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A Simulation Study of an Autonomous Steering System
for On-Road Operation of Automotive Vehicles

Chiam Huat Tan, Robert B. McGhee 1
, and Michael J. Zyda

Naval Postgraduate School,

Code 52Mz, Dept. of Computer Science,

Monterey, California 93943

ABSTRACT

The study of human driving of automotive vehicles is an important aid to the

development of viable autonomous vehicle navigation techniques. Observation of

human behavior during driving suggests that this activity involves two distinct

levels, the conscious and the unconscious.

Conscious actions relate to the logical behavior of a driver such as stopping

the vehicle when a traffic light is red, slowing down the vehicle when it turns a

bend, etc. Such behavior can be described using natural human language. The
unconscious actions of a driver are much less obvious. There are many such

activities occurring while we are driving a vehicle to a particular destination. One
of the important unconscious efforts involves the selection of successive points on

the road to steer the vehicle towards in order to achieve the desired road-following

behavior. This research work attempts to mimic this unconscious behavior

through the use of a computer simulation model.

This report represents the MS thesis work of the first author. Prof. McGhee
served as thesis advisor and Prof. Zyda served as second reader during the

conduct and documentation of this research.

'This author should be contacted if further information regarding this research is desired.
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I. INTRODUCTION

A. GENERAL BACKGROUND

Today there are many robots employed all over the world, especially in the

USA and Japan, to do various kinds of industrial work. The benefits realizable

through the use of these robots are numerous, easily attained, and, most

importantly, proven. However, most of these industrial robots either lack any

external sensory mechanisms or have only a few unsophisticated sensors [Refs. 1-

3]-

Robots that do not have any external sensors normally operate from a fixed

position. They are programmed to perform a series of movements to accomplish a

desired task. Once programmed, these robots repeat the programmed movements

as many times as desired, accurately and precisely, regardless of the external

environment.

The other kind of robot, the kind equipped with a few unsophisticated

sensors, is able to perform limited sensing of the environment. Such a robot is

capable of adapting to simple and small changes in the operating environment

such as stopping when an unexpected object crosses into its path.

With the advent of the information age and microprocessor technologies, yet

another kind of robot is becoming realizable. These kind of robots are called

autonomous robots. Such robots are capable of making their own decisions and
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adapting quickly and safely "on-the-fly" to accomplish a mission [Refs. 4-5]. Such

robots can either operate from a fixed position or from a mobile platform. In the

case of mobile robots, the system can also be capable of avoiding obstacles along

its navigation path. In this respect, a human being can be considered to be an

extreme example of an ideal autonomous robot.

Humans receive information about their environment from two groups of

sensors [Ref. 6]. One group provides conscious sensing and the other group

provides subconscious sensing. The first sensing group comprises the five basic

human sense organs: ears, nose, mouth, touch and eyes. Each of these sensors has

a specialized processor attached to it which analyzes the sensor input. This is

especially so with the eyes which provide humans with one of the most complex

vision systems found in nature. A human is able to identify different objects

under a wide variety of environmental conditions such as varying viewing

distance, viewing angle, brightness, contrast, etc.

The second group of sensors provides proprioceptive information, which

according to Thring [Ref. 7], gives an overall internal model of our body. It also

provides inertial information from the vestibular system that senses body

orientation, balance, and rotation.

All information received by the five basic sensors is sent to the highly complex

cerebral cortex which acts as the central processor of the entire system [Ref. 7].

After processing the various sensory inputs, the cerebral cortex sends signals to all

parts of the body including the cerebellum [Ref. 7j.
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The cerebellum is the chief coordinator of our motion system. Besides

receiving information from the cerebral cortex about what movements are

required, it also receives information from the vestibular system and the

proprioceptors in order to be able to command muscular movements [Ref. 7].

The above oversimplified discussion of an ideal autonomous robot is intended

to illustrate the complexities involved in building a real autonomous mobile robot.

It must have a very elaborate and sophisticated sensory mechanism, numerous

high-speed information processors working in parallel, and a very large and

sophisticated controlling software system in order to achieve complete autonomy.

Finally, human beings achieve their mobility mainly through a pair of legs,

but this is not necessarily so for an autonomous mobile robot. There are many

ways for an autonomous mobile robot to achieve mobility on land. For local

motion the alternatives are wheeled systems, tracked systems and legged systems

[Ref. 8]. Of the three, the legged system is probably the most flexible but also the

least understood method. There is a great deal of research currently underway on

walking machines [Refs. 8-12].

Several attempts to build an autonomous wheel-based mobile robot were

carried out as early as the 1960's [Ref. 13]. However, none of this research was

able to deliver a completely autonomous robot. Some of these earlier works will

be discussed in Chapter II. A number of research projects that are currently being

carried out seem to be much more successful than their predecessors. The main

reason for this could be that their predecessor's failures had prompted several
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related smaller research studies in areas such as sensor hardware, machine vision,

and computer architectures to be carried out instead. The results of these research

efforts are now being consolidated into the latest autonomous vehicle projects.

One of the areas which has received relatively little attention in previous and

current research work on autonomous vehicles is that of human navigation and

driving. This area may be pertinent to the viability of the future of autonomous

vehicles, especially those on-road and wheeled-based. The objective of this work

is to investigate and mimic a human driver driving a conventional automobile.

B. ORGANIZATION

Chapter II reviews some of the early research projects on autonomous mobile

robots done in the late 1960's. Much of this work provides the necessary

background for several autonomous vehicle research projects that are currently

being carried out. Some of these later research projects are also summarized in

this chapter.

The objective of this research work in relation to autonomous vehicles is

discussed in greater depth in Chapter III. In this chapter, some of the basic

aspects of conventional automotive vehicle mechanics are also explained. This is

to show that the graphics simulation built for this study ignores many complex

interactions that occur between a vehicle and its environment when the vehicle is

moving. That is, a number of simplifying assumptions are made in this chapter

so as to make the graphics simulation more feasible within the time constraints of
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this study. The mathematical model used for the graphics simulation is also

derived and described in Chapter HI.

The entire graphics simulation is implemented in C. The functions of the

various modules developed for the simulation are described in Chapter IV. This

chapter elaborates the overall software design strategy and the important issues

that must be addressed when the software is to be improved or modified. The

procedure for changing various vehicle gains is also described in this chapter.

Numerous experiments were conducted with the simulation model to support

the validity of this work and the mathematical model used. Chapter V records

and explains the results of all the experiments conducted using the simulation

model.

The last chapter, Chapter VI, summarizes the work done and its benefit to

autonomous vehicle research. Suggestions about some possible extensions to this

research work are also given. This additional work would make the present study

more comprehensive and substantiative.

Chapter VI is followed by a list of reference material used for this study.

Finally, the graphics simulation source code is attached as an appendix.
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II. SURVEY OF PREVIOUS WORK

A. INTRODUCTION

Research in autonomous systems began as early as the late 1960's [Ref. 13].

Many of these early research efforts did not fully materialize, mainly because of

the technological limitations existing at that time. The outcome of these

investigations, however, indicated that the complexity involved in certain areas

such as image processing, scene analysis, planning, etc., required more work before

further attempts to build autonomous systems could continue.

Since then, major advances and significant breakthroughs in several areas of

technology have made many tasks which were difficult to implement or even not

possible in the 1960's become more feasible. Improvements in VLSI technology

allow very complex algorithms to be constructed in hardware. Miniaturization

reduces the overall weight of vehicle controllers and also greatly increases

electronic speed. New techniques in image processing and vision analysis enable

very complex images to be examined. More details can now be extracted from

images with these techniques than was previously possible [Refs. 14,15]. New

computer architectures provide the massive computation power required for real-

time processing [Refs. 16,17]. Large amounts of sensor data and images can now

be reduced quickly to facts that are needed for autonomous decision making. New

techniques developed in artificial intelligence provide more opportunities for
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autonomy. These techniques are capable of handling more complex knowledge

representations and manipulations [Refs. 18,19].

B. AUTONOMOUS MOBILE ROBOTS

1. Shakey (1967)

The Shakey project represented one of the earliest attempts to study

autonomous navigation using a mobile robot. Shakey was developed by Stanford

Research Institute to study the real-time control of a robot system that interacts

with a complex environment [Ref. 13].

Shakey moved around with two independently controlled wheels mounted

on both sides of the vehicle. It had a rotatable "head" which carried a vidicon

camera which provided "sight" to Shakey. This head was also provided with an

optical range-finder. Several touch sensors were attached around the vehicle for

collision detection and avoidance.

An SDS-940 computer was used to control the behavior of Shakey using

two radio links. One link was used for telemetry and the other link was used for

transmission of the visual input from the camera to the computer.

Another significant feature of this early attempt at an autonomous system

was its man-machine interface. Commands could be given in primitive English

that was analyzed and translated into the appropriate machine actions by a LISP

program [Refs. 20,21]. This feature also included a simple question-answer

capability.
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Shakey's world consisted oi a grid model and a property list model. The

grid model is a hierarchically organized system of four-by-four grid cells. This

model was constantly updated by the vision system and it served primarily as a

free space map used for path planning and navigation.

The property list model kept track of the various characteristics of the

objects in its world. Information about each object such as its coordinates, size,

etc., gave Shakey a better sense of the world. Using this model, Shakey could

navigate to a known object described in the property list. The model also

provided information for collision-free navigation around the environment.

2. Stanford Cart (1973)

The research work for the Stanford Cart was carried out in the Stanford

University Artificial Intelligence Laboratory [Ref. 22]. The only sensor installed on

the cart was a camera remotely linked to a DEC KL-10 computer. The KL-10

computer functioned as the vehicle controller and also as an image processor.

After each cart move, it received nine scene images from a slide-mounted camera,

each taken from a different camera position. Distinctive features were extracted

from the first image and this information was used with the rest of the images to

perform a 3-D analysis of the scene in front of the cart.

The perceived scene was used by the navigation software to compute a

collision-free path towards the goal. The collision-free path was determined by

translating obstacles into circles on the floor and moving the cart, which is

represented by a three meter circle, among these obstacle circles.
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The Stanford Cart was able to maneuver successfully in a cluttered

environment. However, it took a very long time to accomplish its mission [Ref.

22], typically requiring several hours to move a few tens of meters. This was

largely due to the lengthy 3-D scene analysis processing time needed to determine

the next cart move.

3. Hilare (1977)

This system was constructed in France at the Laboratoire d'Automatique

et d'Analyse des Systemes in Toulouse. The purpose of the mobile robot was to

serve as a testbed for general research in robotics and in robot perception and

planning [Ref. 23].

The Hilare robot had a 3-D vision system consisting of a laser range-

finder and a video camera. A set of 14 ultrasonic emitters-receivers provided

range data around the robot for distances of up to two meters, and a variety of

other sensors provided other information required for autonomous navigation.

On-board 8085/86 microprocessors were used by Hilare to process sensor

inputs. These processors were remotely connected to an SEL 32-77/80 computer

which handled navigation and coordination. The SEL 32 was in turn remotely

connected to another larger computer, an IBM 30/33, for higher level planning

and control. A remote IBM-370 was also used for performing complex analysis

tasks.
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4. Robart I (1980)

This robot was built by LCDR Hobart R. Everett under the supervision

of Professor R.E. Newton of the Naval Postgraduate School's Department of

Mechanical Engineering. The aim of this project was to provide a development

and demonstration platform for microprocessor-controlled mechanical systems

[Ref. 24]. Patrolling was the main role of this robot. It was able to detect a

variety of household dangers such as smoke, fire, toxic gas, flooding conditions, or

intrusion, and was capable of then informing the user appropriately.

The Robart I system moved around on a tricycle wheelbase with front

wheel control. It had a rotating "head" for scanning the environment. One of

the major and important sensors missing from this robot is vision. Lacking vision,

it had a forward-looking ultrasonic ranging unit, a long-range near-infrared

proximity detector, ten short-range near-infrared proximity detectors, tactile

feelers, and bumper switches. The last two groups of sensors were used for

collision detection and avoidance.

To detect a person, the robot had a true-infrared (long wavelength

infrared) body heat sensor. This sensor had a range of about fifty feet. The robot

was also able to steer towards the center of a doorway with the help of a near-

infrared long-range proximity sensor. It also had an assortment of other sensors

for detecting flooding, fire, smoke and toxic gas conditions.

A surprising addition to this mobile robot was its speech capability with a

two hundred and eighty word vocabulary. This allowed the robot to use voice
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communication to inform the user of any dangerous conditions. It also made use

of this facility to report some of its internal status information.

The only computing machinery installed on Robart I was a SYM-1

microcomputer. This on-board computer used a 6502 microprocessor to which all

the robots sensors were connected except for the speech synthesizer which had its

own dedicated processor.

During normal operation, Robart I moved straight ahead and stopped at

various points to perform surveillance. However, when an obstacle was detected,

it would move to the left or right depending on which was appropriate and then

continue its straight ahead movement.

5. Robart II (1982)

Robart II is an improved version of Robart I [Ref. 25]. The basic purpose

of this new robot remains the same as for Robart I. However, not only are there

more sensors on Robart II, but the number of different types of sensors installed

also has been increased. This machine currently has six ultrasonic range-finders,

fifty near-infrared proximity detectors, a long range near-infrared range-finder,

and various other sensors used to detect smoke, fire, toxic gas, flooding conditions

and intrusion.

The previous Robart used only one microcomputer for all of its processing

requirements, which proved to be insufficient. Robart II has eight 65C02-based

microcomputers to handle the increased number of sensors and also to provide

more parallel processes to make it more responsive.
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The eight microprocessors of Robart II are connected in a hierarchical

fashion, each with a dedicated function to perform. The head, the drive motors,

and the vision subsystem are each handled by a dedicated processor. The sonar

and the speech subsystem are each handled by another hierarchy of two

processors. All these processors, however, work under the direction of the SYM-1

computer.

C. AUTONOMOUS LAND VEHICLES

1. FMC Corporation Autonomous Vehicle (1985)

The vehicle used in this project is a 10-ton M113A2 armored personnel

carrier, which is a tracked vehicle rather than a conventional wheeled vehicle.

The vehicle carries an inertial navigation system, a vehicle controller computer, a

sonic imaging sensor, and a master control computer. Beside this, a remotely

located control trailer contains a Symbolics 3600 Lisp machine for the Planner

software, a Sun workstation for the Mapmaker-Observer- Pilot, an IBM PC for

sonic-sensor post-processing, and appropriate communications equipment [Ref.

26].

The FMC vehicle control software consists of five major interconnected

subsystems that are called Planner, Observer, Mapmaker, Pilot, and Vehicle

Control [Ref. 26]. Each of these subsystems has a well-defined and important

function to perform. Together they make the FMC model one of the most

advanced and successful autonomous land vehicles.
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The FMC autonomous vehicle world is represented by digitized maps.

These maps have terrain elevation and feature information that is used by the

Planner. The primary role of the Planner is to generate segmented "freeways"

denning free space from the starting position to the destination [Ref. 27]. The

Planner is also capable of accepting mission requirements to decide the global

path. Such requirements may include minimizing detection of the vehicle by the

enemy. Another possibility is to minimize the time or energy involved to

accomplish the mission.

The segmented freeway is used by the Observer. The Observer makes use

of various sensors such as a sonic imaging sensor for obstacle detection and an

inertial land-navigation system for calculating position and heading. With the

input from the Planner and data from the sensors, the Observer derives a more

usable plan for the next subsystem, the Mapmaker.

The Mapmaker generates the Pilot Map containing the vertices of a

polygonal representation of the global path border, nearest obstacle borders, and

sensor visibility limits. This is achieved by combining the Observer's input with

the Obstacle Map. The latter is the product of the sonic imaging sensor.

The Pilot Map is very detailed but also very localized. It is used by the

Pilot whose main responsibility is to guide the vehicle along an optimum path

that is determined dynamically. To determine the optimum path, the Pilot

generates several subpaths that are weighted according to certain criteria. Once
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the optimal path is picked, the Pilot issues the necessary instructions to the final

subsystem, the Vehicle Controller, for actual execution.

A substantial amount of effort has been placed on the problem of obstacle

avoidance in the FMC program. When an obstacle is encountered, the Pilot

switches modes. It stops goal-seeking and starts obstacle-following. When the

vehicle overcomes the obstacle, it resumes its goal-seeking mode.

2. Hughes Research Laboratory Autonomous Vehicle (1983)

The Hughes Research Laboratory autonomous vehicle is another state-of-

the-art autonomous system. Like the FMC model, it too has a model of the world

in which the autonomous vehicle is going to operate. Mission requirements and

constraints are also accepted by the model to derive a plan for accomplishing the

mission. Various sensors provide the required information about the environment

for the vehicle to adapt dynamically to unforeseeable situations.

The entire system architecture of the Hughes system is based on a

situation assessment module and an action planning module [Ref. 28]. The

former uses available knowledge about the behavior and characteristics of a given

object. Together with the interrelation between the various objects, it tries to

visualize the surrounding environment. The latter module does the actual

formulation of various actions required to fulfill the mission.

The most notable difference of this autonomous vehicle from other

autonomous vehicle projects is the method of knowledge representation and the

emphasis on applying artificial intelligence techniques. The system uses three
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types of stereotyped knowledge representations called special problem solvers,

scripts and domain-spedfie production rules [Ref. 28].

The special problem solver consists of four path experts that decide which

path to follow. The script based problem solver is used to provide predetermined

("canned") plans to solve problems that have stereotyped behavior. The rule-

based system takes over whenever the script system cannot produce the proper

actions to handle a situation.

The four path experts are called Shortest-path, Hide, Feasible-path, and

Lost-path. Each is designed to cater to the requirements of an autonomous

vehicle in various situations. The Shortest-path expert generates the shortest

path between two points taking into account the obstacles between the two

locations. The Hide expert determines a path with the best concealment

characteristics. This path minimizes the vehicle's exposure to threats. The

Feasible-path expert uses heuristics to produce a path between two locations.

The heuristic procedure of this expert uses the information the vehicle has

gathered along the path and the information about it's current environment to

decide a feasible path for the vehicle to follow. Finally, the Lost-path module

generates a path for the vehicle to explore and wander around the area when it

has no path to the designated goal.

The hardware for the Hughes system includes a DEC 20 computer that

implements a rule-based system for deciding the proper action for the vehicle to

follow. Several Z80 computers are used to solve individual specialized problems
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such as finding the optimal path. Another processor generates commands to the

vehicle control computer. Vision is handled by an image processing computer. A

Lisp machine is used for for vehicle control. The vehicle carries a vidicon camera,

ultrasonic sensors, touch sensors, and infrared ranging sensors.

3. Martin Marietta Autonomous Land Vehicle (1986)

The aim of this project is to demonstrate the state of the art in

autonomous navigation and tactical decision making [Refs. 29,30]. The vehicle

used, called the ALV (Autonomous Land Vehicle), is an eight-wheeled all-terrain

vehicle from Standard Manufacturing, Inc. It is capable of traveling up to 18

mph on rough terrain and up to 45 mph on improved surfaces.

Mission goals and constraints specified to the ALV are interpreted by a

Reasoning Subsystem. The output from the Reasoning Subsystem is a set of

subgoals to be fulfilled in order to accomplish the mission. The Perception

Subsystem controls all the sensors and generates a symbolic model of the

environment for reasoning. The model consists of road boundaries. Moving the

vehicle along the specified trajectory is handled by the Control Subsystem.

The Perception Subsystem sensors consist of an RCA color video CCD

camera and a laser range scanner. The image taken by the camera is processed by

a VICOM image processor. The output from this image is a set of 2-D edge

points representing the two road boundaries. To generate a 3-D scene model for

the Reasoning Subsystem, range information from the laser scanner is used by the

image processor to compute the road boundaries in 3-D vehicle coordinates.
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The Reasoning Subsystem consists of a goal seeker, a navigator, and a

knowledge base. The goal seeker analyzes the mission given, and using the

information in the knowledge base derives a sequence of activities for the vehicle

to execute to achieve the goal. The navigator uses the 3-D model from the

Perception Subsystem to compute several possible trajectories, and uses two cost

functions to determine the trajectory for the vehicle to follow.

The pilot, which is part of the Control Subsystem, takes the specified

trajectory the vehicle should follow and converts it into a sequence of steering

commands to drive the vehicle.

The hardware architecture used in the ALV consists of an Intel

multiprocessor system that has an 80286/80287 master processor, an 80816

navigation processor, an 8086 vehicle control processor, and an 8089 multichannel

controller. The Perception Subsystem is managed by the VICOM image

processor. However, this architecture will be affected by plans to use a more

advanced computer, the BBN Butterfly parallel computer, to manage the

increasing complexity of the Reasoning Subsystem. Another plan is to replace the

currently heavily loaded VICOM image processor with a CMU WARP computer

(Ref. 29].

