(I) / (BVZ (I, J+l) -(AZF(I, J+l) /RHE)

)

AVELW ( I , J+l ) =AVELE (I , J)

AVELNd, J)=ARF(I + 1, J) *RHNN*VRSTT ( 1 + 1 , J)

+ *FAN(I)/ (BVR(I+1, J)-(ARF (1+1, J) /RHN)

)

AVELS (1 + 1, J)=AVELN(I, J)

100 CONTINUE

110 CONTINUE
C CALCULATION OF THE CONSTANTS ALONG THE BOUNDARIES

C THE INLET PORT

IF (VZSTT(1,2) .GE. 0.) THEN

RHE=RHST(1, 1)

RHEE=(RHST(1, l)-RHO(l, 1) )/RHO(l, 1)

ELSE
RHE=RHST(1,2)

RHEE= (RHST (1,2) -RHO (1,2)) /RHO (1,2)

END IF

HPRIZEd, 1) = (AWZ(1,2) *(VZSTT(1, 1)-VZST(1, 1) )

+ +AEZ (1,2) *(VZSTT(1, 3) -VZST(1, 3)

)

+ +ANZ(1,2) *(VZSTT(2, 2) -VZST(2,2) )

)

+ *FAEW(1)/ (BVZ (1,2)-(AZF(1,2)/RHE)

)

HPRIZWd, 1) = (AEZ(1, 1) * (VZSTT(1,2) -VZST(1,2) ) )

+ *FAEW(1)/ (BVZ(l,l)-(AZF(l,l)/RHOBI)

)

IF (VRSTT(2,1) .GE. 0.) THEN

RHN=RHST(1, 1)

RHNN= (RHST (1,1) -RHO (1,1)) /RHO (1,1)

ELSE

RHN=RHST(2, 1)

RHNN=(RHST(2, 1) -RHO (2, 1) )/RHO(2, 1)

END IF

HPRIRNd, 1) = (AER(2, 1) *(VRSTT(2,2) -VRST (2, 2) )

+ +ANR(2, 1) *(VRSTT(3, 1) -VRST (3, 1) )

)

+ *FAN(1)/(BVR(2, 1)-(ARF(2, D/RHN) )

HPRIRSd, 1)=0.

AVELE (1,1) =AZF (1,2) *RHEE*VZSTT (1,2)

+ *FAEW(1)/(BVZ(1,2)-(AZF(1,2)/RHE)

)

AVELW (1, 1)=0.

AVELN(1,1)=ARF(2, 1) *RHNN*VRSTT (2, 1)
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+ *FAN(1)/ (BVR(2, 1)-(ARF(2, D/RHN) )

AVELSCL, 1)=0.

THE OUTLET PORT

IF (VZSTT(M,2) .GE. 0.) THEN
RHE=RHST(M, 1)

RHEE= (RHST (M, 1 ) -RHO (M, 1 ) ) /RHO (M, 1

)

ELSE

RHE=RHST(M,2)

RHEE= (RHST (M, 2 ) -RHO (M, 2 ) ) /RHO (M, 2

)

ENDIF
IF (VRSTT(M, 1) .GE. 0.) THEN

RHS=RHST(M-1, 1)

RHSS=(RHST(M-1, 1) -RHO(M-l, 1) ) /RHO(M-l, 1)

ELSE

RHS=RHST(M, 1)

RHSS= (RHST (M, 1
) -RHO (M, 1 ) ) /RHO (M, 1

)

ENDIF

HPRIZE(M, 1) = (AWZ(M, 2) * (VZSTT(M, 1) -VZST(M, 1) )

+ +AEZ(M, 2) * (VZSTT(M, 3) -VZST(M, 3)

)

+ +ASZ (M, 2) * (VZSTT(M-1, 2) -VZST(M-1, 2) )

)

+ *FAEW(M) / (BVZ (M,2)- (AZF (M,2) /RHE)

)

HPRIZW(M, 1) = (AEZ (M, 1) * (VZSTT(M, 2) -VZST (M, 2) )

)

+ *FAEW (M) / (BVZ (M, 1 ) - (AZF (M, 1 ) /RHST (M, 1 ) ))

HPRIRN(M, 1)=0.

