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ABSTRACT

The problem of loss of stability of marine vehicles under cross track error control

in the presence of mathematical versus actual system mismatch is analyzed. Emphasis is

placed on studying the response of the system after initial loss of stability of straight line

motion. Center manifold reduction and integral averaging techniques are used in order

to study the bifurcations to periodic solutions and stability of the resulting limit cycles.

Numerical integrations are utOized to confirm the theoretical results and to establish

regions of asymptotic stability. The methods used in this work demonstrate the

significance of nonlinear terms in assessing the final response of the system.
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I. INTRODUCTION

Accurate path control of ships and underwater vehicles along prescribed

geographical paths is a fundamental problem which is becoming increasingly important,

particularly as the missions of ocean vehicles become more sophisticated with strict

requirements for performance. In order for a control law to be able to perform its

mission in a realistic operational scenario it has to be robust enough so that it can

maintain stability and accuracy of operations in the presence of modeling errors and

environmental uncertainties. The robustness properties of the design are particularly

important due to the unpredictable nature of the ocean environment and the changes in

the hydrodynamic characteristics of the vehicle during turning, changes in the forward

speed, or operations in proximity to other objects in the area. For these reasons, there

exists a need for the analysis of the robustness characteristics of a particular control law

design and the establishment of a rational operational envelope based on stability and

performance criteria. Previous studies (Parsons & Cuong, 1977) showed that gain

adaptation is highly desirable due to changes in the linearized vehicle hydrodynamics

with different operating conditions, such as depth under keel. The resulting adaptation

scheme (Parsons & Cuong, 1980) required significant vehicle motion which may be

undesirable when operating in restricted water, or in object recognition and localization

tasks. Integral control techniques (Parsons & Cuong, 1981) proved quite effective, but

neglected the behavior of the vehicle which becomes very important at low speeds and



hover operations. Model based compensators exhibit robust behavior under conditions

of parameter uncertainty which is as good as the classical linear quadratic regulators for

linear output feedback systems (Healey, 1992). Alternatively, sUding mode controllers

exhibit very robust characteristics given an estimate of the parameter uncertainty and/or

disturbances (Papoulias & Healey, 1992), (Yoeger & Slotine, 1985). Sliding mode

control, however, does not offer an infinitely robust design, and it suffers from a series

of bifurcation phenomena and loss of stability unless proper care is exercised (Papoulias,

1991).

In this work we analyze the problem of loss of stability of a path keeping control

law under conditions far from nominal. We assume that the autopilot has been designed

based on a nominal model, whereas the actual system is different. For demonstration

purposes we employ a linear full state feedback control law, but the methods are quite

general and can be used for other designs as well. The main loss of stability cases

analyzed here occur in the form of generic bifurcations to periodic solutions

(Guckenheimer & Holmes, 1983). We use center manifold reduction techniques and

averaging in order to capture the stability properties of the resulting limit cycles (Chow

& Mallet-Paret, 1977). Particular emphasis is placed on the control gains as the primary

bifurcation parameters, since they are related to gain margins in linear control theory

(Friedland, 1986). We make extensive use of numerical integrations in order to confirm

the theoretical results. All computations in this work are conducted for the NPS

autonomous underwater vehicle (Bahrke, 1992), and all results are presented in standard



dimensionless quantities with respect to vehicle length, 7.3 ft, and nominal forward

speed, 2 ft/sec.



n. PROBLEM FORMULATION

A. INTRODUCTION

The equations of motion of an ocean vehicle in the horizontal plane are presented

in this chapter. A linear feedback control law is designed based on the linearized

equations in yaw, sway, and rate of change of heading angle and lateral deviation error

to provide path keeping. Loss of stability is examined for small changes from nominal

in feedback gains, and system properties.

B. EQUATIONS OF MOTION

The mathematical modeling of a steering system of a vehicle consists of the

nonlinear sway and yaw equations of motion. Newton's equations of motion in a moving

coordinate frame fixed at the ships geometrical center are'

m(v+r+Xf.r)=Y.r+Y.y+Yr+Yv+Y, 6+7. 6,^ Cr'T V r V OjSOj,o
stem

-/c^(C)(v+Cr)|v-HCr|JC

bow

I r+mxJv+r) =N. +N.v+Nr+Ny+N. 6 ^+N, 6

.

bow fy\

-
f C^h(0(v^Cr)\vHr\dC

Equations are nondimensionalized with constant forward speed u,ship length L, and the dimensionless time

being t.u/L.



where only nonzero terms are kept in the model and the symbols are explained in the

nomenclature. The cross flow integral drag terms in the equations of motion are very

important in low speeds, but for higher speeds their effect is much smaller and the

steering response predominantly linear. Also for maximum maneuverability, the vehicle

bow rudder is deflected at the same amount and opposite to the stem rudder.

Equations (1), and (2) can be written in the form

v=a^jV+a^2r+b^b (3)

r^a^^+a^^+h^ (4)

where

Da^^= iI^-N,)Y^-(mx^-Y,)N^ ,

Dt222- {m~Y^iN^-mx^)-imx^-N?){Y^-m\ (5)

Db^ = im-Y^iN,-N,^) ,

D = (I^-N,Xm-Y^-(mx^-Y,)(N^-mx^ .

The transfer function between rudder angle 6 and yaw angular velocity r is obtained from

Equations (3) and (4).