D. SUMMARY AND CONCLUSIONS

In the control of autonomous land vehicles, the need for several high-

performance and specialized processing systems working in parallel is fairly
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obvious. Without such elaborate hardware, software, and advanced computer

architectures, an autonomous vehicle will not be able to fulfill even its most basic

requirement, namely, to adapt quickly to environmental changes.

Many varieties of sensors, each capable of providing the vehicle with a means

to sense the environment in a different manners are extremely important. An

autonomous vehicle's ability to dynamically modify its behavior depends on the

range and the capability of the various sensors installed in the vehicle. Without

these sensors, autonomy would be very difficult to achieve if not impossible.

The effect of various gain settings in the vehicle controller could have a

significant impact on the performance of an autonomous vehicle. With an

improper gain, it was found in the FMC model that the vehicle fails to behave

properly or performs poorly [Ref 26].

In order to avoid the problem of improper gain settings, a computer

simulation allows the various vehicle controller gains to be adjusted easily. With

this facility, different types of vehicle behavior can be simulated. The effect of

these gain settings can be realistically visualized by means of the 3-D graphics

simulation model.
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III. DETAILED PROBLEM STATEMENT

A. INTRODUCTION

In this chapter, the model used for the 3D graphics simulation is described in

detail. To assist a reader who has no control theory background, a brief

description of the purpose of developing a mathematical model and its subsequent

linearization is given.

The aim of this research is stated in the following section. This serves as a

motivation for developing the graphics simulation. The reader should bear in

mind that the hypothesis used in this research has not and may not be proven

theoretically correct. The answer to this question requires much more work

beyond what is presented in this work.

Many important interactions between the vehicle and the environment when

the vehicle is moving have been neglected to keep the complexity of the

mathematical model manageable. However, a short discussion of some of these

interactions is included to give the reader a better appreciation of the real

complexity involved.

The last section in this chapter provides a detailed derivation of the

mathematical model used. All of the model linearization analysis is also

presented.
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B. AIM

The aim of this work is to examine and study by way of an "out of the

vehicle windshield" graphics simulation model, a new technique for autonomous

vehicle steering control. This technique attempts to mimic the way a human

navigates his vehicle on the road.

The hypothesis is that a human driver unconsciously divides his route to his

destination into "chunks" of small interconnecting line-of-sight segments. These

segments are not prepared a priori, but instead are built dynamically while

driving along a road. It is assumed that unconscious planning determines the

distance of the next road segment from the current vehicle position. A point at

the end of this road segment is then the driver's unconscious subgoal.

The location of a subgoal on the road depends on several factors such as the

speed at which the vehicle is traveling, the road surface condition, the level of

driving experience of the driver, and the general nature of the surrounding

environment. The environment refers to situations such as the traffic conditions

in front or behind the vehicle, the number of lanes available, and any potential

danger spots ahead such as intersections, road bends, etc.

This work assumes that near-perfect vision is available for the autonomous

vehicle and that the road is obstacle-free. These seemingly unreasonable

assumptions were made to allow the author to concentrate on the aspect of

unconscious driving rather than on the problems of image and vision processing,
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and obstacle avoidance, where there are currently numerous research activities

being carried out by others [Refs. 14-19].

C. STATE SPACE REPRESENTATION

The aim of studying dynamic system behavior is generally one of gaining an

understanding of the system, with a view to controlling it to satisfy a required

specification [Ref 31]. A block diagram can be used to pictorially represent the

system to be controlled. But to perform any analysis, a quantitative description is

required and this may not be available from a block diagram. A system can be

described quantitatively using a set of mathematical expressions which is

commonly known as the mathematical model of the system. The two common

methods to describe a system quantitatively are the transfer function method and

the state space method [Ref. 31]. The latter technique is adopted in this work

because it is more appropriate for computer simulation and it is also able to cope

with more complex systems including nonlinear effects.

Most systems are inherently non-linear in nature. However, in many cases, a

linearized analysis can be performed to predict the system behavior and to obtain

suitable gain values for the actual model. Linearization basically involves

restricting the values of the system variables to sufficiently small deviations from

a datum point; i.e., the normal operating point of the system. A linearized

system analysis of the vehicle steering problem is included in this chapter.
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D. VEHICLE MECHANICS

1. Motivation

There are many complex interactions occurring between a moving vehicle

and the environment that are ignored in this simulation. Some of these

interactions are discussed here to provide the reader with some insight into the

complexity involved.

2. Resistance to Motion

Vehicle acceleration arises when there is tractive effort between the tires

and the road [Ref 32]. However, not all the tractive effort is used to provide

acceleration; rather, a certain proportion of this effort is needed to overcome

resistance to motion. The main sources of resistance to motion are air resistance,

rolling resistance, and gradient resistance.

The amount of air resistance depends on numerous factors. The vehicle

shape, size and its velocity are some of these factors. The interaction of the tires

and the road surface give rise to rolling resistance which depends upon factors

such as vehicle velocity, vehicle load, and the type of road surface. Gradient

resistance arises only when the vehicle climbs a slope. The amount of gradient

resistance is directly proportional to the steepness or gradient of the slope it is

overcoming.

3. Slip Angle

When a wheel is rolling, it is acted upon by a side force due to imperfect

contact between the tires and the road surface. The angular difference between
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the direction of motion and true wheel rolling direction is called the slip angle

[Ref. 33]. When a vehicle is cornering, depending on the sign of the slip angle,

the vehicle may understeer or oversteer.

4. Brakes

The amount of braking effort required is related to the load carried by the

wheels and the coefficient of friction of the road surface. Another important

consideration is the location of brakes. When brakes are applied while a vehicle is

cornering, computation of the braking effort is more complex. This is due to the

side forces acting on the wheels when the vehicle is cornering.

E. VISION MODEL

The vision model used in this graphics simulation is extremely simple. The

model consists of a set of road points representing the center of the entire road

circuit. When the vehicle is operating in the autopilot mode, it "sees" these

points down the road, one of which is selected to be the new target point for the

vehicle to steer towards.

F. SIMULATION MATHEMATICAL MODEL

1. A Simplified Planar Dynamic Model For Manual Control

The notation used in this work will follow as closely as possible to that

adopted by Frank and McGhee (Ref. 34]. A top view of the vehicle is shown in

Figure 3.1.
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Vehicle

(Xe, Ye) v

Target (Steering Point)

d = vT

E

Figure 3.1 Top View Of The Vehicle
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The vehicle will be confined to a flat road surface. Therefore z = 0, i —

0, and the position vector can be collapsed to a two-dimensional vector. The

rotational moment of inertia is ignored. This means that the vehicle is idealized

to a point mass. To further simplify the model, it is assumed that the velocity

vector always lies along the vehicle x axis; i.e., no sideslip angle is allowed.

Finally, it is assumed that the vehicle turning rate, ^, is linearly proportional to

the forward velocity and to the steering wheel angle, 6. That is,

if = kjfix (3.1)

To calculate the associated turning radius, R, note that the time to rotate the

vehicle through an angle 2n is

27T 27T

h
'

=

W~~W (32)

while the distance traveled in this time is

d = 2ttR = \x\tu (3.3)

Thus

Or

** w (3 -5)
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This equation shows that large values for k\ correspond to "stiff" steering while

small values correspond to "sloppy" steering.

Longitudinal control modeling accelerator control [Refs. 35,36] can be

approximated by

1
x

Tn
(3.6)

where x
c

is the command velocity, which in turn is a function of the accelerator

depression angle, and ra is the acceleration time constant. It is easily shown that

for a step change in x
c
at t = t , the resulting velocity profile is

t-t c

x(t) = x(t ) + («e (0 - x(t ))e~
T- <

3 - 7
)

Combining all of the above results, a suitable state vector for this system

is

x = {xE , yE . x, 0)
r

(3.8)

If the control vector
,
provided by the human operator is defined as

u = (i
c ,6)

T
(3.9)

then, from the above analysis, the component form of the state equation is:

x(l) = xE = x cos V = *(3) cos x(4) (3.10)

*(2) = yE = i sin V = x(3) sin x(4) (3.11)
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i(3) = x = - —*(3) + — u(l) (3.12)

i(4) = V = ^ at (3) u(2) (3.13)

For manual control, u(t) is provided by the human operator. Eq. (3.10 -

3.13) can then be numerically integrated and provided to the operator in the form

of a graphics display to permit him to guide the vehicle around a prescribed

course. Note that for practical vehicles, both x
c
and 6 must have upper and lower

bounds.

2. Pursuit Navigation and Small Angle Linearization Analysis

From the previous analysis, we have

x = (*£, y£, *, 0) (3.15)

2 = [xE , yE , x, 0)
r

(3.16)

For autopilot control, in the research of this study, the vehicle forward velocity is

assumed to be constant. Therefore

x(3) = (3.17)

One approach to steering the vehicle is to simply aim it directly at the

current steering point. That is, the vehicle heading could in principle be governed

by the simple relationship

0(0 = cr{t) (3.18)

Such a steering law is sometimes called pure pursuit navigation. Obviously, if
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pure pursuit navigation could be realized, the vehicle would pass directly through

each steering point. However, this does not fit the model of this chapter in which

the steering point is at a constant distance d ahead of the vehicle. A potential

holution to this problem is to differentiate Eq. (3.18) to obtain

0(0 = a{t) (3.19)

Unfortunately, referring to Figure 3.1, it can be seen that whenever V - 0, it will

also be true that a = 0. In this case, the vehicle will simply move parallel to the

road center and will not turn toward it. To remedy this problem, an integral

term can be added to Eq. (3.19) resulting in the steering equation

i/f = b + ka {a -
) , ka > (3.20)

Referring to Figure 3.1, the "line-of-sight" angle, a, is given

mathematically by

it _ 'r
a = tan

1

(3.21)XT - XE

The corresponding line-of-sight rate, a, can be approximated by

"(*y) =—
f T^— (3-22)

where j is an index associated with successive computation cycles. Eq. (3.20) will

be used in the following linearized system analysis.
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Referring again to Figure 3.1, for the straight road case, and using small

angle approximations, we have the following:

d » yE (3.23)

a = - yE
(3.24)

0=-

VE

d

VE

z(0)

(3.25)

(3.26)

VE

*(0)

Using Eq. (3.24) - (3.27), the vehicle guidance law can be written as

*l> = ~ —r + ka
a

VE ys

z(0)
J

From Eq. (3.13)

* = *: x(3) u(2)

Therefore the vehicle guidance law can also be written as

u(2) = tf

^ *(3) ^ *(3)
+

z(0)
)

ve + -yy^

(3.27)

(3.28)

(3.29)

(3.30)
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From Eq. (3.27) and (3.28), the linearized vehicle control equation is

VE

x

Ve
+ ka

d
o

d

ve

x
(3.31)

or

ve = - -[Ve - K ve ~2 - K ve (3.32)

As stated previously, for the purpose of linearized system analysis, it is assumed

that the vehicle steers toward a point located in front of the vehicle at a constant

distance d where

d = x T (3.33)

The quantity T is called the steering point prediction time and is evidently given

by

r-4 (3.34)

Using Eq. (3.33), Eq. (3.32) can be re-written as

1

1
k„ +V T

1

Ve- kc
'

Ve ~ -jtVe (3.35)

or

Ve + K + — ve + -fVE = (3.36)
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The characteristic equation [Ref. 37] associated with Eq. (3.36) is

A
2 + Jfc, A + * ft

= (3.37)

where

*1
=

I
*0 + rp (3.38)

and

u 1 (3.39)

The corresponding response of the system to initial condition errors is, for the case

of distinct eigenvalues,

t) = c
1
e + c 2 e (3.40)

where Aj and A 2 are the roots of Eq. (3.37), e
x
and c 2 are determined from the

boundary conditions y{t ), y(t ), and t is the time when autopilot is turned on.

Critical damping [Ref. 38] results when the eigenvalues Aj and A
2 are

equal, real, and negative. Critical damping implies the most rapid response

possible to steering errors without overshooting the road center line in response to

an initial position error. From Eq. (3.37), the system eigenvalues are

A = *i

2

\
2

(3.41)
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Since critical damping results when the second term in this equation is zero, it

follows that

k —
*l

J

(3.42)

Substituting Eq. (3.38) and Eq. (3.39) into Eq. (3.42),

K 1
*•

1
^HW = m + ^—

»

T 4 T

Solving this equation yields the following relationship:

k
ff
T= 1

Using this relationship in Eq. (3.41),

A = -k.

From this, the system total time constant, rtotah (Ref. 38] is given by

r
total

1 1— + — 2_

(3.43)

(3.44)

(3.45)

(3.46)

which means that vehicle position error will be corrected to about 40% of its

initial value in approximately Ttotal seconds (Ref. 39). As a specific example, if

T = 1 is chosen, then k9 = 1, A = — 1, and rtotal = 2. Another example, if T = 2

is chosen, then ka = 0.5, A = -0.5, and T
lolal

= 4. This completes the derivation

of parameter values for this example of a vehicle steering equation.
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3. Proportional Navigation With Integral Term

In Chapter V, it is shown that while pursuit navigation performs as

predicted by the above linearization for driving on a straight road, it tends to

steer to the inside of turns on a curved roadway. One way to solve this problem

is to introduce an additional gain term, k^, which multiplies a. This result is a

form of proportional navigation [Ref. 40] with the addition of the integral term

introduced in the previous section of this chapter.

In order to determine a value for k^ suitable for driving on a curved road,

it should be noted that the resulting vehicle guidance law is:

= kja + k (a-ip) (3.47)

and that the condition for steady turn is = 6. Thus, in such a situation,

b = = k-o + k (a-i/>) (3.48)

so

<r-0 = — a (3.49)

From Figure 3.1, the road/vehicle equation for a curved road is

*E
2
+ {Ve ~ R? = r2 (3-50)

or

*E* + VE
2 ~ IVE* = (3-51)
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which can be approximated by

xE
2 = 2yER (3.52)

Using small angle approximations,

xE = xT (3.53)

and thus, on a curved road with radius R,

y = IL. = fill (3.54)VE
2R 2R

The value for a is thus approximately

VE xE xT
,

and to stay on the road,

i> = -j (3.56)

Since, in a steady turn, a = tp, combining Eq. (3.49), (3.55), and (3.56) it follows

that

xT 1 ~ k
a x ,_ rw.

°'lR- —It (357)

or

l~ k
i

T = 2—

-

(3.58)

Eq. (3.58) is one of the constraints for this model.
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4. Linearized Analysis For Proportional Navigation

Using small angle approximations, with the inclusion of Jfc and the road

curvature, Eq. (3.36) becomes

VE . VT ~ VE— = k
a

: + k
c

x xT

VT ~ VE Ve

xT x
(3.59)

or

VE + — + k. Ve - -^Ve Y y r + -jrvr (3.60)

The characteristic equation associated with this result is

A
2 + fcjA + k - (3.61)

where

*i ~ ~^T + *o (3.62)

^0 _
~JT (3.63)

Substituting constraint Eq. (3.58), it follows that

* »t/7

2(1 - *•)
(3.64)

= k.

2(1 ~ k-) + k
t

2(1 - k.)
(3.65)
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= k.
2 - 2k-

(3.66)

and

k —
2 - 2k-

(3.67)

Referring to Eq. (3.61)

A = ±
2

/ . \

2
\ /

(3.68)

2 ~ ki
k — ± k

4 -4*. '
4 - 4k- (4 - 4*-)

(3.69)

= - k.

2 - k- , .

— ± 4 - 4k- + kj - 8 + 8fc-
4 - 4JL 4-4/c- \

ff * * (3.70)

4 - 4Jfc-

(2 - *.) ± (*? + Ak
a
- 4

)

(3.71)

Thus, for the critical damping condition,

ki +4k- -4 = (3.72)
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or

1 2 (3.73)
k- = - 2 ± \2

l + 4

Solving Eq. (3.73) with the constraint k > 0,

m

= 0.828
r

Eq. (3.71)

A
*„(2 -*r)

4 - «*•

T
K 3*

€

or

(3.74)

(3.75)

so from Eq. (3.74)

1 172
A = " fc

ff -5^- = - 1-703 ^ (3.76)

and from Eq. (3.58)

0.344 1

(3.77)

*#r *J (
3 -78

)

As an example of the application of the above results, if A = - 0.5 is chosen, then

h9 = 0.294, T = 1.17, k^ = 0.828. and Ttotal = 4. For another example, if T = 0.8

is chosen, then ka = 0.43, A = - 0.73, k- = 0.828. and rtotal = 2.7.
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G. SUMMARY

The aim of this study is established. The assumptions made have been

delineated so that a mathematical model can be developed for the realization of a

computer simulation to study both manual and automatic steering of a highway

vehicle.

In the next chapter, the main concern is the actual implementation of the 3D

graphics simulation using the mathematical model derived in this chapter.
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IV. COMPUTER SIMULATION MODEL

A. INTRODUCTION

Various methods of implementing the mathematical model developed in the

previous chapter were examined during the formulation of this study. It was

finally decided that the best way to perform the simulation would be to have a 3D

color graphics animation model which can be driven by the user. One of the most

suitable machines available at the Naval Postgraduate School for this purpose is

the IRIS (Integrated Raster Imaging System) color graphics system. A brief

description of this graphics system configuration and its hardware features is

given in this chapter.

In what follows, much attention is devoted to the man-machine interface of

the simulation. The user can drive the simulation with a mouse attached to the

graphics system. He can also use the keyboard to turn on or off certain

information displays concerning the status of the simulation.

A complete description of all the modules and supporting files which are used

for the simulation is provided in this chapter for those who plan to study the

simulation in detail. A user guide is also included, though it is not absolutely

necessary to read it wholly in order to run the simulation.
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B. IRIS-2400 WORKSTATION

1. Hardware And Overall System Description

The IRIS graphics workstation installed in the Naval Postgraduate School

Graphics Laboratory is a high-performance, high-resolution 1024 x 768 color

graphics system. A combination of custom VLSI circuits, conventional hardware,

firmware, and software provide a very powerful set of graphics commands to

perform 2D and 3D graphics [Refs. 41-44]. There are currently two IRIS systems

installed in the laboratory'. Both systems are Unix-based machine but one system

has a Motorola MC68010 processor with 5MB of CPU memory while the other

system has a Motorola MC68020 processor with 6MB of CPU memory. The

configuration of both IRIS-2400 workstations consist of an electronic cabinet with

two 72 MB Winchester disk drives, an 83-key up-down encoded keyboard, a

three-button mouse, a high-resolution 60 Hz non-interlaced 19-inch RGB color

monitor, 32 bitplanes, a hardware matrix multiplier Geometry Pipeline, and a

floating point accelerator.

The IRIS hardware consists of three pipelined components. It is this

design structure that makes the IRIS different from many other graphics systems.

Many systems tend to implement their graphics capabilities with software that is

cheaper. However, these systems have much lower efficiency and much lower

performance. Also with these systems, the 3D color graphics simulation model

would require significantly more programming effort and time, not considering the

fact that the final overall performance may not be suitable for this simulation.
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The three pipelined components in the IRIS system are the applications/graphics

processor, the Geometry Pipeline, and the raster subsystem [Ref. 41].

Graphics commands are processed by the applications/graphics processor.

Commands are first sent through the Geometry Pipeline, which performs matrix

transformations on the coordinates, clips the coordinates to normalized

coordinates, and scales the transformed, clipped coordinates to screen coordinates.

The raster subsystem accepts the output of the Geometry Pipeline. It fills in the

pixels between the endpoints of the lines, fills in the interiors of polygons, converts

character codes into bit-mapped characters, and performs shading, depth-cueing,

and hidden surface removal. The system maintains a color value for each pixel in

its bitplanes which determines the image color on the monitor. A total of thirty-

two bitplanes allow color graphics images to be presented in a very realistic way.

2. Programming Language

The IRIS system software is written in C, but the commands in the

graphics Library are callable in C, FORTRAN, Pascal, and Extended Common

Lisp (ExCL). However, at the time when the simulation was implemented, only

Pascal and C were available. Consequently, C was chosen to be the programming

language for implementing the simulation. One of the reasons for this decision

was the programming experience of the author with C and the other was to

maintain compatibility with the IRIS system software. However, C is not without

its disadvantages. One of problems with C is that it is a weakly typed language.

This tends to make software development more frustrating and time consuming.
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This frustration could have been considerably alleviated if a strongly typed

language like Pascal had been used.

3. Graphical Objects

This is a group of drawing commands used to defined a geometric model

or an object. The advantage of using these commands is that the graphical

objects can then be treated as a single entity which can be moved, scaled, rotated,

or combined with other graphic objects to form more complex objects.

