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EXPLOITING CAPABILITY CONSTRAINTS TO SOLVE GLOBAL,
TWO DIMENSIONAL PATB PLANNING PROBLEMSf

R. F. Richbourg, Neil C. Rowe, Michael J. Zyda

Department of Computer Science, Naval Postgraduate School, Monterey, California

Abstract

Mobile autonomous vehicles require the capability of planning routes over ranges that are

too great to be characterized by local sensor systems. Completion of this task requires some form

of map data. Much work has been done concerning planning paths through local areas, those

which can be scanned by on-board sensor systems. However, planning paths based on long range

map data is a very different problem Extant solution techniques require the search of discrete,

node and link representations which characterize continuous, two dimensional problem environ-

ments We assume the availability of topographic data organized into regions of homogeneous

traversal cost. Given this, we present a solution technique for the long range planning problem

which relies on a Snell's Law heuristic to limit a graph search for the optimal solution.

1. Introduction

Route planning has been an area of interest for many years, particularly in the Operations

Research field Ref. 1]. Much effort has been directed towards the problem of computing optimal

paths through shipping lanes, road networks, and other similarly described, static media These

problems feature a discrete number of choices for possible paths and can thus be characterized as

essentially one dimensional. Recently, interest in two dimensional route planning has grown. In

this domain, there is a continuum of available choices for the next movement. Such planning is

appropriate for robot or human cross country routing or for determining placements for the future

construction of permanent, linear features such as pipelines or roads. The simplest version of this

problem is known as the Find-Path problem Ref. 2 .

f This work has been supported by the NPS Foundation Research Program. This paper will appear in the

Proceedings of the 1986 IEEE International Conference on Robotics and Automation



A solution to the classic Find-Path problem consists of a routing plan tailored to a specific

environment. In the robotics area, the problem is described as, given the initial and goal locations

of an object, and a set of obstacles in the environment, find a continuous path for the movement

of the object from the initial location to the goal location which avoids collisions with any obsta-

cles along the way |Ref 2 The problem has typically been associated with planning local motion

control or manipulator trajectory control for a robot in a two or three dimensional space where

information is gained through integral sensor systems, primarily visual.

There is a version of the classic Find-Path problem which requires planning motion over

ranges too great to be explored by local sensor systems. We term this problem the extended

lind-Palh problem bong range planning is a useful and difficult problem which humans solve

easily many times each day. Prior to initiating any movement, humans, either consciously or not,

plan a particular course to be followed. Moreover, the planned course has the characteristic that

some factor is optimized (or at least perceived as optimized). A typical optimization factor is that

of time.

A salient difference between the classic and extended Find-Path problems concerns optimi-

zation The classic version posits a binary view of the world. Every point in the environment is

either traversable or impassable An optimal route in such an environment can be found by plan-

ning the shortest distance path around the obstacles. This "least distance implies least cost"

assumption is viable in the classic version because the range of the sensor systems generally

encompasses only a uniform medium of traversable areas. The validity of this assumption can

easily be established by an example (consider time as a measure of the cost of a route). Clearly,

one can walk across the floor ten feet away as quickly as one can cross the same floor only two

feet away, given the absence of obstacles

The "least distance implies least cost" assumption is not reasonable for the extended Find-

Path problem because the increased physical range over which travel occurs generally implies that

more than one traversable medium is represented Regardless of the factor which is to be optim-

ized, one medium can not be assumed to have the same traversal characteristics as all others.
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given the diversity of objects which can be found in the physical world. As the cost of traversing

one area can be quite different from those of other areas, a new parameter is introduced into the

cost computation for each possible path In the binary case problem, the cost of traversing every

n

route is computed by the simple formula Cost ~
Yl^> wnere there are n line segments in the com-
• - ]

plete path and d, is the Euclidian distance along the i'th line segment. Considering the extended

n

problem, the formula becomes Cost = J^c, x d, where n and d, have the same meaning The new
i = 1

parameter, c, reflects the cost of the i'th line segment Also, the number of line segments is typi-

cally increased As an example, a straight line traversing two different cost areas is represented by

two line segments. Only one line is required to reflect the same situation in a binary case

representation. The addition of cost information has the effect of invalidating the straight line

hypothesis so prevalent in the binary case solution techniques.

1.1. Brief Review of Some Extant Solution Techniques

The prototypical solution technique for the binary case problem is known as the Visibility

Graph or VGraph method Ref 7,8] . This method relies on the knowledge that the optimal path

must be either a straight start to goal line or a series of line segments which includes obstacle ver-

tices as turn points along the start to goal path. The VGraph technique creates a graph represen-

tation of the problem, G = (V,L), where the set V includes all obstacle vertices plus the start and

goal locations. The straight line hypothesis is used to create the set L. Whenever an unobstructed

line segment connects any two members of V, that segment is included in L. When the construc-

tion of the graph is complete, standard graph search techniques can be used to find the optimal

path in G.

