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Abstract

The integration of preexisting systems into a single, heterogeneous, distributed non-

standard application system in domains like office automation or computer-integrat-

ed manufacturing are regarded as cooperating systems. They are characterized

through teamwork, distribution and the handling of complex data structures (e.g.

multimedia data). Object-oriented database systems, providing for complex object

management, represent one approach in support of such applications. They concen-

trate, however, on data modeling aspects and use more or less conventional

transaction concepts, based on a global execution control. Hence, they only partially

fulfill application requirements as they do not adequately cope with the autonomy

that is often inherent to the system's components.

As a consequence, we suggest S-transactions as an appropriate means for describ-

ing the cooperation of system components in terms of transactions and beyond. In

this paper we outline the modeling of conventional transactions (flat or nested as

well as distributed and design transactions) in terms of STDL, the S-transaction

definition language. Beyond that we point out how to specify SAGAs and similar

concepts. Finally we discuss the specification of non-linear but maybe acyclic or

even cyclic cooperation structures.
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1.0 INTRODUCTION

Non-standard application domains like office automation and computer integrated manu-

facturing are characterized through complex collaboration patterns of people and complex

interrelations of organizational units. A further characteristic property is the management of

or at least the demand for multimedia documents, i.e. documents that integrate text, images

and graphics and eventually even sound. Supposed that such multimedia documents are kept

in appropriate database systems, the management of these documents is supposedly done

by means of transactions in the sense of database transactions (c.f. [Gray78]). The develop-

ment of extended relational database systems (e.g. POSTGRES [SR86]) and object-

oriented database systems (OODBMSs) for the management of multimedia documents pro-

vide first solutions [KiLo89]. Although these systems are based on advanced data models,

the provided transaction mechanisms are more or less conventional.

However, it has been pointed out earlier that the conventional transaction concept is not

adequate for advanced applications [Gray81]. Consequently, the transaction concept has

been revised in several respects. First of all the traditional concept has been extended to-

wards distributed systems (c.f. [CePe84l). In order to increase parallelism within a

transaction the concept of nested transactions [Moss81l has been invented. In [Gray811 it

is outlined that conventional transactions are inappropriate for long-lasting activities such as

design applications, for instance. To close this gap, engineering design transactions of differ-

ent flavors have been developed [Kelter88]. While all these concepts are bound to a global

execution control, most recently concepts have been developed [GaSa87l, [ElVe88],

[Holtkamp88], [Johannsen89] [ISO88I that enable the autonomy of sites in such environ-

ments. This autonomy might occur in different respects, [GaKo88], [Gray861 , [Wshop88],

[ElVe88].

Simple examples immediately illustrate, that there is a strong demand for the coexistence

of several if not all of the above mentioned transaction concepts in one system, supporting

non-standard applications. In other words, the integration of data into complex structures

(e.g. a design document consisting of text graphics and images) and the integration of sys-

tems (e.g. a multidatabase system or federated database system) into a single, more

complex one also implies the integration of cooperation principles.

A query of the type "Who is the author of report XY?" can easily be executed as a conven-

tional transaction. The collection of contributions to a common report from different groups

can be mapped into a distributed or nested transaction, depending on the organizational rela-

tions between the groups. The development of a design document is modeled best by means

of a design transaction. The collaboration of different more or less autonomous groups (e.g.

request of a marketing group to the design group "Give us a drawing of machine ABC for a

marketing brochure") demands more liberal concepts.

In the sequel of this paper we demonstrate that the concept of S-transactions [MAP88al
is well-suited to cover all requirements sketched above, i.e. S-transactions support the inte-

gration of the different transaction concepts and enable execution patterns that go beyond

those.

In order to make the mappings of the different transaction models into S-transactions un-

derstandable we start with a brief review of the S-transaction concept and the underlying
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system model. Based on this review we model conventional "flat" transactions, simple and

nested distributed, and design transactions by means of S-transactions. The fourth section

outlines the use of S-transactions for advanced transaction structures like "triangles",

"cycles" or acyclic graph structures, different commit protocols and the delegation of control

and coordination functions among S-transactions.

2.0 S-TRANSACTIONS AND THE UNDERLYING SYSTEM MODEL

The concept of S-transactions has originally been developed for transnational banking ap-

plications where banks cooperate but preserve their autonomy [MAP88a]. As a

consequence of the strong demand for autonomy, conventional transaction mechanisms are

not applicable (c.f. [Holtkamp88]). Therefore, S-transactions and the corresponding defini-

tion language STDL have been introduced in order to describe the cooperation of autonomous

components in an integrated system.