V+(^21^1-^11^2)
(^

6 52-(flj^+a22)'^+(a,jfl22-^12«2l)

For low frequency maneuvering motions this second order equation can be

approximated by expanding in Taylor series and keeping only the first order terms only



— = or r = ar+bb (7)

6 s-a

where

a =

b =

(^11 '^22)Kl^ -^\A "^11^2) *'^2(^11^22 "^12^21)

(8)

Equation (7), Nomoto's Equation is very useful in control system design since no

sway velocity feedback necessary, and it gives the fundamental turning performance. At

steady state, Equation (6) turns out to be

r =

ar+bb =

r = —
a

(9)

From Equation (9) it can be seen that the relationship between yaw rate and rudder

control angle are linezir with a slope -b/a. Experimental results show that the actual

relationship is not linear. Large increases in rudder angle fail to increase the yaw rate

according to the amount predicted from Equation (9).

The linear change in the time derivative of yaw rate due to rudder angle can be

augmented by a nonlinear term of the form 'ajF^'. This is introduced to model the

appropriate speed loss during turning. The term '33' has the same sign as 'a'. The new

yaw equation is therefore



r=ar+a^r^+bb (10)

Figure 1 Difference between Nomoto's equations and experimental results.

The model becomes complete with the expression of yaw rate and the inertial

deviation rate from the commanded path. Therefore the coupled nonlinear equations of

motion for the marine vehicle in the horizontal plane are

ij; = r (11)

f = ar+a^r^+bb

y = sini(r

(12)

(13)

This system of equations forms the basis for the controller design.

7



C. CONTROL LAW

Equations (11), (12), (13) govern the steering control of the model used in this

section.The control law can be expressed as,

6 = 6^tanh(-^) (14)

sat

where in the vicinity of ^ = r = y = Owe have



6, = K^^\f^K^r^K^y (15)

8 is the rudder angle and K^ ,K^ , Ky are the control gains of the system. The linear

control law is 5^ . The rudder angle h is defined by a hyperbolic tangent function to

include the saturation to our problem as shown in Figure (3). Saturation occurs at 8^^^

which is the saturation limit generally can be taken as 0.4 rad. The linearized form of

equation of motions in the vicinity of^ = r = y=Oare

ij; = r (16)

f =ar+bh.

y = i|j

(17)

(18)

A fi

5 &sat

..-5
«•

Figure 3

These equations can be expressed in space state form as

X = AX (19)

.i'(i



A is the Jacobian matrix of the system and X is the state vector

A = bK^ a^bK^ bK^

1

X = [^,r,yY

The characteristic equation of the matrix A is

X^-{a+bK;)X'^-bK^X-bK^=0

The desired characteristic equation has the form

X^ +a^X^ +a^\+aQ=0

(20)

(21)

(22)

(23)

The gains can be generated in terms of the coefficient of actual and desired characteristic

equation from Equations (22) and (23),

(24)

(25)

(26)

The desired characteristic equation can be written with respect to the desired

natural frequency and some optimum coefficients. The ITAE criterion for a third order

equation is (Dorf, 1992)

10



5^ + 1.75 0)^5'^ +2.15 (0^5 + (0^ = (27)

Therefore the control gains can be calculated for a given natural frequency, as

(28)

«0 =
3

«! = 2.15
2

«2 = 1.75 "«

D, LOSS OF STABILITY

1. Introduction

The control law guarantees stability if all real parts of eigenvalues of the

jacobian matrix are negative. Equation (23) is stable with the chosen control gains. A

small perturbation in the control gains or coefficients of the system affects its stability.

In this section we presented the computations for the critical value for change in the

gains and the coefficients of the system.

2. Stability Considerations

For a system with a third order characteristic equation, the Routh Hurwitz

criterion (Dorf, 1992) requires for stability

a^a^^aQ (29)

a. Perturbation in K^

The change in K^ is defined by a coefficient c, where c is any real

number. The linearized equations of the system for a small change in K^ are

11



i|r =r
f =ar+bbQ (30)

y = ^

where the control law is

b, = cK^y\f^K^r^K^y (31)

Therefore the characteristic equation is

k^-(a + bK^)X^-cbK^X-bKy = (32)

Equation (32) should meet the Routh Hurwitz criterion for stability.

(a + bK^)cbK^^ -bK^ (33)

The critical value of c where a stability change occurs in the system is presented in

Equation (34)

(34)
^^^K^

«0

Using the coefficients, the critical c is

r = 0.2658 (35)

12



0.552

o

:| 0.266
oo

1 -
1 "'T"- ' 1 - ^

stobfe region ;

1
1

.. —

unstable region

0.5 1 1.5 2.5 3.5

Figure 4 c^nt vs natural frequency for K^.

b. Perturbation In K^

Similarly for perturbation in K^ the characteristic equation is

X^-{a^cbK;)X^-bK^X-bKy= (36)

The critical value of c.

OLQ+a^a

cnt.
r CL^{a^+d)

(37)

or

(o„+2.15a

'ait.^ 2.15(1.75o)„+fl)
(38)

13



20

15 -

10 -

5 -

-

-5 -

-10 -

-15

unstable rtegfon
Stoble region

^

_1^
stable region

/K'^'^
/ • unstable region

0.5 1.5 2.5 3.5

Figure 5 c^rit versus natural frequency for K^.

c. Perturbation In Ky

The results for changes in Ky are presented similarly.The characteristic

equation, is

X^-{a + bK^)X^-bK^X-bcK^ = (39)

The critical value of c is

cnt.
(40)

c„.. = 3.7625
cnt (41)

14



7.525

S 3.763

Ql

—

unstoble

stoble region

region

0.5 1.5 2.5 3.5

or

Figure 6 c^nt versus natural frequency for K

d. Perturbation in a

After similar calculations the critical value of c is

(a2 + a)ai-ao
'crit.

aa,
(42)

^crit^

1.28484 0).

a
+ 1 (43)

15



wn

Figure 7 c^rit versus natural frequency for a

e. Perturbation in b

1.4

After similar calculations as with the other cases the characteristic

equation is,

and the critical values are

(44)

cnti.

or

(45)

16



co„+2.15a ,^
Ccrrt

= (^^
'"'* 2.15(1.75G)„ + fl)

Examining Equation (46), we note that all the coefficients of polynomial

must have the same sign, if all the roots are in the left hand plane.The necessary

conditions for stability are.

