
NPS52-89-050

NAVAL POSTGRADUATE SCHOOL
Monterey, California

REACHER -- A Reachability Condition Derivation Tool

Timothy J. Shimeall

September 1989

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School

Monterey, California 93943

FedDocs
D 208.14/2
NPS-52-89-050

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36719056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DUDLEY KNOX LIBRARY Q I £4-1 2-
'

NAVAL POSTGRADUATE SCHOOL JJ *- L

MONTEREY. CALIFORNIA 93943-BO08
/ f Z>C __ '

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. W. West, Jr. Harrison Shull
Superintendent provost

This report was prepared in conjunction with research funded by the Naval Postgraduate School
Research Council.

Reproduction of all or part of this report is authorized.

UNCLASSIFIED
RITY CLASSIFICATION OF THIS PAGE

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCH< •»

il llll
'

I I li*Mfa

REPORT DOCUMENTATION PAGE
REPORT SECURITY CLASSIFICATION Tjvrpi ASSTFIFD

SECURITY cLAssiFicATi6n AuTh6RiTY

ib RESTRICTIVE MARkIngs

3. DlsTRIBUTIoN/AVAILABiLITY 6F REP6RT

Approved for public release;

distribution is unlimited

5. M6nIT6RINg 6RgANizaTI6nI REP6RT NUMBER(S)

dEclassiFicaTi6n/&6WngRading schEdUlE

ErFoAming 6AgAnizATI6n AePoRT numbEA(S)

NPS52-89-050

MAME OF PERFORMING ORGANIZATION
mputer Science Dept.

val Postgraduate School

6b 6FFieE SYMB6L
(if applicable)

52

7a NAME 6F M6NIT6RiNg 6RGANIZATI6N

Naval Postgraduate School

ADDRESS (City, State, and ZIP Code)

mterey, CA 93943

7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943

NAME 6F FUNDINg;sP6Ns6RINg
ORGANIZATION

val Postgraduate School

8b. 6FFIcE SYMB6L
(if applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

O&MN direct funding

10 S6UR6E 6F PUndIng NuMBERsADDRESS (City, State, and ZIP Code)

mterey, CA 93943
PROGRAM
ELEMENT NO.

pA6jecT
NO.

TasTT
NO.

WORK UNIT
ACCESSION NO

TITLE (Include Security Classification)

1ACHER -- A Reachability Condition Derivation Tool (U)

PERSONAL AUTH6R(§)
LlMEALL, Timothy J.

. TyPE 6F REP6AT
Progress

13b TIME COVERED 15 PAGE COUNT
14FROM 9/88 TO

9/89

SUPPLEMENTARY NOTATION

14. DATE OF REPORT (Year, Month, Day)

September 1989

COSATI CODES
:IELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Software Testing, Statement Coverage, Reachability Analysis, Failure

Regions

ABSTRACT (Continue on reverse if necessary and identify by block number)

iACHER is a tool that derives the conditions under which each program block in a Pascal program,

)cedure or function may be executed (i.e., the reachability conditions for each subprocedure, subfunction and

gin-end block). The tool shall accept compilable Pascal program source code and shall produce both an

notated listing and an augmented control flow graph.

iACHER is one of a series of four tools that work in an integrated fashion to analyze Pascal programs to

termine the failure regions associated with identified faults in the programs. The augmented control flow

iph produced by REACHER will used as input by the programs FALTER and SPACER, and shall be

stomized for such usage. The annotated source listing provides includes a correspondence between Pascal

tements and control flow graph nodes. The users may access REACHER, FALTER and SPACER through

screen-oriented user interface called VIEWER. This document describes the operation of REACHER and

direct user interface.

DISTRIBUTION/AVAILABILITY OF ABSTRACT
] UNCLASSIFIED/UNLIMITED fj SAME AS RPT. Q DTIC USERS

21. ABSTRACT sEcuRiTY clAs$iFicaTi6n

UNCLASSIFIED
l NAME OF RESPONSIBLE INDIVIDUAL
ihimeall, Timothy J.

