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I. INTRODUCTION

What is now referred to as the P-L-K (Poincare-Lighthill-Kuo) method

or the Lighthill method of strained coordinates was first proposed by

M.J. Lighthill in 1949 [1] as a perturbation method for obtaining uni-

formly valid approximate solutions for certain classes of ordinary and

partial differential equations. It was then used successfully by many

authors (see Lighthill's 1961 lecture [2] for a sample list) although there

was a growing feeling of uneasiness on the part of some workers because

of cases of partial differential equation problems where the method gave

some wrong answers , even though the method looked right (see Van Dyke

[3], Levy [4] and Lin [5]).

Because partial differential equations are too hard, mathematical in-

vestigations have centered on the ordinary differential equa,.on problems,

and in particular, the model equation originally used by Lighthill.

(x+ ey) -^-+ q(x)y = r(x) O^x^l (1)
dx

y(D = b

Following a conversation at a cocktail party Wasow [6] proved that

Lighthill's method worked for (1) with an added hypothesis. With Wasow 1

s

paper the purely mathematical interest died, except for isolated papers

which went basically unnoticed. The essential ones are Temple's lec-

ture at the 1958 International Congress [7] where he proposed a modi-

fication which amounts to a different motivation of a similar method,



Pritulo's paper [8] which reduces a portion of the problem to an algebraic

equation as opposed to a differential equation, and Takahasi's paper

[9] which generalized (1) to include higher order non-linearities and

proved the convergence of Lighthill's procedure in the manner of Wasow.

Since 1968 however, there has been considerable activity in study-

ing the validity of applying Lighthill's method to the ordinary differential

equation case. The activity started with Comstock's paper [10], based

on a conversation (at a cocktail party) with Lin, which showed by a

series of examples that Lighthill's method was quantatively inaccurate

in the more general case,

(x
n
+ ey) -j£ + q(x)y = r(x), n > 1 (2)

and, in addition, the method was also qualitatively inaccurate if Wasow'

s

extra criterion did not hold, although the method appeared to work in all

cases. Since that paper, several papers have appeared trying to patch

up these difficulties. Usher [11] rediscovered a portion of Pritulo's

result [8] and showed where Wasow's criterion seems quite reasonable.

Burnside [12], starting from Temple's approach, showed that an initial

change of independent variables to reduce the exponent n in (2) to one

would solve some of the inaccuracies pointed out by Com stock [10].

Independently Melka [13] arrived at a similar, and slightly more general,

result. Also, in an as yet unpublished work [14], Melka suggests a

different and potentially interesting approach. And most recently Su and

Liu [15] finally attempt to analyze the problem in the framework of a



general asymptotic expansion.

The purpose of this paper is to combine these results to illustrate

the different approaches and their inherent problems, correct some errors

and to suggest some new results.

II. THE P-L-K METHOD AND ITS RESTRICTIONS

The original model of Lighthill [1] was the problem

(x+ €Y) -j^ + q(x)y = r(x) 0<x<l (1)

y(l) = b>l (2)

q(0) ± (3)

This last condition is one to which we will return later. If one tries to

find y as a series in e

2
y ~ y (x) + ey (x) + e • y (x) + ...

O 1 2

then the equation for y is
o

dy
o

x —— + q(x)y
Q
= r(x) (4)

whose homogeneous part has a regular singular point at the origin. The

original equation, as a simple phase plane analysis shows, does not

have a singularity at the origin, and thus the perturbation series has a

false singularity. (It is the condition (3) which makes this singularity

a regular singular point.) The false singularity is disturbing enough, but

in addition it is easy to see that the solutions for y (x) , y„(x), etc. are

even more singular, due to the term of y dy/dx.



Lighthill's idea was to move the singularity back out of the domain

of interest by introducing a new, slightly stretched, independent vari-

able z by the implicit equation.

