
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1992-03

NPS AUV Integrated Simulation

Brutzman, Donald P.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/26108

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
NPS AUV INTEGRATED SIMULATOR

by

Donald P. Brutzman

March, 1992

Thesis Advisors: Yutaka Kanayama Michael J. Zyda

Approved for public release; distribution is unlimited.

T256801

REPORT DOCUMENTATION PAGE
fa REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGUNCLASSIFIED

*a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;

distribution is unlimited
lb. DECLASSIFICATION/DOWNORADlNO SCHEDULE

PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

S-

.. NAME OF I

omputer Science

Naval Postgraduate School

6b. OFFICE
1

SYMBOL
(if applicable)

cs

ERFORMING ORGANIZATION
i Dept.

7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School

3c. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

3a. NAME OF FUNDING/SPONSORING
ORGANIZATION

OFFIC E SYMBOL
(if applicable)

PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

10. SOURCE OF FUNDING NUMBERS3c. ADDRESS (City, State, and ZIP Code)
PROGRAM I PROJECT
ELEMENT NO NO.

TASK
-

NO.
WORK UNIT
ACCESSION NO

11. TITLE (Include Security Classification)

NPS AUV INTEGRATED SIMULATOR

1 1 PERSONAL AUTHOR(S)
Donald P. Brutzman

I3a. TYPE OF REPORT
Master's Thesis

1 3b. TIME COVERED
from 04/90 to 03/92

14. DATE OF REPORT (Year, Month, Day)

1992, March, 17
15. PACE COUNT

269

6. supplementary notation
Tj-,e views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the United States Government.

COSATI CODES

FIELD SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Autonomous Underwater Vehicles, Graphics, Simulation, Path Planning,

Sonar Classification, Expert Systems, Real-Time Operating Systems.

9. ABSTRACT (Continue on reverse if necessary and identify by block number)

The development and testing of Autonomous Underwater Vehicle (AUV) hardware and software is gready complicated by

:hicle inaccessibility during operation. Integrated simulation remotely links vehicle components and support equipment with

aphics simulation workstations, allowing complete real-time, pre-mission, pseudo-mission and post-mission visualization in

e lab environment. Integrated simulator testing of software and hardware is a broad and versatile method that supports rapid

d robust diagnosis and correction of system faults. This method is demonstrated using the NPS AUV.
High-resolution three-dimensional graphics workstations can provide real-time representations of vehicle dynamics, control

5 stem behavior, mission execution, sensor processing and object classification. Integrated simulation is also useful for

velopment of the variety of sophisticated artificial intelligence applications needed by an AUV. Examples include

nar classification using an expert system and path planning using a circle world model.

The flexibility and versatility provided by this approach enables visualization and analysis of all aspects of AUV
(jvelopment. Integrated simulator networking is recommended as a fundamental requirement for AUV research and

(velopment.

). DISTRIBUTION/AVAILABIL ITY OF ABSTRAC T

1] UNCLASSIFIED/UNLIMITED
fjj

SAME AS RPT. [J DTIC USERS

ME OF RESPONSIBLE INDIVIDUAL.
Kanayama and Dr. Mi

2i. ABSTRACT SECUR ITY CLASSIFICATION

UNCLASSIFIED
E SYMBOL

I Yutaka chael J. Zyda
22b. TELEPHONEtfnc/ucfe Area Code)

(408) 646-2095/2305

It FORM 1473, 84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Approved for public release; distribution is unlimited.

NPS AUV INTEGRATED SIMULATOR

by

Donald P. Brutzman

Lieutenant Commander, United States Navy

B.S.E.E., United States Naval Academy, 1978

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 1992

ABSTRACT

The development and testing of Autonomous Underwater Vehicle (AUV)

hardware and software is greatly complicated by vehicle inaccessibility during

operation. Integrated simulation remotely links vehicle components and support

equipment with graphics simulation workstations, allowing complete real-time,

pre-mission, pseudo-mission and post-mission visualization and analysis in the lab

environment. Integrated simulator testing of software and hardware is a broad and

versatile method that supports rapid and robust diagnosis and correction of system

faults. This method is demonstrated using the Naval Postgraduate School

(NPS) AUV.

High-resolution three-dimensional graphics workstations can provide real-time

representations of vehicle dynamics, control system behavior, mission execution,

sensor processing and object classification. Integrated simulation is also useful for

development of the variety of sophisticated artificial intelligence applications needed

by an AUV. Examples include sonar classification using an expert system and path

planning using a circle world model.

The flexibility and versatility provided by this approach enables visualization and

analysis of all aspects of AUV development. Integrated simulator networking is

recommended as a fundamental requirement for AUV research and deployment.

in

1.

1

TABLE OF CONTENTS

I. INTRODUCTION 1

A. PROBLEM STATEMENT 1

B. MOTIVATION 2

C. OBJECTIVES 3

D. THESIS ORGANIZATION 4

II. AUV RESEARCH AT THE NAVAL POSTGRADUATE SCHOOL 7

A. IMPORTANCE OF AUVs IN NAVAL MISSIONS 7

B. NPS AUV DESIGN SPECIFICATION SUMMARY 8

C. NPS AUV RESEARCH OBJECTIVES 10

D. THE FUTURE OF NAVAL AUVs 16

III. INTEGRATED SIMULATION FOR RAPID AUV DEVELOPMENT 18

A. ABSTRACT 18

B. INTRODUCTION 19

1. Problem Statement 19

2. Motivation 19

3. Definition and Objectives of Integrated Simulation 20

4. Previous Work 20

C. AUV DESIGN AND DEVELOPMENT CONSIDERATIONS 22

1. AUV Inaccessibility During Operation 22

2. Reliability is Paramount 23

3. Wide Variety of Software Process Types 23

D. INTEGRATED SIMULATOR SOFTWARE ARCHITECTURE 24

1. Software Engineering Considerations 24

2. Integrated Simulator Software Architecture Requirements 24

3. Simulated and Actual Components 24

4. Data Transfer Mechanisms 26

5. Distributed Artificial Intelligence Considerations 29

E. THREE-DIMENSIONAL GRAPHICS SIMULATION 30

1. Realistic Object Rendering and Real-Time Motion 30

2. Physical Modeling 30

3. Sonar and Sensor Visualization 31

F. INTEGRATED SIMULATOR HARDWARE ARCHITECTURE 31

1. Workstation Compatibility 31

2. External Network Connectivity 32

G. IMPLEMENTATION, EVALUATION AND EXPERIMENTAL

RESULTS 32

1. NPS AUV Vehicle Description and Sonar Characteristics 32

2. NPS AUV Integrated Simulator 33

3. Silicon Graphics IRIS Workstation Capabilities 36

4. Laboratory AUV Simulation 36

H. ADDITIONAL APPLICATIONS 37

1. Sonar Classification Application 37

2. Circle World Path Planning Application 38

3. Minefield Search Application 39

I. ADDITIONAL APPLICABILITY, LIMITATIONS AND FUTURE

WORK 39

1. Comparison of Theoretical and Empirical Data 39

2. Limitations to Integrated Simulation 40

3. Future Use of Integrated Simulation 41

J. CONCLUSIONS 41

IV. NPS AUV INTEGRATED SIMULATOR DESIGN SPECIFICATIONS 42

A. NPS AUV ACTIVE SONAR SYSTEM 42

B. NPS POOL COORDINATE SYSTEM 44

C. NPS AUV TELEMETRY REPLAY FILE FORMAT 46

D. SOFTWARE PROCESS SPECIFICATIONS 47

E. CONCLUSIONS 48

V. NPS AUV INTEGRATED SIMULATOR DATA NETWORK 50

A. INTEGRATED SIMULATOR DATA NETWORK OBJECTIVES 50

B. NETWORK CONNECTIVITY REQUIREMENTS AND ETHERNET . 50

C. NETWORK HARDWARE REQUIREMENTS 53

D. OPERATING SYSTEM INTERFACES 59

E. CONCLUSIONS 60

VI. AUTONOMOUS SONAR CLASSIFICATION USING EXPERT SYSTEMS . 62

A. ABSTRACT 62

B. INTRODUCTION 63

C. OVERVIEW 64

D. GEOMETRIC ANALYSIS OF SONAR DATA 66

1. General Characteristics of Active Sonar Data 66

2. Geometric Primitives and Object Attribute Definitions 67

3. Extracting Line Segments using Parametric Regression 67

4. Building a Polyhedron from Line Segments 68

5. Quantifying Polyhedron Attributes 71

E. EXPERT SYSTEM HEURISTICS FOR SONAR CLASSIFICATION . 74

1. Classification Heuristics and Attribute Heuristics 74

2. Pattern-match Classification Examples 76

3. Self-Diagnosis and Self-Correction 78

F. EXPERT SYSTEM PARADIGM 78

1. Expert System Characteristics 78

2. Knowledge Representation and Reasoning using Facts, Rules and

an Inference Engine 79

3. Rule Sets and Control of Execution Flow 79

4. Developing an Expert System 80

G. IMPLEMENTATION AND EVALUATION 80

1. NPS AUV Vehicle Description and Sonar Characteristics 80

2. CLIPS Expert System 81

3. NPS AUV Sonar Classification System 83

4. NPS AUV Integrated Simulator 83

H. EXPERIMENTAL RESULTS 84

1. Classification Test Scenario 84

2. Experimental Results 84

I. DISCUSSIONS AND APPLICATIONS 86

1. Extendability to Video, Lasers, Complex Sonars and Sensor

Fusion 86

2. Intelligent Remote Sensors 87

3. Data Reduction 88

4. Future Use of Expert Systems by Autonomous Vehicles 88

J. CONCLUSIONS 89

VII. SHORTEST PATH PLANNING USING A CIRCLE WORLD 90

A. ABSTRACT 90

B. INTRODUCTION AND PROBLEM DESCRIPTION OF CIRCLE

WORLD 91

C. GEOMETRIC CHARACTERIZATIONS OF CIRCLE WORLD AND

SHORTEST PATH 94

D. ALGORITHM FOR DETERMINING VISIBLE TANGENTS 102

E. SHORTEST-PATH DIJKSTRA AND A* SEARCH ALGORITHMS . 104

F. IMPLEMENTATION AND RESULTS 114

G. THREE-DIMENSIONAL APPLICATIONS AND FUTURE WORK . 115

H. CONCLUSIONS 120

Vm. REAL-TIME OPERATING SYSTEM AND AUV SIMULATION

CONSIDERATIONS 121

A. NPS AUV AND REAL-TIME OPERATIONS 121

B. HARD AND SOFT REAL-TIME REQUIREMENTS 122

C. NPS AUV PROCESS DEADLINE SPECIFICATION AND

SCHEDULING 122

D. PARALLEL PROCESSING AND CONCURRENT PROGRAMMING 125

E. OPERATING SYSTEM COMPATIBILITY AND
INTEROPERABILITY 127

F. OS-9 OPERATING SYSTEM 128

G. CURRENT PROBLEM AREAS AND FUTURE RESEARCH 130

IX. PERFORMANCE EVALUATION AND FUTURE RESEARCH 133

A. SIMULATOR LIMITATIONS AND PERFORMANCE

MEASUREMENTS 133

B. INTEGRATED SIMULATOR FOLLOW-ON WORK 134

C. POTENTIAL FUTURE RESEARCH 134

X. SUMMARY 136

APPENDIX A. NPS AUV INTEGRATED SIMULATOR USER'S GUIDE ... 137

1. NPS AUV GRAPHICS SIMULATION EXECUTION 137

2. NPS AUV INTEGRATED SIMULATOR CONTROL PANEL 137

3. LABORATORY GESPAC EXECUTION 140

APPENDIX B. NPS AUV GRAPHICS SIMULATION PROGRAM SYNOPSIS 147

1. GRAPHICS SIMULATION PROGRAM STRUCTURE 147

2. NPS PANEL DESIGNER 147

3. GRAPHIC OBJECT MODELING USING OBJECT FILE FORMAT

(OFF) 149

APPENDIX C. NPS AUV SONAR CLASSIFICATION SYSTEM SOURCE

CODE 150

APPENDIX D. SHORTEST PATH PLANNING IN A CIRCLE WORLD 177

APPENDIX E. CIRCLE WORLD SOURCE CODE 196

APPENDIX F. OBTAINING NPS AUV INTEGRATED SIMULATOR

PROGRAMS SOURCE CODE 236

APPENDIX G. VIDEOTAPE DEMONSTRATION OF RESULTS 237

LIST OF REFERENCES 240

INITIAL DISTRIBUTION LIST 248

LIST OF TABLES

Table VI. 1 Example underwater object classification types 66

Table VII. 1 Circle world geometric data structures 95

Table VTQ.l AUV software module real-time characteristics 124

LIST OF FIGURES

Figure 2.1 The NPS AUV is an eight foot long submersible 9

Figure 2.2 The NPS swimming pool is an ideal test environment for the NPS

AUV 10

Figure 2.3 Specific test missions are downloaded into the NPS AUV using a

poolside laptop computer 11

Figure 2.4 The low speed of the NPS AUV allows divers to swim nearby and

evaluate its performance 12

Figure 2.5 General schematic of the NPS AUV. Note the twin screws, four

sonar transducers forward, and eight plane surfaces 13

Figure 2.6 Block diagram of NPS AUV mission execution software

structure 14

Figure 2.7 A graphics simulator depicting the NPS AUV in Monterey Bay . . 15

Figure 2.8 Graphics simulation for NPS AUV sonar visualization 15

Figure 3.1 Integrated simulator network physical connectivity 21

Figure 3.2 Integrated simulator logical connectivity using actual AUV 25

Figure 3.3 Integrated simulator logical connectivity using laboratory AUV . . 26

Figure 3.4 Three-dimensional AUV track evaluation is difficult when using

multiple two-dimensional plots 27

Figure 3.5 Example telemetry replay file format 28

Figure 3.6 Example high-level object file format 29

Figure 3.7 General schematic of NPS AUV to scale 34

Figure 3.8 Control panel for the NPS AUV Integrated Simulator 35

Figure 3.9 Integrated simulator screen display of the NPS pool, AUV track

and all active sonar classifications 38

Figure 3.10 Integrated simulator three-dimensional representation of circle

world obstacles and shortest path in the NPS pool 38

Figure 3.11 Integrated simulation display of AUV minefield search 39

Figure 4.1 NPS AUV sonar beam profiles in the NPS pool 43

Figure 4.2 NPS Pool Coordinate System 45

Figure 4.3 NPS AUV telemetry replay data file format specification 47

Figure 4.4 NPS AUV software process summary sheet 49

Figure 5.1 NPS AUV Integrated Simulator data network 54

Figure 5.2 NPS Computer Science Department Network portion of NPS AUV

Integrated Simulator data network (part 1) 55

Figure 5.3 NPS Computer Science Department Network portion of NPS AUV

Integrated Simulator data network (part 2) 56

Figure 5.4 NPS Campus-Wide Network 57

Figure 5.5 Laboratory AUV microprocessor card cage slots 58

Figure 6.

1

Autonomous sonar classification process diagram 65

Figure 6.2 Typical parametric regression line fit 68

Figure 6.3 Examples of colinear regression line segments 70

Figure 6.4 Examples of convex regression line segments 70

Figure 6.5 Examples of concave regression line segments 71

Figure 6.6 Algorithm to build polyhedra from line segments 72

Figure 6.7 Summing triangle areas to determine polyhedron cross-sectional

area 73

Figure 6.8 Polyhedron detected edges, inferred edges and hidden edge may not

fully reveal all features of the sonar contact 75

Figure 6.9 Classification rule for a mine-like object 77

Figure 6.10 General schematic of NPS AUV 82

Figure 6.11 NPS AUV test track using left transducer only. Note swimmer

target 85

Figure 6.12 NPS AUV sonar classification expert system plot of pool data and

parametric regression line segments 86

Figure 6.13 Integrated simulator screen display of the full NPS pool and all

sonar classifications 87

Figure 6.14 Integrated simulator display close-up of a mine-like object

classified by the sonar expert system using detected edges, inferred

edges, hidden edge and cross-sectional area 88

Figure 7.1 Simple obstacle representation using circles 92

Figure 7.2 Improved obstacle representation including robot radius and safe

standoff distance 92

Figure 7.3 Simple circle world with all visible tangents 93

Figure 7.4 Simple circle world shortest path 93

Figure 7.5 Tangential line segments between circles 97

Figure 7.6 Determination of circle cross-tangents and external tangents 98

Figure 7.7 Determining point-to-point visibility in circle world 100

Figure 7.8 Comparison of partial path costs 103

Figure 7.9 Sweep visibility determination from point to all circles 105

Figure 7.10 Explanation of sweep visibility algorithm from point to all

circles 106

Figure 7.11 Pseudocode for sweep visibility algorithm from point to all

circles 107

Figure 7.12 Sweep visibility determination from clockwise circle to all

circles 108

Figure 7.13 Sweep visibility determination from counter-clockwise circle to all

circles 109

Figure 7.14 A* search evaluation function comparison 110

Figure 7.15 Search steps displayed for Dijkstra's search algorithm Ill

Figure 7.16 Search steps displayed for A* search algorithm 112

Figure 7.17 Challenging circle world visibility graph 113

Figure 7.18 Excerpt from graphics plot file intermediate output 115

Figure 7.19 High-level text listing of example NPS pool circle world and

shortest path determination 116

Figure 7.20 Three-dimensional cylindrical obstacles viewed as two-dimensional

circles 118

Figure 7.21 Two-dimensional representation of obstacles in the NPS pool ... 119

Figure 7.22 Three-dimensional representation of obstacles in the NPS pool . . 120

Figure 8.1 NPS AUV software process dataflow diagram 123

Figure 8.2 OS-9 operating system process states 129

Figure A.l Example high-level object file 138

Figure A.2 One second excerpt of 10 Hz telemetry replay file 139

Figure A.3 NPS AUV Integrated Simulator dials and buttons 141

Figure A.4 Script of laboratory GESPAC execution of NPS AUV control loop

software (part 1) 142

Figure A.5 Script of laboratory GESPAC execution of NPS AUV control loop

software (part 2) . . 143

Figure A.6 Script of laboratory GESPAC execution of NPS AUV control loop

software (part 3) 144

Figure A.7 Script of laboratory GESPAC execution of NPS AUV control loop

software (part 4) 145

Figure A.8 Script of laboratory GESPAC execution of NPS AUV control loop

software (part 5) 146

Figure B.l NPS AUV graphics simulation program 148

Figure F.l Obtaining NPS AUV Integrated Simulator files via Internet 236

Figure G.l NPS AUV video abstract 238

Figure G.2 Mission profile of NPS AUV video 239

ACKNOWLEDGEMENTS

Many people unselfishly contributed to the work contained in this thesis and I wish to

gratefully acknowledge their assistance.

LCDR Mark A. Compton USN coauthored two chapters, two papers and the

expert system source code. His expert knowledge and sound judgement were always

available to discuss any aspect of integrated simulation. In one short week he adapted

his minefield search strategy to utilize integrated simulation data passing mechanisms,

proving the accessibility of this method for graphics simulation display. I am grateful

for our opportunity to work together.

CDR Charles A. Floyd USN assisted in the implementation of parametric

regression and helped me learn many of the nuances of our vehicle and simulation

programs. CDR Thomas A. Jurewicz USN blazed the trail with his dynamic

simulator. LT R. Scott Starsman USN derived the final form of Equation (7.1).

Charles Lombardo of the NPS technical staff provided frequent good advice on

prograrnming in C and Unix. Russell Whalen dependably provided underwater

photography, pool test support, boundless knowledge about how to make things work

and enthusiastic encouragement. He and Walt Landaker built the laboratory AUV,

networked it and made it listen to our commands.

I thank my former Commanding Officer CAPT Alan R. Beam USN of DARPA

and Mr. Patrick Hale of Charles S. Draper Laboratories for access to the

DARPA UUV and the UUV support simulator.

Interaction with the many professors and students in the NPS AUV research

group is always intellectually stimulating. Dr. Se Hung Kwak, Dr. Neil C. Rowe,

Dr. Michael L. Nelson MAJ USAF, Dr. Fotis Papoulias, Dr. Shridhar Shukla and

Dr. James Clynch provided valuable critical analysis. Dr. Richard W. Hamming has

provided many stimulating ideas on the importance of working on projects of value.

xv

NPS AUV project leaders Dr. Anthony M. Healey and Dr. Robert B. McGhee are

particularly thanked for their continuing guidance and inspiration.

My thesis advisors are two of the most impressive people that I have ever met.

Dr. Yutaka Kanayama's knowledge of spatial reasoning and robotics is unparalleled.

His ability to discern the heart of a problem and uncover fundamental principles has

been inspiring, and his patience and accessibility has been invaluable.

Dr. Michael J. Zyda provided the knowledge and tools to make real-time visual

simulation a reality. He is always looking three steps ahead at where we ought to go

next. I am indebted to both men.

The biggest ingredient spent in this thesis has been time: time to explore new

ideas, time to understand problems, time to wrestle uncooperative software into shape,

time to write results in an understandable way. My time was spent away from my

loving wife Terri and my three wonderful daughters Hilary, Rebecca and Sarah.

I dedicate this work to them as a small "thank you" for their support.

I. INTRODUCTION

A. PROBLEM STATEMENT

Designing, building and testing an Autonomous Underwater Vehicle (AUV) is

difficult. AUVs must operate unattended and uncontrolled in a remote and

unforgiving environment. Inaccessibility greatiy complicates evaluation, diagnosis and

correction of AUV system faults. In order to ensure complete reliability, AUV

software and hardware need to be fully tested in the laboratory before operational

deployment. Such important testing requirements cannot be met using only a

standalone AUV.

Designing an AUV is also complex. Many capabilities are required for a mobile

robot to act independently. Sensing, motion control, motion planning, mission

planning, failure recovery and overall control are all essential. Interaction between

vehicle processes and the mechanics of actual implementation must also be solved.

These complex problems cannot be modeled, simulated or integrated into an

autonomous mobile robot without understanding their fundamental principles and

difficulties.

The primary problem addressed by this thesis is how to design and construct an

integrated simulator in order to completely visualize AUV performance in support of

distributed research and technical evaluation. All aspects of AUV software design and

simulation are considered. As direct examples of how integrated simulation may be

applied, in-depth analysis is also provided for the future roles of naval AUVs, sensor

analysis, path planning and real-time interaction.

B. MOTIVATION

The principal motivation driving the development of an AUV integrated

simulator is to meet the research needs of the large academic group working on the

Naval Postgraduate School (NPS) AUV. Students and professors alike have diverse

research goals that are often forced to compete for access to vehicle system software

and limited pool test time. The need to use operational software running on actual

NPS AUV hardware is a particularly important requirement. Lack of accessibility to

the NPS AUV in a distributed laboratory environment has occasionally prevented

implementing new software applications on the vehicle. Pre-mission validation of

vehicle systems response to new software has been similarly limited in scope, resulting

in several operational test failures and frustrating delays in development. Integrated

simulation is a high-level tool that enables solutions to all of these challenges.

Scientific visualization of complex interactions greatly improves our

understanding of how things work. Human beings are visually oriented. Being able

to see and control a moving picture allows us to quickly and intuitively understand

numerous process interactions. A fundamental computer science tenet first expressed

by Dr. Richard A. Hamming is that "The purpose of computing is insight, not

numbers" (Hamming 73). Integrated simulation is intended to provide insight.

The term artificial intelligence typically refers to the study of how to perform

tasks that are usually considered to require human intelligence. Numerous such

artificial intelligence tasks are required for a mobile robot to achieve autonomy.

The importance of solving artificial intelligence problems is widely recognized.

Prominent robotics researcher Hans P. Moravec states,

"...solving the day to day problems of developing a mobile organism steers one

in the direction of general intelligence, while working on the problems of a fixed

entity is more likely to result in very specialized solutions... Mobile robotics may
or may not be the fastest way to arrive at general human competence in

machines, but I believe it is one of the surest roads." (Moravec 83)

This study of integrated simulation has helped reveal valuable conclusions regarding

the artificial intelligence subjects of sensor analysis and path planning.

The NPS AUV Integrated Simulator has been designed to support complete

scientific visualization of actual NPS AUV vehicle performance. The lessons learned

while building this integrated simulator have proven that distributed research can be

effectively accomplished when proper network connections and data-passing

mechanisms are provided. The integrated simulation approach has great value and

general applicability for the rapid development of all types of mobile robots.

C. OBJECTIVES

This thesis addresses the following research questions:

• How can an integrated simulator be constructed to support pre-mission,

pseudo-mission and post-mission AUV evaluation?

• How can integrated simulation support distributed research?

• What is required to allow both local and remote mission performance analysis?

• How can a laboratory AUV microprocessor be used for preliminary AUV testing

in a distributed research environment?

• How can the numerous processes that make up NPS AUV control software

communicate with the NPS AUV graphics simulation program?

• How can inter-process communication be accomplished identically and

independently regardless of where AUV software is running?

• How can the Computer Science Department Network, Campus-Wide Network

and NPS AUV be linked together to connect the variety of processors and

operating systems that support the NPS AUV?

• How can active sonar range and bearing data be analyzed to classify sonar

contacts?

• How can a shortest path be found around circular or cylindrical obstacles?

• What real-time operating system considerations must be met in order to support

parallel operation by mutually-cooperating artificial intelligence AUV
applications interacting with a real-time environment or a near-real-time

simulation?

D. THESIS ORGANIZATION

Many components and many concepts make up an integrated simulator. Conduct

of this research led down many interesting intellectual trails. Consequently the scope

of material contained in this thesis is broad while the many individual conclusions are

detailed. Given this diversity of material, the objectives, summaries of previous work

and conclusions are included with each pertinent chapter. When appropriate, thesis

chapters have doubled as separate articles to report on results of general interest. The

five sections that have also been written for independent publication are identified

below, as are the contributing coauthors.

Chapter II describes AUV research at NPS. It was originally written as a survey

article to summarize the many facets of AUV research at NPS, as well as describe

expected future roles of naval AUVs. This chapter is an important prelude to the

thesis in that it establishes the scope of current and future AUV work that an

integrated simulator must support. This chapter appeared as an article in

Sea Technology and was cowritten with LCDR Mark A. Compton USN

(Brutzman Compton 91).

Chapter III defines and develops the concept of rapid simulation for rapid

development of AUVs. As such it is the heart of this thesis. This chapter is accepted

for presentation to the IEEE Oceanic Engineering Society Symposium on Autonomous

Underwater Vehicles 1992. Dr. Yutaka Kanayama and Dr. Michael J. Zyda are

coauthors of the corresponding article (Brutzman Kanayama Zyda 92).

Chapter IV presents design specifications that are pertinent to the specific

integrated simulator implemented for the NPS AUV. Chapter V describes specific

data network requirements for the NPS AUV Integrated Simulator. Details are

included that are based on the difficulties and successes encountered during

implementation. The technical skills and determined efforts of Mr. Russell Whalen

and Mr. Walter Landaker were instrumental in building the laboratory AUV and

connecting it to the network.

Chapter VI presents fundamental work on the effective synthesis of geometric

analysis and expert system heuristics for classifying underwater objects. This chapter

was also submitted in article form for presentation to the IEEE Oceanic Engineering

Society Conference OCEANS 92. This work was cowritten with LCDR Mark A.

Compton USN and Dr. Yutaka Kanayama (Brutzman Compton Kanayama 92).

Examples of applicability to integrated simulation are included.

Chapter VII presents fundamental work on shortest path planning using circular

obstacles. This work is based primarily on Dr. Yutaka Kanayama' s theories of

optimal robot motion. Examples of applicability to integrated simulation are included

in the chapter.

Chapter VIII describe real-time operating system considerations, all of which are

pertinent both to an operating AUV and an AUV integrated simulator. This chapter

has also been included in a NPS technical report (Badr Byrnes Brutzman Nelson 92)

and was edited by Dr. Michael L. Nelson, MAJ USAF.

Chapter DC presents NPS AUV Integrated Simulator limitations and performance

measurements. Chapter X discusses the many promising opportunities for potential

future research and follow-on work using the NPS AUV Integrated Simulator.

Chapter XI presents conclusions and recommendations.

Appendix A is a guide for NPS AUV users and software developers who are

interested in utilizing the NPS AUV Integrated Simulator. Appendix B is a synopsis

of the lengthy source code written for the graphics simulation component of the

NPS AUV Integrated Simulator.

Appendix C is the "C" Language Integrated Production System (CLIPS) expert

system source code for NPS AUV Sonar Classification System. This program

demonstrates the concepts described in Chapter VI and was cowritten with

LCDR Mark A. Compton USN.

Appendix D reproduces an as-yet-unpublished paper cowritten with Dr. Yutaka

Kanayama that provides mathematically rigorous theoretical detail on circle world

shortest path planning (Kanayama Brutzman 91). Appendix E provides source code

implementation of the circle world path planning algorithms.

Appendix F describes how NPS AUV Integrated Simulator source code may be

obtained via Internet. Graphics simulation, sonar classification and path planning

software programs are all available.

Appendix G is a videotape demonstration of pertinent thesis results. Video is

essential to portray the power and effectiveness provided by real-time graphics

simulation and scientific visualization techniques. This videotape appendix includes a

short segment on the NPS AUV presented at the IEEE Robotics and Automation

Conference 1992 (Brutzman Floyd Whalen 92). The short segment was coproduced

with CDR Charles A. Floyd USN and Mr. Russell Whalen, and benefited from the

technical advice of Dr. Michael J. Zyda and Mr. David Pratt.

H. AUV RESEARCH AT THE NAVAL POSTGRADUATE SCHOOL

Naval officers and civilian scientists at NPS are working on an AUV that is

helping change the nature of undersea warfare. Under the guidance of faculty in the

Computer Science, Mechanical Engineering and Electrical Engineering departments,

NPS students have developed and built a working AUV that can maneuver and operate

submerged and unattended. The NPS AUV is a robotic platform for basic research

and thesis work in control technology, artificial intelligence, computer visualization,

and systems integration.

A. IMPORTANCE OF AUVs IN NAVAL MISSIONS

Unmanned autonomous submersibles have many characteristics that make them

particularly attractive for employment in naval missions (Polmar 91). Vehicle

autonomy allows independent operation in changing situations without a tether or any

direct human intervention. Removing the need for a crew permits routine operation in

extremely deep, shallow, or tactically hazardous environments, and also eliminates the

requirements for large and expensive support equipment. Small size and quiet

propulsion systems result in unmatched stealth. The relatively low cost of AUVs

enables the acquisition of many units that might serve as force multipliers for each of

the Navy's warfare communities.

Many robotic vehicles are already deployed in the fleet and saw action in

Operation Desert Storm. Tomahawk cruise missiles are autonomous weapons that

inflicted heavy damage with precision accuracy (Arthur 91). Remotely piloted

vehicles (RPVs) flew with great success in reconnaissance and naval gunfire support

missions, to the extent that Iraqi soldiers initially made RPVs priority targets but later

surrendered to them (Arthur 91) (Burke 91). Remotely operated vehicles (ROVs)

controlled by minesweepers have the capability to send back live underwater video in

order to aid in the hazardous and time-consuming job of classifying and deactivating

mines (Polmar 87). Adding autonomy to unmanned vehicles dramatically increases

their independent operating range and tactical capabilities. The type of research work

being conducted at NPS is of fundamental importance in making these performance

breakthroughs possible for unmanned underwater vehicles.

B. NPS AUV DESIGN SPECIFICATION SUMMARY

The design and construction of the first NPS AUV began in 1987. NPS AUV I

was a two-foot prototype model with operational screws and gyros that was used for

the investigation of model-based maneuvering controls, including the automatic

identification of significant hydrodynamic characteristics (Healey 89). The full-scale

vehicle NPS AUV II was constructed by the students, technical staff and faculty of the

Mechanical Engineering department, and required over a year to design and build

(Good 89). This AUV was launched (complete with traditional champagne

christening!) by the Superintendent, RADM Ralph W. West, Jr. at the NPS pool on

June 15, 1990. According to Admiral West, a submarine officer,

"The AUV is one of the new technologies that will play a major role in

maintaining the effectiveness of our fleet units as the threats facing us become
more sophisticated and diverse." (West 91)

The current NPS AUV is eight feet long and neutrally buoyant, displacing 387

pounds (Figure 2.1). Its overall size and shape is comparable to a dolphin. Current

vehicle endurance is two to three hours. Maximum speed of the NPS AUV is about

two knots. The NPS AUV's turning diameter is under three body lengths, designed to

be ideal for maneuvering in the large NPS swimming pool (Figure 2.2). The low

noise level in the NPS pool allows precise testing in a controlled environment.

Specific test missions are downloaded into the NPS AUV using a poolside

laptop computer (Figure 2.3). NPS AUV posture and sonar data are recorded ten

times per second throughout each mission and then immediately uploaded afterwards

for post-mission analysis. By following mission software commands, the NPS AUV

can change course and depth without any external direction. The low speed of the

vehicle allows divers to swim nearby and safely evaluate its performance (Figure 2.4).

Figure 2.1 The NPS AUV is an eight foot long submersible

Open-ocean testing is feasible but will be reserved for a more robust follow-on

vehicle.

Initial AUV project objectives include the study of mission planning, navigation,

collision avoidance, real-time mission control and replanning, object recognition,

vehicle dynamic response and motion control, and post-mission data analysis. The

primary components of the AUV are an aluminum hull, fiberglass sonar dome, four

high-frequency directional sonar transducers, twin counter-rotating four-inch propellers,

lead-acid batteries, eight plane surfaces, and a Gespac computer running a Motorola

68030 processor with a 2MB RAM card. Four cross-body tubes have been included to

house a new type of thruster that is under development. When completed, these

thrusters will allow the AUV to control vehicle posture and maintain station in the

presence of underwater currents. Figure 2.5 shows a general schematic of the AUV.

Figure 2.2 The NPS swimming pool is an ideal test environment for the

NPS AUV

C. NPS AUV RESEARCH OBJECTIVES

The scope and missions of the AUV project are not restricted by any specific

programmatic requirements. Dr. Robert B. McGhee, Computer Science department

chairman states,

"The primary purpose of our AUV work has always been to support student

thesis and dissertation research without restrictions." (McGhee 91)

Given this climate of academic freedom, a myriad of topics are under active

investigation and are resulting in numerous advances in underwater vehicle technology.

Already over fifty theses and research papers have been published about the

NPS AUV.

The Mechanical Engineering department has primary responsibility for the

design, construction and operation of this submersible robot. Dr. Anthony J. Healey is

the Mechanical Engineering department chairman and the AUV project principal

10

Figure 2.3 Specific test missions are downloaded into the NPS AUV using

a poolside laptop computer

investigator. He has assembled a diverse group of over two dozen faculty and

students, making this project the largest group research effort at NPS. Dr. Healey

states,

"The most important aspect of the project is to involve naval officer students in

the development of control technology for future AUVs, utilizing their

considerable experience. It also educates them in the potential capabilities of

AUVs and the technical difficulties yet to be solved." (Healey 91)

Mechanical Engineering and Electrical Engineering department research is

currently investigating vehicle stability and control, modeling submerged dynamic

behavior, systems integration and guidance/autopilot design. Of immediate interest is

integrating low-power components such as ultrasonic sonars, steering and diving

controllers, guidance circuitry, Global Positioning System (GPS) receivers, and

miniaturized inertial measurement units currently used for cruise missile navigation.

11

Figure 2.4 The low speed of the NPS AUV allows divers to swim nearby

and evaluate its performance

Computer science programmers are designing the "brains" of the AUV. This

robot must be able to transit independently to the desired operating area, perform a

mission, return and report despite any unpredictable tactical situations that might

occur. Real-time mission planning and obstacle avoidance are critical aspects of these

tasks. The basic operations of the AUV resemble those found in naval ships and

aircraft. However, piloting and tactical functions normally performed by humans must

be independently handled by the AUV's on-board computer. Not surprisingly, AUV

software organization is similar to a ship's underway watch team. Navigation,

obstacle avoidance, data collection and mission execution must all occur continuously

and in real time (Healey et al. 91). Figure 2.6 is a block diagram of the AUV mission

execution software structure. Most of the functions represent tasks normally

performed by human operators on submarines.

12

RUSSELL
WHALEN

Figure 2.5 General schematic of the NPS AUV. Note the twin screws, four

sonar transducers forward, and eight plane surfaces

Real-time three-dimensional computer graphics simulation of the AUV is being

used for extensive laboratory evaluation. New hardware and software can be tested

prior to installation and operation, minimizing risk and saving time and money.

Replays of actual data recorded by the AUV can be used for visualization of remote

environments and detailed post-mission data analysis. Silicon Graphics Inc.

workstations identical to those used for special effects in movies such as

Terminator 2: Judgement Day (Myers 91) are networked together and provide massive

processing power. Because the AUV hull shape is similar to the Swimmer Delivery

Vehicle used by Navy special warfare SEAL teams, a sophisticated mathematical

model was already available for simulator use to accurately recreate vehicle dynamic

motion and response characteristics (Zyda 90). This dynamics model has been

validated by pool testing. NPS AUV graphics simulations can use actual hydrographic

13

NPS AUV SOFTWARE PROCESS DATAFLOW DIAGRAM

REFtAN
REQUEST

CHARLES A.

FLOYD

Figure 2.6 Block diagram of NPS AUV mission execution software

structure

sounding data from Monterey Bay provided by the U.S. Geological Survey to show

the detailed level of display and analysis possible (Figure 2.7) (Jurewicz 91).

Display of sonar beams and the sonar environment can also assist operators in

evaluating AUV performance (Figure 2.8). Multiple simulation features can be

combined in an integrated simulator. Complete visualization of the ocean environment

and AUV system response permits sonar data post-mission analysis, precise

hydrodynamics modeling and extensive software testing to be performed in real time.

Artificial intelligence techniques allow a robot to perform tasks normally

requiring human intelligence. Many artificial intelligence methods are being

developed for the AUV. Path planning and spatial reasoning are used to determine

how to avoid obstacles and optimally travel from one location to another. Mission

planning enables the AUV to execute an ordered mission, while mission replanning

14

Figure 2.7 A graphics simulator depicting the NPS AUV in Monterey Bay

Figure 2.8 Graphics simulation for NPS AUV sonar visualization

flexibly adjusts to changing tactical situations, such as detection of an unexpected

obstacle or appearance of a hostile submarine. Search techniques can be used to map

15

minefields. Expert systems can process sonar data and perform object recognition and

classification. Neural networks can be used for fault diagnosis and mechanical system

control.

Systems integration is obviously a key factor in the construction of a vehicle

with so many different components. There are a large number of hardware and

software systems that mutually depend upon each other for successful operation.

Similarly, there are a large number of people working on new designs in each of these

areas. The requirement to build a robust and independent system means that

reliability, redundancy and interoperability must be thoroughly considered during each

phase of design and construction.

D. THE FUTURE OF NAVAL AUVs

Potential AUV military applications are limited only by the imagination. Mine

detection and minefield mapping might be completely performed by single or multiple

AUVs in direct support of an independent submarine or surface ship. Multiple AUVs

could quickly clear transit lanes for fleet deployment or amphibious assault. Dropping

an AUV from an aircraft could be a quick way to initiate harbor or choke point

surveillance, positioning the AUV to act as a "bell ringer" to warn when hostile ships

get underway. AUVs have the ability to conduct bottom search in any sea state

without requiring a controlling vessel to remain on station. This capability would keep

critical operations such as high-value object searches or amphibious landing

preparations in progress despite difficult weather conditions. Round-trip or one-way

delivery of underwater sensors and weapons becomes much less hazardous. An AUV

configured as an artificial target would be an intelligent and realistic adversary during

antisubmarine warfare exercises. Software control of autonomous vehicles permits

relatively rapid and inexpensive upgrades to quickly adapt to changing enemy

capabilities and new mission requirements. Finally, the low radiated noise and small

active sonar return of an AUV should result in unmatched stealth, possibly leading to

new fleet missions that are not currently feasible.

16

Much exciting work is in store for future AUV research and development.

Video camera recording, real-time vision processing and automatic image

interpretation are possible. Green laser (543 nanometer) range-finding is already

operational on the Monterey Bay Aquarium Research Institute ROV Ventana

(Davis 91). High energy-density power sources require continued development in

order to take full advantage of AUV capabilities. High performance sonar

modifications are being investigated to match AUV space and mission requirements.

Modular connections for robot arm manipulators, replaceable packages and deliverable

payloads need to be designed for flexible support of all potential mission requirements.

Improved computer architectures such as parallel processing transputers will allow

simultaneous accomplishment of many tasks in real time, as well as extend the

autonomy and artificial intelligence capabilities of these vehicles. High-bandwidth

acoustic modems can be used for rapid remote communications with an operating

AUV. Battle group commanders should have the ability to receive remote sensor

reports via radio uplinks from AUVs on station and send mission commands in return.

Intelligent mobile robots will be performing many missions for the U.S. Navy in

the near future. Their employment as extensions of our ships, submarines and aircraft

will become commonplace. The imaginations, technical prowess and operational

experience of officers and faculty at NPS are making this future a reality.

In undersea warfare, silence and nondetectability are the most important factors

in achieving stealth and tactical advantage. The military significance of autonomous

underwater vehicles was emphasized during a recent visit to NPS by a Soviet naval

delegation. A small group of senior Soviet officers was shown the NPS AUV. The

group looked and listened politely. The Soviet admiral asked only one question: "Is

it quiet?"

Indeed it is.

17

in. INTEGRATED SIMULATION FOR RAPID AUV DEVELOPMENT

A. ABSTRACT

The development and testing of Autonomous Underwater Vehicle (AUV)

hardware and software is greatly complicated by vehicle inaccessibility during

operation. Integrated simulation remotely links vehicle components and support

equipment with graphics simulation workstations, allowing complete real-time,

pre-mission, pseudo-mission and post-mission visualization and analysis in the lab

environment. Integrated simulator testing of AUV software and hardware is a broad

and versatile method that supports rapid diagnosis and robust correction of system

faults.

Pre-mission simulator AUV testing permits experimental evaluation of

developmental software. Pseudo-mission simulator testing of AUV processes employs

an identical laboratory microprocessor or remote communication with a

testbench-mounted operating AUV, permitting end-to-end testing of all software and

hardware. Post-mission simulator playback of recorded telemetry, sensor data and

system state transitions supports in-depth reenactment, playback and analysis of

in-water operational results.

High-resolution three-dimensional graphics workstations can provide real-time

representations of vehicle dynamics, control system behavior, mission execution, sonar

processing and object classification. Use of well-defined, user-readable mission log

files as the data transfer mechanism allows consistent and repeatable simulation of all

AUV operations. Examples of integrated simulation are provided using the Naval

Postgraduate School (NPS) AUV, an eight foot, 387-pound untethered robot submarine

designed for research in adaptive control, mission planning, mission execution, and

post-mission data analysis.

The flexibility, connectivity and versatility provided by this approach enables

sophisticated visualization and analysis of all aspects of AUV development. Integrated

18

simulator networking is recommended as a fundamental requirement for

comprehensive and rapid AUV research and development.

B. INTRODUCTION

1. Problem Statement

Designing, building and testing an Autonomous Underwater Vehicle (AUV)

is difficult Unlike most other mobile robots, AUVs must operate unattended and

uncontrolled in a remote and unforgiving environment. Inaccessibility greatly

complicates evaluation, diagnosis and correction of AUV system faults. In order to

ensure complete reliability, AUV software and hardware need to be fully tested in the

laboratory before operational deployment. Such important testing requirements cannot

be met using only a standalone AUV.

2. Motivation

The principal motivation driving the development of an AUV integrated

simulator is to meet the research needs of the large academic group working on the

Naval Postgraduate School (NPS) AUV. Students and professors have diverse

research goals that are often forced to compete for access to vehicle system software

and limited pool test time. The need to use operational software running on actual

NPS AUV hardware is a particularly important requirement. Lack of accessibility to

the NPS AUV in a distributed laboratory environment has occasionally prevented

porting new software applications into the vehicle. Pre-mission validation of vehicle

systems response to new software has been similarly limited in scope, resulting in

several operational test failures and frustrating delays in development.

The integrated simulation approach has great value and general

applicability. The NPS AUV Integrated Simulator has been designed to support

complete scientific visualization of actual NPS AUV vehicle performance. The

lessons learned while building this integrated simulator have proven that distributed

research can be effectively accomplished when proper network connections and

data-passing mechanisms are provided.

19

3. Definition and Objectives of Integrated Simulation

Integrated simulation is defined as the effective networking of a

three-dimensional graphical simulation workstation with an AUV microprocessor,

appropriate support equipment and all software development workstations. Integrated

simulation allows coordinated utilization of computer resources for maximum realism

and effectiveness. The purpose of this paper is to demonstrate the use of integrated

simulation as an essential approach for rapidly designing, developing and evaluating

AUVs.

An AUV integrated simulator remotely links vehicle components and

support equipment with graphics simulation workstations. Networking allows

complete pre-mission, pseudo-mission and post-mission visualization and analysis in a

real-time lab environment. Complete integrated simulator testing of software and

hardware supports prompt diagnosis and robust correction of system faults. Figure 3.1

shows connectivity for a sample AUV integrated simulator network and primary

components.

Pre-mission simulator testing of AUV software permits experimentation and

preliminary evaluation of developmental software. Pseudo-mission testing using an

identical laboratory microprocessor or remote communication with an actual AUV

permits end-to-end testing of all AUV software and hardware. Post-mission simulator

playback of recorded telemetry, sonar sensor data and system state transitions supports

in-depth reenactment, playback and analysis of actual operational results.

4. Previous Work

Several graphics simulators have been previously developed at NPS to

support AUV research. These simulators all operate on Silicon Graphics Inc. Iris

graphics workstations. Seow Meng Ong developed a simulator that remotely networks

an Iris workstation with a Symbolics Inc. Lisp machine for real-time communication

by mission planning and path planning software (Ong 90) (Zyda 90). CDR Thomas

A. Jurewicz USN developed a real-time NPS AUV simulator that featured a complete

hydrodynamics model and bathymetric survey terrain data of Monterey Bay

20

remote

hosts

external

network

gateway

3
L-|—

|
AUV INTEGRATED

graphics

g a| .3 gT
tATED SIMULATOR DATA NETWORK

| ^BHfft

AUV
H processor

(post-mission]

propellers

surfaces

thrusters

sonar pings

navigation

speed, gyros.

Telemetry

replay files

1
High-level

object files

LAB AUV
Hprocessor jgBgk

self monitor

Kl
3f

u u

/ AUV hydrodynamic response

sonar outputs
is produced by vehicle thrust

V and drag through the water.
sonar returns

Figure 3.1 Integrated simulator network physical connectivity

(Jurewicz 91) (Zyda 91). CDR Charles A. Floyd USN extended the Jurewicz

simulator to demonstrate sonar detection and collision avoidance software (Floyd 91)

(Floyd Kanayama Magrino 91). MAJ Ronald B. Byrnes USA and LCDR David L.

MacPherson USN utilized the network capabilities of the Ong simulator to visually

compare hierarchical and subsumption software architectures for AUV control

(Byrnes 92).

Other less complex simulation methods have also been used for NPS AUV

development. Most NPS AUV control system theses have analyzed vehicle

performance parameters individually using mathematics support packages such as

MATLAB (Mathworks 89), forcing researchers to visually correlate numerous

two-dimensional plots of telemetry data in order to interpret test results.

Other underwater vehicle projects have also used offline graphics

simulation as a design tool. As an example, C.S. Draper Laboratories has a large and

sophisticated simulator that supports the development of the Defense Advanced

21

Research Projects Agency (DARPA) Unmanned Underwater Vehicle (UUV). This

simulator employs sophisticated computer models of hydrodynamic characteristics and

individual physical component responses. Mission software is loaded on a separate

mainframe to emulate vehicle multiprocessor response. The simulator does not

incorporate actual DARPA UUV multiprocessor hardware or allow direct playback of

UUV system and sensor data collected in the water. However the many capabilities of

this powerful support simulator have significantly contributed to the reliability of the

DARPA UUV, allowing successful and rapid progress along an ambitious development

schedule (Pappas 91) (Hale 91).

All of these simulation approaches successfully demonstrate the concepts

they are intended to evaluate. However, none of these simulators were designed to

use actual vehicle hardware or to provide general extendability to support every aspect

of AUV research.

C. AUV DESIGN AND DEVELOPMENT CONSIDERATIONS

AUVs are complex systems. A number of design and employment criteria

unique to AUVs must be considered when determining integrated simulator

specifications.

1. AUV Inaccessibility During Operation

The development and testing of AUV hardware and software is greatly

complicated by vehicle inaccessibility during operation. AUVs are designed to operate

with complete independence in an environment that makes communication and

monitoring difficult. Vehicle independence design constraints leave operators unable

to monitor performance, diagnose problems or override failures. This inaccessibility is

perhaps the biggest liability inherent in AUV testing since it can easily lead to

catastrophic failure and vehicle loss. Even when supervisory control is possible

through use of a tether or underwater communications, underwater vehicle systems

must be robust enough to recover and return in the event of system failures combined

with communication loss. Integrated simulation can fully test fault tolerance and

22

emergency recovery procedures of an AUV prior to risking loss of communications

during independent operation.

2. Reliability is Paramount

Loss of an AUV due to internal failure or inability to cope with an

unpredictable environment is unacceptable due to the current high cost of AUV

construction and support. Furthermore if an AUV is employed in military missions

such as submarine support or minefield search, human lives and operational success

may depend on complete vehicle reliability. Thus the principal requirement for any

AUV is that the vehicle operates dependably in all possible scenarios and under all

possible failure conditions. Pre-mission verification of proper AUV performance using

an integrated simulator is the only way to ensure complete vehicle integrity and verify

strict reliability requirements for all software and hardware components.

3. Wide Variety of Software Process Types

The highly complex behaviors expected of AUVs are only possible when

numerous software modules are written to handle functions such as path planning,

sonar interpretation, mission control etc. Such software programs can be considered

artificial intelligence (AI) applications in that human intelligence might otherwise be

required to perform these challenging tasks. It is important that these high-level

software modules are able to fully interact with each other for proper execution and

evaluation. However such interaction is difficult when the researchers developing

software are distributed over a network. Integrated simulation provides full

connectivity between research software modules and the AUV microprocessor.

Integrated simulation also provides data-passing mechanisms that permit interprocess

communication regardless of the various host operating systems or programming

languages used.

23

D. INTEGRATED SIMULATOR SOFTWARE ARCHITECTURE

1. Software Engineering Considerations

Proper design of an AUV integrated simulator addresses many requirements

including repeatability, flexibility, cost-effectiveness, portability, maintainability, future

growth potential and ability to upgrade. These goals can be met by following

fundamental software engineering principles such as clearly defining software module

specifications and functional descriptions. Formally defined data dictionary entries,

data structures and spatial coordinate systems are also important. Specifications must

be flexible enough to support future improvements and comprehensible enough to be

rigorously followed. Frequent and thorough communication and cooperation among

project members is important in order to establish formal project standards and ensure

long-term success.

2. Integrated Simulator Software Architecture Requirements

Integrated simulator software must perform a large number of tasks. The

AUV must be modeled using some simulated components (e.g. control surfaces,

propellers, gyrocompass) together with actual running AUV mission software. Vehicle

physical motion and behavior can be provided by the state equations of a dynamic

response model. The world model needs to include stationary obstacles, mobile

objects and the sensor interactions expected to occur as the vehicle probes the external

environment model. Developmental AUV processes that have not yet been ported into

the vehicle mission software need to have some way of interfacing with both the AUV

microprocessor and the simulation. Operating system and programming language

incompatibilities should not be an impediment to AUV software developers. Finally

and most importantly, a powerful graphics workstation must render an external view of

the simulated world in three dimensions with full functionality and real-time response.

3. Simulated and Actual Components

Maximum simulation realism is provided when actual AUV components are

tested end-to-end in the laboratory. For example, an AUV might be fixed in place on

24

blocks in a test tank while a test mission was conducted. Proper activation of sonar,

rudders, diving planes and propellers would provide positive indications of correct

performance. It is interesting to note that networking a test-tank AUV to a graphical

simulator can give evaluators real-time insight into what the vehicle "thinks" it is

doing. However, if a laboratory AUV microprocessor is used instead of the actual

vehicle, the missing vehicle physical components must be separately simulated. Such

simulation is accomplished by modular substitution of mathematical models for the

missing physical components. A particular benefit of this approach is that

AUV software testing is freed from direct interaction with the actual AUV, since the

vehicle might be operating, undergoing repairs or otherwise inaccessible. The logical

relationships between AUV, simulator, laboratory development network and real-world

environment are shown in Figures 3.2 and 3.3.

remote

hosts

external

network gL ag_a
«ateway '

—
%

—

I

AUV INTEGRATED SIMULATOR DATA NETWORK

AUV
(iprocessor ^

OSt-missio

^ Telemetry
"^ replay files

,...^X
propellers

surfaces

thrusters

sonar pings

M

navigation

speed, gyros;

High-level

object files

graphics

workstation

n&
LAB AUV
[iprocessor

self monitor

«& zn
TJ

sonar outputs

sonar returns

AUV hydrodynamic response

is produced by vehicle thrust

and drag through the water.