22c OFFICE SYMBOL
52Sm

22b. TELEPHONE (Include Area Code

(408) 646-2509

FORM 1473, 84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Environment for Failure Region
Analysis:

REACHER - A Reachability Condition
Derivation Tool

Timothy Shimeall

Computer Science Department (Code 52Sm)

Naval Postgraduate School

Monterey CA 93943

25 September 1989

Table of Contents
1. Introduction 2

2. Data Descriptions 4

3. Functional Requirements 6

4. Subsets and Supersets 13

5. Undesired Events 13

6. Glossary 14

List of Tables

1. REACHER Option Processing 6

2. REACHER Parsing Actions 7

3. Control Structure Conditions 10

4. User Commands 1

1

List of Figures

1. Context Diagram for REACHER 2

2. REACHER Flow of Execution 12

1.0 Introduction: REACHER -- A Reachability Condition
Derivation Tool

REACHER is a tool that derives the conditions under which each program block in a

Pascal program, procedure or function may be executed (i.e., the reachability conditions for

each subprocedure, subfunction and begin-end block). The tool shall accept compilable

Pascal program source code and shall produce both an annotated listing and an augmented

control flow graph.

The intended users of REACHER are experienced research personnel familiar with

the theory of reachability conditions and their derivation. REACHER shall support

interaction with the user to guide the process of derivation of the reachability conditions. The

user shall be asked to perform those parts of the derivation for which automation is difficult.

To support the user participation, REACHER shall include functionality to provide for

annotation of the code with summary comments.

REACHER is one of a series of four tools that work in an integrated fashion to

analyze Pascal programs to determine the failure regions associated with identified faults in

the programs. The augmented control flow graph produced by REACHER will used as input

by the programs FALTER and SPACER, and shall be customized for such usage. The

annotated source listing provides includes a correspondence between Pascal statements and

control flow graph nodes. The users may access REACHER, FALTER and SPACER
through a screen-oriented user interface called VIEWER. Since the process of reachability

condition generation may take substantial time, REACHER shall support saving and

recovering of partial derivations. Figure 1 provides a context diagram for this use of

REACHER.

VIEWER

Commands

,.. Display/Commands

Tokens

User

Annotated Listing

Augmented

Control Flow
Graph

FALTER &
SPACER

Partial

ACFG

REACHER Workfile

Figure 1: Context Diagram for REACHER

REACHER may also be independently used to support techniques that employ

reachability conditions of selected parts of a piece of software, such as code reading,

structural test planning and static analysis.

REACHER shall be written in C for use under UNIX 4.3 BSD. Future versions may
be transported to other operating systems and versions of BSD. Future versions may also

be constructed that deal with other input languages, in particular Ada (trademark, DoD
AJPO).

This document contains all requirements for REACHER. Section 2 is a description of

the input and output data for REACHER. The output data is described using two

conventions. The annotations for the source listing are described using a BNF-style

description, with non-terminals in italics, terminals in bold, explanations of non-terminals in

normal print and alternatives definitions are indicated by the vertical bar 'I*. The augmented

control flow graph and node/condition output data are described in a record-style format.

Section 3 is a list of all of the functional requirements, including a description of the

response to each possible program input. Terms found in the Glossary are Idelimited by

exclamation points!. /Input variables/ are delimited by slashes. //Output variables// or

portions thereof are delimited by doubled slashes. $Symbolic Value References$ are

delimited by dollar signs. In this section, the verb "shall" is used to indicate required

behaviors for REACHER. The verbs "will" or "is" is used to indicate necessary or

desirable actions that occur beyond the control of REACHER (e.g., user actions). The verb

"may" is used to indicate optional or alternative actions.

Section 4 identifies all acceptable subsets and forseen supersets(extentions) to the

basic functionality described in sections 2 and 3.