2
x = z + ex (z) + e x- (z) + ... (5)

and then look for a solution y in the form

2
y = y (z) + ey (z) + e y(z) + ... (6)

O 1 2

Utilizing (5) and (6) in (4) and expanding the functions r(x) and q(x)

about the point z, one generates a single sequence of differential equa-

tions. The i equation is a single linear first order equation in both

dy./dz and dx./dz, in terms of the lower order y. and x. . Clearly one11 11
must generate a second sequence of equations to determine both the y

and the x. . Lighthill's choice is best phrased by Van Dyke [3] -ho said

"higher approximations shall be no more singular than the first. " In this

.1.1-

instance one groups all the non-homogeneous terms in the i equation

which could contribute to making the solution for y. (z) more singular than

y. (z) into a group including all the x. (z) terms, and set this equal to

zero, thus creating a differential equation forx.(z). This necessitates

chosing a boundary condition for x.(z) as well. One such choice is to

make x = 1 correspond to z = 1 , i.e.,

x.(l) = 0, (7)

although this may not be the best choice.

We reemphasize the choice of grouping of terms to create a



differential equation for x. . One only need put the singular terms into

this equation. One can go so far as to put all the non-homogeneous

terms into the equation for x.(z). Then, with the boundary conditions

y (1) = 0, i ^ 1, the linear homogeneous equations for y. will make all

the y. - and equation (6) converges very nicely, consisting only of

y (z).
o

Wasow in a paper [6], which was extended and corrected 11 years

later by Sibuya and Takahasi [16], showed that the above procedure,

choosing y. = i ^ 1 , led to a convergent series expansion for the

x.(z), provided q(0) ^0 and also

y
Q
(z) q(z) - r(z) 4 (8)

< z < 1.

This inequality has since been referred to as the Wasow criterion, and

did not appear in the original Lighthill work. The paper of Sibuya and

Takahasi went a bit further and asked whether this convergent series

for x = z(z , c) could be inverted for z. They prove that in addition if

there exists any analytic particular solution U)(z) to the zero order equa-

tion with the property 60(1) ^ b, then the series is intertable. If

0)(1) <b, the point x = corresponds to a positive value of z and there

is no difficulty. If to (1) > b then the solution to (1) has a genuine singu-

lar point in the domain of interest and the point x = corresponds to a

negative value of z . In a subsequent paper Takahasi [9] extended these

results to the equation



a , c

{x + S(
m

Pm(x,u)}|+ q(x)u = r(x) + L } \fr.u) (9)

where the P and the R are polynomials. The theorems are essentiallym m

the same as the previous paper by this author [16],

Thus the work of Wasow and his successors have led to the following

result:

For the equation

(x+ e P(u))^+ q(x)u=r(x) (10)
dx

u(l) = b

Lighthill's procedure of expanding both u and x in terms of a slightly

strained variable z , given by

00

x = z+ L c x (z), (11)

1

subjecting the x.(z) to the differential equation naturally generated by

using series expansions in (10) and grouping the singular terms, will

work provided certain conditions hold. They are

i) q(0) }

ii) u (z) q(z) - r(z) /OinO<z ^1 (12)

iii) b is large enough

Three questions immediately arise. Can the procedure be extended

to more general equations than (10)? Secondly, must the straining be of the

form (11) or would a more general straining work? And lastly, what is the

significance of the restrictions (12) listed just above?



Temple's approach to Lighthill's problem [7] certainly suggests

that a much more general problem could be attacked. Temple framed the

problem in the following way. Rewriting (10) as

du_ q (x)u+ r(x)

dx" x+cu (10a)

one can view this as the result of combining two ordinary differential

equations

— = q(x)u + r(x)
d?

(13)

dx- =x +eu

Now the differential equation for x is chosen ab initio. Because of the

analyticity of the right hand sides of (13) in x, u and e, a series ex-

pansion for x and u in powers of c is assured to converge The variable

4 in (12) is related to z in (11) by £ = log z.

There is a slightly more natural way to get Lighthill's stretched

variable z by writing (10a) as

z— = q(x) u + r(x)
dZ

(13a)

dxz— = x + e u
dz

However these equations have an obvious singularity, where as (13)

does not. There is now an elementary jump to the equation

[x
k
+ eg(x,u,e)]^ + h(x /U/ c) = (14)

which can be written



— = -h(x,u,e)
dZ

(15)

dx k ,-£ = x + c g(x,u,c)

and Bellman [17] makes this jump, saying that Temple's method would

work just as well here. As we shall see, this conjecture is false.