In the sequel of this section we highlight S-transaction features, STDL and the underlying

system architecture model in order to ease the understanding of why and how S-transactions

can be used for modeling different kinds of transactions.

2.1 S-Transactions and STDL

S-Transaction Concept

An S-transaction ST is recursively defined. It (i.e. the global S-transaction) consists of a

partially ordered set of subordinate S-transactions and local transactions (LTs). The local

transactions interface to the applications that are allocated to the local sites.

The implementation of the local transactions is in the responsibility of the local sites

(due to their autonomy, c.f. [Holtkamp88]). Hence, implementations of the same LT may
differ from site to site. Its semantics, however, must be the same at each site. Local trans-

actions are supposed to be executed as transactions in the classical sense (as described in

[Gray78], for instance,) exhibiting ACID properties '. This assumption is based on the as-

sumption that the local databases are conventional databases of a relational, hierarchical or

network type. An LT is executed under the control of the local site and the site is responsi-

ble for the recovery of the failing transaction. Thus, we preserve the local site's execution

autonomy as the LT execution control is beyond the scope of the ST that calls the LT.

Recovery of S-transactions is based on compensation [Gray81]. For any component S-

transaction ST and for any local transaction LT we require the existence of compensating

transactions -STs and -LTs, respectively. That corresponds to the SAGA approach

[GaSa87], where for each transaction that forms a part of a SAGA, the existence of a com-

pensating transaction is required, too.

'ACID stands for atomicity, consistency, isolation and durability. Atomicity means that a transaction is

either completely executed or not at all. Consistency means that a transaction transfers a database from one

consistent state into another. Isolation means that a concurrently running transaction does not get access to

data that are used by another transaction prior to the termination of the latter. Durability means that once a

transaction has committed, its effects are persistent and are not affected by a system failure, for instance.
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S-Transaction Features

As the above definition shows, S-transactions do not provide ACID properties in the

sense of conventional transactions.

Atomicity is only available from the semantic point of view. Recovery is based on compen-

sation, i.e. the component transactions have alredy committed prior to the end of the global S-

transaction. Thus an UNDO by inserting a before image that has been stored in a log file is

not possible as concurrent transactions might have already modified the data objects in the

mean time. Instead, a compensating transaction is executed that reverses the effects of the

previous one in the sense of the application.

This view of semantic atomicity directly relates to consistency, i.e. S-transactions cannot

provide consistency in the traditional sense. S-transactions can only lead to some state that

is, from the application point of view, "consistent enough" as described in [Garcia83].

S-transactions are isolated against each other in that no S-transaction can access data, de-

fined in a concurrent one. Local transactions are conventional transactions and thus also

provide for isolation during their lifetime. As they commit however prior to its superior S-

transaction, isolation is given up at this point, thus allowing for all parallelism anomalies like

"dirty" reads, lost updates and unrepeatable reads.

S-transactions are durable in the conventional sense, i.e. once an ST has terminated its ef-

fects can only be reversed by executing a reverse transaction.

In contrast to the global execution control of conventional approaches S-transactions are

based on decentralized control, i.e. control migrates or at least can migrate from site to site.

S-Transaction Type Description

An S-transaction type is described in STDL according to the schema depicted in fig-

ure 2-1.

s_transaction <name>

input_data

<set of input data>

end

result_data

<set of requested messages>

end

private_locaI_data

<set of private local data>

end

continuation_points

<set of continuation points>

end

end I* of S-transaction <name> */

Figure 2-1: Schema of an S-transaction definition

The input data section contains the data type definitions for the input parameters that

have to be filled in when invoking an S-transaction. The result data section contains the da-

ta type definitions for the data that are returned as results to the initiator of an S-
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transaction. The private local data section contains the data type definitions for the data

that are needed by the S-transaction internally during its execution. The continuation

points denote the entries at which an S-transaction may be activated or may receive re-

sults. The special continuation point 'init_cp' is activated at S-transaction initiation

time if the initiation is requested from a user. The other continuation points can be activat-

ed either from remote sites by requesting a service, provided by that S-transaction type

the continuation point belongs to, or by submitting results that were requested from anoth-

er continuation point of the already active S-transaction.