4. Double Buffering

The screen image in an IRIS system is stored in a set of bitplanes. Each

bitplane provides one bit of storage per pixel. An RGB value is associated with

each pixel which determines the color and the brightness of the pixel. This value

is made up of three eight-bit intensity values - one for red, one for green, and one

for blue.

The bitplanes can be used in either of the two modes, single buffer or

double buffer. In the single buffer mode, up to twelve bitplanes can be used to

handle the image color and the rest can be used for z-buffering , a technique used

to remove hidden lines and surfaces. The problem with single buffering is that

the image on the screen is simultaneously updated and displayed. This means

that incomplete or changing picture may appear on the screen.

In double buffering mode, the bitplanes are divided into two portions,

called front and back buffers. The purpose of having two buffers is to have one

buffer being updated while another buffer is being displayed. The benefit of this
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arrangement is that a changing or incomplete image will not appear on the screen.

This is important in certain applications such as motion animation. The 3D

graphics simulation uses the bitplanes in double buffering mode.

5. Coordinate Transformation

In order to manipulate graphical objects, coordinate transformations are

required [Ref. 41]. When denning the object, it is convenient to chose a point to

be the object origin and to then build the object around this selected reference

point. The space which the object occupies is called object space.

The object space must be transformed into world space when a group of

objects is to be displayed together. Since the world space can be viewed from

various directions and orientations, another coordinate system called eye space is

required to specify how the world space is to be viewed. Finally, this eye space

must be mapped into screen space which is a 2-D coordinate system for displaying

the objects on the graphics screen.

Four types of transformation commands are available on the IRIS to

perform the various mappings described above:

o Modeling transformation commands, such as rotate, translate, and scale,

transform the coordinate system of objects.

o Viewing transformation commands, such as polarview and lookat, place the

viewer and eye coordinate system in world space.

o Projection transformation commands, such as perspective, window, ortho,

and ortho2, transform eye space to the screen coordinate system.
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o Viewport transformation commands, such as viewport and scrmask, define

the position of the rectangular region on the screen to be used for displaying

the image.

C. USER GUIDE

To run the graphics simulation, just enter the following command:

carsimu

It takes a short time for the computer to read the roadmap into the memory.

The simulation begins with the display as shown in Figure 4.1. As can be

seen, the top half of the graphics display is an "out-of-the-windshield" view of the

world and the lower half of the display is the vehicle dashboard display area.

On the extreme left of the dashboard display is some information about how

to drive the vehicle. This display area shows that pressing the three mouse

buttons simultaneously terminates the simulation.

Pressing the right mouse button is equivalent to stepping on the accelerator of

a conventional vehicle except that every mouse click increases the desired speed

by a fixed increment of four kilometers per hour. Pressing the middle mouse

button is similar to stepping on the brake of a conventioral vehicle except that

every mouse click decreases the desired speed by a fixed decrement of four

kilometers per hour. Pressing the left mouse button, which is the third and last

button, stops the vehicle.
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Moving the mouse to the left or to the right corresponds to turning the

steering wheel of a vehicle. The steering wheel turning rate is controlled by the

speed the mouse is moved towards the left or the right.

Besides using the mouse buttons for driving the vehicle, the keyboard keys are

used to toggle various information displays or to reset certain dashboard displays.

Pressing h or H on the keyboard stops the simulation temporarily and the whole

dashboard area is used to display additional information about the various key

functions.

The fuel gauge indicates the amount of fuel left in the vehicle. When the fuel

runs out before the whole circuit is completed, the simulation stops and a message

is displayed to inform the driver of the condition.

The compass is located on the top center of the dashboard display. This

shows the vehicle heading angle. Following this is the steering wheel display

indicating the position of the steering wheel, the speedometer showing the current

velocity of the vehicle, and the odometer recording the total distance traveled.

The first three indicators are especially helpful for manual driving since it allows

the driver to "feel" the situation and make more appropriate corrections if

necessary. In real driving, these indicators are not as important because the

driver's kinesthetic senses provide him with information concerning the steering

wheel and the various forces acting upon him.

On the extreme right of the dashboard display is the warning panel. When

the vehicle is not moving, the brake light is turned on. When the engine is
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warmed up, the temperature light shows yellow and when it overheats, the light

turns red. The most important part of the warning panel is the danger light.

This area blinks when the vehicle moves too close to the edge of the road. An

alarm will also be given if it is switched on by the user with one of the keys on the

keyboard.

The last area on the dashboard display is called the information display area.

The main purpose of this area is to show some key technical data used for the

current simulation run. This area, by default, is turned off and it can be turned

on with a key on the keyboard.

A clock indicating the date and time of day is displayed on the top left of the

graphics display. Again this can be turned off with a key. When the vehicle is

operating in the autopilot mode, a blinking indicator is displayed on the top

center of the graphics display.

D. MODULE DESCRIPTION

1. Carsimu.c

This is the main module of the entire graphics simulation. It sets up the

system by initializing all the local and global variables and the graphics facilities.

After setting up, the actual simulation is controlled from this module. Figure

4.2-4.8 show the flowcharts of this module.
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Figure 4.2 CARSIMU.C Flowchart
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Figure 4.3 Main Simulation Loop Flowchart (Part 1)
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Figure 4.4 Main Simulation Loop Flowchart (Part 2)
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Figure 4.5 Main Simulation Loop Flowchart (Part 3)
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Figure 4.6 Main Simulation Loop Flowchart (Part 4)
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Figure 4.7 Main Simulation Loop Flowchart (Part 5)
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Figure 4.8 Main Simulation Loop Flowchart (Part 6)
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2. Circuit.c

This module has three main functions. The first and primary function is

to build the road used in the graphics simulation. The road is built with four

straight segments of equal width and length. These segments are connected

together by three road curves to form a open-ended rectangular circuit. The

length and width of the straight segments can be varied individually. The radius

of the road curves can also be individually modified.

The second function of this module is to "paint" all the road marks on

the surface of the road. There are three types of road marks - white arrows,

white strips and wording on the road surface. The final function is to "erect" all

the signboards along the road.

3. Find-subgoal.c

The function of this module is to search for the next subgoal for the

vehicle to steer towards when the vehicle is operating in the autopilot mode. This

module uses the road map generated by the module map.c to compute and

determine the next subgoal.

Instead of searching for the subgoal only when the vehicle is in the

autopilot mode, the subgoal is constantly being computed and selected once the

vehicle starts moving. There are two reasons for doing this. The first being that

it provides a general solution to ensure that the subgoal is always in front of the

vehicle. This is done by making sure that the very first subgoal is chosen in front

of the vehicle. Subsequent subgoals are constantly recomputed and selected as
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the vehicle moves so that the subgoal will always remain in front of the vehicle.

This simple solution works in the simulation model because the vehicle always

starts from the same position and heads in the same direction.

The second reason, which is the more important one, is that of providing

a subgoal quickly when the autopilot is turned on. When the subgoal is not

constantly being recomputed and selected, then if the autopilot is turned on for

the first time very far down the road, a significant and noticeable delay arises due

to the need to search for a subgoal starting from the beginning of the road.

Another situation where there is such a delay is when the autopilot is turned off

and on over a long distance. In the latter situation, the subgoal has to be

computed from the location where the autopilot was last turned off.

4. Map.c

This is the only module that works independently from the rest of the

system. Its basic role is to generate the road map that is used for subgoal

computation and selection. Though it works independently, it has to be given the

same road description as that used for building the road in the main simulation

module.

There are a number of road parameters that can be modified. These are

the road width, road length, road curve radius and interval size. The last

parameter determines how far apart road center line points are spaced in the list

of points available for steering subgoals. Evidently, the smaller the interval size,

the greater is the number of points generated to represent the road. For the
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results presented in Chapter V, the road points available for vehicle steering are

stored with a spacing of 1 meter between successive points. The output of this

module is a file containing the map of the entire road. This file is called roadmap.

5. Other.c

There are many routines in this module. Each routine builds a graphical

object such as the sky, clouds and mountains. There are also a few supporting

routines which are called by circuit.c to build the road used in the simulation.

These supporting routines build the road surface, curves, arrows and signboards.

6. Help.c

When the key h or H is pressed, the lower half of the graphics screen that

displays the vehicle dashboard is used to display help information. This module

controls the content of the help information.

7. Letter ,c

This routine was developed J. Artero and R. Kirsch and modified by L.

Williamson. This module creates all the upper-case Roman alphabet except for

G, Q, V, W, X and Z. With the graphics translate and rotate command, the

appropriate letters are selected and positioned to form the wording on the surface

of the road.

8. Integrate.

c

The Euler-Heun numerical integration method is implemented in this

module [Ref. 45]. When the vehicle is driven in manual mode, the driver controls
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the steering wheel with the movement of the mouse. However, when the autopilot

is in control, the steering wheel angle for the dashboard display is computed.

9. Display ,c

The whole dashboard display is created with this module. The vehicle

dashboard is displayed on the lower half of the graphics screen. Figure 4.1 shows

the various parts of the dashboard display.

10. Road.h

User denned constants in C programming are extremely important. This

feature not only makes software modification easier, but also improves program

readability. Besides the system defined constants that can be accessed by

including the include file, gl.h, user defined constants are kept in road.h. This file

also contains any additional user defined type such as Dimension.

11. Roadmap

This is the file generated by the module map.c. It contains the roadmap

that defines the center line of the road used by the simplified vision model.

Without this file, the simulation will not run.

12. Makefile

The make facility in UNIX [Ref. 42] is a very useful feature. It helps solve

a lot of program administration problems associated with large software projects

involving many modules. One capability that it provides is to automatically

recompile only the files that have changed. The make feature is driven by an
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special file call Makefile. This special file defines the files that make up the entire

program.

E. SPECIAL NOTES

This section highlights some of the important decisions made in the

simulation program that must be understood by readers who may intend to

modify and improve the simulation.

1. 45° Branch Cut

This feature is required to overcome the problem of discontinuity when

the arctangent function used in the main module crosses the 180° boundary. The

solution to this problem adopted in this work assumes that the maximum vehicle

heading error never exceeds 45° and therefore places the arctangent branch cut at

-45° rather than at the usual 180° location. This alteration permits the road

center line to turn 270° without the vehicle encountering a discontinuity in a or

i».

2. Convention Difference

One of the issues that caused much programming difficulty initially is

that the x, y, and z axis convention adopted in the mathematical model

developed in Chapter III differs from that of the IRIS graphics implementation in

that the graphics z axis in screen coordinates is directed inward. Anyone wishing

to modify the programs of this work must be aware of this difference.
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3. Roadmap Size

The size of the array used in the program for holding the roadmap, that

is, the road center line, is initialized to 3000 points. This may not be sufficient for

a roadmap with a smaller interval or when the present road circuit is extended.

Another point to note is that the z coordinate of the road point is included so

that an uneven road can be set up without much software modification.

Currently, the z coordinate is set to zero.

F. SUMMARY AND CONCLUSIONS

The entire graphics simulation model is written in a manner that allows easy

modification and expansion. One of the major problems with software

development is to control the rippling effect of future code updates. Much

attention was devoted to this aspect when the software system of this study was

designed.

With the 3D color graphics simulation model, many experiments can be

carried out involving both human and autopilot driving. The results of a number

of such experiments are documented in the next chapter. The source code of the

entire simulation model is included in the appendix for those who need to access

to it for more detailed understanding or modification.
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V. EXPERIMENTAL RESULTS

A. INTRODUCTION

Many simulation runs were carried out with different model characteristics to

test the validity of the hypothesis and the correctness of the mathematical model

used. The results of the 3-D simulation runs were captured, scaled, and formated

into 2-D plots for documentation and discussion.

To obtain the 2-D plots, a special modification was made to the main

simulation module. The purpose of the modification was to capture the vehicle

position as it moves and to record its deviation from the road center line. The

information is stored in two files that are also scaled. The scaling is based on the

background, figure upon which this information is overlaid to obtain the desired

plot.

The figures in this chapter are produced with a very flexible and easy-to-use

graphics package called OZDRAW [Ref. 46]. Basically, the desired background

such as the outline of the road, is generated with OZDRAW according to some

scale. The information given by the modified module discussed above is then

used by OZDRAW to overlay the vehicle positions onto the road outline. The

combined image is then labeled and printed for documentation.

68



B. DESCRIPTION OF EXPERIMENTS

The entire simulation test track consists of four 400m straight road segments

connected by three road curves with 80m radius to form an open-ended

rectangular circuit. However, in most cases, not all of the circuit is used for

capturing the experimental results. Rather, all but a few of the experiments were

carried out for a short segment of the entire circuit which included a 200m

segment of straight road followed by a road bend and then another stretch of

about 150m of straight road.

In all the experiments, the simulation begins by setting the velocity to the

desired value and putting the vehicle 5m off the road center line. For autopilot

driving experiments, the autopilot is also activated. Except for Figure 5.3, Figure

5.4, and Figure 5.13, the simulation stops when the vehicle crashes or when it

successfully overcomes the bend and it is about 150m down the second segment of

the straight road. The results of Figure 5.3 and Figure 5.4 are obtained by driving

the vehicle in the autopilot mode for 200m on the straight road. Figure 5.13 is

generated by ai. opilot driving around a 270° loop with a radius of 80m. All of

the experiments use the nonlinear mathematical model for the vehicle developed

in Chapter III. A comparison between the linearized model and the nonlinear

model is carried out with two experiments to show their relationship and the

accuracy and usefulness of the linearized model .
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C. MANUAL DRIVING

When the simulation was first developed, the mouse buttons were used to

manually drive the vehicle; i.e., pressing the left mouse button moved the vehicle

to the left and pressing the right mouse button moved the vehicle to the right.

This was found to be an uncomfortable way to drive the vehicle. The method

that the simulation now uses is found to be much better. It simply involves

moving the entire mouse to the left or to the right to steer the vehicle to the left

or to the right respectively. This method of driving was found to be more natural

and more closely resemble actual driving conditions.

Typical results for human driving are shown in Figure 5.1 and 5.2. In Figure

5.1, the vehicle velocity is 50 km/hr and at this speed human performance is

clearly good. When the vehicle velocity is increased to 75 km/hr, shown in Figure

5.2, it was noted that performance deteriorated rapidly, especially when going

around the road curve. In fact, control is only marginally possible. When

attempting a cornering at this speed, several trials had to be carried out before a

plot was obtained. Several attempts to manually drive the vehicle at 100 km/hr

were made, but all were unsuccessful. It should be noted that the dots on these

plots as well as all other figures of this chapter are generated at a rate of

approximately 6 Hz and therefore they are more spread out at higher vehicle

speeds.
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Parameters used:

velocity time constant

turning response gain

speed

= 9.0

= 0.02

= 50 km/hr

Figure 5.1 Manual Driving
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Parameters used:

velocity time constant

turning response gain

speed

= 9.0

= 0.02

= 75 km/hr

(Result obtained only after several tries)

Figure 5.2 Manual Driving
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D. COMPARISON OF LINEARIZED AND ACTUAL MODEL

The next two experiments were conducted to demonstrate the effectiveness of

using linearization theory. In these experiments, the vehicle was driven by the

autopilot on a 200m straight road using the pursuit navigation model. For each

experiment, two runs were made. The first run used the 4th order nonlinear

model of Eq. (3.10) to (3.13) with a and a calculated from Eq. (3.21) and Eq.

(3.22) respectively. The second run used the linearized model where a and a were

computed with the linearization of Eq. (3.24) and Eq. (3.25) respectively. The

results of these two runs were overlaid to obtain Figure 5.3 and Figure 5.4.

Figure 5.3 used T = 1 and ka = 1 resulting in A = — 1. This means that the

system should be able to correct about 60% of its deviation from the center line in

two seconds. Figure 5.4 used X = 2 and ka = 0.5 which means that A = -0.5. In

this case, the time required to correct the same amount of deviation is doubled to

four seconds. These predictions match the results obtained in both figures. It is

also observed that in both experiments, the linearized model used is a very

accurate approximation of the nonlinear model. Moreover, the good agreement

between the analytical solution and the numerical solution in both cases provides

a measure of confidence that the simulation program is correct. It also shows that

the sampling rate of 6 Hz adopted in this work is adequate for accurate numerical

integration of the simulation model differential equations.
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E. PURSUIT NAVIGATION

The next three figures show the performance of the pursuit navigation model

using various vehicle velocities. Figure 5.5 shows that at 50 km/hr, the vehicle

was able to keep to the center line of the road quite well while turning a corner.

Cornering is still not a problem when the vehicle is traveling at 100 km/hr as

shown in Figure 5.6. But at 150 km/hr, Figure 5.7, the vehicle cannot keep itself

on the road when turning the bend due to its inability to keep to the center of the

road.

Using the same pursuit navigation model, another set of experiments was

carried out. In this set of experiments, the prediction time was doubled to 2

seconds. This experiment, as shown in Figure 5.8 and Figure 5.9, shows that the

autopilot performance dropped dramatically. Due to the longer prediction time, at

50 km/hr, the vehicle tends very much towards the inside of the road as

compared to Figure 5.5. At 100 km/hr, the vehicle could not make it around the

bend because it is predicting too far ahead. However on a straight road, the

prediction time does not seem to matter. This corresponds closely to the author's

concept of human driving. When we are driving on a straight road, we are

normally more casual than when we are trying to bring the vehicle around a road

bend; that is, we appear to shorten or lengthen our prediction time according to

the road conditions and the driving environment instead of utilizing a constant

prediction time as in this simulation.
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Parameters used:

heading angle rate gain = 1.0

velocity time constant = 9.0

turning response gain = 0.02

heading angle gain =1.0
prediction time = 1.0 sec

speed = 50 km/hr

Pursuit Navigation

Figure 5.5 Driving with autopilot
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Parameters used

:

heading angle rate gain = 1.0

velocity time constant = 9.0

turning response gain = 0.02

heading angle gain =1.0
prediction time =1.0 sec

speed = 100 km/hr

Pursuit Navigation

Figure 5.6 Driving with autopilot
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Parameters used

:

heading angle rate gain = 1.0

velocity time constant =9.0
turning response gain = 0.02

heading angle gain = 1.0

prediction time =1.0 sec

speed = 150 km/hr

Pursuit Navigation

Figure 5.7 Driving with autopilot
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Parameters used

:

heading angle rate gain = 1.0

velocity time constant = 9.0

turning response gain = 0.02

heading angle gain = 0.5

prediction time = 2.0 sec

speed = 50 km/hr

Pursuit Navigation

Figure 5.8 Driving with autopilot
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Parameters used:

heading angle rate gain = 1.0

velocity time constant = 9.0

turning response gain = 0.02

heading angle gain = 0.5

prediction time = 2.0 sec

speed = 100 km/hr

Pursuit Navigation

Figure 5.9 Driving with autopilot
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F. PROPORTIONAL NAVIGATION

The pursuit navigation model was improved with another gain term added to

the vehicle guidance law. This made it into a proportional navigation model

whose performance is illustrated by Figures 5.10 through 5.12. Comparing Figure

5.10 to Figure 5.5, it can be seen that the proportional navigation model was able

to maintain its position on the road center line more diligently. The importance

of this is that the vehicle is now capable of turning the road bend at 150 km/hr

without crashing as in Figure 5.12. This was not possible at the same speed with

the pursuit navigation model, Figure 5.7.

Another important observation is the system's response to deviation. Based

on results derived in Chapter III, Figure 5.5 to Figure 5.7 should have a total time

constant of 2 seconds whereas Figure 5.8 to Figure 5.12, Figure 5.15 and Figure

5.16 should have a total time constant of 4 seconds. As seen in these figures, they

match the predicted preformance.