Temple's approach actually presents several difficulties, but it also

suggests a couple of positive conjectures. The first difficulty is that the

differential equation for x is selected with no reference to deleting any

singularities for the expansion of u. This removes the original motivation

for the problem. In contrast to the series used by Wasow, both the

u series and the x series generated by this split will, in general, be

infinite series. The flexibility to make the u expansion a finite number

of terms is gone. A second difficulty is that the Wasow restricts s

(12) are all on the equation for u, which now does not appear to have any

problem. The biggest difficulty, however, is that the singularity involved

in the equation is hidden. The equations (13) are actually analytic in

u, x and e, provided z is finite . But the zero order solution for x is

x = e
Z

(16)
o

and the compact domain < x ^ 1 is mapped into the semi-infinite domain

-oo <, z < 0, and unfortunately it is the point at infinity which is the point

of primary interest for most of the problems. We will return to this point

later.

Another splitting of the equations, starting from the Lighthill approach,



was devised by Pritulo [8] and later again by Usher [11]. A simple

observation reduces the problem of finding x. (z) to an algebraic problem

rather than a differential equation problem. This observation is the

following theorem [8].

Theorem: If an ordinary perturbation expansion of u alone has a (non-

uniformly convergent) expansion

00

U
~n5o

e%
n
(x) ' <17 »

then the Lighthill expansion for u is given by the formula

U ~nV
nU

n
<Z) (18)

where

n-1 ,

U (z) = u (z)+E c(z) -p- u (z) (19)n n n-m-1 dz m
n=0

with c (z) = x, (z)
o 1

Vz) S^T
k|

<2k " p) x
k+ i

(z) Vk (z) (20)

00

where x = z + £ c x. (z) (21)

The power of this theorem is that these equations (19-21) hold for

any choices of the x.(z). Thus we can make certain choices. By hypo-

thesis the u (x) form an increasingly singular set, so the U (z) do also,
n n

However, in (19), the x.(z) can be chosen successively so that they

subtract off the increasingly singular part, so that the U (z) can be made



uniformly convergent!

Prit ulo extended his formula to higher order differential equations

,

but he made no applications of his results. He was also apparently not

aware of Wasow's paper.

Several years later Usher made a similar observation [11]. Usher

started from the equation

^=f(x,y,c) (22)

where y may be a vector and assumed that (22) was analytic in e so that

it may be expanded in the form

jf£=f (x,y)+ € f,(x.y)+ ... (22a)
dx o 11

Looking at the model equation (1) in this way

dy q(x)u + r(x) _

-f-=
:=L̂ -i L-L <;x £ 1

dx x + e u

= - [q(x)u + r(x)] + ^ [q(x)u + r(x)] +

we see that the expansion is invalid in the given domain. However,

Usher only wanted the first order terms in u and x, and the lack of

analyticity in c does not affect these calculations. Usher then looked at

the zero and first order terms, in light of Wasow's results. We write

them out, in Pritulo's notation

U (z) = u (z)

° ° du «•)

U
1
(z) = u

1
(z) + x

1
(Z ) 1f

10



But since, for the model equation,

-rr=- {q(z)u + r(z)}
dz x o

we have
X

l
U (z) = u (z) + — [q(z)u +r(z)]. (24)

J. X £* O

Separating u (z) into its very singular and mildly singular parts

u (z) = u (z) + u (z) we see that there is a solution of (24) for x (z)
J. 1 1 1

1

_L o J.

which leaves U (z) only mildly singular provided that Wasow's criterion

holds. Thus it was Usher who realized that the restriction ii) in (12)

(Wasow's criterion) is necessary criterion for a finite x (z) throughout

the range <z ^ 1. And equation (19) shows that z [q(z)u + r(z)]
o

is the coefficient of each succeeding x.(z), so this restriction applied to

each succeeding term.

Does the singularity in the expression forx. invalidate the use of the

method? Apparently not , to first order, as the following example shows.

We consider a problem which is explicitly solvable, namely

(x + eu)— = -u +2b x <, x <> 1
dx

u(l) = B = b(l f r\)

By simple integration, since the equation is exact, we have

(25)

_ 1
o o

u=c {-x + ^x +2e(c+bx)}

b
2

2
with c = bry + e 7 (1 + ??)