The exhaustive nature of G defeats the interacting subproblems difficulty of the Find-Path

problem. The cost is that every obstacle in the problem environment must be considered. When o

obstacles are present, having a total of v vertices, the cardinality of V is n - v - 2. In the worst

i = n - 1

case, £] i line segments must be inspected to form L. This can be expensive for large problem



spaces. A dynamically created graph considering only those obstacles in the general area of the

optimal path is less costly. However, care must be taken to insure a global problem view so that

interacting subproblems do not prevent optimal solutions.

The wavefront propagation technique is the most common method used to solve the

extended problem jRef. 5,6,11,12). In this technique, a uniformly spaced lattice is imposed on the

problem representation Each link is assigned a cost relative to the actual cost of traversing the

associated real world terrain. Then, an omnidirectional graph search, similar to the propagation of

a wave, is conducted. When the wavefront touches the goal, the optimal path can be retrieved by

referencing backpointers or a similar technique. This method has the primary advantage that it is

the only known technique which provides optimal solutions to the extended problem. However, it

has significant deficiencies.

The propagation technique is very expensive Much of the search is expended in areas that

do not hold any portion of the optimal path since there is no guiding principle such as the

straight line hypothesis used in the binary case problem Also, there is a digital bias inherent in

the problem representation so that the method actually returns a set of "optimal" paths, each of

which must be compared to determine the unique solution Ref. 6 . The method finds "stairstep"

approximations to straight line solutions. These must be smoothed out to characterize the optimal

path.

One technique which attempts to avoid the exhaustive lattice of the propagation technique

is the homogeneous regions approach |Ref. 3j. This method relies on the knowledge that the phy-

sical world is not a series of disjoint points, but rather a grouping of similar regions (fields, lakes,

etc ) The points inside each region have equivalent traversal characteristics. The method operates

by representing the problem space as a grouping of centrally symmetric polygons (homogeneous

regions) and conducting a graph search between region centers The method has deficiencies: not

everything in the physical world can be accurately modeled by centrally symmetric figures and

paths between region centers need not include the best routes However, the observation that the

real world is a grouping of regions, not distinct points, is important



2. Desirable Solution Technique Characteristics

A solution technique for the extended Find-Path problem will have several key properties.

First, there must be provisions to deal with the interaction of subproblems. Specific domain

knowledge can been employed to prevent these difficulties as is the case in the VGraph model.

Here, knowledge leads to the exhaustive decomposition of the problem into a graph of obstacle

vertices which can be intelligently searched. The analogous problem decomposition for the

extended problem leads to the imposition of a uniform lattice structure as in the wavefront propa-

gation technique. Again, an intelligent graph search can be conducted to find an optimal solution.

The salient difference is that an unintelligent problem representation confounds the search stra-

tegy and leads to problems of representational resolution, combinatorial explosion, accumulation

of error, and a multiplicity of solutions which erroneously appear as equivalent. The homogeneous

regions approach attempted to establish a more intelligent problem representation by grouping

similar regions together. However, this technique also fails due to poor representational robustness

(not all physical world features can be adequately modeled) and the lack of an appropriate

straight line hypothesis to guide search (moving from region center to region center is inade-

quate). We note that a dynamically created graph can lead to greater efficiency by avoiding

wasteful computations.

We noted that humans solve similar problems routinely. They are able to provide reason-

able solutions quite efficiently. Their abilities seem to rely on several principles. First, they make

use of topographical knowledge and knowledge of their own capabilities to partition the problem

representation into homogeneous areas with similar traversal characteristics. Secondly, humans

reason at different levels of abstraction. A high level route plan might contain the step "go

through Smithfield" while a lower level abstraction detailed the route through the town In this

sense, abstraction is as useful in combating combinatorial explosion as is the homogeneous regions

premise Humans are also opportunistic Special cases of terrain features present opportunities for

problem decomposition. This concept generalizes to the appearance of a corridor through an oth-

erwise impenetrable obstacle. A simple example is a door in a building. A more important exam-
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pie is the occurrence of a single road through a densely wooded and treacherous mountain area. A

suitable solution technique for the extended Find-Path problem must be able to achieve oppor-

tunistic decomposition by recognizing similar situations. Another useful aspect of human reason-

ing is that it is multidirectional. Moreover, directionality is intelligently specified. The wavefront

technique is multidirectional, however, omnidirectional search is not an intelligent strategy.