HPRIRS(M, 1)=(AER(M, 1) * ( VRSTT (M, 2 ) -VRST (M, 2)

)

+ +ASR(M, 1) * (VRSTT(M-1, 1) -VRST(M-1, 1) )

)

+ *FAS(M)/(BVR(M, 1)-(ARF(M, 1)/RHS)

)

AVELE (M, 1)=AZF(M, 2) *RHEE*VZSTT (M, 2)

+ *FAEW (M) / (BVZ (M, 2 ) - (AZF (M, 2 ) /RHE)

)

AVELW (M, 1 ) =AZF (M, 1
)
* ( (RHST (M, 1

) -RHO (M, 1 ) ) /RHO (M, 1 )
) *VZSTT (M, 1

)

+ *FAEW (M) / (BVZ (M, 1
) - (AZF (M, 1 ) /RHST (M, 1 ) )

)

AVELN(M, 1)=0.

AVELS(M, 1)=ARF(M, 1) *RHSS*VRSTT (M, 1)

+ *FAS(M)/(BVR(M, 1)-(ARF(M, D/RHS) )

THE CORNER CONTROL VOLUMES

IF (VZSTT(1,N) .GE. 0.) THEN

RHW=RHST(1,N-1)

RHWW= (RHST (1,N-1) -RHO (1,N-1) ) /RHO ( 1 , N-l

)

ELSE
RHW=RHST(1,N)

RHWW= ( RHST (1,N) -RHO (1,N) ) /RHO(l,N)

ENDIF

IF (VRSTT (2, N) . GE . 0.) THEN

RHN=RHST ( 1 , N

)

RHNN= (RHST (1,N) -RHO (1,N) )/RHO(l,N)

ELSE

RHN=RHST(2,N)
RHNN=(RHST(2,N)-RHO(2,N) )/RHO(2,N)

ENDIF

HPRIZE(1,N)=0.

HPRIZW(1,N)=(AWZ(1,N) * (VZSTT ( 1 , N-l ) -VZST ( 1, N-l )

)

+ +ANZ(1,N) * (VZSTT (2, N) -VZST (2, N) ) )

+ *FAEW(1)/ (BVZ(1,N)-(AZF(1,N)/RHW)

)
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HPRIRN(1,N)=(AWR(2,N) * (VRSTT (2, N-l ) -VRST(2,N-1)

)

+ +ANR(2,N) *(VRSTT(3,N)-VRST(3,N) )

)

+ *FAN(1) /(BVR(2,N) - ( ARF (2, N) /RHN)

)

HPRIRS(1,N)=0.

AVELE(1,N)=0.

AVELW(1,N)=AZF(1,N) *RHWW*VZSTT ( 1 , N)

+ *FAEW(1) / (BVZ (1,N) - (AZF(1,N) /RHW)

)

AVELN(1,N)=ARF(2,N) *RHNN*VRSTT (2 , N)

+ *FAN(1) / (BVR(2,N) -(ARF(2,N) /RHN)

)

AVELS (1,N)=0.

IF (VZSTT(M,N) .GE. 0.) THEN

RHW=RHST(M,N-1)

RHWW=(RHST(M,N-1) -RHO(M,N-l) ) /RHO(M,N-l)

ELSE
RHW=RHST(M,N)

RHWW=(RHST(M,N) -RHO(M,N) ) /RHO(M,N)

END IF

IF (VRSTT (M,N) . GE . 0.) THEN

RHS=RHST(M-1,N)

RHSS=(RHST(M-1,N) -RHO(M-l,N) ) /RHO(M-l,N)

ELSE

RHS=RHST(M,N)

RHSS=(RHST(M,N) -RHO(M,N) ) /RHO(M,N)

ENDIF

HPRIZE(M,N)=0.

HPRIZW(M,N)=(AWZ (M,N) * (VZSTT (M, N-l ) -VZST(M,N-1)

)

+ +ASZ (M,N) * (VZSTT(M-1,N) -VZST(M-1,N) )

)

+ *FAEW(M)/ (BVZ (M,N)- (AZF (M, N) /RHW)

)

HPRIRN(M,N)=0.