Figure 3.2 Integrated simulator logical connectivity using actual AUV

25

remote

hosts

external

network
gateway

graphics

workstation

^ATED SIMULATOR DATA NETWORK] ~jgBVx
L-^—

|
AUV INTEGRATED SIMULATOR DATA NETWORK

AUV
(iprocessor

«&«§*>

Telemetry

replay files>
LAB AUV

High-level

object files

o
propellers

surfaces

thrusters

sonar pings

navigation

speed, gyros.

self monitor

Simulation world models: navigation,

environment, hydrodynamics, sonar,

vehicle hardware and self monitor

Figure 3.3 Integrated simulator logical connectivity using laboratory AUV

4. Data Transfer Mechanisms

Data transfer mechanisms are a critical component of interprocess

communication. Two file types and two data transfer mechanisms are considered:

telemetry replay files, high-level object files, remote file transfer and stream sockets.

In order to portray and replay AUV behavior, telemetry recorded by the

vehicle must be readable by the integrated simulator. Typically such data includes

vehicle position, vehicle orientation, linear and rotational velocities or accelerations,

sensor data and vehicle state information, all repeated at a high data rate. Telemetry

replay files can be saved by an AUV for post-mission upload or transmitted during

operation. These files can also be read (with effort) by human operators, or ported as

input to mathematics support packages for selective analysis of system parameters.

However, Figure 3.4 illustrates the difficulty in portraying

three-dimensional AUV track data using two-dimensional time-versus-z and x-versus-y

plots (Compton 92).

26

3?<^±4
'

! I
I

\^ ^^^t^ '^ f o

Figure 3.4 Three-dimensional AUV track evaluation is difficult when using

multiple two-dimensional plots

Use of well-defined and consistent telemetry replay files allows repeatable

simulation of all AUV missions. Telemetry replay files are also a convenient method

for new mission software to record primary aspects of AUV behavior during

standalone testing for later visualization on the integrated simulator. Figure 3.5 shows

an example telemetry replay file format.

27

<time> ; telemetry data point time

<x> <y> <z> ; vehicle estimate of position

<())> <8> <\j/> ; measured 3D orientation

<p> <q> <r> ; navigation system velocities

<A dive> <A rudder> ; plane surface positions

<rpm> <log speed> ; ordered and measured speed

<sensor data fields> ; all possible sensor returns

<wildcard> ; extra slot for mission-dependent use

Figure 3.5 Example telemetry replay file format

High-level object files allow communication of symbolic data such as

position of objects, object classification, operator instructions and interprocess

commands. Keeping such data in plain text makes them readable by human operators,

individual AUV software processes and the integrated simulator. Optional time

parameters on each command line allow high-level object files to supplement

telemetry replay files for synchronized real-time playback. This combination of

telemetry replay files and high-level object files allows simple and effective

communication of all possible types of AUV information. An example high-level

object file format is shown in Figure 3.6.

File transfer is the fastest and easiest way to record and communicate large

amounts of data over a distributed research network. An integrated simulator network

must be able to transfer telemetry replay and high-level object files between all

network nodes.

Once a file transfer capability has been established, stream sockets can be

implemented if transfer of individual data packets is desired (Barrow 88). Stream

sockets can connect all processors on an integrated simulator network, allowing direct

interprocess communication, near real-time data transfer and better evaluation of

multiple process interaction.

28

Environment "worldfilename" ; change default world file

AUV <x> <y> <z> ; AUV initial position

Point <x> <y> <z> ; Point position coordinates

Segment <xl> <yl> <zl> <x2> <y2> <z2> ; endpoint coordinates

Wall <xl> <yl> <zl> <x2> <y2> <z2> ; opposite corners

Cylinder <x> <y> <z> <r> <h>

Mine <x> <y> <z> <scale> [time <t>] ; time optional

Ship <x> <y> <z> <scale> [time <t>]

Object "filename" <x> <y> <z> [time <t>]

Message [time <t>] ... free format text here ...

; messages can be mission log outputs or interprocess communication

Figure 3.6 Example high-level object file format

5. Distributed Artificial Intelligence Considerations

A large number of interrelated AI software processes are required for an

AUV to competently perform the many behaviors required of an independent

submersible. In order to keep up with demanding mission requirements, these

processes must be capable of performing in real time and in parallel. Similar real-time

and parallel processing support will be necessary for a graphics workstation to provide

correspondingly realistic playback and interaction.

Interprocess communication and real-time process interaction are usually

difficult to implement, especially if multiple user, multiple programming language or

multiple operating system botdenecks exist. The data transfer mechanisms described

previously permit complete interaction among dissimilar distributed AI applications,

regardless of whether these applications are internal or external to the AUV. This

straightforward approach allows complete user and simulator accessibility to

intermediate process outputs.

29

E. THREE-DIMENSIONAL GRAPHICS SIMULATION

High-resolution three-dimensional graphics workstations provide realistic

representations of vehicle dynamics, control system behavior, mission execution, sonar

processing and object classification.

1. Realistic Object Rendering and Real-Time Motion

The primary graphics requirement for an integrated simulator is realistic

rendering and movement of virtual objects in real time. This capability is essential for

visualizing an AUV's interaction with an underwater world in order to fully evaluate

the proper operation of complex AUV software and hardware. Numerous graphics

techniques can be used to provide a believable graphics display, ranging from drawing

simple polygons to overlaying complex textures. Realistic portrayal of all objects in

an underwater world allows intuitive and thorough analysis of large amounts of AUV

data.

Maintaining a real-time playback capability is important for realistically

rendering AUV interaction with physical objects. The graphics simulator program

must be able to quickly refresh complex screens in order to visually present large

amounts of data. Local empirical studies show that a 6 Hz screen update rate and

input device response loop are the minimum requirements for simulator screen motion

to appear smooth and realistic during operator interaction. Frame rates of 20-30 Hz

may be needed for realistic illusion of rapid motion (Brooks 88). Speed can be

increased and graphics pipeline loading reduced through simplified object geometry,

simplification of lighting models, simulator source code optimization and graphics

performance tuning techniques.

2. Physical Modeling

All AUV-related physical processes can be mathematically modeled with a

high degree of accuracy. Vehicle physical response can be predicted using state

equations, positional constraints, inverse kinematics and dynamics (Jurewicz 90)

(Thalmann 90) (Badler 91). Sonar acoustic behavior can be modeled with increasingly

complex levels of detail in order to meet both realism and system playback

30

requirements (Etter 91). Individual AUV hardware components can be simulated

using control system models of transient and steady-state response. Object motion is

adequately modeled using simple kinematics. Object positions can be easily updated

whenever more recent correlated sonar data becomes available. In general, physical

modeling is less processor-intensive than graphics rendering and adds no apparent

overhead to graphics workstation response when properly parallelized (Jurewicz 90)

(Zyda 91).

3. Sonar and Sensor Visualization

Sonar data is often difficult to visualize since acoustic beam and ray path

behavior is very different from our vision-based perceptual expectations. Sonar

remains the primary sensor used for intermediate and long range underwater detection.

Sonar can also be quite effective when used for short range detection, object feature

extraction or measurement of object characteristics such as doppler or frequency

response. Color graphics visualization can portray the real-time behavior of sonar

beams in three dimensions, allowing AUV designers to troubleshoot complex

problems, optimize vehicle sensor performance and better understand how an AUV is

interacting with the environment (Brutzman Compton 92) (Brutzman 92)

(Compton 91). Other types of sensors such as laser rangefinders can also be

displayed. Sensor visualization capabilities are valuable features for an integrated

simulator.

F. INTEGRATED SIMULATOR HARDWARE ARCHITECTURE

1. Workstation Compatibility

There are surprisingly few hardware constraints on the individual

workstations making up the distributed network portion of an integrated simulator. A

variety of normally incompatible operating systems and programming environments

may be used as long as network connections provide a open data transfer path. Even

application source code may be in a language foreign to the AUV. For example, a

high-level language (e.g. Lisp, CLIPS or Prolog) may be used for rapid prototyping

31

and initial development. Testing is then accomplished using interprocess

communication and real-time data transfer of high-level object file information with

the AUV. After initial process testing is complete, working high-level language code

can be translated and ported into the native language of the AUV (e.g. ANSI C). This

open architecture approach allows great flexibility and maximum use of available

resources.

2. External Network Connectivity

Fully networked connections between all major support components of the

AUV is essential to provide a responsive research environment. Additional external

network connections will further extend AUV integrated simulator capabilities. For

example, laboratory data transfers over a wide-area network or Internet allow joint

AUV research over long distances. For another example, actual telemetry replay files

can be transferred from a moored AUV via modem or radio link for immediate remote

replay, analysis and verification. Such capabilities are particularly important when an

AUV is deployed at great distances from support laboratories and immediate analysis

of collected information is necessary.

G. IMPLEMENTATION, EVALUATION AND EXPERIMENTAL RESULTS

An integrated simulator has been implemented for the NPS AUV (Brutzman 92).

This section describes the primary components and key features of the NPS AUV

Integrated Simulator.

1. NPS AUV Vehicle Description and Sonar Characteristics

Naval officers and civilian scientists at NPS are conducting active research

using an AUV designed and constructed at the school. The NPS AUV is used for

basic research and thesis work in control systems technology, artificial intelligence,

scientific visualization and systems integration. Specific NPS AUV project objectives

include the study of mission planning, navigation, collision avoidance, real-time

mission control, replanning, object recognition, vehicle dynamic motion control, and

post-mission data analysis (Healey 91) (Brutzman Compton 91).

32

The NPS AUV is eight feet long and neutrally buoyant, displacing 387

pounds with overall size and shape comparable to a small dolphin. Current vehicle

endurance is two to three hours. Maximum speed of the NPS AUV is about two

knots. The NPS AUV turning diameter is under three body lengths, designed to be

ideal for maneuvering in the large NPS swimming pool. The NPS pool allows precise

testing in a quiet, controlled environment Open-ocean testing is feasible but is being

reserved for a more robust follow-on vehicle. Video clips showing normal NPS AUV

operation are available in (Brutzman, Floyd, Whalen 92) and (Brutzman 92).

The primary components of the NPS AUV are an aluminum hull, fiberglass

sonar dome, four high-frequency directional sonar transducers, twin counter-rotating

four-inch propellers, lead-acid batteries, eight plane surfaces, and a Gespac computer

running a Motorola 68030 processor with a 2 MB RAM card under the OS-9 operating

system. Figure 3.7 shows a general schematic of the NPS AUV.

Four PSA-900 Programmable Sonar Altimeters made by Datasonics Inc. are

orthogonally fixed in the nose of the NPS AUV pointing directly ahead, downward

and to port and starboard. These transducers are fixed frequency and ultrasonic, each

at approximately 200 Khz. Sonar range gate is selectable at 30 m or 300 m, and pulse

length is 350 (is. Normal pulse repetition rate is 10 Hz. Sonar beamwidth is seven

degrees and range resolution is 1 cm at 30 m.

2. NPS AUV Integrated Simulator

The NPS AUV Integrated Simulator has been developed to support

NPS AUV research and demonstrate each of the concepts described in this paper

(Brutzman 92).

High-level NPS AUV software processes are initially developed and tested

on the Unix-based computer science department network. These processes can now be

ported, compiled, linked and loaded on a Gespac VME-bus 68020 or 68030

microprocessor running under the OS-9 operating system. Gespac microprocessors are

used both on the NPS AUV and on a separate networked laboratory AUV. The

laboratory AUV includes 68020 microprocessor and I/O cards, a monitor terminal,

33

I . SONAR TRANSDUCERS
2. PADDLE WHEEL SPEED SENSOR

3. FORWARD RUDDER (2)
4. DEPTH CELL TRANSDUCER
TBRUSTER MOTOR

S. BOW PLANE (2)
7. BATTERIES

8. RATE CYROSCOPBS (ROLL, PITCH, AND YAW RATES
9. VERTICAL GYROSCOPES (ROLL AND PITCH ANGLES)

. PROPELLER SHAFT MOTOR
11. STERN PLANE (2)

12. TOOTHED WHEEL RPM SENSOR
13. PROPELLER

14. REAR RUDDER (2)
IS. DIRECTIONAL GYROSCOPE

16. FILTER CARDS FOR CONTROL SURrACB SERVOS AND
GYROSCOPES

17. fUSE, POWER SWITCH, BATTERY CHARGING, AND
COMPUTER COMMUNICATION* PANEL

IB. ACCESS HATCH
19. MICROCOMPUTER ANO ANALOG TO DIGITAL/DIGITAL

TO ANALOG CARDS
20. THRUSTER PROPELLER

21. THRUSTER TUBE
22. THRUSTER HOUSING

. CONTROL SURFACE SERVOMOTOR (8)

DAVID MARKO

Figure 3.7 General schematic of NPS AUV to scale

Ethernet network connections and a networked IBM-compatible support PC that

includes an OS-9 "C" language cross-compiler. The laboratory AUV also has

additional hardware card slots in order to test new hardware components and new

vehicle software.

Graphics simulation using the NPS AUV Integrated Simulator is just

beginning to be used for laboratory evaluation of software that will run in the AUV

34

proper. New hardware and software can be rapidly tested prior to installation and

operation in the NPS AUV, minimizing vehicle risk while saving time and money.

Replays of actual data recorded by the NPS AUV can be used for visualization of

remote environments and detailed post-mission data analysis. Connection of software

development workstations with the NPS AUV Integrated Simulator accelerates the

operational deployment of high-level mission software.

The NPS AUV Integrated Simulator control panel has been written using

NPS Panel Designer software, making it quickly modifiable and extendable

(King Prevatt 91). The graphic simulator user interface permits precise control of

viewpoint and reference point, lighting and rendering functions, object positions,

real-time mode, high-level object file recall, individual object control and playback of

telemetry replay files. The NPS AUV Integrated Simulator control panel is shown in

Figure 3.8.

Figure 3.8 Control panel for the NPS AUV Integrated Simulator

Because the AUV hull shape is similar to the original Swimmer Delivery

Vehicle used by U.S. Navy SEAL teams, a sophisticated mathematical model is

already available for simulator use to accurately recreate vehicle dynamic motion and

response characteristics (Jurewicz 90). The hydrodynamics model state equations

contain approximately 120 coefficients that continue to be improved and verified by

pool testing and ongoing thesis work.

In order to display a variety of sonar data, multiple objects can be displayed

on the graphics workstation. Implemented object primitives include AUV, point, line,

wall, mine and cylinder. These objects can be graphically displayed simultaneously

35

with original telemetry replay data in order to analytically visualize the validity and

usefulness of various sonar classification techniques. Objects can be independently

manipulated and positioned. An optional time slot for each object allows them to

appear only when appropriate during synchronized playback of telemetry files.

Additional advanced graphics techniques can quickly be added to the baseline graphics

simulation program.

3. Silicon Graphics IRIS Workstation Capabilities

The NPS AUV Integrated Simulator uses a Silicon Graphics Inc.

Iris 4D/240VGX. This graphics workstation has 48 bit color, 24 bit Z-buffering and

four parallel 25 Mhz 20 MIPS processors that together can process 1 M vectors, 1.1 M
triangles or 180 K polygons per second (Gorey 91). Other slower IRIS workstations

are also available for use, including a remote workstation in the Mechanical

Engineering Department adjacent to the NPS AUV support laboratory. All graphics

workstations are connected by local or wide area networks. Real-time playback of

telemetry data is automatically adjusted to take maximum advantage of the current

graphics workstation processing power, producing realistic screen displays regardless

of which model graphics workstation is used.

4. Laboratory AUV Simulation

A primary objective of integrated simulation is to run operational software

on a laboratory version of the AUV microprocessor. The NPS AUV Integrated

Simulator includes an identical Gespac computer running a Motorola 68030 under the

OS-9 operating system. Added to this computer are interface cards for a

VT220 monitor and keyboard for external control, serial connection to a PC, and

Ethernet connection to the NPS computer science department network. Full

connectivity is thus provided to all developmental workstations of interest as well as

the Campus Wide Network and Internet. Since OS-9 is a multiprocess real-time

system, multiple users can access the Gespac AUV microprocessor simultaneously.

Unmodified operational NPS AUV software is able to run successfully on

the laboratory AUV microprocessor, and telemetry data files are properly saved during

36

each run. Telemetry data files have been successfully transferred over the network

and played back on the Iris graphics workstation. Although missing NPS AUV

hardware such as sonar and plane surface response has not yet been simulated,

successful visualization of the laboratory test runs has proven the feasibility of the

integrated simulation approach. Functional AUV software and hardware is now

directly available to all NPS AUV researchers for experimentation and evaluation prior

to in-water testing.

H. ADDITIONAL APPLICATIONS

Several applications were implemented concurrently with the NPS AUV

Integrated Simulator that successfully demonstrate the usefulness of integrated

simulation in support of high-level AUV-related AI research.

1. Sonar Classification Application

The NPS AUV Sonar Classification System uses outputs from simple active

sonars to classify detected underwater objects (Brutzman Compton Kanayama 92)

(Brutzman 92). Figure 3.9 shows sample sonar classifications in the NPS pool

displayed using the NPS AUV Integrated Simulator. Scientific visualization

techniques permitted rapid and precise development of geometric analysis techniques

and classification heuristics, resulting in successful completion of the NPS AUV Sonar

Classification System.

37

Figure 3.9 Integrated simulator screen display of the NPS pool, AUV track

and all active sonar classifications

2. Circle World Path Planning Application

Optimal path planning is an important area of AUV research. Displaying

and viewing paths and obstacles without restrictions allows the algorithm designer to

evaluate his results in the most comprehensive and challenging manner possible.

Additionally, subtle difficulties that might be obscured by two-dimensional projections

are clearer and easier to evaluate when shown in three-dimensions. A circle world

path planner has been developed that finds shortest paths around circular or cylindrical

obstacles (Brutzman 92). Figure 3.10 shows how shortest path planning results can be

portrayed in three dimensions using the NPS AUV Integrated Simulator.

Figure 3.10 Integrated simulator three-dimensional representation of circle

world obstacles and shortest path in the NPS pool

38

3. Minefield Search Application

Another application benefiting from integrated simulation is an AUV

minefield search planner (Compton 92). A three-dimensional open-ocean minefield

model is optimally searched and mapped using a dynamic search strategy. AUV

search track and vehicle posture are recorded in a simplified telemetry replay file,

while waypoint objectives and detected mines are recorded in a separate high-level

object file. Synchronized playback of these files allows complete visualization of the

complex path taken by the AUV as well as the numerous objects detected, shown in

Figure 3.11. Note that vehicle track is much easier to visualize than in Figure 3.4,

particularly since the simulator user's viewpoint can be panned over and around the

track data.

Figure 3.11 Integrated simulation display of AUV minefield search

I. ADDITIONAL APPLICABILITY, LIMITATIONS AND FUTURE WORK

1. Comparison of Theoretical and Empirical Data

Three-dimensional visualization techniques are well suited for making

meaningful comparisons between large abstract data sets. Such comparisons can

significantly aid the operator in evaluating small errors in mathematical models or

system control software. For example, predicted vehicle track for a given control

39

systems algorithm could be spatially superimposed over actual test track data.

Coefficients in the prediction model can then be incrementally adjusted until

theoretical behavior matches actual performance. A similar visualization approach was

used with great success while determining precise heuristics for object classification

using recorded active sonar data (Brutzman Compton Kanayama 92) (Brutzman 92).

Direct comparison of theoretical and empirical data is a powerful diagnostic tool that

can be used to improve theoretical formulations as well as vehicle implementations.

2. Limitations to Integrated Simulation

The primary limitation on integrated simulation realism is graphics

workstation speed and capability. Many graphics workstations can generate

photorealistic images but are unable to rapidly reproduce a series of images in real

time. The competing requirements between rendering accuracy and adequate frame

rate will always require design tradeoffs by the graphics programmer. Silicon

Graphics Inc. workstations use the GL Graphics Library, which is a good graphics

programming choice due to the numerous graphics techniques provided, code

optimization, portability to other platforms and open licensing availability. Graphics

workstation capabilities are probably the most critical consideration in integrated

simulator design.

The local area network (LAN) used to connect integrated simulator nodes

should be reliable, have adequate throughput and allow addition or removal of nodes

with little difficulty. Ethernet-based LANs are adequate for NPS AUV Integrated

Simulator requirements and also provide gateway connectivity to Internet. It should be

noted that under most network protocols socket stream packet delivery order is not

guaranteed and timing of packet delivery is somewhat unpredictable. Processes that

use socket stream data should be flexible and not tied to hard real-time requirements.

Computer security is a consideration if sensor data or mission software is

proprietary or classified. The use of plain text for telemetry replay files and high-level

object files permits the use of encryption protocols during transfer. Encrypting files is

a simple technique that imposes minimal processing overhead. Individual nodes on

40

the integrated simulator network will require standard security precautions against

unauthorized remote access.

3. Future Use of Integrated Simulation

Integrated simulation provides development benefits to all types of remote

vehicles, regardless of whether a communications tether is present or remote control

by human operators is required. Integrated simulation not only solves a number of the

problems that degrade robot implementation, but also provides tools to work on

practical system engineering and integration problems that previously were too

difficult to address. The authors hope that widespread incorporation of integrated

simulation techniques will improve the accessibility, intelligibility and progress rate of

mobile robot research.

J. CONCLUSIONS

Integrated simulation allows all AUV systems to be tested in a timely and

complete manner. The flexibility and connectivity provided by this approach enables

sophisticated visualization and complete analysis of all aspects of AUV development.

Integrated simulator networking is recommended as a fundamental requirement for

comprehensive and rapid AUV research and development.

41

IV. NPS AUV INTEGRATED SIMULATOR DESIGN SPECIFICATIONS

This chapter provides details about design specifications particular to the

NPS AUV and the NPS AUV Integrated Simulator. Specifications must include both

vehicle and integrated simulator requirements for compatibility. Users and

programmers need to comply with or formally improve design specifications in order

to maintain forward and backward compatibility throughout the effective lifetime of

the NPS AUV research project. A valid and effective data dictionary defined in

(Floyd 91) is used for all data types defined in this thesis.

A. NPS AUV ACTIVE SONAR SYSTEM

The current NPS AUV active sonar uses four ultrasonic directional beams

pointed ahead, down and 90° to port and starboard. Individual transducers are

mounted on adjustable semicircular frames that can allow all beams to be directed

forward. However the dimensions of the NPS pool and the 30 m range gate of the

transducers make orthogonally oriented transducers an optimal approach for sensing

multiple walls and targets simultaneously (Figure 4.1). The NPS AUV active sonar

characteristics are further described in Chapter VI and (Floyd 91).

Several problems have handicapped NPS AUV sonar performance. Faults in the

signal processing electronics have prevented simultaneous utilization of multiple sonar

transducers. Automatic averaging of sonar ranges at the board level has introduced

minor range errors and reduced the discrimination capability of the transducers against

small targets. The strongly reflective walls and shallow depth of the NPS pool create

a high reverberation environment. Despite these significant difficulties, adequate sonar

classification results have been obtained inside the NPS pool.

In a real sense, the independence and capabilities of any mobile robot (or even

manned submarine) are constrained by the quantity and quality of sensor data available

about the external world. Correction of current NPS AUV sonar limitations is

essential if more accurate vehicle control and higher level behaviors are to be achieved.

42

cc)

]

00
\

O)
\

CD

c3

-^ CD
mmmm \ O)

O c
c:

00
*""

qI c5 X
c lb

co
°
CO gr CO

c:

o o

CO c
E
T3>

"^") I< CO
Q.

CO 21

Q_

L oo —

Figure 4.1 NPS AUV sonar beam profiles in the NPS pool

43

B. NPS POOL COORDINATE SYSTEM

Several theses have graphically modeled the NPS swimming pool or utilized

AUV data collected in the NPS pool. Unfortunately most of these efforts are

incompatible because no standard pool coordinate system has been established. In

order for test results to be understandable and repeatable throughout the life of the

NPS AUV program, a standardized NPS Pool Coordinate System is defined here.

Numerous competing criteria were resolved when defining this coordinate

system, especially differences between coordinate systems used by graphics simulation

programs. Advantages of the NPS Pool Coordinate System are as follows:

• all pool coordinates positive and units in feet

• surface depth z equals zero, increasing depth corresponds to increasing z

(indicated on diagram by tail of z-axis arrow)

• NPS AUV data file coordinates become standardized for readability and

future reference

• vehicle position and posture terminology are standardized

• right-hand rule relationship between all three axes maintained

• compatible with vehicle coordinate system and Euler angle definitions

• typical start points and normal operator's perspective are near pool origin

• AUV reference point between center of gravity and center of buoyancy

• angle orientations and coordinate positions are directiy compatible with the most

prevalent robotics conventions, Dr. Kanayama's spatial reasoning function

definitions and standard "C" language trigonometric function calls

• vehicle headings are measured in clockwise direction as are conventional

compass headings that are familiar to naval officers

• NPS Pool Coordinate System simultaneously combines Cartesian coordinate

plane characteristics, Euler angles and right-hand rule, advantages that are not

possible with any other spatial representation

Disadvantages of this coordinate system are as follows:

• similarity to Cartesian plane is only evident from a perspective looking up to the

pool surface from below, thus axis orientations may initially be counterintuitive

The NPS Pool Coordinate System is shown in Figure 4.2.

44

««- >, & fvl

S* shallow end 4'
->s

io o c

8 cT o

I

E
CD ft 1

a
4—

»

C/> s
>> 1
CO <0
© Nr
4-^ ;

CO ic ¥
T3 3
k. c

O
o

22

T3 O

tn
ZJ
OX

O oo
Q_

o 2 -|

N Qo O

Q. 5,

CO
Q.
z fa

in S
8 o"

co 00

C ,9 pue deep c.

\.
1

1

X

I

Figure 4.2 NPS Pool Coordinate System

45

C. NPS AUV TELEMETRY REPLAY FILE FORMAT

Telemetry replay files are a critical component of an integrated simulator. These

files are used to record in-water test data as well as portray expected vehicle behavior

from offline simulation programs. Numerous variant formats exist for NPS AUV

telemetry replay files recorded to date. This variability leads to confusion and

incompatibility that worsens as an ever-growing number of unique telemetry replay

files become available.

The primary reason behind the current plethora of telemetry data file formats is

that different NPS AUV evaluation runs tend to test different hardware or software

components. Different tests have correspondingly different data logging requirements.

A telemetry replay file format standard has to be flexible to support varying data

logging requirements. The current NPS AUV telemetry replay file format is defined

in Figure 4.3.

NPS AUV telemetry is recorded at a 10 Hz data rate, allowing precise

measurements of varying position, posture and sonar values. A single wildcard data

slot can take advantage of this rapid update rate to allow recording of multiple test

parameters. For example, suppose a special test needed to record both left and right

commanded motor RPM. Alternate wildcard slots can be used for the two parameters

and a 5 Hz data logging rate for each is maintained. Another method might record

three 3-digit numbers by multiplying each by an appropriate powers of ten. For

example, the numbers 200, 300 and 400 can be saved as the single wildcard slot value

"200,300,400.00", permitting three parameters to be logged at the full 10 Hz data rate.

Thus this newly standardized telemetry replay file format has built-in flexibility to

allow compatible recording of variable data logging requirements.

46

; Telemetry track data entries are uniquely identified by time value

<time> = REAL ; time of sonar ping

<x>, <y>, <z> = REAL ; AUV position at time of ping

«j», <6>, <y> = REAL ; roll, elevation, azimuth angles

; vehicle posture at time of ping

<p>, <q>, <r> = REAL ; vehicle posture angular rates of change

; from navigational gyros

<A dive> = REAL ; Ordered dive plane angle

<A rudder> = REAL ; Ordered rudder plane angle

<rangel> = REAL ; Forward transducer range

<range2> = REAL ; Left transducer range

<range3> = REAL ; Right transducer range

<range4> = REAL ; Depth transducer range

<speed> = REAL ; output from paddlewheel sensor

<wildcard>
+ = REAL ; available for user-defined data logging

Figure 4.3 NPS AUV telemetry replay data file format specification

D. SOFTWARE PROCESS SPECIFICATIONS

Numerous mutually-dependent processes are necessary for an AUV to have

adequate capabilities to perform independent missions. Software module specifications

need to be standardized and clearly defined in a large multi-year multi-programmer

project such as the NPS AUV. Figure 4.4 is a sample format that can be used to

record individual process specifications so that NPS AUV programming group

members are able to provide proper process inputs and outputs. A group commitment

47

to defining, following and updating formal specifications is essential for reliable

process interaction. Failure to follow formal specifications will inevitably lead to loss

of reliability, mission failure and probable vehicle loss.

E. CONCLUSIONS

Many software modules have been written for eventual use by the NPS AUV but

very few have been implemented and used on the vehicle. This chapter has presented

design specifications and basic software engineering considerations for the NPS AUV

that are essential for compatible operation of the NPS AUV Integrated Simulator.

Numerous additional requirements have yet to be formally evaluated. A cohesive

software engineering approach is needed to formally define system software

architecture, process specifications, process data requirements, standardization of

process outputs and software version control. Failure to address these requirements

will handicap group research and prevent full implementation of NPS AUV mission

software.

48

NPS AUV Software Process Name

Process Short Description

Functional Specifications

Inputs

Outputs

Timing and Periodicity Constraints

Software Process Interfaces

References and Additional Information

Individuals Assigned

Figure 4.4 NPS AUV software process summary sheet

49

V. NPS AUV INTEGRATED SIMULATOR DATA NETWORK

A. INTEGRATED SIMULATOR DATA NETWORK OBJECTIVES

The purpose of the NPS AUV Integrated Simulator data network is to connect

all workstation and personal computer nodes with the NPS AUV and laboratory AUV

microprocessors. This has been accomplished by connecting several local area

networks with a wide area network and then adding modems for additional long

distance connectivity. This chapter describes how network protocols were chosen and

network connections are implemented to support the NPS AUV Integrated Simulator.

B. NETWORK CONNECTIVITY REQUIREMENTS AND ETHERNET

The NPS AUV project has already supported thesis work for dozens of graduate

students and will continue to be active for the foreseeable future. The NPS AUV

Integrated Simulator data network is designed to maximize accessibility to NPS AUV

hardware and software. Network connectivity objectives must address many

requirements including compatibility, flexibility, cost-effectiveness, portability,

maintainability, future growth potential and ability to upgrade. These criteria are all

dependent upon the type of network protocol chosen.

Ethernet is the primary local area network protocol used at NPS. Ethernet is

used for the Computer Science Department network in Spanagel Hall and for the NPS

Campus-Wide Network. Ethernet is a broadcast bus network with a data transfer

capacity of 10 M bps. It is a broadcast network because all transceivers receive every

transmission and a bus network because all nodes are joined by a common

communications channel. Bridge boxes are used to connect various departmental local

area networks to the Campus-Wide Network. These bridges screen unnecessary traffic

from transmission to adjacent networks, and also pass copied packets of interest

without reproduction of noise or packet collisions.

50

Protocols describe methods of passing messages, formatting data and handling

error conditions. TCP/IP (Transmission Control Protocol/Internet Protocol) is the

official name of the Internet Protocol Suite used by Ethernet. Ethernet and TCP/IP

include the protocols used to pass files or data packets between nodes. FTP (File

Transfer Protocol) is a specific means of file transfer that can be used under both Unix

and OS-9 operating systems to transfer files between NPS AUV processes and the

graphics simulation workstation.

Individual nodes connected to Ethernet have unique physical addresses. Because

the NPS local area networks are also connected to the Internet, added nodes receive

independent Internet addresses. The Internet is a national network connecting

thousands of government, corporate and university computer networks. Internet

includes links to all other major national and international networks. Utilizing

off-the-shelf Ethernet technology for the NPS AUV Integrated Simulator is desirable

since it allows complete compatibility with existing NPS networks as well as

accessibility via the Internet.

Bandwidth is a critical consideration when choosing a network protocol. Large

amounts of data are required for NPS AUV Integrated Simulator playback of vehicle

performance, and numerous message outputs from many software processes may be

required to adequately evaluate AUV mission execution. The network and protocol

chosen must be capable of transmitting data at a rate adequate to support real-time

playback and simulation. The data transfer mechanisms defined in Chapters III and IV

contribute to efficient communication by concisely representing comprehensive vehicle

state information. Current experience with interactive simulation programs (Ong 90)

(Jurewicz 90) have shown that, under normal network usage rates, the Ethernet

10 M bps channel capacity is adequate to meet NPS AUV Integrated Simulator data

transfer bandwidth requirements. Ethernet is therefore a good choice for the

NPS AUV Integrated Simulator Data Network since most network connections were

originally in place and network bandwidth is adequate to support simulation

requirements.

51

The NPS AUV project may eventually need a special long distance connection

to a proposed remote AUV laboratory in Building 230 at the NPS Golf Course.

Building 230 is approximately 1.3 miles from Spanagel Hall, a distance that falls

within the nominal 1.7 mile maximum range for an Ethernet network. However

stringing Ethernet cable and repeaters along public roads to the golf course is

obviously not feasible. Several options are available to maintain NPS AUV Data

Network connectivity with a remote site such as Building 230. A leased high-speed

phone line and additional interface equipment might be used to exchange real-time lab

data with the Campus-Wide Network. In support of long-term research the

Building 230 laboratory can be made an independent Internet node that includes both

the NPS AUV and a local graphics workstation. Finally, a standard phone line and a

modem connection can be used for file transfer to the Computer Science Department

network as is already possible during pool testing. It is interesting to consider that

standard telephone connections can also be used to communicate with the NPS AUV

at other remote locations such as the Monterey Bay Aquarium, Navy laboratories or a

coastal launch site.

Other network configurations and data link methods were also considered but

deemed inappropriate. Direct customized serial or parallel port interfaces between an

Iris graphics workstation and a laboratory AUV Gespac are possible but implementing

such ports is expensive, time-consuming and incompatible with other networked

computer systems at NPS. Such a customized communication setup also risks

becoming obsolete if any of the current vehicle hardware is changed or upgraded.

Direct port-to-port communication links also prevent linking multiple independent

software processes running on an AUV microprocessor and the computer science

network. Non-Ethernet network topologies such as token-ring or Fiber Distributed

Data Interface (FDDI) were rejected for similar reasons.

A direct Ethernet connection inside the actual NPS AUV is operationally

undesirable due to space and power consumption requirements. However addition of

an optional Ethernet card to be used when the NPS AUV is in the laboratory provides

52

a high data transfer channel bandwidth (10 M bps) and improved pseudo-mission

testing response. Actual AUV system reconfiguration to include the Ethernet card is

not a problem since that is the normal configuration of the standalone laboratory AUV

microprocessor.

C. NETWORK HARDWARE REQUIREMENTS

Numerous components are connected to form the NPS AUV Integrated

Simulator data network, shown in Figure 5.1. Most network connections were already

available at the start of this thesis. Notable construction work performed included

assembly of the laboratory AUV Gespac and support equipment (node auvsiml) as

well as the support laptop (node auvsim2) and the support PC (unconnected node

auvsim3). The pertinent portions of the NPS Computer Science Department network

are shown in Figures 5.2 and 5.3, and the NPS Campus-Wide Network is shown in

Figure 5.4.

The most challenging task in the development of the NPS AUV Integrated

Simulator data network was to build a laboratory AUV. An additional Gespac

microprocessor identical to the NPS AUV Gespac microprocessor was purchased for

simulation use. A VME-bus backplane cage containing a Gespac microprocessor,

input/output channels and an Ethernet interface card was installed inside a cannibalized

workstation box. A second backplane cage was combined with the first to provide

extra capacity for evaluating additional cards prior to installation on the actual

NPS AUV. A pair of monitor and keyboard hookups were connected to communicate

with the microprocessor. The laboratory AUV was installed adjacent to the graphics

simulation workstations, since the laboratory Gespac microprocessor and support

terminals need to be direcdy visible from the simulation workstations for efficient

testing and troubleshooting. This also made the lab AUV accessible to the local area

network ethernet cable. The support PC includes an OS-9 "C" language

cross-compiler which produces GESPAC 68020/68030 object code.

53

NPS AUV INTEGRATED SIMULATOR NETWORK

a Lab AUV Gespac

Graphics Lab Ethernet

CS Dept Unix Ethernet

Campus-Wide Network

NPS AUV Gespac

ME Dept DecNet

ME Lab Gespac

HalliganHall

Figure 5.1 NPS AUV Integrated Simulator data network

54

Main Servers/
Ethernet Standalones

Subnets/
Clients

1.x

+

+ boxl +— + Departmental modems
+—thru— +

|

+ box4 +—+->> telephone system

+ + Departmental file servers
+ virgo

I

+ +

+ suns2 | Taurus is name server,
+ + mail/news host & gateway
+ taurus + +
+ + to Campus-Wide Network 254.x
+ libra

I

+ +

+ + Graphics Lab
+ gravyl

|

+ + Silicon Graphics workstations
+ gravy3

I

+—thru— +

+ gravy5
I

+===============+
+ + + auvsim3 +

PCBRIDGE + 286 desktop +
+============+ +=============== +

+ auvsiml | serial port
+ Lab Gespac

|

+============+ +===============+
131.120.1.40 serial port + vt220 +

+ OS-9 terminal +

+<< + auvsim2 | >> telephone system
+ 38 6 laptop | modem

131.120.1.46
V

Figure 5.2 NPS Computer Science Department Network portion of

NPS AUV Integrated Simulator data network (part 1)

55

V
I

I
Artificial Intelligence Lab

I

|

7.x + +

I

+ + +—+ aiio
I

+ + ai9 + + +-thru—

+

|
+ + +— + ail2 |

I

+ +

I

|
+ + 5.x + + Academic Computing

+ + gemini +--+— + acl + Lab
I

+ +
| + _thru _ +

+ +— + acl8 +

|

+ +

I

I

+ numerous other nodes
| + not included here
I

1.x

Figure 5.3 NPS Computer Science Department Network portion of

NPS AUV Integrated Simulator data network (part 2)

The laboratory Gespac microprocessor is configured almost identically to the

NPS AUV Gespac in order to allow realistic and thorough simulation. The laboratory

Gespac differs from the actual NPS AUV Gespac by having an Ethernet card

connection to the Computer Science Department network and serial port connections

to a VT-220 terminal and a support PC. Care has been taken to preserve physical and

functional equivalence between laboratory and NPS AUV Gespac microprocessors.

The current laboratory AUV card cage configurations is shown in Figure 5.5.

The Gespac 68020/68030 microprocessor running OS-9 requires Erasable

Programmable Read-Only Memory (EPROM) modifications for permanent

configuration changes. However any desired operation can be performed without

performing tedious a EPROM change because system drivers can be added as needed

from the OS-9 command line. The current network configuration of the laboratory

Gespac microprocessor will allow development and implementation of communications

sockets to pass data packets for real-time simulator display.

56

BARRNET INTERNET
BITNET MILNET
NSFNET DDN

It /
Dudley Knox Library

roi i

Ingersoll Hall
cc.nps.navy.mil .

repeatsU
Halligan

Hall

0—

!

Mechanical

Department

DECNET Network
- AUV <^mz^>
- ME Lab Gespac
- Graphics W/S
- Portable Laptop

me nps navy.mil

Campus-Wide Network
Backbone

Bullard

Hall

Root
Hall

Computer Science Department Network

cs.nps.navy.mil

Spanagel Hall
multiplex

CD-

MIS Department

repeater

Computer Science

PhD Students

•••••
multiplex

Hermann
Hall

— Trunk Cable

Thin Cable

TwistedPair

Terminator

Transceiver

Figure 5.4 NPS Campus-Wide Network

57

1 Gespac 68020 or 68030 Microprocessor

running OS-9 real-time multitasking operating system

2 Multifunction Interface Card
2 serial ports, 2 parallel ports, clock/calendar, etc.

3 Floppy Disk Controller

4 Hard Disk Controller

S Ethernet Interface Card

6

7

8 386 Microprocessor

with IDE controller circuitry (OS-9 compatibility untested)

1 Additional card slots available for future growth,

2 new equipment evaluation and hardware troubleshooting

3

4

5

6

7

3

Figure 5.5 Laboratory AUV microprocessor card cage slots

58

Prior to implementation of the NPS AUV Integrated Simulator data network, the

Mechanical Engineering Department network was not connected to any external

network. A special interface board was purchased and installed during 1991 that

linked their DECNET-based system to the Campus-Wide Network backbone cable

running through Halligan Hall. Another Iris graphics workstation is also on this local

area network, permitting local execution of graphic simulation as part of the overall

NPS AUV Integrated Simulator. Another laboratory Gespac is also available in

Halligan Hall. Each of these nodes can now be networked to take advantage of the

many benefits of integrated simulation.

D. OPERATING SYSTEM INTERFACES

The Computer Science Department network uses the Unix operating system.

Although different versions of Unix can coexist on subnetworks connected to the

departmental network, each is compatibly connected using Ethernet and Internet

TCP/IP protocols. Further capability can be provided by socket interface software that

allows application programs to directly access communication protocols via the

operating system. Sockets for interprocess and intermachine communication have been

written and implemented under Unix (Barrow 88) (Ong 90). The Gespac OS-9

operating system also supports Ethernet and TCP/IP protocols but further work is

needed to implement software sockets under the Gespac OS-9 operating system.

Complex simulator testing of the NPS AUV may someday be based on real-time

data transfer between AUV software processes and the integrated simulator.

NPS AUV software processes have two possible operating environments: simulated

developmental testing under the Unix operating system or operational execution under

the OS-9 operating system on a Gespac microprocessor. Although file transfer is the

only data passing mechanism currently implemented, it is desirable to develop

real-time testing capabilities in both operating system environments by implementing

sockets to pass data packets. If data transfer between processes succeeds

independently of the NPS AUV under the developmental Unix environment, it is

59

reasonable to expect that the same software processes will still communicate properly

when ported to the NPS AUV's resident OS-9 operating system. Careful

implementation of data packet passing and network sockets will ensure proper

portability of processes that employ sockets.

Use of ASCII text files for mission logging makes encryption a simple matter if

increased security becomes necessary due to mission requirements. Encryption can be

performed prior to file transfer or during high-level object file message logging. Any

encryption routines used need to comply with the DoD Encryption Standard (DES) or

higher requirement. Encrypted output files need to remain in ASCII text format for

complete communications protocol compatibility.

E. CONCLUSIONS

Creating an NPS AUV Integrated Simulator Data Network by linking NPS AUV

hardware with graphics workstations will provide an exceptional tool for distributed

research, real-time simulation and end-to-end AUV system testing. Ethernet is the

appropriate local area network technology to use in order to ensure complete

compatibility with existing NPS networks. Ethernet and Internet connectivity ensures

that the NPS AUV Integrated Simulator data network completely supports all

NPS AUV research, development and testing. Further work remains to implement

TCP/IP protocol and software socket compatibility under the OS-9 operating system

running on the Gespac 68030 architecture.

Connection of the NPS AUV Integrated Simulator data network allows

preliminary evaluation of NPS AUV software changes to be performed prior to

in-water testing. Concurrent playback and data verification is now possible during

pool testing by transferring telemetry replay files over telephone lines during

NPS AUV test runs. Immediate problem diagnosis allows immediate correction and

repetition of test runs that result in corrupted, faulty or unusual data.

Additional work needs to be done on the NPS AUV Integrated Simulator data

network when modeling or simulating missing NPS AUV hardware in the graphics

60

lab. It is likely that some world models will not fit on the operational Gespac

requiring data packet communication with an offline world model. The

laboratory AUV is an excellent testbed for evaluating new potential NPS AUV

physical components. Finally, the data network has the growth potential to support the

addition of analog NPS AUV hardware components, allowing the NPS AUV

Integrated Simulator to become a true digital and analog hybrid simulator.

61

VI. AUTONOMOUS SONAR CLASSIFICATION USING EXPERT SYSTEMS

A. ABSTRACT

An expert system can process active sonar returns, perform geometric analysis

and autonomously classify detected underwater objects. Autonomous classification of

objects is an essential requirement for independent operation by autonomous

underwater vehicles (AUVs). Most AUVs are only capable of rudimentary sensor

analysis, since standard approaches to evaluation and classification of sonar data

require excessive signal processing and computational power to be practical. This

chapter describes how to develop an autonomous sonar classification expert system for

a working AUV.

A fundamental approach is presented for applying geometric reasoning and

expert system heuristics to sonar classification. Preliminary sonar processing is

performed using parametric regression line fitting. A polyhedron-building algorithm

correlates the parametric regression line segments into geometric objects. After

quantifying geometric object attributes, objects are classified using rule-based

evaluation of quantitative and qualitative attributes combined with sonar classification

heuristics.

A summary of expert systems describes their salient features pertinent to

autonomous sonar classification systems. The expert system paradigm, knowledge

representation, reasoning using facts and rules, rule sets, control of execution flow and

expert system development are outlined. Expert system self-diagnosis and

self-correction also discussed.

Implementation was performed using the "C" Language Integrated Production

System (CLIPS) expert system shell. Real-time graphic simulation and scientific

visualization are employed to evaluate results. Experimental sonar classification

results are presented using actual mission data from the Naval Postgraduate School

62

(NPS) AUV. Successful classifications of walls and a mine-like object are

demonstrated.

B. INTRODUCTION

Intelligent vehicles will play a major role in future underwater missions. A

critical requirement for independent behavior by such vehicles is autonomous analysis

of complex and variable ocean environments. This is a notoriously difficult task, even

when human operators use sophisticated sensors and powerful processors.

Although much work has been done in vision processing for mobile robots,

additional research has been needed on interpretation of observed scenes and terrain

(Hebert 88). Numerous approaches to the general object-recognition problem are

presented in (Besl 85). Both of these references can be found in (Iyengar 91), an

essential collection of surveys, tutorials and fundamental research papers regarding

mobile robot sensor perception, mapping and navigation. Other references included in

(Iyengar 91) are (Luo 89) and (Moravec 83).

Independent and meaningful interpretation of sensor data is a principal

prerequisite for accomplishing high-level AUV missions and behaviors. A number of

universities and laboratories are conducting autonomous underwater vehicle (AUV)

research and development that involves a wide variety of sensor types and sensor

interpretation methods. The Defense Advanced Research Projects Agency (DARPA)

Unmanned Undersea Vehicle (UUV) uses sidescan sonar and neural network

classification for underwater mine detection (Pappas 91). Woods Hole Oceanographic

Institution has used sidescan sonar, stochastic backprojection and a variety of vision

processing techniques and sea floor shape information to create three-dimensional

bottom images (Stewart 89). The University of New Hampshire Experimental

Autonomous Vehicle (EAVE) in uses depth profiling, acoustic long baseline

navigation and comparison with a world model to detect bottom objects (Blidberg 90).

Numerous other examples of sensor data interpretation exist. In contrast to most

methods, this sonar classification system uses parametric regression, geometric analysis

63

and expert system heuristics to create classifiable object types. An advantage of this

method is that progressively higher levels of object abstraction are possible.

C. OVERVIEW

The objective of this chapter is to present a method for autonomous

classification of underwater objects. This is achieved using geometric sonar analysis

techniques and an expert system for heuristic reasoning.

This research effectively demonstrates that geometric analysis can be combined

with an expert system to process, analyze and classify active sonar range and bearing

data in support of AUV operations. Figure 6. 1 shows how low-level sonar data is

processed to produce increasingly complex geometric objects and high-level

classification outputs.

Geometric analysis can distill large amounts of sonar data into useful

information that can be used to make logical and informed decisions. The primary

difficulty in geometric sonar analysis is that active sonar signal returns are inherently

noisy and unconnected. Parametric regression is a robust method of least-squares line

fitting that permits precise geometric analysis of range and bearing data (Floyd 91).

Generated regression lines are provided to a polyhedron-building algorithm to create

geometric objects. Geometric object attributes can then be compared to known object

types through the rule-based pattern-matching capabilities of an expert system,

resulting in object classification.

The possible types of object classes to be detected are typically limited in

number and somewhat predictable given a priori knowledge of the underwater

environment. Geographic objects to be detected and classified include the ocean

bottom, sea mountains, valleys, rock outcroppings and walls. Biological objects

include fish, kelp, scuba divers and large animals such as dolphin or whales.

Man-made objects include ships, submarines, torpedoes, mines, nets, pipes and cables.

These object classes of interest are listed in Table I. The relatively small number of

underwater objects of interest simplifies sonar classification criteria. Primary expert

64

Sonar Range and Bearing Inputs

Extract Line Segments

using Parametric Regression

^- -j-

Build Polyhedron

from Line Segments

Quantify Polyhedron Attributes

^.
Pattern-match Classification

Classified Object Output

Figure 6.1 Autonomous sonar classification process diagram

system outputs are location, size, and classification of all sonar contacts.

Expert systems are an established methodology that can effectively and clearly

represent specialized human knowledge using algorithms and heuristic rules. Typically

the functions performed by an expert system might otherwise require human action by

a knowledgeable expert. The expert system approach is applicable to a wide variety

of complex problems, even when no single expert understands all aspects of a

particular problem domain.

65

Table VI.l EXAMPLE UNDERWATER OBJECT CLASSIFICATION
TYPES

Geographic Biological Manmade

Ocean bottom Fish Ship

Sea mountain Kelp Submarine

Valley Scuba diver Mine

Rock outcropping Dolphin Torpedo

Wall Whale Net

Sea surface Shark Pipe or cable

Unknown

The use of real world data is important for development and verification of a

sonar classification expert system. Naval Postgraduate School (NPS) students and

faculty have designed and built a working AUV that can be used to provide a variety

of classifiable sonar data. Successful examples of expert system classifications using

NPS AUV sonar data are described in detail.

The expert system approach also appears to be usable for sensor fusion using a

wide variety of sonar types as well as non-acoustic sensors such as laser rangefinders

and video. Many exciting future applications are possible using expert system

methods.

D. GEOMETRIC ANALYSIS OF SONAR DATA

1. General Characteristics of Active Sonar Data

Outputs common to practically all active sonars are range and bearing from

the sonar transducer to a contact, if any is detected. Posture of an underwater vehicle

includes a three-dimensional position coordinate, as well as vehicle attitude consisting

of roll, elevation and azimuth orientations. The relative position of each sonar return

is combined with vehicle posture using vector addition to yield a precise

66

three-dimensional coordinate. In this chapter the term "sonar data" refers to

simultaneous sonar range and bearing data returned from an active sonar transmission.

2. Geometric Primitives and Object Attribute Definitions

Sonar data can be analyzed to produce geometric forms such as points,

lines or polyhedra. Precise definitions of geometric primitives and object attributes are

necessary for predictable and repeatable sonar classifier performance. It is important

that the theoretical basis of a sonar classification expert system be both mathematically

rigorous and as general as possible in order to allow increasingly sophisticated analysis

of data. A formal geometry-based approach also permits expert system compatibility

with a wide variety of sonar types.

The geometric primitives considered by this expert system are point, line

segment, polyhedron and cylindrical polyhedron (i.e. a three-dimensional polyhedron

that extends vertically up and down from a planar polygon perimeter). Object

attributes include centroid position, depth, length, width, height, perimeter,

cross- sectional area, thinness, and volume, indirect attributes such as positional

accuracy, confidence factor, inferred edges and hidden edges are also evaluated.

Additional geometric primitives and object attributes can be defined as

necessary to utilize the more sophisticated data available from sector scanning,

two-dimensional swath or three-dimensional multi-beam sonars. Similar approaches

using curved shapes such as circles, ellipses or conies (Moravec 83) are also

compatible.

3. Extracting Line Segments using Parametric Regression

Linear relationships described by sets of discrete data are typically found

using standard linear regression analysis, commonly known as least-squares fit. This

method is widely used but has a significant limitation in that regression calculations on

(x,y) coordinate points parallel to the y-axis result in divide-by-zero singularities for

slope and mathematically undefined regression results. Since typical unconstrained

sonar data may lie along any three-dimensional orientation, a different method is

67

needed for autonomous fitting of best-approximation line segments to a series of

discrete sonar returns.

The parametric regression method utilizes a polar coordinate derivation of

linear regression analysis to provide a robust and accurate least-squares fit of line

segments to sequences of data points. This method has been developed in detail and

is particularly well suited for geometric analysis of real-world sonar data

(Kanayama 89) (Kanayama 90) (Floyd, Kanayama, Magrino 91) (Floyd 91).