Section 5 identifies the forseen undesired events that may occur during REACHER'

s

execution and describes responses to these undesired events. Omitted from this section are

events that may occur during REACHER's execution, but that REACHER cannot respond

to. Duplicatively included in this section are all error messages produced by REACHER and

the conditions under which REACHER will generate these messages.

Section 6 is a glossary of defined terms used in this document. In the text of this

document, each defined term appears delimited by exclamation points. These defined terms

may be looked upon as text macros, and these terms should be read in context.

2.0

Input

Data Descriptions

Pascal source code (c.f. Jensen & Wirth, Pascal User Manual and Report)

Output

1. Annotated program source

Annotations:

• Graph Node Indicators (//NodeNum//) ::= {N Number }

• Reachability condition (//ReachCond//) ::= {RC ReachCond)

ReachCond ::= Calling-cond I Calling-cond or ReachCond

Calling-cond ::= Var-cond I Var-cond and Calling-cond

Var-cond ::= true I false I v = Value I v in [Value-list] I v < Value I v > Value

Value -list ::= List-element , Value-list I List-element

List-element ::= Va/we I Va/we .. Va/we

V<2/«£ ::= d I (Expression) I Literal

v, d ::= Pascal variable reference

Expression ::= Pascal expression

Literal ::= Pascal literal of type corresponding to v

Summary Annotation (//Summary//) ::= {S comment }

comment ::= Pascal comment without delimters

2. Augmented Control Flow Graph (ACFG)

1 . ACFG Header Info (//ACFGHDR//)

Field Acronym Value

Number of Graphs //AHLEN// Integer

Graph Data //AHPROCS// List of //ABKHDR//

Program Name //AHPGRM// String

ACFG Block Header Info (//ABKHDR//)

Field Acronym Value

Block Name //ABKNAME// String

Number of Return Locations //ABKNUMRET// Integer

Return Locations //ABKRET// List of //ACFG//

Entry Conditions //ABKREACH// //ReachCond//

Block Nodes //ABKGRPH// //ACFG//

Number of Subsidiary Blocks //ABKNSUBS// Integer

Subsidiary Blocks //ABKSUBS// List of //ABKHDR//

Declaration Text //ABKDECL// String

3. Augnmentd Control Flow Graph Nodes (//ACFG//)

Value

Integer

//ACFG//

//ACFG//

//ReachCond//

//ReachCond//

Integer

List of//ABKHDR//

String

String

$None$, $Assign$, $Call$,

If, $Loop$, $Case$,

$With$, $BeginEnd$,

$Goto$, $Other$

3. Partial ACFG -- //ACFGHDR// extended to include Integer //ACFGCUR//, with value

encoded:

Field

Node Number

Left Child

Right Child

Left Condition

Right Condition

Number of Proc/Funct calls

Procedure/Function calls

Line Text

Comment Text

Node Type

Acronym

//ACFGNUM//

//ACFGLFT//

//ACFGRT//

//ACFGLCND//

//ACFGRCND//

//ACFGNCALLS//

//ACFGCALLS//

//ACFGTEXT//

//ACFGSUMM//

//ACFGTYPFV/

Value

1..//AHLEN//

> //AHLEN//

Meaning

Link conditions are branch conditions

Reachability conditions derived for ACFG entries 1

through //ACFGCUR// (partial derivation)

Derivation complete

4. Node/Condition Prompts (//NodeCond//)

Field

Node Identification

Node Reachability Condition

Node Branch Condition

Node Statement text

Acronym
//NCNum//

//NCCond//

//NCBranch//

//NCText//

Value

Integer

//ReachCond//

//ReachCond//

String

3.0 Functional Requirements

3.1 Initial Processing

3.1.1 Overview

On program initialization, REACHER shall expect the name of a file (/InFile/) to be

passed as an argument, along zero or more execution options. REACHER's response to the

options and use of /InFile/ are described in Table 1 below. Should the file named by /InFile/

not exit or not be readable by REACHER, then REACHER shall display the message: File

not fond and exit.