11

(26)



Solving this problem using Usher's approach, we write

u(x) = u (x) + eu. (x) + ...
o 1

u (1) = B (27)
o

u.(l) = iM
i

this gives

u (x) = bx+ brix
l

(28)
o '

2

u
x
(x) =| {(1 + r}

2
) x"

1
-rjV 3

-x} (29)

and the Wasow criterion term is

-u + 2bx = b(x - n
) (30)

O X

We recognize that u (x) is more singular than u (x) , and also that (30)

vanishes in the domain 0<x<lif0<7]<l. Using Usher's approach we

rewrite

U (z) = b(z + n
) (28a)

o z

2

U]L
(z) = | {(1 + T7

2
)z

_1
-z -t?V 3

} (29a)

= U
1
(z) -

Xl (z)b{l - n
2

)

z

There is some flexibility in the grouping of (29a) to create U (z). We

choose to make U (1) = and make the choice

2

U
x
(z)=| (1+ r, )(z~

l
-1) (31)

so that

x
1
(z)=|{ r?

2
(z"

3
-1)+ (z-1)}{1 - n

2
}~ 1

(32)

z

and x (z) is indeed singular at z = *frf~.

12



However, what information do we wish to know? We claim that at

this stage the only important questions are a) does the graph of U
o

approximate that of the true u, and b) what is the value of u(0) predicted

by our approximation. Ignoring the singularity in x (z) we can graph the

sum U (z) + e U, (z) , and since u is no more singular than U (z) it will
o 1 o o

not alter the graph. Now U (z) is strictly positive and has a minimum at

z = *Jr) where its value is U C/77) = 2b Jr\. But an investigation of the

exact solution (2 6) shows that u(x) is strictly positive, and has a zero

slope at x = Jr\{\ + cb) , where its value is u(x ) = 2bjr\ (1 + eb)

And if we assume that x = still corresponds to z very small then we

can solve the equation

,

= x = z+ cx
1
(z) = z + |{r7

2
(z'

3
-l)+ (z-1)}{1 - n

2
T l

(33)

for z, at least approximately. We obtain

so that

u (x = 0) ^ -~= 7 (34)

as compared with the exact value from (26)

_ o

U(0)=/^S c=br
?
+ 1

f- (1 + V
2

) (35)
e

' - "" 2

Thus these features of the approximation fit quite well.

Is our assumption that z is small corresponds to x = valid, in

view of the singularity in x (z) ? A study of x^z), equation (32), shows

13



that this is valid. An elementary analysis of the numerator of (32) shows

that x (z) has two positive zeros, one at z = 1 by construction, and

one at some smaller value of z, depending upon 77. The details of the

behavior depend upon whether this zero is greater than or less than the

singular point z = ^77. We sketch the graph for the two cases. The

critical value where the zero and the singular point coincide is given

dx
by looking for the switch or sign of— near Jr\ which occurs at

1 + t?

2
= Zfq (36)

or

n = .296 (36a)

*.(*) X,(4)

14



The fact that this example gives a number of right answers despite

the extreme distortion of the "stretched" coordinate encourages us to

ask whether the distortion can be corrected. To see that it can, we

return to a comment made earlier concerning the flexibility on choosing

x (z) and U
1

(z) . In particular, there is no necessity for making x and

z coincide at x = 1. (Doing so vastly simplifies the assigning of the

condition u(x = 1) = B, of course.) In particular one can make x and z

coincide at the singular point x = Jr\, as we show for this example.

Going back to (29a) we write

2

u
i
(z) = V * (1 + r?2)z

" 1
+ 2z - 3z - v

2
z~

3
+ Vt? - Vn3

2 2 ^
(29b)

= |-{(l + 77

2
)z'

1
+ 2z- Vrj} -J" {tj

2
z"

3
+ 3z - Vt?}

Now we have

x
x
w =

I ctjV
3
+ 3z -v*n {1 - Tfz~

2
} (37)

(38)

which has the limit

XjWj) =

Obviously all higher order x. (z) can be treated in a similar fashion. And

we observe that we have made the zero of x a simple zero at z = Jr\, so

x is negative to the left of x = Jrfand positive to the right, as it should

be.