Associated with each regression line segment is an elliptical thinness term that can be

used as a metric for line segment accuracy and data variance. Figure 6.2 shows a

typical parametric regression line segment fit to a set of sonar returns.

sonar parametric regression line

returns

Figure 6.2 Typical parametric regression line fit

A further significant benefit of parametric regression analysis is that it is a

sequential algorithm which provides immediate incremental improvements upon receipt

of each individual data point. The sequential nature of this algorithm makes it highly

suited for real-time operations that must meet immediate response requirements.

Real-time vehicles cannot afford to wait for intermittently time-consuming sonar

analysis when excessive delay might jeopardize navigational safety.

4. Building a Polyhedron from Line Segments

Parametric regression provides linear one-dimensional geometric primitives.

However line segments by themselves are insufficient for thorough two-dimensional

spatial reasoning or object classification. A polyhedron-building algorithm is

presented here as a means of constructing two-dimensional geometric objects from a

68

sequence of regression line segments. In this context the polyhedron-building

algorithm is a logical extension to the parametric regression algorithm.

One important assumption used when building polyhedra is that underwater

contacts of interest have predominantly convex shapes, i.e. they contain no large

concave depressions or cavities. This assumption permits clear delineation of

independent object boundaries. Analysis of an actual concave object results in the

definition of adjacent convex objects. Higher-level analysis at the heuristic level can

be used to clump adjacent objects if needed.

Note that the orientation of vehicle sonar relative to detected objects is a

critical consideration in the polyhedron building algorithm, since spatial relationships

are equally dependent on sensor perspective and actual object shape.

Polyhedron building begins with a single line segment produced by

parametric regression analysis of continuous sonar data. Each following segment from

regression analysis on the same sensor is compared to the previous segment. If the

follow-on segment meets proximity and orientation criteria, then it is considered to be

another part of the same geometric object. This segment comparison process is

repeated until proximity or orientation criteria fail, at which time the previous

geometric object is complete and the follow-on segment becomes the beginning

segment of a new geometric object.

Proximity is measured between the end point of the most recently

correlated line segment and the start point of the next segment to be considered. The

proximity criterion is typically small and restrictive (e.g. less than 1 foot) in order to

permit discrimination between adjacent objects. The proximity criterion must be met

prior to comparing relative orientation for geometric object extension.

Orientation comparisons are made to determine whether adjacent segments

are colinear, convex or concave. The colinear test allows a reasonable error bound

(e.g. ±10°) in order to account for sonar noise and line-fitting approximations.

Colinear segments are acceptable for geometric object extension (Figure 6.3).

69

Figure 6.3 Examples of colinear regression line segments

The convex test measures whether the follow-on segment direction points

farther away from the sensor's perspective than the previous segment. Convex

segments are also acceptable for geometric object extension (Figure 6.4).

Figure 6.4 Examples of convex regression line segments

The concave test measures whether the follow-on segment direction points

closer towards the sensor's perspective than the previous segment, in effect defining

the boundaries of a hole. Concave line segment relative orientations indicate a break

between separate convex geometric objects (Figure 6.5). The follow-on segment is

used to start a new polyhedron.

Inferred edges are presumed to exist between each pair of the sequential

detected edges that make up a polyhedron. A single hidden edge is presumed to exist

between the start point and end point of a particular object. The classifier must

recognize, however, that such hidden edges may be completely inaccurate since the

actual hidden sides of the object were obscured from the sonar.

70

Figure 6.5 Examples of concave regression line segments

In summary, the polyhedron-building algorithm correlates regression line

segments into two-dimensional polyhedral objects. This method enables the

application of computational geometry techniques to analyze large volumes of discrete

range and bearing data. Figure 6.6 illustrates the polyhedron-building algorithm.

5. Quantifying Polyhedron Attributes

The attributes that are used to classify objects need to be precisely defined

and calculated, wherever possible. For example, attributes such as depth, length, width

and height are directly measurable using calculated sonar positions. Object perimeter

can be determined by first summing the lengths of all correlated line segments, and

then adding the lengths of all inferred and hidden edges that are presumed to exist

between detected edges. Figure 6.7 shows how the start point, regression line

segments, inferred edges and hidden edge that make up a polyhedron cross- section

define a series of triangular areas.

Area of a single triangle is given by Equation (6.1).

AreaA = I
[
(X

2
-X

X
){Y,-Y,) - (X.-X^Y.-Y,)

]

(6.1)

Polyhedron cross-sectional area is determined by summing the area of these

triangles, given by Equation (6.2).

71

Get line segment

Start new polyhedron

Get next

adjacent

line segment

Add segment to

polyhedron

Determine latest

inferred edge

A

C> Terminate

Polyhedron

H
Calculate

Attributes

^>| Terminate polyhedron
Determine hidden edge
Calculate attributes

Latest segment starts

new polyhedron

(Concave orientation)

Figure 6.6 Algorithm to build polyhedra from line segments

72

start point

end point

regression line segment
inferred edge
hidden edge

w^ss^i

Figure 6.7 Summing triangle areas to determine polyhedron cross- sectional

Area
Polyhedron

=
52 \

Area& start point, + Area A start point,

regression [inferred tag* regression line

lines

Centroid position for a triangle is calculated using Equation (6.3).

Triangle „ _. { *i
+ *

2 * X
3

Y + Y
2 + Y

3)

Centroid
'

l
Ac »

I
c) "

y 3
»

3 J

(6.2)

(6.3)

Centroid position for the polyhedron cross-section is precisely determined

by taking the weighted average of each of the triangle centroids, given by

Equation (6.4).

Polyhedron

Cross-section =

Centroid

Area^xCl
+ '"+ AreaA N

xcN Area^Yc,
+ '"+ M/cJW)

Area
Polyhedron

Area
Polyhedron

Polyhedron cross-section thinness is defined as the ratio of polyhedron area

to the square of polyhedron perimeter, given by Equation (6.5).

73

Polyhedron
Polyhedron Area

Cross-section = - v°'3 '

Thinness (Polyhedron Perimeter)2

If object height is needed and has not been directly measured, it can be

estimated using heuristic rules based on object depth, bottom depth or independent

object classification. Object volume is the product of cross-sectional area and

measured or estimated object height.

Indirect attributes such as positional accuracy, confidence factor, inferred

edges and hidden edges are also evaluated. Point positional accuracy is derived by

combining current vehicle positional accuracy estimate with sonar accuracy or sonar

beamwidth at the range to the object. Confidence factor can be defined independently

of positional accuracy as a measure of how well the object matches a classification

rule. Hidden edge length is a measure of what is not known about the object.

Defining initial classification confidence factor as the ratio between hidden edge length

and detected perimeter further indicates how much of the contact has actually been

evaluated. Hidden edge metrics can be used to indicate whether further sonar

investigation of the contact is desirable. Figure 6.8 shows detected edges, inferred

edges and hidden edge relative to processed sonar returns, and how these geometric

primitives may not fully reveal all features of a contact.

E. EXPERT SYSTEM HEURISTICS FOR SONAR CLASSIFICATION

While geometric analysis can be defined with mathematical precision, human

knowledge regarding sonar classification is less rigorous and can best be encoded as

expert system heuristics.

1. Classification Heuristics and Attribute Heuristics

Sonar classification is not always a well defined problem. For example, it

is possible that sonar analysis of a single object can be performed from different

directions and lead to completely different classifications. An analogy to classifying

objects using simple range and bearing sonars is attempting to identify your

74

start point

end point

regression line segment
inferred edge
hidden edge

Figure 6.8 Polyhedron detected edges, inferred edges and hidden edge may
not fully reveal all features of the sonar contact

surroundings while looking at the world through a steerable pinhole. It is difficult!

Consequently, sonar classification criteria are often ambiguous and difficult to

quantify, even when using formally derived geometric primitives. However, the

heuristic approach used by expert systems is effective in many types of inexact

problems and enables an autonomous system to obtain excellent sonar classification

results.

Heuristics can be used for evaluating attributes such as object height when

information is incomplete. Both attribute and classification heuristics can be easily

modified in understandable ways despite the ambiguities of sonar analysis. The

intuitive power of heuristics combined with the precision of geometric analysis gives

sonar classification expert systems wide applicability and adaptability.

For this expert system approach, classification of sonar contacts is

performed by comparing attributes of detected objects with predetermined attributes of

known objects of interest. Different classification criteria are necessary and desirable

for different environments. In particular, the different characteristics of deep ocean

75

versus shallow water versus an artificial pool will constrain the possible types of

objects to be detected. Knowledge of the current environment can be extremely useful

when determining the specialized classification rules and heuristic criteria to be used

for a given mission.

Precise classification of every possible object type may not be necessary for

some missions. Resolution of an ambiguous classification typically requires multiple

sensor looks, costing additional time and energy. Preliminary classification as a

potential contact of interest may be sufficient to justify maneuvering for additional

sensing and closer investigation. Conversely, objects deemed to be of no interest

require no further investigation by the vehicle.

Size can be the primary classification attribute for most underwater objects

of interest. However, size per se is not a strictly defined term. It is worth mention

that significant object size may be indicated by a variety of attributes including

cross-sectional area, volume, perimeter, thinness or hidden edge length. Any or all of

these size-related attributes may require close evaluation in order to properly

discriminate between similarly sized sonar targets such as mines and rocks.

2. Pattern-match Classification Examples

Examples of how heuristic rules work can illustrate how a sonar expert

system can classify objects. Two examples are presented here.

Preliminary wall classification is possible during the execution of the

polyhedron-building algorithm. Walls are defined as any flat linear surface of

non-trivial length. Polyhedra being built can be considered walls as long as each of

the newly added regression line segments meet colinearity and proximity criteria. As

soon as the polyhedron-building algorithm adds a new line segment based on

convexity criteria, the polyhedron being built can be immediately reclassified from

wall to object since the polyhedron is no longer linear.

Once a polyhedron has been built, all polyhedron attributes are

automatically calculated. At this final stage, all of the preliminary work to

quantitatively determine precise geometric objects greatly simplifies object

76

classification. For instance, a polyhedron might be classified as a mine-like object

whenever cross-sectional area is between 10 and 100 square feet (Figure 6.9). Other

objects can be classified in an equally straightforward manner.

Some objects should not be uniquely classified. For example,

discrimination between a scuba diver and a mine-like object may be difficult A

particular strength of the expert system approach is that each object can receive

multiple classifications with associated confidence factors as appropriate. This feature

allows high-level reasoning using uncertainty, rather than being constrained by an

arbitrary and potentially incorrect single classification.

(defrule classify-mine-like-object

; if this left-hand side of the rule is found to be true:

?poly <- (Polyhedron (status COMPLETE)
(classification OBJECT)
(start ?startpolytime)

(end ?endpolytime)

(area ?area))

=>

; then perform this right-hand side of the classification rule:

(if (and (>= ?area 10.0) (<= ?area 100.0)) ; area criteria test

then (modify ?poly (classification MINE))

(printout t "The polyhedron at times " ?startpolytime

?endpolytime)

(printout t "has classification MINE.")

Figure 6.9 Classification rule for a mine-like object

What was originally an intractable sonar classification problem is now

much simpler and understandable at the highest level of the expert system.

77

3. Self-Diagnosis and Self-Correction

An additional strength of the expert system paradigm is that rules can be

written to evaluate overall system performance, correcting internal vehicle problems

without external control. Self-diagnosis is possible when expert system evaluation of

sensor data differs from a priori knowledge of the real world. Such differences can be

automatically fed back into the system to correct the offending error. As an example,

gyro error and gyro drift rate can be diagnosed and quantified when a deduced wall

orientation does not match known geographic data. Updating system estimates of gyro

error and gyro drift rate result in an immediate improvement in sonar accuracy and

positional estimates.

F. EXPERT SYSTEM PARADIGM

The power of an expert system is essential for a sonar classifier to perform

high-level reasoning using qualitative attribute and sonar classification heuristics. This

section describes the salient features of expert systems that are pertinent to the

development of an autonomous sonar classifier.

1. Expert System Characteristics

An expert system typically includes the following characteristics: it

simulates human reasoning about a problem domain, it uses symbolic knowledge

representation and rules of thumb, it can analyze problems using heuristic or

approximate methods that may not be guaranteed to succeed, and it deals with

complexity that normally might require a human expert (Jackson 90). Expert system

development differs from usual software engineering approaches in that rules of thumb

can be developed incrementally to solve large problems that do not necessarily have a

clearly defined solution methodology. Complementary rules work together without

explicit supervision to discover solutions, if any exist.

78

2. Knowledge Representation and Reasoning using Facts, Rules and an

Inference Engine

Expert systems typically use facts to represent knowledge about the state of

the problem domain. Facts can be known prior to execution as part of the problem

definition, and can also be discovered during program execution as new data becomes

available or new knowledge is deduced. Rules are heuristic representations of human

reasoning that follow the condition-action model. If a rule finds certain conditions to

be true, then corresponding actions will follow and the rule is said to execute or "fire".

The inference engine is the mechanism that allows all of the rules to individually

examine the fact database and fire. The order of rule precedence and firing may range

from random sequencing to a strictly defined execution order.

Strict execution order is typical of traditional programming paradigms but is

usually considered to be an undesirable constraint for expert systems. Interestingly,

random firing of expert system rules often uncovers solutions to problems that might

otherwise be considered unsolvable using a strictly defined sequential approach.

3. Rule Sets and Control of Execution Flow

Given that a single rule may be inadequate to fully evaluate a complex

situation, often groups of rules called "rule sets" are written to work together on

particularly difficult analysis tasks. Such organization of rules allows a manageable

and modular approach to expert system design. However, the random nature of rule

firing allowed by an inference engine may permit partially processed facts to be

accessed and used by other rules before the original rule set has completed the group

objective. For this reason it is usually desirable to ensure that rule sets are able to run

to completion whenever activated, before other rules are again allowed to fire. As an

example, implementation of the algorithm in Figure 6.6 requires several polyhedron

building rule sets working together in a coordinated fashion with parametric regression

rule sets.

Given the unpredictable nature of heuristics when solving highly complex

problems, the expert system designer may need to impose some controls on execution

79

flow among rule sets in order to ensure orderly execution. Randomness generally

remains desirable and can still coexist within the bounds of rule execution flow control

requirements.

4. Developing an Expert System

When a new application appears to be suitable for an expert system

implementation, the first developmental step is to define the application problem in

clearly understandable terms. This usually requires acquisition of expert knowledge in

the problem area to be solved. The facts that may exist in the problem domain must

be stated as unambiguously as possible. The overall problem can be logically grouped

into simply stated subproblems consisting of condition-action rules (Jackson 90).

Once the problem is well-defined, facts and rules are converted from plain

language into the syntax of the expert system being used. When first building an

expert system, facts and rules should be added in small numbers. Incrementally test

the expert system and avoid adding new rule sets until examples show that existing

rules work as intended. Additional adjustment may be necessary to ensure mutual rule

cooperation whenever new rules are added. Such an incremental prototyping approach

can be particularly effective when building large expert systems (Sacerdoti 91).

G. IMPLEMENTATION AND EVALUATION

1. NPS AUV Vehicle Description and Sonar Characteristics

Naval officers and civilian scientists at NPS are conducting active research

using an AUV designed and constructed at the school. The NPS AUV is used for

basic research and thesis work in control systems technology, artificial intelligence,

scientific visualization and systems integration. Specific NPS AUV project objectives

include the study of mission planning, navigation, collision avoidance, real-time

mission control, replanning, object recognition, vehicle dynamic motion control, and

post-mission data analysis (Healey 91) (Brutzman Compton 91).

The NPS AUV is eight feet long and neutrally buoyant, displacing 387

pounds with overall size and shape comparable to a small dolphin. Current vehicle

80

endurance is two to three hours. Maximum speed of the NPS AUV is about two

knots. The NPS AUV turning diameter is under three body lengths, designed to be

ideal for maneuvering in the large NPS swimming pool. The NPS pool allows precise

testing in a quiet, controlled environment Open-ocean testing is feasible but is being

reserved for a more robust follow-on vehicle. Video clips showing normal NPS AUV

operation are available in (Brutzman, Floyd, Whalen 92) and (Brutzman 92).

The primary components of the NPS AUV are an aluminum hull, fiberglass

sonar dome, four high-frequency directional sonar transducers, twin counter-rotating

four-inch propellers, lead-acid batteries, eight plane surfaces, and a Gespac computer

running a Motorola 68030 processor with a 2 MB RAM card. Figure 6.10 shows a

general schematic of the NPS AUV.

Four PSA-900 Programmable Sonar Altimeters made by Datasonics Inc. are

orthogonally fixed in the nose of the NPS AUV pointing directiy ahead, downward

and to port and starboard. These transducers are fixed frequency and ultrasonic, each

at approximately 200 Khz. Sonar range gate is selectable at 30 m or 300 m, and pulse

length is 350 [is. Normal pulse repetition rate is 10 Hz. Sonar beamwidth is seven

degrees and range resolution is 1 cm at 30 m.

2. CLIPS Expert System

A number of expert systems are commercially available. CLIPS ("C"

Language Integrated Production System) was chosen for this application due to its

portability, extendability, capabilities, thorough documentation and interactive tutorials

(NASA 91). CLIPS is also reasonably priced (approximately $450 or free for

government agencies). CLIPS was developed by NASA to meet the varied

requirements of NASA Mission Control Center delivery systems. CLIPS syntax is

similar to the functional language Lisp and follows the if-then conditional rule model.

The most recent versions of CLIPS add object-oriented and procedural programming

capabilities (Giarratano 91). Since it is written in "C", CLIPS can run under most

computer architectures. A feature of CLIPS that makes it particularly suitable for

AUV use is that developed expert systems may be exported to nearly any

81

1. SONAR TRANSDUCERS
2. PADDLE WHEEL SPEED SENSOR

3. FORWARD RUDDER (2)
4. DEPTH CELL TRANSDUCER

S. THRUSTER MOTOR
6. BOH PLANE (2)

r. BATTERIES
RATE GYROSCOPES (ROLL, PtTCH, AND YAW RATES

9. VERTICAL GYROSCOPES (ROLL AND PITCB ANGUS I

10. PROPELLER SHAfT MOTOR
11. STERN PLANE (2)

12. TOOTHED WHEEL RPH
13. PROPELLER

14. REAR RUDDER (2)
15. DIRECTIONAL GYROSCOPE

. riLTER CARDS POR CONTROL 5UlirA.CS SERVOS AND
OYROSCOPES

FUSE, POWER SWITCH, BATTERY CHARGING,
COMPUTER COMMUNICATIONS PANEL

IS. ACCESS HATCH
19. MICROCOMPUTER ANO ANALOG TO DIGITAL/DIGITAL

TO ANALOG CARDS
20. THRUSTER PROPELLER

21. THRUSTER TUBE
12. THRUSTER HOUSING
CONTROL SURPACE SERVOMOTOR (8)

DAVID MARKO

Figure 6.10 General schematic of NPS AUV

microprocessor by autogeneration of executable "C" language code. CLIPS has an

active user base, annual applications conferences, an applications abstract registry and

is provided with complete source code (Brooke 92).

82

3. NPS AUV Sonar Classification System

The program used to implement the concepts presented in this chapter was

written using the CLIPS expert system. Actual sonar data collected by the NPS AUV

is recorded in files for later use as input to the sonar classification expert system.

This sonar data is analyzed off-line while running on a separate workstation.

A variety of outputs from the expert system provide several ways to

visualize results. Two-dimensional graphics plots of raw sonar data and corresponding

parametric regression line segments are shown on screen and as hard copy. An output

file listing each individual geometric object and classification provides both hard copy

of results and automatic input to the three-dimensional NPS AUV Integrated Simulator

described below.

Sonar geometric analysis is computationally intensive. While running under

the CLIPS environment on a Sun 2 workstation, the expert system is currently able to

maintain a 7 Hz sonar return processing rate. This is nearly as fast as the 10 Hz data

rate recorded by the NPS AUV and adequate for most real-time requirements.

Optimization, elimination of network file server bottlenecks and source code

compilation will further improve performance. Project goals include porting the

NPS AUV sonar classification expert system to a microprocessor internal to the

vehicle.

It is clear that a sonar classification expert system can operate

autonomously in real time.

4. NPS AUV Integrated Simulator

Typically the development and testing of AUV hardware and software is

greatly complicated by vehicle inaccessibility during operation. Integrated simulation

remotely links vehicle components and support equipment with graphics simulation

workstations. Integration of actual AUV components with three-dimensional

simulation allows complete real-time, pre-mission, pseudo-mission and post-mission

visualization and analysis in the lab.

83

Integrated simulator testing of AUVs is a broad and versatile method that

has proven very effective in the development of the NPS AUV sonar classification

expert system (Brutzman March 92) (Brutzman May 92). In particular, post-mission

simulator playback of recorded telemetry, sonar sensor data and system state

transitions supports in-depth reenactment, playback and analysis of processed sonar

data. This scientific visualization approach permits rapid and precise development of

geometric analysis techniques and classification heuristics for the NPS AUV sonar

classification system.

High-resolution three-dimensional graphics workstations can provide

real-time representations of vehicle dynamics, control system behavior, mission

execution, sonar processing and object classification. Use of well-defined, user-

readable mission log files as the data transfer mechanism allows consistent and

repeatable simulation of all AUV operations.

H. EXPERIMENTAL RESULTS

1. Classification Test Scenario

An example best demonstrates successful classification of actual sonar

returns. A single swimmer was chosen to represent a mine-like object and was

positioned as a target near the right-hand wall of the NPS swimming pool, shown in

Figure 6.11.

The NPS AUV was programmed to follow a racetrack traversal of the pool

and record all pertinent data. Figure 6.12 shows individual left transducer sonar

returns plotted as circles and vehicle track as a large oval, while the line segments

calculated by the parametric regression algorithm are shown superimposed. Some

distortion is evident due to unmodeled sideslip error in vehicle track data.

2. Experimental Results

The sonar data recorded by the NPS AUV in the pool are uploaded after

mission completion via modem and processed off-line by the authors' sonar

classification expert system. Classification results are then graphically rendered by the

84

to

1

1
1

\
| O

swimmer

1

$
1

/
l

V^. "rst turn

flnWi i

dlv« point £y r ~>
launch rig

J

Figure 6.11 NPS AUV test track using left transducer only. Note swimmer

target.

NPS AUV Integrated Simulator running on a Silicon Graphics Iris workstation. This

three-dimensional display shows all generated parametric regression line segments,

inferred edges, hidden edges, and detected walls. The overall pool graphics display as

seen from a viewpoint high above the pool is shown in Figure 6.13. The target of

interest met classification criteria for a mine-like object and a simulation closeup is

shown in Figure 6.14.

The integrated simulator has the additional feature of being able to play

back sonar detections and classifications simultaneously with vehicle motion in real

time or slow motion. Evaluation of sonar classification results using the scientific

visualization techniques provided by the integrated simulator was extremely helpful

during development and testing of sonar expert system classification heuristics.

The experimental results show that the NPS AUV Autonomous Sonar

Classification System is highly effective at classifying objects despite the low

resolution of the active sonar employed.

85

Figure 6.12 NPS AUV sonar classification expert system plot of pool data

and parametric regression line segments

I. DISCUSSIONS AND APPLICATIONS

1. Extendability to Video, Lasers, Complex Sonars and Sensor Fusion

Active sonar is not the exclusive sensor used for underwater object

detection and classification. A variety of other sensors are coming into use including

underwater videocameras and lasers. In addition to range and bearing data, advanced

sonars may provide completely different types of data such as frequency spectra,

doppler or long-range conical beam data. Ultrasonic sonars have also been employed

by land vehicles.

All of these sensors share common characteristics that allow autonomous

analysis by expert systems. Each sensor type provides data sets that can be analyzed

using geometric reasoning techniques. In every case expert knowledge can define both

quantitative and heuristic rules for processing sensor outputs to create primitive

geometric objects, thus allowing object classification.

86

Figure 6.13 Integrated simulator screen display of the full NPS pool and all

sonar classifications

Sensor fusion is the correlation of multisource information to resolve

ambiguity and increase confidence in individual classifications. Sensor fusion is

particularly valuable in offsetting the weaknesses of one sensor type with the strengths

of another. An example of sensor fusion might be to correlate accurate laser bearing

data with accurate sonar range data. A thorough survey on multisensor fusion roles,

approaches and applications is provided by (Luo 89). Sensor fusion can be directly

implemented using the pattern-matching capabilities of a multisensor classification

expert system.

2. Intelligent Remote Sensors

The use of remote sensors is becoming commonplace. The primary

limitation of most remote sensors is that they have little ability to independently react

to sensor inputs. Most sensing devices require direct control or have an arbitrary

sampling period, while continuously-sensing devices require dedicated data

communication lines. Remote underwater sensors need to operate autonomously or

87

Figure 6.14 Integrated simulator display close-up of a mine-like object

classified by the sonar expert system using detected edges,

inferred edges, hidden edge and cross-sectional area

with minimal external control in order to improve their efficiency, capabilities and

cost-effectiveness. Embedding an expert system application using

microprocessor-based control is a feasible method to create intelligent and autonomous

remote sensors.

3. Data Reduction

Most sensor data is high bandwidth. Autonomous vehicles, remotely

operated vehicles and remote sensors typically receive extremely large amounts of

data. Storage or transmission of raw data for off-line processing is undesirable and

imposes unreasonable memory capacity and communications requirements. A

significant benefit of autonomous classification is that it reduces massive amounts of

raw data into concise information that can be efficiently recorded or communicated.

Data without value is easily filtered. The overall data compression ratio can equal

several orders of magnitude.

4. Future Use of Expert Systems by Autonomous Vehicles

If autonomous vehicle sensors and missions are to become increasingly

capable and sophisticated, it is likely that parallel processing of distributed artificial

intelligence modules will be necessary in order to provide adequate computing power

with real-time response. A typical set of high-level processes might include detection

and classification for multiple sensors, path planning, search, systems control and

88

others. None of these processes is completely independent, but typically each process

can run in parallel with the others most of the time. One abstract software

architecture that supports such a distributed approach is the blackboard paradigm.

A blackboard system directly extends the functionality seen in an expert

system for a collection of distributed processes (Jackson 90). A good metaphor for the

blackboard approach is a group of human experts working together on a large problem

using a blackboard as their means of communication. Problem definition, data,

questions and answers can all be written and read on various sections of the

blackboard. Each independent expert has full access to the blackboard and looks for

information pertinent to his area of expertise. When an expert develops some result or

new question worth communicating to the group, that information is recorded on the

blackboard.

Similarly, a blackboard system has distributed independent knowledge

sources, each of which can use any method desired to solve portions of a large

problem. Communications are recorded on the blackboard and are available to all

knowledge sources. Complex problems are solved through cooperative reasoning

(Corkill 91). As another example, each of the processes shown in Figure 6.1 might be

implemented as separate knowledge sources for a blackboard. Expert systems are well

suited as knowledge sources for the blackboard paradigm.

Development of autonomous expert systems is likely to provide intelligent

components that will remain useful in the advanced architectures of future autonomous

vehicles.

J. CONCLUSIONS

Autonomous sonar classification systems can accurately detect and classify

objects in the underwater environment. Precise geometric analysis is combined with

qualitative expert system heuristics to provide a flexible and robust approach with

wide applicability. Autonomous classification systems are capable of supporting

sophisticated real-time applications in working autonomous vehicles.

89

VII. SHORTEST PATH PLANNING USING A CIRCLE WORLD

A. ABSTRACT

Path planning is a critical capability for mobile robots operating in environments

containing obstacles. Building a path planning module as part of this thesis has been

helpful in understanding design requirements, world models and software architecture

specifications both for the NPS AUV and the NPS AUV Integrated Simulator.

Mobile robot path planning around obstacles can be accomplished by modeling

obstacles as pairs of identical circles with opposite rotations. Addition of robot radius

and safety standoff distances to circle radii allows modeling the robot as a point. This

circle world model can be used to calculate shortest paths between points.

Tangents between individual circles in a circle world have no inherent

redundancy due to the geometric uniqueness of each landing and leaving point on

every circle. Alternate partial paths landing at an intermediate circle obstacle must be

properly compared in order to determine which is shortest. Dijkstra's algorithm or

(preferably) A* search can selectively use visibility and partial path comparison

calculations to find the shortest, safest or optimal path between start and goal points.

Tangent visibility from a single point to all circles can be calculated in

order 0(«log«) time. Similarly, tangent visibility from a single circle to all other

circles can be calculated in order 0(«log«) time. The shortest path between start and

goal points can be calculated in order 0(n2
\ogn) time.

Since obstacle avoidance is a typical robot behavior regardless of obstacle

height, the circle world search model is direcdy extendable to the general case of

three-dimensional path planning. This approach is shown to be particularly suitable

for underwater vehicle path planning.

90

B. INTRODUCTION AND PROBLEM DESCRIPTION OF CIRCLE WORLD

Robot path planning is the search for an allowable, safe or optimal path for a

robot to follow from one location to another. A critical consideration in robot path

planning is the choice of model to represent the obstacles that a robot must avoid.

A well-known and fundamental method used for path planning is exemplified by

configuration space approach (Lozano-Perez 79) (Yap 87) (Akman 87) (Laumond 87)

(Schwartz 88) (Canny 88). In the configuration space approach a world is modeled as

a set of geometric obstacles. Obstacle boundaries are grown to include the effective

radius of a mobile robot. The mobile robot center can then be treated as a reference

point. Any location in the remaining non-obstacle free space is considered a legal

position for the mobile robot reference point. Visible tangents can then be calculated

between all obstacles. A fully connected graph is defined by obstacle boundaries and

the tangents between them. Determination of a shortest path is accomplished by

searching the visibility graph for the lowest cost path between start and goal points.

Polygons are typically the geometric form chosen to represent obstacles.

Another simple and effective way to represent obstacles in a configuration space

world model is to draw circles around them. The center coordinates of each circle in

the circle world model are located at the centroid of each corresponding obstacle. The

initial radius of each circle equals the minimum radius which completely surrounds the

given obstacle (Figure 7.1). The maximum radius of the moving robot is combined

with desired safety standoff distance and added to each obstacle circle radius

(Figure 7.2).

Such a circle world model allows a mobile robot to be represented as a moving

point. Any path in this circle world which can be drawn without crossing the interior

of a circle boundary is a valid robot path.

As the number of obstacles in a circle world increases, the possible number of

tangential paths from a start point to a goal point rises exponentially due to

combinatorial explosion. A simple circle world that includes all visible circle tangents

quickly becomes crowded (Figure 7.3). A typical circle world of moderate density has

91

• GoalG

Start S •

Figure 7.1 Simple obstacle representation using circles

Figure 7.2 Improved obstacle representation including robot radius and

safe standoff distance

about half of the circle tangents traversable while the remaining tangents are blocked.

The normal objective of path planning through an obstacle field is robot travel

from a known start point to a known goal point Typically a determination of shortest

path is desired, and therefore Euclidean distance traveled is the metric used to

determine the best route from start to goal (Figure 7.4). Other path selection criteria

such as safety or optimality may also be considered (Kanayama 88). The circle world

92

Figure 7.3 Simple circle world with all visible tangents

Start S

GoalG

Figure 7.4 Simple circle world shortest path

model and path planning algorithm presented here allow rapid and efficient

determination of shortest-distance paths.

At least one previous application, the Stanford cart mobile robot, used a similar

circle world model for obstacle representation and avoidance (Moravec 80)

(Moravec 83). However, the combination of vision processing and path planning

93

aboard that small robot proved prohibitively slow for real-time use due to hardware

limitations and greater algorithmic complexity.

Although most configuration space treatments are based solely on linear or

polygonal obstacles, obstacles composed of any closed combination of line segments

and circular arcs are formally addressed in (Laumond 87). However that work does

not explore the complexity differences between circle worlds and polygonal worlds for

tangent computation and shortest-path search algorithms.

It is expected that the shortest-path planning algorithm provided in this paper

will support real-time path planning by autonomous robots. These results are

presented with additional mathematical theory and greater detail in (Kanayama

Brutzman 91), which is included as Appendix D.

C. GEOMETRIC CHARACTERIZATIONS OF CIRCLE WORLD AND

SHORTEST PATH

In a circle world, obstacles are modeled by surrounding them with circles.

However, each circle surrounding an obstacle can have two possible traversal rotation

modes: clockwise or counter-clockwise. In keeping with convention (Kanayama 91),

clockwise traversals of circle perimeters can also be referred to as minus or

left-handed, while counter-clockwise traversals can be referred to as plus or

right-handed. A two-dimensional space filled with n noncontiguous obstacles can be

fully represented by n clockwise circles and n corresponding counter-clockwise circles.

Thus each obstacle is represented by two circles with opposite rotation modes, both

centered at the coordinates of the obstacle centroid.

The geometric data primitives needed to fully represent a circle world are Point,

Segment, Circle, Tangent, Arc, Configuration and Path. These geometric primitive

data structures are defined here using a hierarchical approach for simplicity and

clarity. When capitalized, these terms refer to the explicitly defined data structures

summarized in Table VII. 1. These data structure definitions are included in order to

94

best explain the circle world problem as well as the circle world source code in

Appendix E.

Table VH.1 CIRCLE WORLD GEOMETRIC DATA STRUCTURES

Circle World Geometric

Primitives Data Structures

Structure Elements Element Data

Types

Point x, y float

Segment point 1, point2 Point

Circle center

radius

direction

Point

float

CW (-1),

CCW (+1) or

POINT (0)

Tangent circle

angle

Circle

float

Arc circle

angle 1, angle2

Circle

float

Configuration tangent

orientation

Tangent

float

Path

(note: arc-segment pairs are

repeated as necessary)

initial_segment

•••

arc

segment

Segment
•••

Arc

Segment

A Point in a circle world is defined by a set of two-dimensional Cartesian

coordinates. A Segment is the line segment defined by two points that are connected

by a straight line. A Circle data structure is defined by a Point, a radius and a

direction of rotation. A Tangent data structure is comprised of a Circle and an angle

which is the orientation between the circle center and the tangent point on the circle

circumference. An Arc is defined by a Circle and two angles, corresponding to the

starting and finishing angles oriented from the circle center to the arc starting and

95

finishing endpoints. Note that Arc direction of rotation is not dependent on the

precedence of the starting and finishing angles, but rather is implicitly included in the

Arc by the rotation direction of the member Circle. A Configuration is a combination

of a Tangent and an orientation angle. The orientation angle of a Configuration is

always perpendicular to the component Tangent angle but can be in either of two

directions. Thus a Configuration point defines whether a Tangent is a landing point or

a leaving point. Finally, a Path between a pair of start and goal points in a circle

world includes a Segment followed by zero or more Arc-Segment pairs. A typical

Path includes a straight line segment from the start point to the first circle obstacle, an

Arc around a portion of that circle, a Segment from the first circle to the next circle

and so on until the desired goal point is reached. As an example, a single segment

Path could directly connect the start and goal points if no circle obstacles were

between them.

A special case arises that is of use when designing visibility algorithms: a Point

can also be treated as special case of a Circle. Setting a Circle radius value to zero or

rotation mode to zero (or both) effectively makes that Circle behave as a Point. In

particular this approach allows treating the start and goal points as circles, simplifying

evaluation of tangents and paths in a circle world.

Every pair of circles defines four mutual tangent line segments: two external

tangents and two cross-tangents (Figure 7.5). Note that the eight tangent points on the

circumferences of these two circles are unique. Also note that the respective lengths

of the external tangent segments and cross-tangent segments are equal.

The coordinates of the four possible tangents between the pairs of circles shown

in Figure 7.6 can be calculated using Equations (7.1), (7.2) and (7.3). Rotation mode

values follow the convention counter-clockwise (CCW, right-handed, plus or +1) and

clockwise (CW, left-handed, minus or -1). Points which are being modeled as special

cases of circles have rotation mode and radius equal to zero.

Angle 8 in Equation (7.1) and Figure 7.6 is the offset angle between the

circle-center-to-circle-center orientation 8 and tangent orientation a.

96

Tangential Line Segments

leaving points

// -

landing points

lr, rl tangents are "cross-tangents"

11, rr tangents are "external tangents"

Figure 7.5 Tangential line segments between circles

b = arcsin-
mode^ r

2
- mode

x
• r

x

distance(circlevcenter, circle
2
.center)

(7.1)

97

Circle Tangent Determination

rotation model - CW - -1 a-* rotation mode2 - CW - -1

/ mode2 • r2 - model • M
-asin I

\ distance (circlel .center, circle2.center)

- orientation (circlel .center, circle2.center)

CG - normalize (Q - §)

rotation model

Figure 7.6 Determination of circle cross-tangents and external tangents

98

Angle in Equation (7.2) and Figure 7.6 is the orientation between circle

centers.

= orientation (circlevcenter, circlercenter) (7.2)

Angle a in Equation (7.3) and Figure 7.6 is the orientation of the desired tangent

between the circles.

a = normalize (0 - 5) (7.3)

Visibility in circle world is defined as the ability to connect two points using a

single line segment without crossing any circle boundary. The first step in

determining visibility is to evaluate point-to-point segment orientation relative to every

circle center using Equations (7.4), (7.5) and (7.6). The three regions of possible

circle locations relative to the point-to-point segment are shown in Figure 7.7.

Angle in Equation (7.4) and Figure 7.7 is the orientation between the two

points being checked for visibility.

= orientationipointl, point!) (7 -4)

Angle 81 in Equation (7.5) and Figure 7.7 is the angle between the current circle

and line segment left side.

Oj = orientationipointl, circle..center) - (7.5)

Angle 82 in Equation (7.6) and Figure 7.7 is the angle between the current circle

and line segment right side.

6
2
= orientation(point2

t circlercenter) - (7.6)

To complete the visibility check for two points and a given circle, the circle

radius is now compared to the distance between the closest endpoint and the circle

99

Point-to-Point Visiblity Checks

imi*;
\

pointl

«

(A)

|81|<T
|

/!62! > ?\|
e-

71

/ !52! <; ^r
/

f point2

,u«-,

Three regions of possible circle locations

- orientation (pointl
,
point2)

61 = orientation (pointl, circle.center) - 8

62 - orientation (point2 f circle.center) - 6

Figure 7.7 Determining point-to-point visibility in circle world

center. Three comparison results are possible. In the left-most region of Figure 7.7,

successful test of Inequality (7.7) indicates that the current circle radius should be

compared to the distance to pointl for visibility determination.

I«il * (7.7)

100

In the center region of Figure 7.7, successful test of both Inequalities (7.8) and

(7.9) indicate that the circle radius in question should be compared to the distance to

both point 1 and point2 for visibility determination.

IM <
\

(7.8)

|
A.

|
> - (7.9)

In the right-most region of Figure 7.7, successful test of Inequality (7.10)

indicates that the current circle radius should be compared to the distance to point2 for

visibility determination.

|82 |
* i (7.10)

This segment visibility determination process must be repeated until any circle

intersection disproves visibility, or until all circles in the circle world have been

checked without intersection. A segment that touches only the perimeter of a circle

without crossing the circle boundary can be considered visible. Visibility

determination for a single pair of points in a world containing order 0(«) circles has

algorithmic complexity of order O(w).

The primary objective of path planning is to find a safest or shortest path. A

simple measure of path costs in a circle world is the straightforward summation of

Euclidean distances along segments and arcs. However, comparing relative costs

when two partial paths have different landing points on the same circle is more

complex. Although the first partial path can reach the intermediate circle obstacle

using a shorter route than a second partial path, the second partial path can be part of

a shorter overall route to the goal when travel around the current intermediate circle

circumference is included. In order to determine which partial path which will be in

101

the shortest overall path, the two partial paths must be properly compared (Figure 7.8).

An accurate comparison can be obtained by including the cost of the arc between the

landing points of the two arriving partial paths. Application of Inequality (7.11) in

Figure 7.8 indicates which partial path is shorter.

?

costipathl) + arc_cos*(a, by mode) < cost(path2) (7.11)

Note that such a comparison is only meaningful when each partial path follows

the same direction of rotation around the intermediate circle being evaluated. The

definitions of Circle and Arc explicitly include direction of rotation. Opposite rotation

modes around the same obstacle are part of opposite circles and thus mutually

exclusive paths. Should the leaving point for the actual shortest path lie between the

two partial path landing points (e.g. points a and b of Figure 7.8), the longer of the

arriving partial paths will correctly be excluded.

Successful determination of visibility and correct comparison of intermediate

path costs for multiple points and circles allows the employment of search techniques

to find the best path overall from start to goal. Formal statement and proof of the

path comparison proposition can be found in Appendix F section 4.3 (Kanayama

Brutzman 91).

D. ALGORITHM FOR DETERMINING VISIBLE TANGENTS

Assume that a general circle world is modeling n independent obstacles with In

circles. Visibility determination for a single pair of points in this world has already

been shown to have algorithmic complexity of order O(n). The set of all pairs of

points that may need to be checked includes line segments from the start point to the

finish point, start point to a tangent on every circle, finish point to a tangent on every

circle, and four mutual tangents between each possible pair of circles. Tangents are

not possible between a circle and itself or its opposite. As a result, a total of

[4(2n)(2/i - 2) + 4n + 1] = [16/z
2

- 12n + 1] possible line segments may need to be

evaluated.

102

Comparison of Partial Path Costs

•-<-

goal

path2

pathl

?
cost (pathl) + arc_cost (a, b, CCW) < cost (path2)

Figure 7.8 Comparison of partial path costs

Since there is no inherent geometric redundancy in any of these tangent points,

each tangent segment must be considered independently of all others. However there

is no requirement that every possible tangent segment be evaluated when determining

the shortest path. The proper choice of which points and segments need to be

evaluated is essential in order to conduct an efficient search.

Visible tangents from a single point to all other circles can be determined using

a sweep method (Preparata 85) (Figure 7.9) in order O(nlogAz) complexity. The point

103

to all circles visibility determination algorithm is elaborated in Figures 7.10 and 7.11.

As tangents to each circle are evaluated, they are inserted into and removed from a

heap in order to be sorted by orientation. A second pass of the sorted circle tangent

data employs heap insertion and deletion for direct determination of visibility of each

tangent

Visible tangents from a single circle to all other circles (Figure 7.12 and

Figure 7.13) can also be determined using this sweep method in order 0(«log/z)

complexity. The single circle to all circles visibility algorithm is nearly identical to

the point sweep algorithm elaborated in Figures 7.10 and 7.11. Care must be taken to

require proper matching of rotation mode values between sweep direction and the

sweep circle when implementing the algorithm.

Similar sweep method algorithms have been used for determining line segment

visibility (Welzl 85) and polygon visibility (Asano 85) in order 0(n2
) time. It is

interesting to note that substitution for each circle by a line segment connecting the

left and right tangents to that circle appears to make this type of sweep nearly

identical to the individual line segment visibility sweep in (Welzl 85). However, each

individual circle has order O(n) such tangent landing and leaving points associated

with it. Thus, a circle world has at least order O(n) more segments in the complete

tangent visibility graph than a polygonal world or line segment world. This increased

complexity is a significant difference between the geometry of the circle world

problem and the standard polygon-based configuration space treatments referenced

previously.

E. SHORTEST-PATH DUKSTRA AND A* SEARCH ALGORITHMS

Dijkstra's algorithm is a standard approach to solving the single-source

shortest-path planning problem (Manber 89). Given a start point in a circle world,

proper application of Dijkstra's algorithm will calculate the shortest path to each

clockwise and counter-clockwise circle until the designated goal point is reached. This

is a greedy algorithm in that the shortest available path from the start point is always

104

Sweep Method - Point to All Circles

5+
\ \ 4+ 3- 2-

-"—-^ \ /A\ 3+

5- /
5 j\ ./(2 j

4>\V
\\ ,J\\ A 3]

y^y^+

4 A / //£

^^-^^ y/ / \\.

6+

Ny/ / / 1 N. N.

6 Wi-

7-

6-, 8+ /

6
J

'8-

1+

Figure 7.9 Sweep visibility determination from point to all circles

selected upon each iteration. Essentially the algorithm branches outward equally in all

directions.

While this algorithm is useful for building a complete collection of shortest paths

to all circle obstacles, it is extremely inefficient if only the shortest path to a single

105

O(nlogn) Calculate and sort circle tangents:

Calculate left and right tangents to each circle. Note that CCW and CW
rotations denote separate independent circles.

After calculating a circle's tangents, use heap insertion to sort the circle

relative to others by orientation. If two orientations are equal, secondary

sort key is shortest tangent distance.

Keep track which is shortest right tangent.

O(nlogn) Perform circular sweep to determine tangent visibilities:

Initialize sweep termination angle equal to sweep starting angle.

Starting at circle with shortest right tangent, conduct a complete sweep in

counter-clockwise direction.

Meet right tangent: insert circle into heap.

If circle inserted is on top of heap (or tangent distance equals top of

heap), mark that right tangent as visible. Otherwise if circle was below

top of heap, mark right tangent as nonvisible.

Meet left tangent: remove circle from heap.

If removed circle was on top of heap (or tangent distance equaled top of

heap), mark that left tangent as visible. Otherwise if circle was below top

of heap, mark left tangent as nonvisible.

If circle with current left tangent was not found in heap, it overlaps the

sweep starting angle. Change sweep termination angle to current sweep

angle.

Update circle heap pointer cross-reference table.

Similarly process any other circle tangent(s) at current sweep angle.

Increment sweep angle to next circle in sorted circle table and repeat for

all circles.

If necessary, resume at start of circle table and continue sweep until all

tangents through the sweep termination angle are reprocessed. This

allows any circles which overlap the start angle to be correctly evaluated.

Figure 7.10 Explanation of sweep visibility algorithm from point to all circles

goal point is desired. If the robot is repeatedly operating in a fixed environment and

must frequently return to a specific location, however, a single application of

Dijkstra's algorithm using that specific location as a start point will provide all

shortest paths past all fixed circle obstacles. Precalculation of all shortest paths of

106

Algorithm Sweep VisibilityjromPoint (point, circle_world);

Input : Point from which visibility is to be checked, and circle_world which

includes start point, goal point, and both CW and CCW rotations of all

circles.

Output : All cross-tangents and external tangents originating at point, including

lengths, endpoint coordinates, orientations and visibilities.

begin

n := 2 (#circles) + 2; {include CW/CCW circles, start & goal points}

for i := 1 to n do

tangent := calculate tangent (point, circle [i]);

push (tangent, tangent_heap);

{primary sort key is orientation, secondary sort key is tangent length}

if tangent.length < shortest_tangent.length then

shortest_tangent := tangent;

for i := 1 to n do sorted_tangents [i] := pop (tangent_heap);

end_angle:= shortest_tangent.orientation;

i := shortest_tangent index in sorted_tangents list;

while sorted_tangents [i].orientation precedes or equals end_angle do

if sorted_tangents [i].mode = RIGHT then

push (sorted_tangents [i], circle_heap);

{sort key is length}

if (top (circle_heap).distance = sorted_tangents [i].distance) then

sorted_tangents [invisible := VISIBLE;

else sorted_tangents [invisible := NONVISEBLE;

if sorted_tangents [i].mode = LEFT then

if not found (sorted_tangents [i], circle_heap) then

end_angle := sorted_tangents [i],orientation;

{continue sweep until all circles fully evaluated}

else if (top (circle_heap).distance = sorted_tangents [i] .distance) then

sorted_tangents [i].visible := VISIBLE;

else sorted_tangents [i].visible := NONVISIBLE;
pop (sorted_tangents [i], circlejieap);

i := (i + 1) mod (n + 1); {look at next circle in ordered list}

end

Figure 7.11 Pseudocode for sweep visibility algorithm from point to all circles

107

Sweep Method - CW C/rc/e to AH Circles

5+ 4+

--—-Oi \
3-

2-

s4- /^

5 A \ /(*)?
^^/ \ \ A 3 J >>^^^+

X

\/4

6+ " /^ >. _.„

6
J

7-
/A*
8+ /

B-

1+

Figure 7.12 Sweep visibility determination from clockwise circle to

all circles

interest may be more cost-effective than recalculating the latest shortest path objective

immediately prior to travel.

In the case of circle world search, the A* search algorithm overcomes the

inefficiencies of Dijkstra's algorithm by applying an evaluation function to each

iterative selection in order to proceed as directly as possible towards the goal.

Distance remaining to the goal and arc cost around the current circle obstacle are

108

Sweep Method - CCW Circle to All Circles

4
j^L

+
3-

2-

/~~^/3+

5-.,.. (5 K /f 2
J

4- ^^z^ "\ / 3
J

4 jV I//
x^_^^+

^
(

6

<D^1.

7- /

/ / /

8
J

s

1+

8+/
i

/£/8-
Figure 7.13 Sweep visibility determination from counter-clockwise circle to

all circles

included with path cost when determining which path of the many available should be

extended next (Figure 7.14). This search approach has the effect of driving the search

in the direction of the goal and ignoring paths that are expensive, i.e. paths that are

heading in a wrong direction.

The evaluation function comparison test applied in a circle world search is given

in Inequality (7.12) and Figure 7.14. Note that the evaluation function term for

109

A* Evaluation Function Comparison

pathl path2

?
cost (pathl) + arc__cost (a, b, CW) + distance (b, goal) >

cost (path2) + arc_cost (c, d, CCW) + distance (d, goal)

Figure 7.14 A search evaluation function comparison

projected tangent segment distance from the current circle to the goal point does not

require the projected tangent segment to be visible.

?

costipathl) + sic_cost(a, b, mode) + distance(b, goal) z

costipathT) + arc_cost(cf d, mode) + distance(d\ goal) (7.12)

110

As expected, the A* search algorithm is much more efficient than Dijkstra search

in a circle world. Given a reasonably uniform distribution of n circle obstacles about

a start point, Dijkstra' s algorithm tends to reach the goal in order 0(«) search steps

(Figure 7.15).

eg 3E Co.l > '

irch 9i«[» for Dljkstra's search algorithm 11 February 1992 -l.'jiil? -x- 44.3212 -2C.3212 -y- 31.5331

Figure 7.15 Search steps displayed for Dijkstra's search algorithm

It is conjectured that an A* search requires only order O(logn) search steps for

the same uniformly distributed circle world (Figure 7.16). Algorithmic efficiency is i

critical consideration in the path planning problem, since the total number of tangent

111

segments in the visibility graph is quite large. For the twenty circles of the

challenging example circle world, 684 of 1682 total tangents (40.7%) are visible

(Figure 7.17).

O

o

O-' 0"" !

O'>T f- Coal VV

. Circle 18

irch steps for A-star search algcrUh- 11 February 199? -7.3 -x- 44.3 -2C.3 -y- 31.3

Figure 7.16 Search steps displayed for A search algorithm

Worst case A* search approximates Dijkstra algorithm performance, approaching

order 0(n) steps only when all obstacles are between the start point and the goal.

Thus in every case A* search algorithm performance is superior to the Dijkstra

algorithm. A formal proof regarding the optimality of the A* search method in graph

112

Challenging clr 11 February 1992 4619 -y- 31.6993

Figure 7.17 Challenging circle world visibility graph

searching can be found in (Hart 68).

The circle sweep algorithm (Figures 7.10 and 7.11) calculates visibility from a

point or circle to all other circles in order 0(«logn) complexity. The algorithmic

complexity of the complete path planning problem using A* search is therefore

order 0(n2
logn) in worst case, and conjectured to be order Oinlog^n) in best case. It

is important to note that the best case is the most likely to occur situation where all

circles are distributed randomly. The worst case is the less likely situation where all

113

circle obstacles lie directly between the start and goal points. Additional work is

needed to formally determine the complexity of A* search relative to Dijkstra search

given the special geometric constraints of a general circle world.

F. IMPLEMENTATION AND RESULTS

The author has written a program in ANSI C to illustrate and evaluate the

methods described in this paper. The full program consists of geometric primitive

data structure definitions, a library of spatial reasoning functions, tangent visibility

determination routines, search functions to perform either Dijkstra or A* search,

graphical screen and hard copy output, and a text-based user interface. Source code is

included as Appendix F.

Two methods are employed for output. Primary output consists of large

coordinate text files including embedded labels (Figures 7.15, 7.16 and 7.17). These

files can be sent to create two-dimensional graphical output (Figure 7.18) using

plotting routines such as the Unix graph command or the sunplot routine

(Mullender 87). Printed hard copy or screen graph output can be generated.

Secondary output consists of a listing of geometric primitives such as circles,

points, paths, segments and arcs generated during execution. These high-level text

outputs can be easily used as input for revised circle world search runs (Figure 7.19).

The outputs can also be passed as input to independent robot motion control processes

or graphical simulation programs such as the NPS AUV Integrated Simulator.

ANSI C was chosen as the project programming language for purposes of

efficiency, portability and compatibility with other robot applications at NPS. It is

important to note that circle world program inputs and outputs are language and

platform independent, however. While the circle world programs normally run on

powerful workstations under the Unix operating system, they are completely portable

to other architectures such as the IBM PC or GESPAC 68030/OS-9 running on the

NPS AUV.

