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ABSTRACT:

This report summarizes an investigation of the applicability of

the log periodic concept to coupled microwave transmission lines. It

is shown that active coupling at a given frequency may be achieved
between two lines supporting waves with different phase constants
provided they are coupled periodically with a periodicity determined
by the difference P?

-(3 at that frequency. Since
S3p

-j3 will, in
general, vary with frequency, coupling over a broad frequency range
requires a variable period. This may be realized by scaling the

structure period, thereby giving rise to a log periodic mode coupler.
This technique appears to hold promise for achieving the same wideband
performance that has been attained with log periodic radiators.

This task was supported by: Naval Missile Center
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I. INTRODUCTION

Since the publication of Pierce's theory of coupled modes of

propagation [ l] in 195^-, that approach has been used to explain the

operation of many microwave devices. Currently this theory is well

understood and has received subsequent treatment by many authors [2] -

[6]. Certainly the most exhaustive discussion of the theory is that

presented by Louisell [3].

The theory that has been developed is applicable to situations

where there is uniform coupling between propagating waves with phase

constants which are approximately equal. When there is a significant

difference in the phase constants, no interaction will occur if the

coupling is uniform, Thus
s
if it is desired that waves with different

phase constants be coupled together, uniform coupling cannot be employed

Several recent papers have dealt with the subject of periodic

coupling [6] - [8]. The authors have shown that it is possible to

achieve coupling between waves with different phase constants (3, ,

|3^(3 provided the waves are coupled by functions C(z) which are

periodic with period 2tt/A|3 where Aj3 = P ? -P-, • Only passive interactions

and applications have been considered, however. The purpose of this

report is to consider active coupling and to show how this type of

interaction may be used in wideband applications.





II. PERIODIC COUPLING

In the papers previously mentioned [6] - [8], the authors have

considered solution of the coupled line equations

dA (z)

J ^z
= ^(z) + C(z)A

2
(z) (la)

dA (z)

j
lz

= C(z)A
1
(z) + P

2
A
2
(z) (lb)

for a variety of coupling functions C(z). Although it is not explicitly

pointed out, the exact functional dependence of C(z) is unimportant so

long as the period is adjusted in accordance with the difference (3p-(3-, •

This will be shewn later. Additionally, coupling coefficients suoh as

C(z) = a sin kz can be realized in practice only approximately at best.

The solution of equations (1), therefore, seems to be an unnecessarily

difficult exercise. A more practical approach appears to result from

treating the coupled lines as a periodic structure and determining

the propagation constants from the eigenvalues of a coupling matrix.

Wave amplitudes at points separated by an integral number of structure

periods may then be easily related.

A. COUPLING MATRIX ANALYSIS

Consider two lines which are discretely coupled at points separated

by a distance L as shown in Figure 1. Such a system is periodic and

the unit cell has the form shown in Figure 2. The A. ' s are the wave

amplitudes on the lines and are chosen such that time average power





en (i)
*

flow is given by AT A. . Assuming linearity and conservation of
J J

energy, it can be shown [2] that we may write

(2)

for active coupling where

k = coupling coefficient

8 = phase shift across unit cell on p-line
P

= phase shift across unit cell on q-line
q

and where it has been assumed that no phase shift is introduced by the

coupling mechanism. If this last assumption is not valid a slight

modification of tne equations results but there is no change in the

conclusions below. For brevity, equation (2) may be written

A ^ = CA . (3)n+1 n

where C is a square matrix and the A's are column vectors.

Since the structure under consideration is periodic, we may apply

Floquet's theorem to obtain

A x . = A e
_yL

. (4)
n+1 n

and upon substituting (4) in (3) we have

CA = e"
yL

A . (5)n n

The permissible values of the propagation constant are, therefore,

given by the eigenvalues of C. We thus find that





r^L =
{ Jl^? cos (!sC?e) + vfi^^cos^!!^^!! e

"^"

(6)

Examination of equation (6) reveals that the propagation constant

may take either of two forms:

p p -0

Case 1. (1+k ) cos (
q
g

p
) < 1

In this case, the bracketed term in equation (6) is a complex

number with modulus unity and we have
+0

^L
= {e±^}e

J(
2

( 7 a)e

where

0-0
cos a = Vl+k cos (

q
2

p
) . (7b)

Since k « 1 we may write

«*(% (8

and hence,
0-0 0+0

e'
yL

= e~ * e
d

(9)

Therefore,

(10a)

r2 = j0
p
A . dob)

There are two waves which propagate and they are, for all practical

purposes, the waves of the unperturbed lines. The lines behave as if

there were no coupling since the period is not adjusted so that a





cumulative interaction may occur.