Figure 5.13 shows a performance comparison between the proportional

navigation model and the pursuit navigation model when the vehicle is going

around a 270° loop. As predicted by the analysis of Chapter III, the pursuit

navigation steering law produces a steady displacement of the vehicle toward the

inside of the turn. This effect is eliminated when proportional navigation is used

with k^ = 0.828, again as predicted by linearized system analysis.
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Parameters used:

heading angle rate gain = 0.828

velocity time constant = 9.0

turning response gain = 0.02

heading angle gain = 0.294

prediction time = 1.17 sec

speed = 50 km/hr

Proportional Navigation

Figure 5.10 Driving with autopilot
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Parameters used:

heading angle rate gain

velocity time constant

turning response gain

heading angle gain

prediction time

speed

0.828

9.0

0.02

0.294

1.17 sec

100 km/hr

Proportional Navigation

Figure 5.11 Driving with autopilot
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Parameters used:

heading angle rate gain = 0.828

velocity time constant = 9.0

turning response gain = 0.02

heading angle gain = 0.294

prediction time = 1.17 sec

speed = 150 km/hr

Proportional Navigation

Figure 5.12 Driving with autopilot
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Proportional Navigation

Speed = lOOkm/hr
Center line"

Total time constant = 4 seconds

Figure 5.13 Loop Performance
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G. EFFECT OF VARIOUS ROAD POINT SAMPLING RATES

The last set of experiments carried out was to examine the effect of different

sampling frequencies at which road steering points are selected when the vehicle is

operating in autopilot mode. All the autopilot driving experiments conducted

previously were done with the steering point being selected every cycle. Figures

5.14 through Figure 5.16 show the results obtains when new steering points are

chosen after every 3 cycles, 5 cycles and 7 cycles respectively with a 1.17 second

prediction time. Comparison of these figures with Figure 5.14 shows that choosing

steering points less often actually helps the vehicle to negotiate curves. This may

seem surprising initially, but in fact should be expected since reducing the road

sampling rate also reduces the average prediction time. There is of course a limit

to the extent that the sampling rate can be lowered since the steering point must

not be allowed to pass under the vehicle. For the present example, since T = 1.17

seconds, the maximum interval for road sampling is 7 control cycles (because, as

previously stated, the vehicle steering loop was operated by a 6 MHz rate for all

simulation experiments).

While the above analysis seems to say that the apparent human strategy of

driving toward one point for several steering cycles is effective, one negative result

of this approach was noted. This was that the steering wheel motion was more

jerky than in earlier simulations in which a new steering point was selected on

every control cycle. Again, this is not surprising since reducing the average
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Parameters used:

heading angle rate gain = 0.828 #

velocity time constant = 9.0

turning response gain = 0.02

heading angle gain = 0.294

prediction time = 1.17 sec

speed = 100 km/hr

road point selection rate = 3 cycles

Proportional Navigation

Figure 5.14 Driving with autopilot
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Parameters used:

heading angle rate gain = 0.828

velocity time constant = 9.0

turning response gain = 0.02

heading angle gain = 0.294

prediction time = 1.17 sec

speed = 100 km/hr

road point selection rate = 5 cycles

Proportional Navigation

Figure 5.15 Driving with autopilot
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Parameters used:

heading angle rate gain = 0.828

velocity time constant = 9.0

turning response gain = 0.02

heading angle gain = 0.294

prediction time = 1 . 17 sec

speed = 100 km/hr

road point selection rate = 7 cycles

Proportional Navigation

Figure 5.16 Driving with autopilot
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prediction time should tend to cause the system to become somewhat

underdamped according to the theory of Chapter III.

H. SUMMARY

The results in this chapter show that the hypothesis about the unconscious

behavior of human driving is reasonably well in agreement with reality. It also

shows that the mathematical model developed in the earlier chapter is a useful

model for mimicking this unconscious behavior. However, much more work is

needed to obtain statistical information about how human gain values and

prediction times vary with driving conditions before any degree of confidence can

be attached to the hypothesis of this work. Regardless of the results of such a

study, however, the hypothesis used for unconscious human behavior in steering

clearly provides a viable basis for autopilot design for autonomous vehicles.
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VI. SUMMARY AND CONCLUSIONS

A. SUMMARY

This research work differs from most previous research work in the area of

lateral control of autonomous vehicles in the sense that steering laws have not

generally been derived explicitly from a model of human task performance.

Rather, much of the current research focuses mainly on vision, sensors, planning,

navigation, and obstacle avoidance. So far as the author knows, none has

explored the behavioral aspects of human driving which could provide some

different insights into possible approaches to autonomous navigation.

As observed at the start of this work, human driving can be divided into two

distinct levels: that of conscious and unconscious behavior. This work is

concerned entirely with studying and modeling of the unconscious aspect of

human driving.

Another important product of this work is the development of a 3-D color

graphics simulation model. This model can be modified, enlarged and enhanced

to incorporate other related research work in the future. With this model, the

experiments are more interesting and realistic than using simple 2-D data plots as

has been done in many previous simulation studies.
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B. CONCLUSIONS AND POSSIBLE EXTENSIONS

In this work, all the different subsystems such as the vision subsystem, the

vehicle control subsystem, etc., are treated all together as one system. This is

manageable because of the various simplifying assumptions made in the

mathematical model for vehicle and driver behavior. One direction to enlarge this

research work is to develop a more sophisticated vision model. The present vision

mechanism is too simple and assumes perfect vision capable of "seeing" a point

down the road for the vehicle to steer towards. A better model could use a more

elaborate algorithm and techniques such as texture and color analysis to

determine the various road features and to estimate the road edge location.

Another possible extension to this work is to study the conscious aspect of

human driving. An example of this conscious behavior would be the ability to

stop the vehicle appropriately when the vision subsystem "sees" a stop sign along

the road or an obstacle large enough to prevent the vehicle from going ahead

further.

In conclusion, the author hopes that this research work can serve as a testbed

and motivation for a more elaborate and comprehensive study into the behavioral

aspects of human driving. This could have a significant impact on the

development of viable autonomous vehicles in the future.
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APPENDIX - SOURCE PROGRAMS

A. CARSIMU.C

r

This is the main program of the entire vehicle simulation

program. To recompile this program just issue the command
Makefile.

7

#include "road.h"

/it***********************************************************

GLOBAL DECLARATIONS
*t* ********************************************** ************/

/* DO NOT remov any of these declarations.

They may be used in the supporting programs. */

Tag transl4, translS, transl2, transll, transl, trans22;

Tag house llooktag, houseltranstag, houselscaletag;

Tag houselooktag, housetranstag, housescaletag;

Tag dangertag, temptag, belttag, braketag;

Tag odotagl, odotag2, odotag3, odotag4;

Tag fuell, roadlooktag, skylooktag;

Tag steerwheeltag, terrain llooktag;

Coord latri[S][2], ratri[S][2];

float fuelbar,speedbar;

float fuelquant = MAXFUEL; /* Maximum fuel available */

float heading xpos = 429.5; /* Heading indicator position '*/

float speedinc =1.0; /* Speed increment/decrement */

Device keypressed;

Boolean start = TRUE; /* Start of program flag */

r

Larger turningresponsegain corresponds to "stiff
11

steering and lower value corresponds to "sloppy"

steering. Large velocity_gain corresponds to sedan

automobile and smaller value corresponds to sport car.
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Operator has control over steer wheelangle and speed

using the mouse.

Car time is the integration timer.

V

float state_vector[5j;

float cmdpsidot;

float heading_angle_rate_gain = 1.0;

float velocity_time_consant = 9.0;

float turningresponsegain = 0.02;

float heading_angle_gain = 1.0;

float steer wheelangle = 0.0; /* Unit is radian */

float predictiontime = 1.0; /* Unit is second */

float steerinc = 0.10; /* Unit is radian */

float cartime = 0.0;

float deltat = 0.17;

float speed = 0.0;

/* IRIS allow such a large array only if it is global */

float roadmap[5000](S|;

Dimension Bendradiusl = 80.0;

Dimension Roadwidth = 16.0;

Dimension Roadien = 400.0;

Angle Fov = 1000; /* Field of view 100 deg */

mainQ

{

LOCAL DECLARATIONS
************************************************************* i

int old_sampling_cycle = -1;

int sampling interval = 1; .'* Steering point sampling rate */

int prevmousex = 250; /* Previous mouse x position */

int where = 1; /* Steering point location */

int distance =0; /* Distance travelled */

char thousandc[2], hundredc(2], tenc(2j, unitc[2], temp _string|15|;

int i, nocoord, new_sampling_cycle, mousex, calmousex;

int count, unit, ten, hundred, thousand, no of round;

FILE *fp;

float sigma dot = 0.0;

float tolerance =1.0;
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float oldsigma = 0;

float sigma = 0.0;

float prediction distance;

float temp, tempi;

float gx, gy, gz;

extern long time(); /* System clock */

char timecjlO]; /* Car time in char format */

long clocktime; /* For clock value */

char *clockc;

Boolean showclock = TRUE; /* Display clock flag */

Boolean showtimer = FALSE; /* Display integration timer */

Boolean alarm = FALSE; /* Off road warning flag */

Boolean bell = FALSE; /* Turn off danger alarm */

Boolean debug = TRUE; /* Turn off debug info */

Boolean autop = FALSE; /* Turn off debug info */

Boolean ebrake = FALSE; /* Emergence brake flag */

Dimension consumption = 1.0; /* Fuel consumption */

Dimension crashdown = 0.0; /* Off-road display flag */

Dimension fueldown — 0.0; /* Fuel depleted display flag */

Dimension headingdeg = 0.0; /* Heading in degrees */

Dimension headingrad = 0.0; /* Heading in radians */

Dimension rdistance = 0.0; /* Distance travelled */

Dimension vd = 100.0; /* Viewing distance */

Dimension mps_to_kmph = 3.6; /* m/s to km/hr conversion */

Dimension radtodeg = 860/(2*PI); /* radian to degree conversion */

Coord crashx = 512.0; /* X viewport coord to detect off-road */

Coord crashy = S85.0; /* Y viewport coord to detect off-road */

Coord warnxl = 212.0; /* X viewport coord to warn off-road */

Coord warnx2 = 812.0; /* X viewport coord to warn off-road */

Coord warny = 385.0; /* Y viewport coord to warn off-road */

Colorindex colorsjlj; /* Array to store color of crash spot */

short nopixel = 1; /* No of pixel to detect off-road */

Coord ex, cy, cz; /* Current viewing point */

Coord rx, ry, rz; /* Reference point */

Coord pz, px; /* Last viewing point */

Object speedometer, fuel, steerwheel, signboard, sky, mountain;

Object terrainl, odometer, warning, heading meter;

Object road, help, arrow, house, housel;

/
*************************************************************
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SYSTEM INITIALIZATIONS

*************************************************************

/* Initial state vector of the automobile */

state vector( 1] = ^-^> /* initial z coord */

state_vector[2] = 0.0; /* initial x coord */

state vector[SJ = 0.0; /* initial velocity */

state_vector[4] = 0.0; /* initial heading */

ex = 0.0; cy = 3.0; cz = 0.0;

rx = 0.0; ry = 3.0; rz = -vd;

count = unit = ten = hundred = thousand = 0;

ginitQ;

doublebuffer();

gconfig();

cursoffQ;

qdevice(KEYBD);

viewport(0, XMAXSCREEN, 0, YMAXSCREEN);
ortho2(0.0, 1023.0, 0.0, 767.0);

blink(10, CYAN, 255, 0. 0);

bbox2i(5, 5, 0, 1023, 0, 767);

mapcolor(MOUNTAIN, 199, 123, 63);

mapcolor(MOUNTAINl, 210, 150, 0);

mapcolor(FIELD, 5, 190, 20);

mapcolor(SKY, 50, 8, 155);

mapcolorjWARN, 125, 0, 0);

mapcolor(CHMWALLl, 118,76,0);

mapcolor(CHMWALL2,146,114,0);

mapcolorjWINDOW,0, 14 1,205);

mapcolor(SIDEROOF, 188,50, 14);

mapcolor(FRAME,118,50,14);

mapcolor(WALL,164,lll,0);

mapcolor(SIDEWALL,146,94,l);

mapcolor(ROOF,148,50,14);

/* Dark Grey */

mapcolor(ROOFl, 100,100,100);

/* Light Grey */

mapcolor(FRAMEl ,0,60,60)

;

/* Light Grey */

mapcolor(SIDEWALLl, 150,60,60);

/* Pink */

mapcolor(WALLl, 160,60,60);

setvaluator(MOUSEX, 250, 0, 500);

setvaluator(MOUSEY, 250, 0, 500);
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noise(MOUSEX, 10);

,*************************************************************

MAKE ALL THE OBJECTS

*************************************************************/

makethespeedometer(&speedometer);

makeheading(&heading meter);

makesteerwheel(&steerwheel);

maketheodometer(&odometer);

maketerrain 1 (& terrain 1 )

;

makewarning(& warning);

maketheroad(&road);

makehousel (& house 1 )

;

makehouse(& house
)

;

makethesky(&sky);

makehelp(&help);

makefuel(&fuel);

/* Display the introductory image */

welcome();

it************************************************************

READ ROADMAP
****************************** ************************t**ti,tt*i

J* Read road map into system */

if ((fp = fopenC'roadmapV'r")) == NULL)

{

printf( "Cannot read roadmap.\n");

return (-1);

}

else

for (i = 0; !feof(fp); ++i)

fscanf(fp,"%f %f %f\ &roadmap[i][0], &roadmap[i][l],

&roadmap|i]|2|);

no coord = —i;

setbell('l');

ringbell();

setbell^');

ringbell();

/*************»*********************************************«
r

INITIALIZE BUFFERS
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ft***********************************************************/

/* Wait till & mouse is pressed. */

while(getbutton(MOUSES) == 0);

color(BLACK);

clearQ;

swapbuffersQ;

clear();

swapbuffersQ;

MAIN SIMULATION LOOP

while(TRUE)

{

new sampling cycle = count /samplinginterval;

pz = cz;

px = ex;

clocktime = time((long *) 0);

clockc = ctime(&c lock time);

/* To display clock? */

if (keypressed == 'c' || keypressed == 'C')

if (showclock) showclock = FALSE;
else showclock = TRUE;

/* Sound alarm around 2m before off the road */

cmov2(warnxl, warny);

readpixels(nopixel, colors);

if (colors(O) != BLACK iik colors|0) != WHITE)
alarm = TRUE;
else alarm = FALSE;

if (!alarm)

{

cmov2(warnx2, warny);

readpixels(nopixel, colors);

if (colors(O) != BLACK Lk. colors|0| != WHITE)
alarm = TRUE;
else alarm = FALSE;

}

/* Check if the vehicle is off the road

IMPT : Assume road surface is black

and surface signs are white */
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cmov2(crashx, crashy);

readpixels(nopixel, colors);

if (colors[0] != BLACK kk colors|0] != WHITE)
crashdown = -1000.0;

rz = - (vd*cos(state_vector[4]) + state_vector|l));

rx = vd*sin(state_vector|4]) + state_vector[2];

if (keypressed == 'q'
||

keypressed == 'Q')

if (autop)

{

autop = FALSE;
prev_mousex = mousex;

}

else if (statevectorjS] > 0) autop = TRUE;

#ifdef DEBUG
for(i = 1; i <= SYSTEM ORDER; ++i)

switch(i)

{

case 1:

printf("X: %.2f ",state_vector[l]);

break;

case 2:

printf("Y: %.2f ",state_vector[2]);

break;

case 3:

printf("Velocity: %.2f ,, ,state_vector[S]*mps_to_kmph);

break;

case 4:

printf("Heading: %.2f\n",state_vector[4] * radtodeg);
break;

}

fendif

ci — -statevectorjl);

ex = state_vector[2);

/* Check if keyboard pressed. Keys pressed are queued. */

checkkeybdQ;

mousex = getvaluator(MOUSEX);

if (lautop && lebrake)

{

if (getbutton(MOUSEl) && getbutton(MOUSE2)

&& getbutton(MOUSES))

/* Exit Program */

break;
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else if (getbutton(MOUSEl)
||

(keypressed == V
||

keypressed == 'A'))

{

if (speed < 190)

{

start = FALSE;
speed = speed + speed inc;

}

else speed = 190.0; /* Top Speed */

}

else if (getbutton(MOUSES)
||

(keypressed == V
||

keypressed == 'E'))

{

/* Emergency brake */

ebrake = TRUE;
/* state_vector|3] = 0.0;

speed = 0.0; */

}

else if (getbutton(MOUSE2)
||

(keypressed == 'b*
||

keypressed == 'B'))

{

/* Decrease speed */

if (speed > 0)

speed = speed - speedinc;

else speed = 0.0;

}

}
/• if (lautop) */

if (!ebrake && state_vector[3] > 0)

{

prediction_distance = state_vector[S] * prediction time;

/•

"where" is passed to find subgoal so that searching

need not always start from the beginning of the road.

The z and y convention in the graphics system is reversed.

Also the sign is going in the opposite direction. So

compensate before passing into find subgoal.

7

where = find subgoal(roadmap, no_coord, where, tolerance,

prediction distance, ex, -CI, 0.0);

}

if (lebrake && (autop && old sampling cycle < new sampling cycle

|| lautop))
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{

old sampling cycle = newsamplingcycle;

if (where < 0)

{

/* Stop completely and remove autopilot */

ebrake = TRUE;
/* statevectorjS] = 0.0;

speed = 0.0; */

autop = FALSE;

}

else

{

gx = roadmap|where][0;;

gy = roadmap[where][l|;

gz = roadmapjwhere][2j;

}

}

/* Convention difference: Z-axis in graphics is Y-axis in

mathematical model. Also Z-axis is negative when moving

into the screen which therefore must be converted to

positive for our calculation. */

temp = -cz;

sigma = atan2((gx-cx),(gy-temp));

/* Sigmadot(O) = */

if (count == 0) old_sigma = sigma;

/* This is 45 deg branch cut to handle the discontinuity

when arc tangent function crosses PI and -PI */

if (sigma < -(Pl/4)) sigma = 2*PI + sigma;

#ifdef DEBUG
printf("gx %.2f ex %.2f gy %.2f cz %.2f l

)
gx

)
ex, gy, cz);

printfj" sigmadeg %.2f\n",(sigma/(2*PI))*360);

#endif

sigmadot = (sigma - old sigma) /dekat,

cmd_psi_dot = (heading_angle_rate_gain * sigma dot) +
(headinganglegain * (sigma - state_vector[4]));

if (autop)

steerwheel angle = cmd_psi_dot/

(turning_response_gain * state_vector[3]);

old_sigma = sigma;

if (!ebrake kit !autop)

{
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/* Manual Driving */

calmousex = mousex - prev_mousex;

steer_wheel_angle = steer_wheel _angle + (float) cal_mousex/100;

prev mousex = mousex;

}

computenewstate(autop);

/* Clear the vehicle window */

viewport (0, XMAXSCREEN, S85, YMAXSCREEN);
color(FIELD);

clearQ;

/* Clear the display panel */

viewport(0, XMAXSCREEN, 0, S80);

color(WHITE);

clear();

/* Reset viewport */

viewport(0, XMAXSCREEN, 0, YMAXSCREEN);

/* Calculate the velocity for emergence brake */

if (ebrake)

{

/* every 16.0 km/hr or 4.0 mph will take the

vehicle one additional cycle to stop. */

state_vector[S] = state_vector[3] - 4.0;

speed = state_vector[3j;

if (state_vector[Sj < 0)

{

ebrake = FALSE;
state_vector[S] = 0.0;

speed = 0.0;

}

}

/* Calculate distance travelled */

rdistance = rdistance+sqrt((ci-pz)*(cz-pz)+ (cx-px)*(cx-px));

if (keypressed == V || keypressed == 'O') rdistance = 0.0;

distance = (int) rdistance;

thousand = distance/ 1000;

hundred = (distance- thousand* 1000)/ 100;

ten = (distance- hundred * 100- thousand*1000)/10;

unit = distance - ten * 10 - hundred * 100 - thousand* 1000;
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if (unit == 10) { unit = 0; +-t-ten; }

if (ten == 10) { ten = 0; ++hundred;
}

if (hundred == 10) { hundred = 0; -t- + thousand;
}

if (thousand == 10) thousand = 0;

sprintf(timec,"%5.2f",car time);

sprintf(thousandc,"%d",thousand);

sprintf(hundredc,"^d",hundred);

sprintf(tenc,"%d",ten);

sprintf(unitc,"%d",unit+ + );

/* DISPLAY HELP PANEL */

callobj(help);

/* EDIT SKY */

editobj(sky);

objreplace(skylooktag);

lookat(cx,cy,cz,rx,ry,rz,0.0);

closeobj();

callobj(sky);

/* EDIT TERRAIN */

editobj(terrainl);

objreplace( terrain llooktag);

Iookat(cx,cy,cz,rx,ry,rz,0.0);

closeobj();

callobj(terrainl);

/* EDIT ROAD */

editobj(road);

objreplace(roadlooktag);

Iookat(cx,cy,cz,rx,ry,rz,0.0);

closeobj();

callobj(road);

/* EDIT HOUSES */

editobj (house);

objreplace(houselooktag)

;

lookat(cx,cy,cz,rx
)
ry,rz,0.0);

objreplace(housetran8tag);

translate(-80.0, 0.0, -50.0);

objreplace(housescaletag)

;

scale(0.40, 0.40, 1.0);

closeobjQ;

callobjf house);

editobj (houseJ):

objreplace ( house llooktag);
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Iookat(cx,cy,cz,rx,ry,rz,0.0);

objreplace(houseltranstag)