A continuation point (CP) consists of a head, similar to the signature of a procedure, and a

path, corresponding to a procedure's body. The head is composed of the CP's name and a for-

mal parameter list. A path can be formed of LT calls, requests of services from remote sites,

result deliveries to remote sites, thus providing a previously requested service, acknowledg-

ments, confirming the receipt of a message or the execution of a requested service, abort

notifications in case of local failures and standard arithmetic, boolean and set operations. All

these operations are separated from each other by means of control flow determining opera-

tors like sequence (';') conditional execution ('IF-THEN-ELSE' or 'CASE') or iteration

('FOR' or 'WHILE'), well known from conventional programming languages.

For a detailed description of STDL we refer to [HaHo87] or[MAP88a].

2.2 System Model

The S-transaction concept underlying system model is a set of cooperating autonomous

sites. Each site has its own local database system (LDB) and interfaces to the software

part that provides the integration into the cooperative system (fig. 2-2).

The integration component (bold frame) consists of the S-Transaction Management
(STM), a communication subsystem (Com), an interface to the local application (LAI) and a

user interface (UI).

The STM controls the execution of S-transactions and coordinates the execution of STs

and LTs. It provides time concept for the definition of time-oriented triggers (e.g. time-out).

All actions of the STM are performed as conventional transactions, i.e. they are robust

against system failures. The STM also supports a log-based recovery mechanism for S-

transactions.

The local application interface LAI implements the communication between the integration

software layer and the local application program. Depending on the actual implementation

this communication can range between procedure calls, interprocess communication and com-

munication over a local area network.

The communication subsystem has basically been designed for an OSI-based store & for-

ward communication discipline (i.e. X.400 based [MAP88bD but it has been shown that it

can easily be extended towards on-line communication, too [Becker89],

The user interface UI provides for initiation, status control and result management of S-

transactions. As S-transactions are predefined UI is forms-oriented, i.e. the user has to fill-

out a form for each desired service.
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Cooperative Site j

3.0 S-TRANSACTION TEMPLATES FOR CONVENTIONAL
TRANSACTIONS

In the sequel of this section we discuss the modeling of conventional transactions as

known from centralized database systems, of distributed either flat structured or nested

transactions, of engineering design transactions and of SAGAs by means of S-transactions.

Each approach is briefly outlined and then the corresponding S-transaction template is de-

scribed in detail.

3.1 Conventional "Flat" Transactions

Concept Overview

According to the conventional transaction concept as it has been developed for centralized

database systems a transaction consists of an action sequence that is embraced by key-

words that indicate the beginning and the end of a transaction (TA):

TA_BEGIN

a
l

*2

n

TA END

Figure 3-1: Conventional transaction structure
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The actions a^ represent read or write operations on the database. For the entire transac-

tion ACID properties are guaranteed.

S-Transaction Template

According to the definition of S -transactions in section 2 a local function LT is automatical-

ly executed as a transaction in the above sense. Thus, either the entire action sequence has

to be passed on to the local system as a parameter of the local transaction request or the in-

terface to the local site has to be modified. As the first approach does not necessarily work

(e.g. some intermediate operations are performed in-between two actions) only the second

approach provides a solution. Hence, in order to enable the modeling of conventional transac-

tions by means of S-transactions a slight modification of the concept is necessary.

A straightforward solution is the introduction of two different types of local functions. The

one is the already existing LT type, i.e. the requested service is directly executed as a con-

ventional transaction. The second type is a normal function call like a remote procedure call,

for instance. We require the export of functions from the local site for transaction begin,

transaction commit, transaction abort, lock request and lock release.

As the local site is supposed to execute conventional transactions, the export of the primi-

tives listed above is not a major problem but a simple extension that can easily be

implemented.

The basic template for an S-transaction that represents a conventional flat transaction

looks as follows.

S_Transacuon conv_transaction

< data section >

continuation points

init_cp[...]:=

LF("TA_BEGIN", LTID into NIL)

;

LFC'af.LTID,...);

LF("a
2
", LTID, ...);

LFC'V.LTID,...);

LF("TA_END", LTID into NIL)

end I* init_cp */

end I* continuation points */

end I* conv_transaction */

Figure 3-2: S-transaction template for conventional transactions

Thus, it is evident that the structure of the S-transaction template corresponds exactly to

that of the conventional transaction. The only difference is the introduction of a transaction



identification (LTID) as the operations at the local site are decoupled from the S-transaction

and the LTID is necessary for establishing a link.