Case 2. (1+k ) cos~( q
g

P
) > 1

In this case, the bracketed term in equation (6) is real and y must
e -e

be complex. If we examine the interaction for • = mr (n an integer)

we find that
e +e

_
3 (

p S
)

e"
yL

- {7l+l? + k} e
2

. (11)

2
Since k « k , we may write

9 +9

= jl+kj- e (12)e
-yL

= e
-(a+jp)L _. |.

and, therefore,

OL = + k (13a)

9 +9

PL = (-^-3 ) (13b)

Here, there are again two waves which may propagate but they are signif-

icantly different from the waves of the unperturbed or uncoupled lines.

Now, we see that the amplitude of one wave decays while that of the

other grows. Physically, we have waves travelling in opposite

directions on the two lines. The amplitude of the wave on the driven

line will decay as its energy is transferred to the wave on the un-

driven line.

We note at this point that an exponentially decaying driven wave

amplitude is one of the conditions that must be satisfied on a log

periodic structure. This is necessary if the structure is to be

truncated (as it must be) without causing a disturbance.

The results of this section show that active coupling may occur





between waves having unequal phase constants and carrying energy in

opposite directions provided the waves are periodically coupled and

the period is properly adjusted. The condition for synchronism,
e -e

( p ) - rm , is equivalent to

p L - p L = n277 . (1*0
q p

Choosing n = + 1, the required structure period is

where Ap =
| B -p I .r
'
rp

r
q '

B. SYMMETRY ANALYSIS

In order to gain a more complete picture of the various inter-

action points for periodically coupled lines, one must have more

information than that gained from only the equations of the previous

section. The greatest shortcoming of these equations is that we have

considered only two waves when actually there are four present. The

best approach is to examine the lines from the point of view of the

oo-(3 diagram.

Initially, let us consider the co-p diagrams of the uncoupled lines.

For purposes of illustration, suppose that one line is a rectangular

waveguide which has the TE..
n

as its only propagating mode and let the

second line be coaxial with only a TEM mode. We further assume that

both lines are air insulated and lossless. The co-P branches for

these lines are plotted together in Figure 3 and numbered, 1-4, to

indicate that there are four linearly independent waves which correspond

to these branches.





Now suppose that we wish to couple wave 1 to wave H- by periodically

coupling the two lines. According to equation (15), we find the dif-

ference in the phase constants at the frequency of interest and then

couple the lines periodically with L = 2tt/A|3 . However, when the lines

are coupled periodically the whole system becomes a periodic structure

and the form of the to- (3 diagram is completely altered. One can show by

symmetry arguments that the to- (3 diagram must have periodicity 2tt/L and

therefore it must repeat itself in a distance A[3 . Furthermore, all

relevant information is contained in the range -A(3/2 to + Af3/2 which is

known as the Brilluoin zone.

A first approximation to the correct to-(3 diagram for the coupled

lines may be obtained by translating the to-(3 diagram of Figure 3 by

nAf3, where n is an integer, and retaining only that part for which

-Ap/2 < (3 < A(3/2. This procedure results in the to-(3 diagram shown in

Figure h-. It may be thought of as being the correct to-|3 diagram for

the limiting case of vanishing periodicity (k-»0) .

For k finite, modifications of the to-(3 diagram of Figure 4 may

occur at any point where there are branch crossings in that diagram.

These are the points where the coupling is such that a cumulative

interaction may occur.

The interaction which occurs at point 2 in Figure H- was described

by the equations of the previous section. At the crossing point and

for frequencies in the immediate vicinity of the crossing point, the

propagation constant is complex. The real part of the propagation

constant has been plotted in Figure 5 where the appropriate modifications

at point 2 are shown. As we move away from point 2, it is evident that

the real part of y goes to zero and thereafter there are two waves

which propagate almost as if there were no coupling present.





Points 1 and 3 represent regions where waves traveling in opposite

directions on the same line may be coupled together. If such coupling

were to occur at these points this would result in reflection of the

energy on the line or a stopband. Whether or not a stopband will occur

depends upon the translational symmetry of the structure. A detailed

analysis is beyond the scope of this report and thus only a statement

of sufficient conditions will be given here. The proof of the theorem

may be found elsewhere [9].

Theorem : If the space group of a periodic structure contains the

glide or second order screw element, then branches of the co-j3

diagram will stick together in pairs at (3 = tt/L.