(47)

The system is unstable for all values of the natural frequency if c is less then zero.When

the natural frequency is in the interval < aj„ <
|
a/1.75 1 stability changes from stable

to unstable with an increase in c (Figure (8)) for positive values of c. In the interval

w„>
1

2.15a
I

stability changes from unstable to stable while c crosses the critical point

again for positive values of c. In both cases a pair of complex conjugate eigenvalues

crosses the imaginary axis. Stability is also lost when c becomes negative, but this is

associated with a real eigenvalue crossing zero. In this work we concentrate on the c>0

case since in applications it is unlikely that a change in the sign of b will occur.

17
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0.5

-0.5
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Figure 8 c^rit versus natural frequency for b.The c^^i goes to infmity asymptotically at

w =-a/1.75.
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m. HOPF BIFURCATION

A. INTRODUCTION

Hopf bifurcation is the simplest bifurcation, in which under the variation of a single

control parameter a stable focus equilibrium bifurcates into an unstable focus surrounded

by a growing limit cycle. As c crosses the critical value one pair of complex conjugate

eigenvalues of the linear system matrix crosses transversely the imaginary axis. In this

generic Poincare' - Andronov - Hopf bifurcation a family of periodic solutions coexists

with the stable / unstable nominal equilibrium state. Locally as c approaches c^rit the

periodic solutions are located on the two dimensional Euclidean plane spanned by the

eigenvectors of Jacobian matrix of the system which corresponds to the critical pair of

eigenvalues. In this chapter stability

properties of the periodic solutions are

established. In order to establish those

properties the main nonlinear terms that

dominate the system are isolated. Center

manifold theory is used to reduce the flow

to a two dimensional manifold. The

method of averaging is applied to the

Figure 9

reduced system. Hopf bifurcations are examined for small changes in each gain and

system dynamics coefficients.

19



B. THIRD ORDER EXPANSION OF THE SYSTEM EQUATIONS

1. Perturbation in K^

In this case the equations of motions are

where

\|i = r

f = a

y = sin\|f

f = ar+a^r^+bb (48)

5 = 6,^,tanh
sat

(49)

6o = cK^^^K^r^K^y

The trivial equilibrium state is characterized by i/'=r=y=0 .Taylor expansion of the

nonlinear terms about the equilibrium gives

sin\|j

6

iU-5i^+0(5)
3!

^-
So^

0(5)
36

sat

(50)

The system equations are

bb;

36
sat

(51)

20



In state space form they are written as

X =AX^g\X)

where A is the linearized system matrix, and g^(x) contains the nonlinear terms,

(52)

cbK^ a^bK^ bK^ (53)

8xix) =

slix) =
b

3 6L
^l

slix) =

6
!

(54)

where the Sq ^ term is computed as

With the computed gains from equations (24), (25), (26), Jacobian matrix is

{S5)

A = -caj -a2 -tto

1

{56)

The eigenvalues of matrix A are computed at the bifurcation point c^m from equation

(34) where a pair of complex conjugate roots with real parts are obtained.

21



^1 =J
N «2

K = -J

a.
(57)

\ "2

A3 = -a^

For the above system of equations a transformation matrix of eigenvectors can be

introduced,

T =
-

^

a.

a.

1

-a-

^

^2

The transformation

x=Tz z=T-'x

transforms the system into its normal coordinate form,

-1^3/
z = T-'ATz + T-'g\Tz)

where.

(58)

iS9)

(60)

22



and

'-1 "2

V 0/

K+ao)

fS?^^ 1 )

V 2; a2^ao

a. a.

\ tto ^ a.

J^
a^

a. a.

N S N ^2

(61)

r'xr =
a.
-^

a.
-^

N "2

a.

(62)

The transformation of physical variables to nonnal coordinates is

x= Tz
,

ijr = z, +z
1 ^3

r = -

\

a.

a.
Z2 0^2%

y =

^

a.

a.

(63)

23



1

T "o

r = "N «2

y .

«2

^ «0

a.

a.

^1

^2
(64)

The coordinate z^ corresponds to the eigenvalue X3 which is real and negative.

Xj, X2 denote the complex conjugate pair with zero real parts. At the critical point two

distinct eigenspaces are spanned by the eigenvectors associated with the two sets of

eigenvjdues. These eigenspaces can be viewed as local approximations of the invariant

manifolds the center and the stable manifold. The system exhibits its essential

bifurcationid behavior on the centre manifold associated with \ and Xj. Centre manifold

theory reduces the flow to a two dimensional manifold (Hopf bifurcation). According to

centre manifold theory the coordinate Z3 is expressed in terms of Zj and Zj, but this

expression is higher order. Equation (64) can be written as,

i|r = Zi

r = -

\

ct

a.
h

(65)

y =
a.

\ «o
^

Substituting the equations (65) to (60) the system equations in normal coordinates

become

24



\

"o 3 2 2 3— ^+''11^1 +'"12^1^+ '•1321^2 +''1422
a-

(66)

a.
- 3 2 2 3

\ "2

The terms r-^ are computed later from our equations at the bifurcation point c^^^. For

values of c in the neighborhood of the critical point, equation (66) becomes,

/

^1
= P'ezj-

^2 =

[ N

o)^e +
a.