Another difference might arise regarding the actions within the transaction. The basic phi-

losophy of S -transactions is the predefinition of services, i.e. an S-transaction can only

request services that are exported from another instance (i.e. local or remote site). As a con-

sequence, either the predefined set of actions aj, ^ ..., an
or a generic function has to be

exported by the local site. Supposed that the site runs a relational DBMS with an SQL inter-

face a set of generic functions like "SELECT", "INSERT", "DELETE", "UPDATE" can be

provided where the "FROM" and "WHERE" clauses are passed as parameters; or even

more flexible, a function "SQL" and the entire SQL-statement is passed as a parameter.

3.2 Distributed Transactions

Concept Overview

The model of a distributed transaction (DTA) is the following. A global transaction (GTA)

initiates subordinate transactions (SubTAs) at remote sites. The remote sites execute the

SubTAs as conventional transactions as discussed in the preceding section. However, the fi-

nal commit or abort of the SubTAs is coordinated by the GTA. In order to guarantee

atomicity for a DTA the SubTAs write additional log information into their local logs in order

to enable recovery from communication or site failures. The coordination of the DTA termina-

tion (commit or abort) is based on a commit protocol, basically 2-Phase-Commit.

The necessary activities are performed by the Global Transaction Manager (GTM) at the

initiating site and Local Transaction Managers (LTMs) at the remote sites that perform the

SubTAs.

The structure of a distributed transaction is illustrated in figure 3-3. For a detailed discus-

sion of distributed transactions we refer to [CePe84], for instance.

S-Transaction Template

In order to enable the modeling of DTAs as S-transactions the same extensions are re-

quired as for the modeling of flat transactions. The introduction of a commit protocol does not

affect the local sites but is handled on ST level.

The template of an S-transaction that implements a distributed transaction is described in

figure 3-4.

It is worth noting here, that the STM of the initiating site acts as the coordinator of the

DTA. Without loss of generality we can assume that all accesses to and operations on appli-

cation data are performed at the leaf nodes within conventional transactions. The GTM_STM
only passes data in-between Sub_TAs and controls the order of execution. At the end of the

DTA the GTM_STM controls the execution of the commit protocol.
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GTA_Begin
SubTA-

1

SubTa.

PrepToCommitO
Ready: if (all are ready to commit)

then

Decision(Commit)
else

Decision(Abort)

Ack: Log(Done)
GTA End

SubTA_Begin
a

l

a
n

/* end operations */

PrepToCommit:
if (execution ok)

then

Ready(yes)
else

Ready(no)
Decision:

Ack()

if (Commit)
then

SubTA_Commit
else

SubTA Abort

Figure 3-3: Structure of a distributed transaction

As a consequence, the GTM_STM needs only to protect the result data that are shipped

from the remote sites, against accesses from outside. LTM_STMs must protect the data

they receive from the local sites. In addition, all STMs must be stable with respect to system

failures.
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S_Transaction DTA
< data section >

continuation points

init_cp[...]:= I* GTM at the initiating site requests subtransactions from remote sites */

requestCsitej, STID, DTA, Sub_TA, ...); /* i = 1, ... n */

end I* init_cp */

aborted_cp[...]:= f* GTM receives an abort notification from a remote site and aborts the entire DTA */

abort(sitej, STID); /* i= 1, ..., n */

end I* abort_cp */

result_cp[...] :== /* GTM receives results from all involved sites; result_cp is activated

when all results are available GTM asks sites to prepare for commit */

request(sitej, STID, DTA, prepare_cp, ...) /* i = 1, .. n */

end I* result_cp */

ready_cp[...]:== /* GTM receives ready_to_commit from all sites and decides on commit */

request(site-, STID, DTA, commit_cp, ...) /* i = 1, .., n */

end I* ready_cp */

Sub_TA[...] :== I* STM of a remote site receives request for a subtransaction */

< processing of parameterlist received from GTA >

LF("TA_BEGIN", LTID, ...) ;
/* initiation of the subtransaction at local site i */

LF("aj :", LTID, ...INTO SUCCESSFUL); /* and execution of actions ay

with i= 1 nandj = 1, .., mi*/

if (NOT SUCCESSFUL)

then I* error has occurred during the execution of the transaction at the local

site and the site indicates the abortion to the GTM */

request(GTM_site, STID, DTA, abort_cp);

else /* local transaction has been executed properly */

result(GTM_site, STID, DTA, result_cp, result_data);

fi

end I* Sub_TA */

prepare_cp[...] :== /* GTM asks for ready_to_commit notification */

result(GTM_site, STID, DTA, ready_cp, ready_signal)

end I* prepare_cp */

commit_cp[...] := /* GMT decides on commit, now the local site can terminate the local transaction */

LF("TA_END", LTID);

end /*commit_cp */

abort_cp[...] := I* GMT has decided on abort, now the local site must rollback the local transaction */

LF("TA_ABORr , LTID);

end /*abort_cp */

end I* continuation points */

end I* DTA */

Figure 3-4: S-transaction template for distributed transactions
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3.3 Nested Transactions

Concept Overview

In order to increase the transaction internal parallelism the transaction concept has been

extended towards nested transactions (NTAs) [Moss81].