To obtain the correct boundary conditions for u in the series form

(27) we can not take the u. (z) = at x = 1 , as we did. This means

15



that we must go back one step further and take the indefinite integral

2
for (29b), replacing (1 + r\ ) by c . Then we have

b
2

-1
U

1
(z) = — {c^z + 2z - 4^} (39)

To determine c. we must examine the equation

1 = z + ex (z) (40)

and solve for z . We get

z(l) = 1+ € d
1
+ 0(c

2
)

Then we look at

U(x= 1) = U | , + cu. | . + 0(e
2

) = B
o '

x=

1

1
'
x=

1

= b[l +cd
l
+ nil + €d

x
)

X

] (41)

b
2

1

+ ey [CjU + ed ) + 2(1 + €d^ - Vij]

Equating powers of c we get the condition for c to be

^ = 4/^-2 -Z-d^l-r}) (42)

Higher order terms may be computed in an analogous fashion.

We now. conjecture the theorem:

Theorem: In the case that the zero order term in the Lighthill expansion

for (1) has a single zero slope at some x in the interior < x < 1, then
o o

the series expansions may still be made to converge by making x = z at

16



x . The theorem would be much more difficult to prove than the Wasow

result, because by necessity both the x series and the u series are

infinite series.

The fact that it might be advantageous not to make z = x at x = 1

was observed by Melka [13] in his thesis, but the reasons for making

any particular choice were not discussed in any detail.

We now turn to the question of the restriction q(0) ^ (Eq (3)) in

Lighthill's original problem. Wasow also makes the restriction in his

theorem (12i). Lighthill's choice is based upon the character of the

singular point in the zeroth order equation near x = 0, i.e.

,

x^+ q(0)u = r(0)

has a solution which behaves like u ~ A x near the origin, and

the case q(0) > is of different character than q(0) < 0. However,

several recent papers have, without saying so explicitly suggested that

the restriction is more fundamental than Lighthill suggested.

Comstock's [10] examples were of the form

r n -, du n-1 m-1 ,.~,
1 x + eu] t~+ nx u = mx (43)

dx

u(l) = b > 1

For n > 1 the zeroth order equation has the same character as Lighthill's

case for q > 0. However, even in the cases where Wasow' s criterion

[12ii] held and the P-L-K expansion of (43) had the correct qualitative

behavior, the P-L-K solution to (43) give

u(o)^^/^
17



as opposed to the exact expansion

u (o)=y«

The error is a multiplicative factor of Jn .

Carrier has given a famous example [18] to show that the zero

order equation need not be linear in x. He studied several equations of

the form

/ 2 > du 2 , x . . .

.

(x + cu)— + -u = r x) 44
dx a

For the case r = this equation is exactly integrable in terms of Bessel

functions and one obtains the implicit solution

i {]AaJ7\i) + Ay,(o/€u)}
x=-(eu) 2 — *

(45)

(l (a/eu) + A Y
o
(a/7u}

with the asymptotic approximation

u(0) % [e&i-]"
1

(46)

The P-L-K method works quite satisfactorily to give this result also.

Burnside [12] in trying to correct the discrepancy of Comstock's

examples for n ^ 1 , took the approach that the essential feature is to

linearize the x dependence in the coefficient of — . He always makes

the change of variables

z = x
n

(47)

so that (43) becomes
m -1

,
> du m n

,. n .

(z + cu) — + u = -z (48)
dz n

18



and then he expands z in a Lighthill expansion. In this way he con-

cludes that the Jn discrepancy comes from the neglect of n terms of the

same order due to an expansion of a term raised to the n power. We

note that (48) has q(0) ^0 whereas (43) does not

Melka [13], independently of Burnside /tried to eliminate the dis-

crepancy in Com stock's examples by another change of independent

variables. He made the choice for a Lighthill expansion of

x = z + £ c x (z) (49)

1

where k is to be chosen in some fashion which is never specified except

by example. For the Comstock examples he noted that a boundary layer

approximation near x = suggested that k = n is the "logical" choice.

This choice will also eliminate the discrepancy.

Melka also considered a generalization of the Carrier problem

du
+ ax* u = u

, n x du p .__.
(x + eu)— + ax*u = (50)

dx

in the case n = 2(p + 1). This equation is a Ricatti equation for x

and then Melka claims that an obvious choice in (49) is k = p + 1

.

(Note for Carrier's example this gives just the ordinary Lighthill

expansion.) His analysis again is based on knowing the exact solution.