N "2
J

Z2+'-„zf ^'-iz^l^^ 'l32l22-'''l4^2

(67)

27
Zi+ p^ez2 +hizl+r^2^lz2 + r^-iZ^zl+r^zl

The parameter € is the difference between c^rit and c or, €=€^^1 +^- The terms jS' and w'

are the derivative of the real and imaginary parts of eigenvalues with respect to c

evaluated at c=c<.rit5 and computed from a perturbation series approach. The perturbation

is expressed as follows from equation (34),

a.
c=-

«1«2
(68)

The characteristic equation can be written as follows for a small change for K^ in the

neighborhood of c^rif

a.
X^ + ci.^X^ + {—+ci.^e)X+aQ = (69)

25



The solutions of equation (69) are presented in equation (70)

^u " ^^^^'

/
I

\

In
a.

+c^e
(70)

^3 = -(^2^^1^

The variables bj and Cj can be found by substituting equation (70) to (69) and neglecting

the successive powers €^,€^.

^ =
"2 ^1

2(ao+a^

^1
=

«2«U
"2
•^

(71)

2(ao+ap

jS' and co' can be expressed by the definition of the derivative where e is zero in the limit,

P^ = -^ = b

0) =

j

\

.^

«0

"2
/

'^
^0

"2
= c.

(72)

Equation (72) can be written in terms of the desired natural frequency,

p/ = -0.6841 o)„

G)^ = 0.5171(0.
(73)

26



a. Calculations of r^ Terms

The terms r^ are generated by the last term of equation (60), where

T'g^(Tz) is the third order nonlinear part. From equations (61) and (54)

T-'g\Tz) =
a^l^ia^^a^

3/2

a,
3/2 a^

J_

N «0 N "2

/ ^3/2

-a.
a.

3 b ^i
Z2—^^0

1 3

(74)

where,

8 = M-Ca.\'

V 2 y

/a„V/2

V'^2;

aZiZ2-3 — a^ZiZ2 +«

V"2J

/^a„\3/2

\ 2y

z.'l (75)

After expanding the first row of equation (74) and organizing the terms, we get

"•2 3

/•ii=
— (a2 + ao)

3^'6LV"2/
(76)

12

/a.^

V 2;

1/2

(a2 + ao)-
a

2x2b^b
sat

(77)

r,3 = (a2 + ao) ;
(78)
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''u
=

( aA

V"oy

a-
(a2 + ao)(^3+-——-)

36^62^2
(79)

sat

Similarly after expanding the second row of equation (74) and organizing, we get

'"zi
= -(o-l + ao)i

3/2 5/2

1 ttp
^

1 «2
^

^,2x2 «5/2 6 3/2

(80)

2 i.2c2
"2 ^ ^or

(81)

^"23

^0,3

a
3/2

(a2 + ao)
a

2x2Z>^6
sat

(82)

''24
=

a2 + ao

a.
(a.

a-

3b'b2x2
sof

(83)
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b. Averaging

Equation (67) can be written in a simpler form
,

/

Zi = P'ezr

h = O) € +

\

\

a.

a,

^

«

2j

Zi+ P^ez2 +F2(ZpZ2)

(84)

where Fj and F2 contain the third order expansion terms. The use of polar coordinates

makes it possible to decouple equation (84) . We use the polar transformation

z,= R cos(^) , Z2=R siii(^)

After some algebra, equation (83) can be expressed in terms of R and d,

R = p^e/e + Fj(/?cos(0),/?sin(9))cos(e)+F2(/?co5(e),/?sin(e))sin(e) (85)

RQ =

\

a.

a.
+ 0) €

(86)

R + F2(Rcos(Q\Rsm(Q))cos(Q) -F^(Rcos(Q),Rsm(Q))sm(e)

Equation (85) can be written as follows,

R = ^'eR + Pid)R-

where Pid) is 2x periodic in the angular coordinate 6,

(87)

P(Q) = r„cos*(0)+rj2cos^(e)siii(e)+rj3cos^(e)sin2(e)+rj4cos(e)sin^(e) .^^.

+r2iCos^(e)sin(e) +r22Cos2(e)sin^(e) +r23cos(0)sin^(e) +r^sm\e)

Equation (87) is averaged over one cycle to obtain an equation with constant coefficients.
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R = ^'eR +KR- (89)

where K is defined by,

271

K = —fp(e)de
2n i

(90)

Equation (90) is simplified as equation (91) after evaluation of the integral.

K = -i^r,,^r^,^r^^^3r^] (91)

Equation (91) can be expressed in terms of the natural frequency,

(0n , 3 a 1.75^
K = 0.452[3^3(d: + 2^(o>%-^o)„-H^0-^^a)J

b^b' 1.75
sat

(92)

Equation (87) can be expressed as.

=

^

a
(93)

where,

F(0) = r^^ 008^(6) + r22 cos^(e) sin(e) + r^^ 008^(0) sin2(0) + r^ cos(0) sin^(0) ,^^.

-rjjcos^(0)sin(0) -rj2cos^(0)sin^(e) -rj3cos(0)sin^(0) -rj4sin''(0)

After averaging equation (93), a constant coefficient M is formed.
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e =

N

(95)

where M is defined by,

27C

M = — [^(0)^6 (96)

or in terms of natural frequency,

KA niQAQ 3.3.9686 2.0256 1M = 0.7949 G)„[ +

CO. 2&2"„ i>26L ;/L75a>^

2 2

(1.75ao) --^)(-!^-fl2)^
" 1.75 1.75

(97)

2. Perturbation in El^

The calculation of the formulas for the parameters K^, Ky, a and b is similar

to the calculation for K^. Therefore in the following sections only the main results are

presented. The system equations for a change in K^ are

(98)

6 =

6. =

t = r

r = ar+a^r^+bb

y = sini|;

/ 6.\
~ 6^tanh u

= K^^^cV- K,y

(99)

The Jacobian matrix is
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A =

1

-ttj [(l-c)a-ca2] -tto

1

(100)

The eigenvalues of the Jacobian matrix are calculated at the bifurcation point from

equation (38),

^3-
(101)

a.