In summary, a suitable solution method for the extended problem should exhibit several

properties. These include the use of a basic, guiding principle for search (such as the straight line

hypothesis), domain knowledge, capability knowledge, multidirectional (at least bidirectional) and

intelligent search, opportunistic decomposition, intelligent problem representation, and levels of

abstraction. Also, the solution provided should be in some sense optimal.* \N e have noted that

humans quickly solve the problem, but not necessarily with optimal results. Graph theoretic tech-

niques can provide optimal solutions, but not necessarily quickly. A suitable solution method for

the extended Find-Path problem will achieve the best traits of both methods.

3. Proposed Solution Technique

We have observed that representing the problem as a lattice of uniformly spaced nodes pro-

duces a firm, graph theoretic basis from which an optimal solution can be obtained. However,

obtaining this solution is computationally expensive. In the wavefront propagation technique, the

computational cost is relative to the distance to be traveled from the start location to the goal.

The number of grid squares examined here is approximately proportional to the area of a circle

whose radius is the start to goal distance. Thus, the computational cost grows approximately in

proportion to the square of this distance (since the area of a circle is tt r ). Also, a technique to

intelligently guide the wavefront search is not readily apparent. Because of the diversity of speeds

attainable over different physical terrain features and the arbitrary nature of their physical, rela-

tive placement, it is generally not possible to determine if a specific area is more favorable to the

Optimality ran be measured by many factors such as time, fuel used, visibility, danger avoidance, and so on.

Another consideration is the amount of computation required to obtain the solution The tradeoff between process-

ing time and optimality must also be considered.
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production of an optimal path than any other area, unless that area is explicitly moved to and

examined This characteristic causes the exhaustive, omnidirectional nature of the wavefront pro-

pagation search. We desire to produce a method which constrains the search required of wave-

front propagation techniques. Further, the developed method must be relatively efficient as com-

putational excess is the primary problem to be overcome.

Normally, limiting graph searches involves finding good decision criteria for use at branch

points. This does not seem appropriate for the extended problem However, we can bound the

physical size of the entire graph Such a bound is possible and easily derived in the following

manner Note that any solution to the problem serves as an upper bound on the cost of the

optimal solution Consider a hypothetical path from start to goal which traverses only the least

desirable (i.e. highest cost) regions but avoids all obstacles. Compute the cost of this hypothetical

path Now. compute the distance which can be traversed when only the most favorable terrain

type is used and the same cost is accrued Consider this second distance to be the sum of the dis-

tances from each foci to the boundary of an ellipse. Let the start and goal locations define these

foci. Clearly, the optimal path must lie entirely within this ellipse. Thus, we have created a phy-

sical bound on the area to be searched by a propagation technique However, the bound is not

tight. Remembering that computational cost changes in approximate relation to the square of the

distance to be traveled, we note that obtaining the best bound possible is highly desirable There

is also a need to balance the "goodness" of the bound against the amount of computation required

to obtain it. Thus, we need a method to obtain a bound which is as tight as possible, but which

can be achieved relatively efficiently.

The efficiency of human produced solutions to similar problems stems from the human abil-

ity to group many distinct points into homogeneous regions and then plan paths on a region to

region basis. The resulting paths may not be optimal, but they are reasonable and can be

obtained efficiently. Given this broad characterization, it is apparent that an efficient, human like

search of a homogeneous region problem representation constitutes a suitable vehicle to determine

a bound for the propagation techniques. Optimality is not a requirement of the bound. An effi-



cicntly produced, reasonable solution is the goal.

The two drawbacks associated with the extant homogeneous regions method are the need to

represent regions as centrally symmetric figures and the requirement to move from region center

to region center First, we overcome the problem associated with region centers. Consider the

problem of finding the optimal path in a simple case. Figure 1 depicts a situation where the

requirement is to move from an initial location inside a "cheap" region to a goal also in the

"cheap" region when there is a rectangular "expensive" region on the straight line path between

them. As in the illustration, the optimal path (the solid start to goal line) is some perturbation of

a straight line which trades increased distance in the cheap region for deceased distance in the

expensive region In figure 1. Si and S2 represent cost reciprocals. I), dl. d2, yl, y'2 and y3

represent Euclidian distances. Let T denote the cost of a path The equation describing T is a sum

of terms as below.

V d\ 2 +y\ 2
\ (D-d \-d2) 2+yZ 2 \rd22~y2 2

We wish minimum cost paths as a solution. Thus, we take the first derivative of T and set the

resulting equations equal to zero. The partial derivative of T with respect to dl and set equal to

yields:

d 1 D -dl-d2

SlVyl 2+dl 2 5 2v yZ 2^(D -d\-d2) 2

In a similar manner, taking the partial derivative of T with respect to d2 and setting the equation

equal to zero yields:

d2 D d\-d2

S\\ y 2
2 -d2 2 S2\yZ2~[D d\ d2) 2

In Figure I. let Al. A2 and A3 represent angular measures Note that:

d\
sin (A 1)

sin (A 3)

\; y\
2+d I

2

D d\-d2

stn (A 2

X yS2^(D -dld2) 2

d2
2 , Jo2\ y2Ud2
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Then, the above computations simplify to:

sin (A 1) sin (^4 3) ein (A 2)

5 ] 5 3 5 1

A minimum cost path is the result of satisfying this final equation.