For the problem under consideration, this simply means that if the

coupled lines have glide or second order screw symmetry, then degeneracies

will occur at points 1 and 3 and there will be no further modification

of the G0-J3 diagram at those points. If, on the other hand, the coupled

lines have only pure translational symmetry, then this will induce

stopbands at these points. Both possibilities are indicated in

Figure 5

•

The particular realization of the coupling function determines

which of the above situations will occur. If one is interested in

single frequency operation around point 2, then the Interaction or

lack thereof at points 1 and 3 is of no concern. If, however, it is

desired to operate the device over a broad frequency range then these

regions must be carefully examined. As we shall see shortly, region

1 has profound consequences for the log periodic case.

This section has discussed the o>|3 diagram for a rectangular

waveguide operating in the TE n _ mode and periodically coupled to a

coaxial line operating in the TEM mode. Proper selection of line





dimensions with respect to operating frequency will ensure that these

conditions will be realized. To operate as a backward wave coupler,

the device must be operated in the frequency range where y is complex.

Then, if one of the lines is driven, the wave on that line will decay

exponentially as it progresses and the energy will be transferred to

the other line. The wave on the other line will leave the coupler

at the same end to which the excitation was applied. This is shown

schematically in Figure 6. Evidently, if the coupling region is

extended far enough to allow for sufficient decay of wave amplitude,

then both lines may be terminated without causing any appreciable

disturbance.





III. LOG PERIODIC COUPLING

The limited bandwidth of the periodic coupler described in the

previous section is evident from the a>-(3 diagram of Figure 5- The

active coupling occurs over only a small frequency range. In this

section we will describe a modification of the periodic structure which

permits broadband operation.

In the general case, the phase constant of a traveling wave will

vary with frequency and hence the difference between phase constants

on two lines will vary with frequency. At any given frequency, the

lines may be periodically coupled so as to achieve interaction by

adjusting the period according to the difference in phase constants.

The problem is that no fixed period can be right for interaction at

all frequencies. The log periodic solution to this dilemma is to

allow the period to change by a scale factor. A wave then should

travel along a line until it reaches a region where the "local" period

is approximately right for interaction. In this region the energy

of the wave would be transferred to a wave on the other line. The

extent of this active region should be sufficiently great to allow

for essentially complete exchange of energy. Any physical structure

must be finite in extent and hence the scaled structure must be

twice truncated. The frequency band of the truncated structure should

then be approximately determined by the local period at either end.

Currently employed mathematical approaches to the analysis of

log periodic structures lack the rigor and precision of the methods

which may be applied to periodic structures. In particular, no

10





rigorous counterpart to the co-(3 diagram has yet been described for log

periodic structures. The o>S3 diagram of a periodic structure provides

information on wave propagation and has characteristics which may be

rigorously described using group theory. What one would like is some-

thing of a similar nature for log periodic structures. In the absence

of any such development, the intuitive approach has been taken.

For log periodic structures, the intuitive approach is to say

that if the variation of the structure period Is slow enough then any

given section of the structure behaves as if it were (in that locality)

periodic. On the basis of this assumption, it is then possible to

use a normalized version of the to-(3 diagram of the periodic circuit

from which the log periodic structure is derived. For a given frequency,

the behavior of waves on a particular part of the log periodic structure

may be determined by examining the appropriate region of the diagram.

Such a region might be a passband, a stopbanu or- a coupling region.

In this sense, the results of section II may be applied directly

to the log periodic version of the coupled lines described in this

section. The to- (3 diagram of Figure 5 is normalized by the period L

and becomes a plot of toL vs (3L. This is called an to - ]3 diagram as

shown in Figure "J. For a given frequency of operation and a given

region of the line, one computes oo and then enters the to - ]3 diagram

to find]?. The real, imaginary or complex nature of ]? describes the

way in which waves propagate in that neighborhood.

let us consider the movement of the operating point with position

for the TEM-waveguide mode coupler that has been proposed. Assume

that the waveguide is excited above its TE . cutoff frequency and

that the local period at the driving point is such that the operating

point is 1 in Figure 7. Assume also, that the structure period becomes

11





greater as distance from the driving point increases. In that case,

?0 will increase with distance (co constant) and as the wave moves down

the structure the operating point will move in the direction indicated

by the arrow at point 1. Ultimately the wave will move into a region

where the operating point lies in the active coupling region as in-

dicated by 2. In this region, the TEM wave will be excited and transfer

of energy will occur. If the region is of sufficient extent, then this

transfer of energy will be essentially complete. The TEM wave then

travels away from the coupling region in the opposite direction

(direction of decreasing structure period) . The operating point

moves as indicated to point 3. Note the negative group velocity for

this branch.