;

translate(-S0.0, 0.0, -10.0);

objreplace(houselscaletag)

;

8cale(0.50, 0.50, 1.0);

closeobj();

callobj(housel);

editobj(housel);

objreplace(housellooktag);

lookat(cx,c> .cz,rx,ry,rz,0.0);

objreplace(houseltranstag);

translate(-S0.0, 0.0, -15.0);

objreplace( house 1 scaletag )

;

scale(0.50, 0.50, 1.0);

closeobj();

callobj(housel);

editobj( house);

objreplace ( h o use looktag )

;

Iookat(cx,cy,cz,rx,ry,rz,0.0);

objreplace(housetranstag);

translate! 100.0, 0.0, -Roadlen/2):

objreplace(housescaletag);

scale(0.50, 0.50, 1.0);

closeobj();

callobj( house);

editobj( house);

objreplace) houselooktag);

lookat(cx,cy,cz,rx,ry,rz,0.0);

objre place ( housetranstag )

;

translate(-40.0, 0.0, -Roadlen - 100.0);

objreplace(housescaletag);

scale(0.80, 0.80, 1.0);

closeobj();

callobj( house);

editobj ( house 1)

objreplace( house Hook tag);

Iookat(cx,cy,cz,rx,ry,rz,0.0);

objreplace( house ltranstag),

translate(S00.0, 0.0, -Roadlen - 55.0);

objreplace) house 1 scaletag),

scale(0.50, 0.50, 1.0);

closeobjQ;

callobj(housel);

/* EDIT STEERING WHEEL */

editobj (steerwheel);

objreplace(steerwheeltag);
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rotate((int) -(steer wheel angle * 10 * rad to deg), 'Z')

closeobj();

callobj(steerwheel);

/* EDIT ODOMETER */

editobj (odometer)

;

objreplace(odotagl)

charstr(thousandc);

objreplace(odotag2)

charstr(hundredc);

objreplace( odotag3

)

charstr(tenc);

objreplace(odotag4)

charstr(unitc);

closeobj();

callobj (odometer);

if (showclock)

{

color(WHITE);
cmov2i(100, 750);

charstr(clockc);

color(BLACK);

}

if (autop)

{

color(CYAN);

cmov2i(400, 750);

charstr("AutoPilot Mode");

color(BLACK);

}

/* TESTING AREA */

if (keypressed == V || keypressed == 'Z')

if (debug) debug = FALSE;
else debug = TRUE;

if (debug)

{

cmov2i(575, 280);

charstr("Command Speed (km/h) ");

sprintf(temp_string,"%.2f",speed * mpstokmph);
charstr(tempstring)

;

cmov2i(575, 250);

charstr("Steering (degree) ");

sprintf(temp_string,"%.2P,steer wheel angle * radtodeg);

charstr(tempstring);
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/* cmov2i(575, 220);

charstr("Mousex ");

sprintf(temp_string,"%d",cal_mousex);

charstr(temp_string); */

cmov2i(575, 180);

charstr("Turning Response Gain ");

sprintf(temp_string,"%.3f",turning_response_gain);

charstr(tempstring)

;

cmov2i(575, 150);

charstr( "Heading Angle Gain ");

sprintf(temp_string,"%.Sf",heading_angle_gain);

charstr(temp_string);

cmov2i(575, 120);

charstr("Prediction Time ");

sprintf(temp_string,"%.2f",prediction_time);

charstr(tempstring);

}

/* EDIT TIMER */

if (keypressed == V ||
keypressed == 'T')

if (showtimer) showtimer = FALSE;
else showtimer = TRUE;

if (showtimer)

{ cmov2i(575, 810);

charstr("Integration: ");

charstr(timec); }

/* EDIT WARNING INDICATOR */

if (statevectorjS) > 0)

{ editobj (warning);

objreplace(braketag);

color(WARN);
if (alarm)

{

if (keypressed == 's' || keypressed == 'S')

if (bell) bell = FALSE;
else bell = TRUE;

if (bell)

{

8etbeU('2');

ringbell();

}

objreplace(dangertag)

;

color(CYAN);

}

else
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{

objrep)ace(dfingertag);

color(WARN);

}

/• ENGINE WARMING UP */

if (count < 1000)

{ objreplace(temptag);

color(WARN); }

/• ENGINE REACHED NORMAL TEMPERATURE */

if ((count > 1000) && (count < 5000))

{ objreplace(temptag);

color(YELLOW); }

/* ENGINE OVERHEATING */

if (count > 5000)

{ objreplace(temptag);

color(RED); }

objreplace(behtag);

color(WARN);

closeobj();
}

else

/* BRAKE SIGNAL FOR CAR STOP */

{

editobj (warning);

objreplace(braketag);

color(RED);

closeobj();

}

callobj (warning);

/* EDIT HEADING INDICATOR */

/* Compute heading using vehicle state vector */

if (state_vector[4) < 0.0) headingrad = 2*PI+state_vector[4);

else headingrad = state_vector(4);

noofround = (headingrad *180.0/PI)/360.0;

headingdeg = headingrad* 180.0/PI - (float) no_of_round*560;

editobj (headingmeter)

;

objreplace(transll);

translate(heading_xpo8-20.0-4.5*headingdeg, 4.0, 0.0);

closeobjQ;
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callobj(headingmeter);

/* EDIT SPEEDOMETER INDICATOR */

/* 2.5 factor is for converting to the dashboard display */

speedbar = 181.0 - state_vector[S] * mps_to_kmph * 2.5;

editobj (speedometer);

objreplace (transU )

;

translate (0.0, speedbar, 0.0);

closeobj();

callobj (speedometer)

;

/* EDIT FUEL GAUGES */

/* Stop : no consumption */

/* Speed above 100 : consumption is 20% higher */

if (state_vector|3j > 0.0)

if (state_vector[3] < 100.0)

fuelquant = fuelquant - consumption;

else fuelquant = fuelquant - 1.2*consumption;

fuelbar = fuelquant/MAXFUEL*S20.0+14.0;

if (fuelquant < 0.0) fueldown = -1000.0;

editobj(fuel);

objreplace(fuell);

rectf(106.0,14.0,149.0,fuelbar);

closeobj();

callobj (fuel);

/* EDIT CRASH INFO DISPLAY FOR OFF-ROAD */

pushmatrixQ;

pushattributesQ;

translate(0.0,crashdown,0.0);

/* Set all warning lights when crash */

if (crashdown == -1000)

{

autop = FALSE;

editobj(warning);

objreplace ( braketag )

;

color(RED);
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bell = FALSE;
objreplace(dangertag)

;

color(RED);

objreplace(temptag)

;

color(RED);

objreplace(belttag);

color(RED);

closeobj();

callobj(warning);

)

color(RED);

rectf(0.0,1385.0,1023.0,1767.0);

color(BLACK);

cmov2i(370,1576);

charstr("CRASH");

cmov2i(370,1560);

charstr("OFF THE ROAD");

cmov2i(370,1544);

charstr("PUSH ALL THREE MOUSE BUTTONS TO EXIT");

popattributesQ;

popmatrixQ;

/* EDIT CRASH INFO DISPLAY FOR FUEL DELETION */

pushmatrix();

pushattributes()

;

translate(0.0,fueldown,0.0)

;

color(MAGENTA);
rectf(0.0,1385.0,1023.0,1767.0);

color(BLACK);

cmov2i(370,1576);

charstr("STOP");

cmov2i(370,1560);

charstr("FUEL DEPLETED");

cmov2i( 370, 1544);

charstr("PUSH ALL THREE MOUSE BUTTONS TO EXIT");

popattributesQ;
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popm&trixQ;

BwapbuffersQ;

++count;

}
/* while loop */

color(BLACK);

cle&r();

swapbuffersQ;

clear();

8wapbuffers();

finish();

gexit();

}
/* main */

/ft***********************************************************

CHECK KEYBOARD
************************************************************* i

/* Keyboard keys can be used to controlled steer wheel_angle.

Keys pressed are queued whereas the mouse is not.

Keys increase the angle by a smaller amount. */

checkkeybd()

{

keypressed = NULL;

if (qtest())

{

qrea.d( & key pressed):

/* Display help information */

if (keypressed == 'h' || keypressed == 'H')

help();

/* printf("%d\n",keypressed); */

}

} /* checkkeybd */
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B. CIRCUIT.C

/*

Build the entire road circuit.

V

#include "road.h"

extern Tag roadlooktag:

extern float Roadwidth, Roadlen;

extern float Bendradiusl:

extern Angle Fov;

/>************* + ***************.******************************

BUILD THE RALLY CIRCUIT

********** ********************************* ************* *****/

m aketheroad (road

)

Object *road;

{

Dimension temp, i;

Dimension high = 3.2;

Colorindex signbg = YELLOW;
Colorindex upsign = RED;
Colorindex rightsign = BLUE:

*road = genobj():

makeobj(*road);

pushmatrix();

pushviewport():

viewport(0, XMAXSCREEN, 385, YMAXSCREEN);
setdepth(0,1023);

perspective(Fov, 1023.0/385.0. 0.0, 1023.0);

roadlooktag = gentagQ;

maketag (roadlooktag);

lookat(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0);

/*******************************

FIRST STRETCH OF ROAD

********************************/

surf(0.0, 0.0, 0.0, Roadwidth, Roadlen, BLACK);
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Build the sign "START"

7

temp = -5.5;

color(WHITE);
pushmatrixQ;

translate(temp + 4.0, 0.0, 0.0);

rotate(-900,'X');

letter(T\ BLACK);
popmatrix();

color(WHITE);

pushmatrix();

translate(temp + 2.0, 0.0, 0.0);

rotate(-900,'X');

letter('R\ BLACK);
popmatrix();

color(WHITE);
pushmatrixQ;

translate) temp, 0.0, 0.0);

rotate(-900,'X');

letter('A\ BLACK);
popmatrix();

color(WHITE);

pushmatrixQ;

translate(temp - 2.0, 0.0, 0.0);

rotate(-900,'X');

letter('T', BLACK);
popmatrixQ;

color(WHITE);
pushmatrixQ;

translate(temp - 4.0, 0.0, 0.0);

rotate(-900,'X');

letterf'S', BLACK);
popmatrixQ;

/*

Build the sign "TURN" before the bend

7

color(WHITE);
pushmatrixQ;

translate(-2.0, 0.0, -(Roadlen - 5.0));

rotate(-900,'X');

letter('N', BLACK);
popmatrixQ;
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color(WHITE);

pushmatrixQ;

translate(-4.0, 0.0, -(Roadlen - 5.0));

rotate(-900,'X');

letter('R', BLACK);
popmatrixQ;

color(WHITE);

pushmatrix();

translate(-6.0, 0.0, -(Roadlen - 5.0));

rotate(-900,'X');

letter('U', BLACK);
popmatrixQ;

color(WHITE);

pushmatrixQ;

translate(-8.0, 0.0, -(Roadlen - 5.0));

rotate(-900,'X');

letter(T\ BLACK);
popmatrixQ:

Build a series of arrow

7

for (temp = 8.0; temp < Roadlen; temp + = 40.0)

{

pushmatrixQ;

translate(0.0, 0.0, -temp);

rotate(-900,'X');

polyarrow(0.7, 1.2, 0.0, WHITE);
popmatrixQ;

}

Create 1st uparrow signboard

7

pushmatrixQ;

translate(10.0, 0.0, -5.0);

signb(1.9, 2.5, S.0, signbg);

popmatrixQ;

pushmatrixQ;

translate(10.0, high, -5.0);

polyarrow(0.7, 1.2, 0.0, upsign);

popmatrixQ;
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/•

Create 2nd uparrow signboard

7

pushmatrixQ;

translate(-7.0, 0.0, -(Roadlen/3.0));

signb(l.9, 2.5, 3.0, signbg);

popmatrix();

pushmatrixQ;

translate(-7.0, high, -(Roadlen/S.O));

polyarrow(0.7, 1.2, 0.0, upsign);

popmatrixQ;

/*

First road bend

7

pushmatrix();

translate(Bendradiusl - Roadwidth/2, 0.0, -Roadlen);

rotate(-900, 'X');

bend();

popmatrix();

/•

Build lnd right turn signboard

7

pushmatrixQ;

translate(7.0, 0.0, -(Roadlen-5.0));

signb(l.9, 2.5, S.0, signbg);

popmatrixQ;

pushmatrixQ;

translate(6.3, 4.0, -(Roadlen-5.0));

rotate(-900,'Z');

polyarrow(0.7, 1.2, 0.0, rightsign);

popmatrixQ;

SECOND STRETCH OF ROAD

********************************

pushmatrixQ;

temp = Bendradiusl - Roadwidth/2;

/
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translate(temp, 0.0, -Roadlen - temp);

rotate(-900, 'Y');

surf(0.0, 0.0, 0.0, Roadwidth, Roadlen, BLACK);
popmatrix();

/*

Build a series of road strips

V

for (i = temp + 8.0; i < Roadlen; i += 20.0)

{

pushmatrixQ;

translate^, 0.0, -Roadlen - temp);

surf(0.0, 0.0, 0.0, S.0, 1.0, WHITE);
popmatrix();

}

/

Create 3rd uparrow signboard

*/

pushmatrix();

translate(temp + 50.0, 0.0, -Roadlen - temp - Roadwidth);

rotate(-900,'Y');

signb(1.9, 2.5, S.0, signbg);

popmatrixQ;

pushmatrix();

translate(temp + 50.0, high, -Roadlen - temp - Roadwidth);

rotate(-900,'Y');

polyarrow(0.7, 1.2, 0.0, upsign);

popmatrixQ;

/*

Second road bend

pushmatrix();

temp = Bendradiusl - Roadwidth/2 + Roadlen;

translate(temp, 0.0, -Roadlen);

rotate(-900, 'X');

rotate(-900, 'Z');

bend();

popmatrix();

/*

120



Build 2nd right turn signboard

7

pushmatrixQ;

translate(temp - Roadwidth, 0.0, -Roadlen - Bendradiusl);

rotate(-900,'Y');

signb(l.9, 2.5, 8.0, signbg);

popm&trix
( )

;

pushmatrixQ;

translate(temp - Roadwidth, 4.0, -Roadlen - Bendradiusl - 0.7);

rotate(-900,'Y');

rotate(-900,'Z');

polyarrow(0.7, 1.2, 0.0, rightsign);

popmatrix();

/*****•*************************

THIRD STRETCH OF ROAD

********************************

pushmatrix();

temp = 2 * Bendradiusl - Roadwidth + Roadlen:

translate(temp, 0.0, 0.0);

surf(0.0, 0.0, 0.0, Roadwidth, Roadlen, BLACK);
popmatrixQ;

/•

Create a series of arrows

7

for (i = Roadlen; i > 5.0; i -= 20.0)

{

pushmatrixQ;

translate(temp, 0.0, -i);

rotate(-900,'X');

rotate(-1800, 'Z');

polyarrow(0.7, 1.2, 0.0, WHITE);
popmatrix();

}

/'

Create 4nd uparrow signboard

7
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pushmatrixQ;

translate) tern j> -I- Roadwidth, 0.0, -Roadlen + 10.0);

rotate(-1800,'Y');

signb(1.9, 2.5, 3.0, signbg);

popmatrLx();

pushmatrix();

translate(temp + Roadwidth, high, -Roadlen + 10.0);

rotate(-1800,'Y');

polyarrow(0.7, 1.2, 0.0, upsign);

popmatrixQ;

/*

Third road bend

7

pushmatrixQ;

temp = Bendradiusl - Roadwidth/2 -I- Roadlen;

translate(temp, 0.0, 0.0);

rotate(-900. 'X'):

rotate(-1800, 'Z');

bend();

popmatrixQ;

/it******************************

FOURTH STRETCH OF ROAD

7
********************************

pushmatrixQ;

temp = Bendradiusl - Roadwidth/2;

translate(temp, 0.0, temp);

rotate(-900, 'Y');

surf(0.0, 0.0, 0.0, Roadwidth, Roadlen, BLACK);
popmatrixQ;

/*

Create a series of arrows

7

for (i = temp -I- 10.0; i < temp + Roadlen; i += 20.0)

{

pushmatrixQ;

translate^, 0.0, temp);

rotate(-900,'X');

rotate(900,'Z');

poiyairow(0.7, 1.2, 0.0, WHITE);
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popmatrixQ;

}

/•

Create 5nd uparrow signboard

7

pushmatrix();

translate(Roadlen, 0.0, Bendradiusl + 2.0);

rotate(-2700,'Y');

signb(1.9, 2.5, SO, signbg);

popmatrix();

pushmatrixQ;

translate (Roadlen, high, Bendradiusl + 2.0);

rotate(-2700,'Y');

polyarrow(0.7, 1.2, 0.0, upsign);

popmatrixQ;

/*

"STOP" sign before the end of circuit

*/

temp = 1.5 * Bendradiusl;

color(WHITE);
pushmatrixQ;

translate(temp, 0.0, 70.0);

rotate(900,'Y');

rotate(-900,'X');

letter('P\ BLACK);
popmatrixQ;

color(WHITE);

push mat nx();

translate(temp, 0.0, 75.0);

rotate(900,'Y');

rotate(-900,'X');

letter('0', BLACK);
popmatrixQ;

color(WHITE);
pushmatrixQ;

translate(temp, 0.0, 80.0);

rotate(900,'Y');

rotate(-900,'X');

letter('T', BLACK);
popmatrixQ;

color(WHITE);
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pushmatrixQ;

translate(temp, 0.0, 84.0);

rotate(900,*Y');

rotate(-900,'X');

letter('S\ BLACK);
popmatrix();

popviewport();

popmatrix();

closeobj();

} /* maketheroad */
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C. INTEGRATE.C

/•

Runge-Kutta 2nd order or Euler-Heun numerical integration

V

finclude "road.h"

extern float headinganglerategain, velocity_time_consant;

extern float turningresponsegain, heading anglegain;

extern float steerwheelangle, speed, state_vector[5];

extern float car_time, deltat, cmdpsidot;

/****** *********************************** ********************

INTEGRATION
*************************************************************

^

compute_new_state( autop)

Boolean autop;

{

float xcap|5|, xdot(5j;

int i,

derivative(state_vector, xdot, autop);

for (i = 1; i < = "SYSTEM ORDER; ++i)
/* Euler prediction */

xcap[i] = statevectorji] + xdot[i] * deltat;

cartime = cartime — deltat;

derivative(xcap, xdot, autop);

for (i = 1; i <= SYSTEM ORDER; ++i)

/* Trapezodial correction */

statevectorji] = (state_vector|i] + xdot(i)

* deltat + xcap[i])/2.0;

} /* computenew state */

/I************************************************************

DERIVATIVE
*************************************************************

/

derivative(work_vector, xdot, autop)

Boolean autop;

float work vector[], xdot[];
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{

xdot(l) = cos(work_vector[4]) * work_vector|S];

xdot(2] ss sin(work_vector[4]) * work_vector[3];

if (lautop)

xdot|S| = - (l/velocity_time_consant) * work_vector(3j

+ (1 /velocity _time_consant) * speed;

else

xdot[3] = 0; /* no acceleration for autopilot */

if (lautop)

xdot[4J = turning_response_gain * work_vector|3]

* steerwheelangle;

else

{

xdot[4j = cmd_psi_dot;

}

} /* derivative */
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D. DISPLAY.C

/•

This module generates all the vehicle dashboard indicators.

1. Speedometer

2. Odometer

8. Compass

4. Fuel Meter

5. Help Panel

6. Warning Panel

7. Steering Wheel Display

Some of the ideas here were adopted from fltsim.c.