HPRIRS(M,N)=(AWR(M,N) * (VRSTT (M, N-l) -VRST (M, N-l )

)

+ +ASR(M,N) * (VRSTT (M-1,N) -VRST(M-1,N) )

)

+ *FAS (M) / (BVR(M,N) -(ARF(M,N) /RHS)

)

AVELE (M,N)=0.

AVELW (M, N) =AZF (M, N) *RHWW*VZSTT (M, N)

+ *FAEW(M) / (BVZ (M,N)- (AZF (M,N) /RHW)

)

AVELN(M,N)=0.

AVELS (M, N) =ARF (M, N) *RHSS*VRSTT (M, N)

+ *FAS(M) / (BVR(M,N) - (ARF (M, N) /RHS)

)

THE EAST AND WEST BOUNDARY CONTROL VOLUMES

DO 120 1=2, M-l

IF (VZSTT(I,2) .GE. 0.) THEN

RHE=RHST(I, 1)

RHEE= (RHST (1,1) -RHO (1,1)) /RHO (1,1)

ELSE

RHE=RHST(I, 2)

RHEE=(RHST(I,2) -RHO (I, 2) ) /RHO (I, 2)

ENDIF

IF (VRSTT(I+1, 1) .GE. 0.) THEN

RHN=RHST(I, 1)

RHNN= (RHST (1,1) -RHO (1,1)) /RHO (1,1)

ELSE

RHN=RHST(I+1, 1)

RHNN=(RHST(I+1, 1) -RHO(I+l, 1) )/RHO(I+l, 1)
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END IF

IF (VRSTT (1,1) .GE. 0.) THEN

RHS=RHST(I-1, 1)

RHSS=(RHST(I-1, l)-RHO(I-l, 1) ) /RHO(I-l, 1)

ELSE

RHS=RHST(I, 1)

RHSS= (RHST(I, 1) -RHO(I, 1) ) /RHO(I, 1)

END IF

HPRIZE(I, 1) = (AEZ (1,2)* (VZSTT (1 , 3) -VZST (1 , 3 ) )

+ +ANZ (1,2) * (VZSTT (1 + 1,21 -VZST (1 + 1,2)

)

+ +ASZ (1,2) * (VZSTT (1-1,2) -VZST (1-1,2) )

)

+ *FAEW(I) / (BVZ(I, 2) -(AZF(I,2) /RHE)

)

HPRIZW(I, 1)=0.

HPRIRN(I, 1)=(AER(I+1, 1) * (VRSTT ( 1+1 , 2 ) -VRST (1+1,2)

)

+ +ANR(I+1, 1) * (VRSTT (1+2, 1) -VRST (I +2, 1)

)

+ +ASR(I + 1, 1) * (VRSTT (I, 1) -VRST (I, 1) ) )

+ *FAN(I)/ (BVR(I+1, 1)-(ARF(I+1, 1)/RHN)

)

HPRIRS ( I , 1 ) = (AER (1,1)* (VRSTT (1,2) -VRST (1,2))

+ +ANR(I, 1) * (VRSTT ( I +1, 1) -VRST(I+1, 1)

)

+ +ASR(I, 1) * (VRSTT (
I -1, 1) -VRST(I-1, 1) ) )

+ *FAS (I)/ (BVR(I, 1)- (ARF (I, 1) /RHS)

)

AVELE(I, 1)=AZF (1,2) *RHEE*VZSTT ( 1 , 2

)

+ *FAEW(I) /(BVZ(I, 2) -(AZF(I,2) /RHE)

)

AVELW ( I , 1 ) =0

.