The state vector is presented in normal coordinates where Zg corresponds to X3,

\|r = Zi

1

The system equation in normal coordinates are,

^1 = P'€Zi-(G)'e+^) z^+'-n^f +'-1221%-^ '"13^1^2 " '•14^2

Z2 = {(^'e^^^ Zi+ p^ez2 +'-2izf+'-222i^^-' '23^1^2 ''•2422

where,

(102)

(103)
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p' = -

CD =

-^-^ = -0.45428(1.75(0 +a)

2(ai+ao)
3/2

'>/ 3 2.

2(ai+ao)

= -0.1441(1.75 0) +a)

(104)

The coefficients of the third order expansion terras are,

''ii
= S^i

2 3

ao + tti 3^^C

2_ 1

6
«! (105)

''n
=

7/2

i.2js2 2 3

(106)

''13 =
a'

3

l2s2 2 3

(107)

''14 =

5/2 r

2 3

fZ

3b'&l
+ a-. (108)

''21 =
2 3

tto + ai

a
11/2 2 1/2

3Z>^6
2 5.2

sat

(109)

r =
'22

a a,

l2j:2 2 3
(110)
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''23

a' a
9/2

.2x2
^''Kat "o-^a?

(Ill)

''24 =
2 3

^3 +
a

3^^5L

(112)

The cubic coefficients K and M are obtained after averaging
,

^=0.052824[13.8675a3G)^-0.5a)„+-^:i^(a)^2.15aa)^)(2.15G)^+a2)] (113)

M = 0.01142 [20.3337a, co„ -0.7331 CO

20.9727(0

2x2b^b
-(a -4.6225 (o„)(2.15co^+a2)]

(114)

sat

3. Perturbation in Ky

The formulas for perturbations in Ky are presented in this section. The

equations of motion are,

ijr = r

r = a

y = sini|;

r = ar+a^r +^•bb (115)

The Jacobian matrix,

6 = 5^^,tanh
sat '

/«o^

V ^/

b, = K^^if^K/^cK^y

(116)
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A =

1

-a, -a^ -ca,•1

1

The eigenvalues at the bifurcation point
,

•u + ; \/a

A,2 = a2

The state equations in normal coordinates,

(117)

(118)

^ = ^1

r =

1

(119)

The normalized equations of motion,

(120)

where j8' and co' are given by,

p' =

0) =

a.

2(ai + a2)

= 0.0959 (o„
2 "

S"2

2^(aj + a2)

The coefficients for the third order terms.

= 0.1145O)
2. «

(121)
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''ll
=

«1«2

2 2

1 «!

3i>^62x2
(122)

'"u = -

5/2

.2;,2^^^ (^l+CL2

(123)

'*13 =
g^ «1«2

l2 s2 2
(124)

'•14
=

3/2

«! "2

a^+aj
^3 +

a 3 \

3Z>^62s2
sat

(125)

'•21
=

a2Vai

aj + a^

«! ^2

3^'6L"2 6

(126)

a a.

'22
-

^^^sat a ^ +01.1

1 «5/2

23 l2s2 2

(127)

(128)

a.

^•24 =

aj + a2

a
\

3^^6L ,

(129)

The cubic coefficients K and M
,
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2.15(0'
K =0.05155 [6.45^3 a)„ -0.875 a)„ + -(1.75o:>^+a)(2.15u>i + a^)]

(130)

b'^L

M = 0.3969a,G)! + -^:5Z5.a)„(1.75aa)„-2.15a)J(2.15o)^+a2)*3"'n
2 5.2b'b

sat (131)

4. Perturbation in a

The equations of motion,

lir =r
f = c

y = siniji

r = car+a^r^+bb (132)

where,

The Jacobian matrix,

5 = 6,^,tanh
sat

6

6, = K^^i/^Kj^K^y

(133)

A =

1

-a, a(c-l)-a2 -aQ

1

(134)

The eigenvalues at the bifurcation point,

4^ = ^ ^ V«i

1 -

«1

(135)

and the state equations in normalized coordinates,
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^ = ^1

r = -Ja, z.
(136)

>' = -^h.

The normalized equations of motion in the neighborhood of the bifurcation point,

Zj = p'€Zi-(w'e +^) Z2+/-„zf +/-J2zfz2+ r^z^^z^ + T^^zl

Z2 = (o'e+^o^) Zj+ p^ez2 ^hA + r^^^lz^+r^-^Zyzl+r^zl

(137)

P^= --

0) = —

a «!

2

a

3 2
ttj + ao

3/2

ao«i

7 3 2

0.454a

= -O.UAla

(138)

The coefficients of nonlinear terms,

ao«i
3/2

11 2 3

1 5/2
a, -

3^^C
(139)

'•12
=

7/2

1 <^o«i

l2s2 2 3
(,{oi^{oL^+a)-——) (140)

^•13
= 1 «o«i

l2j:2 2 3
(-(a2+a)^ai -ao + 2ajaQ(a2 + a)) (141)
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''14 =

3/2

2 3
{-a^a, -

3"-!

ao+a, 3b^6^^,^^
{{a^+afaf-

a.
o/ \2 1/2 o 2 -1/2. . "-Ox

-3(a2+arai ao + Sttotti (a^+a)-——

I

a,

(142)

3/2

''21 =
ao«i

2 3

tti tto

,2x2 a„ 6a,3i)2 6_ -0 ---1

(143)

^11

1 «! (

1.1%^ 2 3

a.
(a.+a)

aW
(144)

a
5/2

23 l2s2 2 3
i--(-(a2+a)^ai-ao+2ajao(a2+a)) (145)

'•24 =

3/2 J\2
r

"lo.^(i{ a
1 «]

a^a? S 3!>^6LS (146)

// \3 3/2 ->/ \2 1/2 -5 2 -1/2. . "O ^i
{(a2+a)^ai -3>{a.^+aY^^ ao + 3aoai (a2 + a)-— )]

a,

The cubic coefficients K and M are

K = 0.03603[-0.733lG)„ + 6.7779a3O)„

^-(67779co^(-—1^+14.5725 0);;) (-o)^(4.3(o^1)(1.75g)„ -.a))

0.7166

0)_

1.46620)

(1.884 o)„ + 1.4663a o)J^)]

(147)
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(i).