114

0.000000 0.000000
". Start"

35.000000 18.000000

". Goal"

5.000000 5.000000
". Circle 1"

7.000000 5.000000

6.999695 5.034905

6.998782 5.069799

[.... etc. around each circle perimeter]

7.000000 5.000000

16.500000 5.000000

"Straight line start to goal (cost = 34.48)
"

0.000000 0.000000

16.000000 0.000000

8.000000 0.000000

Best path start to goal (cost = 36.11)
"

16.000000 0.000000

[.... various line segments & bounding points follow]

Figure 7.18 Excerpt from graphics plot file intermediate output

The current circle world implementation program uses an exhaustive and

iterative visibility determination algorithm instead of the more efficient sweep method

algorithm presented here. Source code optimization is worthwhile but not mandatory

prior to integration on board an operational real-time vehicle such as the NPS AUV.

G. THREE-DIMENSIONAL APPLICATIONS AND FUTURE WORK
The two-dimensional approach to path planning provided by the circle world

model can be direcdy used for robot motion on any planar surface, such as a

laboratory, shop or warehouse floor. Interestingly, the circle world approach is not

constrained to path planning in two dimensions. This extendability is a valuable result

since efficient path-planning algorithms in three dimensions are considered to be an

115

Circle_World Shortest Path Determination

Point 10.00 5.00 0.00 Start

Point 125.00 65.00 0.00 Goal

Circle 10.00 25.00 0.00 5.00

Circle 40.00 30.00 0.00 20.00

Circle 75.00 20.00 0.00 15.00

Circle 100.00 45.00 0.00 18.00

Circle 20.00 60.00 0.00 5.00

Circle 115.00 10.00 0.00 5.00

Circle 65.00 55.00 0.00 5.00

Path planning results: Best path (cost 143.8)

Segment 5.00 5.00 0.00 42.72 10.19 0.00

Arc 40.00 30.00 0.00 20.00 277.83 328.11 1=CCW
Segment 56.98 19.43 0.00 62.26 27.92 0.00

Arc 75.00 20.00 0.00 15.00 148.11 139.87 -1=CW
Segment 63.53 29.67 0.00 86.24 56.60 0.00

Arc 100.00 45.00 0.00 18.00 139.87 94.45 -1=CW
Segment 98.60 62.95 0.00 125.00 65.00 0.00

Figure 7.19 High-level text listing of example NPS pool circle world and

shortest path determination

area where more research is needed (Yap 87).

A circle world can be used for robot path planning across irregular land terrain.

The fact that such terrain may not be level is not limiting as long as the robot can

generally traverse it. Only vertical obstructions, interfering holes and excessive slope

variations that prevent safe robot passage need be modeled as circle obstacles.

Remaining terrain surface features can be treated as planar and part of the

obstacle-free portion of the configuration space.

Three-dimensional path planning by robot vehicles can typically be performed

using a similar circle world approach. Most three-dimensional obstacles can be

represented as circles by taking the cross- section of each obstacle on a level plane

116

used for robot travel (Figure 7.20). An irregular object can then be modeled using a

vertical cylinder. Such a cylinder defines the minimum radius circle needed to enclose

all portions of the object which are collision threats in the plane or region of robot

travel. Underwater obstacles can be modeled in a similar fashion, where the circle

world ground plane represents the allowable depth band of robot submarine travel.

These circle world conditions are necessary and sufficient to model any set of

real world obstacles as long as robot motion is along a plane or within a planar region.

Three-dimensional obstacles are represented as cylinders, and a path planning search

through such a three-dimensional obstacle space is reduced to a two-dimensional circle

world search. Such a representation is particularly natural for underwater obstacles.

An example set of underwater obstacles in the NPS pool is shown with a

corresponding shortest path in Figure 7.21, which is a direct output of the circle world

path planning program. The same data set is also shown in Figure 7.22 as rendered

by the NPS AUV Integrated Simulator using high-level text output from the circle

world path planning program.

These circle world methods are extendable to an analogous approach for polygon

world modeling. Additional program coding is needed to address overlapping and

adjacent obstacles. The simplicity, efficiency and effectiveness of the circle world

model makes it well suited for real-time path planning by mobile robots.

117

3D Cylinders viewed as 2D Circles

\START

\ i f ^\

Mc::d Q ^
\ l

r j d
\ :'-''-" ".--'

i

\ c.._

goal\

3D Perspective View

START

u c)
GOAL

2D Circle World View

Figure 7.20 Three-dimensional cylindrical obstacles viewed as

two-dimensional circles

118

Best path (cost 1

. Start

145 -x- -15 -50 -y- 110

Figure 7.21 Two-dimensional representation of obstacles in the NPS pool

119

Figure 7.22 Three-dimensional representation of obstacles in the NPS pool

H. CONCLUSIONS

Mobile robot path planning around obstacles can be accomplished by modeling

obstacles as pairs of circles with opposite rotations. Addition of robot radius and

safety standoff distances to circle radii allows modeling the robot as a point. This

circle world model can be used to calculate shortest paths between points.

Tangents between circles in a circle world have no inherent redundancy or

duplication due to the uniqueness of landing and leaving points on each circle.

Alternate partial paths landing at an intermediate circle obstacle must be properly

compared in order to determine which is shortest. Dijkstra's algorithm or (preferably)

A* search can selectively use visibility and partial path comparison calculations to find

the shortest, safest or optimal path between start and goal points.

Tangent visibility from a single point to all circles can be calculated in

order 0(n\ogn) time. Similarly, tangent visibility from a single circle to all other

circles can be calculated in order O(nlogn) time. The shortest path between start and

goal points can be calculated in order 0(n2
\ogn) time.

Obstacle avoidance is a typical robot behavior regardless of obstacle height. The

circle world search model is directly extendable to the general case of

three-dimensional path planning and is particularly suitable for underwater vehicle path

planning. Future circle world path planning implementations on a robot vehicle should

include polygon obstacles as well as overlapping and adjacent obstacles.

120

Vm. REAL-TIME OPERATING SYSTEM AND AUV SIMULATION

CONSIDERATIONS

A. NPS AUV AND REAL-TIME OPERATIONS

The NPS AUV is an untethered robot submarine designed for research in

adaptive control, mission planning, mission execution, and post-mission data analysis

(Healey 90). AUVs are typical of other autonomous robots in that a large number of

internal processes must run simultaneously while meeting stringent real-time

requirements. AUVs differ from other robots in that they are designed to operate

submerged and isolated from communication or external directions. Such missions

require extraordinarily reliable and robust vehicle performance.

The principles and concepts particular to real-time operating systems are clearly

defined in a wide variety of references (Blackman 76) (Mellichamp 83) (Deitel 90)

(Nelson 92). An explanation of real-time control issues directly relating to

autonomous robot vehicles can be found in an excellent case study comparison

between the Ohio State University Adaptive Suspension Vehicle (ASV) and the

Defense Advanced Research Projects Agency (DARPA) Autonomous Land Vehicle

(ALV) (Payton 91).

Although numerous software modules have been written with the NPS AUV in

mind, very litde software has actually been implemented, integrated or tested

underwater in real time. The main reason for this deficiency is the current lack of a

flexible high-level software control module that can efficiently coordinate multiple

NPS AUV processes using the OS-9 real-time operating system.

This chapter examines the real-time operating system issues that are pertinent to

the development of the NPS AUV. These considerations pertain equally to the

Gespac/OS-9 microprocessor and support hardware portions of the NPS AUV

Integrated Simulator.

121

B. HARD AND SOFT REAL-TIME REQUIREMENTS

In order to perform numerous sophisticated mission functions, multiple processes

must be operating simultaneously while meeting both strict and relaxed real-time

schedule requirements. The autonomous nature of an AUV requires operation without

external backup in a harsh and unforgiving environment Vehicle control, sensor

evaluation, underwater navigation, search, path planning, obstacle avoidance, fault

tolerance, and numerous other processes are required. All processes must interact with

the external environment and each other in real time with varying degrees of

interdependence (Bobrow 91).

It is important to distinguish between hard and soft scheduling criteria for

real-time processes. Mission-critical actions such as vehicle control and failure

detection are hard real-time scheduling requirements. Failure to meet such hard

deadlines may result in mission failure or even catastrophic loss of the vehicle.

Conversely, high level logical processes such as path planning or mission replanning

might always be considered soft requirements, since their execution is rarely

mandatory for safe vehicle operation and immediate results are not required. Finally,

some processes may have priorities that vary from soft to hard depending on

circumstances. For example, obstacle avoidance is typically a soft requirement until

target proximity or rapidly closing range rate make immediate action necessary to

avoid collision.

C. NPS AUV PROCESS DEADLINE SPECIFICATION AND SCHEDULING

The current NPS AUV mission software schedule runs a single simple mission

control loop using a 10 Hz clock. A full 100 millisecond interval is allotted for each

mission loop, but no processes are allowed to exceed that period. This interval is

adequate to perform numerous tasks: compute basic vehicle control orders, transmit

using one to four sonar transducers, record all current vehicle data parameters in

working memory, perform rudimentary sonar analysis, detect waypoints, detect

potential collision, and order predetermined state changes in propeller speed and

122

control surface position. Typically very little time remains at the end of each fixed

100 millisecond time segment. Such a simple hard-wired timing mechanism is not a

feasible control architecture for AUV software of even slightly greater complexity.

Proposed NPS AUV software modules are shown by the data flow diagram of

Figure 8.1 (Healey 90). Only the basic interdependencies of these NPS AUV task

modules have been characterized. A formal analysis of software module

specifications, timing requirements, task periodicities and concurrency dependencies

has yet to be performed. It is likely that the NPS AUV software modules will

ultimately have timing constraints and periodicity characteristics similar to those

developed in Table VHT.l.

NPS AUV SOFTWARE PROCESS DATAFLOW DIAGRAM

CHARLES A.

FLOYD

Figure 8.1 NPS AUV software process dataflow diagram

Current real-time operating system research at NPS has focused on

rate-monotonic scheduling theory, an approach that employs fixed prioritization of

123

Table VIH.l AUV SOFTWARE MODULE REAL-TIME
CHARACTERISTICS

AUV Software Modules Real-Time Execution Characteristics

Plan/Replan Mission Soft Aperiodic Event triggered

Execute Mission Hard Periodic Every

control

loop

Guidance Both Periodic Every loop

unless

preempted

Autopilot Hard Periodic Every

control

loop

Process Sonar Data Hard Periodic Every loop

unless

preempted

Navigate Soft Aperiodic Every loop

unless

preempted

Monitor Systems Status Both Periodic Every loop

unless

preempted

Avoid Obstacles Hard Periodic Every

control

loop

processes and guarantees acceptable average performance (Leatherman 91)

(Makris 91). Benefits of rate-monotonic scheduling include guaranteed completion of

periodic tasks in order of priority, fast response for aperiodic tasks, modifiable task

priorities, and the scheduling of tasks that permit imprecise computations (i.e. output

124

precision proportional to time available). Rate-monotonic task analysis and scheduling

is performed off-line prior to actual execution of system software. Rate-monotonic

scheduling implementations running dummy processes under the OS-9 operating

system have been shown to provide processor utilization above 80% and graceful

degradation under overload.

Dynamic adjustment of constraints and process schedules may ultimately be

required to ensure successful AUV operation during unforeseen tactical scenarios or

pathological process conflicts. Dynamic scheduling theory requires further formal

research to provide a verifiable theoretical foundation, but it appears to be a desirable

model for the distributed artificial intelligence applications likely to make up the

AUV. In this regard the FLEX programming language is worth consideration since it

implements dynamic scheduling theory and generates C++ code as output (Kenny 91).

Additionally there exists a hybrid approach known as a mixed priority system that

combines the best features of rate-monotonic scheduling and dynamic scheduling

(Leatherman 91). Formal evaluation of the mixed priority approach also appears

worthwhile.

Given that AUV-related research is likely to continue for many years by several

academic departments at NPS, operational software changes and additional new

software processes will always be under development and require integration into the

overall NPS AUV system process schedule. Reliability, compatibility and

extendibility for future growth must be key requirements for any proposed control

process timing schedule. Robust and flexible interactions between numerous

interdependent processes will be essential to allow frequent improvements to vehicle

performance while maintaining vehicle reliability.

D. PARALLEL PROCESSING AND CONCURRENT PROGRAMMING

It is important to note that parallelism is equally as important as real-time

scheduling for an AUV operating system. This is particularly true if low-level control,

complex behaviors, sensor fusion, data analysis, mission planning and numerous other

125

artificial intelligence aspects of robot mission execution must all coexist and cooperate

in a rapid manner (Stankovic 88).

Non-trivial robot performance requires that numerous processes operate in

parallel, either independently or in a mutually dependent fashion (Kasahara 88).

Numerous challenging AUV mission requirements will inevitably lead to multiple

software modules operating concurrently. Such parallelism might be most easily

implemented using a multiprocessor architecture. An AUV's real-time operating

system must completely support concurrency constructs that are fully integrated with

the real-time scheduling mechanisms.

Several standard features of parallel programming are necessary for effective

software engineering of a real-time AUV. Adequate shared memory is essential if

numerous processes are to quickly and efficiently access system state variables and the

large amounts of time- sensitive sensor data that is expected. Predictable rendezvous,

synchronization and communication methods must be available, both for interaction

between mutually dependent processes as well as loose overall control by a mission

executor module.

Increasing hardware sophistication can further allow tasks to be distributed over

a network among separate specialized embedded processors (Stankovic 88).

Extensions of process rendezvous, synchronization and communication must be

available for distributed processing if networked processors are to be employed.

Massively parallel processing in the classic sense uses numerous processors in

parallel to perform array processing or numerous parallel solutions of identical

algorithms. Such an approach is not a likely requirement for AUV operation. Aside

from potential analysis of sophisticated sensor data using vision processing techniques,

few (if any) AUV functions can be decomposed into numerous identical subproblems.

The diverse nature of the many AUV software modules implies that a transputer

architecture is not a prerequisite for successful integration of multiple AUV processes.

Nevertheless the transputer paradigm may be an effective way to minimize interface

difficulties while allowing unlimited addition of numerous unique parallel processes

126

under a single integrated real-time operating system. This approach is also being

considered by C.S. Draper Laboratories for the next-generation software architecture of

the DARPA Unmanned Underwater Vehicle (UUV) (Hale 91).

E. OPERATING SYSTEM COMPATIBILITY AND INTEROPERABILITY

It is important that the AUV operating system be fully compatible with all

current and projected vehicle hardware and software. External connectivity of the

real-time operating system is also important.

Hardware interoperability considerations must consider connections between

multiple processors of various types internal to the vehicle, as well as numerous

analog/digital and digital/analog interfaces. Space, weight and power requirements are

very strict so internal AUV hardware architectures must be closely compatible.

Physical compatibility improves vehicle endurance by reducing power consumption.

Software compatibility is less critical than hardware compatibility, but software

incompatibilities can still impose undesirable processing delays if too much work is

required to translate communications between processors. Network support and

software interfacing will be needed when different operating systems reside on

multiple processors. Multiple programming language support is desirable for

unrestricted research in a variety of control system and artificial intelligence subjects.

Process encapsulation is desirable in order to minimize faults and side effects during

software development. High-level software access to machine-dependent,

machine-level and device-dependent routines is also needed. Such routines permit

various processes to utilize the operating system for direct access and control of the

numerous physical components of the AUV.

Although an AUV is untethered and isolated during operation, a number of

external compatibility requirements remain. Mission data collection, consolidation,

storage and transmission are ultimately targeted for external off-line post-processing

and analysis. Distributed processing over a network internal to the AUV requires that

each individual operating system must be able to interact with the others. Interactive

127

network communication is also a likely requirement for on-line laboratory testing of

the AUV. Connecting the vehicle or similar lab prototypes to an integrated simulator

allows scientific visualization of AUV processes for active real-time end-to-end

developmental testing. For these reasons the AUV must be able to communicate in

some fashion with non-native operating systems and software environments. External

connectivity is essential to support the diverse and distributed communities that

conduct AUV research.

Several other operating systems are worth noting. Real-time constructs and

compatibility can be incorporated into typically non-real-time operating systems such

as Unix by adding specially designed message-passing processes (Cramer 88)

(Falk 88) (Hildebrand 88). Modified real-time kernels of common operating systems

such as Modular Computer Systems Inc.'s RealllX for Unix or Digital Research Inc.'s

FlexOs for DOS are viable and commercially available (Falk 88) (Baerson 91).

Standards development work continues for Posix, an open operating system

specification based on Unix that includes real-time constructs (Deitel 90) (Falk 88).

As robotic systems and intelligent machines become more commonplace, the

interactive design concepts of TRON (The Real-time Operating system Nucleus) will

become increasingly important (Kahaner 91). Finally, a distributed operating system

may provide the most efficient control mechanisms for distributed processors sharing

distributed resources (Dasgupta 91).

F. OS-9 OPERATING SYSTEM

OS-9 is Microware System Corporation's real-time operating system used by the

NPS AUV. OS-9 is designed to run exclusively on the Motorola 68020/68030/68040

family of microprocessors (GESPAC 89). The two specific hardware configurations

used in the NPS AUV include GESPAC 68020 or 68030 microprocessors connected to

a GESBUS (VME bus compatible) backplane. Serial ports, parallel ports,

analog/digital interface cards and an Ethernet interface are available for internal and

external connections. Also available for internal networking is an Intel 80386

128

microprocessor. INMOS T805/T425 transputers were also to be connected but are no

longer manufactured in a configuration compatible with the GESBUS. No suitable

transputer replacement has yet been identified.

The OS-9 process states available include start (fork), active, run, exit, sleep,

wait (process synchronization), and event wait (semaphore communication). Process

state transitions are shown in Figure 8.2 (GESPAC 89).

PROCESSING STATES

ACTIVE

SCHEDULER

CPU ALLOCATION

•oespac inc. 1989 A process Is the execution of an executable type module

Figure 8.2 OS-9 operating system process states

OS-9 features that support expected AUV operating system requirements include

adjustable priorities and aging for explicit execution scheduling, preemptive process

switching based on priority, reprogrammable interrupts, a trap library, events for

process synchronization, signal communication between processes, pipes for

interprocess data transfer, and redirection of process inputs and outputs (Dibble 88).

129

Identical syntax when referring to processes or device drivers is a particularly

convenient feature of OS-9.

Deficiencies and shortcomings of OS-9 include the current lack of compatible

Ada or C++ compilers and no simple method of deadlock protection. Additionally a

fully modifiable operating system kernel must be prepared through careful EEPROM

configuration prior to operation. This preparation allows setting up the operating

system to include only the device drivers that are necessary for the current vehicle

hardware. OS-9 is very flexible in that additional drivers may be loaded at any time

after system initialization by software command. However the EEPROM

configuration process is time consuming, version dependent and error prone due to

limited self-diagnostic testing.

G. CURRENT PROBLEM AREAS AND FUTURE RESEARCH

Deadlock detection in a real-time vehicle can be guaranteed by designing a

special periodic real-time process for that purpose. An example can be shown using

the NPS AUV software module information in Figure 8.1 and Table VIII.I. The

NPS AUV has a tight inner control loop that includes the Mission Executor and

Autopilot that must completely repeat on a frequent periodic basis of approximately

one second. These two periodic processes can be required to toggle state variables

every time the one-second control cycle is successfully completed. Failure to do so

after several seconds is a clear indication of some type of critical problem such as

deadlock. Recovery after deadlock detection can be promptly accomplished by

reinitializing vehicle control loop software. This new approach to real-time deadlock

detection is a straightforward solution to a problem that is frequently considered

intractable in non-real-time operating systems.

Deadlock prevention is expensive but essential because the independent,

unmonitored and uncontrolled nature of an AUV makes reliability paramount for

vehicle survivability. Redundant approaches to deadlock prevention, deadlock

detection and deadlock recovery are worthwhile. Resolution of deadlock is a

130

particularly sensitive area, given the frequently changing NPS AUV software and the

unpredictable ordering of process preemptions and interactions in real time.

As various software modules are integrated into the NPS AUV, software

engineering considerations become increasingly important Key issues are systems

integration, verification and validation of process behaviors despite real-time

interaction uncertainties, software version control, and system software upward

compatibility for integration of future software modules. Failure to methodically

address software engineering issues will undoubtedly lead to unpredictable AUV

behavior and tremendous amounts of time wasted troubleshooting individual software

modules rather than subtle faults in the operating system implementation.

Fault tolerance is also needed to guarantee overall vehicle reliability and

robustness. The approach taken needs to primarily rely on software checks, rather

than the use of redundant processors found in some larger vehicles (Hale 91). Fault

tolerance requirements will need to be specified for the top-level mission executor as

well as all individual processes. Selection of a distributed multiprocessor architecture

allows hardware-based fault tolerance, since failure of a given node can be

functionally corrected by reloading and sharing the lost software modules on the

remaining working processors.

Further work is needed to define formal specifications, characteristics and timing

constraints for all NPS AUV software modules. Software module specifications need

to include inputs and outputs, functionality, module dependencies, hard or soft

scheduling constraints, periodic or aperiodic execution, relative priorities, expected

frequency and duration, and all other parameters of importance to integrated system

design.

The top priority for NPS AUV operating system software integration is to

establish a new baseline architecture of system software running in the vehicle. This

will allow more sophisticated operations and the addition of new processes to the basic

control loop. It is unfortunate that most theses written about the NPS AUV to date

have been unable to test their conclusions using the actual vehicle in the water.

131

Ensuring maximum processor utilization through improvements to the

rate-monotonic scheduling algorithm is important work that is expected to continue by

verifying current scheduling conclusions using actual NPS AUV processes. The

incorporation of dynamic scheduling features holds great promise for the effective

coordination of numerous distributed artificial intelligence software modules.

Perhaps the most interesting research immediately applicable to the NPS AUV is

the investigation of alternate system software architecture organizations. Many

possibilities are available which might incorporate multiple intelligent agents,

low-level behaviors, expert systems and blackboard paradigms (Wright 88)

(Durfee 88). A real-time architecture that allows flexible support of a variety of

compatible software approaches will provide the best framework for rapid research

progress.

The NPS AUV is a key project that integrates many of the critical technologies

important to the Navy of tomorrow. The successful establishment of a reliable and

robust real-time system software architecture will be the foundation that supports all

future NPS AUV operations.

132

IX. PERFORMANCE EVALUATION AND FUTURE RESEARCH

A. SIMULATOR LIMITATIONS AND PERFORMANCE MEASUREMENTS

The NPS AUV Integrated Simulator is designed to eliminate as many design

restrictions as possible in a distributed research environment. There are two primary

limitations that restrict integrated simulator performance: graphics simulation program

display rate and data transfer rates.

The NPS AUV Integrated Simulator graphics simulation program is written in

ANSI C and uses the GL Graphics Library to run on a Silicon Graphics Inc.

Iris/4D 240VGX workstation. The complexity of drawing panel interfaces and

multiple complex objects restricts the playback speed the graphics simulation program

can maintain. Maximum speed of playback with no associated environmental objects

to be drawn is 7 Hz (i.e. 7 frames per second), nearly matching the telemetry sampling

rate of 10 Hz. Worst case playback screen update rate using actual in-water test data

has been 1-2 Hz. Playback rates are correspondingly lower on less capable Iris

workstations. Although the worst case 1-2 Hz screen update rate may appear

somewhat jerky to the user, screen vehicle motion accurately renders real-time vehicle

motion since intermediate telemetry data records are skipped. Further improvements

in the screen update rate are possible if control panel interface code is optimized and

the overall simulation program is tuned and parallelized for peak performance.

Data transfer rates over the network currently do not impact integrated simulator

performance since data packets and socket software are not yet implemented.

However this can be a significant bottleneck that prevents realistic performance, given

current experience with packet-passing simulation (Byrnes 92). Integrated simulator

implementation of software sockets must be tolerant of packet delivery time delays or

nondeterministic and incorrect results will occur.

133

B. INTEGRATED SIMULATOR FOLLOW-ON WORK
Several possibilities invite immediate follow-on work to the NPS AUV

Integrated Simulator.

A vehicle hardware model and hydrodynamic vehicle response model need to be

added to the simulator to provide realistic simulation of vehicle physical response

using the laboratory AUV. Previous hydrodynamic response models have been part of

the graphics simulation code. However network time delays do not allow accurate

response or correct interaction between the laboratory AUV and the graphics

workstation. Realistic integration of hydrodynamic response with simulation can be

accomplished by making the model an independent OS -9 process or placing the model

on a separate connected microprocessor inside the laboratory AUV backplane chassis.

Validation of the model can be conducted through test comparison with actual in-water

data.

Software sockets that allow passing data packets between processes need to be

implemented in a way that is simple for any NPS AUV programmer to use. Socket

implementations are already available for Unix processes, including GL-based graphics

simulation programs. The key challenge will be to implement compatible software

sockets for the NPS AUV source code running under the OS -9 operating system.

Sonar visualization capabilities have not been added to the graphics simulation

program. Addition of graphics polygons to represent sonar beams, echo contact points

and error boundaries will improve the user's ability to visualize real-time interactions

between the vehicle and the environment.

C. POTENTIAL FUTURE RESEARCH

The NPS AUV Integrated Simulator provides a foundation for many types of

future AUV research. The following areas are of particular interest.

The NPS AUV vehicle control software needs to allow modular addition of

software processes shown in the block diagram of Figure 2.6. Current vehicle

software is limited and supports only rudimentary behaviors. Access to the

134

laboratory AUV via the integrated simulator data network allows all interested

researchers the opportunity to test their programs on the vehicle. The baseline AUV

control software must be upgraded to support these increased demands.

Scientific visualization techniques hold great promise for rapid understanding of

complex physical processes. Visualization can be used for comparison of theoretical

and empirical data. Close evaluation of hydrodynamics and vehicle sideslip models

may reveal general techniques for formal model verification.

Visualization of sonar and acoustic interactions is a promising area of research.

Sonar visualization can be directly implemented in the integrated simulator for new

and proposed sonar types. Sonar visualization will greatly increase user understanding

of sonar performance and is likely to have tremendous tactical and training

significance.

Simulation of world models is not a precisely defined science. Accurate

simulation world models are needed for navigation, the external environment,

hydrodynamic response, sonar acoustic behavior and physical vehicle hardware

components. Additional research is needed to determine the specifications of these

world models, validate their correctness and show how best to implement them in the

context of an integrated simulator. Successful integration of general world models

into a real-time simulator is a prerequisite to production of a virtual world where

complete and realistic interaction is possible.

Numerous additional research examples are conceivable. Current and future

researchers working on the NPS AUV project will undoubtedly develop their own

applications and extensions using the NPS AUV Integrated Simulator.

135

X. SUMMARY

The development and testing of AUV hardware and software is greatly

complicated by vehicle inaccessibility during operation. Integrated simulation

remotely links vehicle components and support equipment with graphics simulation

workstations. Integrated simulation allows complete real-time, pre-mission,

pseudo-mission and post-mission visualization and analysis in the lab environment.

Integrated simulator testing of software and hardware is a broad and versatile method

that supports rapid and robust diagnosis and correction of system faults.

In order to fully understand the simulation requirements of demanding artificial

intelligence processes necessary for AUV operation, in-depth studies are included for

path planning, expert system sonar classification and real-time operating system

considerations. Conclusions specific to these areas of research are included with each

chapter.

High-resolution three-dimensional graphics workstations can provide real-time

representations of vehicle dynamics, control system behavior, mission execution,

sensor processing and object classification. The flexibility and versatility provided by

this approach enables visualization and analysis of all aspects of AUV development.

Integrated simulator networking is recommended as a fundamental requirement for

AUV research and deployment. The availability of the NPS AUV Integrated

Simulator for distributed research promises to benefit all future NPS AUV work.

136

APPENDIX A. NPS AUV INTEGRATED SIMULATOR USER'S GUIDE

The NPS AUV Integrated Simulator is designed to be accessible to anyone

performing AUV-related work at NPS. This User's Guide shows how to utilize the

integrated simulator for mission playback, software design or vehicle visualization.

An additional example which shows how a standalone application can use the graphics

simulation program to visualize NPS AUV behavior can be found in (Compton 92).

1. NPS AUV GRAPHICS SIMULATION EXECUTION

The graphics simulator program is executed by logging on one of the Iris

workstations, changing to the appropriate directory (default -brutzmanlauv) and typing

auvsim. The auvsim graphics simulation program loads all high-level objects and

commands in the current pool.auv file. Users can move their viewpoint and reference

point around the simulated world, run telemetry replay files and reposition individual

objects as desired.

2. NPS AUV INTEGRATED SIMULATOR CONTROL PANEL

A simple control panel has been provided as the user interface to the simulator.

Two types of files may be entered in the filename type-in box: "filename.auv"

high-level object files and "filename.d" telemetry files. High-level object files are

used to enter objects into the simulated world, position the AUV, change the

background environment graphics object and provide commands to the graphics

simulation program. Telemetry replay files are files of floating point records, each of

which represents NPS AUV state at a given time. File specifications are described in

detail in Chapter HI. Sample high-level object files and telemetry replay files are

shown in Figures A.l and A.2.

A great deal of functionality is included on the control panel. The name and

number of the current object of interest is displayed along with position, scale, posture

137

; this is a comment for high level object file test.auv

; note free format and any comment allowed after data

clear

object mine. off 40 20 scale 2 time 12

mine 70 43 1 1.5

circle 5 5 12
colors 255 1.0 255

/ line RGB-alpha-wall RGB

WALL 20 20 50 50 8

line 20 20 1 30 40 1

colors 255 255 1.0 255

; line RGB-alpha-wall RGB

line 30 40 1 50 50 1

point 50 50 1

object cylinder. off 15 15 1

cylinde r 70 43 4 11

origin 20 20.1 1 this is the new reference

; origin for coordinates to follow

; the next point will be at 20 20 .1 1

point

origin origin re,set to pool corner

AUV 20 10 2

environment nps_pool.off restores pool environment

gyroerror -15.0 degrees

gyrodr

d

ft -1.1 deg/min

replaysize 3 (type 3 = M35, 17 values per line)

replayfile m35.d

depthband 0.0 8.0 all dimensions in feet

Figure A.l Example high-level object file

138

0.000000 0.000000 0.000000 0.161064 -0.054569 0.050224 0.056758 -0.133328

-0.017602 -0.031889 0.125950 -0.045393 313 1 1558

0.100000 0.199678 0.011346 0.158827 -0.078823 0.062779 0.057525 -0.155013

-0.017602 -0.024220 0.131702 0.001013 308 1 1556

0.200000 0.399347 0.022844 0.149879 -0.072759 0.071150 0.057909 -0.192962

-0.030343 -0.029333 0.130105 0.008301 303 1 1556

0.300000 0.599012 0.034419 0.147642 -0.057601 0.054409 0.057525 -0.133328

-0.027795 -0.033168 0.127229 -0.041462 288 1 1554

0.400000 0.798681 0.045918 0.140931 -0.063664 0.058594 0.056375 -0.117064

-0.031617 -0.034446 0.123713 -0.028987 285 1 1551

0.500000 0.998363 0.057187 0.138694 -0.042443 0.050224 0.055224 -0.100800

-0.037988 -0.044672 0.115724 -0.071750 277 1 1551

0.600000 1.198058 0.068226 0.143168 -0.048506 0.048131 0.055224 -0.062850

-0.037988 -0.037002 0.119559 -0.083995 280 1 1552

0.700000 1.397754 0.079265 0.147642 -0.063664 0.060687 0.055608 -0.095378

-0.049454 -0.031889 0.123074 -0.073638 274 1 1555

0.800000 1.597444 0.090381 0.154353 -0.051538 0.056502 0.056758 -0.122485

-0.058373 -0.034446 0.124672 -0.117965 276 1 1553

0.900000 1.797122 0.101727 0.161064 -0.051538 0.048131 0.058676 -0.127906

-0.053277 -0.029333 0.132022 -0.141904 276 1 1559

1.000000 1.996778 0.113455 0.163301 -0.066696 0.050224 0.060210 -0.138749

-0.040536 -0.017829 0.141609 -0.105188 268 1 1558

Figure A.2 One second excerpt of 10 Hz telemetry replay file

and time tag. Color objects can also be displayed. Color objects are a special object

type which control the RGB (red green blue) values of geometric objects such as lines

and walls which follow. Operator viewpoint and reference point control are provided

through dials and sliders for Height between viewpoint and reference point, Range in

the x-y direction, Azimuth between viewpoint and reference point in the x-y plane, and

viewpoint Twist angle. With a little practice users can move with ease throughout the

environment.

Control panel function buttons are also provided. The Sonar button toggles a

plot display of sonar data versus time for left, right, forward and depth transducers.

Reset returns the screen to its initial settings. Snapshot takes a black and white picture

of the pool and allows the user to then select a small portion to be saved as a figure in

139

Silicon Graphics Inc. rgb format ("snapshot.rgb") and Encapsulated Postscript format

("snapshot.eps"). The Snapshot feature is very handy for creating figures to be

imported by Frame or Wordperfect, but graphics files are very large so this feature

should be used sparingly. More information on snapshot execution can be found in

the shell script "screensnapshot". Replay executes or resumes the current telemetry

replay file, and Step single steps through the telemetry replay file one record at a time.

Telemetry data may be viewed by selecting the AUV object or popping up the Unix

command line window over the screen display. Exit quits the simulation program.

Buttons are selected by positioning the mouse cursor and holding down the left mouse

button. Button response is indicated by a button color change.

The right mouse button selects a multiple level menu. Menu control is provided

for viewpoint, reference point, object position, rotation and scaling, and special

simulator features such as lighting model, real-time playback toggle and system usage

performance meter.

The dials and button box are also operative. Buttons 1-2-3 and 5-6-7 move

viewpoint x-y-z coordinates towards or away from the reference point respectively.

Button 4 is Reset and button 8 is Exit. Dial 6 selects the next or previous object.

Dials 4-2-0 pan viewpoint and reference point together in x-y-z directions respectively.

Dials 7-5-3-1 are Height, Range, Azimuth and Twist respectively. Dial and button

physical configurations are shown in Figure A.3.

3. LABORATORY GESPAC EXECUTION

NPS AUV control loop software can be compiled and executed on network

node auvsiml, the laboratory Gespac version of the NPS AUV microprocessor.

Figures A.4 through A.8 show a sample logon, compilation and execution of

NPS AUV control software program loop.c. Following execution the resulting

telemetry replay file "d.d" is transferred to a graphics workstation where it can be

replayed by the graphics simulation program auvsim.

140

©
Select

4

PanX

©
PanY

Pan;

Height

Range

3

Azimuth

1

Twist

Viewpoint+

+X +Y +Z Reset

a 6 ! 7! 8

•X -Y -Z Exit

Viewpoint-

Figure A.3 NPS AUV Integrated Simulator dials and buttons

141

File auvsim.log: sample execution of AUV software on
Iris Lab AUV Gespac running OS-9 on 9 JAN 91

gemini : /n/gemini/work/brutzman>> telnet auvsiml
Trying 131.120.1.40 . .

.

Connected to auvsiml.cs.nps.navy.mil.
Escape character is '"]'.

OS-9/68K V2.3 Gescomp 84xx/86xx - 68020 92/01/09 00:32:05

Password:
Process #06 logged on 92/01/09 00:32:13
Welcome I

****** WELCOME TO PROFESSIONAL OS-9/68k V2 . 3 ******

* S C /HO = Hard Disk #1 (20 Mb) *

* *

* Y N /DO = Floppy Disk #1 (FDC-3)
* F *

* S I *

* G *

* T U /TERM = RS-232 Interface to Terminal *

R *

auvsiml * E A /Tl = Auxiliary Serial Port #1 *

* T *

NPS AUV * M I [/P = Centronics-type Printer] *

* *

Integrated * N *

Simulator *** **********

$ dir
Directory of . 00:32:22

ARC AUV AUVRUN AUV OLD BYRNES
C CEE CMDS DEFS ETC
INET INSTALL LIB MACROS MISC
MIT MSDOS OS9boot Read_Me
Release .notes
SUBMODS SYS SYSSRC TEMP WL
d.d dir. fix ev0.txt hello.

c

junk
loop loop.c lp.d macph mkrom.bat
readme. utils romlist.sho startlan startlan.ori startup
startup. bak startup. cc startup. env startup. full start up. ng
startup. ok startup. old startup. ori t2. 19200 t2.9600

Figure A.4 Script of laboratory GESPAC execution of NPS AUV control

loop software (part 1)

142

1 comments start with an asterisk

1 loop.c is the closed-loop control software used in the AUV

$ * lp.d is the run geometry data file

$ cc loop.c -k2f

' loop.c'
cpp:
c68:
068:
r68:
168:

$ * Now execute loop. Initial values were values read from lp.d data file.

$ * start_dwell is the only value that matters right now since it is the

* initial delay time.

$ loop
10.000000 0.000000 2.000000
30.000000 0.000000 2.000000
55.000000 3.140000 2.000000
80.000000 3.140000 2.000000
100.000000 6.280000 2.000000
Input start_dwell
1

Input k_psi and k_r
2.5
.5
Input k_z, k_theta, and k_q
-1.1
3.5
2.5
Input k_speed and ki_speed
4.0
0.5
Input speed_limit from 1.0 to 3.0 feet/sec
1.5
Input rpm from +-200.0 to +-650.0, type 400.0
400.0
Position AUV for Directional Gyro Offset Measurement
Rate Gyro zero measurement
Hit Any Key When Ready

pitch_0 =

roll_0 =

roll_rate_0 =

pitch_rate_0 =

yaw_rate_0 =

z_val0 =

dg_offset = 0.097793
Starting
Error #000:002 keyboard quit

* program exit was accomplished using control-E after about 20 seconds

Figure A.5 Script of laboratory GESPAC execution of NPS AUV control

loop software (part 2)

143

$ * AUV output file is d.d and contains

$ * the usual floating point state vector at 10 Hz

$ * First parameter is clock time.

$ list d.d
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 -0 000000 0.000000
0.000000 0.000000 -0.000000 2.200000 0.000000 0.000000 000000 576.450000
-8.479200 -8.479200
0.100000 0.000000 0.000000 0.000000 0.000000 0.000000 --0 000000 0.000000
0.000000 0.000000 -0.000000 2.200000 0.000000 0.000000 000000 603.900000
-8.479200 -8.479200
0.200000 0.000000 0.000000 0.000000 0.000000 0.000000 --0 000000 0.000000
0.000000 0.000000 -0.000000 2.200000 0.000000 0.000000 000000 631.350000
-8.479200 -8.479200
0.300000 0.000000 0.000000 0.000000 0.000000 0.000000 --0 000000 0.000000
0.000000 0.000000 -0.000000 2.200000 0.000000 0.000000 000000 650.000000
-8.479200 -8.479200
0.400000 0.000000 0.000000 0.000000 0.000000 0.000000 -0 000000 0.000000
0.000000 0.000000 -0.000000 2.200000 0.000000 0.000000 000000 650.000000
-8.479200 -8.479200
0.500000 0.000000 0.000000 0.000000 0.000000 0.000000 -0 000000 0.000000
0.000000 0.000000 -0.000000 2.200000 0.000000 0.000000 000000 650.000000
-8.479200 -8.479200
0.600000 0.000000 0.000000 0.000000 0.000000 0.000000 -0 000000 0.000000
0.000000 0.000000 -0.000000 2.200000 0.000000 0.000000 000000 650.000000
-8.479200 -8.479200
0.700000 0.000000 0.000000 0.000000 0.000000 0.000000 -0 000000 0.000000
0.000000 0.000000 -0.000000 2.200000 0.000000 0.000000 000000 650.000000
-8.479200 -8.479200
0.800000 0.000000 0.000000 0.000000 0.000000 0.000000 -0 000000 0.000000
0.000000 0.000000 -0.000000 2.200000 0.000000 0.000000 000000 650.000000
-8.479200 -8.479200
0.900000 0.000000 0.000000 0.000000 0.000000 0.000000 -0 000000 0.000000
0.000000 0.000000 -0.000000 2.200000 0.000000 0.000000 000000 650.000000
-8.479200 -8.479200
1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 -0 000000 0.000000
0.000000 0.000000 -0.000000 2.200000 0.000000 0.000000 .000000 650.000000
-8.479200 -8.479200
1.100000 0.000000 0.000000 0.000000 0.000000 0.000000 -0 .000000 0.000000
0.000000 0.000000 -0.000000 2.200000 0.000000 0.000000 .000000 650.000000
-8.479200 -8.479200
1.200000 0.000000 0.000000 0.000000 0.000000 0.000000 -0 .000000 0.000000
0.000000 0.000000 -0.000000 2.200000 0.000000 0.000000 .000000 650.000000
-8.479200 -8.479200
1.300000 0.000000 0.000000 0.000000 0.000000 0.000000 -0 .000000 0.000000
0.000000 0.000000 -0.000000 2.200000 0.000000 0.000000 .000000 650.000000
-8.479200 -8.479200
1.400000 0.000000 0.000000 0.000000 0.000000 0.000000 -0 .000000 0.000000
0.000000 0.000000 -0.000000 2.200000 0.000000 0.000000 .000000 650.000000
-8.479200 -8.479200
1.500000 0.000000 0.000000 0.000000 0.00
$ Read I/O error - Error #000:002 keyboard quit

$ * Control-E again used to break out

Figure A.6 Script of laboratory GESPAC execution of NPS AUV control

loop software (part 3)

144

' Now let's send d.d to the iris for use by the integrated simulator

$ ftp irisl
Connected to gravyl.cs.nps.navy.mil.
220 gravyl FTP server (IRIX version 5.46 Aug 6 1990 10:17) ready.
Name (gravyl . cs .nps .navy.mil :brutzman)

:

Password (gravyl . cs .nps .navy .mil :brutzman)

:

331 Password reguired for brutzman.
230 User brutzman logged in.
Connected to gravyl.cs.nps.navy.mil.
Mode: stream Type: ascii Form: non-print Structure: file
Verbose: on Bell: off Prompting: on Globbing: on
Hash mark printing: off Use of PORT commands: on
ftp> put d.d labtest.d
200 PORT command successful.
150 Opening ASCII mode data connection for 'labtest.d'.
226 Transfer complete.
2575 bytes sent in 0.10 seconds (25.15 Kbytes/s)
ftp> guit
221 Goodbye.

$ telnet irisl
Trying 131 . 120 . 1 . 20 .. .Connected to gravyl.cs.nps.navy.mil.
Escape character is ,A]'.
capture closed.

IRIX System V.3 (gravyl)

login: brutzman
Password:
IRIX System V Release 3.3.1 gravyl
Copyright (c) 1988,1989,1990 Silicon Graphics, Inc.
All Rights Reserved.

SCHEDULED DOWN TIME
Backups — Wednesdays 0800-0900

gravyl : /n/gravyl/work/brutzman
% Is
AUV backup .pool graphics nps tape .

c

GA bay 20m data lab.d off temp
Workspace clips labtest .d pline titler
auto_pilot .c d.d laser pline .

c

auv dumpster laser2 pool m35 auv
auvIII ff laser2h preview
auv_long term g laserh robotics

gravyl : /n/gravyl/work/brutzman
% logout
Connection closed by foreign host,

Figure A.7 Script of laboratory GESPAC execution of NPS AUV control

loop software (part 4)

145

$ * Note file d.d was successfully transferred as file labtest. d to the
iris

S * also note ftp and telnet can be used back and forth as well as nested.

$ * Lack of analog/digital cards did not prevent loop .c from continuing.

$ * This script file is saved as auvsim. log

$ * Due to a shell glitch, two 'logout' commands are needed to exit OS-9.

$ logout
brutzman> logout
Connection closed by foreign host.
gemini : /n/gemini/work/brutzman>>

Figure A.8 Script of laboratory GESPAC execution of NPS AUV control

loop software (part 5)

146

APPENDIX B. NPS AUV GRAPHICS SIMULATION PROGRAM SYNOPSIS

The NPS AUV Integrated Simulator graphic simulation program is written in

ANSI C to run on Silicon Graphics Inc. Iris workstations. Numerous calls are made

to GL Graphics Library routines. Platform dependence and length (5200 lines of

code) makes complete reproduction of the source program and support files

impractical. Source programs are summarized in this appendix and are available via

Internet as described in Appendix F.

1. GRAPHICS SIMULATION PROGRAM STRUCTURE

The graphics simulation program has a structure typical of most Iris applications.

Graphics functions are initialized, data is initialized and a world view is drawn from

the default viewpoint. A main graphics loop is then repeated indefinitely which reads

user inputs (if any), redraws the world view and outputs updated values. Screen

update rate is dependent on workstation capabilities and the changing complexity of

the world view being drawn. Figure B.l shows the basic simulation graphics loop and

summarizes all major functions.

2. NPS PANEL DESIGNER

The NPS Panel Designer (NPSPD) is used to provide a user-friendly control

panel interface (King Prevatt 90). NPSPD reads high-level text files that specify

layout and functionality of a wide variety of interface icons such as meters, dials,

knobs, buttons etc. NPSPD then automatically generates "C" source code functions

that can be tied to the target application through Makefile entries and define

statements. Although initial setup is difficult, use of NPSPD permits extensive

changes to the user interface. Subsequent modifications using NPSPD are rapid and

convenient, permitting flexible development of the user interface during simulator

147

Initialize all values and control panel

Transfer values from control panel

Transfer values from mouse/dials/buttons

Process commands: read file, replay,

change viewpoint or meter values,

screen snapshot, reset, exit etc.

Draw background environment (pool)

If replay in progress:

read AUV posture from replay file

pause/skip record if in real-time mode

Loop for all objects, including AUV
rotate/translate/scale object

draw each individual object

Screen buffer swap (latest in foreground,

background ready for redraw)

Transfer updated values to control panel

Redraw control panel

Figure B.l NPS AUV graphics simulation program

148

development. NPSPD specifications and examples are found in (King Prevatt 90) and

(Jurewicz 90).

3. GRAPHIC OBJECT MODELING USING OBJECT FILE FORMAT (OFF)

Creation and modeling of complex graphic objects such as underwater mines or

vehicles can be extremely tedious if only using GL Graphics Library geometric

primitive function calls. Object File Format (OFF) has been developed at NPS to

encapsulate most of the functionality of GL Graphics Library lighting, drawing and

texturing function calls in a manner that supports modeling and manipulation of

high-level graphics objects (Zyda 91). Use of OFF objects greatly simplifies treatment

of individual objects modeled in a simulated world.

149

APPENDIX C. NPS AUV SONAR CLASSIFICATION SYSTEM SOURCE

CODE

Filename:

Purpose:

Paper:

Authors

:

Date:

Execution:

AUV Sonar Expert System

auvsonar

Batch file for auvsonar. clp which resets and executes the
AUV sonar contact classification expert system.

"Autonomous Underwater Vehicle Sonar Classification using
Expert Systems and Neural Networks"

IEEE OCEANS '92 Conference, Newport, Rhode Island

Don Brutzman, Mark Compton and Dr. Yutaka Kanayama

24 November 91

unix> clips5
CLIPS> (load auvsonar . clp)
CLIPS> (reset)
CLIPS> (run)

unix> clipsS
CLIPS> (batch auvsonar)
CLIPS> (run)

Clear & close files in case they were left open during previous execution

(clear)
(close rangefile)
(close plotfile)
(close auvfile)

; clear all facts and rules
; Close AUV-recorded pool test data input file
; Close xy coordinate file used for graph output
; Close expert system classification output file

(load auvsonar .clp) ; Load in AUV Sonar Classification Expert System

(undefrule oldareal)
(undefrule oldarea2)

(reset)

(run)

; Initialize agenda and assert initial facts

; Execute AUV Sonar Classification Expert System

150

AUV Sonar Expert System

Filename: auvsonar.clp

Purpose:

Paper:

Authors:
Advisor:

Date:

Comments:

Language:

Execution

:

References

:

History;

Define data templates, rules, functions and user interface
for the AUV sonar contact classification expert system.

"Autonomous Sonar Classification using Expert Systems"
IEEE Oceanic Engineering Society
IEEE OCEANS '92 Conference, Newport, Rhode Island

Don Brutzman and Mark Compton
Dr. Yutaka Kanayama

1 March 91

This expert system takes data files generated by the NPS AUV,
uses sonar returns and AUV position to generate locations of
sonar contacts, perform two-dimensional linear regression to

build line segments, combine segments into polyhedrons and
then determines the probable classification of each polyhedron.

CLIPS "C" Language Integrated Production System

unix> clips5
CLIPS> (load auvsonar.clp)
CLIPS> (reset)
CLIPS> (run)

unix> clips5
CLIPS> (batch auvsonar)
CLIPS> (run)

Execution 'dribble' files are saved in auvsonar.log

Sonar Data Interpretation for Autonomous Mobile Robots,
Yutaka Kanayama, Tetsuo Noguchi, and Bruce Hartman,
unpublished paper.

Original program development for CS4311 Expert Systems
taught by Dr. Kanayama.

The NPS pool coordinate system is the world reference used
where x is pool length, y is pool width, and z is pool depth.

Initial development complete for object classification.
Full pool depth used for pool object outputs.
Initial offset option for centering pool data included.
Verbose output option and excess data retraction completed.
Gyro error/gyro drift rate evaluation & correction implemented.
Centroid and cross-sectional area calculations done for objects.
Top-level classification of objects using area is possible.
Mine classification implemented satisfactorily.
Excessively narrow objects are reclassified as walls.

Data Type Deftemplates

Data template and slot names correspond to AUV Data Dictionary definitions.
Data template names have their first letter capitalized.
Variable names are all lower case.
CLIPS data types and symbols used in symbolic slots are capitalized.

(deftemplate Range_data

(field time

(field x

(field y

(type NUMBER)
(default 0)

(range 7VARIABLE)

)

(type NUMBER)
(default 0)

(range 7VARIABLE)

)

; time is positive, set by AUV

; time zero is used for dummy facts

; element of Point_3D AUV data type
; dead reckoning estimate of travel
; relative to start position

; element of Point_3D AUV data type

151

(type NUMBER)
(default 0)

(range 7VARIABLE)

)

(field z

(type NUMBER)
(default 0)

(range ?VARIABLE)

)

(field phi
(type NUMBER) ;

(default 0))
(field theta

(type NUMBER) ;

(default 0))
(field psi

(type NUMBER) ;

(default 0))
(field p

(type NUMBER)
(default 0)

(range 7VARIABLE))
(field q

(type NUMBER)
(default 0)

(range ?VARIABLE)

)

(field r

(type NUMBER) ;

(default 0)

(range 7VARIABLE)

)

(field delta_dive planes
(type NUMBER) ;

(default 0)

(range 'VARIABLE))
(field delta_rudde: ;

(type NUMBER)
(default 0)

(range 7VARIABLE)

)

(field range_a
(type NUMBER) ;

(default 0)

(range 7VARIABLE)

)

(field range_b
(type NUMBER)
(default 0)
(range ?VARIABLE))

(field range c
(type NUMBER)
(default 0)
(range 7VARIABLE))

(field range d
(type NUMBER)
(default 0)

(range 7VARIABLE)

)

(field valid a ;

(type INTEGER)
(default D)

(field valid_b
(type INTEGER)
(default 1>)

(field valid_c
(type INTEGER)
(default D)

(field valid_d
(type INTEGER)
(default 1)>

(field speed
(type NUMBER)
(default 0.0))

(field processe i

(type SYMBOL) ;

(default FALSE)
(allowed-values TRUE FALSE)

)

dead reckoning estimate of travel
relative to start position

element of Point_3D AUV data type
source: pressure-sensing depth cell
which may be inaccurate when shallow

element of Attitude_3D AUV data type
in radians
(roll)

element of Attitude_3D AUV data type
in radians
(pitch)

element of Attitude_3D AUV data type
in radians. Note caveat on pg. 1
(yaw)

element of Point_3D AUV data type
in radians/sec

element of Point_3D AUV data type
in radians/sec

element of Point_3D AUV data type
in radians/sec

change in bow/stern planes position
in degrees

change in rudder planes position
in degrees

0-4095 range units correspond to
0..30m pool or O..300m ocean.

Up to 4 transducers can be included.

Validity signal from sonar hardware

AUV speed from flow sensor

set TRUE when point is asserted,
FALSE until then.