AVELN(I, 1)=ARF(I+1, 1) * RHNN*VRSTT ( 1+1 , 1)

+ *FAN(I) / (BVRU + 1, 1)-(ARF (1 + 1, 1)/RHN) )

AVELS (I, 1)=ARF(I, 1) *RHSS*VRSTT (I , 1)

+ *FAS (I)/ (BVR(I, 1)- (ARF (1,1) /RHS)

)

IF (VZSTT ( I, N) .GE. 0.) THEN

RHW=RHST(I,N-1)

RHWW=(RHST(I,N-1) -RHO(I,N-l) ) /RHO(I,N-l)

ELSE

RHW=RHST(I,N)

RHWW= (RHST(I,N) -RHO(I,N) ) /RHO(I,N)

ENDIF

IF (VRSTT ( I, N) .GE. 0.) THEN

RHS=RHST(I-1,N)

RHSS=(RHST(I-l,N)-RHO(I-l,N) ) /RHO(I-l,N)

ELSE

RHS=RHST(I,N)

RHSS=(RHST(I,N)-RHO(I,N) ) /RHO(I,N)

ENDIF

IF (VRSTT (I+1,N) .GE. 0.) THEN

RHN=RHST(I,N)

RHNN=(RHST(I,N)-RHO(I,N)

)

ELSE

RHN=RHST(I+1,N)

RHNN=(RHST(I+1,N) -RHO(I+l,N)

)

ENDIF
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HPRIZE(I,N)=0.

HPRIZW(I,N)=(AWZ(I,N) * (VZSTT (I , N-l ) -VZST (I , N-l)

)

+ +ANZ (I,N) * (VZSTT ( I +1,N) -VZST (I+1,N)

)

+ +ASZ (I,N) * (VZSTT(I-1,N)-VZST(I-1,N) )

)

+ *FAEW(I)/(BVZ(I,N) -(AZF(I,N) /RHW)

)

HPRIRN(I,N)=(AWR(I+1,N) * (VRSTT ( 1+1 , N-l ) -VRST ( 1+1 , N-l )

)

+ +ANR(I+1,N) * (VRSTT (1+2, N) -VRST ( I +2, N)

)

+ +ASR(I+1,N) * (VRSTT(I,N)-VRST(I,N) )

)

+ *FAN(I)/ (BVR(I+1,N)- (ARF(I+1,N)/RHN)

)

HPRIRS (I,N)«=(AWR(I,N) * (VRSTT (I , N-l ) -VRST ( I , N-l )

)

+ +ANR(I,N) * (VRSTT(I+1,N)-VRST(I+1,N)

)

+ +ASR ( I , N )
* (VRSTT (

I - 1 , N ) -VRST (
I - 1 , N ) )

)

+ *FAS (I) / (BVR(I,N) - (ARF (I,N) /RHS)

)

AVELE(I,N)=0.

AVELW ( I , N ) =AZF ( I , N ) * RHWW*VZSTT ( I , N

)

+ *FAEW(I) / (BVZ (I,N) -(AZF(I,N) /RHW)

)

AVELN(I,N)=ARF (I+1,N) *RHNN*VRSTT (1+1 , N)

+ *FAN(I)/ (BVR(I+1,N)- (ARF(I+1, 1)/RHN)

)

AVELS ( I , N) =ARF ( I , N) *RHSS *VRSTT ( I , N

)

+ *FAS (I) / (BVR(I,N) - (ARF (I,N)/RHS)

)

120 CONTINUE

C NORTH AND SOUTH BOUNDARY CONTROL VOLUMES
DO 130 J=2,N-1

IF (VZSTT (M, J) .GE. 0.) THEN

RHW=RHST(M, J-l)

RHWW=» (RHST (M, J-l) -RHO (M, J-l) ) /RHO (M, J-l)

ELSE

RHW=RHST(M, J)

RHWW= (RHST (M, J) -RHO (M, J) ) /RHO (M, J)

ENDIF

IF (VZSTT (M, J+l) .GE. 0.) THEN

RHE=RHST(M, J)

RHEE= (RHST (M, J) -RHO (M, J) ) /RHO (M, J)

ELSE

RHE=RHST(M, J+l)

RHEE- (RHST (M, J+l) -RHO (M, J+l) ) /RHO (M, J+l)

ENDIF

IF (VRSTT (M, J) .GE. 0.) THEN

RHS=RHST(M-1, J)

RHSS=(RHST(M-1, J) -RHO (M-l, J) ) /RHO(M-l, J)

ELSE

RHS=RHST(M, J)

RHSS= (RHST (M, J) -RHO (M, J) ) /RHO (M, J)