In a graphical representation, NTAs are represented as trees. The root or top level trans-

action (TLTA) initiates subordinate transactions that might execute at the same site or at

remote sites (i.e. distributed nested transactions). The subordinate transactions, in turn, can

again initiate subordinate transactions again.

We distinguish between open and closed nested transactions [Johannson89]. Within

closed nested transactions, the subordinate transactions preserve ACID properties against

each other. The parent transactions inherit and preserve the locks of their child transactions

after those have (pre-)committed. In open nested transactions [Traiger83], in contrast, child

transactions release their locks after their commit in that way that other child transactions of

the same parent transaction get access to these data but no transactions from outside.

S-Transaction Template

Like for the modeling of distributed transactions we require that the operations on applica-

tion data are performed within the leaf nodes of the transaction tree.

The modeling of nested transactions by means of S -transactions is now straightforward.

Per definition STs can be nested, i.e. they allow for tree structures. The operations on appli-

cation data are performed within LTs.

In closed nested transactions, the LTs simply keep their locks until the entire NTA finally

commits or aborts, respectively, i.e. the ST that is the parent of the LT delays the LT_END
operation until it receives the corresponding request from its superior node. Each LT has its

own identification. The locks on the local data are attributed with this identification.

As is obvious, the ST Management (STM) is freed from concurrency control with respect

to the execution of LTs. Concurrency control and recovery for LTs are provided by the local

DBMS. The local DBMS does not distinguish between LTs that belong to the same ST and

those that belong to different ones. This has some implications on the modeling of open nest-

ed transactions.

If the local DBMS does not support open nested transactions, LTs are isolated from each

other. Consequently, the parallel execution of child transactions must be performed as opera-

tions of the same LT. The separation of the child TA operations must be performed by the

ST that is the parent of these child TAs. That means that in case of failure of one child trans-

action the ST cannot simply abort the entire LT. Instead, the STM must initiate the execution

of compensating operations for the failing child TA in order to keep the other child TAs run-

ning that are performed within the same LT.

When implementing nested TAs by STs we have to distinguish between open and closed

nested TAs, too. Closed nested TAs differ from distributed TAs only in that respect that

SubTAs in a nested transaction are allowed to initiate further SubTAs. Thus the ST template

for closed nested transactions is basically the same as for DTAs. In case of open nested

11



TAs the template is more complex as here the STM is to some extent in charge of concurren-

cy control. We suggest to use sets of continuation points, each modeling a child TA of the

parent ST. The local function calls of such a cp set correspond to the operations of the child

transaction and their roll-back counterparts, respectively. Each set maintains a list of locks

that it keeps on local DB data. Each set also has its own identification that is passed on to

the local DB as a parameter of each LF call. Thus it is possible to retrieve the necessary

compensation information from the log that is maintained by each STM in order to provide a

basis for recovery.

3.4 Design Transactions

Concept Overview

The transfer of the "standard" transaction concept to the engineering design domain which

is considered as a non-standard application domain, required modifications of the paradigm

underlying the concept of transactions. So far transactions were characterized through a

short execution time and the preservation of the ACID properties. The introduction of engi-

neering design transactions EDTAs led to different notions.

At the time being several different approaches are discussed in the literature (among oth-

ers [BKK85], [KSUW85], [KLMP84]). The underlying system model, however, is basically

the same for all these approaches [Kelter88]. A centralized data repository maintains the de-

sign data. A set of workstations, interconnected through a local area network, borrows

design objects from the repository and transfers them to their local workspace. This is done

by means of a CHECKOUT operation that sets a permanent lock on the copy of the design

object in the repository. In his local DB the designer can perform a set of operations on the

design object. These operations are either executed as conventional transactions or are

CHECKOUT operations on object components. Objects are returned to the DBs they were

borrowed from by means of a CHECKIN operation that releases the lock on the object.

Figure 3-5 shows the model of an engineering design system and the structure of an ED-
TA. A set of workstations is connected via a local area network. A database server,

maintaining the central engineering design database forms the center of the network.