(deftemplate Object_data

(field detection_time
(type NUMBER)
(default 0)

(range 7VARIABLE)

)

(field latest time

; time is positive, set by AUV

152

(type NUMBER)
(default 0)
(range 7VARIABLE)

)

(field valid
(type INTEGER)
(default 0)

)

(field x ; object center
(type NUMBER)
(default 0)

(range 7VARIABLE)

)

(field y ; object center
(type NUMBER)
(default 0)

(range ?VARIABLE)

)

(field z ; object center
(type NUMBER)
(default 0)

(range 7VARIABLE)

)

(field accuracy
(type FLOAT)
(default 0.0)
(range 0.0 7VARIABLE)

)

(field object
(type INTEGER)
(default 0)
(range 9))

(field length
(type NUMBER)
(default 0)

(range 7VARIABLE)

)

(field height
(type NUMBER)
(default 0)
(range 7VARIABLE)

)

(field width
(type NUMBER)
(default 0)

(range 7VARIABLE)

)

(field confidence ; normalized
(type FLOAT)
(default 0.0)
(range 0.0 1.0)

)

)

(deftemplate Point

(field time ; time is positive, set by AUV
(type NUMBER)
(default 0)
(range 7VARIABLE)

)

(field x ; element of Point_3D AUV data type
(type NUMBER)
(default 0)

(range 7VARIABLE)

)

(field y ; element of Point_3D AUV data type
(type NUMBER)
(default 0)
(range 7VARIABLE)

)

(field z ; element of Point_3D AUV data type
(type NUMBER)
(default 0)
(range 7VARIABLE)

)

(field valid

(field status

(type INTEGER)
(default 0))

(type SYMBOL)
(default NEW)

(allowed-values NEW ACTIVE INVALID ENDPOINT USED))
)

(deftemplate Regression_line

(field start ; matches time of start point
(type NUMBER)
(default 0)

(range 7VARIABLE)

)

(field end ; matches time of end point

153

(type NUMBER)
(default 0)

(range 7VARIABLE)

)

(field r
(type FLOAT)
(default 0.0)
(range 0.0 'VARIABLE))

(field orientation ; normalized degrees
(type FLOAT)
(default 0.0)
(range 0.0 ?VARIABLE)

)

(field correlation
(type FLOAT)
(default 0.0)
(range 0.0 'VARIABLE))

(field status
(type SYMBOL)
(default NEW)

(allowed-values NEW CURRENT VALID USED USED FOR AREA))

(deftemplate Node

(field time

(field y

(field z

(field accuracy

(type NUMBER)
(default 0)

(range 7VARIABLE)

)

(type NUMBER)
(default 0)

(range 7VARIABLE)

)

(type NUMBER)
(default 0)

(range 'VARIABLE)

)

(type NUMBER)
(default 0)

(range ?VARIABLE)

)

(type FLOAT)
(default 0.0)
(range 0.0 7VARIABLE)

)

(field confidence
(type FLOAT)
(default 0.0)
(range 0.0 1.0)

)

(deftemplate Edge

(field start ; slot values are times corresponding to data
(type FLOAT))

(field end

(field averagez

(field status

(type FLOAT))

(type NUMBER)
(default 0)

(range 7VARIABLE)

)

(type SYMBOL)
(default USED)

(allowed-values USED USED FOR AREA))

(deftemplate Curve ; not yet implemented

(field time
(type NUMBER)
(default 0)

(range 7VARIABLE)

)

(field node ; slot values are times corresponding to data
(type FLOAT))

(field edge

(field shape
(type FLOAT))

154

(deftemplate Polyhedron

(field start ; time of the initial node/edge/curve element
(type NUMBER)
(default 0)

(range 7VARIABLE)

)

(field end ; time of most recent node/edge/curve element
(type NUMBER)
(default 0)

(range 7VARIABLE)

)

(field startx

(field starty

(field startz

(type NUMBER)
(default 0)

(range ?VARIABLE)

)

(type NUMBER)
(default 0)

(range ?VARIABLE)

)

(type NUMBER)
(default 0)

(range ?VARIABLE)

)

(field centroidx
(type NUMBER)
(default 0)

(range 7VARIABLE)

)

(field centroidy
(type NUMBER)
(default 0)

(range ?VARIABLE)

)

(field centroidz
(type NUMBER)
(default 0)

(range ?VARIABLE)

)

(field sidecount
(type INTEGER)
(default 1)

(range 1 ?VARIABLE)

)

(field sidecounterl
(type INTEGER)
(default -1)
(range -1 'VARIABLE))

(field sidecounter2
(type INTEGER)
(default -1)
(range -1 ?VARIABLE)

)

(field area
(type FLOAT)
(default 0.0)
(range 0.0 ?VARIABLE)

)

(field height
(type FLOAT)
(default 0.0)
(range 0.0 ?VARIABLE)

)

(field accuracy
(type FLOAT)
(default 0.0)
(range 0.0 ?VARIABLE)

)

(field confidence
(type FLOAT)
(default 0.0)
(range 0.0 1.0))

(field trait
(type SYMBOL)

)

(field status
(type SYMBOL)
(default ACTIVE)

(allowed-values ACTIVE COMPLETE USED_FOR_AREA)

)

(field classification
(type SYMBOL)
(default WALL)

(allowed-values NEW CURRENT WALL OBJECT MINE SWIMMER UNKNOWN
SEA-MOUNT SUBMARINE SHIP_I_E_SKIMMER_PUKE
BIOLOGICS LOTS OF BIOLOGICS)

)

155

; Initialization of Flag Facts

(deffacts initial-flags

(start -new-window- flag)

(retract-excess-data TRUE)

(location pool)

;;;;;;; (location ocean)

)

commence parametric regression process

any other value saves excess data

NPS swimming pool test environment

alternative environment

; Global Constants

(defglobal ?*minimum_points_in_edge* = 5) ; hard coded into regression defrules

(defglobal ?*transducer_a* = 1); forward transducer corresponds to slot range_a
(defglobal ?*transducer_b* = 2); left transducer corresponds to slot range_b
(defglobal ?*transducer_c* = 3); right transducer corresponds to slot range_c
(defglobal ?*t ransducer_d* = 4); depth transducer corresponds to slot range_d

(defglobal ?*feet_per_sonar_unit* = 0.02398) ; 0-4095 range units correspond to
; 0..30m pool or 0..300m ocean.

(defglobal ?*correlation_confidence_weight* = 1)

(defglobal ?*validity confidence weight* = 1)

(defglobal ?*cl* = 3.00)
(defglobal ?*c2* = 2.00)
(defglobal ?*c3* = 0.066)

max # standard deviations a point can be out
max offset distance (feet) allowed from line
min regression ellipse thinness requirement

; define default line/wall color strings
(defglobal ?*colorl* = "Color 255 78 1.0 255 78"); detected edge
(defglobal ?*color2* = "Color 200 255 150 0.7 200 255 150"); inferred edge
(defglobal ?*color3* = "Color 78 255 0.5 78 255"); hidden edge

(defglobal ?*min_wall_length* =1.0) ; min allowable individual edge length
; to be output as a WALL

(defglobal ?*max_edge_distance* = 7.0) ; max allowable distance between edges
; for edge- joining/polyhedron building

(defglobal ?*max_edge_angle* = 10.0) ; max allowable angle between edges
; for edge- joining/WALL building

(defglobal ?*wall_thinness_ratio* = 0.1) ; used to reclassify long skinny object
; as WALL

Global Variable

(defglobal ?*n* = 0.0) ; m 00
(defglobal ?*sumx* = 0.0) ; m 10
(defglobal ?*sumy* = 0.0) ; m 01
(defglobal ?*sumxy* = 0.0) ; m 11
(defglobal ?*sumxx* = 0.0) ; m 20
(defglobal ?*sumyy* = 0.0) ; m 02

(defglobal ?*meanx* = 0.0) ; mu x
(defglobal ?*meany* =0.0) ; mu y

(defglobal ?*sigmaxx* =0.0) ; M 20
(defglobal ?*sigmaxy* = 0.0) ; M 11
(defglobal ?*sigmayy* =0.0) ; M 02

(defglobal ?*phi* =0.0) ; regression line orientation
(defglobal ?*r* = 0.0) ; regression line distance from origin

(defglobal ?*M-major* =0.0) ; Moment around ellipse major axis
(defglobal ?*M-minor* =0.0) ; Moment around ellipse minor axis

(defglobal ?*d-major* = 0.0) ; diameter on ellipse major axis
(defglobal ?*d-minor* = 0.0) ; diameter on ellipse minor axis

156

(defglobal ?*rho* = 0.0)
(defglobal ?*delta* = 0.0)
(defglobal ?*sigma* = 0.0)

(defglobal ?*pro jection-x* = 0.0)
(defglobal ?*pro jection-y* = 0.0)

(defglobal ?*minx*
(defglobal ?*maxx*

(defglobal
(defglobal

r miny*
'maxy*

(defglobal ?*minz'
(defglobal ?*maxz*

(defglobal ?*defaultz*

(defglobal ?*offsetx :l

(defglobal ?*offsety y

(defglobal ?*offsetz*

(defglobal ?*time'

(defglobal ?*out*

= 145)
= -15)

= -50)
= 110)

= 0.0)
= 0.0)

0.0)
0.0)
0.0)

0.0)

stdout)

ratio of major to minor axis diameters
residual of a point
standard deviation

x projection of point i on major axis
y projection of point i on major axis

for plot/graph boundaries

for plot/graph boundaries

; for the currently active edge only
; for the currently active edge only

; default pool depth to be used for objects
of unspecified or indeterminate depth

; displacement added to (x, y, z) positional
data to account for distance of the AUV
from the origin (i.e. corner) of the
NPS pool coordinate system

; used to measure execution time

; verbose output default to stdout
; otherwise ?*out* is reset to nil

(defglobal ?*gyroerror*
(defglobal ?*newgyroerror*
(defglobal ?*gyroerrortime*

(defglobal ?*gyrodriftrate*
(defglobal ?*newgyrodriftrate 1

(defglobal ?*number_of_fields*

0.0) ; User-provided gyro error (degrees)
0.0) ; Expert system gyro error (degrees)
0.0) ; Average time of first wall found, used

as input to drift rate computation

0.0) ; User-provided drift rate
0.0) ; Expert system drift rate

17) ; read only actual # of input fields

; A sample fact (for syntax training use only!)

(deffacts rangel (Range_data (time 0)

(x 2) (y 3) (z A)

(phi 5) (theta 6) (psi 7)

(p 8) (q 9) (r 10)
(delta_dive_planes 11)
(delta_rudders 12)
(range_a 13) (valid_a 1)

(range_b 15) (valid_b 1)

(speed 17) (processed TRUE))

atan2 function matches C language and class text
Calling order: (atan2 y x)

(defmethod atan2 ((?y NUMBER) (?x NUMBER (> ?x 0))

)

(atan (/ ?y ?x))

)

(defmethod atan2 ((?y NUMBER (> ?y 0)

)

(+ (atan (/ ?y ?x)) (pi)))

(defmethod atan2 ((?y NUMBER (< ?y 0))

(- (atan (/ ?y ?x)) (pi)))

(defmethod atan2 ((?y NUMBER (> ?y 0))
(/ (pi) 2.0))

(defmethod atan2 ((?y NUMBER (< ?y 0))
(/ (pi) -2.0))

(defmethod atan2 ((?y NUMBER (= ?y 0))
(pi))

(?x NUMBER (< ?x 0)))

(?x NUMBER (< ?x 0)))

(?x NUMBER (
= ?x 0)))

(?x NUMBER {
= ?x 0)))

(?x NUMBER (< ?x 0)))

157

(defmethod atan2 ((?y NUMBER (= ?y 0)) (?x NUMBER (
=

0.0)

(deffunction normalize (?x) ; x in degrees, resulting range (0

(bind ?norm ?x)
(while (< ?norm 0.0) (bind ?norm (+ ?norm 360.0)))
(while (>= ?norm 360.0) (bind ?norm (- ?norm 360.0)))
?norm

(deffunction normalize2 (?x) ; x in degrees, resulting range (-1J

(bind ?norm ?x)
(while (< ?norm -180.0) (bind ?norm (+ ?norm 360.0)))
(while (>= ?norm 180.0) (bind ?norm (- ?norm 360.0)))
?norm

(deffunction avg (?numberl ?number2)
(/ (+ ?numberl ?number2) 2.0))

(deffunction degrees (?x) ; x in radians

(/ (* ?x 180.0) (pi))

(deffunction radians (?x) ; x in radians

(* (/ ?x 180.0) (pi))

; Boolean function to ask a yes/no question

(deffunction yes-or-no (?question). ; ' ?question' is the question string

(format t "%n%s? " ?question) ; ask the question
(bind ?answer (lowcase (sym-cat (read))))

(while (and (neq ?answer yes) (neq ?answer y) (neq ?answer yep)
(neq ?answer yeah) (neq ?answer ye) (neq ?answer yea)
(neq ?answer no) (neq ?answer n)
(neq ?answer nope) (neq ?answer nah)

)

(format t "%n Pleads answer yes or no: ")

(bind ?answer (lowcase (sym-cat (read))))

)

(if (or (eq ?answer yes) (eq ?answer y) (eq ?answer yep)
(eq ?answer yeah) (eq ?answer ye) (eq ?answer yea))

then TRUE
else FALSE)

(deffunction distance (?xl ?yl ?zl ?x2 ?y2 ?z2)

(sqrt (+ (* (- ?xl ?x2) (- ?xl ?x2))

(* (- ?yl ?y2) (- ?yl ?y2))

(* (- ?zl ?z2) (- ?zl ?z2))
))

)

; Triangle S and area calculation functions

(deffunction S (?nodelx ?nodely ?node2x ?node2y ?node3x ?node3y)

158

CCW triples are positive & CW triples are negative, matching conventions.

(bind ?trianglearea
(* 0.5 (- (* (- ?node2x ?nodelx) (- ?node3y ?nodely)

)

{* (- ?node3x ?nodelx) (- ?node2y ?nodely))))

)

?trianglearea)

(deffunction area (?nodelx ?nodely ?node2x ?node2y ?node3x ?node3y)

area values are always positive, matching conventions.

(bind ?trianglearea
(abs (* 0.5 (- (* (- ?node2x ?nodelx) (- ?node3y ?nodely)

)

(* (- ?node3x ?nodelx) (- ?node2y ?nodely)))))

)

?trianglearea)

Expert system start and data file reading rules

(defrule get -initial -expert -sy stem-parameter s-and-open- range- file

(declare (salience 100))
(initial-fact

)

=>
(dribble-off)
(system "mv -f auvsonar.log auvsonar . log.bak")
(dribble-on auvsonar.log)

(printout t crlf crlf "Name of range data file to open? ")

(bind ?filename (read))
(open ?filename rangefile "r")
(printout t "Opened range data file " ?filename crlf)

(printout t crlf)
(if (yes-or-no "Are there more than 17 fields per Range_data record")
then (printout t crlf "Enter number of data fields per record: ")

(bind ?*number_of_fields* (read)

)

(while (or (< ?*number of_fields* 17) (> ?*number_of_fields* 20))
(printout t crlf "Enter a value from 17.. 20: ")

(bind ?*number_of_f ields* (read)

)

(printout t crlf crlf)))

Determine output device for trace statements using 'format ?*out*'
(printout t crlf)
(if (yes-or-no "Do you want verbose output onscreen during analysis")
then (bind ?*out* stdout)
else (bind ?*out* nil))

(printout t crlf)
(if (yes-or-no "Do you want to input gyro error and gyro drift rate")
then (printout t crlf "Enter gyro error (degrees) : ")

(bind ?*gyroerror* (normalize2 (read)))
(printout t crlf "Enter gyro drift rate (degs/hr) : ")

(bind ?*gyrodriftrate* (read)))
(printout t crlf)

(printout t crlf)
(printout t crlf "Enter offset distance to be added to X positions to "

)

(printout t "account for the initial AUV displacement from pool corner:
(bind ?*offsetx* (read))
(printout t crlf)

(printout t crlf "Enter offset distance to be added to Y positions to ")

(printout t "account for the initial AUV displacement from pool corner:
(bind ?*offsety* (read))
(printout t crlf)

(printout t crlf "Enter offset depth to be added to Z positions to ")

(printout t "account for the initial AUV displacement from pool surface:
(bind ?*offsetz* (read)

)

(printout t crlf)

(printout t crlf "Saving previous files pool. graph and pool.auv:" crlf)
(printout t "mv -f pool.auv pool . auv.bak")
(system "mv -f pool.auv pool . auv.bak")
(printout t crlf)
(printout t "mv -f pool. graph pool

.
graph. bak")

(system "mv -f pool. graph pool
.
graph. bak")

159

(printout t crlf)

(open "pool.auv" auvfile "a")
(open "pool. graph" plotfile "a")

(printout auvfile crlf crlf
NPS AUV Sonar Classification Expert System"

" (pool data " ?filename ")"

crlf crlf crlf)
(printout auvfile crlf "All data values & type specifications are "

"defined by the AUV Data Dictionary."
crlf)

(printout auvfile crlf "All coordinate values are relative to the "

"NPS Pool Coordinate System."
crlf crlf crlf)

(printout auvfile crlf "AUV "

?*offsetx* " " ?*offsety* " " ?*offsetz*
" (xyz distances from AUV start position to pool origin)" crlf)

(printout plotfile " 105.0 95.0 " crlf "\"NPS AUV Sonar Classification "

"Expert System (pool data " ?filename ") \" "

crlf)

(printout plotfile " 100.0 -30.0 " crlf "V'AUV start .. origin offset values:
?*offsetx* ", "

'*offsety* ", "

'offsetz* " V
crlf)

(printout plotfile " 105.0 -40.0 " crlf "\"Parametric regression constants:
"cl=" ?*cl*

", c2=" ?*c2*
", c3 = " ?*c3* " \" "

crlf)

(printout plotfile " 0.0 0.0 " crlf ; pool boundary outline• crlf
" 127 ' crlf
" 127 67 5 ' crlf

67 5 • crlf
• crlf

crlf)

(printout auvfile crlf "Environment nps_pool . of f

"

crlf "Replayfile " ?filename
crlf "Replaysize " ?*number_of_fields*
crlf) ; simulator replay f ilename/filesize initialization

(if (or (<> ?*gyroerror* 0.0) (<> ?*gyrodriftrate* 0.0)) then
(printout plotfile " 100.0 -20.0 " crlf "V'AUV gyro error = "

?*gyroerror* " degrees, gyro drift rate = "

?*gyrodriftrate* " degrees/hour \" "

crlf))

(if (or (<> ?*gyroerror* 0.0) (<> ?*gyrodriftrate* 0.0)) then
(printout auvfile "gyroerror " ?*gyroerror* " degrees" crlf

"gyrodriftrate " ?*gyrodriftrate* " degrees/hour"
crlf))

(printout auvfile crlf ?*colorl* " Color scheme for regression lines "

crlf) ; primary default color scheme

(bind ?*time* (time)) ; start clock timer

(assert (check-file-flag)

)

(defrule check-range-file

?check-file <- (check-file-flag)
(not (range-file-closed-flag))

=>
(retract ?check-file) ; don't read this file again until point is processed

(assert (first-element-read-file-flag = (read rangefile))

)

; first-element-read-file-flag will be asserted with first element from
the rangefile

)

160

(defrule skip-rangefHe-comment s ; keep reading the file until we get a number

(declare (salience 100))
?first-element-read-file <- (first-element-read-file-flag ?file-element & -EOF)
(test (not (numberp ?file-element))

)

=>
(retract ?first -element -read- file)
(printout t ".")

(readline rangefile) ; flush comments through end-of-line
(assert (check-file-flag)

)

)

(defrule read-remainder-of-range -record

(declare (salience 100))
?first-element-read-f ile <- (first-element-read-file-flag ?f ile-element & -EOF)
(test (numberp ?file-element)

)

=>
(retract ? first -element -re ad- file)
(bind ?fieldl ?f ile-element

)

(bind ?field2 (read rangefile))
(bind ?field3 (read rangefile)

)

(bind ?field4 (read rangefile))
(bind ?field5 (read rangefile))
(bind ?field6 (read rangefile)

)

(bind ?field7 (read rangefile)

)

(bind ?field8 (read rangefile))
(bind ?field9 (read rangefile))
(bind ?fieldl0 (read rangefile))
(bind ?fieldll (read rangefile))
(bind ?fieldl2 (read rangefile))
(bind ?fieldl3 (read rangefile))
(bind ?fieldl4 (read rangefile)

)

(bind ?fieldl5 (read rangefile)

)

(bind ?fieldl6 (read rangefile))
(bind ?fieldl7 (read rangefile))

(if (>= ?*number_of_fields* 18) then (bind ?fieldl8 (read rangefile)))
(if (>= ?*number_of_fields* 19) then (bind ?fieldl9 (read rangefile)))
(if (>= ?*number_of_fields* 20) then (bind ?field20 (read rangefile)))

; account for user-provided gyro error and gyro drift rate:

(bind ?totalerror (radians (+ ?*gyroerror*
(* ?*gyrodriftrate* (/ ?fieldl 3600.0)))))

(bind ?heading (- ?field7 ?totalerror)

)

; Don't assert a point if it has no range value (non-return)
(if (or (> ?fieldl3 1) (> ?fieldl4 1) (> ?fieldl5 1) (> ?fieldl6 1))
then

(assert (Range_data (time ?fieldl)
(x ?field2)
(y ?field3)
(z ?field4)
(phi ?field5)
(theta ?field6)
(psi ?heading)
(p ?field8)
(q ?field9)
(r ?fieldl0)
(delta_dive_planes ?fieldll)
(delta_rudders ?fieldl2)
(range_a ?fieldl3)
(range_b ?fieldl4)
(range_c ?fieldl5)
(range_d ?fieldl6)
(speed ?fieldl7))))

(format ?*out* "%nCompleted reading range record; data time %3.1f" Pfieldl)
(assert (check-file-flag))

)

(defrule close-range-file

(declare (salience 100))
?first-element-read-file <- (first-element-read-file-flag EOF)

(retract ?first-element -read- file)

161

(close rangefile)
(assert (range-file-closed-flag)

)

(assert (Point (status NEW))) ; dummy point so last line (if any) is saved
(printout t crlf "Closed the input range file." crlf)

Point position calculation functions

Forward transducer (#1): reference frame is identical to AUV
Left transducer (#2)

:

psi = AUV psi + PI / 2

Right transducer (#3): psi = AUV psi - PI / 2

Depth transducer (#4): theta = AUV theta + PI / 2

(deffunction delta_x (?range ?phi ?theta ?psi)

(if (= ?*transducer_b* 1)

then (bind ?result (* ?range (* (cos ?theta) (cos ?psi)))))
(if (= ?*transducer_b* 2)

then (bind ?result (* ?range (* (cos ?phi) (cos (- ?psi (/ (pi) 2)))))))
(if (= ?*transducer_b* 3) ; |

Note caveat about yaw
then (bind ?result (* ?range (* (cos ?phi) (cos (+ ?psi (/ (pi) 2)))))))

(if (= ?*transducer_b* 4)

then (bind ?result (* ?range (sin ?theta)))

)

?result)

(deffunction delta_y (?range ?phi ?theta ?psi)
(if (= ?*transducer_b* 1)

then (bind ?result (* ?range (* (cos ?theta) (sin ?psi)))))
(if (= ?*t ransducer_b* 2)

then (bind ?result (* ?range (* (cos ?phi) (sin (- ?psi (/ (pi) 2)))))))
(if (= ?*transducer_b* 3) ; I

Note caveat about yaw
then (bind ?result (* ?range (* (cos ?phi) (sin (+ ?psi (/ (pi) 2)))))))

(if (= ?*transducer_b* 4)

then (bind Presult (* ?range (sin ?phi))))
?result)

(deffunction delta_z (?range ?phi ?theta ?psi)

(if (= ?*transducer_b* 1)

then (bind ?result (* ?range (sin ?theta)))

)

(if (= ?*transducer_b* 2)
then (bind ?result (- (* ?range (sin ?phi)))))

(if (= ?*transducer_b* 3)

then (bind ?result (* ?range (sin ?phi))))
(if (= ?*transducer_b* 4)

then (bind ?result (* ?range (* (cos ?phi) (cos ?theta))))

)

?result)

Point building rule

(defrule build-point-from-raw-AUV- range-data

; this rule currently handles only left transducer

(declare (salience 200))
?range_data<- (Range_data (processed FALSE)

(time ?time) (x ?x) (y ?y) (z ?z)
(phi ?phi) (theta ?theta) (psi ?psi)
(range_b ?range) (valid_b ?valid)

)

(test (<> ?*transducer_b* 0)

)

(bind ?range (* ?range ?*feet_per_sonar_unit*)) ; unit conversion of range slot
(bind ?delta_x (delta_x ?range ?phi ?theta ?psi))
(bind ?delta_y (delta_y ?range ?phi ?theta ?psi))
(bind ?delta_z (delta_z ?range ?phi ?theta ?psi))
(if (and (> ?time 0) (> ?range 1)) then ; only make valid data points

(assert (Point (time ?time)
(x =(+ ?x ?delta_x)

)

(y =(+ ?y ?delta_y)

)

(z =(+ ?z ?delta z)

)

162

(valid ?valid)
(status NEW))

)

print sonar return as 'o' and auv position as '*'

(printout plotfile (+ ?x ?delta_x ?*offsetx*) " "

(+ ?y ?delta_y ?*offsety*) crlf "o" crlf)
(printout plotfile (+ ?x " ?*offsetx*) " "

(+ ?y ?*offsety*) crlf "*" crlf)
; include coordinate offsets

(modify ?range_data (processed TRUE) (range_b ?range)

)

(format ?*out* "%nAsserted and plotted a point for data time %3.1f" ?tir
else ; a bogus point

(modify ?range_data (processed TRUE) (range_b ?range)

)

Two-dimensional parametric regression line analysis rules

(defrule regression-line- sliding-window- start -criteria

(declare (salience 300)

)

'st art -new-window
Find the next 5

?pointl <- (Point (status NEW)
?point2 <- (Point (status NEW)
?point3 <- (Point (status NEW)
?point4 <- (Point (status NEW)
?point5 <- (Point (status NEW)
(test (< ?timel ?time2)

)

(test (< ?time2 ?time3))
(test (< ?time3 ?time4))
(test (< ?time4 ?time5))

(start -new-window- flag)
NEW points

(time ?timel) (x ?xl) (y ?yl) (z ?zl))
(time ?time2) (x ?x2) (y ?y2) (z ?z2))
(time ? t i me 3) (

x

?x3) (y ?y3) (z ?z3))
(time ?time4) (x ?x4) (y ?y4) (z ?z4))
(time ?time5) (x ?x5) (y ?y5) (z ?z5))

(retract ?start-new-window)
; These points are eligible and thus become ACT]
(modify ?pointl (status ACTIVE))
(modify ?point2 (status ACTIVE))
(modify ?point3 (status ACTIVE))
(modify ?point4 (status ACTIVE))
(modify ?point5 (status ACTIVE))
(bind ?*n* 5)

(bind ?*sumx* (+ ?xl ?x2 ?x3 ?

(bind ?*sumy* (+ ?yl ?y2 ?y3 ?

(bind ?*sumxy* (+ (* ?xl ?yl) (

(bind ?*sumxx* (+ (* ?xl ?xl) (

(bind ?*sumyy* (+ (* ?yl ?yl) (

(bind ?*minz* (min ?zl ?z2 ?z3
(bind ?*maxz* (max ?zl ?z2 ?z3

?x5))
?y5))

?x2 ?y2) ("

?x2 ?x2) (<

?y2 ?y2) ('

z4 ?z5))
24 ?z5))

?y3) ('

?x3) ('

?y3) (' »y4

?y4) C
?x4) ('

?y4) p

?x5 ?y5)))
?x5 ?x5)))
?y5 ?y5))

)

(assert (Regression_line (start ?timel) (end ?time5) (status NEW)))
(format ?*out* "%n%nRegression line sliding window start criteria met.")

(deffunction calculate-line-fit-and-update-global-variables ()

global inputs: n, sumx, sumy, sumxy, sumxx, sumyy

(bind
(bind

'meanx'
'meany'

sumx*
r sumy*

'n*))
<n*))

(bind
(bind
(bind

'*sigmaxx* (-

'*sigmaxy* (-

>*sigmayy* (-

"sumxx* (/ (*

'*sumxy* (/ (*

'*sumyy* (/ (*

sumx-
r sumx*
: sumy*

>*sumx*)
?*sumy*)
>*sumy*)

)))

)))
)))

(bind ?*phi 1

(bind ?*r* (+ (* ?*me

(bind ?term2 (sqrt (+ (

(bind ?*M-major*
(bind ?*M-minor*

(- (/

(+ (/

(+ ?

(+ ?

(* 0.5 (atan2 (* -2.0 ?*sigmaxy*) (- ?*sigmayy* ?*sigmaxx*))
)) ; note paper's caveat re frame of reference of phi

anx* (cos ?*phi*)) (* ?*meany* (sin ?*phi*)))

)

* 0.25 (- ?*sigmayy* ?*sigmaxx*)
(- ?*sigmayy* ?*sigmaxx*))

* ?*sigmaxy* ?*sigmaxy*)))

)

sigmaxx ?*sigmayy*) 2.0) ?term2))
sigmaxx ?*sigmayy*) 2.0) ?term2))

(bind ?*d-major*
(bind ?*d-minor*

(* 4 (sqrt (/ ?*M-minor*
(* 4 (sqrt (/ ?*M-major*

r))))
'))))

163

(bind ?*rho* (/ ?*d-minor* ?*d-rna jor*))

(format ?*out* "%nRegression line fit calculations complete.")
)

(defrule regression-line-initial -segment-validity-check

(declare (salience 300))
; Get the NEW Regression_line and 5 ACTIVE Points
?line <- (Regression_line (start ?timel) (end ?time5) (status NEW))

?pointl <- (Point (time ?timel) (x ?xl) (y ?yl) (z ?zl) (valid ?validl))
?point5 <- (Point (time ?time5) (x ?x5) (y ?y5) (z ?z5) (valid ?valid5)

)

?point2 <- (Point (time ?time2) (x ?x2) (y ?y2) (z ?z2) (valid ?valid2)

)

(test (and (< ?timel ?time2) (> ?time5 ?time2))

)

?point3 <- (Point (time ?time3) (x ?x3) (y ?y3) (z ?z3) (valid ?valid3)

)

(test (and (< ?timel ?time3) (> ?time5 ?time3) (<> ?time2 ?time3))

)

?point4 <- (Point (time ?time4) (x ?x4) (y ?y4) (z ?z4) (valid ?valid4))
(test (and (< ?timel ?time4) (> ?time5 ?time4) (<> ?time2 ?time4)

(<> ?time3 ?time4)))
=>

(cal cu 1 ate-line-fit-and-update -global-variables)

(bind ?*rho* (/ ?*d-minor* ?*d-major*))

(if (< ?*rho* ?*c3*) ; Validity check: Test II equation (25)

then ; initial line segment IS valid
(modify ?pointl (status ENDPOINT)

)

(modify ?point2 (status USED))
(modify ?point3 (status USED))
(modify ?point4 (status USED))
(modify ?point5 (status ENDPOINT))
(modify ?line (status CURRENT)

(r ?*r*)
(orientation = (normalize (degrees

(atan2 (- ?y5 ?yl) (- ?x5 ?xl)))))
(correlation ?*rho*))

(format ?*out* "%nRegression line initial segment validity check passed.")

else ; initial line segment IS NOT valid
(modify ?pointl (status INVALID)) ; window slides by one to the right
(modify ?point2 (status NEW))
(modify ?point3 (status NEW))
(modify ?point4 (status NEW))
(modify ?point5 (status NEW))
(retract ?line)
(assert (start-new-window-flag)) ; begin building a new window

(format ?*out* "%nRegression line initial segment validity check failure.")
(format ?*out* "%n")

)

(defrule regression- line-window-expansion

(declare (salience 300)

)

; Get the CURRENT Regression_line, start Point, end Point, and new Point
?current-line <- (Regression_line (start ?starttime) (end ?endtime)

(status CURRENT)

)

?new-point <- (Point (time ?newtime) (x ?newx) (y ?newy) (z ?newz)
(status NEW)

)

?start-point <- (Point (time ?starttime) (x ?startx) (y ?starty) (z ?startz)

)

?end-point <- (Point (time ?endtime) (x ?endx) (y ?endy) (z ?endz)

)

=>
(bind ?*delta* (+ (* (cos ?*phi*)(- ?*meanx* ?newx)

)

(* (sin ?*phi*)(- ?*meany* ?newy)))) ; residual

(bind ?*sigma* (sqrt (/ ?*M-minor* (- ?*n* 2))))

(if (and (< ?*delta* (max (* ?*cl* ?*sigma*) ?*c2*)) ; Test I equation (23)
(< ?*rho* ?*c3*) ; Test II equation (25)
(> ?newtime 0)) ; ignore invalid points

then ;test passed, new point meets criteria
(modify ?new-point (status USED)) ; we just used this point
(bind ?*n* (+ ?*n* 1)

)

(bind ?*sumx* (+ ?*sumx* ?newx)

)

164

(bind ?*sumy* (+ ?*sumy* ?newy)

)

(bind ?*sumxy* (+ ?*sumxy* (* ?newx ?newy))

)

(bind ?*sumxx* (+ ?*sumxx* (* ?newx ?newx))

)

(bind ?*sumyy* (+ ?*sumyy* (* ?newy ?newy))

)

(bind ?*minz* (min ?*minz* ?newz)

)

(bind ?*maxz* (max ?*maxz* ?newz))

;update globals and then line parameters
(calculate-line-fit-and-update-global -variables)

(bind ?correlation (- 1 ?*rho*))

; update endpoint status slots for possible retraction of used data
(modify ?end-point (status USED)

)

(modify ?new-point (status ENDPOINT))

(modify ?current-line (r ?*r*)
(orientation = (normalize (degrees

(atan2 (- ?newy ?starty) (- ?newx ?startx))))

)

(correlation ?correlation) ; value range [l-c3..1]
(end ?newtime)

)

(format ?*out* " Added another point to the regression line.%n");

else
(modify ?current-line (status VALID)) ; test failed, save old line

; current point retains status NEW unless it is a dummy point at time zero
(if (= ?newtime) then (retract ?new-point))

; initial node of new segment

(bind ?*delta* (+ (* (cos ?*phi*)(- ?*meanx* ?startx)

)

(* (sin ?*phi*)(- ?*meany* ?starty)))) ; residual

(bind ?*pro jection-x* (+ ?startx (* ?*delta* (cos ?*phi*))))
(bind ?*pro jection-y* (+ ?starty (* ?*delta* (sin ?*phi*))))
(bind ?start-projection-x ?*pro jection-x*)
(bind ?start-pro jection-y ?*pro jection-y*)
(bind ?correlation (- 1 ?*rho*))
(assert (Node (time ?starttime) ; edge's virtual start node

(x ?*pro jection-x*)
(y ?*pro jection-y*)
(z ?startz)
(accuracy ?*d-minor*) ; minor axis diameter
(confidence ?correlation))) ; using elliptical thinness

(format ?*out* " Valid node completed, data time %3.1f%n" ?starttime)

(printout plotfile (+ ?*pro jection-x* ?*offsetx*) " "

(+ ?*pro jection-y* ?*offsety*) crlf)
(format ?*out* " Projection endpoints (%5.1f, %5.1f)"

(+ ?*pro jection-x* ?*offsetx*)
(+ ?*pro jection-y* ?*offsety*))

; final node of new segment

(bind ?*delta* (+ (* (cos ?*phi*)(- ?*meanx* ?endx)

)

(* (sin ?*phi*) (- ?*meany* ?endy)))) ; residual

(bind ?*pro jection-x* (+ ?endx (* ?*delta* (cos ?*phi*)))

)

(bind ?*pro jection-y* (+ ?endy (* ?*delta* (sin ?*phi*))))
(bind ?confidence (- 1 ?*rho*)

)

(assert (Node (time ?endtime) ; edge's virtual end node
(x ?*pro jection-x*)
(y ?*pro jection-y*)
(z ?endz)
(accuracy ?*d-minor*) ; minor axis diameter
(confidence ?conf idence))) ; using elliptical thinness

(format ?*out* " (%5.1f, %5.1f)%n"
(+ ?*pro jection-x* ?*offsetx*)
(+ ?*pro jection-y* ?*offsety*))

(format ?*out* " Raw data endpoints (%5.1f, %5.1f) (%5.1f, %5.1f)%n"
(+ ?startx ?*offsetx*)
(+ ?starty ?*offsety*)
(+ ?endx ?*offsetx*)
(+ ?endy ?*of fsety*)

)

(format ?*out* " Valid node completed, data time %3.1f %n" ?endtime)
(printout plotfile (+ ?*pro jection-x* ?*offsetx*) " "

(+ ?*pro jection-y* ?*offsety*) crlf "\" \"" crlf)

(assert (Edge (start ?starttime)
(end ?endtime)

165

(averagez =(avg ?*minz* ?*maxz*))))
(format ?*out* " Valid edge completed, data times (%3.1f .. %3.1f),"

?starttime ?endtime)
(format ?*out* " averagez = %3.1f, line r = %3.1f,"

(avg ?*minz* ?*maxz*) ?*r*)

(format ?*out* " line orientation = %3.1f degrees%n"
(normalize (degrees (atan2 (- ?newy ?starty) (- ?newx ?startx))))

)

(format auvfile
"%nPoint %5.1f %4.1f %3.1f time %4.1f"

(+ ?start-pro jection-x ?*offsetx*)
(+ ?start-projection-y ?*offsety*)
(+ ?startz ?*offsetz*)
?starttime)
; depth range 0..8 ft, time is optional

(format auvfile
"%nPoint %5.1f %4.1f %3.1f time %4.1f"

(+ ?*pro jection-x* ?*offsetx*)
(+ ?*pro jection-y* ?*offsety*)
(+ ?endz ?*offsetz*)
?endtime)

(format auvfile
"%nSegment %5.1f %4.1f %3.1f %5.1f %4.1f %3.1f time %4.1f"

(+ ?start-pro jection-x ?*offsetx*)
(+ ?start-pro jection-y ?*offsety*)
(+ (/ (+ ?*minz* ?*maxz*) 2.0) ?*offsetz*)
(+ ?*pro jection-x* ?*offsetx*)
(+ ?*pro jection-y* ?*offsety*)
(+ (/ (+ ?*minz* ?*maxz*) 2.0) ?*offsetz*)
?endtime)

(assert (check-file-flag)

)

(assert (start-new-window-flag))
(format ?*out* " Valid regression line actions completed, data time %3.1f"

?endtime)
(format ?*out* "%n%n")

)

Rules for retraction of excess data facts (garbage collection)

(defrule retract-excess-Range_data

(retract-excess-data TRUE)
?range_data <- (Range_data (processed TRUE)

)

=>
(retract ?range_data)

)

(defrule retract-excess-Point

(retract-excess-data TRUE)
?point <- (Point (status INVALID

I
USED))

=>
(retract ?point)

)

(defrule retract-excess-endPoint

(retract-excess-data TRUE)
?point <- (Point (status ENDPOINT) (time ?point-time)

)

?node <- (Node (time ?node-time)

)

(test (= ?point-time ?node-time)

)

(retract ?point)

Gyro error rules

(defrule determine-initial -gyro-error

(declare (salience 300))
?pool <- (location pool) ; this rule only works in the pool

166

?poly <- (Polyhedron (classification WALL) (start ?polystart) (end Ppolyend)
(status COMPLETE)

)

(test (= ?*newgyroerror* 0.0)) ; first wall provides best est, don't repeat
?line <- (Regression_line (start ?start) (end ?end) (orientation ?orientation)

(status USED
I
USED_FOR_AREA)

)

(test (= ?polyend ?end)

)

?pointl <- (Point (time ?timel) (x ?xl) (y ?yl) (z ?zl))
(test (= ?timel ?start))

?point2 <- (Point (time ?time2) (x ?x2) (y ?y2) (z ?z2)

)

(test (= ?time2 ?end)

)

(test (>= (distance ?xl ?yl ?zl ?x2 ?y2 ?z2) 2.0)) ; skip short segments

(bind ?deltal (normalize2 (- ?orientation 0.0)))
(bind ?delta2 (normalize2 (- ?orientation 90.0)))
(bind ?delta3 (normalize2 (- ?orientation 180.0)))
(bind ?delta4 (normalize2 (- ?orientation 270.0)))

(if (< (abs ?deltal) (min (abs ?delta2) (abs ?delta3) (abs ?delta4))) then
(bind ?*newgyroerror* ?deltal)

)

(if (< (abs ?delta2) (min (abs ?deltal) (abs ?delta3) (abs ?delta4))) then
(bind ?*newgyroerror* ?delta2)

)

(if (< (abs ?delta3) (min (abs ?delta2) (abs ?deltal) (abs ?delta4))) then
(bind ?*newgyroerror* ?delta3)

)

(if (< (abs ?delta4) (min (abs ?delta2) (abs ?delta3) (abs Pdeltal))) then
(bind ?*newgyroerror* ?delta4))

(bind ?*gyroerrortime* (avg ?start ?end)) ; average time of wall segment
(format t "%nUser-provided gyro error = %4.1f degrees" ?*gyroerror*)
(format t "%nWall orientation = %4.1f degrees" ?orientation)
(format t " for time %3.1f (%3.1f .. %3.1f)"

(avg ?start ?end) ?start ?end)
(format t "%nExpert system gyro error = %4.1f degrees" ?*newgyroerror*)

(defrule determine-gyro-drift-rate

(declare (salience 300))
?pool <- (location pool) ; this rule only works in the pool
?poly <- (Polyhedron (classification WALL) (start ?polystart) (end ?polyend)

(status COMPLETE))
(test (<>
?line <-

?*newgyroerror* 0.0)) ; perform only if new gyro error calculated
(Regression_line (start ?start) (end ?end) (orientation ?orientation)

(status USED
I
USED FOR AREA))

(test (= ?polyend ?end)

)

(bind ?deltal (normalize2 (- ?orientation ?*newgyroerror* 0.0)))
(bind ?delta2 (normalize2 (- ?orientation ?*newgyroerror* 90.0)))
(bind ?delta3 (normalize2 (- ?orientation ?*newgyroerror* 180.0)))
(bind ?delta4 (normalize2 (- ?orientation ?*newgyroerror* 270.0)))

?delta4))) then

(abs ?delta4))) then

(abs ?delta4))) then

(if (< (abs ?deltal) (min (abs ?delta2) (abs ?delta3) (abs
(bind ?*newgyrodriftrate* ?deltal)

)

(if (< (abs ?delta2) (min (abs ?deltal) (abs ?delta3) (abs
(bind ?*newgyrodriftrate* ?delta2))

(if (< (abs ?delta3) (min (abs ?delta2) (abs ?deltal)
(bind ?*newgyrodriftrate* ?delta3)

)

(if (< (abs ?delta4) (min (abs ?delta2) (abs ?delta3) (abs ?deltal))) then
(bind ?*newgyrodriftrate* ?delta4)

)

(format t "%nWall orientation = %4.1f degrees" ?orientation)
(format t " for time %3.1f (%3.1f .. %3.1f)"

(avg ?start ?end) ?start ?end)
(format t "%nCurrent gyro error = %4.1f degrees%n"

(+ ?*newgyrodriftrate* ?*newgyroerror*)

)

(bind ?*newgyrodriftrate* (* 3600.0 (/ ?*newgyrodrif t rate*
(- (avg ?start ?end) ?*gyroerrortime*)))

)

(if (<= (abs ?*newgyrodriftrate*) 200.0) then
(format t "Expert system gyro drift rate = %4.1f degrees/hour %n"

?*newgyrodriftrate*)

)

Completion!

(defrule plot-pool-graph-file-when-done ; this rule is the last to be fired

167

(declare (salience 0)) ; all other rules take precedence
?range-file-closed <- (range-file-closed-flag)

(format t

"%n%nElapsed time to perform sonar classification: %3.1f seconds . %n%n"
(- (time) ?*time*))

; all file outputs complete
(close plotfile)
(close auvfile)

(printout t crlf crlf "Sending pool.auv to iris graphics subdirectory."
crlf)

; first save old copy of file to pool.bak
(printout t crlf "rep gemini : ~brutzman/clips/pool . auv.bak"

" irisl:~brutzman/graphics/pool .auv.bak" crlf)
(system "rep gemini : -brutzman/clips/pool . auv.bak"

" irisl: -brut zman /graphics /pool . auv.bak")

(printout t crlf "rep gemini : -brutzman/clips/pool . auv"
" irisl : -brutzman/graphics/pool . auv" crlf)

(system "rep gemini : -brutzman/clips/pool . auv"
" irisl : -brutzman/graphics/pool . auv")

(printout t crlf "rep gemini : -brutzman/clips/pool . auv"
" irisl:-brutzman/preview/pool.auv" crlf)

(system "rep gemini : -brutzman/clips/pool . auv"
" irisl : -brut zman /preview/pool . auv")

; You must be running under sunview on a workstation for sunplot to work,
(printout t crlf crlf "The generated pool. graph sunplot follows:" crlf crlf)

(printout t "graph -b -g 1 -1 \"NPS AUV Sonar Classification Expert System "

"\" -x 145 -15 -y -50 110 < pool. graph
I
sunplot -c 650"

crlf crlf)
(system "graph -b -g 1 -1 V'NPS AUV Sonar Classification Expert System "

"\" -x 145 -15 -y -50 110 < pool. graph
I
sunplot -c 650")

(system "rm core") ; remove core dump file which resulted
; if not running under sunview

(if (yes-or-no " Do you want to print the screen log file")
then (dribble-off)

(system "enscript -G -r auvsonar.log"))

(if (yes-or-no "Do you want a hard copy of the sonar plot")
then
(open "pool.auv" auvfile "a")
(open "pool. graph" plotfile "a")
(printout t crlf)
(if (yes-or-no "Do you want to add a comment line to the plot")
then (printout t crlf crlf "Enter comment: ")

(bind ?comments (readline)

)

(printout auvfile crlf "Comment: " ?comments crlf)
(printout plotfile " 115 80 " crlf "V" ?comments " \" " crlf))

(printout t crlf crlf "The generated pool. graph is being plotted:"
crlf crlf)

(printout t "graph -b -g 1 -1 V'NPS AUV Sonar Classification Expert System "

"\" -x 145 -15 -y -50 110 < pool. graph
I
lpr -g -h -Pap2"

crlf crlf)
(system "graph -b -g 1 -1 V'NPS AUV Sonar Classification Expert System "

"\" -x 145 -15 -y -50 110 < pool. graph I lpr -g -h -Pap2")
; all file outputs complete
(close plotfile)
(close auvfile)

)

(printout t crlf "The generated pool.auv file follows:" crlf crlf)
(system "more pool.auv")
(printout t crlf crlf crlf)

Polyhedron output function and rules

(deffunction output_polyhedron (?starttime ?endtime
?startx ?starty ?startz
?endx ?endy ?endz
?classification ?comment)

168

(format t "%n%nThe polyhedron at times (%3.1f .. %3.1f) "

?starttime ?endtime)
(printout t "has classification " ?classification "." crlf crlf)

(format auvfile
"%n%s %5.1f %4.1f %3.1f %5.1f %4.1f %3.1f time %4.1f

?classification
(+ ?startx ?*offsetx*)
(+ ?starty ?*offsety*)
(+ ?startz ?*offsetz*)
(+ ?endx ?*offsetx*)
(+ ?endy ?*offsety*)
(+ ?endz ?*offsetz*)
?endtime
?comment

)

(format auvfile "In")

(format ?*out* "%n%n")
(format ?*out*

"%n%s %5.1f %4.1f %3.1f %5.1f %4.1f %3.1f time %4.1f
?classification
(+ ?startx ?*offsetx*)
(+ ?starty ?*offsety*)
(+ ?startz ?*offsetz*)
(+ ?endx ?*offsetx*)
(+ ?endy ?*offsety*)
(+ ?endz ?*offsetz*)
?endtime
?comment

)

(format ?*out* "%n%n")

(defrule change-colors- for- infer red-edges -when-done

(declare (salience 40)) ; pre-completion rules take precedence
?range-file-closed <- (range-file-closed-flag)

(printout auvfile crlf crlf ?*color2* " Color scheme for inferred edges "

crlf) ; secondary default color scheme
)

(defrule output -polyhedrons-with-infer red-edges -when-done

(declare (salience 30)) ; pre-completion rules take precedence
?range-file-closed <- (range-file-closed-flag)
?poly <- (Polyhedron (status COMPLETE | USED_FOR_AREA)

(start ?startpolytime)
(end ?endpolytime)
(startx ?startx) (starty ?starty) (startz ?startz)
(trait INFERRED_EDGE)
(classification WALL))

node matches end of polyhedron
?node <- (Node (time ?nodetime) (x ?nodex) (y ?nodey) (z ?nodez)

)

(test (= ?endpolytime ?nodetime)

)

=>
(output_polyhedron ?startpolytime ?endpolytime

?startx ?starty 0.0
?nodex ?nodey 8.0
"WALL"
"(inferred edge)")

(defrule change-colors- for-hidden-edges-when-done

(declare (salience 20)

)

; pre-completion rules take precedence
?range-file-closed <- (range-file-closed-flag)

=>
(printout auvfile crlf crlf ?*color3* " Color scheme for hidden edges "

crlf) ; tertiary default color scheme
)

169

(def rule output -object -polyhedrons-with-hidden-edges-when-done

(declare (salience 10)

)

; pre-completion rules take precedence
?range-file-closed <- (range-file-closed-flag)
?poly <- (Polyhedron (status COMPLETE

I
USED_FOR_AREA)

(start ?startpolytime)
(end ?endpolytime)
(startx ?startx) (starty ?starty) (startz ?startz)
(trait HIDDEN_EDGE)
(classification WALL)

)

node matches end of polyhedron
?node <- (Node (time ?nodetime) (x ?nodex) (y ?nodey) (z ?nodez)

)

(test (= ?endpolytime ?nodetime)

)

(output_polyhedron ?startpolytime Pendpolytime
?startx ?starty 0.0
?nodex ?nodey 8.0
"WALL"
" (hidden edge) ")

)

Polyhedron building rules

(defrule polyhedron-building- start

(declare (salience 430)) ; lower salience value than polyhedron-building
?line <- (Regression_line (status VALID)

(start ?starttime) (end ?endtime)

)

?start-node <- (Node (time ?nodetime)
(accuracy ?accuracyl)
(x ?startx) (y ?starty) (z ?startz))

(test (= ?starttime ?nodetime)

)

?end-node <- (Node (time ?endnodetime)
(accuracy ?accuracy2)
(x ?endx) (y ?endy) (z ?endz))

(test (= ?endtime ?endnodetime))

=>
(assert (Polyhedron (status ACTIVE)

(start ?starttime) (end ?endtime)
(startx ?startx) (starty ?starty) (startz ?startz)
(centroidx =(+ ?startx ?endx)

)

(centroidy =(+ ?starty ?endy)

)

(centroidz =(+ ?startz ?endz)

)

(sidecount 1)

(accuracy = (max ?accuracyl ?accuracy2))
(trait OBJECT_BUILDING_BASED)
(classification WALL)))

(modify ?line (status USED))

(bind ?length (distance ?startx ?starty ?startz ?endx ?endy ?endz))

(if (>= ?length ?*min_wall_length*)
then (output_polyhedron ?starttime ?endtime

?startx ?starty 0.0
?endx ?endy 8.0
WALL "(new polyhedron start)"))

(defrule polyhedron-building-continuation

This rule tests the newest edge in relation to the most recent previous edge
of the currently ACTIVE polyhedron.

If the edges are too far apart, the previous polyhedron is COMPLETE and the
new edge is ignored in order for it to begin a new polyhedron.

If the edges are colinear, the new edge is included as part of the
currently ACTIVE polyhedron.

If the edges are concave, the previous polyhedron is COMPLETE and the new
edge is ignored in order to let it begin a new polyhedron.

170

If the edges are convex, the new edge is included as part of the
currently ACTIVE polyhedron, and the polyhedron is reclassified
from WALL to OBJECT.

Specific polyhedron OBJECT reclassifications will be made by higher level rules.