V

#include "road.h"

extern Coord latri|3][2j. ratri|3]|2j;

extern Tag transl, transl2, translS, transU, trans22, fuell;

extern Tag odotagl, odotag2, odotagS, odotag4, steerwheeltag;

extern Tag dangertag, temptag, belttag, braketag, transl 1:

extern float headingxpos;

SPEEDOMETER
it************************************************************ I

makethespeedometer(speedometer)

Object * speedometer;

{

Icoord charxpos, posl, pos2, tempx, tempy;

Object meter, meternum;

posl = 467; pos2 = 150;

tempx = posl -+- 90;

tempy = pos2 + 80;

charxpos = posl + SO;

/* Generate outline for speedometer dial */

meter=genobj();

makeobj(meter);
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color(BLACK);

rectfi(posl, pos2, tempx, tempy);

color(WHITE);

rectfi(posl+ 10, pos2+10, tempx-10, tempy-10);

color(BLACK);

cmov2i(posl,pos2-15);

charstr(" km/hr ");

latri!0]|0

latri[0]|l

latriil||0

latrijljjl

latri!2]|0

latriJ2 1

polf2(3,latri);

=posl;

= 190-9;

=posl+25;

= 190;

=posl;

= 190+9;

=tempx;

= 190-9;

=tempx;
= 190+9;

=tempx-25;

= 190;

ratri(0](0

ratrijojjl

ratri(l)[0

ratrijljjl

ratri[2]|0

ratri[2][l

polf2(3,ratri);

closeobj();

/* Generate number in speedometer display */

meternum=genobj();

makeobj(meternum);

color(BLACK);

cmov2i(charxpos,000);

charstr("000");

cmov2i(charxpos,0S0);

charstr("010");

cmov2i(charxpos,060);

charstr("020");

cmov2i(charxpos,090);

charstr("030H );

cmov2i(charxpos,100);
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charstr("040");

cmov2i(charxpos,125);

charstr("050");

cmov2i(charxpos,150);

charstr("060");

cmov2i(charxpos,175);

charstr("070");

cmov2i(charxpos,200);

charstr("080");

cm ov 2 i ( c h arxpos , 225 )

;

charstr("090");

cmov2i(charxpos,250);

charstr("100");

cmov2i(charxpos,275);

charstr("110");

cmov2i(charxpos,S00);

charstr("120");

cmov2i(charxpos,325);

charstr("130");

cmov2i(charxpos,850);

charstr("140");

cmov2i(charxpos,375);

charstr("150");

cmov2i(charxpos,400);

charstr("160");

cmov2i(ch arxpos. 425);

charstrCnO");

cmov2i(charxpos,450);

charstr("180");

cmov2i(charxpos,475);

charstr("190");

closeobj();

/* Put all pieces of speedometer together */

*speedometer=genobj
( )

;

m&keobj ( *speedometer)

;

/* Draw the boundary */

callobj( meter);

/* Draw the display speedometer in the window */

scrm ask (ch arxpos,tempx,pos2^10,tempy- 10);

pushmatrixQ;

transl4=gentag();
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maketag(transl4);

translate(0.0,0.0,0.0);

callobj(meternum);

popmatrix();

/* Reset screenmask to full size screen */

3crmask(0,102S,0,767);

viewport(0, 1023,0, 767);

closeobjQ;

} /* makethespeedometer */

/it***********************************************************

FUEL METER

/

makefuel(fuel)

Object *fuel;

{

Coord fuelxl, fueL\2, fuelyl, fuely2;

Object fuelbound,fuellevel;

fuelxl = 102.0; fuebc2 = fuelxl + 51.0;

fuelyl = 10.0; fuely2 = 340.0;

/* Generate outline for fuel indicator */

fuelbound=genobj();

makeobj(fuelbound);

color(BLACK);

rectf(fuelxl, fuelyl, fueL\2, fuely2);

cmov2(107.0,345.0);

charstif'fuel");

/* Generate hash marks for fuel levels */

linewidth(3);

move(fuelx2, fuely2-30.0, 0.0);

rdr(5.0, 0.0, 0.0);
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/* cmov2(fuelx2+6.0, fuely2-S5.0);

charstr(" Full"); */

move(fuebc2, fuelyl+60.0, 0.0);

rdr(5.0, 0.0, 0.0);

/* cmov2(fuelx2+6.0, fuely 1+55.0);

charstr(" Empty"); */

linewidth(l);

closeobj();

/* Generate the fuel level bar that moves */

fuellevel=genobj
( )

;

makeobj(fuellevel);

color(WHITE);

rectf(fuelxl+4.0, fuelyl+4.0, fuebx2-4.0, fuely2-4.0);

closeobj();

/* Put all pieces of fuel together */

*fuel=genobj();

makeobj(*fuel);

callobj (fuelbound )

;

callobj(fuellevel);

color(YELLOW);

fuell = gentag();

maketag(fuell);

rectf(fuelx 1+4.0, fuelyl+4.0, fuelx2-4.0, fuely2-4.0);

color(BLACK);

closeobj();

} /* makefuel */

/ft************************************************************
/

HELP PANEL
I************************************************************/

makehelp(help)

Object *help;
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{

*help=genobj();

makeobj(*help);

color(BLACK);

rectfi(10,10,90,340);

color( WHITE);

rectfi(15. 15,85,335);

color(BLACK);

/* Generate info on display */

linewidth(2);

cmov2i(10,345);

charstr(" help ");

cmov2i(32,315);

charstr("Exit");

color(RED);

circfi(29,300,6);

circfi(50,300,6);

circfi(71,300,6);

color(BLACK);

cmov2i(21,275);

charstr(" Speed ");

circi(29,260,6);

circi(50,260,6);

color(RED);

circfi(7 1,260,6);

color(BLACK);

cmov2i(21,235);

charstr(" Brake");

color(BLACK);

circi(29,220,6);

color(RED);

circfi(50,220,6);

color(BLACK);

circi(7 1,220,6);

cmov2i(21,195);

charstr(" Stop");

color(RED);

circfi( 29,180,6);
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color(BLACK);

circi( 50, 180,6);

circi(71, 180,6);

cmov2i(10,115);

charstr(" Press ");

cmov2i(10,95);

charstr(" h ");

cmov2i(10,75);

charstr(" for ");

color(RED);

cmov2i(10,55);

charstr(" HELP");

/•

cmov2i(21,135);

charstr(" Brake");

circi( 29. 120,6);

color(RED);

circfi(50, 120,6);

color(BLACK);

circi(71, 120,6);

cmov2i(32,95);

charstr("STOP");

color(BLACK);

circi(29,80,6);

color(RED);

circfi(50,80,6);

circfij 7 1,80,6);

7

color(BLACK);

closeobj();

} /* makehelp */

ODOMETER

m&ketheodometer(odometer)

Object *odometer;

{

Icoord posl, pos2, tempx, tempy;

Coord temp, ch&rx, chary;

posl = 467; pos2 = 50;

tempx = posl + 90; tempy = pos2 + 50;
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*odometer = genobj();

m akeobj ( *odometer )

;

color(BLACK);

rectfi(posl, pos2, tempx, tempy);

color(WHITE);
rectfi(posl + 5, pos2+5, tempx-5, tempy-5);

color(BLACK);

temp = (tempx - posl - 10)/4;

move2(pos1+5+temp, pos2+5);

draw2(posl+5+temp, tempy-5);

move2(posl+5+temp*2, pos2+5);

draw2(posl + 5+temp*2, tempy-5);

move2(posl + 5+temp*3, pos2+5);

draw2(posl+5+temp*3, tempy-5);

move2(posl+5+temp*4, pos2+5);

draw2(posl + 5+temp*4, tempy-5);

charx = posl+5+temp/2; chary = (tempy-pos2)/2+pos2-5.0;

cmov2(charx, chary);

odotagl = gentag();

maketag(odotagl);

charstr( M
0");

cmov2(charx + temp, chary);

odotag2 = gentag();

maketag(odotag2);

charstr("0");

cmov2(charx + temp*2, chary);

odotag3 = gentag();

maketag(odotag3);

charstr("0M );

cmov2(charx + temp*3, chary);

odotag4 = gentag();

maketag(odotag4
)

;

charstrC'O");

color(BLACK);

cmov2i(posl,pos2-15);

charstr(" meter");

closeobj();

}
/* maketheodometer */

/*****************************«*******************************
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WARNING PANEL

ft***********************************************************

makewarning(warning)

Object * warning;

{

Coord tempx, tempy, posl, pos2;

Coord ix, iy, tempy 1, tempy2, tempy 3, tempy4, hg;

posl = 840.0; pos2 = 10.0;

tempx = posl + 140.0; tempy = 340.0;

iy = ix = 20.0;

*warning = genobj();

makeobj ( *warning)

;

color(BLACK);

rectf(posl, pos2, tempx, tempy);

hg = (330 - 5*iy)/4;

dangertag = gentag();

maketag(dangertag);

color(RED);

rectf(posl+ix, pos2-t-iy, tempx-ix, pos2+iy+hg);

color(BLACK);

cmov2(posl + (tempx-posl)/2 - 25.0, pos2-f iy+hg/2-5.0);

charstr( "Danger");

temptag = gentag();

maketag(temptag);

color(RED);

rectf(posl + ix,pos2+iy*2+hg,tempx-ix,pos2+iy*2+2*hg);

color(BLACK);

cmov2(posl + (tempx-posl)/2 - 12.0, pos2+iy*2-rhg+hg/2-5.0);

charstr("Temp");

belttag = gentag();

maketag(belttag);

color(RED);

rectf(posl+ix,pos2+iy*S+hg*2,tempx-ix,pos2+iy*3+S*hg);

color(BLACK);

cmov2(posl + (tempx-posl)/2 - 40.0, pos2-riy*3+hg*2+hg/2-5.0);

charstr("Seat Belt");

braketag = gentagQ;

maketag(braketag);

color(RED);

rectf( posl +ix,pos2+iy*4+hg*3,tempx-ix,pos2+iy*4 +4 *hg);

color(BLACK);

cmov2(posl + (tempx-posl)/2 - 17.0, pos2-i-iy*4+hg*3+hg/2-5.0);
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charstr("Brake");

color(BLACK);

cmov2(posl+20.0, tempy-f 5.0);

charstr(" Warning");

closeobj();

} /* makewarning */

STEERING WHEEL
*************************************************************/

makesteerwheel(steerwheel)

Object *steerwheel;

{

*steerwheel = genobj();

makeobj(*steerwheel);

pushmatrix();

color(BLACK);

circfi(512, 290, 40);

color(WHITE);
circ6(512, 290, SO);

color(BLACK);

translate(512.0, 290.0, 0.0);

steerwheeltag = gentag();

maketag(steerwheeltag);

rotate(0, 'Z');

rectfi(-33, -5, SS, 5);

popmatrix();

closeobj();

} /* makesteerwheel */

/******************************************»****************•*

HEADING METER
*************************************************************

makeheading( heading meter)

Object *heading_meter;

{
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Object meter, theading;

Coord posl, pos2, tempx, tempy;

posl = heading_xpos; pos2 = 350.0;

tempx = posl + 175.0;

tempy = pos2 + 12.5;

meter = genobjQ;

makeobj (meter);

color(BLACK);

rectf(posl-2.5, pos2-2.5, tempx+2.5, tempy+2.5);

color(WHITE);
rectf(posl, pos2, tempx, tempy);

closeobj();

/* Generate the heading on top of the terrain map */

theading=genobj();

makeobj (theading)

;

color(BLACK);

cmov2(000.0,pos2-2.0);

charstr("S40");

cmov2(045.0,pos2-2.0);

charstr("S50");

cmov2(090.0,pos2-2.0)

;

charstr("S60");

cmov2(lS5.0,pos2-2.0);

charstr("010");

cmov2(180.0,pos2-2.0);

charstr("020");

cmov2(225.0,pos2-2.0);

charstrC'OSO");

cmov2(270.0,pos2-2.0);

charstr("040");

cmov2(315.0,pos2-2.0);

charstr("050M );

cmov2(S60.0,pos2-2.0)

;

charstr( n060");

cmov2(405.0,pos2-2.0);

charstrC'OTO");
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cmov2(450.0,pos2-2.0

charstr("080");

cmov2(495.0,pos2-2.0

ch&rstr("090");

cmov2(540.0,pos2-2.0

charstr("100");

cmov2(585.0,pos2-2.0

charstr("110M );

cmov2(630.0,pos2-2.0

charstr("120");

cmov2(675.0,pos2-2.0

charstr("lSOn );

cmov2(720.0,pos2-2.0

charstr("140");

cmov2(765.0,pos2-2.0

charstr("150");

cmov2(810.0,pos2-2.0

charstr("160");

cmov2(855.0,pos2-2.0

charstr("170");

cmov2(900.0,pos2-2.0

charstr("180");

cmov2(945.0,pos2-2.0

charstr("190");

cmov2(990.0,pos2-2.0

charstr("200");

cmov2(1035.0,pos2-2.0);

charstr("210");

cmov2(1080.0,pos2-2.0);

charstr( f,220");

cmov2(1125.0,pos2-2.0);

charstr("2SO");

cmov2( 1 170.0,pos2-2.0)

;

charstr("240");

cmov2(1215.0,pos2-2.0);
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charstr("250");

cmov2( 1260.0,pos2-2.0

charstr("260"j;

cmov2(1305.0,pos2-2.0

charstr("270");

cmov2(1350.0,pos2-2.0

charstr("280"):

cmov2(1395.0,pos2-2.0

charstr("290"j;

cmov2(1440.0,pos2-2.0

charstr("300");

cmov2(1485.0,pos2-2.0

charstr("310"):

cmov2(1530.0,pos2-2.0

charstr("320");

cmov2(1575.0,pos2-2.0

charstr("S30");

cmov2(l620.0,pos2-2.0

charstr("340");

cmov2(1665.0,pos2-2.0

charstr("350"j;

cmov2(1710.0,pos2-2.0

charstr("360");

cmov2(1755.0,pos2-2.0

charstrC'OlO");

cmov2(1800.0,pos2-2.0

charstr( M020 n
);

color(BLACK);

closeobj();

/* Put all the pieces together */

*heading_meter=genobj();

makeobj (
""heading meter)

;

/* Draw the boundary */
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callobj(meter);

/* Draw the heading */

scrmask((int) posl,(int) tempx,(int) pos2,(int) tempy)

pushmatrixQ;

transll=gentag();

maketag(transll);

translate(0.0,0. 0,0.0);

callobj(theading);

scrmask(0,1023,0,767);

popmatrix();

color(RED);

linewidth(4);

move2(posl + 175.0/2,pos2);

draw2(posl+ 175.0/2.tempy);

linewidth(l);

scrmask(0,1023,0,767);

closeobj();

} /* makeheading */
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E. OTHER.C

/*

This module contain the supporting routines for building the

scenery objects like the clouds and mountains.

7

#include "road.h"

extern Dimension Roadlen, Roadwidth, Bendradiusl;

extern Tag skylooktag, terrainllooktag;

extern Tag houselooktag, housetranstag;

extern Tag housescaletag;

extern Tag housellooktag, houseltranstag;

extern Tag houselscaletag;

extern Angle Fov;

SKY

ft************************************************************/

makethesky(sky)

Object *sky;

{

*sky= genobj();

makeobj(*sky);

pushmatrix();

pushviewport();

viewport(0, 1023, 585, 767);

setdepth(0,1023);

perspective(Fov, 1023.0/385.0, 0.0, 1023.0);

skylooktag = gentagQ;

maketag(skylooktag);

lookat(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0);

pushmatrixQ;

translate(0.0, 100.0, 50000.0);

surf(0.0, 0.0, 0.0, 100000.0, 100000.0, SKY);

popmatrixQ;

popviewport();

popmatrix();

closeobj();

} /* makethesky */
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/ft***********************************************************

CLOUDS AND MOUNTAINS
•ft***********************************************************

maketerrain 1 (terrain 1

)

Object *terrainl;

{

Dimension temp = -(Roadlen+500.0);

Dimension tempi = -(Roadlen+500.0);

Dimension tempy = 0.0;

Dimension tempyl = 100.0;

Dimension tempy2 = 350.0;

* terrain 1= genobj();

makeobj ( * terrain 1 )

;

/* Generate some clouds */

pushmatrix();

pushviewport();

viewport(0, 1023, 385, 767);

setdepth(0,1023);

perspective(Fov, 1023.0/385.0, 0.0, 1023.0);

terrain llooktag= gentagQ:

rnaketagf terrain 1 look tag);

lookat(0.0. 0.0, 0.0, 0.0, 0.0, 0.0, 0);

pushmatrixQ;

color(WHITE);
translate)- 1000.0, tempyl, temp);

scale(1.0, 1.0, 1.0);

rotate(-900, 'Y');

circf(0.0, 0.0, 40.0);

circf(50.0, 0.0, 30.0);

circf(40.0, 50.0, 40.0);

popmatrix();

pushmatrix();

color(WHITE);
translate (- 1000.0, tempyl, temp);

scale(1.0, 0.8, 1.0);

circf(0.0, 0.0, 40.0);

circf(50.0, 0.0, 30.0);

circf(40.0, 50.0, 40.0);

popmatrixQ;

pushmatrixQ;

color(WHITE);

translate(-2000.0, tempyl, temp);

scale(2.0, 2.0, 1.0);
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rotate(-900, 'Y');

circf(0.0, 0.0, 40.0);

circf(50.0, 0.0, 30.0);

circf(40.0, 50.0, 40.0);

popmatrixQ;

pushmatrix();

color(WHITE);

translate(-2000.0, tempyl, temp);

scale(2.0, 0.8, 1.0);

circf(0.0, 0.0, 40.0);

circf(50.0, 0.0 30.0);

circf(40.0, 50.0, 40.0);

popmatrix();

pushmatrix();

color(WHITE);
translate(2000.0, tempyl, temp);

scale(3.0, 2.0, 1.0);

rotate(-900, 'Y');

circf(0.0, 0.0. 40.0);

circf(50.0, 0.0, 30.0);

circf(40.0, 50.0, 40.0);

popmatrix();

pushmatrixQ;

color(WHITE);
translate(2000.0, tempyl, temp);

scale(2.0, 0.8, 1.0);

circf(0.0, 0.0, 40.0);

circf(50.0, 0.0, 30.0);

circf(40.0, 50.0, 40.0);

popmatrixQ;

/* Generate some mountains */

pushmatrixQ;

translate(-2000.0, tempy, temp);

scale (1.0,0.1, 0.0);

color(MOUNTAINl);
arcf(0.0, 0.0, 400.0, 0, 1800);

popmatrixQ;

pushmatrixQ;

translate (-1500.0, tempy, temp);

scale (1.0, 0.2, 0.0);

color(MOUNTAIN);
arcf(0.0, 0.0, 250.0, 0, 1800);

popmatrixQ;

pushmatrixQ;

translate^ 1000.0, tempy, temp);
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scale (1.0, 0.1. 0.0);

color (MOUNT AIN1);

arcf(0.0, 0.0, 300.0, 0, 1800);

popm&trixQ;

pushmatrixQ;

translate( 1000.0, tempy, temp);

scale (1.0, 0.2. 0.0);

color(MOUNTAIN);
arcf(0.0, 0.0, 250.0, 0, 1800);

popmatrixQ;

pushmatrLx();

translate( 1500.0, tempy, temp);

scale (1.0, 0.1, 0.0);

color(MOUNTAINl);

arcf(0.0, 0.0, 300.0, 0, 1800);

popmatrix();

pushmatrix();

translate(2000.0, tempy, temp);

scale (1.0, 0.1, 0.0);

color(MOUNTAINl);
arcf(0.0, 0.0, 300.0, 0, 1800);

popmatrixQ;

popviewport();

popmatrixQ;

closeobjQ:

} /* maketerrainl*/

/*************************************************************

BUILD SURFACES
************** ******************* **************************** i

surf(x, y, z, width, length, roadcolor)

Coord x, y, z;

Dimension width, length;

Colorindex roadcolor;

{

Coord vertice[5][3];

Dimension temp;

temp = width/2;

vertice[0][0] = x;

vertice|0][l] = y;

vertice[0][2] = z;

vertice[l][0] = x - temp;

vertice(l]|l] = y;
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vertice|l][2] = z;

vertice[2]|0] = x - temp;

vertice[2)jl] = y;

vertice|2]|2] = -length;

vertice[3]|0] = x + temp;

vertice|3]|l] = y;

vertice(3]|2] = -length;

vertice[4]|0] = x + temp;

vertice[4][l] = y;

vertice|4]|2] = z;

color(roadcolor);

polf(5,vertice);

}
/*9urf*/

BUILD ROAD BENDS

it***********************************************************/

bend()

{

color(BLACK);

arcfi(0, 0, (int) Bendradiusl, 900, 1800);

color(FIELD);

&rcfi(0, 0, (int) (Bendradiusl - Roadwidth), 900, 1800);

}

/ft************************************************************

BUILD SIGNBOARD
*******************»************»*»***********************/

signb(width, length, height, bcolor)

Dimension width, length, height;

Colorindex bcolor;

{

Coord vertice[5)|3);

Coord verticel[5]|S|;

Dimension legwidth, tempi, temp2, tempS;

legwidth = 0.2; /* size of supporting leg */

tempi = length/2;

temp2 = length /4;

tempS = legwidth/2;

vertice|0]|0j = 0.0;

vertice|0][l] = height;
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vertice|0][2) = 0.0;

vertice[l]|0) = -tempi;

vertice[l]|l] = height;

vertice|l]|2] = 0.0;

vertice[2]|0) = -tempi;

vertice|2]jl] = width + height;

vertice|2]|2] = 0.0;

vertice|S]|0) = tempi;

verticejsjjl] = width + height;

vertice[8]|2) = 0.0;

vertice|4]|0] = tempi;

vertice[4](l] = height;

vertice(4](2] = 0.0;

color(bcolor);

polf(5,vertice);