Option String Response

r !ReadWorkFile!

o /OutFile/ //ResultFile// is set to /OutFile/

noti IGraphGen!

not o //ResultFile// is set to /InFile/

Table 1 -- REACHER Option Processing

In overview, these options shall lead REACHER to parse a Pascal source file into an

initial ACFG, or to read in a previously generated partial ACFG, and to set the name to be

used for the result files generated by REACHER. Once the current (inital or partial) ACFG
is set up, REACHER shall traverse the graph, interactively constructing the reachability

conditions for each block as described in section 3.2.

3.1 .2 IGraphGen! -- Graph Generation

To generate the intial ACFG, REACHER shall parse the Pascal program, procedure

or function located in the file named by /InFile/. REACHER shall respond to each section of

the input as described in Table 2: REACHER does not require information on label, const,

type or var declarations for its processing, but since REACHER must produce an annotated

listing of its input, these unused portions of each block are saved in the //ABKDECLS//
string. Note that the actions specified in this table imply that REACHER shall handle files

of multiple independent procedures and functions without an enclosing program. However,

no label, const, type or var declarations global to any such procedures or functions are

permittted. If such declarations are detected, REACHER shall display the message: Invalid

global declaration and exit. If the input is a set of procedures and functions as opposed to

a program, then all references to the 'main program' in the document that follows should be

interpreted by the reader as indicating the fust non-nested procedure or function in the input.

Should the input file not contain at least one complete scope, REACHER shall display the

message: Incomplete input file and exit.

3.1 .3 IReadWorkFile! -- Graph Restoration

To restore a saved partial ACFG, REACHER shall read the workfile named by

/Infile/. The format of this workfile is given in section 3.3. Should the file not be a complete

Input Structure

Start ofInput File

Program header

Label, Const, Type,

or Var Declaration

Procedure or

Function Declaration

Begin

If

Else

While

For

Repeat

Until

Response

//AHLEN// shall be set to 1, //AHPGRM// shall be set to

/InFile/, //AHPROCS// shall be set to a newly allocated

//ABKHDR//, in that //ABKHDR//, INewABK!, /NodeCnt/

shall be set to 1 and //ABKNAME// shall be set to an

empty string.

//ABKNAME// shall be set to the program name,

//ABKDECL// shall be set to contain the text of the

Program header and //ABKGRPH// shall be set to a newly

allocated //ACFG// and in the new //ACFG// !NewACFG!.

If //ABKDECL// is empty then //ABKDECL// shall be set

to contain the text of the declaration, otherwise the

declaration shall be appended to //ABKDECL//.

If the first (or only) //ABKNAME// in //AHPROCS// is

empty then ISetABK!.

If the procedure or function is nested with the scope named

by //ABKNAME// in any entry of //AHPROCS// then for

that entry of //AHPROCS// //ABKNSUBS// shall be

incremented, a newly allocated //ABKHDR// shall be

linked into //ABKSUBS// and in the new //ABKHDR//
INewABK! and ISetABK!.

If the procedure or function is not nested within the scope

named by //ABKNAME// in any entry of //AHPROCS//

then //AHLEN// shall be incremented, a newly allocated

//ABKHDR// shall be linked into //AHPROCS// aand in the

new //ABKHDR// INewABK! and ISetABK!.

If //ABKGRPH// for the current block contains only one

node, then no change shall be made to //ABKGRPH// and

parsing shall continue. Otherwise a newly allocated

//ACFG// shall be linked into //ABKGRPH// at /CurNode/

and in the new //ACFG// !NewACFG!.

!MakeNode(If)!.

/CurNode/ shall be set to reference the Right child of the if

node allocated most recently at the current nesting level.

!MakeNode($Loop$)!.

!MakeNode($Loop$)!.

!MakeNode($Loop$)!.

!MakeNode($Loop$)!, and set //ACFGRCHILD// to

reference the most recently parsed Repeat at the current

nesting level.