M =0.036031 -*-6A5a.(^i3
4.3 ^ "

1 2^2, 4>

2 5.2b^d
[-21.36750); 4- 2.15a);(-7.6314G)„-11.8787aa)„ + 2.15^fl^a)„^148)

sat

2 4., ^e>A 2
2.15^ o)„( 1.884 (o„+2.15^'^flO)J

1

4.3988(0.
(1.8840)^+2.15^/2^0)/]!

5. Perturbation in b

The equations of motion are,

i|r =r
f = a

y = sinijr

f = ar+a^r^ + cbb (149)

where,

and the Jacobian is.

5 = 6^^,tanh
sat

\ satj

h, = K^^^K^r^K^y

(150)

A =

1

-ccj (l-c)a-ca2 -ca.Q

1

(151)

The eigenvalues are.
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1 - —
«1

ttQ+attj

^ ^2+a (152)

The normal coordinate transformation is,

f = Zj

r = -

\ a^+a
h.

(153)

>'
=

The normalized equations of motion are,

/

co'e +
ttQ+attj

N ^2-^^
j

Z2+riiZ? +'-i2Zi%+ '*l32l22^''l422

(154)

^ 0)^6 +
ttQ+Ottj

'\ a2+a
Zi+ P^eZ2 +''2l2N'*222i% ^''23^1^2 ''•24^2

where /8' and w' are,

p' = -
ai(aQ + aja)(a2+a) 2.15^((o^+2.15a)(1.75ci)^+a)

2 2
2(aQ + aja)ai + aQ(a2+c) 10.995a)„+20.8767a

(155)
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OCi

(l) =
a^+a

2 'Ny a^+aa^
1-

ao(ao-K2ttj)(a^+Q)

(156)

= 1.075
1.75 co„+ a

n 1-
(a)„ + 2.15a)(1.75a>„+ti)^

0)^(6.3725(0^ + 10.9384 a)

The coefficients of third order terms are given in terms of the dummy coefficient fi
,

1/2, kl/2

Q =
2 2

(157)

'"ii
= ^ J.

6\

ttQ+aa^ aj

«2"« 3b^di,\sat

(158)

(159)

2^3

'"13 =^
a a

b'^lA

«2-^^
(160)

ri4 = ^ -<2,

a2+fl

(aaJ)^/'aQ+aaJ^^

.2r2
3^^6:^l «2-^«

})

(161)

'"21 = -"
1 «]

'' ttQ+attj^

6^1 3b''bL "
5ar "\

a2+fl
(162)
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''22=^
a2 +a

(163)

r.o =-Q
23

2 4

sat
b'6

(164)

r24 = ^
a, /'an+aa,\^/^

a. a^+a

r3 tti

36'6La^N

oc.2+a

ao + flttj

(165)

The cubic coefficients K and M are expressed in terms of the natural frequency co,

K =
CO.

[2.15^^0)
" 1.750)^ +a

-1.075(o)„+2.15a)

8(6.3725 (o;+ a 0)^+ 2. 15^^)

^ 2

"- [2.15 o)^(o>„ +2.15^)2 +a(1.75o)„ + fl)(l+2.152a2o)j|]

(166)

2s2Z>^6
sor

M =
0.2688 ./(1.75 a)„ +a)(o) +2.15a) o +a2.15 tD„

(2.9(0^ + 6.6225^) ^ 1.75(o„+fl 43

^12.15^0)^^

^^5L

o)„+2.15a
, s

o)„—^? (2.15a^G)„
1.75(i)_+a

2.15^^(0^ + 2.15^^^0)^^
/(o +^2.15^3

n

1.75(o„+a

(167)
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C. RESULTS

Before we present the results of analytic study of Hopf bifurcation we have to

assess the effect of the 83 term. The a, term plays a role in equation (12), and from the

nature of the equation we can see that aj has to have a negative value. This is because

of the softening spring characteristic of the steady state r - 6 curve, as shown in

Figure 10.

-0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5

6
Figure 10 r -6 graph for different sl^ values.

In the previous sections expressions for j8' and K were found for equation (89).

The value of K depends on only the nonlinear terms and since the eigenvalues of the

Jacobian matrix cross the imaginary axis with nonzero speed the term /S ' is nonzero.

Equation (89) has two steady state solutions, one at R=0 which corresponds to the

trivial equilibrium solution at zero and one at
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R^=-^e (168)

This equilibrium solution corresponds to a periodic solution (limit cycle) in the cartesian

coordinates z,, Z2. From equation (168) we can conclude that,

1. If fi'>Othen,

a. If K>0, then unstable period solutions coexist with the stable equilibrium

for e<0, and

b. If K < , then stable period solutions coexist with the unstable equilibrium

for€>0,

2. If B'<Othen,

a. If K>0, then unstable period solutions coexist with the stable equilibrium

for e > 0, and

b. If K < , then stable period solutions coexist with the unstable equilibrium

for e<0.