/* Generate the supporting leg */

verticel(0][0] = 0.0;

verticel(0][l] = 0.0:

verticel|0][2j = 0.0;

verticel[l](0] = -temp3;

verticel|l]jlj = 0.0;

verticel[l](2] = 0.0;

verticel[2][0] = -temp3;

verticel[2j[l] = height;

verticelj2j(2j = 0.0;

verticel[3j(0j = temp3;

verticel(3][l) = height;

verticel[3][2) = 0.0;

verticel[4)[0] = temp3;

verticel|4]jlj = 0.0;

verticel[4](2] = 0.0;

color(BLACK);

polf(5,verticel);

} /* signboard */

BUILD ARROW
ft************************************************************/
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polyarrow(bodywidth, headwidth, high, arrowcolor)

Colorindex arrowcolor;

Dimension bodywidth, headwidth, high;

{

Coord vertice|5]|3], verticel[3]|S|;

Dimension bodyheight = 0.8;

Dimension headheight = 1.5;

Dimension tempi = bodywidth/2;

Dimension temp2 = headwidth/2;

vertice[0] [0]

vertice[0] 1

vertice[0] 2

vertice[l] [0]

vertice[l] [1]

verticejl] [2]

vertice[2] !°l

vertice[2] [l]

vertice[2] [2]

verticejS] jo]

vertice|3] 1

vertice[8] 121

vertice|4] |0)

vertice[4] I

vertice|4] [2]

= 0.0;

= 0.0 + high;

= 0.0;

= -tempi;

= 0.0 -I- high;

= 0.0;

= -tempi;

= bodyheight -f high;

= 0.0;

= tempi;

= bodyheight 4 high;

= 0.0;

= tempi;

= 0.0 + high;

= 0.0;

color(arrowcolor);

polf(5,vertice);

verticeljO

verticel|0

verticeljO

verticel[l

verticeljl

verticel|l

verticel[2

verticel[2

verticel|2

0] = -temp2;

l] = bodyheight + high;

2] = 0.0;

0) = 0.0;

l] = headheight + high;

2] = 0.0;

0] = temp2;

l] = bodyheight -I- high;

2] = 0.0;

color(arrowcolor);

polf(3,verticel);

}
/* polyarrow */

/
ft************************************************************

BUILD HOUSE
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*************************************************************

makehouse( house)

Object *house;

{

Boat sidewall[5]|2j, roof|4)|2j, chmwalll[4][2|;

Boat chmwall2|4](2], sideroof|4]|2];

*house=genobj();

makeobj(* house);

pushmatrixQ;

pushviewport();

viewport(0, 1023, 385, 767);

setdepth(0,1023);

perspective(Fov, 1023.0/385.0, 0.0, 1023.0);

houselooktag = gentag();

maketag(houselooktag);

lookat(0.0, 0.0, 0.0, 0.0, 0.0, 0.0. 0);

pushmatrix();

housetranstag = gentagQ;

maketag(housetranstag):

translate(0.0, 0.0, 0.0);

housescaletag = gentag();

maketag ( housescaletag )

;

scale(l.0, 1.0, 1.0);

/* Draw front wall */

color(WALL);

rectf(-1.0,0.0,16.0,10.0);

/* Draw side wall */

sidewall|0j[0) =H-0);
sidewalljojjlj = (2.0);

sidewalljljjo] =(0.0);

sidewalljl][lj =(0.0);

sidewall[2]|0] = (0.0);

sidewall[2]|l] = (10.0);

sidewall[8][0] = (-3.0);

sidewalljSjJl] =(13.0);

sidewall[4j(0] =(-4-0);

sidewall[4][lj =(115);

color(SIDEWALL);

polf2(5,sidewall);

/* Draw roof and sideroof */

roof(0](0]= (-l •0);
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roof|0]il]= (10.0);

roofll]J0]= (17.0);

roof|l][l]= (10.0);

roofl2]!0)= (14.0);

roof|2 l)= (13.5);

roof(S |0]= (-3.0);

roof|3;!l]= (13.5);

color(ROOF);

polf2(4,roof);

sideroof|0]|0]= (-4.S);

sideroof|0][]]= (11.5);

sideroof[l]|0]= (-4.0);

sidepoof|l]|lj= (11.5);

sideroof|2]|0]= (-2.8);

sideroof|2)|l]= (13.1);

sideroof[3]|0]= (-3.0);

sidepoof(S]|l]= (lS.5);

color(SIDEROOF);

polf2(4,sideroof);

/* Draw window */

color(WINDOW);
rectf(2.0,4. 0,5.0,7.0);

rectf(9.0,4. 0,12.0,7.0);

/* Draw window frames */

color(FRAME);

linewidth(4);

move(2.0,4.0,0.0);

draw(5.0,4.0,0.0);

draw(5.0,7.0,0.0);

draw(2.0,7.0,0.0);

draw(2.0,4.0,0.0);

move(3. 5,4.0,0.0);

draw(3. 5, 7.0,0.0);

move(2.0,5. 5,0.0);

draw(5.0,5. 5,0.0);

move(9.0,4.0,0.0);

draw( 12.0,4.0,0.0);

draw(l2.0,7.0,0.0);

draw(9.0,7.0,0.0);

draw(9.0,4.0,0.0);

move(10.5,4.0,0.0);

draw(10.5,7.0,0.0);

move(9.0,5. 5,0.0);

draw(l2.0,5.5,0.0);
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/* Draw chimney front wall */

color(SIDEWALL);

rectf( 1.0,12.0,3.0,14-2);

/* Draw the hole on the chimney */

color(BLACK);

rectf(l. 5,13. 3,2.5,13.8);

/* Draw top and side walls of the chimney */

chmwalll

chmwalll

chmwalll

chmwalll

chmwalll

chmwalll

chmwalll

chmwalll

|0]=0.5;

[1)= 12.5;

[0]= 1.0;

!l)= 12.0;

[0]= 1.0;

[1)= 14.2;

01=0.5;

llj= 14.7;

color(CHMWALLl);
polf2 (4,chmwalll);

chmwall2[0]|0l=2.5;

chmwall2[0][lj= 14.7;

chmwall2(l]|0J=3.0;

chmwall2[l]|l)=14.2;

chmwall2(2](0] = 1.0;

chmwall2|2]|l]= 14.2;

chmwaU2|S]|0]=0.5;

chmwaU2[3][l] = 14.7:

color(CHMWALL2);
polf2(4,chmwall2);

popmatrix();

popviewport();

popmatrix();

closeobj();

} /* makehouse */

makehousel(housel)

Object *housel;

{

float sidewall|5j[2), roof|4][2], chmwalll|4][2];

float chmwall2{4]{2], sideroof|4J|2j;

*housel=genobj();

makeobj(*housel);

pushmatrix();
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pushviewport();

viewport(0, 102S, 385, 767);

setdepih (0,1028);

perspective(Fov, 102S.0/S85.0, 0.0, 1023.0);

housellookt&g = gentagQ;

maketag(housellooktag);

lookat(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0);

pushmatrixQ;

house ltranstag = gentag();

maketag (house ltranstag);

translate(0.0, 0.0, 0.0);

house lscaletag = gentag();

maketag(houselscaletag);

scale(1.0, 1.0, 1.0);

/* Draw front wall */

color(WALLl);

rectf(-1.0,0.0,16.0,10.0);

/* Draw side wall */

sidewall(0]|0]=(-4.0);

sidewall|0][l]= (2.0);

sidewall(lj(0]= (0.0);

sidewall[l]|l) = (0.0);

sidewall[2]|0]=(0.0);

sidewall(2]ll) = (10.0);

sidewall[3]|0]-(-3.0);

sidewall[3][l]= (13.0);

sidewall|4]10)= (-4.0);

sidewall|4][l)= (11.5);

color(SIDEWALLl);

polf2(5,sidewall);

/* Draw roof and sideroof */

roof|0]|0]=(-1.0);

roof|0j|l] = (10.0);

roof|l]|0]= (17.0);

roof|l]|l]=(10.0);

roof|2]|0)=(l4.0);

roof|2)|l)=(13.5);

roof|3][0]=(-3.0);

roof|3][l]= (13.5);

color(ROOFl);

polf2(4,roof);

sideroof|0]|0]=(-4.3);
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sideroof|0][l)= (11.5);

sideroof|l][0)= (-4.0);

sideroof|lj[l]= (ll.5);

8ideroofl2][0]= (-2.8);

sideroof|2][l] = (13.1);

sideroof|S)[0]= (-3.0);

sideroof|3)jl)=(13.5);

color(SIDEROOF);

polf2(4,sideroof);

/* Draw window */

color(WINDOW);
rectf(2.0,4.0,5.0,7.0);

rectf(9.0,4.0,12.0,7.0);

/* Draw window frames */

color(FRAME);

linewidth(4);

move(2.0, 4.0,0.0)

draw(5.0,4.0,0.0)

draw(5.0,7.0,0.0)

draw(2.0,7.0,0.0)

draw(2.0, 4.0,0.0)

move(3. 5,4. 0,0.0)

draw(3. 5,7.0,0.0)

move(2.0,5. 5,0.0)

draw(5.0,5.5,0.0)

move(9.0.4.0,0.0);

draw(12.0,4.0,0.0);

draw(12.0,7.0,0.0);

draw(9.0,7.0,0.0);

draw(9.0,4.0,0.0);

move(10.5,4.0,0.0);

draw(10.5,7.0,0.0);

move(9.0,5. 5,0.0);

draw(12.0,5.5,0.0);

/* Draw chimney front wall */

color(SIDEWALLl);

rectf(1.0,12.0,3.0,14.2);

/* Draw the hole on the chimney */

color(BLACK);

rectf(1.5,13.3,2.5,13.8);

/* Draw top and side walls of the chimney */
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chmwallljQ] 0) =0.5;

chmwalll|0] 1] = 12.5;

chmwalll[l] o] =1.0;

chmwalll[l] 1] = 12.0;

chmwalll[2] o] =1.0;

chmwalll|2] 1) = 14.2;

chmwalUJS] o) =0.5;

chmwalll|3] 1) = 14.7;

color(CHMWALLl);
polf2(4,chmwalll);

chmwall2|0

chmwall2[0

chmwall2[l

chmwall2[l

chmwall2[2

chmwall2[2

chmwall2'3

chmwall2:3

1|0]=2.5;

][1]=14.7;

][0]=S.0;

]jl]=14.2;

]|0]=1.0;

j[lj=14.2;

][0]=0.5;

j[l]= 14.7;

color(CHMWALL2);
polf2(4,chmwall2);

popmatrix();

popviewport();

popmatrbc();

closeobj();

} /* makehousel */
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F. HELP C

/*

This module creates the welcome and help screen.

7

#include "road.h"

static int parray|4)|2] = {{275,600}, {250,625}, {275,625} ,{800,600}};

static int parrayl(4](2] = {{275,475}, {250,500}, {275,500}, {300,475}};

/
ft************************************************************

WELCOME DISPLAY

************************************* ************************

welcome()

{

/* Loop until we get a mouse button hit */

color(YELLOW);
clear();

color(BLUE);

rectfi{200,625,300,700);

rectfi(200,600,225,625);

polf2i(4,parray);

rectfi(325,600,425,700)

rectfi(450,600,550,700)

rectfi(575,600,675,700)

polf2i(4,parrayl);

rectfi(200,475,225,500)

rect6(200,500,500,575)

rectfi(325,475,425,575)

rect6(450,475,550,500)

rect6(450,500,475,575)

rectfi(575,475,675,500)

rectfi(575,500,600,575)

rectfi(700,525,800,575)

rectfi(7S7,475,762,525)

color(YELLOW);

rectfi(225,650,275,675);
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rectfi(S50,625,400,675)

rectfi(475,600,525,625)

rectfi(475,650,525,675)

rectfi(575,625,600,675)

rectfi(625,625,650,675)

rectfi(225,525,275,550)

recta(350,525,400,550)

rectfi(S50,475.400,500)

rectfi(725,550,775,575)

color(BLACK);

cmov2i(200,350);

charstr("Welcome to the world of ROAD RALLY");

cmov2i(200,325);

charstr("You drive & car on a road controlling");

charstr(" its speed and direction with the");

cmov2i( 200,300);

charstr("mouse. To exit the program"):

charstr(" at any time press all three mouse simultaneously.");

cmov2i(200,275);

charstr("After the bell ring, to continue with the");

charstr(" program press the left mouse button.");

cmov2i(200,250);

charstr("HELP is available by pressing the keyboard key h");

charstr(" while the car is moving.");

linewidth(5);

cmov2i(200,l75);

charstr("Author : Tan Chiam Huat");

color(RED);

cmov2i(200,150);

charstr("This image is contributed by: Mike Whiting");

color(BLACK);

linewidth(l);

swapbuffers();

} /* welcome */

/*************************************************************

HELP DISPLAY

it*****************************************:******************/

help()

{

Icoord x = 100;
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Icoord y = 340;

Icoord iy = 22;

/* Loop until we get a mouse button hit */

while (getbutton(MOUSEl) == && getbutton(MOUSE2) == kk
getbutton(MOUSES) == 0)

{

pushm&trixQ;

pushviewport();

viewport(0, 1023, 0, 380);

ortho2(0.0, 1023.0, 0.0, 380.0);

color (WHITE);
clear();

color(BLACK);

linewidth(5);

cmov2i(x, y);

charstr("HELP INFORMATION: Press any mouse button to continue");

cmov2i(x, y - iy):

charstr("KEY REMARK");

cmov2i(x, y - 2 * iy);

charstr("a or A or Left button : Accelerate");

cmov2i(x, y - 3 * iy);

charstr("b or B or Middle button : Brake");

cmov2i(x, y - 4 * iy);

charstr("c or C : Clock switch");

cmov2i(x, y - 5 * iy);

charstr("e or E or Right button : Emergence Stop");

cmov2i(x, y - 6 * iy);

charstr("h or H : Help");

cmov2i(x, y - 7 * iy);

charstr("o or O : Odometer reset");

cmov2i(x, y - 8 * iy);

charstr("q or Q : Autopilot");

cmov2i(x, y - 9 * iy);

charstr("s or S : Sound danger");

cmov2i(x, y - 10 * iy);

charstr("t or T : Timer (Integration)");
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cmov2i(x, y - 11 * iy);

charstr("z or Z : Information");

cmov2i(x, y - IS * iy);

charstr("To TURN LEFT : Move mouse to the left");

cmov2i(x, y - 14 * iy);

charstr("To TURN RIGHT : Move mouse to the right");

linewidth(l);

popviewport();

popmatrixQ;

swapbuffersQ;

} /* while */

} /* help */
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G. LETTER.C

/* This routine is written for the IRIS-2400

This is routine letter.c...

This file supports routine title. c, which constructs the

title page of the font building utility "BUILDFONT."

This file cont&ins routines to display block alphabetic characters

suitable for inclusion into graphics objects. These letters are

used instead of IRIS FONTS when one desires to treat them as

graphics objects that can be rotated, scaled, etc. (font char-

acters can't)

This file includes routines for 27 characters, "A" through "Z",

and also ":" and " " (blank) (but not "G'V'Q'V'VV'W'V'X"^")

The routine draws the desired letter in absolute coordinates,

in the center of the display.

To use these routines, the color desired for the letter must

be specified when the object is created (in the user program),

and the desired backgound color must be passed to the routine.

Original version written by J. Artero and R. Kirsch; current

version written by L. Williamson

7

#include "gl.h"

#include "device.h"

letter(asci,backcolor)

int asci; /* index of character we want to display */

Colorindex backcolor; /* specified background color */

{

Coord box [8] [2]; /* vector of coordinates forming the

vertices of a letter object */

switch(asci)

{

case 'A':

box[0]|0|=4.6875;

box[0]|lj=3.25;
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box|l](0]=4.9375;

box[l][l]=4.25;

box|2](0)=5.0625;

box|2][lj=4.25;

box|S][0)=5.3125;

box|S][l]=3.25;

polf2(4,box);

color(backcolor);

box|0]|0j=4.8125;

box|0][l]=3.25;

box(l]|0]=4.84S75;

boxjl](l]=S.375;

box[2](0l=5. 15625;

box[2]ili=3.375;

box|3][0J=5.1875;

box[3][l]=3.25;

polf2(4,box);

box|0][0]=4.875;

boxjo][l]=3.5;

box[l][0]=5.0;

box[l)jl)=4.0;

box|2]|0)=5.125;

boxJ2]|l]=3.5;

polf2(S,box);

break;

case 'B':

box|0][0]=4.6875;

box(0j[lj=3.25;

box(l](0]=4.6875;

boxjl]|l)=4.25;

box[2](0j=5.1875;

box(2][l)=4.25;

box!3]|0)=5.3125;

boxJ3]jl]=4.125;

box|4][0j=5.3125;

boxl4]jl!=S.S75;

box[5](0j=5.1875;

box|5]|l]=3.25;

polf2(6,box);

color(backcolor);

box!0][0]=5.25;

box!0]jlj=S.8125;

box[l](0]=5.S125;

box(l)[l]=3.875;

box[2][0]=5.3125;

box[2 (1]=3.75;

159



polf2(3,box);

box(0)|0]=4.8125;

box(0]|l]=3.375;

box[l]lO]=4.8125;

box|l]|l]=3.75;

box|2]|0]=5.125;

box|2]|l]=S.75;

boxlS]|0]=5.1875;

box|S](l]=3.6875;

box[4]|0)=5.1875;

box[4]|l]=S.4S75;

box[5]|0]=5.125;

box[5]|ll=S.S75;

polf2(6,box);

box|0]|0]=4.8125;

box[0]|l]=3.875;

box|l]|0]=4.8125;

box[l]|l]=4.125;

box|2](0]=5.125;

box[2]|l]=4.125;

box|S]|0]=5.1875;

box[3]|l)=4.0625;

box(4](0]=5.1875;

boxl4)|l]=3.9S75;

box(5]|0]=5.125;

box[5]|l]=3.875;

polf2(6,box);

break;

case »C:

box(0][0]=4.6875

box|0](l]=3.875;

boxll]lO)=4.6875

box[l)|l]=4.125;

boxJ2]|0]=4.8125

box[2](l]=4.25;

box[3]|0]=5.l875

box|S][l]=4.25;

box|4]|0]=5.S125

box(4](l]=4.125;

box[5][0]=5.S125

box|5][l]=3.375;

box|6][0]=5.1875

box[6][l]=3.25;

box[7]lO]=4.8125

boxJ7]|l]=3.25;

polf2(8,box);
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color(backcolor);

box|0

box|0

boxjl

boxjl

box [2

box
1

2

box|S

box
1

3

box 14

box
1

4

box [5

box [5

box [6

box [6

box(7

box 1

7

|0]=4.8125

jl]=S.4S75

[0)=4.8125

|l]=4.0625

|0j=4.875

[l]=4.125

|0]=5.125

jlj=4.125

[0)=5.1875

[l]=4.0625

0]=5.1875

l]=3.4375

0]=5.125

l]=3.375

0]=4.875

1 =3.375

polf2(8,box);

rectf(5.1875,3.5, 5.3125,4.00);

break;

case 'D':

box

box

box

box

box

box

box

box

box

box

box

box

0]|0)=4.6875;

0][1]=3.25;

1]|0]=4.6875;

1]|1]=4.25;

0]=5.1875;

11=4.25;

0)=5.3125;

t
1]=4.125;

4J[0]=5.3125;

4][1)=3.375;

5|(0]=5.1875;

5][1]=3.25;

polf2(6,box);

color(backcolor);

=4.8125;

=3.375;

=4.8125;

=4.125

=5.125

=4.125

=5.1875

=4.0625

=5.1875

=3.4375

=5.125;

=3.375;

box 0]|0]

box o]|i]

box i|[o)

box l]ll]

box 21N
box 2)|1]

box 81I0J

box 5]|1)

box 4J|01

box 4][1)

box 51(0]

box 51111
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polf2(6,box);

break

;

case 'E':

rectf(4.6875,4. 125,5.25,4. 25);

rectf(4.6875,3.25, 5.3125,8.375);

rectf(4.6875,3.25,4.8125,4.25);

rectf(4. 8125,3. 75, 5.0625,3.875);

break;

case 'F':

rectf(4.6875,3.25,4.8125,4.25);

rectf(4.6875,4. 125,5.3125,4.25);

rectf(4. 8125,3. 75,5.125,3.875);

break;

case 'H':

rectf(4.6875,3.25,4. 8125,4. 25);

rectf(4. 8125,3.6875,5. 1875,3.8125)

rectf(5. 1875,8.25,5.8125,4.25);

break;

case T:

rectf(4.6875,4.125,5.S125,4.25);

rectf(4.6875,3.25,5.S125,3.375);

rectf(4.9375,3.25,5.0625,4.25);

break;

case 'J':

box|0]

box[0]

boxjlj

boxjl]

box[2]

box[2]

box[3]

box[3]

box[4]

box[4]

box[5]

box5

0]=4.6875

1]=3.S75;