(declare (salience 440)) ; higher salience value than polyhedron start
?poly <- (Polyhedron (status ACTIVE)

(start ?startpolytime)
(end ?endpolytime)
(accuracy ?polyaccuracy)
(startx ?startx)
(starty ?starty)
(startz ?startz)
(centroidx ?centroidx)
(centroidy ?centroidy)
(centroidz ?centroidz)
(sidecount ?sidecount)
(area ?area)
(classification ?classification)

)

linel is most recent valid regression line included in the polyhedron
?linel <- (Regression_line (status USED)

(start ?startlineltime)
(end ?endlineltime)
(orientation ?orientationl)

)

(test (= ?endpolytime ?endlineltime)

)

line2 is newest valid regression line to be evaluated
?line2 <- (Regression_line (status VALID)

(start ?startline2time)
(end ?endline2time)
(orientation ?orientation2)

)

nodel matches end of linel (most recent valid regression line)
?nodel <- (Node (time ?nodeltime)

(accuracy ?accuracy2)
(x ?nodelx) (y ?nodely) (z ?nodelz))

(test (= ?endlineltime ?nodeltime)

)

node2 matches start of line2
?node2 <- (Node (time ?node2time)

(accuracy ?accuracyl)
(x ?node2x) (y ?node2y) (z ?node2z))

(test (= ?startline2time ?node2time)

)

node3 matches end of line2
?node3 <- (Node (time ?node3time)

(accuracy ?accuracy3)
(x ?node3x) (y ?node3y) (z ?node3z))

(test (= ?endline2time ?node3time)

)

(bind ?distance (distance ?nodelx ?nodely ?nodelz ?node2x ?node2y ?node2z))

if distance is too great, don't continue building polyhedron with new edge
(if (> ?distance ?*max_edge_distance*)
then (modify ?poly (status COMPLETE)

(area = (abs ?area)

)

(centroidx =(/ ?centroidx ?sidecount 2)) ; 2 points/side
(centroidy =(/ ?centroidy ?sidecount 2))
(centroidz =(/ ?centroidz ?sidecount 2))
(sidecounterl ?sidecount)
(sidecounter2 ?sidecount))

; if polyhedron was not a WALL, assert a HIDDEN_EDGE wall for it
(if (not (eq ?classification WALL))
then (format t "%nPolyhedron OBJECT (%3.1f .. %3.1f) "

?startpolytime ?endpolytime)
(format t "has area %3.1f%n" (abs ?area)

)

(format auvfile " (prior object area was %3.1f)" (abs ?area))

(assert (Polyhedron (status COMPLETE)
(start ?startpolytime)
(end ?endpolytime)
(startx ?startx)
(starty ?starty)
(startz ?startz)
(centroidx =(avg ?startx ?node3x)

)

(centroidy =(avg ?starty ?node3y)

)

(centroidz =(avg ?startz ?node3z))
(sidecount 1)

(accuracy ?polyaccuracy)

171

(trait HIDDEN_EDGE)
(classification WALL))))

)

(bind ?length (distance ?node2x ?node2y ?node2z ?node3x ?node3y ?node3z)

)

if distance is close enough, then test colinear/convex/concave
(if (<= ?distance ?*max_edge_distance*)
then (if (<= (abs (normalize2 (- ?orientationl ?orientation2))

)

?*max_edge_angle*)
then ; colinear edge found and added to polyhedron

; also add ' S' area between start point and new segments
(bind ?triangleareal (S ?startx ?starty

?nodelx ?nodely ?node2x ?node2y)

)

(S ?startx ?starty
?node2x ?node2y ?node3x ?node3y)

)

?endline2time)
=(+ ?area ?triangleareal ?trianglearea2)

)

(centroidx =(+ ?centroidx ?node2x ?node3x)

)

(centroidy =(+ ?centroidy ?node2y ?node3y)

)

(centroidz =(+ ?centroidz ?node2z ?node3z))

(bind ?trianglearea2

(modify ?poly (end
(area

(sidecount = (h

(modify ?line2 (status USED))
?sidecount 1))

)

(assert (Polyhedron (status
(start
(end
(startx
(starty
(startz
(centroidx
(centroidy
(centroidz
(sidecount
(accuracy
(trait

COMPLETE)
?endlineltime)
?startline2time)
?nodelx)
?nodely)
?nodelz)

=(avg ?nodelx ?node2x)

)

=(avg ?nodely ?node2y)

)

=(avg Pnodelz ?node2z))
1)

= (max ?accuracyl ?accuracy2))
INFERRED EDGE)

(if (>= ?length
(classification WALL)))

_wall_length*)
then (output_polyhedron ?startline2time ?endline2time

?node2x ?node2y 0.0
?node3x ?node3y 8.0
"WALL"
"(added colinear edge)"))

test for convex edge to continue building,
otherwise edge is concave and polyhedron is complete,
note this rule currently coded to work only for left transducer

(< (normalize2 (- ?orientation2 ?orientationl)) 0.0)

convex edge found, and joined to polyhedron
also add 'S' area between start point and new

(S ?startx ?starty
?nodelx ?nodely ?node2x

(S ?startx ?starty
?node2x ?node2y ?node3x

?endline2time)

(bind ?triangleareal

(bind ?trianglearea2

(modify ?poly (end

segments

?node2y)

)

?node3y)

)

(classification OBJECT)
(area

(accuracy

(centroidx
(centroidy
(centroidz
(sidecount

(+ ?area ?triangleareal
?trianglearea2)

)

(max ?accuracy2
?accuracy3 ?polyaccuracy)

)

(+ ?centroidx ?node2x ?node3x)

)

(+ ?centroidy ?node2y ?node3y)

)

(+ ?centroidz ?node2z ?node3z)

)

(+ ?sidecount 1))

)

(modify ?line2 (status USED))

(assert (Polyhedron (status
(start
(end
(startx
(starty
(startz
(centroidx
(centroidy
(centroidz
(sidecount
(accuracy
(trait

COMPLETE)
?endlineltime)
?startline2time)
?nodelx)
?nodely)
?nodelz)
;(avg ?nodelx ?node2x)

)

: (avg ?nodely ?node2y)

)

(avg ?nodelz ?node2z)

)

1)

(max ?accuracyl ?accuracy2)

)

INFERRED EDGE)
(classification WALL)))

172

(if (> = ?length ?*min_wall_length*)
then (output_polyhedron ?startline2time ?endline2time

?node2x ?node2y 0.0
?node3x ?node3y 8.0
"WALL"
"(added convex edge)"))

ilse ; concave edge found so don't continue building polyhedron
(modify ?poly (status COMPLETE)

(area =(abs ?area)

)

(centroidx =(/
(centroidy =(/
(centroidz =(/
(sidecounterl
(sidecounter2

?centroidx ?sidecount 2)

)

?centroidy ?sidecount 2))
?centroidz ?sidecount 2)

)

?sidecount)
?sidecount)

)

; if polyhedron was not a WALL, assert a HIDDEN_EDGE wall
(if (not (eq ?classification WALL)

)

then (format t "%nPolyhedron OBJECT (%3.1f .. %3.1f) "

?startpolytime ?endpolytime)
(format t "has area %3.1f%n" (abs ?area)

)

(format auvfile " (prior object area was %3.1f)" {i

(assert (Polyhedron (status COMPLETE)
(start ?startpolytime)
(end ?endpolytime)
(startx ?startx)
(starty ?starty)
(startz ?startz)
(centroidx =(avg ?startx ?node3x)

)

(centroidy =(avg ?starty ?node3y)

)

(centroidz =(avg ?startz ?node3z)

)

(sidecount 1)

(accuracy ?polyaccuracy)
(trait HIDDEN_EDGE)
(classification WALL))))

(def rule complete-active-polyhedron-after- file- reading- finished

(declare (salience 420)) ; polyhedron determination rules take precedence
?range-file-closed <- (range-file-closed-flag)

>poly <- (Polyhedron (status
(start
(end
(startx
(starty
(startz
(accuracy
(centroidx
(centroidy
(centroidz
(sidecount
(area
(classification

ACTIVE)
?startpolytime)
?endpolytime)
?startx)
?starty)
?startz)
?polyaccuracy)
Pcentroidx)
?centroidy)
?centroidz)
?sidecount)
?area)
?classif ication)

)

node matches end of polyhedron
?node <- (Node (time ?nodetime)

(accuracy ?accuracy)
(x ?nodex) (y ?nodey) (z ?nodez)

)

(test (= ?endpolytime ?nodetime)

)

2 points/side

(modify ?poly (status COMPLETE)
(area = (abs ?area)

)

(centroidx =(/ ?centroidx ?sidecount 2))
(centroidy =(/ ?centroidy ?sidecount 2))
(centroidz =(/ ?centroidz ?sidecount 2))
(sidecounterl ?sidecount)
(sidecounter2 ?sidecount)

)

; if polyhedron was not a WALL, assert a HIDDEN_EDGE wall for it
(if (not (eq ?classif ication WALL))
then (format t "%nPolyhedron OBJECT (%3.1f .. %3.1f) has area %3.1f%n"

?startpolytime ?endpolytime (abs ?area)

)

(format auvfile " (prior object area was %3.1f)" (abs ?area)

)

(assert (Polyhedron (status COMPLETE)
(start ?startpolytime)

173

(end ?endpolytime)
(startx ?startx)
(starty ?starty)
(startz ?startz)
(centroidx =(avg ?startx ?nodex)

)

(centroidy =(avg ?starty ?nodey)

)

(centroidz =(avg ?startz ?nodez))
(sidecount 1)

(accuracy ?polyaccuracy)
(trait HIDDEN_EDGE)
(classification WALL))))

Completed polyhedron area calculation rules

(defrule oldareal

; compute-polyhedron-area-contribution- from- regression-edges

(declare (salience 415)) ; polyhedron determination rules take precedence
?poly <- (Polyhedron (status COMPLETE)

(trait OBJECT_BUILDING_BASED)
(classification OBJECT)
(start ?startpolytime)
(end ?endpolytime)
(startx ?startx)
(starty ?starty)
(startz ?startz)
(centroidx ?node3x)
(centroidy ?node3y)
(centroidz ?node3z)
(sidecount ?sidecount)
(sidecounterl ?sidecounterl

)

(area ?area)

)

(test (> ?sidecounterl 0)) ; prevent infinite recursion

; get the next line contributing to polyhedron area
?edge <- (Edge (start ?startedgetime)

(end ?endedgetime)
(status USED))

(test (and (>= ?startedgetime ?startpolytime)
(<= ?endedgetime ?endpolytime))

)

; nodel matches start of edge
?nodel <- (Node (time ?nodeltime)

(x ?nodelx) (y ?nodely) (z ?nodelz))
(test (= ?startedgetime ?nodeltime)

)

node2 matches end of edge
?node2 <- (Node (time ?node2time)

(x ?node2x) (y ?node2y) (z ?node2z))
(test (= ?endedgetime ?node2time)

)

(bind ?trianglearea (S ?nodelx ?nodely ?node2x ?node2y ?node3x ?node3y)

)

(modify ?poly (sidecounterl =(- ?sidecounterl 1))
(area =(+ ?area (abs ?trianglearea)))

)

(modify ?edge (status USED_FOR_AREA)

)

(defrule oldarea2

; compute-polyhedron-area-contribution-f rom-infer red-walls

(declare (salience 410)) ; polyhedron determination rules take precedence
?poly <- (Polyhedron (status COMPLETE)

(trait OBJECT_BUILDING_BASED)
(classification OBJECT)
(start ?startpolytime)
(end ?endpolytime)
(startx ?startx)
(starty ?starty)

174

(startz ?startz)
(centroidx ?node3x)
(centroidy ?node3y)
(centroidz ?node3z)
(sidecount ?sidecount)
(sidecounter2 ?sidecounter2)
(area ?area)

)

(test (> ?sidecounter2 0)) ; prevent infinite recursion

get a matching inferred wall or hidden edge polyhedron
?poly2 <- (Polyhedron (status COMPLETE)

(trait INFERRED_EDGE
I
HIDDEN_EDGE)

(classification WALL)
(start ?startpoly2time)
(end ?endpoly2time)
(startx ?nodelx)
(starty ?nodely)
(startz Pnodelz)

)

(test (and (>= ?startpoly2time ?startpolytime)
(<= ?endpoly2time ?endpolytime))

)

node2 matches the end of this inferred/hidden wall
?node2 <- (Node (time ?node2time)

(x ?node2x) (y ?node2y) (z ?node2z))
(test (= ?endpoly2time ?node2time)

)

(bind ?trianglearea (S ?nodelx ?nodely ?node2x ?node2y ?node3x ?node3y)

)

(modify ?poly (sidecounter2 =(- ?sidecounter2 1))
(area =(+ ?area (abs ?trianglearea)))

)

(modify ?poly2 (status USED_FOR_AREA)

)

(if (eq ?sidecounter2 1) ; last edge triangle has been added
then (format t "%nPolyhedron OBJECT (%3.1f .. %3.1f) has area %3.1f%n"

?startpolytime ?endpolytime (+ ?area (abs ?trianglearea)))

)

Object classification rules: the top level at last!

(defrule classi fy-pool-ob jects

(declare (salience 400)) ; polyhedron determination rules take precedence

?poly <- (Polyhedron (status COMPLETE)
(trait OBJECT_BUILDING_BASED)
(classification OBJECT)
(start ?startpolytime)
(end ?endpolytime)
(startx ?startx)
(starty ?starty)
(startz ?startz)
(centroidx ?centroidx)
(centroidy ?centroidy)
(centroidz ?centroidz)
(sidecount ?sidecount)
(area ?area)

)

; node matches end of polyhedron
?node <- (Node (time ?nodetime)

(accuracy Paccuracy)
(x ?endx) (y ?endy) (z ?endz))

(test (= ?endpolytime ?nodetime)

)

Reclassify long skinny objects as walls

(bind ?length (distance ?startx ?starty ?startz ?endx ?endy ?endz))
(if (<= (/ ?area ?length ?length) ?*wall_thinness_ratio*)
then (bind ?area 0.0)

(modify ?poly (classification WALL) (area 0.0))
(format t "%n*** OBJECT at (%3.1f .. %3.1f) reclassified as a WALL.%n'

?startpolytime ?endpolytime)

175

Mine classification

(if (and (>= ?area 10.0) (<= ?area 100.0)) ; area criteria test
then (modify ?poly (classification MINE))

(format t "%n%nThe polyhedron at times (%3.1f .. %3.1f) "

?startpolytime ?endpolytime)
(printout t "has classification MINE." crlf crlf)
(format auvfile
"%n%s %5.1f %4.1f %3.1f %5.1f time %4.1f"

MINE
(+ ?centroidx ?*offsetx*)
(+ Pcentroidy ?*offsety*)
(+ ?centroidz ?*offsetz*)
(/ ?area (pi) 2 6) ; radius
?endpolytime)

(format auvfile "%n")

(format ?*out*
"%n%s %5.1f %4.1f %3.1f %5.1f time %4.1f"

Mine
(+ ?centroidx ?*offsetx*)
(+ ?centroidy ?*offsety*)
(+ ?centroidz ?*offsetz*)
(/ ?area (pi) 2 6) ; radius & sonar beamwidth fudge factor
?endpolytime)

(format ?*out* "In"))

176

APPENDIX D

Shortest Path Planning

in a Circle World

Yutaka Kanayama
Donald P. Brutzman

Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943

U.S.A.

September 21. 1991

Abstract

This paper discussed the shortest path planning problem in a world with n circular obsta-

cles. This problem can be considered a simplified mathematical model of the shortest path

planning problem for a polygonal world. As we established a method to treat circles in a man-

ner similar to nodes in a search graph, the Dijkstra's algorithm can be applied and the problem

is solved in time 0(n 2 \ogn). The A* algorithm dramatically improves searching efficiency in

this problem. These results are given with numerous example figures. However, considering

the 0{n 2
) time result on the n line segment visibility problem, there is a strong possibility of

being able to solve this circle world problem in 0(n 2
) time also.

1 Introduction

The shortest path problem in a polygonal world has been extensively discussed in numerous articles.

Let n be the number of segments in a polygonal environment. Sharir and Shorr first showed that it

is solved in time 0{n 2 logn) [16] and this was improved by Welzl [17] and Asano et.al. [2] to 0(n 2
).

The use of Dijkstra's algorithm to spatial planning problems was first proposed by Lozzano- Perez

and Wesley [10].

This paper discusses the shortest path planning problem in a world with n circular obstacles,

which first appeared in [12]. This problem can be considered a simplified mathematical model of the

177

shortest path planning problem for a. polygonal world. As is well known, the fundamental approacl

to solve the shortest path problem is to use visible tangents to obstacles [6, 3, 16, 15, 17, 2, 12, 9, 7]

This paper also uses that approach. One of the significant results of this paper is that we are abl

to treat a circle in this world like a node in a search graph, and thus are able to employ Dijkstra'

algorithm.

At least one previous application, the Stanford cart mobile robot, used a similar circle worl

model for obstacle representation and avoidance. The combination of vision processing and pat]

planning aboard that small robot proved prohibitive for real-time use due to hardware limitation

and algorithmic complexity [12]. It is hoped that the optimal algorithm provided in this paper wi

support real-time path planning by autonomous vehicles. The circle world search model is directl

extendible to the general case of three-dimensional path planning and is particularly suitable fc

underwater vehicle path planning [5].

2 Problem Statements

The environment for this path planning problem is a plane on which a global Cartesian coordinat

system is defined. A circle C is a triple of XY coordinates and a radius (> 0),

C = (x,y,r) (1

A world W is a set of circles,

W={Ci,-",C»}, (2

where no pair of circles are intersecting or touching. A free space is a complement of the union c

all the circles (the free space includes the circular boundaries). Let a start point S and a goal poin

G be points in the free space. Any path joining S and G must stay in the free space. The probler

is to find a shortest path joining S and G in this world W (Fig. 1).

3 Fundamentals

3.1 Tangents and Common Tangents

Let C = (x,y,r) be a circle. If the intersection of a directed line (or a ray) and the circle C \

only a point, the line is said to be a tangent to C . If the circle C is on the left of a tangent to C
the tangent is called a plus or counterclockwise tangent. If C is on the right of a tangent to C, tfo

tangent is called a minus or clockwise tangent (Fig. 2). The "plus" or "minus" characteristic of ,

tangent is called the mode.

17S

Let p =
{
xo,yo) be a point outside the circle C. The two tangents from po to C are uniquely

determined (Fig 2). The orientation 6+ of the plus tangent from p to the circle C is

+ = V(p ,(x,y))-8m- 1

(

*'

-), (3)
dist{po,{x,y))

where \P(p, q) stands for the orientation from a point p to point q in four quadrants (ty(p,q) E

[— 7r,7r]). On the other hand, the orientation 0~ of the minus tangent from p to the circle C is

6- = V(p
,
(x,y)) + sin-

1

! .. 77 ", rr) (4)
dwt(pD,(x,y))

Therefore, if a tangent of mode m from a point to a circle C, assuming that its value is +1 if the

mode is plus and -1 if it is minus, the previous two equations are expressed by

<T = ¥(pd,(*,y)) " m sm~\
T

-) = *{po,(x t y)) - sin"
1

!

mr
-) (5)

dist(po,(x,y)) dist(p ,(x,y))

The intersection of a tangent and a circle is called an osculating point. In this case in Fig 2, the

osculating points are also called landing points.

Likewise, a tangent of mode m from a circle C to a point po (Fig 3) has an orientation

i 771 7"

fl'" = tt((.r.y),p
) + sin-

1

(.

-) (6)
dist{po,(x,y))

In this case, the osculating points are called leaving points.

There are four common tangents from a circle C\ = (£i,yi,7*i) to another C2 = (^2,^2,^2)

(Fig. 4).

Each of the four tangents are uniquely named: ++ tangent, -f — tangent, —+ tangent and

tangent. The orientation
ml '" 2

of these tangents is

g"lm2 = ^((»i l yi) > (g2,ya)) + «rin-
1

(?\7"
m2
^) (7)

Hereafter by "tangent" we mean a directed line segment between a point and osculating point,

or between osculating points.

: 3.2 Visibility

The test for intersection of a (directed or undirected) line segment L with a circle Ccan be done in

a constant time as follows (Fig 6). First we find the region in Fig 6 that the center of C is located

in. After that we can compare the radius of C with d, where d is the distance between the center

of C and L, or the distance between the center and one of the endpoints of L (if L merely osculates

179

the circle, it is not considered intersecting). A line segment L in a world W is visible in a world

W if L does not cross the circumference of any circle in W . Basically, the visibility test in W for a

line segment needs 0{n) time. However, integrating these tests simply for all the possible tangents

requires 0(n 3
) time, since the number of all the tangents is 0(n 2

). Thus, we will use some other

method as discussed later.

3.3 Characterization of Shortest Path

A directed circle is a circle C with a mode or direction. A mode m is either counterclockwise (or

plus) or clockwise (or minus). A part of a directed circle can be used as a component of a shortest

path.

With a world of II', we define the set M = M(W) of (tangent) modes.

M(W) = {C+ ,C-|Ce W] (8)

A mode sequence a over M is a finite sequence of modes such that no subsequence of C+C+
,

C+C~, C~C+ or C~C~ (with a single C 6 W) is contained. The empty mode sequence is denoted

by t. The set of all the mode sequences is expressed as M(W)* following the convention of language

and automata theory. If W = {C. D) . examples of tangent sequences are:

<.C + .C-.D +,D-X,+D+ ,C+ D-,---,D~C+ ,---

A mode sequence a E M(W)* with a start 5 and goal G can be interpreted into a path

7r(cr) by the following two rules. Furthermore, we assume the same tangent mode does not occur

consecutively in a mode sequence a

.

(I) If a= e,

ir (a) = SG if visible(S, G) (9)

where visible(S,G) means >-

S and G are visible in this world" for directed line segment SG. If they

are not visible, the value tt(c) is undefined.

(II) If a = Q?
1

• • • C,7, where q > 1, ClU ...,Ciq £ W, and ml, ... , mq € {+ , -},

z{a) = kk,l l k2 l 2 ...kq
l

ll (10)

where

1. the right hand side of this equation is the concatenation of the 2<? -f- 1 subpaths,

2. / is a 7721 tangent from S to circle Cn if the tangent is visible (in this world),

ISO

3. for each j{\ < j < q— 1), lj is (mj,m(j + 1)) common tangent from circle dj to circle Ci
t
j+i

if this tangent is visible,

4. l
q

is a mq tangent from circle Ciq to G if this tangent is visible, and

5. for each j{\ < j < q), kj is the minimum portion of the ?7i(fj)-directed circle C,j between the

two osculating points of the previous and next tangents (if both tangents are visible).

6. If any of these subpaths do not exist in the world, the value 7r(cr) is undefined.

A path n is called canonical if there exists a mode sequence a such that n = 7r(cr). The following

proposition is essential in shortest path planning problem:

Proposition 3.1 The shortest path for a given world and two endpoints is canonical.

4 Dijkstra's Algorithm

Having Proposition 3.1, there exists the possibility of applying Dijkstra's algorithm to this path

finding problem. Dijkstra's algorithm is a standard approach to the single-source shortest path

problem in a. graph [1, 11]. Although the free space in a circle world has much more freedom

than a network graph in path planning, we can treat a circle as a "generalized" search node and

tangents as arcs by using minor search modifications and by taking advantage of Proposition 3.1.

This proposition says that a shortest path has a mode sequence a and lands on one or more circles

if S and G are not visible. Therefore, if a circle Cm is in <r, the partial path from S to Cm is the

shortest one of all the possible paths from S to Cm . The essence of this concept is the same as that

of Dijkstra's algorithm. A relatively complicated question is how two paths with distinct landing

points on C should be compared.

The following visibility preprocessing is required prior to employing Dijkstra's algorithm:

1. visible tangents from S to all the circles in W.

2. visible common tangents between all the circles in W.

3. visible tangents from all the circles in W to G.

4.1 Preprocessing for Visible Tangents to or from a Point

Let us consider the problem of finding all the visible tangents from S to all the circles in W . The
other problems of finding tangents between circles and tangents to G can be solved in a similar

manner.

1S1

Step 1. Compute all the orientations of tangents from S to all the circles in both modes.

Step 2. Sort these orientations using a heap.

Step 3. Sweep all the tangent by their orientations starting with the orientation of the tangent

with the shortest length. In this sweep process, visibility is tested using a heap built according to

tangent lengths. (For sweep technique, see [14].)

The computational time is O(n) for Step 1, 0(n log n) for Step 2, and 0(n log n) for Step 3 (n

is the number of circles). Thus, the overall computational complexity is O(nlogn). The result of

applying this algorithm to the world given in Figure 1 is shown in Figure 7. All visible tangents

from all circles to G are shown in Figure 8.

4.2 Preprocessing for Visible Common Tangents

There are two obvious ways to do this in 0(n 2 \ogn) time. One is to compute all the common
tangents from a circle in 0(72 log??) time (Fig 9) and repeat this for all ?2 circles. Another method

is to list orientations of all the common tangents among circles. This task also needs O(?2
2
log72)

time. Next we sweep these tangents by orientation to update the visibility relation [14, 17]. This

part again takes 0(/?
2
log??) time.

However, there is a strong possibility of accomplishing the entire process in 0(??
2

) time using the

similar methods developed for finding a visibility graph of ?? line segments in that time complexity

[17, 2]. This is an open problem. All common tangents in the example circle world are shown in

Figure 10.

4.3 Comparison between Two Landing Paths

Figure 11 shows an example in which two paths -K\ and 7r 2 land on a directed circle. In addition let

A12 be a portion of the directed circle from the landing point of 7Ti to that of 7r 2 . A 2 i is defined in

an analogous manner. The union of both portions make a complete directed circle.

Proposition 4.1 Assume ttj and -
2 land on a m-directed circle (m G {+,— }) Either of the

following cases hold.

(Case I) A closed path (zi, A 12 , 7r 2) does not contain the circle.

(Case II) A closed path (?r 2 , A 2 i. Z\) does not contain the circle.

Let /<jf(7r) denote the length of a path tt.

Proposition 4.2 In the situation described in Proposition 4-1, in Case I, compare

to) + ^i2) andlg{Tr2) (11)

182

On the other hand, in Case II, compare

lg(ir2) + lg(X21) and Igfa) (12)

In each case the longer overall path should be discarded.

Proof. Let us examine the situation in Figure 11 which falls under Case I. In this case, we

assume the goal G or next landing point is in region L, but not in region R in the figure. If the goal

or next landing point is in region R, there exists a better path than ir 2 and its use is meaningless.

Therefore, the shorter of the two paths in Equation 11 is better for further extension.

In order to find which of Case I or II in Proposition 4.1 holds, we keep a record of "areas" of

paths. Let 7r be any directed path from a point P to Q. Let us consider a cycle consisting of three

paths, the directed line segment SP (S is the start of this path planning problem), n itself, and

another directed line segment QS. An area A{x) of ir is an area composed by this cycle. A(t) is

positive if the cycle is counterclockwise and negative otherwise. Since the algorithm for evaluating

A(tt) is relatively simple, we will not give the details here. Using this area,

Proposition 4.3 In the situation described in Proposition ^.1,

• Assume the modi is +. //'

-.4(7r
1
)-.4(A 12)

+ .4(7r 2)>0 (13)

the closed path falls in Case I. otherwise Case II.

• Assume the mode is — . If

A(7r1) + A(A12)-A(7r2)>0 (14)

the closed path falls in Cast 1. otherwise Case II.

4.4 Dijkstra's Algorithm

Using the preparation so far, applying Dijkstra's algorithm to the shortest path planning problem

in a circle world is possible. One of the significant changes from ordinary Dijkstra's algorithm is

that the distance from 5 at a directed circle is related to the landing point to it.

Step 1. Unmark all the directed (means "with mode") circles and let their distance = oo. Let

dtotal be co.

Step 2. Assign the distance of all visible directed circles from S by their distances from S.

Step 3. Select an unmarked directed circle Cm which contains the smallest distance. Mark it.

Step 4. Update the distance to directed circles which are visible from Cm . If a circle already

contains a finite distance value, use the comparison algorithm described in Section 4.3.

Step 5. If there is a marked directed circle which is visible to G, update dtota i.

183

Step 6. If dt tai is less than or equal to the distances of all the unmarked directed circles, stop.

Otherwise go to Step 3.

The result of applying Dijkstra's algorithm to the sample world is shown in Figure 12.

5 A* Algorithm

In this problem, the use of the A* algorithm is natural and effective [13]. Consider a partial path

7r whose last landing point is P on a directed circle Cm . A lower estimate of the length for the rest

of the path 7r (or a heuristic for tt) is the direct distance between P and the goal G. However, there

is a better heuristic function.

First, take a tangent from Cm to G. Let Q be the leaving point on Cm . The heuristic function

is the sum of a partial directed circle PQ and the Euclidean distance QG (Fig. 13). In finding the

tangent from Cm to G\ their is no need to calculate visibility. Even if the tangent from Cm to G
is not visible, this is a "lower" estimate and a valid heuristic. The result of applying this heuristic

function is depicted in Figure 14.

References

[1] Aho, A. V., Hopcroft, J.E. and Ullman, J.D., Data Structures and Algorithms, Reading, Mas-

sachusetts, Addison- Wesley. 1985.

[2] Asano, T., Asano T., Guibas, L., Hershberger, J. and Imai, H., '"Visibility-Polygon Search and

Euclidean Shortest Paths/' Proceedings 26th Symposium on Foundations of Computer Science

pp. 155-164, 1985.

[3] Chazelle, B. and Guibas. L.J., "Visibility and Intersection Problems in Plane Geometry,"

Proceedings of the ACM Symposium on Computational Geometry, 1985.

[4] Chew, L.P., "Planning the Shortest Path for a Disc in 0(n 2 logn) Time," Proceedings of the

ACM Symposium on Computational Geometry, pp. 214-220, 1985.

[5] Healey, A. J., McGhee, R.B.. Christi, R., Papoulias, F.A., Kwak, S.H., Kanayama and Y.,

Lee, Y., "Mission Planning, Execution, and Data Analysis for the NPS AUV II Autonomous

Underwater Vehicle," Proc. Workshop on Mobile Robots for Subsea Environments, IARP, in

Monterey, California, pp. 177-186, October 23-26, 1990

[6] Hershberger, J. and Guibas, L.J., "An 0(n 2
) Shortest Path Algorithm for a Non-rotating

Convex Body," Journal of Algorithms, vol. 9, pp. 18-46, 198S.

[7] Kanayama, Y., "Introduction to Spatial Reasoning," Class Notes, Naval Postgraduate School,

Monterey, California, May 1991.

184

[8] Khatib, 0., "'Real-Time Obstacle Avoidance for Manipulators and Mobile Robots," The Inter-

national Journal of Robotics Research, vol.5, No.l, pp90-9S, 1986.

[9] Liu, Y.H. and Arimoto, S., "Proposal of Tangent Graph and Extended Tangent Graph for Path

Planning of Mobile Robots," Proceedings of the IEEE International Conference on Robotics

and Automation, pp. 312-317. 1991.

[10] Lozzano-Perez, T. and Wesley, M.A., "An Algorithm for Planning Collision-Free Paths Among
Polyhedral Obstacles," CACM vol. 22, no. 10, Oct. 1979, pp. 560-570.

[11] Manber, Udi, Introduction to Algorithms: A Creative Approach, New York, Addison-Wesley,

pp. 204-208, 1989.

[12] Moravec, Hans P., "Obstacle Avoidance and Navigation in the Real World by a Seeing Robot

Rover," Ph.D. Thesis, Report STAN-CS-80-813, Stanford University, September 1980.

[13] Nilsson, N.J., Artificial Intelligence, Palo Alto, California, Tioga Press, 1980.

[14] Preparata, F.P.. and Shamos, M.I., Computational Geometry: An Introduction, pp. 10-11,

Springer-Yerlag, New York, 1985.

[15] Reif, J. and Storer, J. A., "'Shortest Paths in Euclidean Space with Polyhedral Obstacles,"

Technical Report S-85-121 . Brandeis University, 1985.

[16] Sharir, M. and Schorr, A., "On Shortest Paths in Polyhedral Spaces," Technical Report No.

138 , New York University.
(
'ourant Institute of Mathematical Sciences, 1984.

[17] Welzl, E., ''Constructing the Yisibility Graph for n Line Segments in 0(n 2
) Time," Information

Processing Letters, vol. 20. no. 4. pp. 167-171. 1985.

185

0~ u

Figure 1: Circle World

Figure 2: Tangents from Point to Circle

186

Figure 3: Tangents from Circle to Point

Figure 4: Tangents from Circle to Circle

1ST

-CW--1 a — mode2 - CW - -1

Figure 5: Cross and External Tangents

Point-to-Point Visiblity Checks

mi*T

!

|o1|<T I

polntl'*

l«2j>
-

e-

/ !52| * T
polnt2

Three regions of possible circle locations

O : O i o
9 - orientation (point"! , point2)

51 - orientation (point"!, drde.center) - 6

52 - orientation (point2, circle.center) - 8

Figure 6: Intersection Test

1SS

Figure 7: Tangents from Start

189

o / (
. ak. n

citci. :e

Figure 8: Tangents to Goal

Sweep Method - CCW Circle to All Circles

«•'
/e- /s-

Figure 9: Common Tangents from One Circle

190

Figure 10: All Common Tangents

101

Start

Figure 11: Multiple Paths to Circle

192

Figure 12: Result: Dijkstra's Algorithm

193

A* Evaluation Function Comparison

pathl path2

cost (pathl) + arc_cost (a, b, CW) + distanca (b, goal) >

cost (path2) + arc_cost (c, d, CCW) + distance (d, goal)

Figure 13: Heuristic Function

194

(>'

n

O

Figure 14: Result: A* Algorithm

195

Filename

Purpose

:

APPENDIX E. CIRCLE WORLD SOURCE CODE

Define structures, type definitions and functions for
circle_world robotics project.

Reference: Advanced Robotics class notes. Dr. Yutaka Kanayama

Author: Don Brutzman

Date: 10 February 92

Comments: circle_world is a set of routines for mobile robot modeling
and two-dimensional path planning.

All obstacles are modeled as circles.
Circles are allowed to be adjacent but not overlapping.
Adjacent (touching) circles do not prevent robot travel
along either circle circumference.

Language: ANSI C

Compile: cc -g -c circle. c -lm

Graphing: graph -b -g 1 -1 "circle_world plot" < filename
I lpr -g

Status: Shortest path solution complete.

#include <stdio.h>
#include <math.h>
#include <ctype.h>

#define CIRCLE. C INCLUDED

Circle world Global Constants

#define CCW
#define PLUS
#define RIGHT
#define POSITIVE

#define CW
#define MINUS
#define LEFT
#define NEGATIVE

#define COLINEAR
#define CENTER
#define ZERO

#define TRUE
tdefine SUCCESS
#define YES
#define ON

#define FALSE
#define FAILURE
#define NO
#define OFF

#define VISIBLE
#define NONVISIBLE
#define TANGENTIAL

tdefine FATAL
#define NONFATAL
#define UNDEFINED

tdefine PI 3.141592653589793

196

#define TANGENTS_OK

#define EPSILON

#define ARC_FACTOR

#define TICK_WIDTH

tdefine GRAPH_STRETCH

#define SUBDIVISIONS

#define DEFAULT Z

#define GRAPH_FILENAME

#define AUV_FILENAME

#define TRACE

TRUE /* whether or not tangents which pass adjacent*/
/* to other circles are considered VISIBLE

1.0E-6 /* error bound in floating point calculations

1.00 /* factor that arc lays outside circle plot

/* tick width at segment endpoints along path

/* expansion factor to open out graph window

0.50

1.20

360 /* number of points used to graphically
/* represent a circle during file output

0.0 /* Default pool depth, legal range 0..8 feet
/* where zero feet = surface
/* makes circle. auv output data compatible
/* with NPS_Pool_Preview graphics project.

"circle
.
graph"

"circle. auv"

name of graph points output file

name of high level output file

Enable trace printf statements in circle.

c

static float pooltime 0.0; /* used to put time hacks on output objects

List of circle_world Data Structures *********************

External Data Structures Data Types and Member Labels

Point

Segment

Circle

Tangent

'Configuration

'Circle world

double x, y;

Point pointl, point2;

Point
double

center;
radius;

Circle
double

circle;
angle;

Circle
double
int

circle;
anglel, angle2;
rotation-

Tangent
double

tangent;
orientation;

char
Segment
int
Path_list

label;
initial
degree;
*path_li

_segment

Point
int
Circle list

start,
degree;
circle

goal;

list;

Internal Data Structures

'Circle list

Arc
Segment

Circle
Circle list

arc;
segment;

previous, next;

circle;
previous, A next;

List of circle world Functions

Parameters

197

error
make_point
make_segment
make_circle
make_tangent
make_arc
create_con figuration

t create_path
create circle world

(message, fatal)
(x, y)
(pointl, point2)
(point, radius);
(circle, angle)
(circle, anglel,
(tangent, angle,
(initial_segment

)

(start, goal, circle_world)

angle2, rotation)
configuration)

sign
degrees
normalize
normalize2
precede
orientation
distance

angle
S

area
order
between

ci rcumference_point
intersect
visible

circle_tangent
arc_cost
segment cost

(x)

(angle)
(angle)
(angle)
(anglel, angle2)
(pointl, point2)
(pointl, point2)

(pointl, point2, point3)
(pointl, point2, point3)
(pointl, point2, point3)
(pointl, point2, point3)
(pointl, point2, point3)

(circle, angle)
(segment, circle)
(pointl, point2, circle_world)

(circlel, circle2,
(arc)
(segment

)

model, mode2, *configl, *config2)

augment_path (arc, segment, path)
add_circle_to_world (circle, circle_world)
find_circle (n, circle_world)
retrieve circle world (circle world)

graph_path
graph_world
output_path
output_world
center_graph_window

(path, circle_world, filename)
(circle_world, filename)
(path, filename)
(circle_world, filename)
(filename, xminptr, xmaxptr, yminptr, ymaxptr,
magnification)

See c search. c (circle search) for additional data structures and functions.

Circle_world Data Structures and Type Definitions

ypedef struct Point_type

double x, y;

Point;

/* cartesian coordinate system on a 2D plane

ypedef struct Segmenttype

Point pointl, point2;

Segment;

/* Note that a Segment is NOT just a
/* collection of (double) x, y coordinate
/* pairs, i.e. a segment is a pair of Point:

ypedef struct Circle_type

Point center;
double radius;

Circle;

/* radius zero circles are considered points */

typedef struct Tangent_type
{

/* all circle world angles are in RADIANS

198

Circle circle;
double angle; /* angle points to the circle tangent point */

/* relative to the circle center */

typedef struct Arc_type

Circle
double

circle;
anglel,
angle2;
rotation;

/* anglel points to landing point on circle */
/* angle2 points to leaving point on circle */
/* direction of rotation is either CW or CCW: */
/* RIGHT (+) landing tangent => CCW(+) rotation*/
/* LEFT (-) landing tangent => CW (-) rotation*/

typedef struct Conf iguration_type
{

Tangent tangent;
double orientation; /* orientation is the tangential orientation, */

}
/* i.e. the direction that robot is pointing */

Configuration;

typedef struct Path_list_type
{

Arc
Segment

arc;
segment;

Path_list_type
previous,
*next;

/* arc is from landing point to leaving point */
/* segment connects leaving point, either to */
/* next circle landing point, or to goal */
/* continue this type with doubly-linked list */
/* of arc/segment combinations until the */
/* goal is reached */

typedef struct Path_type
{

char * label; / i

Segment initial_segment; / i

int degree; / i

Path_list *path_list; /<

optional string label for each path */

initial segment leaving start point */

number of arc/segment pairs in the path */

linked list of arc/segment combinations */

Path;

typedef struct Circle_list_type
{

Circle
struct

circle;
Circle_list_type / i

previous, / i

*next

;

continue this type with doubly-linked
list of remaining circles

Circle list;

typedef struct Circle_world_type
{

Point start;
Point goal;
int degree;
Circle_list *circle list;

Circle world;

/* starting point
/* goal point
/* number of circles in this world
/* linked list of circles in world

circle world Function Declarations

void error (message, fatal)

char *message;

/* internal error-handling diagnostic

/* error message to be printed

199

int fatal; /* exit if FATAL, return otherwise
(

fprintf (stderr, "*** Program error: ");

perror (message)

;

fprintf (stderr, "\n\n");
if (fatal == FATAL)
(

fprintf (stderr, "FATAL error, program exit.Xn");
exit (FAILURE)

;

)

return;
}

/*

Point make_point (x, y) /* make a point from x, y coordinates

double x, y;
{

Point point;

point. x = x;
point. y = y;

return point;
}

/*

Segment make_segment (pointl, point2) /* make a Segment from two point:

Point pointl, point2;
{

Segment segment;

segment .pointl = pointl;
segment

.
point2 = point2;

return segment;

Circle make_circle (point, radius) /* create a circle from point & radius */

Point point;
double radius;

Circle circle;

circle . center = point;
circle . radius = radius;

return circle;

Tangent make_tangent (circle, angle) /* make tangent from circle & angle

Circle circle;
double angle;

Tangent tangent;

tangent . circle = circle;
tangent .angle = angle;

return tangent;

make_arc (circle, anglel, angle2, rotation)

Circle circle; /* create an arc_type from circle data, */
double anglel, angle2; /* two angles and a direction of rotation*/
int rotation; /* (CW or CCW) */

Arc arc;

/* initialize values */

arc. circle = circle;
arc. anglel = anglel;
arc.angle2 = angle2;
arc. rotation = rotation;

200

lid create configuration (tangent, orientation, configuration)

Tangent tangent;
double orientation;
Configuration *configuration;

/* create a configuration_type pointer */
/* from a tangent and an orientation */
/* resulting configuration output */

if (configuration NULL) allocate memory if needed

if (TRACE) printf ("\n*** create configuration: allocating memory");
if ((configuration = (ConfiguratTon *) malloc (sizeof (Configuration)))

== NULL)
error ("create_conf iguration : memory allocation failure", FATAL);

initialize values */

con f i gu rati on- > tangent
configuration->orientation

tangent-
orientation;

static Path *create_path (initial_segment

)

Segment initial_segment

;

static Path *path;

/* begin a path_type linked list, using
/* a segment which includes start point

if ((path = (Path *) malloc (sizeof (Path))) == NULL)
error ("create_path : memory allocation failure", FATAL);

/* initialize values */

path->label
path->degree
path->initial_segment
path->path_list

return path;

initial_segment;
((Path list *) 0)

;

void create_circle_world (start, goal

Point start, goal;

Circle world *world;

.£ (world == NULL)

/* create a circle_world using
/* start and goal points only
/* resulting circle_world output

/* allocate memory if needed

if (TRACE) printf ("\n*** create_circle_world: allocating memory");
if ((world = (Circle_world *) malloc (sizeof (Circle_world))) == NULL)

error ("create_circle world: memory allocation failure", FATAL);

/* initialize values */

world->start = start;
world->goal = goal;
world->degree = 0;
world->circle_list = ((Circle_list *) 0);

return;

sign (x)

double x
/* return sign of x as an integer

if (x > 0.0)
return POSITIVE;

else if (x < 0.0)
return NEGATIVE;

else
return ZERO;

201

)

/* */

double degrees (angle) /* conversion from radians to degrees */
double angle; /* note no normalization is performed */

{

return angle * 180.0 / PI;

double normalize (angle) /* standard normalization range -PI.. PI */

double angle; /* angle is any real value in RADIANS */

<

double x;
x = angle;
while (x > PI) x = x - PI - PI;
while (x < - PI) x = x + PI + PI;
return x;

)

/* */

double normalize2 (angle) /* alternate normalization range 0..2*PI */

double angle; /* angle is any real value in RADIANS */

{

double x;
x = angle;
while (x > PI + PI) x = x - PI - PI;
while (x < 0.0) x = x + PI + PI;
return x;

}

/. */

int precede (anglel, angle2) /* Boolean function for angle precedence */

double anglel, angle2; /* angles are any real angles in degrees */
/* return TRUE if anglel precedes angle2,*/
/* return FALSE otherwise */

(

/* note that the input angles are individually normalized to ensure validity */

if (normalize (normalize (angle2) - normalize (anglel)) > 0.0)
return TRUE;

else /* reference: equation (7) class notes */
return FALSE;

}

/* */

double orientation (pointl, point2) /* range -PI ..PI */

Point pointl, point2; /* return normalized angle between points*/
{

if ((pointl. x == point2.x) && (pointl. y == point2.y))
return 0.0;

else
return normalize (atan2 (point2.y - pointl. y, point2.x - pointl. x));

)

/* */

double distance (pointl, point2) /* euclidean distance between two points */
Point pointl, point2;

{

double deltax = point2.x - pointl. x;
double deltay = point2.y - pointl. y;
return sqrt (deltax * deltax + deltay * deltay)

;

}

/* */

int angle (pointl, point2, point3) /* return angle between three points */
/* angle order is pointl . .point2 . .point3 */

Point pointl, point2, point3;

{

return normalize (orientation (point2, pointl) -

orientation (point2, point3));
}

/* */

double S (pointl, point2, point3) /* calculate S function for three points */
/* reference: equation (14) class notes */

Point pointl, point2, point3;

202

/* CCW triples are positive & CW triples are negative, matching conventions. */

{

return 0.5 * ((point2.x - pointl.x) * (point3.y - pointl.y) -

(point3.x - pointl.x) * (point2.y - pointl.y));
}

/* */

double area (pointl, point2, point3) /* calculate area between three points */
/* reference: Proposition 3.1 class notes*/

Point pointl, point2, point3;
{

return fabs (S (pointl, point2, point3))

;

}

/* */

int order (pointl, point2, point3) /* determine order of three points */

Point pointl, point2, point3;/* relationship between three points is */
/* clockwise (CW) , counterclockwise (CCW)*/
/* or COLINEAR */
/* reference: equation (15) class notes */

{

if (fabs (S (pointl, point2, point3)) <= EPSILON)
return COLINEAR; /* floating point error check, correction*/

else
return sign (S (pointl, point2, point3))

;

int between (pointl, point2, point3) /* test for betweenness of point2 */

Point pointl, point2, point3;
{

if ((order (pointl, point2, point3) == COLINEAR) &S
(pointl.x <= point2.x) SS (point2.x <= point3.x) &&
(pointl.y <= point2.y) && (point2.y <= point3.y))
return TRUE;

else
return FALSE;

)

/* */

Point circumference_point (circle, angle) /* return coordinates of a point */
/* on a circle's circumference */

Circle circle; double angle;
{

return make_point (circle. center .x + circle. radius * cos (angle),
circle . center .y + circle . radius * sin (angle));

}

/, */

int intersect (segment, circle) /* determine if segment intersects circle */

Segment segment;
Circle circle;

/* return: TRUE if any intersection exists within the circle */
/* return: FALSE if no intersections exist within the circle */
/* return: TANGENTIAL if only intersection is within EPSILON of the */
/* circle circumference (i.e. tangential), */
/* TANGENTS_OK is defined as TRUE, & neither */
/* segment endpoint is on the circumference. */

{

/* local variable declarations */
double height, /* height of circle center from segment */

theta, /* orientation angle of segment */
difference; /* difference between circle. radius and */

/* distance of circle. center to segment */

/* check special case: circle center is on the line segment */
if (between (segment .pointl, circle . center, segment .point2)

)

{

if (TRACE) {printf ("\n*** intersect: betweenness case ");
printf ("(%3.1f, %3.1f) (%3.1f, %3.1f)",
segment .pointl .x, segment .pointl .y,
segment .point2.x, segment

.
point2.y) ;

}

if (circle. radius <= EPSILON) /* this accounts for "point" circles */
return TANGENTIAL;

203

else
return TRUE; /* intersection occurred */

}

/* determine theta = orientation angle of segment */

theta = orientation (segment .pointl , segment .point2)

;

if (TRACE) printf ("\n*** intersect: ");

/* check case where circle. center is on right hand side of segment */
if (fabs (normalize (orientation (segment .point2, circle . center) - theta))

<= (PI/2.0))
{

difference = distance (segment .point2, circle . center) - circle . radius;
if (TRACE) printf ("case 1 ");
if (TRACE) printf ("orientation = %f ",

degrees (orientation (segment .point2, circle. center)))

;

if (TRACE) printf (" theta = %f ", theta);
if (TRACE) printf (* normalize = %f ",

degrees (normalize (orientation (segment .point2, circle. center))))

;

>

else /* check case where circle . center is on left hand side of segment */
if (fabs (normalize (orientation (segment .pointl, circle. center) - theta))

>= (PI/2.0))
{

difference = distance (segment .pointl, circle. center) - circle . radius;
if (TRACE) printf ("case 2 ");

}

else /* check case where segment length is zero */
if (distance (segment .pointl , segment

.
point2) == 0.0)

{

difference = distance (segment .pointl , circle. center) - circle. radius;
if (TRACE) printf ("case 3 ");

}

else /* circle . center is in a voronoi region defined by segment edge */

{

height = area (segment
.
pointl , segment .point2, circle. center)

* 2 / distance (segment .pointl , segment .point2)

;

difference = height - circle. radius;
if (TRACE) printf ("case A ");

1

/* Now use 'difference' to test for tangency or intersection. */

if (TRACE) (printf ("difference = %f ", difference);
printf ("(%3.1f, %3.1f) (%3.1f, %3.1f)",

segment .pointl .x, segment .pointl .y,
segment .point 2 . x, segment .point 2 .y)

;

printf (" circle (%3.1f, %3.1f) ",

circle. center. x, circle. center .y)

;

}

if (difference < - EPSILON) /* circle . radius is greater than the */
return TRUE; /* circle's distance from the segment */

/* thus intersection is TRUE */

else if ((fabs (distance (segment .pointl, circle. center) - circle . radius)
<= EPSILON)

|

|

(fabs (distance (segment
.
point2, circle . center) - circle. radius)

<= EPSILON)

)

return FALSE; /* ignore external tangency of segment endpoints, */
/* because solely trying to determine tangency */
/* with different circles in circle_world */

else if ((fabs (difference) <= EPSILON) SS TANGENTS_OK == TRUE)
return TANGENTIAL;

else
return FALSE; /* circle does not intersect segment */

)

/* */

int visible (pointl, point2, circle_world)

Point pointl, point2; /* determine whether a direct path is */
Circle_world *circle_world; /* visible between two points without */

/* crossing any circles in circle_world*/

204

/* return: VISIBLE if no intersections exist with circle_world */
/* return: NONVISIBLE if any intersection exists with circle_world */
/* return: TANGENTIAL if only intersection (s) are within EPSILON of */
/* circle circumference (s) , i.e. tangential */

/* local variable declarations */

int i, /* index */
visibility; /* VISIBLE, NONVISIBLE or TANGENTIAL */

Segment segment; /* intersection of perpendicular & line */

Circle circle; /* local variable holding current circle */

Circle_list *world_ptr; /* pointer to current circle */

visibility = VISIBLE; /* default initialization */

segment = make_segment (pointl, point2)

;

world_ptr = circle_world->circle_list ; /* first circle in world */

/* Note that intersection with circle_world start & goal is not checked. */

for (i=l; i <= circle_world->degree; ++i)

{

/* check next circle in circle_world for intersections */

circle = world_ptr->circle;

if (intersect (segment, circle) == TANGENTIAL)
visibility = TANGENTIAL; /* i.e. close enough to be a tangent*/

/* continue searching */

else if (intersect (segment, circle) == TRUE)
{

if (TRACE) {printf ("\n*** visible complete: NONVISIBLENn") ;

}

visibility = NONVISIBLE;
return visibility;

}

world_ptr = world_ptr->next

;

)

if ((visibility == VISIBLE) && TRACE)
printf ("\n*** visible complete: VISIBLEXn");

else if ((visibility == TANGENTIAL) && TRACE)
printf ("\n*** visible complete: TANGENTIAL\n")

;

return visibility;

void circle_tangent (circlel, circle2, model, mode2, configl, config2)

Circle circlel, /* input: Leaving circle where tangent starts */

circle2; /* input: Landing circle where tangent ends */
int model, /* input: which side of circlel */

mode2; /* input: which side of circle2 */
Configuration *configl, /* output: starting configuration pointer */

config2; / output: ending configuration pointer */

{

double alpha, theta, delta, anglel, angle2; /* local declarations */
Circle circle3; /* input: Leaving circle where tangent starts */
Circle circled; /* input: Leaving circle where tangent starts */

circle3 = circlel;
circled = circle2;

theta = orientation (circlel . center, circle2 . center)

;

/* Simplified delta angle equation originated by LT Scott Starsman USN */

delta = asin ((mode2 * circle2 . radius - model * circlel . radius) /
distance (circle2 . center, circlel .center))

;

alpha = normalize (theta - delta); /* tangential orientation */

anglel = normalize (alpha - model * PI / 2); /* leaving angle circlel */
angle2 = normalize (alpha - mode2 * PI / 2); /* landing angle circle2 */

if (model == CENTER)
{

anglel = 0.0;
circle3. radius = 0.0;

}

if (mode2 == CENTER)
<

angle2 = 0.0;
circle4 . radius = 0.0;

205

}

if (TRACE)
printf ("\n*** circle_tangents : theta = %f, delta = %f, alpha = %f, \n",

degrees (theta) , degrees (delta) , degrees (alpha))

;

if (TRACE) printf (" anglel = %f, angle2 = %f\n",
degrees (anglel), degrees (angle2));

configl->tangent = make_tangent (circle3, anglel);
configl->orientation = alpha;
config2->tangent = make_tangent (circle4, angle2);
config2->orientation = alpha;

return;
}

/* */

double arc_cost (arc) /* euclidean distance cost function */

Arc arc; /* rotation direction is included in arc */

{

double delta_angle;

if (arc. rotation == CW)
delta_angle = normalize (arc. anglel) - normalize (arc. angle2)

;

else if (arc. rotation == CCW)
delta_angle = normalize (arc.angle2) - normalize (arc. anglel)