ENDIF

HPRIZE(M, J)=(AWZ (M, J+l) * (VZSTT (M, J) -VZST (M, J)

)

+ +AEZ (M, J+l) * (VZSTT (M, J+2) -VZST (M, J+2) )

+ +ASZ (M, J+l ) * (VZSTT (M-l , J+l ) -VZST (M-l , J+l ) )

)

+ *FAEW(M)/(BVZ(M, J+1)-(AZF(M, J+D/RHE) )

HPRIZW(M, J)=(AWZ (M, J) * (VZSTT (M, J-l ) -VZST (M, J-l )

)

+ +AEZ (M, J) * (VZSTT (M, J+l ) -VZST (M, J+l )

)

+ +ASZ (M, J) * (VZSTT (M-l, J) -VZST (M-l, J) )

)

+ *FAEW(M)/(BVZ(M, J)-(AZF(M, J) /RHW) )

HPRIRN(M, J)=0.
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AVELE(M, J)=AZF (M, J+l) *RHEE*VZSTT (M, J+l

)

+ *FAEW(M)/(BVZ(M, J+l) - ( AZF (M, J+l) /RHE)

)

AVELW (M, J) =AZF (M, J) *RHWW*VZSTT (M, J)

+ *FAEW (M) / (BVZ (M, J) - (AZF (M, J) /RHW)

)

AVELN(M, J)=0.

IF (VZSTT(1,J) .GE. 0.) THEN

RHW=RHST(1, J-l)

RHWW= (RHST(1, J-l) -RHO (1, J-l) ) /RHO(l, J-l)

ELSE

RHW=RHST(1, J)

RHWW= (RHST ( 1 , J) -RHO ( 1 , J) ) /RHO ( 1 , J)

ENDIF

IF (VZSTT(1, J+l) .GE. 0.) THEN

RHE=RHST(1, J)

RHEE= (RHST ( 1 , J) -RHO ( 1 , J) ) /RHO (1 , J)

ELSE

RHE=RHST(1, J+l)

RHEE=(RHST(1, J+l) -RHO (1, J+l) ) /RHO (1, J+l)

ENDIF

IF (VRSTT(2,J) .GE. 0.) THEN

RHN=RHST(1, J)

RHNN=(RHST(1, J) -RHO ( 1 , J) ) /RHO(l, J)

ELSE

RHN=RHST(2, J)

RHNN=(RHST(2, J) -RHO (2, J) ) /RHO (2, J)

ENDIF

HPRIZE(1, J) = (AWZ (1, J+l) * (VZSTTd, J)-VZST(1, J) )

+ +AEZ (1, J+l) * (VZSTTd, J+2) -VZ ST (1, J+2) )

+ +ANZ (1, J+l) * (VZSTT(2, J+l) -VZST(2, J+l) )

)

+ *FAEW(1) / (BVZ (1, J+l) -(AZF(1, J+l) /RHE)

)

HPRIZW(1, J) = (AWZ (1, J) * (VZSTTd, J-l) -VZSTd, J-l) )

+ +AEZ (1, J) * (VZSTTd, J+l) -VZST(1, J+l) )

+ +ANZ (1, J) * (VZSTT(2, J)-VZST(2, J) )

)

+ *FAEW ( 1 ) / (BVZ (1 , J) - (AZF (1 , J) /RHW)

)

HPRIRN(1, J) = (AWR(2, J)* (VRSTT (2 , J-l ) -VRST (2, J-l ) )

+ +AER(2, J) * (VRSTT (2, J+l) -VRST (2, J+l)

)

+ +ANR(2, J)* (VRSTT(3, J)-VRST(3, J) )

)

+ *FAN(1)/ (BVR(2, J)-(ARF(2, J)/RHN) )

HPRIRS (1, J)=0.

AVELE (1 , J) =AZF ( 1 , J+l ) *RHEE*VZSTT ( 1 , J+l

)

+ *FAEW(1)/(BVZ(1, J+l) - (AZF (1, J+l) /RHE)

)

AVELW (1, J)=AZF(1, J) *RHWW*VZSTT(1, J)

+ *FAEW(1)/ (BVZ(1, J) -(AZF(1, J) /RHW)

)

AVELNd, J)=ARF(2, J) *RHNN*VRSTT (2 , J)

+ *FAN(1)/ (BVR(2, J)-(ARF(2, J)/RHN) )

AVELSd, J)=0.