A user at workstation A requests an object obj- from the central database (1), i.e. he/she

checks it out there (2) and transfers it into his/her private local database (3). A user at work-

station B then requests a part from obj- from the user at workstation A. The procedure is the

same as before. B requests a CHECKOUT from A (1), receives the desired data (2) and

transfers it into the private local database (3). In the same way C checks out data from B.

Thus we have an example for a three-level nested engineering design transaction as de-

scribed in [BKK85], for instance.

When C has finished the processing of data received from B, the object is transferred back

from the private local database of C to B by means of a CHECKIN operation (4). B can then

return his part to A (4). Finally, A can checkin the processed object obj- into the central data-

base (4).
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Central

DBMS

Agenda:

: communication network—*"
: flow of cooperation actions

1: req(..., checkout_cp, obi)

2: res(..., out_res_cp, objj)

3: lf("process_obj", objj...)

4: req(..., checkin_cp, objj, ...)

Figure 3-5: S-transactions for an engineering design environment

S-Transaction Template

The ST model of an EDTA envisages the existence of a CHECKOUT/CHECKIN service

that is provided by each site of the engineering design environment, by the central repository

as well as by the workstation DBs. Thus there is no difference between checking data out

from the central site or from other workstation DBs. CHECKOUT and CHECKIN are repre-

sented through different continuation points. Each cp includes a local transaction by which

the design object is copied from or into the database, respectively. As input parameters

CHECKOUT LTs require a user identification, the identification of the design object and the

checkout lock mode (e.g. read or modify). CHECKIN LTs have the design object itself and

the user identification as parameters.

In the simplest case a designer transfers an object from a remote DB into his own, manip-

ulates the object and returns the modified object. The corresponding ST requests a

CHECKOUT service from the remote DB. Upon receipt of the desired design object, the ob-

ject is transferred into the local DB by means of a corresponding LT. Having finished the
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local processing, the design object is returned as a result to the CHECKIN service of the

site, the object has been fetched from. This point needs a more detailed discussion.

If the object is simply transferred into the local DB by means of an LT we need a communi-

cation mechanism between the local DB and the ST in order to notify the ST of the

termination of the local processing. In the simplest case the communication is implemented

by a shared variable that is periodically polled by a continuation point of the ST. In a more so-

phisticated solution the cp is suspended until a signal from the local DB is received.

The first solution sketched can easily be implemented by means of currently available fea-

tures of STDL. However, it lacks efficiency. The second, more efficient solution requires an

extension of the current concepts that can be implemented easily. We introduce a new type

of local transaction LTsig, that implies the suspension of the LT until a signal is received

from the local site. The signal is specified as an argument of the LTsig call.

Both solution outlined so far are based on the assumption that the operations on the de-

sign object are performed under the control of the local site and are thus hidden from the ST
Management. That means that in this case the S-transactions are only used for controlling

the proper exchange of data between sites in accordance with a previously determined proto-

col. Although STDL provides all features of a universal programming language, it does not

provide specific support for the manipulation of complex design processes. Hence, a specifica-

tion of design operation in STDL is possible but not advisable.

3.5 SAGAs

While the transaction concepts discussed so far preserve the ACID properties of a trans-

action, SAGAs [GaSa87] deviate from that by disregarding isolation and thus providing

what is called semantic atomicity, i.e. recovery of SAGAs is based on compensation. A SA-
GA consists of a set of conventional "flat" transactions and a corresponding set of

compensating transactions that reverse the effects of the previously executed transactions.

The component transactions of a SAGA commit prior to the end of the SAGA. Thus data that

have been modified by a component transaction become accessible to other transactions out-

side the SAGA prior to the SAGA's end. As a consequence a (previously consistent)

system state can only be restored if the data have not been accessed by other transactions

before the failure occurred.

(a) SAGA_Begin (b) SAGA_Begin

CTAj

failure

CTA
n

SAGA_End -CTAj

SAGA End

Figure 3-6: SAGA (a) and compensated SAGA (b)
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By definition SAGAs represent a subset of S-transactions: a SAGA consists only of a set

of local transactions. Nesting of SAGAs is not allowed. Hence they can be directly modeled

by means of current STDL features.

For a set of LTs that are performed on a local site we retrieve the LT types, their parame-

ters and their execution sequence from the log that is maintained by each STM. We can then

call the compensating LTs in reverse order.

If a SAGA has involved multiple sites we get this information also from the STM's log

and can initiate the corresponding compensations at the remote sites.