;

else if (arc. rotation == ZERO)
delta_angle = 0.0;

el se

{

delta_angle = normalize (arc. anglel) - normalize (arc . angle2)

;

printf ("\nlllegal rotation value (%ld) given to arc_cost function.",
Assumed CLOCKWISE . \n" , arc. rotation)

;

)

/* circumference portion = 2 * PI * R * (delta_angle / (2 * PI)) */

return arc. circle. radius * normalize2 (delta_angle)

;

}

/* */

double segment_cost (segment) /* euclidean distance cost function */

Segment segment;
{

return distance (segment .pointl, segment .point2) ;

}

/* */

void augment_path (arc, segment, path)

Arc arc; /* add arc and segment to path */
Segment segment; /* the order of adding an arc followed */
Path *path; /* by a segment is a rigorous requirement*/

{

Path_list *path_ptr; /* index pointer to legs on the path */
Path_list *path_node; /* local variable to build path leg */

if ((path_node = (Path_list *) malloc (sizeof (Path_list))) == NULL)
error ("augment_path: memory allocation failure!", FATAL);

/* initialize values of path_node which will augment current path */
path_node->arc = arc;
path_node->segment = segment;
path_node->next = ((Path_list *) 0);
path_node->previous = ((Path_list *) 0) ;

if (path->degree == 0) /* first path in path_list to be added */
path->path_list = path_node;

else
{

/* point to first leg of path, then find end of current path_list */
path_ptr = path->path_list;
while (path_ptr->next != ((Path_list *) 0))

path_ptr = path_ptr->next;

/* now augment current path with new path leg */

path_node->previous = path_ptr;

206

path_ptr ->next = path_node;
)

path->degree++;
if (TRACE)

printf ("\n*** path->degree = %i, augment_path complete\n", path->degree)
,

return;
)

I*

void add circle to world (circle, circle world)

Circle circle; /* circle to be added to world */

Circle_world *circle_world; /* current circle_world */

Circle_list *circle_ptr; /* index pointer to current circle */

Circle_list *circle_node; /* local variable to build circle leg */

double separation; /* used to check & prevent circle overlap*/

if (TRACE) printf ("\n*** add_circle_to_world start\n");

if ((circle_node - (Circle_list *) malloc (sizeof (Circle_list))) == NULL)
error ("add_circle_to_world: memory allocation failure!", FATAL);

separation = distance (circle . center, circle_world->start)

;

if ((separation - circle . radius) < - EPSILON)
<

printf ("\n*** add_circle_to_world: the new circle at (");
printf ("%4.2f, %4.2f) \n", circle. center . x,

circle. center. y)

;

printf ("is not being added because it overlaps the start point");
printfC at (%4.2f, %4.2f) \n\n", circle_world->start . x,

circle_world->start
. y)

;

return;
}

separation = distance (circle . center, circle_world->goal)

;

if ((separation - circle . radius) < - EPSILON)
1

print f ("\n*** add_circle_to_world: the new circle at (");
printf ("%4.2f, %4.2f) \n", circle. center . x,

circle. center .y)

;

printf ("is not being added because it overlaps the goal point");
printfC at (%4.2f, %4.2f) \n\n", circle_world->goal .x,

circle_world->goal .y)

;

return;
}

/* initialize values of circle_node which will be added to circle_world */
circle_node->circle = circle;
circle_node->next =

((Circle_list *) 0);
circle_node->previous = ((Circle_list *) 0);

if (circle_world->degree == 0) /* first circle in circle_world to be added*/
circle_world->circle_list = circle_node;

else
{

/* point to first circle in world, then find end of current circles */
circle_ptr = circle_world->circle_list

;

while (circle_ptr->next != ((Circle list *) 0))
{

separation = distance (circle. center, circle_ptr->circle. center)

;

if ((separation - circle . radius - circle_ptr->circle. radius)
< - EPSILON)

{

printf ("\n*** add_circle_to_world: the new circle at (");
printf ("%4.2f, %4.2f) \n", circle. center .x,

circle. center. y)

;

printf ("is not being added because it overlaps the circle");
printfC at (%4.2f, %4.2f) \n\n", circle_ptr->circle . center .x,

circle_ptr->circle . center .y)

;

return;
}

circle_ptr = circle_ptr->next;

/* now check that pesky last circle */
separation = distance (circle. center, circle_ptr->circle. center)

;

if ((separation - circle. radius - circle_ptr->circle . radius)
< - EPSILON)

{

printf ("\n*** add_circle to world: the new circle at (");

207

printf ("%4 .2f , %4.2f) \n", circle. center .x,
circle. center

. y)

;

printf ("is not being added because it overlaps the circle");
printf(" at (%4.2f, %4.2f) \n\n", circle_ptr->circle . center . x,

circle_ptr->circle. center. y)

;

return;
}

/* now add new circle_node to current circle_list in circle world */
circle_node->previous = circle_ptr;
circle_ptr ->next = circle_node;

}

circle_world->degree++;
if (TRACE) printf ("\n*** circle_world->degree = %i\n",

circle_world->degree)

;

if (TRACE) printf ("\n*** add_circle_to_world complete\n")

;

return;
}

/* */

Circle find_circle (n, circle_world)

int n; /* get the nth circle from circle_world */
Circle_world *circle_world;

{

int i, nn;
Circle circleO;
Circle_list *circle_ptr;
nn = n;

if (circle_world->degree == 0)

{

printf ("\n*** find_circle: there are no circles in circle_world; ",
"\n using the start point as a zero-radius circle. \n");

circleO = make_circle (circle_world->start , 0.0);
return circleO;

}

while ((nn <= 0) II (nn > circle_world->degree)

)

{

printf ("\n*** find_circle: there are %d circles in circle_world. ",
circle_world->degree)

;

printf (" Which do you want? ");
scanf ("%d", &nn) ; printf ("\n");

1

/* ready to go; point to first circle in world, then find n th circle */
i = 1;
circle_ptr = circle_world->circle_list;
while ((i < nn) S& (circle_ptr->next != NULL))
(

circle_ptr = circle_ptr->next;
+ + i;

}

return circle_ptr->circle;

void graph_path (path, circle_world, filename)

/* Print path data for unix 'graph' use, appended to 'filename' */

Path *path;
Circle_world *circle_world;
char *filename;

{

FILE *file_ptr;
double begin_angle, end_angle, delta_angle, angle,

midpoint_x, midpoint y, xl, yl, x2, y2;
int i, j, n, rotation; 7* indices, # arc steps & local variable */
Point point;
Circle arc_circle;
Path_list *path_ptr; /* index pointer to legs on the path */

if (TRACE) printf ("\n*** graph_path startW);

if (path == NULL) printf ("\n*** path == NULL, error! \n");

path_ptr = path->path_list; /* point to first leg of path */

if ((file_ptr = fopen (filename, "a")) == ((FILE *) 0))
(

error ("graph_path: file open failure!", NONFATAL);
return;

208

}

/* print starting line segment
if (TRACE) printf (" %f %f\n", path->initial_segment .pointl .x,

path->initial_segment .pointl .y)

;

if (TRACE) printf (" %f %f\n\" \"\n", path->initial_segment
.
point2 .x,

path->initial_segment .point 2 .y)

,

fprintf (file_ptr, " %f %f\n", path->initial_segment .pointl .x,
path->initial_segment .pointl .y) ,

fprintf (file_ptr, " %f %f\n\" \"\n", path->initial_segment .point2 .x,
path->initial_segment .point 2 .y)

,

Print tick marks perpendicular to endpoint of initial segment */

if (((path->initial_segment .point 2.x
(path->initial_segment .point 2 .y

((path->initial_segment .
point2 .x

(path->initial_segment
.
point 2.

y

circle_world->start.x)
= circle_world->start.y)) &&
= circle_world->goal .x) II

= circle_world->goal .y))

)

angle = orientation (path->initial_segment .pointl

,

path->initial_segment.point2) + (PI/2.0);
xl = path->initial_segment.point2.x - (TICK_W1DTH / 2.0) * cos (angle)
yl = path->initial_segment.point2.y - (TICK_WIDTH / 2.0) * sin (angle)
x2 = path->initial_segment.point2.x + (TICK_WIDTH / 2.0) * cos (angle)
y2 = path->initial_segment.point2.y + (TICK_WIDTH / 2.0) * sin (angle)
fprintf (file_ptr, " %f %f\n %f %f\n\" \"\n", xl, yl, x2, y2)

;

if (TRACE) printf ("tickmark at end of initial segment: \n");
if (TRACE) printf (** %f %f\n %f %f\n\" \"\n", xl, yl, x2, y2);

}

/* Print path label adjacent to midpoint of initial_segment */

midpoint_x = (path->init ial_segment .
pointl . x +

path->initial_segment .point2 .x) / 2.0;
midpoint_y = (path->initial_segment .pointl .y +

path->initial_segment .point2.y) / 2.0;
if (TRACE) printf (" %f %f\n", midpoint_x, midpoint_y)

;

fprintf (file_ptr, " %f %f\n", midpoint_x, midpoint_y)

;

if (TRACE)
{

if (path->label != NULL) printf ("\"%s \"\n", path->label)

;

else printf ("\" \"\n")

;

}

if (path->label !=NULL) fprir:tf (file_ptr, "\"%s \"\n", path->label) ;

else fprintf (file_ptr, "\" \"\n")

;

I* print all succeeding arc / line segment combinations */

for (i=l; i <= path->degree; ++i, path_ptr = path_ptr->next

)

{

/* Calculate and plot arc traversal points */

begin_angle = normalize2 (path_ptr->arc. anglel)

;

end_angle = normalize2 (path_ptr->arc. angle2)

;

rotation = path_ptr->arc. rotation;

if (fabs (begin_angle - end_angle) <= EPSILON)
delta_angle = 0.0;

else if ((precede (end_angle, begin_angle) && (rotation == CCW)) ||

(precede (begin_angle, end_angle) && (rotation == CW))

)

delta_angle = PI + PI - fabs (end angle - begin angle);
else

delta_angle = rotation * (end_angle - begin_angle)

;

delta_angle = normalize2 (delta_angle)

;

angle = begin_angle;
arc_circle = path_ptr->arc. circle;

n = (int) ((float) (SUBDIVISIONS) * fabs (delta_angle) / (PI + PI) + .5);
if ((delta_angle == 0.0) || (n <= 0) || (rotation == CENTER))

n = 0; /* perform only one iteration of loop */
else
(

/* Print first point of arc without ARC_FACTOR for continuity */
point = circumference_point (arc_circle, begin_angle)

,

fprintf (file_ptr, " %f %f\n", point. x, point. y);
if (TRACE) printf (" %f %f\n", point. x, point. y);

}

if (TRACE)
{

printf ("\n*** graph_path n = %d, delta_angle = %f\n",
n, degrees (delta_angle))

;

printf (
" begin_angle = %f, ",

degrees (begin_angle))

;

209

printf ("end_angle = %f, rotation = %d\n\n",
degrees (end_angle) , rotation)

;

}

/* Factor radius to graph arc just outside circle circumference */
arc_circle. radius *= ARC_FACTOR;

/* calculate and print points for the arc starting from initial angle */

for (j = 0; j <= n; ++j)
i

if (TRACE) printf ("*** graph_path: j = %d, angle = If, n = %d \n",
j, degrees (angle), n)

;

point = circumference_point (arc_circle, angle)

;

if (n != 0) fprintf (file_ptr, " %f %f\n n
, point. x, point. y);

if ((n != 0) && (TRACE)) printf (" %f %f\n", point. x, point. y)

;

if (n != 0) angle += (rotation * delta_angle / (double) n) ;

angle = normalize2 (angle)

;

)

/* calculate and print points for the segment following the arc */
point = path_ptr->segment .pointl;
fprintf (file_ptr, " %f %f\n", point. x, point. y);
if (TRACE) printf (" %f %f\n", point. x, point. y);

point = path_ptr->segment .point2;
fprintf (file_ptr, " %f %f\n\ n \"\n", point. x, point. y);
if (TRACE) printf (" %f %f\n\" \"\n", point. x, point. y);

/* Print tick mark perpendicular to start point of current segment */
if (((path_ptr->segment .pointl .x

(path_ptr->segment
.
pointl .y

((path_ptr->segment .pointl .x
(path ptr->segment. pointl.

y

circle_world->start .x)
= circle_world->start .y)

)

= circle_world->goal .x)
= circle world->goal .y))

)

angle = orientation (path_ptr->segment .pointl

,

path_ptr->segment.point2) + (PI/2.0);
xl = path_ptr->segment. pointl. x - (TICK_WIDTH / 2.0) * cos (angle);
yl = path_ptr->segment. pointl. y - (TICK_WIDTH / 2.0) * sin (angle);
x2 = path_ptr->segment. pointl. x + (TICK_WIDTH / 2.0) * cos (angle);
y2 = path_ptr->segment. pointl. y + (TICK_WIDTH / 2.0) * sin (angle);
fprintf (file_ptr, " %f %f\n %f %f\n\" \"\n" , xl, yl, x2, y2);
if (TRACE) printf ("tickmark at start of current segment: \n");
if (TRACE) printf (" %f %f\n %f %f\n\" \"\n", xl, yl, x2, y2)

;

)

/* Print tick mark perpendicular to final point of current segment */
circle_world->start .x) ||

circle_world->start .y)) &&
circle_world->goal .x) ||

circle_world->goal .y))

)

f (((path_ptr->segment .point2

.

(path_ptr-> segment .point 2 .y
((path_ptr->segment .point2.x
(path_ptr->segment .point2.y

angle = orientation (path_ptr->segment .pointl,
path_ptr->segment.point2) + (PI/2.0);

xl = path_ptr->segment.point2.x - (TICK_WIDTH / 2.0) * cos (angle);
yl = path_ptr->segment.point2.y - (TICK_WIDTH / 2.0) * sin (angle);
x2 = path_ptr->segment.point2.x + (TICK_WIDTH / 2.0) * cos (angle);
y2 = path_ptr->segment.point2.y + (TICK_WIDTH / 2.0) * sin (angle);
fprintf (file_ptr, " %f %f\n %f %f\n\" \"\n", xl, yl, x2, y2);
if (TRACE) printf ("tickmark at end of current segment: \n");
if (TRACE) printf (" %f %f\n %f %f\n\" \"\n", xl, yl, x2, y2);

}

fclose (file_ptr);
if (TRACE) printf ("\n*** graph_path complete\n")

;

return;
)

/*

void graph_world (circle_world, filename)

/* Print circle_world data for unix 'graph' use, appended to filename */

Circle_world *circle_world;
char *filename;

{

FILE *file_ptr;
int i, j; /* indices */

Circle_list *circle_ptr; /* index pointer to current circle */
if (TRACE) printf ("\n*** graph_world startW);
circle_ptr = circle_world->circle_list; /* point to first circle in world */

if ((file_ptr = fopen (filename, "a")) == ((FILE *) 0))

210

i

error ("graph_world: file open failure!", NONFATAL);
return;

}

if (TRACE) printf (" %f %f\n", circle_world->start .x, circle_world->start
. y)

;

if (TRACE) printf("\". Start\"\n")

;

fprintf (file_ptr, " %f %f\n", circle_world->start . x, circle_world->start
. y)

;

fprintf (file_ptr, "\". StartV'W);

if (TRACE) printf (" %f %f\n", circle_world->goal . x, circle_world->goal .y)

;

if (TRACE) printf ("\". Goal\"\n");
fprintf (file_ptr, " %f %f\n", circle_world->goal .x, circle_world->goal

. y)

;

fprintf (file_ptr, "\"
. Goal\"\n")

;

/* Loop to graph all circles in circle_world. */

for (i=l; i <= circle_world->degree; ++i, circle_ptr = circle_ptr->next

)

{

/* print current circle center */

if (TRACE) printf (" %f %f\n", circle_ptr->circle. center .x,

circle_ptr->circle. center .y)

;

fprintf (file_ptr, " %f %f\n", circle_ptr->circle . center .x,
circle_pt r->circle . center .y)

;

if (TRACE) printf ("\". Circle %d\"\n", i); /* label center w/ circle */

fprintf (file_ptr, "\" . Circle %d\"\n", i); /* label center w/ circle */

/* print circle circumference at intervals = 360 / SUBDIVISIONS */
for (j=0; j < 360 + (360 / SUBDIVISIONS); j += 360 / SUBDIVISIONS)
{

if (TRACE) printf (" %f %f\n",
(circle ptr->circle . center . x +

circTe_ptr->circle. radius * cos (j * PI / 180.0)),
(circle ptr->circle. center .y +

circTe_ptr->circle. radius * sin (j * PI / 180.0)));
fprintf (file_ptr, " %f %f\n",

(circle_ptr->circle . center . x +

circle_ptr->circle. radius * cos (j * PI / 180.0)),
(circle_ptr->circle. center. y +

circle_ptr->circle. radius * sin (j * PI / 180.0)));
if (circle_ptr->circle. radius == 0.0)

break; /* only one point needed in point case */

}

if (TRACE) printf ("\" \"\n"); /* quoted blank to delimit this circle */
fprintf (file_ptr, "\" \"\n"); /* quoted blank to delimit this circle */

}

fclose (file_ptr);
if (TRACE) printf ("\n*** graph_world complete\n")

;

return;
}

/* */

void output_path (path, filename)

/* Output path in AUV data file format, appended to filename */

Path *path;
char *filename;

{

FILE *file_ptr;
int i, j; /* indices */
Path_list *path_ptr; /* index pointer to legs on the path */
if (TRACE) printf ("\n*** output_path start\n");

path_ptr = path->path_list; /* point to first leg of path */

if ((file_ptr = fopen (filename, "a")) == ((FILE *) 0))
{

error ("output_path: file open failure!", NONFATAL);
return;

}

if (path->label != NULL)
{

fprintf (file_ptr, n \nPath %s\n\n", path->label) ; /* path header */
if (TRACE) printf ("\nPath %s\n\n", path->label) ; /* path header */

}

else
{

fprintf (file_ptr, "\nPath \n\n");
if (TRACE) printf ("\nPath \n\n");

1

/* print starting line segment data */

211

fprintf (fileptr, "Segment %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f",
path->initial_segment .pointl .x,

path->initial_segment
.
point 1

. y,
DEFAULT_Z,
path->initial_segment .point 2 . x,
path->initial_segment .point 2 .y,
DEFAULT_Z)

;

if (TRACE) printf ("Segment %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f",
path->initial_segment. point 1.x,
path->initial_segment. point l.y,
DEFAULT_Z,
path->initial_segment .point 2.x,
path->initial_segment .point 2 .y,
DEFAULT_Z);

pooltime++;
fprintf (file_ptr, " time %4.1f\n", pooltime);
if (TRACE) printf (" time %4.1f\n", pooltime);

/* print all succeeding arc / line segment combinations */

for (i=l; i <= path->degree; ++i, path_ptr = path_ptr->next

)

{

if (path_ptr->arc. rotation != 0) /* don't print arc if nothing's there */

{

fprintf (file_ptr, "Arc %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f %2i ",

path_ptr->arc. circle . center .x,

path_ptr->arc. circle. center.y,
DEFAULT_Z,
path_ptr->arc. circle . radius,
degrees (normalize2 (path_ptr->arc. anglel))

,

degrees (normalize2 (path_ptr->arc. angle2))

,

path_ptr->arc. rotation)

;

pooltime++;
if (path_ptr->arc. rotation == CW)

fprintf (file_ptr, "= CW time %4.1f\n", pooltime);
else if (path_ptr->arc. rotation == CCW)

fprintf (file_ptr, "= CCW time %4.1f\n", pooltime);
else if (path_ptr->arc. rotation == CENTER)

fprintf (file_ptr, "= CENTER time %4.1f\n", pooltime);
else fprintf (file_ptr, " time %4.1f\n", pooltime);

if (TRACE) printf ("Arc %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f %2i ",

path_ptr->arc. circle. center .x,
path_ptr->arc. circle. center .y,
DEFAULT_Z,
path_ptr->arc. circle. radius,
degrees (normalize2 (path_ptr->arc. anglel))

,

degrees (normalize2 (path_ptr->arc. angle2))

,

path_ptr->arc. rotation)

;

if (TRACE)
(

if (path_ptr->arc. rotation == CW)
printf ("= CW time %4.1f\n", pooltime);

else if (path_ptr->arc. rotation == CCW)
printf ("= CCW time %4.1f\n", pooltime);

else if (path_ptr->arc. rotation == CENTER)
printf ("= CENTER time %4.1f\n", pooltime);

else printf (" time %4.1f\n", pooltime);
)

)

fprintf (file_ptr, "Segment %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f",
path_ptr-> segment

. point 1 .x,
path_ptr->segment .pointl .y,
DEFAULT_Z,
path_ptr-> segment .point 2.x,
path_ptr-> segment .point2.y,
DEFAULT_Z)

;

if (TRACE) printf ("Segment %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f",
path_ptr-> segment .pointl .x,

path_ptr-> segment .pointl .y,
DEFAULT_Z,
path_ptr->segment .point2 .x,
path_pt r- > segment -point 2. y,
DEFAULT_Z);

pooltime++;
fprintf (file_ptr, " time %4.1f\n", pooltime);
if (TRACE) printf (" time %4.1f\n", pooltime);

212

fprintf (file_ptr, "\n")

;

if (TRACE) printf ("\n*** output_path completeNn")

;

fclose (filejptr);
return;

}

/* */

void output_world (circle_world, filename)

/* Output circle world using AUV data file format, appended to filename*/

Circle_world *circle_world;
char *filename;

{

FILE *file_ptr;
int i, j; /* indices */

Circle_list *circle_ptr; /* index pointer to current circle */
circle_ptr = circle_world->circle_list; /* point to first circle in world */

if (TRACE) printf ("\n*** output_world start\n n
);

if ((file_ptr = fopen (filename, "a")) == ((FILE *) 0))

{

error ("output_world: file open failure!", NONFATAL);
return;

}

fprintf (file_ptr,
"\n Circle_World Shortest Path Determination\n\n")

;

fprintf (file_ptr, "\nData specifications are according to ");
fprintf (file_ptr, "the AUV Data Dictionary . \n\n\n")

;

if (TRACE)
{

printf ("\n Circle_World Shortest Path Determination\n\n")

;

printf ("\nData specifications are according to ");
printf ("the AUV Data Dictionary . \n\n\n")

;

)

fprintf (file_ptr, "Point %8.2f %8.2f %7.2f ", circle_world->start . x,
circle_world->start .y,
DEFAULT_Z)

;

fprintf (file_ptr, " Start\n");
if (TRACE) printf ("Point %8.2f %8.2f %7.2f ", circle_world->start . x,

circle_world->start .y,
DEFAULT_Z)

;

if (TRACE) printf (" StartSn");

fprintf (file_ptr, "Point %8.2f %8.2f %7.2f ", circle_world->goal .x,

circle_world->goal .y,
DEFAULT_Z);

fprintf (file_ptr, " Goal\n\n");
if (TRACE) printf ("Point %8.2f %8.2f %7.2f ", circle_world->goal .x,

circle_world->goal .y,
DEFAULT_Z)

;

if (TRACE) printf (" Goal\n\n");

if (TRACE) printf ("\n*** output_world circle_world->degree = %d \n",
circle_world->degree)

;

for (i=l; i <= circle world->degree; ++i, circle ptr = circle ptr->next)
{

/* print circle center and radius */
fprintf (file_ptr, "Circle %8.2f %8.2f %8.2f %8.2f \n",

circle_ptr->circle. center. x,
circle_ptr->circle.center.y,
DEFAULT_Z,
circle_ptr-> circle . radius)

;

if (TRACE) printf ("Circle %8.2f %8.2f %8.2f %8.2f \n",
circle_ptr->circle. center .x,

circle_ptr->circle.center.y,
DEFAULT_Z,
circle ptr->circle. radius)

;

}

if (TRACE) printf ("\n*** output_world complete\n")

;

fprintf (file_ptr, "\n");
fclose (file_ptr);
return;

)

/* */

void center_graph_window (filename, xminptr, xmaxptr, yminptr, ymaxptr,
magnification)

/* Center (square off) the graph window so printed circles aren't distorted */

213

char 'filename; /* graph filename for input & output */
double *xminptr, *xmaxptr, /* output values (also appended to file) */

*yminptr, *ymaxptr,
magnification; /* amount to magnify graph window bounds */

FILE *file_ptr;
int col; /* current column being used in line */

char line [80]; /* input line string of characters */

double x, y; /* input values from current line */

double xmin, xmax, ymin, ymax, /* min/max values */

deltax, deltay; /* x, y max-min differences */

if (TRACE) printf ("\n*** center_graph_window start\n")

;

xmin = HUGE_VAL; /* Typical graph ticks are 5 units apart */

ymin = HUGE_VAL;
xmax = - HUGE_VAL;
ymax = - HUGE_VAL;

if ((filejptr = fopen (filename, "r")) == ((FILE *) 0))

i

error ("center_graph_window: file initial open failure!", NONFATAL);
return;

}

if (TRACE) printf ("\n*** center_graph_window: %s is open\n", filename);

while ((fgets (line, 81, file_ptr) != NULL)) /* read next line of file */

{

col = 0;
while (line [col] == ' ') col++; /* skip initial blanks */
if (isdigit (line[col]) II (line [col] == '-') || (line [col] == '+')

I I
(line [col] == ' .')

)

f

if (sscanf (line+col, "%lf ", Sx) != 1) break; /* get x gracefully*/

while (isdigit ((int) line [col]) II (line [col] == '-') II

(line [col] == '.') || (line [col] == '+'))
col++; /* skip digits of x */

while ((line[col] == ' '
) || (line [col] == ','))

col++; /* skip characters before y */

if (sscanf (line+col , "%lf", Sy) != 1) break; /* get y gracefully*/
if (xmin > x) xmin =

if (ymin > y) ymin = y;
if (xmax < x) xmax =

if (ymax < y) ymax = y;
if (TRACE) printf ("\n*** center graph_window loop check:");
if (TRACE) printf (" (x, y) = (%6.2f, %6.2f) ", x, y)

;

if (TRACE) printf (" (xmin, ymin) = (%6. 2f , %6.2f)", xmin, ymin);
if (TRACE) printf (" (xmax, ymax) = (%6. 2f , %6.2f)", xmax, ymax);

} /* only lines beginning with numeric values are checked */

} /* end while */

if (TRACE) printf ("\n*** center_graph_window while loop done\n ");
if (TRACE) printf ("(xmin, ymin) = (%6.2f, %6.2f) ", xmin, ymin);
if (TRACE) printf ("(xmax, ymax) = (%6.2f, %6.2f) ", xmax, ymax);

/* Now square off the extremes so no distortion occurs */
if ((ymax - ymin) < (xmax - xmin))

ymax = ymin + (xmax - xmin)

;

else if ((xmax - xmin) < (ymax - ymin)

)

xmax = xmin + (ymax - ymin)

;

if (magnification != 1.0) /* stretch out graph window boundaries */

{

deltax = xmax - xmin;
deltay = ymax - ymin;
xmin -= deltax * (magnification - 1.0) / 2.0;
xmax += deltax * (magnification - 1.0) / 2.0;
ymin -= deltay * (magnification - 1.0) / 2.0;
ymax += deltay * (magnification - 1.0) / 2.0;

)

if (TRACE) printf ("\n*** center_graph_window square-off ");
if (TRACE) printf ("and magnification complete: \n ");
if (TRACE) printf ("(xmin, ymin) = (%6.2f, %6.2f) ", xmin, ymin);
if (TRACE) printf ("(xmax, ymax) = (%6.2f, %6.2f) ", xmax, ymax);
if (TRACE) printf ("\n ");
if (TRACE) printf ("magnification = %4.2f", magnification);

xminptr = xmin; / set returned values using pointer indirection
*yminptr = ymin;

214

*xmaxptr = xmax;
*ymaxptr = ymax;

fclose (file_ptr);
if ((file_ptr = fopen (filename, "a")) == ((FILE *) 0))

[

error ("center_graph_window : file re-open failure!", NONFATAL);
return;

}

/* append min/max points to file to square off graph boundaries '

if ((xmin != HUGE_VAL) S& (ymin != HUGE VAL)

)

fprintf (file_ptr, " %8.2f %8.2f\n\" \"\n", xmin, ymin);
if ((xmax != - HUGE_VAL) && (ymax != - HUGE_VAL)

)

fprintf (file_ptr, " %8.2f %8.2f\n\" \"\n", xmax, ymax);

fclose (file_ptr);
if (TRACE) printf ("\n*** center_graph_window complete\n")

;

return;
}

/*

void retrieve_circle_world (circle_world)

Circle_world *circle_world;
(

char filename [40], line [120];
FILE *file_ptr;
double x, y, r;

Point start_point, goal_point, center_point

;

Circle circle;

if (TRACE) printf ("\n*** ret rieve_circle_world begin\n");

printf ("\n\nEnter the name of the circle_world file to retrieve: ");
scanf ("%s", filename);

while ((file_ptr = fopen (filename, "r")) == ((FILE *) 0))

{

error ("retrieve_circle_world file open failure... \n ", NONFATAL);
printf ("\nPlease reenter the name of the circle_world file ");
printf ("to be retrieved: ");
scanf ("%s", filename);

}

while (TRUE) /* loop to get start point */

{

if (fscanf (file_ptr, "%s", line) == EOF) /* read start point */

{

error ("retrieve_circle_world start point read failure", NONFATAL);
return;

}

else if (strcmp (line, "Point") == 0)

{

fscanf (file_ptr, "%lf %lf", &x, iy) ;

start_point = make_point (x, y) ;

if (TRACE)
printf ("\n*** Start point = (%4.2f, %4.2f)\n", x, y)

;

break;
>

}

while (TRUE) /* loop to get goal point */

{

if (fscanf (file_ptr, "%s", line) == EOF) /* read goal point */

{

error ("retrieve_circle_world goal point read failure", NONFATAL)

;

return;
)

else if (strcmp (line, "Point") == 0)

{

fscanf (file_ptr, "%lf %lf", Sx, &y)

;

goal_point = make_point (x, y)

;

if (TRACE)
printf ("\n*** Goal point = (%4.2f, %4.2f)\n", x, y)

;

break;
}

}

create_circle_world (start_point, goal_point, circle_world)

;

while (TRUE) /* loop to get next circle */

{

if (fscanf (file_ptr, "%s", line) == EOF) /* read next circle */

215

{

break;
}

else if (strcmp (line, "Circle") == 0)

{

fscanf (file_ptr, "%lf %lf %*lf %lf", &x, &y, &r) ;

center_point = make_point (x, y)

;

circle = make_circle (center_point , r)

;

if (TRACE)
printf ("\n*** Circle = (%4.2f, %4.2f, %4.2f)W
add_circle_to_world (circle, circle_world)

;

}

)

if (TRACE)
{

printf ("\n+** circle_world start point = (%4.2f, %4.2f)\n",
circle_world->start .x, circle_world-> start

. y)

;

printf ("\n*** circle_world goal point = (%4.2f, %4.2f)\n",
circle_world->goal .x, circle_world->goal

. y)

;

printf ("\n*** circle_world degree = %d\n",
circle_world->degree)

;

)

if (TRACE) printf ("\n*** retrieve_circle_world completeNn")

;

fclose (file_ptr);

return;

216

Filename:

Purpose:

c search. c circle search

Determine single source shortest path using Dijkstra or A-star
search algorithms for a circle_world robotics project.

Reference: Advanced Robotics class notes. Dr. Yutaka Kanayama

Author: Don Brutzman

Date: 10 February 92

Language: ANSI C

Compile: cc -g -c c_search -lm

Comments: circle_world is a set of routines for mobile robot modeling
and two-dimensional path planning.

All obstacles are modeled as circles.

Status: Shortest-path solution using Dijkstra' s Algorithm or
or A-star search complete.

/* Include next 3 statements in this order for any circle_world application:

^ifndef CIRCLE . C_INCLUDED
^include "circle. c"

iendif

#define MAX CIRCLES /* determines size search & tangent matrices

#define START
#define GOAL

/* indices in search and tangent matrices */
1

#define MARKED
#define UNMARKED

/* boolean values

#define DIJKSTRA
#define A STAR

1 /* Search types
2

#define TRACE FALSE /* Enable trace printf statements, c search. c */

List of circle search Data Structures and Functions

Data Structures

Tangent_matrix_element

Search matrix element

Data Types and Member Labels Matrix name

int visible;
double segment_cost;
double leaving_angle;
double landing_angle;

int mark;
int predecessor;
double least_cost;
double landing_angle;

tangents [n] [n]

search [n]

Parameters

initialize_tangents_and_search_mat rices (search_type, circle_world,
all tangents)

update_unmarked_least_costs

unmarked_vertices

unmarked circle with minimum cost

(marked node, circle world)

(search_type, plot_each_leg,
circle world)

217

build_best_path

circle search

[includes A-star evaluation function
of arc & segment distance to goal]

(circle_world)

(search_type, plot_each_leg,
circle_world,
best_path, all_tangents)

Circle search Data Structures, Type Definitions & Global Variables

typedef struct Tangent_matrix_element_type

double
double
double

visible;

segment_cost

;

leaving_angle;
landing_angle;

Tangent_matrix_element;

/* whether segment is VISIBLE, NONVISIBLE, */
/* or TANGENTIAL */
/* cost of this tangent segment */
/* angle leaving from i_th circle */
/* angle landing on j_th circle */

static Tangent_matri

/* tangents */

x_element tangents [2*MAX_CIRCLES+1] [2*MAX_CIRCLES+1]

;

/* square global tangent_matrix of tangents and costs */
/* zeroth element corresponds to Start point S */
/* first element corresponds to Goal point G */
/* second element corresponds to circle 1 CW side */
/* third element corresponds to circle 1 CCW side */
/* (2n) element corresponds to circle d CW side */
/* (2n+l) element corresponds to circle d CCW side */
/* where d = circle_world->degree */

/* column i circles are the leaving circles
/* row j circles are the landing circles

/* circle CW sides have even indices
/* circle CCW sides have odd indices

Note that travel is impossible between the
CW & CCW sides of an individual circle.

/* Also note that tangents [i] [j] and tangents [j] [i] */
/* are determined independently. This allows the use */
/* of a directionally dependent cost function */
/* without loss of generality. */

typedef struct Search_matrix_element_type
{

int mark;
int predecessor;
double least cost;
double landing angle,

/* boolean whether shortest path is found */
/* circle or (start point) preceding circle */
/* least cost found so far to this circle */
/* angle landing on this circle */

Search matrix element;

static Search matrix element search [2*MAX CIRCLES+1];

/* search */ /* matrix used to perform single source shortest path
/* search (Dijkstra's algorithm)

static int n; /* Number of active indices in tangents & search matrices
/* n = 2 * circle_world->degree + 1;

static int total visible;

218

/* total number of tangents visible in the set of all */
/* possible external & cross-tangents, between the */
/* start point, goal point and circles in circle_world */

static int leg_number = 0;
/* occurrence number of latest leg with least cost */

/* */

/****** Circle search Function Declarations ***********************************/

void initialize_tangents_and_search_matrices (search_type, circle_world,
all_tangents)

int search_type; /* DIJKSTRA or A_STAR */
Circle_world *circle_world;
Path ~ *all_tangents;

{

int i, j, model, mode2; /* indices and rotation modes */
int START_GOAL, visible2; /* logical checks */
double angle; /* working variables */
Point pointl, point2;
Segment segment;
Circle circleO, circlel, circle2;
Arc arcO;
Configuration *configl, *config2;

pointl. x = circle_world->start .x - 0.3; /* offset x, y for tangents label */
pointl. y = circle_world->start .y - 0.8;
segment = make_segment (pointl, pointl);

all_tangents->label = " All visible tangents between circles included";
all_tangents->degree = 0;
all_tangents->initial_segment = segment;
all_tangents->path_list = ((Path_list *) 0); /* NULL */

configl = (Configuration *) malloc (sizeof (Configuration))

;

config2 = (Configuration *) malloc (sizeof (Configuration))

;

total_visible = 0; /* initialize visible tangent count */

/* Tangents matrix initialization */

if (TRACE)
{

printf ("\n\n");
printf (" ");
printf (" ");
printf ("\n\n")

;

}

printf ("\n\nCommencing least cost path determination using ");
if (search_type == DIJKSTRA) printf ("Dijkstra ");
else if (searchtype == A_STAR) printf ("A-star ");
else printf ("circle_");
printf ("search . . . \n\n\n")

;

for (i = START; i <= n; ++i)
{

if (i == START)
circlel = make_circle (circle_world->start , 0.0);

else if (i == GOAL)
circlel = make_circle (circle_world->goal , 0.0);

else circlel = find_circle (i/2, circle_world)

;

if ((i == START) || (i == GOAL))
model = CENTER; /* circle_world start & goal points */

else if (i == (i/2) * 2)
model = CW; /* even => CW side of circle */

else
model = CCW; /* odd => CCW side of circle */

if (TRACE) printf ("\n Tangent ");
if ((TRACE == TRUE) && (i >= 10)) printf ("_");
if (TRACE) printf (

Visibility Circles Coordinates _Cost_ n
);

for (j = START; j <= n; ++j) /* */

{

219

if (j == START)
circle2 = make_circle (circle_world->start , 0.0);

else if (j == GOAL)
circle2 = make_circle (circle_world->goal , 0.0);

else circle2 = find_circle (j/2, circle_world)

;

if ((j == START) II (j == GOAL))
mode2 = CENTER; /* circle_world start & goal points */

else if (j == (j/2) * 2)

mode2 = CW; /* even => CW side of circle */
else

mode2 = CCW; /* odd => CCW side of circle */

if ((i == START && j == GOAL) || (i == GOAL && j == START))
<

START_GOAL = TRUE;
tangents [i] [j] . segment_cost = distance (circle_world->start

,

circle_world->goal)

;

)

else START_GOAL = FALSE;

if ((i/2 == j/2) && (START_GOAL == FALSE))
/* IMPOSSIBLE diagonal case: same circle, Start-Start, Goal-Goal */

{

tangents [i] [j] .visible = NONVISIBLE;
if (((i == GOAL)SS(j == GOAL)) II ((i == START) &&(j == START)))

tangents [i] [j] . segment_cost = 0.0;
else

tangents [i] [j] . segment_cost = HUGE_VAL;
tangents [i] [j] . leaving_angle = 0.0;
tangents [i] [j] . landing_angle = 0.0;

}

else /* all other non-IMPOSSIBLE cases */

{

circle_tangent (circlel, circle2, model, mode2, configl, config2);

pointl = circumference_point (circlel, configl->tangent . angle)

;

point2 = circumference_point (circle2, config2->tangent . angle)

;

segment = make_segment (pointl, point2);

tangents [i][j] .visible = visible (pointl, point2, circle_world)

;

/* Calculate costs if VISIBLE & save segment cost value */
if ((tangents [i][j] .visible == VISIBLE) II

((tangents [i][j] .visible == TANGENTIAL) && TANGENTS_OK)

)

(

tangents [i] [j] . segment_cost = segment_cost (segment);
total_visible++;

/* add a segment to path containing only tangents */

angle = orientation (pointl, point2) + (PI/2.0);
circleO = make_circle (pointl, 0.0);
arcO = make_arc (circleO, angle, angle, 0);
augment_path (arcO, segment, all_tangents)

;

)

else /* segment is NONVISIBLE, no cost calculations required */

{

tangents [1] [j] . segment_cost = HUGE_VAL;
}

if (j == GOAL) /* get distance-to-goal A* evaluation function */
/* regardless of visibility */

tangents [i] [j] . segment_cost = segment_cost (segment);

tangents [i] [j] . leaving_angle = configl->tangent . angle;
tangents [i j [j] . landing_angle = config2->tangent . angle;

}

if (TRACE)
{

printf ("\n*** tangent [%d][%d] ", i, j);

if (j < 10) printf (" ");
if ((i/2 == j/2) && (START_GOAL == FALSE))

printf ("IMPOSSIBLE");
else if (tangents [i][j] .visible == VISIBLE)

printf (" VISIBLE");
else if (tangents [i][j]. visible == NONVISIBLE)

printf ("NONVISIBLE");
else if (tangents [i][j]. visible == TANGENTIAL)

220

printf ("TANGENTIAL")

if (i ==

else if (i ==

else

0) printf (•

1) printf ('

printf C

S ");
G ");

%d ", i/2)

/* leaving circle #

if (model == CW) printf (" CW..")
else if (model == CCW) printf ("CCW..")
else if (model == CENTER) printf (" PT..")
else printf (" ")

if (J
else if (j
else

0) printf ("S ")

;

1) printf ("G ")

;

printf ("%d ", j/2)

/* landing circl(

if (mode2 ==

else if (mode2 =•

else if (mode2 ==

else
if ((i/2 != j/2)
{

CW) printf ("CW ")

CCW) printf ("CCW")
CENTER) printf ("PT ")

printf (" ")

I
(START GOAL == TRUE)

)

printf (" (%5.2f,%5.2f) .. (%5 . 2f , %5 . 2f)

",
pointl.x, pointl.y, point2.x, point2.y);

if ((tangents [i][j] .visible == VISIBLE) ||

(START_GOAL == TRUE)
I I

((tangents [i][j] .visible == TANGENTIAL) && TANGENTS_OK)
((tangents [i][j] .visible == NONVISIBLE) && (j == GOAL)))

printf (" %4.1f", tangents [i][j]. segment cost);

/* Change TANGENTIAL to VISIBLE or NONVISIBLE as appropriate */
if ((tangents [i][j]. visible == TANGENTIAL) S& TANGENTS_OK)

tangents [i][j]. visible = VISIBLE;
else if (tangents [i][j] .visible == TANGENTIAL)

tangents [i][j] .visible = NONVISIBLE;

if (TRACE) printf ("\n");
) /

(i START;

for j loop complete */

for i loop complete */

-- Search matrix initialization

n; ++i)

search [i].mark = UNMARKED;
search [i j. predecessor = NULL; /*

search [i] . least_cost = HUGE_VAL;
search [i] . landing_angle = 0.0;

impossible initialization value

/* Start point found by definition */
/* initialize remaining slots */

search [START]. mark - MARKED;
search [START] .predecessor = START;
search [START] . least_cost 0.0;
search [START] . landing_angle = 0.0;

printf ("\n\nTangent and search matrix initializations are complete. \n")

;

printf ("\n\n%d out of %d potential tangents (%3.1f %%) are usable . \n\n",
total_visible, (n * n + 1),
100.0 * (float) total_visible / (float) (n * n + 1));

returns-

void update_unmarked_least_costs (marked_node, circle_world)

int
Circle world

marked_node;
'circle worlds-

new,
rotationl,
rotation2,
sign_second_arc;
new_cost

,

anglel,
angle2,
angle3,
angle4;
first arc,

index for checking each new node */
rotations for first & second circles */

MINUS PLUS or ZERO

/* marked circle landing angle
/* marked circle leaving angle
/* new circle landing angle best so far
/* new circle landing angle latest
second arc-

first arc circle, second arc circle;

if (TRACE)

221

printf ("\n*** update_unmarked_least_costs visible from node %d "

,

marked_node)

;

if (marked_node == START)
printf ("(start point)");

else if (marked_node == GOAL)
printf ("(goal point)");

else printf ("(circle %d", (marked node/2));
if ((marked_node != GOAL) && (marKed_node != START) &&

((marked_node/2) *2 == marked_node)

)

printf (" CW left side)");
else if ((marked_node != GOAL) && (marked_node != START))

printf (" CCW right side)");
printf (":");

}

for (new = GOAL; new <= n; ++new) /* loop through all elements */

(

/* Calculate total cost to new circle via marked_node circle */

if (marked_node == START)
first_arc_circle = make_circle (circle_world->start, 0.0);

else if (marked_node == GOAL)
first_arc_circle = make_circle (circle_world->goal , 0.0);

else first_arc_circle = find_circle (marked_node/2, circle_world)

;

anglel = search [marked_node] . landing_angle;
angle2 = tangents [marked_node] [new] . leaving_angle;

if (marked_node == (marked_node / 2) * 2)
rotationl = CW; /* even node => circle CW side */

else
rotationl = CCW; /* odd node => circle CCW side */

first_arc = make_arc (f irst_arc_circle, anglel, angle2, rotationl);

/* Calculate cost difference due to different landing points */

if (new == START)
second_arc_circle = make_circle (circle_world->start , 0.0);

else if (new == GOAL)
second_arc_circle = make_circle (circle_world->goal , 0.0);

else second_arc_circle = find_circle (new/2, circle_world)

;

angle3 = search [new] . landing_angle; /* prior best angle */
angle4 = tangents [marked_node] [new] . landing_angle; /* latest angle */

if (new == (new / 2) * 2)
rotation2 = CW; /* even node => circle CW side */

else
rotation2 = CCW; /* odd node => circle CCW side */

second_arc = make_arc (second_arc_circle, angle3, angle4, rotation2)

;

if ((search [new] .predecessor == NULL)
|

|

(search [new] .predecessor == START))
sign_second_arc = ZERO; /* no arc exists if no predecessor */

else if ((precede (angle4, angle3) && (rotation2 == CW)) ||

(precede (angle3, angle4) && (rotation2 == CCW)))
sign_second_arc = MINUS; /*this arc_cost applies to prior best*/

else
sign_second_arc = PLUS; /*this arc_cost applies to current */

/* After all this work we finally can add up costs for comparison

new_cost = search [marked_node] . least_cost +

fabs (arc_cost (first_arc)) +

tangents [marked_node] [new] . segment_cost

;

if (TRACE)
<

if (new == GOAL) printf ("\n Goal: ", new);
else printf (

n \n node %d: ", new)

;

if (new < 10) printf (" ")

;

if ((marked_node/2 == new/2) && (new != START)
&& (new != GOAL))

printf ("IMPOSSIBLE");

222

else if (tangents [marked_node] [new] .visible == VISIBLE)
printf (" VISIBLE")

;

else if (tangents [marked_node] [new] .visible == NONVISIBLE)
printf ("NONVISIBLE");

else if (tangents [marked_node] [new] .visible == TANGENTIAL)
printf ("TANGENTIAL");

if (search [new]. mark =- MARKED) printf (" MARKED");
else if (search [new] .mark == UNMARKED) printf (" UNMARKED");
printf (" prior best cost ");

if ((search [new] . least_cost >= 0.0) &&
(search [new] . least_cost < 10.0)) printf (" ");

if ((search [new] . least_cost == HUGE_VAL)) printf (" ");
printf ("%f", search [new] . least_cost)

;

if ((search [new] . least_cost == HUGE_VAL)) printf ("inite");

if ((tangents [marked node] [new] .visible == VISIBLE) &&
(search [new]. mark" == UNMARKED))

<

printf (", new cost");
if ((new_cost >= 0.0) &&

(new_cost + (fabs (arc_cost (second_arc)) * sign_second_arc < 10.0)))
printf (" ");

if (new_cost == HUGE_VAL) printf (" ");
printf ("%f",

new_cost + (fabs (arc_cost (second_arc)) * sign_second_arc))

;

if (new_cost == HUGE_VAL) printf ("inite");
}

/* Compare and replace if new_cost is better than current cost */

if ((tangents [marked_node] [new] .visible == VISIBLE) &&
(search [new]. mark == UNMARKED) &&
(new_cost >= 0.0) &&
(search [new] . least_cost >

new_cost + (fabs (arc_cost (second_arc)) * sign_second_arc))

)

{

search [new] . least_cost = new cost;
search [new] .predecessor = mark~ed_node;
search [new] . landing_angle =

tangents [marked_node] [new] . landing_angle;
}

}

if (TRACE)
{

printf ("\n*** update_unmarked_least_costs via node %d ", marked_node)

;

if (marked_node == START)
printf ("(start point)");

else if (marked_node == GOAL)
printf ("(goal point)");

else printf ("(circle %d", (marked_node/2))

;

if ((marked_node != GOAL) && (marked_node != START) &S

((marked_node/2) *2 == marked_node)

)

printf (" CW left side)");
else if ((marked_node != GOAL) && (marked_node != START))

printf (" CCW right side)");
printf (" complete. \n")

;

}

return;
}

/* ./

int unmarked_vertices () /* boolean value for remaining unmarked vertices */

{

int i;

for (i = GOAL; i <= n; ++i) /* Don't check START 0, default is MARKED */

<

if (search [ij.mark == UNMARKED)
{

if (TRACE)
(

printf ("\n*** unmarked_vertices check result = TRUE; ");
printf ("unmarked vertices exist. \n");

}

return TRUE;

223

}

}

if (TRACE)
{

printf ("\n*** unmarked_vertices check result = FALSE; ");
printf ("no unmarked vertices remain.");

}

return FALSE;

int unmarked_circle_with_minimum_cost (search_type, plot_each_leg, circle_world)

int search_type, /* DIJKSTRA or A_STAR */
plot_each_leg; /* TRUE or FALSE */

Circle_world *circle_world; /* input: all circles */

/* includes A-star evaluation function of arc & segment distance to goal */

int i, least_circle, /* working variables declaration */
model, mode2, last, last2;

double min_cost, evall, eval2;
static char label [10];
Point pointl, point2;
Circle circlel, circle2;
Arc arcl, arc2;
Segment segment;
Configuration *configl, *config2;
Path *current_leg;

configl = (Configuration *) malloc (sizeof (Configuration));
config2 = (Configuration *) malloc (sizeof (Configuration));

min_cost = HUGE_VAL;
least_circle = START; /* this initial value isn't possible*/

if (TRACE)
printf ("\n*** unmarked_circle_with_minimum_cost determination:");

for (i = GOAL; i <= n; ++i) /* Don't check START 0, default is MARKED */

{

if (search_type == A_STAR) /* then calculate evaluation functions */

(

/*-- Determine evall: previous best min_cost circle "least_circle" */

last = search [least_circle] .predecessor;
if (least_circle == START)

circlel = make_circle (circle_world->start , 0.0);
else if (least_circle == GOAL)

circlel = make_circle (circle_world->goal , 0.0);
else circlel = find_circle (least_circle/2, circle_world)

;

if ((least_circle == START) || (least_circle == GOAL))
model = CENTER;

else if (least_circle == (least_circle/2) * 2)
model = CW;

else model = CCW;

arcl = make_arc (circlel,
tangents [last] [least_circle] . landing_angle,
tangents [least_circle] [GOAL] . leaving_angle, model);

evall = min_cost + arc_cost (arcl) +

tangents [least_circle] [GOAL] . segment_cost;

Determine eval2: current min cost circle

last2 = search [i] .predecessor;
if (i == START)

circle2 = make_circle (circle_world->start , 0.0)
else if (i == GOAL)

circle2 = make_circle (circle_world->goal , 0.0)
else circle2 = find_circle (i/2, circle_world)

;

if ((i == START) || (i == GOAL))
mode2 = CENTER;

else if (i == (i/2) * 2)
mode 2 = CW;

else mode 2 = CCW;

arc2 = make_arc (circle2.