130 CONTINUE

C CALCULATE THE GRADIENT OF THE CONSTANT TERMS ACROSS THE CONTROL

C VOLUME

DO 150 1=1,

M

DO 140 J=1,N

HPRI (I, J)=HPRIZE(I, J) -HPRIZWd, J) +HPRIRN ( I , J) -HPRIRS (I, J)

AVEL ( I , J) =AVELE ( I , J) -AVELW ( I , J) +AVELN ( I , J) -AVELS ( I , J)
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14 CONTINUE

150 CONTINUE

C CONSTRUCT THE CONSTANT VECTOR

DO 170 1=1,

M

DO 160 J=1,N

K=(I-1) *N+J

CONVC(K)=HPRI (I, J)-AVEL(I, J)+ (DV(I) /DT)

*

+ ( (RHST(I, J)/PST(I, J) ) - (RHOO(I, J) /PO(I, J) )

)

160 CONTINUE

170 CONTINUE

C CALL SOLUTION ROUTINES

NP=100

NR=M*N
CALL LUDCMP (SOLC,NR,NP, INDX,D)

CALL LUBKSB(SOLC,NR,NP, INDX,CONVC)

C SOLUTION RETURNED AS A MODIFIED CONVC VECTOR
1=1

J=l

DO 180 K=1,NR

PSTT(I, J)=PST(I, J) +CONVC(K)

PIST(I, J)=CONVC(K)

IF ((K-(I-1)*N) .EQ. N)THEN

J=l

1 = 1 + 1

ELSE

J=J+1

END IF

180 CONTINUE

C UPDATE DENSITIES

DO 200 1=1,

M

DO 190 J=1,N

RHSTT(I, J)=PTDENS (PSTTd, J) ,TGST(I, J) , UNITS)

190 CONTINUE

200 CONTINUE

C UPDATE VELOCITIES

C AXIAL VELOCITY FIELD

C GENERAL FORM OF THE EQUATION

C VZSTTT = (HPRIZW-DTW* (PISTd, J)-PIST(I, J-l) ) -AVELW*VZSTT)

C * ( 1/ (RHSTT*FAEW) ) + (RHOLD*VZSTT) /RHZ

C

C UPWIND FOR DENSITY

DO 220 1=1,

M

C IF (I .EQ. M-l) GOTO 220

DO 210 J=2,N

IF (VZSTT(I,J) .GE. 0.) THEN

RHZ=RHSTT(I, J-l)

RHOLD=RHST ( I , J-l)

ELSE

RHZ=RHSTT(I, J)

RHOLD=RHST(I, J)

ENDIF

C COMPUTE AXIAL VELOCITY FIELD

VZSTTT (I, J) = (HPRIZW(I, J)-(DTW(I, J) * (PISTd, J) -PIST(I, J-l)
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+ ) )-(AVELW(I, J) *VZSTT(I, J) )
)
* (1/ (RHZ*FAEW(I) ) ) +(RHOLD*

+ VZSTT(I, J) )/RHZ

210 CONTINUE

220 CONTINUE

C COMPUTE INLET VELOCITY ASSUMING IT IS POSITIVE

VZSTTTd, 1) = (HPRIZW(1, 1)-(DTW(1, 1 ) *PIST ( 1 , 1 ) ) -(AVELW(1, I)

+ *VZSTT(1, 1) )
) * (1/ (RHOBI*FAEW(l) ) )+VZSTT(l, 1)

C COMPUTE OUTLET VELOCITY ASSUMING IT IS NEGATIVE
VZSTTT(M, 1) = (HPRIZW(M, 1) - (DTW(M, 1 ) *PIST (M, 1 )

) -(AVELW(M, 1)

+ *VZSTT(M, 1) )
)
* (1/ (RKSTT(M, 1) *FAEW(M) ) ) +(RHST(M, 1) *VZSTT(M, 1)

+ /RHSTT(M, 1))