4.0 ADVANCED S-TRANSACTION STRUCTURES AND FEATURES

In the preceding section we have demonstrated how S-transactions can be used for imple-

menting existing transaction concepts by using a uniform description language that has been

made operational by a corresponding system architecture. In this section we will now outline

some additional features of S-transactions and STDL that can be used for advanced applica-

tions.

4.1 Commit Protocols

In section 3.2 we have shown that the definition of a 2-phase commit protocol in STDL is

a straightforward matter. A basic feature of STDL is the ability of defining communication

protocols on a very high level of abstraction. Commit protocols, of course, are high level com-

munication protocols. Thus STDL fits quite naturally as we outline in the following.

Regarding the DTA example, described in STDL in section 3.2, and comparing it with the

state diagram for the 2-phase commit protocol, as described in [CePe84], we can recognize

the following correspondences immediately.

The roles of coordinator and participant are reflected by the initiating classes the ST con-

tinuation points are assigned to.

The initial state of the coordinator corresponds to the combination of 'init_cp' and

'result_cp' (as in STDL results cannot be send to the requesting CP). The 'uncertain' state

is represented through the suspension of the ST after having send the 'Prepare' message

and while waiting for the 'Ready' or 'Abort' messages from the participants. Thus we better

call it wait state. State transitions to 'abort' or 'commit' are equivalent to activating the con-

tinuation points 'ready_cp' or 'abort_cp' upon arrival of corresponding messages from the

participants.

A participant, having executed the requested Sub_TA and returned the result, also enters

a wait state, awaiting the 'Prepare' message from the coordinator. The activation of a partici-

pant's 'prepare_cp' upon arrival of the 'Prepare' message and the subsequent transmission

of the 'Ready' message reflects the transition into the 'ready' state. The receipt of the coor-

dinator's 'Commit' or 'Abort' message triggers the corresponding continuation point,

representing the according state transition.
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As a summary of the above comparison, we can state that continuation points represent

states (except the 'wait' state that corresponds to the suspension of the ST execution),

messages correspond to request or result messages in STDL.

Regarding now the state diagrams for the 3-phase commit protocol, it is obvious that it

can be described in STDL easily, using the above sketched approach. The same strategy can

also be applied to quorum-based protocols. The latter is even further supported by STDL as

it is possible to define minima or maxima for messages to be received before activating a con-

tinuation point. As a consequence, we can specify the commit quorum or abort quorum for the

corresponding continuation points, thus enabling the coordinator to react as soon as a deci-

sion has been achieved.

4.2 Non-Linear Transaction Structures

The transaction structures regarded so far were either linear or trees. Advanced distribut-

ed applications, however, might not be limited to these structures. STs are not limited to that

either as we outline in the following. To some extent we can also model acyclic and even cy-

clic structures.

"Triangles" or cycles can easily be constructed in the following way. The initiating site A
of an ST requests a service from a remote site B that includes the return of a result to A. If

B, for some reason, is not able to provide the service, it may pass on the request to a site

C. C computes the result and instead of returning it to B, C directly passes it to A. This is

possible if C knows the ST identification at site A.

The name of the result receiving CP is known to C as C has to know the entire S -transac-

tion description in order to be able to become involved in an ST. The identification of the

receiving site must be passed from B to C. The transfer of a result to a site that is not yet

involved in an ST is not allowed. The global ST identification must be known to a site be-

fore it is able to receive a result. Otherwise, it is possible that a site receives a result

prior to the corresponding request. In that case a site cannot distinguish addressing errors

from communication failures. Hence, an incidentally activated continuation point would run

forever and could not be aborted.

In short, one kind of cyclic structures, as described above, are those that can be represent-

ed through a chain of requests with a final result transfer from the chain's end to its

beginning. It is, however, also possible to perform cyclic requests, as the next example

shows. A potential application for such cyclic requests could be the distributed evaluation of

recursive operations, for instance.

Let A send a request to B. That means within the currently executed path of A's CP a re-

quest to another CP is coded. This CP path is supposed to be executed by B. In the trivial

case, B returns a result to one of the CPs to be executed at A. This is the typical CALL -

RETURN cycle, known from procedural programming languages. B could also request an-

other service from A in order to be able to provide the service previously requested from

A. For doing this there are two possibilities: either B can initiate another ST at A and

transfer the result into the ST B actually executes or B can trigger the activation of a CP of

the same ST.
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Regarding these solutions isolated from other transaction structures, the first approach

does not cause any problems while the second one does. The second approach implies the

handling of multiple instances of the same continuation point within the same S-transaction

that have different parent transactions. Thus, the management of aborts in general and par-

tial roll-backs in particular become a problem.