In order for the TEM wave to return to the driving point position,

it must be possible for the operating poin'c to move to position k. The

significance of the structure symmetry is now apparent. As mentioned

previously, glide or screw symmetry results in a degeneracy at (3L = 77

for periodic circuits. If this similarity were not present on the log

periodic structure, the operating point could not move from 3 to 4-.

We would thus have a stopband or reflection region on the log periodic

circuit with the obvious result that the operating point would proceed

back to 1 . In that case we would not have an operable device.

Upon reaching the position corresponding to point U- , the TEM wave

may be extracted as an output or guided away from the log periodic

coupling region for utilization at another location. From the previous

discussion, it should be evident that as operating frequency is in-

creased, the active region moves toward the driving point while if CO

is decreased it moves away from the driving point. Since the structure

must be finite in extent, the upper and lower frequenc;/ limits are

12





determined by the local period at either end of the structure. Ex-

ponential decay of wave amplitude through the active region guarantees

the absence of end effects due to truncation so long as the active

region is sufficiently long to allow for essentially complete transfer

of energy.

It should further be noted that the assumption of a TEM wave and

only a TE, „ waveguide mode also places bandwidth restrictions upon

this particular realization of log periodically coupled propagating

modes.

13





IV. EXPERIMENTAL COUPLER

To verify the theoretical predictions of Section II, a waveguide

to coaxial periodic mode coupler was constructed by LT A. E. Whitehead

and a test program was begun in the Microwave Laboratory of the Depart-

ment of Electrical Engineering. The prototype structure consisted of

a length of RG8u (c =2.25) coaxial cable which was coupled to X-band

waveguide {0 A" x 0.9") by a series of 21 probes. The probes were

connected to the center conductor of the coaxial cable and extended

0.125" into the center of the waveguide as shown in Figure 8. The

periodicity of O.618 inches resulted in a crossing of the co-{3 curves

of the uncoupled lines at 8.75 ghz

.

Preliminary testing of the prototype structure was conducted to

determine where the input power went as a function of frequency over

the range of 8 - 10. 5 ghz. The waveguide was driven at one end and

the other three device ports were terminated in matched loads. The

results of the experimental measurements are shown in Figure 9- It

may be seen that the device behaved as predicted with 92/j of the

power transferred to the coaxial line at the interaction frequency.

The interaction frequency of 9-^5 ghz, however, was considerably

greater than the 8.75 ghz crossover point for the o>(3 branches of

the uncoupled lines. This shift may be attributed to the loading of

the lines which was caused by the coupling technique. As studies

progress this will be investigated further, both experimentally and

theoretically.

14





The coupling coefficient of the structure may be computed from

equation (13a). Since ^2% of the power is transferred in 21 periods

of the device we have

e
-2a<2iD . o8 (l6)

and taking the logarithm of both sides,

kZOLL =2.52 . (17)

Since k = aL, we have

k = .06 . (18)

2
This justifies the assumption k « k which was made in deriving

equation ( 12)

.

Preliminary tests with l/l6" and 3/l6" probes show that both

coupling and bandwidth vary as the probe depth. This is in accordance

with the equations of Section IIA.

15





V . SUMMARY

This report has presented the theory of periodic coupling of

modes of propagation. It has been shown that energy may be transferred

between lines supporting waves with unequal phase constants. Attention

was focused upon the active interaction which occurs when the period

of the coupling function is L = 277/AJ3. This interaction is characterized

by an exponential decay of the wave amplitude on the driven line and

transfer of energy to a wave with oppositely directed group velocity

on the auxiliary line.

This interaction is further shown to have all the properties

necessary for use in a log periodic coupler. Primarily, the exponential

wave decay ensures lack of end effect due to truncation. Tt has also

been shown that the log periodic structure must be glide or screw

similar in order to ensure that there will be no reflection region

along the wave path. Log periodic coupling appears to hold promise for

achieving the same wideband performance that has been realized with

antennas designed using this principle.

Preliminary measurements on a prototype periodic coupler have

demonstrated the practicality of this type of coupling. As work

progresses this structure will be further investigated both experimentally

and analytically. The ultimate goal will be to construct a log periodic

coupler. Realization of such a structure is of interest not only

because of the new devices which may result but also because it will

result in a better understanding of the log periodic concept itself.

16
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