We suggest that there is another basis for a choice of change of

coordinates, a choice that will make the Lighthill method valid. Our

choice is the following: given the equation

(x + eu) — + q(x)u = r(x) (51)
dx

19



with q(x) ~ ax as x - 0, first make the change of variables

p+1
y = x

so as to make q(y)-» a, a constant ^0 as y - 0. In this new coordinate

system Lighthill's restriction (3) is met. In all the known exactly in-

tegrable cases the author can find, the subsequent Lighthill approxi-

mation is valid. In other cases the Lighthill procedure appears to work,

but we are unable to check our answers against a known solution. It

is the property q(0) ^ that we feel is the important criterion in the

choice of variables, not the resultant linearity or non-linearity of the

coefficients

.

III. GENERALIZATIONS AND CONCLUSIONS

The original interest in the PLK method was for applications to

partial differential equations. There are essentially no theoretical re-

sults concerning the application to partial differential equations. The

primary results are examples and counterexamples. Lin [5] and Van

Dyke [3] have concluded that this method works quite well in hyperbolic

equations, where the characteristics become the "strained" coordinates.

For many years it was recognized that the application of this method to

elliptic equations usually led to erroneous results [2], [3], However,

in recent years two papers have appeared deriving successful approxi-

mations for elliptic problems where previous workers failed [19], [20].

We will sketch the results obtained. The problem is that of flow around

a thin airfoil, which can be described by finding a harmonic function

20



cp(x,y) satisfying the following conditions:

2 2
<p -Ux +0(1) asx +y -» ®

on the surface y = f (x)
lY=-d£
<o dx
x

2 A
where f(x) = ch(x). In particular one choice for f (x) is f(x) = +c(l - x )

2
,

a very narrow ellipse. The structure of the mathematical problem is

significantly different from the ordinary differential equation problems,

but the same heuristic is still present. For c ^ the problem has no

singularity in the domain of definition (the singularity is the "source"

and "sink." inside the thin wing which "create" the wing). In the limit

e = the singularity is at the edge of the domain. An attempted per-

turbation expansion for the solution in powers of e times a function of

the complex variable z exhibits the familiar problem of increasingly

singular terms.

What is the straining of coordinates which is appropriate to this

problem? After several erroneous attempts by several people, Hoogstraten

[19] recognized that a key was the preservation of analyticity. He asks

that
00

z = 77 + L e z (tj)

map the body exactly onto the -1 <,<*n r\ £ 1. This forms his set of

"boundary" conditions for the z , in a fashion very analogous to setting

z = 1 <=> x = 1 in the ordinary differential equation case.

Martin [20] applies a somewhat different criterion, again based on
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analyticity. He considers the same problem but looks at the expansion

(
z = r?+ £ e z

(f)n n r

n=l

as a case where one can use the Lagrange inversion formula. He then

adopts Pritulo's formula for the expansion of the dependent variable.

Thus he is not thinking in terms of a choice of boundary conditions for

the unknown stretching, but of an algebraic criterion for this choice.

He makes the following choice. Looking at the sequence of equations

for the dependent variables choose ip (r)) = a <p (tj) where (p is the lowest

order solution, and the a are (unknown) constants. It is easy to show,
n

for linear equations, that this can always be done. The result is that the

solution for <p sums exactly to

<p(rj) = g(e) <p,(tj)

where g(e) = £ a e . This gives a system of algebraic equations for
n

the z in), as in Usher's [11] paper. Martin gives no criterion for the
n

choice of the constants a , and he gives examples where some choices
n

give the right answers and other equally reasonable choices give non-

uniformly valid answers. It is not at all apparent how to chose correctly

since his choices are based on algebraic convenience and knowing the

answer rather than some physically justifiable a priori criterion. The

examples give no firm clue as to a choice.

We may then conclude the following . For the ordinary differential

equation problem, the hypotheses of the original Wasow proof are not
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only sufficient but probably also necessary, with one exception. It

appears that we may be able to correct for one zero in the function

y (z) q(z) -r(z) (see (8)) by a change in the stretching. Thus Usher's

"necessary condition" are not as necessary as he thought [13] . For

the generalized equation (2) it appears that the Lighthill procedure will

work with a somewhat different change of variables, namely (49) where

k is chosen to ensure that the criterion q(z) ^ when z -4 0. For the

partial differtial cases, in particular elliptic problems, it appears that

the essential feature, for linear problems, is to make an analytic change

of variables, although there is not yet any analogue of the Wasow paper.
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