The stable periodic solutions form the supercritical Poincare ' - Andronov - Hopf

(PAH) bifurcation, while the unstable periodic solutions form the subcritical PAH

bifurcation.The period of the limit cycles is computed by substituting equation (168) in

(94)

T= ^ =^ (1 -
^'^"P'^

€) . 0(e^) (169)

g)„ + co'g+M/?o^ "« ""^
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unstable fixed
point

stable closed orbit
(limit ciycle)

^y
stable fixed

point

(a) supercritical
bifurcation

stable closed
orbit

imstable
fixed point

• y

stable fixed
point

unstable
closed orbit

(b) subcritical bifurcation

Figure 11 The two general types of Hopf bifurcation.

The existence and stability of periodic solutions in our cases is examined in the

following subsections. The graphs of w' and jS' are presented in figures (12) and (13).

We note that for b and for natural frequency in the range |a/1.75| <co„< |2.15a| the

system does not have a complex pair of eigenvalues. Hopf bifurcation does not occur in

that interval.
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1. Perturbation in K^^,

The graph of jS ' for K^ is shown in figure (13). j8 ' is always negative for K^,

and the solutions of equation (91) is presented in figures (14), (15), (16). K is less than

zero for low natural frequencies. For those frequencies we get a supercritical Hopf

bifurcation and a stable periodic solution exists.However when the natural frequency

increases the bifurcation shifts to a subcritical Hopf bifurcation. Figure (14) is obtained

for aj = and various 8^^. Figure (15) is obtained for aj = -3 and various Sjat- Figure

(16) is obtained for 6sat=0.4 and various aj.When [aal increases the domain of the

natural frequencies, which causes supercritical Hopf bifurcation, increases as weU.

1.5

1

0.5

i^ -0.5

-1

-1.5

-2

-2.5

dscit=,1 / dsgt=.2! : / /

/ :
/ Asat-.y

; i

: / /: y/ >^sat=.^

"^^^5^^^J^^^^^.
\.

,

^

t
\ \

H. 7 \ \ \

0.2 0.4 10.5 0.8

Wn

Figure 14 K^^ versus a)„ for aj = and various b^^.

1.2 1.4
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-10 -

Figure 15 K^^ versus 0)^ for a3= -3 and various 5saf
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...J / /^

-.1./. / /
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\-^

: /
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0.5 1.5

Wn

2.5

Figure 16 K^^ versus cOn for 6^31=0.4 and various aj.
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2. Perturbation in K^

The term /?' for K^ changes its sign at cOn= |a/1.75| and can be observed

from Figure (12). Therefore, for values of K<0 there exists a supercritical Hopf

bifurcation whereas subcritical Hopf bifurcation forms when K changes its sign. From

Figure (17) it is observed that b^^i does not affect the domain of the natural frequency

for supercritical Hopf bifurcation. However, an increase in the jasl term increases the

domain of supercritical Hopf bifurcation, as can be seen from Figures (18) and (19).

15
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5

i.: -5
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-20

•25

:
/ /

\

177

dsot=!nf'nity ll^^

^"^''^^^^^^===^ .

<^S°^=-6 ^^^
'—^ ^-~- ^.—"^"^ / y!^\ -^^^-i^^- • •

; ^'~---si(es*

'^-^'i

J\
"7

\

!rt<2

0.5 1 2.51.5 2

Wn

Figure 17 Kj^ versus oo„ for 33=0 and various h^
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Figure 18 K^r versus co^ for a3 = -3 and various 6sat.
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Figure 19 K^r versus (j„ for 6,^1=0-4 and various ag
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3. Perturbation in Ky

For this case /?' is always positive and for e>0 there exists an unstable

equilibrium, therefore for K<0 a supercritical Hopf bifurcation exists. Similarly for

K > a subcritical Hopf bifiircation exists. An increase in d^^^ increases the domain of the

supercritical Hopf bifurcation over the natural frequency, see Figure (20). Also an

increase in
| as |

increases the domain of the supercritical Hopf bifurcation, see Figures

(21), (22).
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-0.1 -
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Figure 20 K^y versus co„ for aj = and various 6^
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i^

Wn

Figure 21 K^y versus w„ for a3= -3 and various 8sat

-0.5 -

-1.5 -

Wn

Figure 22 Kk^ versus w„ for 6sat=0.4 and various aj.
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4. Perturbation in a

jS ' is always positive for this case. For e > and K < there exists a stable

period solution coexisting with the unstable equilibrium. When a3= 0, a change in 8^^^

does not affect the supercritical Hopf bifurcation region of the natural frequency, Figure

(23). If a3 is non zero, an increase in d^^ increases the domain of the natural frequency

which causes the supercritical Hopf bifurcation. An increase in lasl also increases the

domain of the natural frequencies for supercritical Hopf bifurcation, see Figures (24),

(25).

0.2 0.4 10.6 0.8

Wn

Figure 23 K^ versus (j„ for aj = and various 6

1.2 1.4

sat
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5. Perturbation in b

Previously it was shown that there is no Hopf bifurcation in the interval,

|1.75/a| <a)„< |2.15a| K can be examined in two regions, 0<aj„<
1
1.75/a| and

ojn > 1
21 . 15a

I

. In the first region (3 ' is always negative, e > 0, and K is always negative.

In this region only supercritical Hopf bifurcation occurs. Changes in h^^^ and lag] have

no effect in this region, see Figures (26), (27), (28) . For the second region jS ' < 0, e < 0,

K<0 initially and supercritical Hopf bifurcations exist. For higher natural frequencies,

subcritical Hopf bifurcation is observed. Figures (29) and (30) show that changes in h^^

or aj have no significant effect.

it -1 -

0.1 0.2 0.5 0.4 0.5 0.6 0.7 0.8

Figure 26 K5 versus co„ for h^^ =0.4 and various ajfor the first region.
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Figure 27 K^ versus co^ for a3= and various 5^i for the first region.
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Figure 28 Kb versus w„ for a3= -3 and various 8^^^ for the first region.
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Figure 29 Kb versus co^ for h^^^ =0.4 and various as for the second region.
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Figure 30 Kb versus co^ for 5sat= 0-4 and various aj for the second region.
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rV. SIMULATIONS

To illustrate the dynamics of the Hopf bifurcation we simulated the case in which

there is a change in the gain Ky. We compared the simulations with the analytic studies

presented in previous chapters. In our case, loss of stability occurs at c=3.7625 from

stable to unstable while c increases its value, as can be observed from Figure (6). In the

foUowing simulations we use the typical saturation angle for the rudder of 0.4 radians.