Table 2 -- REACHER Parsing Actions

-7-

Input Structure

Case

With

Goto

Procedure call

Function call

All other tokens

End of Input File

Table 2

Response

!MakeNode($Case$)!

!MakeNode($With$)!

! MakeNode($Assign$)!

Complain and exit.

!MakeNode($Call$)!, Increment //ACFGNCALLS// and

add in //ACFGCALLS// a reference to the //ABKHDR//
corresponding to the procedure being called.

Increment //ACFGNCALLS// in the most recently

allocated //ACFG// and add in //ACFGCALLS// a

reference to the //ABKHDR// corresponding to the function

being called.

No change shall be made to //ACFG// and parsing shall

continue.

/CurNode/ shall be set to the first //ACFG// in the

//ABKGRPH// of the //ABKHDR// of the main program.

REACHER Parsing Actions (Continued)

-8-

and consistent set of headers and //ACFG// REACHER shall display the message: Invalid

workfile format and prompt for a Pascal source file to regenerate the workfile. Once the data

is read in, /CurNode/ shall be set to the first //ACFG// in the //ABKGRPH// of the entry of

//AHPROCS// corresponding to //ACFGCUR//. If no such //ACFG// exists, REACHER shall

display the message: Null workfile and exit.

3.2 Program Traversal

3.2.1 Overview

Starting with the program main body, REACHER shall traverse the input in a depth-

first manner, annotating each procedure and function with the conditions under which that

procedure or function may be called (i.e.,. reachability conditions, henceforth //ReachCond//).

For each procedure or function, the //ReachCond// shall be the //ReachCond// of its caller,

combined with additional conditions due to control structure of the caller using a logical and.

See Table 3 for a description of the conditions associated with each Pascal control structure.

If there is more than one caller, the partial //ReachCond// clauses from each shall be

combined with a logical or to produce the full //ReachCond//. The initial //ReachCond// (for

the main body) is true. Should a procedure be called that is not part of the input file supplied

to REACHER, the tool will display the message: Missing procedure name and procede

with processing.

3.2.2 User Commands

During the program traversal the user shall be prompted with the //NodeCond//

information for each //ACFG// as REACHER processes it. When prompted, the user may
enter any of the commands described in table 4. REACHER shall perform the action

described as a response to each command as it is entered. Shold the user enter a command
that is not listed in table 4, REACHER shall display the message: No such command and

prompt the user again. Should the user enter a command listed in table 4 without the listed

arguments, REACHER shall display the message: Missing command arguments and

prompt the user again, ignoring the partial command. Should the user enter a command with

more arguments than those listed in table 4, REACHER shall display the message Ignoring

string at end of command, where string is a list of the extra arguments, and proceed to

follow the command, ignoring the extra arguments. Should the user enter a command with

arguments that are not of the appropriate type as listed in table 4, REACHER shall display

the message: Invalid arguments to command and prompt the user again, ignoring the

attempted command.

-9-

Structure

CALL:

IF:

CASE:

LOOPS:

BEGIN-END:

ASSIGNMENT:

WITH:

GOTO:

Affect on //ReachCond//

In the called procedure/function //ReachCond// shall be set

to called-//ReachCond// or (calling-//ReachCond// and

! parameter assignments!).

(//ReachCond// and ! if condition!) shall be used as the

initial //ReachCond// to process the then code. Resultl

will represent the result of processing the then code,

(//ReachCond// and not !f condition!) shall be used as the

initial //ReachCond// to process the else code (if any).

Result! will represent the result of processing the else

code. (Resultl or Result2) shall be used for processing

after the if statement.

(//ReachCond// and lease condition!) shall be used to

process each case body. A condtion formed by the logical

or of all case body results shall be used for further

processing.

(//ReachCond// and !loop invariant!) shall be used to

process the loop body, getting !loop invariant! from the

user. (//ReachCond// and !oop invarian! and not !loop

condition!) shall be used for further processing.

Each enclosed statment shall be processed in turn, with

the results of the processing combind by and with the

current //ReachCond// for further processing.