224

tangents [last2] [i] . landing_angle,
tangents [i] [GOAL] . leaving_angle, mode2)

;

eval2 = search [i] . least_cost + arc_cost (arc2) +

tangents [i] [GOAL] . segment_cost

;

}

/* Determine if current circle beats previous best min_cost circle */

if (search [i] .mark == UNMARKED) /* Evaluate which node has min cost */

{

if (((search_type==DI JKSTRA) && (min_cost > search [i] . least_cost)

)

II ((search_type==A_STAR) && (min_cost ! =HUGE_VAL) && (evall>eval2)

)

II ((search_type==A_STAR) && (min_cost==HUGE_VAL) &&
(search [i] . least_cost != HUGE_VAL))

)

{

min_cost = search [i] . least_cost

;

least_circle = i;

)

}

/*-- TRACE statements for each loop */

if ((TRACE) && (search [i].mark == UNMARKED))
{

if (i == GOAL) printf ("\n Goal: ", i);
else printf ("\n node %d: ", i);
if (i < 10) printf (" ")

;

if (search_type == DIJKSTRA)
{

printf ("current cost ");

if ((search [i] . least_cost >= 0.0) &&
(search [i] . least_cost < 10.0)) printf (" ");

if (search [i] . least_cost == HUGE_VAL) printf (" "
)

;

printf ("%f", search [i] . least_cost)

;

if (search [i] . least_cost == HUGE_VAL) printf ("inite");
}

else /* A_STAR */

{

printf ("distance to goal ");

if ((tangents [i] [GOAL] . segment_cost + arc_cost (arc2) >= 0.0) &&
(tangents [i] [GOAL] . segment_cost + arc_cost (arc2) < 10.0))
printf (" ");

if (tangents [i] [GOAL] . segment_cost== HUGE_VAL)
printf (" ");

printf ("%f", tangents [i] [GOAL] . segment_cost + arc_cost (arc2))

;

if (tangents [i] [GOAL] . segment_cost== HUGE_VAL)
printf ("inite")

;

printf (", current evaluation function ");
if ((eval2 >= 0.0) && (eval2 < 10.0)) printf (" ");
if ((eval2 — HUGE_VAL)

)

printf (" ");
printf ("%f", eval2);
if (eval2 =- HUGE_VAL) printf ("inite");

printf ("\narc_cost (arc2) = %f", arc_cost (arc2));
}

)

}

/* */

if (plot_each_leg == TRUE) /* plot this minimum cost leg in graph file */
{

last = search [least_circle] .predecessor;
if (last == START)

circlel = make_circle (circle_world->start , 0.0);
else if (last == GOAL)

circlel = make_circle (circle_world->goal, 0.0);
else circlel = find circle (last/2, circle world);

if ((last == START)
1 I

(last = = GOAL)

)

model = CENTER;
else if (last == (last/2) * 2)

model = CW;
else model = CCW;

if (least_circle == START)
circle2 = make_circle (circle_world->start , 0.0);

else if (least_circle == GOAL)
circle2 = make_circle (circle_world->goal , 0.0);

else circle2 = find_circle (least_circle/2, circle_world)

if ((least_circle == START) || (least_circle == GOAL))
mode2 = CENTER;

else if (least_circle == (least_circle/2) * 2)
mode 2 = CW;

else mode2 = CCW;

225

circle_tangent (circlel, circle2, model, mode2, configl, config2)
circlel = configl->tangent . circle;
circle2 - config2->tangent . circle;
pointl = circumference_point (circlel, configl->tangent . angle)

;

point2 = circumference_point (circle2, config2->tangent . angle)

;

segment = make_segment (pointl, point2);

current_leg = create_path (segment);
leg_number++;
sprintf (label, "leg %d", leg_number)

;

current_leg->label = label;
graph_path (current_leg, circle_world, GRAPH_FILENAME) ;

}

/*- TRACE statements for completion
if (TRACE)
{

printf ("\n*** unmarked_circle_with_minimum_cost : node %d",
least_circle)

;

printf (" with current cost %f;", min_cost);
printf ("\n ");
if (least_circle == GOAL) printf ("(GOAL)");
else printf (" ");
printf (" node %d is now marked and has node %d",

least_circle, search [least_circle] .predecessor)

;

printf (" as its predecessor . \n")

;

}

return least circle;

void *build_best_path (circle_world, best_path)

Circle_world *circle_world; /* work from goal to start & build path */
Path *best_path; /* using predecessor & least_cost */

/* results from circle_search */

{

int circle, predecessor,
current, rotation;

double anglel, angle2;
static char label2 [40];

Point pointl, point2;
Segment segment;
Circle circlel, circle2;
Path_list *path_ptr, *new_leg;

if (TRACE)
{

printf ("\n\n");
printf (" ");
printf (" ");
printf ("\n\n")

;

printf ("\n*** build_best_path: work backwards from goal to start. \n n
);

best_path->path_list = NULL;
best_path->degree = 0;
sprintf (label2, " Best path (cost %4.1f)",

search [GOAL] . least_cost)

;

best_path->label = label2;

predecessor = GOAL; /* initialize: algorithm begins at GOAL */
point2 = circle_world->goal;

while (predecessor != START) /* proceed backward until START reached */

{

current = predecessor;
predecessor = search [predecessor] .predecessor; /* take one step back */
if (TRACE)
{

printf ("\n*** build best path: predecessor = %d, current = %d",
predecessor, current);

printf (", adding path leg to list.\n");
}

if (predecessor == START) /* returned to START, best path built */

(

pointl = circle_world->start;
segment = make_segment (pointl, point2);
best_path->initial_segment = segment;

}

else /* construct & insert another path leg */

226

if (predecessor == START)
circlel = make_circle (circle_world->start , 0.0);

else if (predecessor == GOAL)
circlel = make_circle (circle_world->goal , 0.0);

else circlel = find_circle (predecessor/2, circle_world)

;

if (current == START)
circle2 = make_circle (circle_world->start , 0.0);

else if (current == GOAL)
circle2 = make_circle (circle_world->goal, 0.0);

else circle2 = find_circle (current/2, circle_world)

;

anglel = search [predecessor] . landing_angle;
angle2 = tangents [predecessor] [current]. leaving_angle;

/* Determine rotation associated with starting circle */

if ((predecessor == START)
| I

(predecessor == GOAL)
|

I

(circlel .radius == 0.0))
rotation = 0;

else if (predecessor == (predecessor / 2) * 2)

rotation = LEFT;
else rotation = RIGHT;

new_leg = (Path_list *) malloc (sizeof (Path_list))

;

new_leg->arc = make_arc (circlel, anglel, angle2, rotation);

pointl = circumference_point
(circlel, tangent s [predecessor] [current]. leaving_angle)

;

point2 = circumference_point
(circle2, search [current]. landing_angle)

;

new_leg->segment = make_segment (pointl, point2);

/* set up for eventual construction of initial path segment */
point2 = circumference_point (circlel, anglel);

/* insert new_leg at head of the existing path list */

path_ptr = best_path->path_list

;

best_path->path_list = new_leg;
best_path->degree++;
if (path_ptr != NULL)

path_ptr->previous = new_leg;
new_leg->previous = NULL;
new_leg->next = path_ptr;

}

}

if (TRACE)
(

printf ("\n*** build_best_path: complete\n\n")

;

printf (" ");
printf (" ");
printf ("\n\n")

;

}

printf ("\nThe best path from start to goal has cost = %f\n\n",
search [GOAL] . least_cost)

;

printf ("\nThe best path includes arcs around %d circle obstacle",
best_path->degree)

;

if (best_path->degree == 1) printf (".\n");
else printf ("s.\n");
print f ("\n\nLeast cost path determination using circle_search complete.");
printf ("\n\n")

;

printf (" ");
printf (" ");
printf ("\n")

;

return (best_path);

/* */
/* */
/* Determination of best path through circle_world using Dijkstra's or A-star */
/* search algorithms for single-source shortest paths. */
/* */
/* Reference: Manber, Udi, _Introduction to Algorithms - A Creative */
/* Approach_, Addison-Wesley Publishing Company, Reading, */
/* Massachusetts, 1989. */
/* */

227

void circle_search (search_type, plot_each_leg, circle_world,
best_path, all_tangents)

int search_type, /* DIJKSTRA is a greedy algorithm */
/* A_STAR evaluates distance to goal */

plot_each_leg; /* TRUE or FALSE */
Circle_world *circle_world; /* input: all circles */

Path " *best_path, /* output: best path start to goal */
all_tangents; / output: all visible tangent segments */

I

int w; /* declaration for minimum cost node */

n = 2 * circle_world->degree + 1; /* initialize global total: 2 * circles */
/* (CW & CCW) plus START and GOAL */
/* See declarations for index details */

/*- begin Dijkstra's or A-Star Search Algorithm */

initialize_tangents_and_search_mat rices (search_type, circle_world,
all_tangents)

;

update_unmarked_least_costs (START, circle_world)

;

while (unmarked_vertices ())

{

w = unmarked_circle_with_minimum_cost (search_type, plot_each_leg,
circle_world)

;

search [w] .mark = MARKED;

if (w == GOAL) break;

update_unmarked_least_costs (w, circle_world)

;

}

build_best_path (circle_world, best_path)

;

return;

}

/* */

228

circtest .

c

circle worldFilename:

Purpose: Test program to evaluate circle world (circle. c & c_search.c)
functionality for circle_world robotics project.

Reference: Advanced Robotics class notes, Dr. Yutaka Kanayama

Author: Don Brutzman

Date: 10 February 92

Language: ANSI C

Compile: cc -g -o circle_world circtest. c -lm

Execution: circle_world

Graphing: graph -b -g 1 -1 "circle world" < circle. graph | lpr -g

Additional graph details are available using manual pages,
i.e. 'man graph' and 'man plot'.

Comments: Circle_world is a set of routines for mobile robot modeling
and two-dimensional path planning.

Circle search performs minimum cost path circle search using
Dijk~stra's algorithm.

Circle_test allows entering circle_world data, computing
external and cross-tangents, checking visiblility, and
determining a least-cost path from start to goal.

All obstacles are modeled as circles.

Status: Near-optimal complexity, shortest path solution complete.

Segments and arcs sequentially numbered using time parameter
to optionally allow graphic visualization of search process

/* Include the next 3 lines in thd

fifndef CIRCLE. C_INCLUDED
#include "circle. c"

#endif

>rder for any circle_world af

#include "c_search .
c"

#include <time.h>

/*

main () circle test

Declarations and initializations:

double
double
char

time_t

int

Point
Point
Segment
Circle
Tangent
Arc

x , y , r

;

xmin, xmax, ymin,
answer = ' y'

,

ymax; min & max values

[80],
[160],
[32],
[40];

title
command
date
label
today;

model, mode2,
i. J. k,
copies,
search_type,
plot_each_leg;

string array for graph title
string array for system commands
string for today' s date
string for path label

rotation directions
indices

DIJKSTRA or A_STAR search
TRUE or FALSE

start,
pointl,
segment 0,

circlel,
tangentl

,

arcl

,

goal;
point2,
segment 1,

circle2;
tangent2;
arc2;

point3, point4;
segment 2;

229

Configuration *configl, *config2;
Path *pathO, *pathl, *path2;
Circle_list *circle_ptr;
Circle_world *circle_world;

/* instantiate default paths using a pseudo-segment; instantiate conf ig' s */

pointl.x = 0.0;
pointl.y = 0.0;
segmentl = make_segment (pointl, pointl);
pathO = create_path (segmentl);
pathl = createpath (segmentl);
path2 = create_path (segmentl);

configl = (Configuration *) malloc (sizeof (Configuration));
config2 = (Configuration *) malloc (sizeof (Configuration));

circle world = (Circle world *) malloc (sizeof (Circle world));

Introduction and file reset:

printf ("\n\n");
printf (" ");

printf (" ");
printf ("\n\n")

;

printf ("\n ")

;

printf ("circle. c is a library of routines for mobile robot modeling ");
printf ("\n ")

;

printf (" and two-dimensional path planning. \n")

;

printf ("\n ");
printf ("circle_search performs minimum cost path circle search using");
printf ("\n "

)

;

printf (" Dijkstra or A-star search algorithms ");
printf ("\n ");
printf (

printf (

printf (

printf (

printf (

printf (

printf (

printf (

printf (

printf (

printf ("\n\n\nDo you want to retrieve a saved circle_world file:
scanf ("%c", Sanswer)

;

if (answer == 'y'
I | answer == 'Y')

{

retrieve_circle_world (circle_world)

;

if (circle world != NULL)

and Euclidean distance cost function . \n")

;

\n ");
circle_world allows entering circle_world data, computing

\n ");
external and cross-tangents, checking visibility, and

•\n ");
determining a least-cost path from start to goal.

\n\n");
"

) ;

"
) ;

pointl.x = circle_world->start .x;
pointl.y = circle_world->start .y;
point2.x = circle_world->goal . x;
point2.y = circle_world->goal

. y;
printf ("\n\n Start point = (%5.2f, %5.2f)", pointl.x, pointl.y);
printf ("\n\n Goal point = (%5.2f, %5.2f)", point2.x, point2.y);
printf ("\n\n Circles in circle_world: %d",

circle_world->degree)

;

)

else
{

printf ("\nRetrieval of the circle_world file was unsuccessful.");
answer = ' n'

;

)

)

printf ("\n\n")

;

printf ("\nRemoving previous copies of circle_world output files:");

printf ("\nrm %s\n", GRAPH_FILENAME)

;

sprintf (command, "rm %s", GRAPH_FILENAME)

;

system (command)

;

printf ("rm %s\n", AUV_FILENAME)

;

sprintf (command, "rm %s", AUV_FILENAME)

;

system (command)

;

230

Enter circle_world start point, goal point and circle data:

y') (((answer != 'Y')) II (circle_world == NULL))if (((answer
(

printf ("\n\nEnter the start point x and y coordinates . \n\n") ;

printf (" start x = ");
scanf ("%lf", Sx)

;

/* note %lf to convert to double precision */
printf (" start y = ")

;

scanf ("%lf", &y)

;

pointl = make_point (x, y)

;

printf ("\nEnter the goal point x and y coordinates . \n\n")

;

printf (" goal x = ");

scanf ("%lf'\ (x);
printf (" goal y = "

)

;

scanf ("%lf", (y) ;

printf ("\n");
point2 = make_point (x, y)

;

create_circle_world (pointl, point2, circle_world)

;

answer = '
y

'

;

>

/* create a segment and a path direct from start to goal */

start = pointl;
goal = point2;
segmentO = make_segment (pointl, point2)

;

printf ("\n\nStraight-line path from start to goal cost = %4.2f\n",
segment_cost (segmentO));

pathO = create_path (segmentO);
sprintf (label, "Straight line start to goal (cost = %4.2f)",

segment_cost (segmentO));
pathO->label = label;

if ((answer == 'y' II answer == 'Y') (((circle_world->degree >= 1))
/* true if circle_world file was read successfully */

{

scanf ("%c", (answer); /* hack to clear carriage return from buffer */
printf ("\n\nDo you want to enter another circle? ");
scanf ("%c", (answer);

(hile ((answer I
answer 'Y') (circle_world->degree 1))

printf ("\n\nEnter circle # %d center coordinates & radius . \n\n",
circle_world->degree + 1);

printf (" circle # %d x = ", circle_world->degree + 1),
scanf ("%lf", Sx);
printf (" circle # %d y = ", circle_world->degree + 1),
scanf ("%lf", (y);
printf (" circle # %d r = ", circle_world->degree + 1)
scanf ("%lf", (r);
while (r < 0.0)
{

printf ("\nPlease enter a non-negative radius value:
scanf ("%lf", (r);

"),

}

printf ("\n");
pointl = make_point (x, y)

;

circlel = make_circle (pointl, r)

;

add_circle_to_world (circlel, circle_world)

;

scanf ("%c", (answer); /* hack to clear carriage return from buffer
printf ("Do you want to enter another circle? ");
scanf ("%c", (answer);

}

printf ("\n");
printf ('

printf ('

printf ("\n\n")

;

/* Circle world data entry complete.

/* Output circle world in .graph point pair format and . auv data format
graph_world (circle_world, GRAPH_FILENAME)

;

output_world (circle world, AUV FILENAME);

/* Test visibility from start to goal, followed by point pairs of interest: */

if (visible (circle_world->start , circle_world->goal , circle_world)

231

== TRUE)
printf (

n \nThe start and goal points are VISIBLE to each other. \n");

else if (visible (circle_world->start , circle_world->goal , circle_world)
== TANGENTIAL)

{

printf ("\nThe start and goal points are VISIBLE to each other and ");
printf ("\ntheir line segment is TANGENTIAL to one or more circles ");
printf ("in circle_world. \n")

;

}

else printf ("\nThe start & goal points are NONVISIBLE to each other. \n");
printf <"\n\n");

scanf ("%c", (answer) ; /* hack to clear carriage return from buffer */
printf ("Do you want to check visibility between other pairs of points? ");
scanf ("%c", (answer);

while (answer == 'y'
I

| answer == 'Y')
{

printf ("\n\nEnter the first point coordinates. \n\n") ;

printf (" first x = ");
scanf ("%lf", (x);
printf (" first y = ");
scanf ("%lf", (y);
pointl = make_point (x, y)

;

printf ("\n\nEnter the second point coordinates. \n\n")

;

printf (" second x = ");
scanf ("%lf", (x);
printf (" second y = ");
scanf ("%lf", (y);
point2 = make_point (x, y)

;

print f ("\n\nThe distance between the two points = %f\n\n",
distance (pointl, point2))

;

printf ("\nThe orientation between the two points = %4.2f degrees\n\n",
degrees (orientation (pointl, point2)));

if ((visible (pointl, point2, circle_world) == VISIBLE) &&
(visible (point2, pointl, circle_world) == VISIBLE))

printf ("\nThe first and second points are VISIBLE to each other.");

else if ((visible (pointl, point2, circle_world) == TANGENTIAL) &&
(visible (point2, pointl, circle_world) == TANGENTIAL))

{

print f ("\nThe first and second points are VISIBLE to each other and ");
printf ("\ntheir line segment is TANGENTIAL to one or more circles ");
printf ("in circle_world. \n")

;

(

else
printf ("\nThe first and second points are NONVISIBLE to each other.");

printf ("\n\n\n")

;

scanf ("%c", (answer) ; /* hack to clear carriage return from buffer */
printf ("Do you want to check visibility between a new pair of points? ");

scanf ("%c", (answer);
}

/* */

/* Calculate external, cross & center tangents between circles of interest: */

if (circle_world->degree >= 1)

I

printf ("\n\n");
scanf ("%c", (answer); /* hack to clear carriage return from buffer */

printf ("Do you want to check tangents between circles or points? ");
scanf ("%c", (answer);

}

else
answer = ' n'

;

while (answer == 'y' || answer == 'Y')
{

printf ("\n\nEnter the number of the first circle to check. \n n
);

printf ("(use zero for start point, -1 for goal point) \n\n")

;

printf (" first circle is # ");
scanf ("%d". Si);
if (i == 0) circlel = make_circle (start, 0.0); /* start point */
else if (i == -1) circlel = make_circle (goal, 0.0); /* goal point */
else circlel = find_circle (i, circle_world)

;

printf ("\n\nEnter the traversal mode of the first circle. \n ");

232

model = 2;
while ((model < -1) II (model > 1))

(

printf (" (Valid mode values are CCW +1, CW -1, Center 0): ");

scanf("%i", Smodel);
print f (" \n")

;

}

printf ("\nEnter the number of the second circle to check. \n");
printf ("(use zero for start point, -1 for goal point) \n\n")

;

printf (" second circle is # "
) ;

scanf ("%d", ij);
while (j == i)

{

print f ("\nPlease enter a circle number different from the first: ");

scanf ("%d", Sj);
printf ("\n");

)

if (j == 0) circle2 = make_circle (start, 0.0); /* start point */

else if (j == -1) circle2 = make_circle (goal, 0.0); /* goal point */

else circle2 = find_circle (j, circle_world)

;

printf ("\nEnter the traversal mode of the second circle. \n")

;

mode 2 = 2;
while ((mode2 < -1) II (mode2 > 1))

(

printf (" (Valid mode values are CCW +1, CW -1, Center 0): ");

scanf ("%i", &mode2);
printf ("\n");

)

circle_tangent (circlel, circle2, model, mode2, configl, config2)

;

/* Update circlel and circle2 due to CENTER case possibility */

circlel = conf igl->tangent . circle;
circle2 = conf ig2->tangent . circle;

pointl = circumference_point (circlel, configl->tangent . angle)

;

point2 = circumference_point (circle2, config2->tangent .angle)

;

printf ("\n\n")

;

printf (" Configurationl Conf iguration2 ");
printf (" ModesNn");
printf (" ");
printf (" \n\n");
printf (" xl yl anglel orientl x2 y2 angle2 ");
printf ("orient2\n\n")

;

printf ("%5. If %5.1f %7.2f %7.2f %5.1f %5.1f %7.2f %7.2f ",

pointl. x, pointl. y, degrees (configl->tangent . angle)

,

degrees (configl->orientation)

,

point2.x, point2.y, degrees (config2->tangent . angle)

,

degrees (conf ig2->orientation))

;

if (model == LEFT) printf ("L. .")

;

else if (model == RIGHT) printf ("R. .")

;

else if (model == CENTER) printf ("C. .")

;

else printf ("?..")

;

if (mode2 == LEFT) print f ("L\n\n")

;

else if (mode2 == RIGHT) print f ("R\n\n")

;

else if (mode2 == CENTER) printf ("C\n\n")

;

else printf ("?\n\n")

;

printf ("\n\nThe distance between the two tangent points = %f\n\n",
distance (pointl, point2));

if ((visible (pointl, point2, circle_world) == TRUE) &&
(visible (point2, pointl, circle_world) == TRUE))

printf ("\nThe first and second points are VISIBLE to each other.");

else if ((visible (pointl, point2, circle_world) == TANGENTIAL) &&
(visible (point2, pointl, circle_world) == TANGENTIAL))

printf ("\nThe first and second points are VISIBLE to each other and ",

"\ntheir line segment is TANGENTIAL to one or more circles in",
" circle world.");

else
printf ("\nThe first and second points are NONVISIBLE to each other.");

/* Create the tangent 'path' starting with a pseudo-segment */
segmentl = make_segment (circlel . center, circlel . center)

;

pathl = create_path (segmentl);
arcl = make_arc (circlel, configl->tangent . angle,

configl->tangent . angle, model);
segment2 = make_segment (pointl, point2)

;

233

augment_path (arcl, segment2, pathl);

/* Subsequent graph_path & output_path calls append data to the files. */
graph_path (pathl, circle_world, GRAPH_FILENAME)

;

output_path (pathl, AUV_FILENAME)

;

printf ("\n\n\nThis tangent has been added to the output files.");

printf ("\n\n\n");
scanf ("%c", (answer); /* hack to clear carriage return from buffer */
printf ("Do you want to test another set of circle tangents? ");
scanf ("%c", (answer);
printf ("\n");

/* Determine search type and whether to plot each least cost leg found: */

answer = ' *'

;

while ((answer != 'd') (((answer != 'D') &&
(answer != 'a') (((answer != 'A'))

{

if (answer ! = ' *'

)

printf ("\n*** Please answer D for Dijkstra or A for A-star ...\n n
);

printf ("\n\n");
scanf ("%c", (answer); /* hack to clear carriage return from buffer*/

printf ("Do you want a Dijkstra search or an A-star search? ");
scanf ("%c", (answer);
printf ("\n\n");
if (answer == ' d' || answer == 'D') search_type = DIJKSTRA;
if (answer == 'a' II answer == 'A') search_type = A_STAR;

)

scanf ("%c", (answer); /* hack to clear carriage return from buffer */
printf ("Do you want to plot and number each least cost leg found? ");
scanf ("%c", (answer);
printf ("\n")

;

if (answer == 'y' II answer == 'Y')
plot_each_leg = TRUE;

else plot_each_leg = FALSE;

/* */

circle_search (search_type, plot_each_leg, circle_world, pathl, path2);

/* */

/* pathl is now least cost path, path2 is all tangents */

scanf ("%c", (answer); /* hack to clear carriage return from buffer */
printf ("\n\nDo you want to include the start to goal line on the graph? ");
scanf ("%c", (answer);

if (answer == 'y' II answer == 'Y')

<

graph_path (pathO, circle_world, GRAPH_FILENAME)

;

output_path (pathO, AUV_FILENAME)

;

)

scanf ("%c", (answer);
printf ("\n\nDo you want to include the least cost path in the output? ");
scanf ("%c", (answer);
if (answer == 'y' || answer == 'Y')
{

graphjpath (pathl, circle_world, GRAPH_FILENAME)

;

output_path (pathl, AUV FILENAME)

;

)

scanf ("%c", (answer);
printf ("\n\nDo you want to include ALL circle tangents in the output? ");
scanf ("%c n

, (answer);
if (answer == 'y'

| | answer == 'Y')
{

graph_path (path2, circle_world, GRAPH_FILENAME)

;

output_path (path2, AUV_FILENAME)

;

>

/* square off the graph data */
center_graph_window (GRAPH_FILENAME, (xmin, (xmax, (ymin, (ymax,

GRAPH STRETCH);

234

/* Check whether circle world is modeled in the NPS pool: */

scanf ("%c", sanswer)

;

>rintf ("\n\nDo you want the NPS pool superimposed on the graph? ");

scanf ("%c", Sanswer);
if (answer == 'y'

I I
answer == 'Y') /* invert x-axis, draw pool lines */

{

xmin
xmax
ymin
ymax

145.0;
-15.0;
-50.0;
110.0;

make point (o.o, 0);
make point (127.5, 0);
make point (127.5, 67 b);
make point (0.0, 67 5);

pointl
point2
point3
point4

segmentO = make_segment (pointl, point2)

;

pathO = create_path (segmentO)

;

graph_path (pathO, circle_world, GRAPH_FILENAME)

;

segmentO = make_segment (point2, point3);
pathO = create_path (segmentO);
graph_path (pathO, circle_world, GRAPH_FILENAME)

;

segmentO = make_segment (point3, point4);
pathO = create_path (segmentO);
graph_path (pathO, circle_world, GRAPH_FILENAME)

;

segmentO = make_segment (point4, pointl);
pathO = create_path (segmentO);
graph_path (pathO, circle_world, GRAPH_FILENAME)

;

Plot circle_world, tangents and path map using sunview sunplot function: */

scanf ("%c", Sanswer);
printf ("\n\nDo you want a sunview sunplot of the circle_world plotted? ")

;

scanf ("%c", Sanswer);
if (answer == 'y'

I I
answer == 'Y')

{

scanf ("%c", Sanswer);
sprintf (command,

"graph -b -g 1 -x %f %f -y %f %f < %s
I
sunplot -s -c 800",

xmin, xmax, ymin, ymax, GRAPH_FILENAME)

;

printf ("\n\n%s\n\n\n" , command);
system (command)

;

}

else scanf ("%c", Sanswer);

/* Print circle_world, tangents and path map using Unix graph function: */

printf ("\n\nDo you want a hard copy of the circle_world graph plotted? ");

scanf ("%c", Sanswer);
if (answer == 'y'

I | answer == 'Y')

(

printf ("\n\nHow many copies do you want printed? ");
scanf ("%d", Scopies);
if ((copies < 0) M (copies > 20))
(

printf ("\nThe allowable range of copies is (0..20).");
printf ("\n\nHow many copies do you want printed? ");

scanf ("%d", Scopies);
}

today = time (NULL)

;

strftime (date, 32, "%d %B %Y", localtime (Stoday));
scanf ("%c", Sanswer);
printf ("\n\nEnter a title to be printed on the graph: \n\n n

);
gets (title);
sprintf (command,

"graph -b -g 1 -1 \"%s %s\" -x %f %f -y %f %f < %s | lpr -g -h -#%d -Pap2"
, title, date, xmin, xmax, ymin, ymax, GRAPH_FILENAME, copies);

printf ("\n\n%s\n\n\n", command);
system (command)

;

235

APPENDIX F. OBTAINING NPS AUV INTEGRATED SIMULATOR

PROGRAMS SOURCE CODE

NPS AUV Integrated Simulator graphics simulation program, sonar classification

expert system and circle world path planning source code can be obtained on Internet

via anonymous FTP. Figure F.l shows an example of how to obtain these files.

% ftp taurus.cs np6.navy.mil
Connected to taurus.cs.nps.navy.mil.
220 taurus FTP server (SunOS 4.1) ready.
Name (taurus.cs nps . navy .mil: brut zman) : anonymous
331 Guest login ok, send ident as password.
Password: your name here
230 Guest login ok, access restrictions apply.
ftp> cd pub
250 CWD command successful

.

ftp> binary
200 Type set to I.

ftp> get auveim tar.Z
local: auvsim.tar.Z remote: auvsim.tar.Z
200 PORT command successful.
150 Binary data connection for auvsim.tar.Z (131 . 120 . 1 . 2C ,1250) (814519 bytes)

.

226 Binary Transfer complete.
814519 bytes received in 1.38 seconds (576.32 Kbytes/s)
ftp> quit
221 Goodbye.

% uncompress auvsim.tar.Z

% tar xf auvsim tar

% Is
AUV auvsonar. clp m35.d nps_rightpool

.

off
AUVReadme auvsonar.log m35 gyro. auv point . off
Makefile c search. c m35 raw. auv pool .auv
NPS AUV circle. auv materials . of

f

pool cylinder. off
NPS AUV.c circle. c mine. off pool_lightsl.c ff
NPS_AUV_fn.c circle20.auv mine2.off pool lights2.c ff
auv lights. off circtest.c mine3.off poolsnapshot
auv mtls.off cylinder. off minehunt.auv screen snapshot
auvsim floor. off nps auv. off showsgibwonly

.

c
auvsim.

c

hull. off nps farpool.off sphere . off
auvsim.

h

loop. auv nps leftpool.off test . auv
auvsim. tar loop.d nps_nearpool .of

f

auvsonar m35.auv nps pool. off

% auvsim /* to execute on your iris workstation! */

Figure F.l Obtaining NPS AUV Integrated Simulator files via Internet

236

APPENDIX G. VIDEOTAPE DEMONSTRATION OF RESULTS

A videotape appendix is included to demonstrate operation and usefulness of the

NPS AUV Integrated Simulator. The first video segment is the original segment

submitted to the IEEE Robotics and Automation Conference 1992

(Brutzman Floyd Whalen 92). Video abstract and mission profile are included in

Figures G.l and G.2. Additional videotape demonstrations show graphics simulation

program functionality and visualization of sonar classification, circle world path

planning and minefield search applications.

237

Naval Postgraduate School Autonomous Underwater Vehicle

Charles A. Floyd, Donald P. Brutzman, and Russell Whalen

Computer Science Department, Naval Postgraduate School

Monterey California 93943 USA, brutzman@taurus.cs.nps.navy.mil

Abstract

The Naval Postgraduate School (NPS) Autonomous

Underwater Vehicle (AUV) is an eight foot long, 387-pound untethered robot

submarine designed for research in adaptive control, mission planning,

navigation, mission execution, and post-mission data analysis. The NPS AUV
has four active fixed-beam high-resolution ultrasonic sonars which point

orthogonally ahead, downward and to port and starboard. Neutral buoyancy,

eight plane surfaces and twin propellers allow precise maneuverability.

Simulation programs running on Iris three-dimensional

graphics workstations are used to evaluate NPS AUV software and predict

system performance prior to each mission. During simulation a complete

hydrodynamics model accurately represents physical response characteristics

through six degrees of freedom.

The videotaped NPS AUV test mission was performed in the

Olympic-size NPS swimming pool and programmed to include waypoint

maneuvering, sonar ranging, and a full pool traversal while recording pertinent

sensor and posture values at a 10 Hz data rate.

Graphics simulations can replay in real time actual data

collected in the pool. The taped playback demonstrates reconstruction and

visualization of vehicle track, control systems dynamic response, logic and

state changes, plotted locations of individual sonar returns, and expert system

classification of detected objects.

Ongoing NPS AUV research is investigating linear and

nonlinear control techniques, advanced sonar classification, failure mode
analysis using neural networks, dynamic path and search planning, use of

cross-body thrusters for hovering control, and alternate AUV operating

architectures.

Figure G.l NPS AUV video abstract

238

shallow end 4'

-C

CD f a_ O if i
O

in y
*C

g§>
.1

c

JW
fc

"O

sts
CO £
"O <D
C0T3
^- ^
-»—» —

/

83
76 E
^ o
co cz o

-4—

3 4_

<
V

if
•\ ^''

,8 pue deep

Figure G.2 Mission profile of NPS AUV video

239

LIST OF REFERENCES

Akman, Varol, Unobstructed Shortest Paths in Polyhedral Environments,

Springer-Verlag, Berlin, 1987.

Arthur, VADM Stanley R. and Pokrant, Marvin, "Desert Storm at Sea," U.S. Naval

Institute Proceedings, vol. 117 no. 5, May 1991, pp. 82-87.

Asano, Takano, Asano, Tetsuo, Guibas, Leonidas, Hershberger, John, and Imai,

Hiroshi, "Visibility-Polygon Search and Euclidean Shortest Paths," Proceedings of the

26th Symposium on Foundations of Computer Science, 1985, pp. 155-164.

Badler, Norman I., Barsky, Brian A. and Zeltzner, David, ed., Making Them Move:

Mechanics, Control and Animation of Articulated Figures, Morgan Kaufmann

Publishers Inc., San Mateo, California, 1991.

Badr, Salah M., Byrnes, Ronald B., Brutzman, Donald P. and Nelson, Michael L.,

Real-Time Systems, technical report NPS-CS-92-004, Naval Postgraduate School,

Monterey, California, February 1992.

Baerson, Kevin M., "Flight Lab Conquers Real-Time Unix," Federal Computer Week,

December 2, 1991, p. 24.

Barrow, Theodore H„ Yurchak, John M. and Zyda, Michael J., Distributed Computer

Communications In Support Of Real-Time Visual Simulations, M.S. Thesis, Naval

Postgraduate School, Monterey, California, September 1988.

Besl, P.J. and Jain, R.C., "Three-Dimensional Object Recognition," Computing

Surveys, vol. 17 no. 1, March 1985, pp. 77-145.

Blackman, Maurice, The Design of Real-Time Applications, John Wiley and Sons Ltd.,

London, 1976.

Blidberg, D.R., Chappell, S., Jalbert, J., Turner, R., Sedor, G. and Eaton, P.,

"The EAVE AUV Program at the Marine Systems Engineering Laboratory,"

Proceedings of 1st IARP Workshop on Mobile Robots for Subsea Environments,

Monterey, California, October 1990, pp. 33-42.

Bobrow, Daniel G., "Dimensions of Interaction," AI Magazine, vol. 12 no. 3, Fall

1991, pp. 64-80.

240

Brooke, Tom, "The Art of Production Systems," AI Expert, vol. 7 no. 1, January 1992,

pp. 30-35.

Brooks, Frederick P. Jr., "Grasping Reality through Illusion: Interactive Graphics

Serving Science," included in "Implementing and Interacting with Real-time

Microworlds," course 29, ACM SIGGRAPH Conference, Boston, Massachusetts,

31 July-4 August 1989, pp. 3-1 through 3-11.

Brutzman, Donald P. and Compton, Mark A., "AUV Research at the Naval

Postgraduate School," Sea Technology, vol. 32 no. 12, December 1991, pp. 35-40.

Brutzman, Donald P., Floyd, Charles A. and Whalen, Russell, "Naval Postgraduate

School Autonomous Underwater Vehicle," Video Proceedings of the IEEE
International Conference on Robotics and Automation 92, Nice, France, May 1992.

Brutzman, Donald P., Kanayama, Yutaka and Zyda, Michael J., "Integrated Simulation

for Rapid Development of Autonomous Underwater Vehicles", Proceedings of the

IEEE Oceanic Engineering Society Conference AUV 92, Washington DC, June 1992.

Brutzman, Donald P., Compton, Mark A. and Kanayama, Yutaka, "Autonomous Sonar

Classification using Expert Systems," draft article, OCEANS 92 conference, Oceanic

Engineering Society of the IEEE, Newport, Rhode Island, October 26-29, 1992.

Burke, JOC(SW) Kip, "More Than an Eye in the Sky," Surface Warfare,

November/December 1991, pp. 8-9.

Byrnes, R.B., MacPherson, D.L., Kwak, S.H., Nelson, M.L. and McGhee, R.B., "An

Experimental Comparison of Hierarchical and Subsumption Software Architectures for

Control of an Autonomous Underwater Vehicle," presented at IEEE Oceanic

Engineering Society Symposium on Autonomous Underwater Vehicles,

Washington DC, June 2-3, 1992.

Canny, John F., The Complexity of Robot Motion Planning, The MIT Press,

Cambridge, Massachusetts, 1988.

Comer, Douglas E., Internetworking with TCPIIP Volume I: Principles, Protocols and

Architecture, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1991.

Compton, LCDR Mark A., Minefield Search and Object Recognition for Autonomous
Underwater Vehicles, Master's Thesis, Naval Postgraduate School, Monterey,

California, March 1992.

241

Compton, LCDR Mark A., "Modeling the Sonar Environment," unpublished paper,

Naval Postgraduate School, Monterey, California, September 1991.

Corkill, Daniel, "Blackboard Systems," AI Expert, vol. 6 no. 9, September 1991,

pp. 40-47.

Cramer, Bill, "Writing Real-Time Programs under UNIX," Dr. Dobb's Journal,

vol. 13 no. 6, June 1988, pp. 18-29.

Dasgupta, Partha, LeBlanc, Richard J., Jr., Ahamad, Mustaque, and Ramachandran,

Umakishore, "The Clouds Distributed Operating System," Computer, November 1991,

pp. 34-44.

Davis, Daniel, "Control of MBARI ROV Camera and Tools over a Network,"

Proceedings of 1st IARP Workshop on Mobile Robots for Subsea Environments,

Monterey, California, October 23-26, 1990, pp. 137-142.

Deitel, Harvey M., An Introduction to Operating Systems, Addison-Wesley Publishing

Co. Ltd., Reading, Massachusetts, 1990.

Dibble, Peter, OS-9 Insights: An Advanced Programmers Guide to OS-9/68000,

Microware Systems Corporation, Des Moines, Iowa, 1988.

Durfee, Edmund H. and Lesser, Victor R., "Planning to Meet Deadlines in a

Blackboard-based Problem Solver," COINS Technical Report 87-07, IEEE Tutorial on

Real-Time Systems, Computer Society Press of the IEEE, Washington DC, 1988.

Ethernet Installation Guide, Digital Equipment Corporation, Maynard, Massachusetts,

1983.

Etter, Paul C, Underwater Acoustic Modeling: Principles, Techniques and

Applications, Elsevier Applied Science, London, England, 1991.

Falk, Howard, "Developers Target UNIX and Ada with Real-Time Kernels,"

Computer Design, vol. 27 no. 7, 1 April 1988, pp. 55-70.

Floyd, Charles A., Design and Implementation of a Collision Avoidance System for

the NPS Autonomous Underwater Vehicle (AUV II) Utilizing Ultrasonic Sensors,

Master's Thesis, Naval Postgraduate School, Monterey, California, September 1991.

242

Floyd, Charles A., Kanayama, Yutaka, and Magrino, Christopher, "Underwater

Obstacle Recognition using a Low-Resolution Sonar," Proceedings of the Seventh

International Symposium on Unmanned Untethered Submersible Technology,

University of New Hampshire, Durham, New Hampshire, September 1991,

pp. 309-327.

GESPAC Inc., Introduction to OS-9/68000, class notes, Mesa, Arizona, 1989.

Giarratano, Joseph C, CLIPS User's Guide, NASA, Lyndon B. Johnson Space Center,

January 1991.

Good, LT Michael R., Design and Construction of a Second Generation AUV,
Master's Thesis, Naval Postgraduate School, Monterey, California, December 1989.

Gorey, Kevin, "Periodic Table of the Irises," Silicon Graphics Inc., Mountain View,

California, February 1991.

Hamming, Richard W., Numerical Methods for Scientists and Engineers, second

edition, McGraw-Hill Book Co., New York, 1973.

Hart, Peter E., Nilsson, Nils J. and Raphael, Bertram, "A Formal Basis for the

Heuristic Determination of Minimum Cost Paths," IEEE Transactions on Systems,

Man, and Cybernetics, vol. SSC-4 no. 2, July 1968, pp. 100-107.

Healey, A.J., McGhee, R.B., Cristi, R., Papoulias, F.A., Kwak, S.H., Kanayama, Y„
and Lee, Y., "Mission Planning, Execution, and Data Analysis for the NPS AUV II

Autonomous Underwater Vehicle", Proceedings of the First IARP Workshop on

Mobile Robots for Subsea Environments, Monterey, California, October 23-26, 1990,

pp. 177-186.

Healey, A.J., Papoulias, F.A., and MacDonald, G., "Design and Experimental

Verification of a Model Based Compensator for Rapid AUV Depth Control,"

Proceedings from the 6th International Symposium on Unmanned Untethered

Submersible Technology, University of New Hampshire, Durham, New Hampshire,

June 12-14, 1989, pp. 458-474.

Hebert, Martial, Kanade, Takeo and Kweon, InSo, "3-D Vision Techniques for

Autonomous Vehicles," NSF Range Image Understanding Workshop, 1988,

pp. 273-337.

Hildebrand, Dan, "Message-Passing Operating Systems," Dr. Dobb's Journal,

vol. 13 no. 6, June 1988, pp. 34-48.

243

Interview with Patrick Hale, DARPA UUV Project Manager, C.S. Draper Laboratories,

Cambridge, Massachusetts by the author, December 11, 1991.

Interview between Anthony J. Healey, Chair, Mechanical Engineering Department,

Naval Postgraduate School, and LCDR Mark Compton and the author, 9 August 91.

Interview between Robert B. McGhee, Chair, Computer Science Department, Naval

Postgraduate School, and LCDR Mark Compton and the author, 8 August 91.

Iyengar, S. Sitharama and Elfes, Alberto, ed., Autonomous Underwater Robots:

Perception, Mapping and Navigation, volume 1, IEEE Computer Society Press,

Los Alamitos, California, 1991.

Jackson, Peter, Introduction to Expert Systems, Addison-Wesley Publishing Co. Inc.,

Workingham, England, 1991.

Jurewicz, CDR Thomas A., A Real-Time Autonomous Underwater Vehicle Dynamic

Simulator, Master's Thesis, Naval Postgraduate School, Monterey, California,

December 1990.

Kahaner, David K., "TRON (The Real-Time Operating System Nucleus)," Scientific

Information Bulletin, vol. 16 no. 3, Office of Naval Research Asian Office,

July-September 1991, pp. 11-19.

Kanayama, Yutaka, Noguchi, Tetsuo, and Hartman, Bruce, "Sonar Data Interpretation

for Autonomous Mobile Robots," unpublished paper, Naval Postgraduate School,

Monterey, California, 1990.

Kanayama, Yutaka and Noguchi, Tetsuo, "Spatial Learning by an Autonomous Mobile

Robot with Ultrasonic Sensors," University of California Santa Barbara Department of

Computer Science Technical Report TRCS89-06, February 1989.

Kanayama, Yutaka and Brutzman, Donald P., "Shortest Path Planning in a Circle

World", unpublished paper, Naval Postgraduate School, Monterey, California,

September 1991.

Kanayama, Y. and De Haan, G., "A Mathematical Theory of Safe Path Planning,"

Technical Report of Computer Science Department TRCS88-16, University of

California at Santa Barbara, California, 1988.

Kanayama, Yutaka, "Advanced Robotics and Spatial Reasoning", class notes, Naval

Postgraduate School, Monterey, California, May 1991.

244

Kasahara, Hironori, "Parallel Processing of Robot-Arm Control Computation on a

Multimicroprocessor System," IEEE Tutorial on Real-Time Systems, Computer Society

Press of the IEEE, Washington DC, 1988.

Kenny, Kevin B. and Lin, Kwei-Jay, "Building Flexible Real-Time Systems using the

Rex Language," Computer, May 1991, pp. 70-78.

King, LT David Maurice and Prevatt, LCDR Richard Montgomery ITI, "Rapid

Production of Graphical User Interfaces," Master's Thesis, Naval Postgraduate School,

Monterey, California, December 1990.

Laumond, Jean-Paul, "Obstacle Growing in a Nonpolygonal World," Information

Processing Letters, vol. 25 no. 1, April 1987, pp. 41-50.

Leatherman, Brent, "An Approach to Integration of Real-Time Software for

Autonomous Underwater Vehicles," Masters Thesis, Naval Postgraduate School,

Monterey California, September 1991.

Locke, John, Physical Layout of the Computer Science Department Network, general

newsgroup posting, Naval Postgraduate School, Monterey, California, January 1991.

Lozano-Perez, Tomas and Wesley, Michael A., "An Algorithm for Planning

Collision-Free Paths among Polyhedral Obstacles," Communications of the ACM,
vol. 22 no. 10, October 1979, pp. 560-570.

Luo, R.C. and Kay, M.G., "Multisensor Integration and Fusion in Intelligent Systems,"

IEEE Transactions on Systems, Man and Cybernetics, vol. 19 no. 5,

September/October 1989, pp. 901-931.

Makris, Dionysios, "Real-Time Scheduling and Synchronization for the Naval

Postgraduate School Autonomous Underwater Vehicle," Masters Thesis, Naval

Postgraduate School, Monterey California, December 1991.

Manber, Udi, Introduction to Algorithms: A Creative Approach, New York,

Addison-Wesley, 1989, pp. 204-208.

Mathworks, Inc., PC-MATLAB for MS-DOS Personal Computers, South Natick,

Massachusetts, 1989.

Mellichamp, Duncan A., ed., Real-Time Computing with Applications to Data

Acquisition and Control, Van Nostrand Reinhold Co., New York, 1983.

245

Moravec, Hans, "The Stanford Cart and the CMU Rover," Proceedings of the IEEE,

vol. 71 no. 7, July 1983, pp. 872-884.

Moravec, Hans P., Obstacle Avoidance and Navigation in the Real World by a Seeing

Robot Rover, Ph.D. Thesis, Report STAN-CS-80-813, Stanford University,

September 1980.

Mullender, Sjoerd, sunplot computer program, Free University, Amsterdam,

Netherlands, 1987.

Myers, Laura, "Silicon Graphics to introduce new workstation today," The Herald,

Monterey, California, p. 4B, July 22, 1991.

NASA Software Technology Branch, CLIPS Reference Manual, Lyndon B. Johnson

Space Center, Houston, Texas, 1991.

Ong, Seow Meng, A Mission Planning Expert System with Three-Dimensional Path

Optimization for the NPS Model 2 Autonomous Underwater Vehicle, Master's Thesis,

Naval Postgraduate School, Monterey, California, June 1990.

Pappas, George, Shotts, William, O'Brien, Mack and Wyman, William, "The

DARPA/Navy Unmanned Undersea Vehicle Program," Unmanned Systems,

vol. 9 no. 2, Spring 1991, pp. 24-30.

Payton, David W. and Bihari, Thomas E., "Intelligent Real-Time Control of Robotic

Vehicles," Communications of the ACM, vol. 34 no. 8, August 1991, pp. 49-63.

Polmar, Norman, The Ships and Aircraft of the U.S. Fleet, Naval Institute Press,

Annapolis, Maryland, 1987, p. 233.

Polmar, Norman, "Robot Submarines," U.S. Naval Institute Proceedings,

vol. 117 no. 9, September 1991, pp. 122-123.

Preparata, Franco P., and Shamos, Michael Ian, Computational Geometry: An
Introduction, Springer-Verlag, New York, 1985, pp. 10-11.

Sacerdoti, Earl D., "Managing Expert System Development," AI Expert, vol. 6 no. 5,

May 1991, pp. 26-33.

Schwartz, J.T. and Sharir, M., "A Survey of Motion Planning and Related Geometric

Algorithms," Artificial Intelligence, vol. 37 no.s 1-3, December 1988, pp. 157-169.

246

Stallings, William, Data and Computer Communications, Macmillan Publishing

Company, New York, 1988.

Stankovic, John A., ed., "Real-Time Computing Systems: The Next Generation,"

IEEE Tutorial on Real-Time Systems, Computer Society Press of the IEEE,

Washington DC, 1988.

Stewart, W. Kenneth, "Three-Dimensional Modeling of Seafloor Backscatter from

Sidescan Sonar for Autonomous Classification and Navigation," Proceedings of the 6th

International Symposium on Unmanned Untethered Submersible Technology,

University of New Hampshire, Durham, New Hampshire, June 1989, pp. 372-392.

Thalmann, Nadia Magnenat, and Thalmann, Daniel, Computer Animation: Theory and

Practice, second edition, Springer-Verlag, Tokyo, Japan, 1990.

Welzl, Emo, "Constructing the Visibility Graph for n Line Segments in 0(n2
) Time",

Information Processing Letters, vol. 20 no. 4, 10 May 1985, pp. 167-171.

West, RADM Ralph W., Jr., Superintendent, Naval Postgraduate School, memorandum
to LCDR Mark Compton and the author, 16 August 91.

Wright, M. Lattimer, Green, Milton W., Fiegi, Gudrun, and Cross, Perry F.,

"An Expert System for Real-Time Control," IEEE Tutorial on Real-Time Systems,

Computer Society Press of the IEEE, Washington DC, 1988.

Zyda, Michael J., "Object File Format", Graphics and Video Laboratory, unpublished

course text, Naval Postgraduate School, Monterey, California, 2 April 1991,

pp. 7.1-7.81.

Zyda, Michael J., McGhee, Robert B., Kwak, Sehung, Nordman, Douglas B., Rogers,

Ray C. and Marco, David, "Three-Dimensional Visualization of Mission Planning and

Control for the NPS Autonomous Underwater Vehicle," IEEE Journal of Oceanic

Engineering, vol. 15 no. 3, July 1990, pp. 217-221.

Zyda, Michael J., Jurewicz, Thomas A., Floyd, Charles A. and McGhee, Robert B.,

"Physically Based Modeling of Rigid Body Motion in a Real-Time Graphical

Simulator," unpublished paper, Naval Postgraduate School, Monterey, California,

September 1991.

247

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Cameron Station

Alexandria Virginia 22304-6145

2. Dudley Knox Library

Code 52

Naval Postgraduate School

Monterey California 93943-5002

3. Dr. Robert B. McGhee
Code CS/Mz
Chairman, Computer Science Department

Naval Postgraduate School

Monterey California 93943-5000

4. Dr. Anthony J. Healey

Code ME/Hy
Chairman, Mechanical Engineering Department

Naval Postgraduate School

Monterey California 93943-5000

5. Dr. Yutaka Kanayama
Code CS/Ka
Computer Science Department

Naval Postgraduate School

Monterey California 93943-5000

6. Dr. Michael J. Zyda

Code CS/Zk

Computer Science Department

Naval Postgraduate School

Monterey California 93943-5000

248

7. CAPT Alan R. Beam USN
DARPA UWO - PRC Inc.

1555 Wilson Boulevard

Suite 600

Arlington Virginia 22209

8. MAJ David Neyland USAF
DARPO ASTO
3701 North Fairfax Drive

Arlington Virginia 22203

9. RADM George R. Sterner USN
Program Executive Officer

Submarine Combat and Weapons Systems

Department of the Navy
Washington DC 20362-5101

10. Commander
Naval Sea Systems Command
ATTN: CAPT William Shotts, PMO-403
Washington DC 20362-5101

11. Dr. Richard Guertin

OP-09BC
Pentagon 4D386
Washington DC 20301-5000

12. Chief of Naval Research

800 North Quincy Street

Arlington Virginia 22217-5000

13. Commander
Submarine Development Squadron TWELVE
Naval Submarine Base

Groton Connecticut 06340

14. Commanding Officer

Naval Underwater Systems Center

Newport Rhode Island 02841-5047

249

15. Commanding Officer

Naval Coastal Systems Center

Panama City Florida 32407-5000

16. Commander
Naval Surface Weapons Center

Dahlgren Virginia 22448-5000

17. Commanding Officer

David Taylor Research Center

Bethesda Maryland 20084-5000

18. Commander
Naval Oceans Systems Center

San Diego California 92152-5000

19. Mr. Randy Brill

Naval Oceans Systems Center

PO Box 997

Kailua Hawaii 96734-0996

20. Director

Navy Center for Applied Research in Artificial Intelligence

Naval Research Laboratory

Washington DC 20375-5000

21. Mr. Patrick Hale

DARPA UUV Program Manager

C.S. Draper Laboratories

555 Technology Square

Cambridge Massachusetts 02139

22. Dr. D. Richard Blidberg

Marine Systems Engineering Laboratory

Marine Program Building

University of New Hampshire

Durham New Hampshire 03824-3525

250

23. Dr. James G. Bellingham

Sea Grant College Program

Massachusetts Institute of Technology

292 Main Street

Cambridge Massachusetts 02139

24. Dr. Dana R. Yoerger

Deep Submergence Laboratory

Department of Applied Ocean Physics and Engineering

Woods Hole Oceanographic Institute

Woods Hole Massachusetts 02543

25. Dr. Stanley Dunn
Advanced Marine Systems Group

Ocean Engineering Department

Florida Atlantic University

Boca Raton Florida 33431

26. CDR Charles A. Floyd

Computer Science Department

Chauvenet Hall 9F
U.S. Naval Academy
572 Holloway Road

Annapolis Maryland 21402-5002

27. Dr. Peter Purdue

Code OR/Pd
Chairman, Operations Research Department

Naval Postgraduate School

Monterey California 93943-5000

28. Dr. Se-Hung Kwak
Code CS/Kw
Computer Science Department

Naval Postgraduate School

Monterey California 93943-5000

29. Dr. Luqi

Code CS/Lq
Computer Science Department

Naval Postgraduate School

Monterey California 93943-5000

251

30. Dr. Yuh-Jeng Lee

Code CS/Le

Computer Science Department

Naval Postgraduate School

Monterey California 93943-5000

31. Mr. David Pratt

Code CS/Pr

Computer Science Department

Naval Postgraduate School

Monterey California 93943-5000

32. MAJ Ronald B. Byrnes USA
Computer Science Department

Naval Postgraduate School

Monterey California 93943-5000

33. LCDR David L. MacPherson USN
Computer Science Department

Naval Postgraduate School

Monterey California 93943-5000

34. LCDR Donald P. Brutzman USN
Operations Research Department

Naval Postgraduate School

Monterey California 93943-5000

252

ACCOMPANY VHS 5000043 LOCATED AT
RESERVE DESK

esi s

Bru

NPs
Simula

tzman

AW In
tor.

tegra ted

* 9?

Thesis
B8272 Brutzman
c.l NPS AUV Integrated

Simulator.