The Ha term is assumed to be zero.

K is less than zero for the natural frequency 0.4 in Figure (20), therefore a

supercritical Hopf bifurcation exists in this region. The behavior of this supercritical

Hopf bifurcation is simulated in Figures (31), and (32). In Figure (31) CKy=3.5 is

simulated for two different initial lateral deviations ( yo = 0.05 and yo = 0.5).

Regardless of the initial conditions both curves converge to zero for this value of c.

There is a unique stable steady state solution for this value of c. Figure (32) is simulated

for K < and co„= 0.4 and the same initial condition of yo=0.5. When c= 3.5 the

simulation converges to zero as explained in Figure (31). When c is increased above the

critical value (here c=4.0) we observe that the solution converges to a limit cycle. This

stable limit cycle coexists with the unstable equilibrium solution.

Figures (33) and (34) are presented to show the effects of a subcritical Hopf

bifurcation. For this purpose ci)n=1.2 is simulated for Figures (33), and (34). o)^ = \.2

is in the region where K>0 in Figure (20). The initial condition for this case is
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yo= 0.05. When c is set to 3.5 the solution converges to zero, but for the case where

c is set to 4.0 the simulations converge to a stable limit cycle. This is the case in Figure

(11-b). The simulation misses the unstable limit cycles and converges to the outer limit

cycle shown in Figure (11-b). In Figure (34) the effects of the initial conditions are

further illustrated. In Figure (34) for yo=0.05, the simulations converge to zero, but for

yo=0.5 the simulations converge to a limit cycle. For this simulation the initial condition

was large enough to shift the results to a limit cycle rather than the zero steady state

solution.

From the simulations we observe that in subcritical bifurcations the magnitude of

the stable limit cycle is greater than the magnitude of the limit cycle in supercritical

bifurcations. Similar results can be obtained for the other cases of variation in parameters

a, b, and gains K^ and Ky .
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SUPERCRITICAL HOPF BIFURCATION

10 20 30 40 50 60 70 80

time

90 100

Figure 31 Supercritical Hopf bifurcation for (jjn=0.4 , c = 3.5 for two simulations

with yo=0.05 and yo=0.5.

SUPERCRITICAL HOPF BIFURCATION

120 140 180 200

time

Figure 32 Supercritical Hopf bifurcation for GJn=0.4 , yo= 0.5 for two simulations

c=3.5 (stable equilibrium ) and c=4 (unstable equilibrium) .
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SUBCRITICAL HOPF BIFURCATION

-0.5

-1.5 -

10 20 30 40 5U 60 70 80 90 100

lime

Figure 33 Subcritical Hopf bifurcation for w„= 1.2
, yo= 0.5 for two simulations

c = 3.5 (stable equilibrium ) and c=4 (unstable equilibrium) .
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Figure 34 Subcritical Hopf bifurcation for go„= 1 .2 (K > 0) where c =3.5. Tlie simulations

for yo=0.05 converged to the steady state value and for yo=0.5 to the limit cycle.

62



V. SUMMARY AND CONCLUSIONS

An analytic investigation of the nonlinear dynamic response characteristics of a

steering control law of marine vehicles has been presented. Bifurcation theory techniques

were utilized in order to assess the behavior of the system upon initial loss of stability.

The main bifurcation parameters were the natural frequency, control saturation level,

system parameters and gains. The main conclusions of this research can be summarized

as follows:

1. There exists a critical point for each gain and system parameters for stability of

straight line motion. The loss of stability occurs in the form of Hopf bifurcation for each

case. As the parameter crosses its critical value, a family of periodic orbits ("self

oscillations") develops.

2. The desired characteristic equation from the ITAE criterion has a faster response

for higher natural frequency. However, subcritical Hopf bifurcation develops when the

natural frequency is sufficiently high. If c is increased past c^rit the amplitude of lateral

deviation undergoes a jump and takes "large" values ( "hard loss of stability or hard

generation of limit cycles"). For lower natural frequencies, stability loss occurs as

supercritical where the limit cycle amplitude grows continuously (" soft loss of

stability").

3. The stationary point where change of stability occurs is related only to the natural

frequency of the system and the hydrodynamic coefficient a.
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4. Higher saturation limit of the rudder angle increases the range for supercritical

Hopf bifurcation. Theoretically, if a saturation limit does not exist all bifurcations

develop as supercritical.

5. The term a.^ has a similar effect as the saturation limit of rudder angle. An increase

in the
|
a.^

\
term increases the natural frequency where supercritical Hopf bifurcation

exists, but an increase in the lag] term is not a desired condition since vehicle response

to rudder angle slows down.

6. Transitions from supercritical to subcritical are very important for the design of the

control law. A supercritical Hopf bifurcation is preferred over a subcritical Hopf

bifurcation since the subcritical Hopf bifurcation may develop a rapid dynamic jump to

a new limit cycle.

Some recommendations for further research are as follows:

1. Comparative studies must be performed including the observer dynamics. The

effect of variations in gains and system parameters must be studied to predict the

accuracy of the observer.

2. Continuation techniques for periodic solutions must be performed for further

stability analysis. The cases for simultaneous variations of more than one terms must be

studied to understand the dynamic response of the system including any nonlinear terms.
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