C COMPUTE RADIAL VELOCITY FIELD
C GENERAL FORM OF THE EQUATION
C VRSTTT = (HPRIRS-DTS* (PIST(I, J) -PIST(I-1, J) ) -AVELS*VRSTT)

C * (1/ (RHSTT*FAS) )+RHOLD*VRSTT/RHZ
C

C UPWIND FOR DENSITY

DO 240 1=2,

M

DO 230 J=1,N

IF (VRSTT(I,J) .GT. 0.) THEN

RHOLD=RHST(I-l, J)

RHZ=RHSTT(I-1, J)

ELSE
RHOLD=RHST(I, J)

RHZ=RHSTT(I, J)

ENDIF

C COMPUTE THE RADIAL VELOCITY FIELD

VRSTTT (I, J) = (HPRIRS(I, J)-(DTS(I, J)* (PIST(I, J) -PIST(I-1, J)

+ ) ) -(AVELSd, J) *VRSTT(I, J) ) )
* (1/ (RHZ *FAS ( I ) ) )

+ +(RHOLD*VRSTT(I, J) /RHZ)

230 CONTINUE

240 CONTINUE

C CHECK OVERALL SYSTEM MASS BALANCE

GI=RHOBI*VZSTTT(l, 1) *FAEW(1)

GD=RHSTT(M, 1) *VZSTTT(M, 1) *FAEW(M)

C WRITE (3,*) GI,GD

WRITE (6,*) GI,GD

RETURN

END
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NOMENCLATURE

a Area of control volume face

Ae , An , As , Aw , A Finite difference coefficients for momentum balance

A Area variable for surface integrals

Av Particle surface area per unit volume of the bed

C^, CP Specific heat of the gas at bulk temperature

CP/ Specific heat of the gas at the film temperature

CP Average fuel particle specific heat

De , D n , D
s , Dw , D c Finite difference coefficient for pressure equation

D Equivalent pipe diameter

Dp Fuel particle diameter

EM Emissivity

f(r,t) General transport function

/ Friction factor

F Force

G Superficial mass velocity

/; Specific enthalpy

h Heat transfer coefficient

H Total enthalpy of a control volume

H '( ) Finite difference operator, The sum of the E, N, S, W control

volume variables multiplied by their respective coefficients

jH Colburn j factor
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k Conductivity

kr Radiation conductivity across a void space to an adjacent particle

k Effective bed thermal conductivity

L Length of control volume

m Mass

m Mass flow rate

ma Fuel particle mass per unit particle surface area

M Mass flow through a control volume face

n Unit normal vector

P Pressure

q
"

Heat generation per unit particle outside surface area

Q Heat input per unit time

Re Reynolds number

5 Surface area

State Variable Temperature, Pressure, Density or Enthalpy

r Time

T Temperature

T Effective fuel particle temperature

U Effective overall heat transfer coefficient for solid to gas heat

transfer

v Superficial velocity component in the direction of the momentum
balance

v Component of the superficial velocity perpendicular to the face

of the control volume

|
v

|

Superficial velocity magnitude
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V Volume

v a , vz Axial velocity

v r, vr Radial velocity

x Length variable

Greek Letters

a Upwinding factor

(3 Axial momentum correction factor

y Axial momentum correction factor

e Void fraction

Overall momentum correction factor

k Ratio of solid phase conductivity to gas phase conductivity

|I Viscosity

\i
f

Viscosity of the coolant at film temperature

p Density

x Heat transfer time constant

<j) Dummy variable used when equation applies to more than one

variable; in heat effective thickness of gas film between panicles

\|/ Particle shape factor

Subscripts

a Axial

cv Control volume

e, n, s, w Identifiers for the faces of a control volume, align in accordance

with the compass

E, N, S, W Identifiers for the balance variable in the adjacent control vol-

umes, align in accordance with the compass
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O Identifier for balance variable in the central control volume

G Gas Phase

r Radial. In heat transfer, radiation

S Solid Phase

x Dummy variable for operations that apply to several different

subscripts such as the directional face identifiers (e, w, n, s)

z Axial direction

Superscripts

n , n + 1 Time step identifiers

* Estimate of time n+ 1 value of a variable, number of * defines

which estimate
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