0]=4.6875

1]=3.625;

0]=5.3125

1]=3.625;

0j=5.3125

1]=3.375;

0)=5.1875

1]=8.25;

0]=4.8125

1=8.25;

polf2(6,box);
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rectf(5.2,3.625,5.S125,4.25);

color ( backcolor )

;

box|0]|0]=4.8125

boxjo]jlj=S.4375

box[l]|0]=4.8125

box|l][l)=3.625;

box[2]|oi=5.1875;

box|2][l]=3.625;

box[3]|0]=5.1875;

box|3]jli=S.4S75;

box[4j(0j=5.125

box|4][lj=S.375

box|5)(0!=4.875

box(5)[lj=3.375

polf2(6,box);

break;

case 'K':

rectf(4.6875,3.25,5. 3125,4. 25)

color( backcolor);

box|0]|0l=4.8125;

box|0]jlj=3.875;

boxll](0j=4.8125;

box|lj(lj=4.25;

box[2][0j=5.125;

box[2][l)=4.25;

polf2(3,box);

box|0](0)=5.02;

box!0j(l)=3.875;

box|l](0]=5.S125;

boxjl][l]=4.25;

box|2|!0)=5.3125;

box!2|il)=3.25;

polf2(3,box);

box(0][0]=4.8125;

box|0][l]=3.25;

box|l](0]=4.8125;

box[l)[l!=3.625;

box|2]|0J=4.9;

box(2](l]=3.74;

box|S][0]=5.14;

box[3][l]=3.25;

polf2(4,box);

break;
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case 'L':

rectf(4.6875,3.25,4. 8125,4.25);

rectf(4.6875,8. 25,5.3125,3.375);

break;

case 'M':

rectf(4.6875,S.25,5.3125,4.25);

color(backcolor);

box[0l|0]=4.6875;

box[0]|l]=4.25;

boxjl]|0]=5.3125;

boxjl)|l)=4.25;

box|2][0]=5.0;

box[2j(l]= 3.75;

polf2(3,box);

box[0]|0]=4.8125;

box|0]jl]=3.25;

box|l][0]=4.8125;

boxjl]jl]=3.8125;

box|2](0)=5.125;

box[2](l]=3.25;

polf2(3,box);

box[0][0]=4.875;

box[0][l]=3.25;

boxjlj|0)=5.1875

box[l][l]=S.8125

box[2][0]=5.1875

box[2]|l]=3.25;

polf2(3,box);

break;

case 'N':

rectf(4.6875,3. 25,5.3125,4.25);

color ( backcolor
)

;

box[0][0]=4.8125;

box(0]jl]=3.25;

box|l][0]=4.8125;

box[l][l]=3.9375;

box(2][0]=5.1875;

box|2)jl]=3.25;

polf2(3,box);

box(0][0]=4.8125;
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box(0][l)=4.25;

box|l](0)=5.1875;

boxjl](l)=4.25;

box[2][0]=5.1875;

box[2][l]=3.5625;

polf2(S,box);

break;

case '0':

box[0](0)=4.6875;

box[0][l)=3.375;

box[l)[0]=4.6875;

box[l][l)=4.125;

box(2)[0)=4.8125;

box[2][l)=4.25;

box|3][0]=5.1875;

box[3]|l]=4.25;

box|4][0]=5.3125;

box(4][l]=4.125;

box|5j[0] = 5.3125;

box|5][l]=3.375;

box[6](0) = 5.1875;

box|6]|l]=3.25;

box(7]|0] = 4.8125;

box[7][lj=3.25;

polf2(8,box);

color ( backcolor )

;

box[0][0]=4.8125;

box|0][l]=3.4375;

box[l][0]=4.8125;

box[l][l]=4.0625;

box[2][0]=4.875

box(2][l]=4.125

box[S][0)=5.125

box[3][lj=4.125

box[4](0)=5.1875;

box[4]ll)=4.0625;

box[5][0)=5.1875;

box|5][l)=3.4375;

box[6][0]=5.125

boxi6][l]=3.375

box[7)[0)=4.875

box[7][lj=3.375

polf2(8,box);

break;

case 'P':
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box|0]|0]=4.6875;

box[0][l]=3.25;

box[l]|0)=4.6875;

box[l]|l]=4.25;

box|2]|0]=5.1875;

box|2]|l]=4.25;

box|S](0]=5.8125;

box|S]ll]=4.125;

boxJ4]J0)=5.3125;

box|4](l]=S.25;

polf2(5,box);

color(backcolor);

box[0)(0]=4.8125;

box(0][l]=3.25;

box|l][0]=5.S125

box[l][l]=3.8125

boxl2]J0]=5.3125

boxJ2][l]=3.25;

polf2(3,box);

box!0]|0]=4.8125

box(0][l]=S.8125

box|l]|0]=4.8125

box|l]jl]=4.125

boxJ2]|0)=5.125

box|2)jl)=4.125

box|S)[0)=5.1875

box|3][l]=4.0625

box|4]|0]=5.1875

box|4]jl]=3.875;

box|5)[0]=5.125;

box(5]jl)=3.8125;

polf2(6,box);

rectf(4.8125,3.25,5.S125,3.6875);

break;

case 'R'

boxiOj

box|0]

boxjl]

boxjl]

box|2]

box(2]

box[3]

box[3)

box|4]

box|4|

[0]=4.6875;

(1]=3.25;

(0]=4.6875;

[l)=4.25;

[0]=5.1875;

|1]=4.25;

|0]=5.3125;

(l]=4.125;

|0]=5.3125;

|lj=3.25;

polf2(5,box);
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color (backcolor )

;

box[0][0]=5.1875;

box[0][l]=S.625;

box[l](0]=5.3125;

box[l][l]=3.75;

box[2][0]=5.S125;

box[2]|l]=3.25;

polf2(S,box);

box|0][0]=4.8125;

box[0][l]=3.75;

box[l)[0]=4.8125;

box|ljjl)=4.125

box(2][0]=5.125

box|2][l]=4.125

boxj3](0]=5.1875

boxi3]jl]=4.0625

box[4]|0]=5.1875

box[4][l]=3.8125

box[5]|0]=5.125;

box|5]jl]=3.75;

polf2(6,box);

box|0](0j=4.8125;

box[0][l]=3.25;

box[l]|0]=4.8125;

box(l][l]=3.625;

box(2l!0j=5.05;

box[2)|l]=3.625;

box[3)|0]=5.175;

box|3]|l]=3.25;

polf2(4,box);

break;

case 'S':

box[0

boxjo

boxjl

boxjl

box[2

box[2

box|3

box(3

box [4

box[4

box|5

box[5

box|6

box[6

box[7

=4.6875;

=3.375;

=4.6875;

=4.125;

=4.8125;

=4.25;

=5.1875;

=4.25;

=5.3125;

=4.125;

=5.3125;

=3.375;

=5.1875;

=3.25;

=4.8125;
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box|7][l]=3.25;

polf2(8,box);

color(backcolor);

box|0][0]=4.8125;

box[0)|lj=3.4S75;

box[lj|0]=4.8125;

box[l][l]=S.75;

box|2][0]=5.125;

box|2][l]=3.75;

box(S]jo)=5.1875;

box[3][l)=3.6875;

box[4][0]=5.1875;

box[4](l]=3.4375;

box[5][0j=5.125;

box[5)|l]=S.S75;

box[6][0)=4.875;

box[6](l)=3.375;

polf2(7,box);

box(0][0]=4.8125;

boxjo]llj=3.9375;

box[l]J0]=4.8125;

box|l](lj=4.0625;

box[2][0)=4.875;

box[2](l)=4.125;

box(3][0]=5.125;

box(3][l]=4.125;

box[4][0j=5.1875;

box[4j(l]=4.0625;

box[5][0]=5.1875;

boxl5|(l]=3.875;

box[6][0]=4.875;

box(6][l]=3.875;

polf2(7,box);

box[0][0]=4.6875

box[0][l]=3.5625

box[l]j0]=4.6875

boxjl][l]=3.875;

box[2][0]=4.8125;

box[2J(l]=3.75;

box[3][0]=4.8125;

box[3][l]=3.5625;

po!f2(4,box);

box[0][0)=5.1875;

box[0][l]=3.875;

box[l][0]=5.1875;

box[l][l]=4.0;

box[2](0]=5.3125;

box[2][l]=4.0;
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box|S][0]=5.3125;

box|S]jl]=3.75;

polf2(4,box);

break;

case T':

rectf(4.6875,4.125,5.3125,4.25);

rectf(4.9S75,5.25,5.0625,4.25);

break;

case 'IT:

box[0](0

boxjojjl

boxjljjo

box|lj[l

box|2|[0

box|2][l

boxjsjjo

box[S][l

box|4](0

box4 [1

=4.6875;

=3.375;

=4.6875;

=4.25;

=5.3125;

=4.25;

=5.3125;

=3.25;

=4.8125;

=3.25;

polf2(5,box);

color(backcolor);

box(0][0]=4.8125

box[0][l]=3.4375

box|l)[0j=4.8125

boxjl][l]=4.25;

box(2][0]=5.1875;

box[2]jl]=4.25;

box[3][0]=5.1875;

box[3][l]=3.5325;

box[4]l0]=5.01;

box[4][l]=3.375;

box[5](0)=4.875;

box[5](l]=3.375;

polf2(6,box);

box[0][0]=5.0625;

box[0][l]=3.25;

box(l][0]=5.1875;

box[l][l)=3.375;

box[2][0)=5.1875;

box|2][l]=3.25;

polf2(3,box);

break;

case 'Y':
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box|0][0]

boxjojjlj

box[l][0]

=4.6875;

=4.25;

=4.9375;

boxjljjlj =3.75;

box(2](0] =5.0625;

box[2]jl] =3.75;

boxjsjjoj

boxjsjjlj

=4.8125;

=4.25;

polf2(4,box);

box(0][0]

boxjojjl]

box[lj[0]

=4.9375;

=3.75;

=5.0625;

boxjl][l] =8.75;

box[2][0j =5.3125;

box[2](l] =4.25;

box|3]|0] =5.1875;

box|3][l] =4.25;

polf2(4,box);

rectf(4.9S75,3. 25,5.0625,3. 75);

break;

case

rectf(4.9375,S.35,5.0625,8.60);

rectf(4.9S75,S.90,5.0625,4.15);

break;

case ' ':

break;

} /* end switch */

} /* end routine "letter" */
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H. FIND SUBGOAL.C

/*

Look for the next subgoal along the road

V

#include "road.h"

static Boolean start = FALSE;

find subgoal(roadmap, no coord, where, tolerance, pred distance, vx, vy, vz)

float pred distance;

float roadmap[||3|;

float tolerance;

float vx, vy, vz;

int nocoord, where;

{

float dist, temp;

float x, y, z;

int i;

for (i = where; i < nocoord; ++»)

{

x = roadmap i|(0| - vx;

y = roadmap[i][l] - vy;

i = roadmap i]l2j - vz;

dist = sqrt(x*x + y*y);

temp = pred distance - dist;

/* converts negative to positive */

if (temp < 0)

temp = -(temp);

if (!start)

{

/* This works only when autopilot is turned

on for the first time on the first stretch

of the cicuit. Problem if otherwise. */

if (temp <= tolerance kk roadmap[i][l] > vy)

{

start = TRUE;
return(i);

}

}

else

if (temp <= tolerance)

{
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start = TRUE;
return(i);

}

}

/* If no points found, return an error code */

return(-l);

} /* findsubgoal */
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I. MAP.C

/*

This module works independently from the rest of the system.

This module generate the road map for autonomous navgiation.

7

^include <stdio.h>

#include <math.h>

main()

{

FILE *fp;

int i;

/* Road Specification */

/* Note: Must match that used in the carsimu.c program */

float bendradius = 80.0;

float roadwidth = 16.0;

float lenl = 400.0;

float len2 = 400.0;

float lenS = 400.0;

float len4 = 400.0;

float newx, newy, miss;

float calx, caly, start rad;

float perstep rad;

float step = 1.0; /* road map increment step */

float radl = bendradius - roadwidth/2;

float rad2 = bendradius - roadwidth/2;

float radS = bendradius - roadwidth/2;

float lastxvalue

float lastyvalue

float xl, yl, zl

float x2, y2, z2

float xS, yS, z3

float x4, y4, z4

float x5, y5, z5

float x6, y6, z6

float x7, y7, z7

float x8, y8, z8

/* Road Segment Specifications */

xl = 0.0; yl = 0.0; zl = 0.0;

x2 = 0.0; y2 = lenl; z2 = 0.0;

x3 = radl; yS = y2 + radl; zS = 0.0;

x4 = xS + len2; y4 = yS; z4 = 0.0;

x5 = x4 + rad2; y5 = y4 - rad2; z5 = 0.0;

x6 = x5; y6 = y5 - lenS; z6 = 0.0;

x7 = x5 - radS; y7 = y6 - radS; z7 = 0.0;

x8 = x7 - len4; y8 = y7; z8 = 0.0;
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fp = fopenCWdmapV'w");

newy = yl;

for (i = 0; newy <= y2; ++i)

{

#ifdef DEBUG
printf("%.2f %.2f %.2f\n",xl

)
newy,il);

#endif

fprintf(fp,"%.2f %.2f %.2f\n"
)
xl,newy,zl);

lastyvalue = newy;

newy += step;

}

newy = lastyvalue;

miss = y2 - newy;

#ifdef DEBUG
printf("missl %.2f\n",miss);

#endif

start rad = 0;

if (miss > 0)

{

startrad = miss/radl;

calx = cos(start_rad);

caly = sin (start rad);

newy += caly;

newx += calx;

#ifdef DEBUG
printf("%.2f %.2f %.2f\n ll ,x2+newx,y2+newy,z2);

#endif

fprintf(fp,"%.2f %.2f %.2f\n",x2+newx,y2+newy,z2):

}

persteprad = step/radl;

for (i = 0; newx <= xS; ++i)

{

start _rad += perstep_rad;

calx = radl * cos (start rad);

caly = radl * sin (start rad);

lastxvalue = newx;

lastyvalue = newy;

newy = y2 + caly;

newx = x2 + (radl - calx);

if (newx < x3)

{

#ifdef DEBUG
printf("%.2f %.2f %.2f\n f\newx,newy,z2);

#endif

fprintf(fp,"%.2f %.2f %.2f\n",newx,newy,z2);

}

}

newx = lastxvalue;
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newy = lastyvalue;

miss = xS - newx;

#ifdef DEBUG
printf("miss2 %.2f\n",miss);

#endif

if (miss > 0)

{

newx = xS + miss;

#ifdef DEBUG
printf("%.2f %.2f %.2f\n»\newx,y4,*S);

#endif

fprintf(fp,"%.2f %.2f %.2f\n",newx,y4,«S);

}

for (i = 0; newx <= x4; ++i)

{

lastxvalue = newx;

newx += step;

if (newx <= x4)

{

#ifdef DEBUG
printf("%.2f %.2f %.2f\n ,, ,newx,y4,iS);

#endif

fprintf(fp,"%.2f %.2f %.2f\n M ,newx,y4,BS);

}

}

newx ss lastxvalue,

miss = x4 - newx;

#ifdef DEBUG
printf("miss3 %.2f\n",miss);

#endif

start_rad = 0;

if (miss > 0)

{

start rad = miss/rad2;

caly = rad2 * cos ( start rad),

calx = rad2 * sin (start rad),

newy = y4 - (rad2 - caly);

newx = x4 + calx;

#ifdef DEBUG
printf("%.2f %.2f %.2f\n",newx,newy,i4);

#endif

fprintf(fp,"%.2f %.2f %.2f\n",newx,newy,*4);

}

persteprad = step/radl,

for (i = 0; newy >= y5; ++i)

{

start_rad += perstep_rad;

caly = rad2 * cos(start_rad);
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calx = rad2 * sin (start r&d);

l&stxvalue = newx;

lastyvalue = newy;

newx = x4 + calx;

newy = y4 - (rad2 - caly);

if (newy >= y5)

{

#ifdef DEBUG
printf("%.2f %.2f %.2f\n ,, ,newx,newy,i4);

#endif

fprintf(fp,"%.2f %.2f %.2f\n",newx,newy,«4);

}

}

newx = lastxvalue;

newy = lastyvalue;

miss = newy - y5;

#ifdef DEBUG
printf("miss4 %.2f\n",miss);

#endif

if (miss > 0)

{

newy = y5 + miss;

#ifdef DEBUG
printf("%.2f %.2f %.2f\n",newx,newy,e5);

#endif

fprintf(fp,"%.2f %.2f %.2f\n",newx,newy,z5);

}

for (i = 0; newy >= y6; ++i)

{

lastyvalue = newy;

newy -= step;

if (newy >= y6)

{

#ifdef DEBUG
prmtf("%.2f %.2f %.2f\n ll ,newx,newy,B5);

#endif

fprintf(fp,"%.2f %.2f %.2f\n",newx,newy,z5);

}

}

newy = lastyvalue;

miss = newy - y6;

#ifdef DEBUG
printf("miss5 %.2f\n H ,miss);

#endif

startrad = 0;

if (miss > 0)

{

startrad = miss/rad3;
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calx = radS * cos(startrad);

caly — radS * sin(staxtrad);

newx = x6 - (rad3 - calx);

newy = y6 - caly;

#ifdef DEBUG
priii tf("%.2f %.2f %.2f\n ,, ,newx,newy,B5);

#endif

fprintf(fp,"%.2f %.2f %.2f\n",newx,newy,z5);

}

persteprad = step/radS;

for (i = 0, newx >= \7; ++i)

{

start rad += persteprad;

calx = radS * cos (start rad);

caly = rad3 * sin (start rad);

lastxvalue = newx;

lastyvalue = newy;

newy = y6 - caly;

newx = x6 - (rad3 - calx);

if (newx >= x7)

{

#ifdef DEBUG
printf("%.2f %.2f %.2f\n ,, ,newx,newy,e5);

#endif

fprintf(fp,"%.2f %.2f %.2f\n",newx,newy,«5);

}

}

newx — lastxvalue;

newy — lastyvalue;

miss = newx - x7;

#ifdef DEBUG
printf("miss6 %.2f\n",miss);

#endif

if (miss > 0)

{

newx = x7 - miss;

#ifdef DEBUG
printf("%.2f %.2f %.2f\n",newx

)y8,88);

#endif

fprintf(fp,"%.2f %.2f %.2f\n ,\newx,y8,*8);

}

for (i = 0; newx >= x8; ++i)

{

lastxvalue = newx;

newx -= step;

if (newx >= x8)

{

#ifdef DEBUG

177



printf("%.2f %.2f %.2An",newx,y8,z8);

#endif

fprintf(fp,"%.2f %.2f %.2f\n",newx,y8,z8)

}

}

newx = lastxvalue;

miss = newx - x8;

#ifdef DEBUG
printf("miss7 %.2F\n*\miss);

#endif

fclose(fp);

} * main */
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J. ROAD.H

typedef float Dimension;

#include "gl.h"

#include "device.h"

#include "math.h"

#include "time.h"

#include "stdio.h"

#define SYSTEM ORDER 4

#define MOUNTAIN 8

#define MOUNTAINl 9

#define SKY 10

#define FIELD 11

#define WARN 12

#define WALL 13

#define SIDEWALL 14

#define ROOF 15

#define WINDOW 16

#define CHMWALLl 17

#define CHMWALL2 18

#define SIDEROOF 19

#define FRAME 20

#define SIDEWALLl 21

#define WALLl 22

#define ROOFl 23

#define FRAMEl 24

#define WINDOW 1 25

#define MAXFUEL 3000.0

#define PI 3.14
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K. MAKEFILE

CFLAGS = -Zf

SRCS = other.c \

integrates \

display.c \

letter.c \

help.c \

findsubgoal.c \

circuit.c \

carsimu.

c

OBJS = other.o \

integrate.o \

display.o \

help.o \

carsimu.o \

findsubgoal.o \

circuit.o \

letter,o

carsimu: $(OBJS)

cc -o carsimu $(OBJS) -Zf -Zg -lm

$(OBJS): road.h
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