Taking also other transaction structures into account like acyclic graph structures, specifi-

cally collapsed trees, even the first solution is not that easy to implement.

We can easily give examples for applications that require the synchronization of two par-

allel executing (sub) STs in one place (c.f transnational funds transfer in [Holtkamp88]). In

those examples the thread of control forks by initiating CPs of the same ST type at remote

sites. The CPs may be executed in parallel by the different sites. At some point of time these

threads may synchronize, i.e. join at another site. How is it possible now to distinguish be-

tween joining requests and requests that are supposed to initiate different STs? In our

current implementation we support only joins and no cyclic requests. All (subordinate) STs,

belonging to the same global ST, carry the same global ST identification. If a request arrives

at a site where the global ST identification is already known, this request is considered to be

a joining one.

If the initiation of subordinate transaction is requested at a site that is already involved in

a global transaction, the just described solution is no longer applicable. Instead, a construct

is requested that allows to distinguish between joins and the initiation of another, subordi-

nate transaction. In MUSE, the latter can be achieved by introducing a "REQ_SUB_ST"
operation, for instance, that explicitely initiates a subordinate S-transaction.

4.3 Delegation of Functions and Transfer of Control

Another advanced feature of S-transactions is closely related to the issues discussed pre-

viously in this section. It is the possibility to delegate functions. A prerequisite for that is the

ability to formulate transactions with non-linear structures. The following example aims at il-

lustrating the delegation of functions (horizontal migration).

Assume that a site has initiated some kind of distributed transaction. At the very end of

the transaction it is terminated by using a commit protocol. Normally, the initiating site also

acts as the coordinator for the commit processing. The ability of sending results, for instance,

to another than the requesting site enables the initiator of the entire transaction to transfer

the commit processing to another site. As soon as the initiator has received the results from

the subordinate remote sites he asks another site to play the role of a commit-coordinator. If

the site agrees, the initiator sends 'Prepare' messages to the subordinate sites, indicating

the newly found commit coordinator as the receiver of the 'Ready' messages issued by the

subordinate sites.

The benefits of this possibility are manifold. For instance, the initiator is freed from some

routine work, i.e. it is off-loaded. A careful choice of the commit coordinator in the above ex-

ample can result in a significant decrease of communication costs. The appropriate selection

of the commit coordinator can also result in a considerable performance enhancement.

Referring to the transnational banking scenario assume that the initiator of a transaction

is located in the United States, let's say California, and the set of service providing sites
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are located in Western Europe. If a European sites takes the role of the commit coordina-

tor, communication distances are drastically reduced and thus most likely also

communication costs. At the same time the difference in time zones falls away, reducing

the problem of different business hours thus probably resulting in increased throughput.

A side effect of the delegation of functions is the restructuring of a transaction. The initia-

tor of a transaction that is considered as the root node, can become a subordinate transaction

in the above described example. If, for instance, the commit coordinator informs the initiator

of the decision when having received the 'Ready' messages, the initiator can terminate the

transaction while the commit coordinator still processes the acknowledgments of the subordi-

nate sites.

In the above example the initiator still keeps control over the major part of the transaction,

it has initiated, and transfers control only at the end for some routine task. We can easily

imagine that S-transactions are not limited to that. It is also possible to move control at any

time during the processing of a complex task. Let's regard another example from engineering

design. According to the 'Waterfall' model for software development development phases

are closed units of work that are sequentially ordered. If we describe this model in terms of

S-transactions the transition from one phase to another corresponds to the transfer of control

from one instance to another.

5.0 CONCLUSION

In this paper we have presented the concept of S-transactions and the corresponding defi-

nition language STDL as a flexible mechanism for describing the cooperation between nodes

in a distributed system. The concept's flexibility is demonstrated by modeling different coop-

eration concepts in terms of S-transactions and STDL. The spectrum covered ranges from

conventional transactions in a centralized database system over various types of distributed

transaction concepts to mechanisms that provide for a higher degree of autonomy (e.g. SA-
GAs).

The practicability of the S-transaction concept and STDL have been proved by applying it

successfully to application domains like transnational banking [Holtkamp88] or decentralized

software development [Holtkamp89].

Our current and future work is related to fine tuning of STDL and of the underlying MUSE
system architecture. We are also working on a rapid prototyping environment for the devel-

opment of cooperating systems with MUSE and STDL as basis.
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