All occurences in the //ReachCond// of the expression on

the right-hand side shall be replaced with the variable on

the left-hand side. If no occurences, (//ReachCond//.and

!assign condition!) shall be used for further processing.

No effect on //ReachCond//

REACHER shall complain to the user and exit

Table 3 -- Control Structure Conditions

-10-

Command

IReturn!, 1 orn

a sting

c //ReachCond//

g procname

j nodel node2

sfilename

Response

REACHER shall process the left child of the current node.

If the left child is null, the right child shall be processed,

(left or next)

REACHER shall set //ACFGSUMM// of /CurNode/ to

string, (annotate)

REACHER shall replace the //ReachCond// for the arc

traversed to reach this node with the //ReachCond//

entered by the user, (change)

REACHER shall continue processing with the

//ABKGRPH// in the //ABKHDR// corresponding to the

scope named procname, which must be visible at the

current scope or this command shall be ignored, (goto)

REACHER shall merge the nodes in //ABKGRPH// with

node numbers nodel and nodel. The children of the joined

node shall be the children of the node indicated by nodel.

The //ACFGTEXT// of the joined node shall be the

concatenation of the //ACFGTEXT//s of nodel and nodel.

The //ACFGNUM// of the joined node shall be nodel. The

//ACFGSUMM// of the joined node shall be the

concatenation of //ACFGSUMM// for nodel, the string

'and' and //ACFGSUMM// for nodel. //ACFGNCALLS//
of the joined node shall be the s . n of the

//ACFGNCALLS// values for the two nodes.

//ACFGCALLS// for the joined node shall be the

concatenation of the //ACFGCALLS// for the two nodes.

//ACFGTYPE// for the two nodes shall be $Other$.(join)

REACHER shall set /CurNode/ to the node processed

immediately prior to the current node and continue

processing, (previous)

REACHER shall request confirmation, and if affirmation is

given REACHER shall terminate processing without

saving //ACFGHDR//. If the immediately prior command
was 's' then the confirmation step shall be omitted, (quit)

REACHER shall process the right child of the current

node. If the right child is null, the left child shall be

processed(right)

REACHER shall store //ACFGHDR// and all its

subordinates in the file named failename. This stored

//ACFGHDR// shall be stored as a Partial ACFG. If this

file may not be written on, REACHER shall display the

message: Cannot write save file, (save)

REACHER shall undo the latest change, (undo)

Table 4 -- User Commands

li-

The flow of REACHER execution is diagrammed by figure 2

Commands

Initial ^ //ACFGHDR//
Processing

Partial ACFG

Annotated

CFG

//NodeCond// //ACFG//

//ACFGHDR// / Final

• Processing

Listing

Work file
Annotated

Listing

Figure 2: REACHER Flow of Execution

3.3 Final Processing

When all nodes in each //ACFG// in //ACFGHDR// have been processed,

REACHER shall generate two output files, one containing the annotated program souce

described in section 2, and the other containing //ACFGHDR// and all of its subordinates.

The names of these files shall correspond to those specified in section 3.1. Should either of

these files not be accessible for wirte, REACHER shall display the message: Cannot write

result file and prompt the user for a new file name.

The second file shall be a normal UNIX character file, formatted such that all of the

fields of //ACFGHDR// appear first, then all of the fields of each //ABKHDR// in the order that

they appear in //ACFGHDR//, then all of the fields of each //ACFG// in each //ABKHDR//,

with node numbers acting as links between nodes of the //ACFG//. This format will be

expected by FALTER as its input format and shall not be modified without appropriate

modifications to FALTER and its specifications.

-12-

4.0 Subsets and Supersets

4.1 Subsets

1. Eliminate the 'join' command

1. Eliminate the 'previous' command

4.2 Supersets

1. Expand the 'undo' command to beyond the last change

2. Implement a node information editting command

3. Make the 'join' response more sophisticated, particularly in the handling of child pointers.

5.0 Undesired Event Handling

Error Messages:

Mes ge Conditions of generation

Cannot write result file Result file(s) is inaccessible for write.

Cannot write save file File for save command is inaccessible for write.

File not found Missing or inaccessible input file.

Ignoring string at end of command Extra arguments on command entered by

user.

Incomplete Input File Pascal input file does nto contain at least one complete

scope.

Invalid arguments to command Command entered with arguments of wrong

type.

Invalid global declaration Pascal input file contains multiple scopes and global

declarations.

Invalid workfile format Workfile is of wrong format for restoration, or data in

workfile is incomplete or inconsistent.

Missing command arguments Command entered by user without needed

arguments.

Missing procedure name Procedure called that is not part of the input file.

No such command Unrecognized command entered by user.

Null workfile No //ACFG// nodes in workfile.

13-

6.0 Glossary

! assign condition! left hand side of assignment statement = right hand side of assignment

statement.

lease condition! case variable = case label

!GenGraph!

! if condition!

! loop condition!

!loop invariant!

!MakeNode(T)!

!NewABK!

!NewACFG!

See section 3.1.2

The series of tokens appearing between if and then.

The condition that must be satisfied if the loop is to continue.

The condition that expresses the semantics of the loop. True on every

execution of the loop.

A newly allocated //ACFG// shall be linked into //ABKGRPH// at

/CurNode//. In that //ACFG// !SetNum!, //ACFGLFT// shall be set to nil,

//ACFGRT// shall be set to nil, //ACFGLCND// shall be set to reflect the

condition in the current statement, //ACFGRCND// shall be set to refelect

the logical inverse of that condition, !NoCalls!, //ACFGTEXT// shall be set

to the text of the statement (excluding any substatements),

A/ACFGSUMM// shall be set to an empty string, and //ACFGTYPE// shall

be set to T and /CurNode/ shall be set to reference the left child of this

//ACFG//.

//ABKNUMRET// shall be set to 0, //ABKRET// shall be set to an empty

list, //ABKREACH// shall be set to true, //ABKGRPH// shall be set to nil,

//ABKNSUBS// shall be set to 0, //ABKSUBS// shall be set to an empty list

and //ABKDECL// shall be set to an empty string

JSetNum!, //ACFGLFT// shall be set to nil, //ACFGRT// shall be set to nil,

//ACFGLCND// shall be set to true, //ACFGRCND// shall be set to true,

!NoCalls!, //ACFGTYPE// shall be set to $BeginEnd$ and //ACFGTEXT//
shall be set to the empty string. An indicator /CurNode/ shall be set to ref-

erence the left child of this //ACFG//

!NoCalls! //ACFGNCALLS// shall be set to 0, //ACFGCALLS// shall be set to an

empty list

!parameter-assignments! an expression in one of three forms: true, (v = expression), or

((v = expression) and
! parameter-assignments!)

JReadWork! See section 4.1.3

!SetABK!

!SetNum!

//ABKGRPH// shall be set to a newly allocated //ACFG// and in that

//ACFG// !NewACFG!, //ABKNAME// shall be set to the procedure or

function name and //ABKDECL// shall be set to contain the text of the pro-

cedure or function header

//ACFGNUM// shall be set to /NodeCnt/, /NodeCnt/ shall be incremented

-14-

Distribution List

Defense Technical Information Center 2

Cameron Station

Alexandria, VA 22314

Library, Code 0142 2

Naval Postgraduate School

Monterey, CA 93943

Center for Naval Analyses 1

4401 Ford Ave.

Alexandria, VA 22302-0268

Director of Research Administration 1

Code 012

Naval Postgraduate School

Monterey, CA 93943

Chairman, Computer Science Department 1

Code 52

Naval Postgraduate School

Monterey, CA 93943

Shimeall, Timothy J 20

Code 52Sm
Naval Postgraduate School

Monterey, CA 93943

DUDLEY KNOX LIBRARY

3 2768 00338344 9