We note that the final equation is exactly Snell's Law [Ref. 4] commonly used in optics to

compute the paths of light rays traveling through media of different reflective indices. There is no

known, closed form equation to solve a Snell's Law problem. Iteration and search (such as bisec-

tion search) are normally used to find optimal paths. Also. Snell's Law is known to express an

entirely "local" relationship, that is, the law determines the optimal path based solely on locally

available information Thus, the homogeneous regions need not be strictly represented by rec-

tangular figures, any linear boundary separating two regions is sufficient to support application of

the law. This characteristic eliminates the difficulties of the homogeneous regions method associ-

ated with the requirement for centrally symmetric figures. Another benefit of Snell's Law is that

the optimal path can be computed across any number of consecutive, linear boundaries. Thus,

homogeneous regions can be adjacent to each other.

The locality aspect of Snell's Law also has an adverse implication. Consider a situation

similar to that depicted by Figure 2. Let region C be the most favorable, region A the next best

and region B be the least favorable region. Snell's Law will simply perturb the original, straight

line start to goal path until an optimal path involving regions C and B is determined (as

represented by the solid line). The law has no ability to consider alternate paths involving region

A. even though the optimal path could easily be similar to the dashed line path of Figure 2. Thus,

Snell's Law implicitly relies on a straight line hypothesis to propose an initial route The law

ignores more favorable, adjacent areas unless either the initial straight line path intersects them

or the optimization procedure accidentally perturbs the path into an intersection with them

This situation can lead to a form of the same problem that effects the wavefront propaga-

tion technique, i.e. combinatorial explosion and computational excess. Deriving a light bound by

applying Snell's Law to a large number of distinct regions requires that each region within some

circumscribing limit be specifically examined. The problem is somewhat less serious because the
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size of each individual area requiring examination is generally much larger than the areas used in

a lattice representation. However, if a path involving a significant distance from the start loca-

tion to the goal location is required, the size of the areas has less of an ameliorating effect. More-

over, the type of technique we are attempting to develop must produce a bounding solution effi-

ciently to be valuable It does not appear that a method which must "look everywhere" can fulfill

this requirement.

This indicates that Snell's Law may not be an appropriate formula to apply. However, aban-

doning the law is not a realistic option The analysis began with a mathematical, calculus based

description of a minimum cost path through a single homogeneous region. The solution to the

calculus problem produced Snell's Law as a result Thus, short of finding another mat hematical

basis for the minimization problem itself, it seems that any characterization of the minimal cost

route will have the same problems as Snell's Law Another option is to develop a heuristic which

allows a more intelligent representation of the problem space so that Snell's Law will be applica-

ble in an efficient manner.

To derive such a heuristic, we again appeal to the human solution model. While humans

use the homogeneous regions approach, they seem to rely on a very small number of region group-

ings Again refer to Figure 1 where Snell's Law works perfectly. There are only three possible

types of regions associated with this situation, optimal regions, impassable (obstacle) regions, and

regions which are traversable, but not at optimal cost. The use of only three region groupings

solves the problems stemming from the local nature of Snell's Law. If a path (or path segment)

traverses only an optimal region, there is no need to "look" elsewhere for a possibly better solu-

tion If a path traverses a non-optimal region, it is only necessary to examine paths through

immediately bordering regions (as well as the original path through the non-optimal region)

because the border regions must be optimal. Thus, a ternary representation of the problem space

facilitates the application of Snell's Law This representation also corresponds to a human like

strategy of grouping regions as either the best (optimal), the worst (obstacle), or somewhere in

between (traversable, but not at optimal cost). The ternary grouping may not produce solutions
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which are as accurate as those available by a more sophisticated representation. However, this

method has traded exact fidelity for efficiency

Thus, we have a general method of combining human like efficiency with the capability of

graph theoretic representations to achieve optimal solutions. The requirement of the human like

planning process is to develop "as good a plan as possible" within the efficiency constraints. The

"goodness" of the solution determines the degree of constraint imposed on the efforts required by

an optimizing graph search procedure. We have developed an informal, empirical argument which

rejects the notion of using many distinct region classifications. The resulting ternary grouping

scheme is critical to the human like planning model. It remains to justify the heuristic assump-

tion.

3.1. Selecting a Capability Model

The importance of capability knowledge is established in preceding sections. Without such

knowledge, homogeneous regions cannot be created. To establish capability knowledge, some

specific type of motion achieving entity must be referenced There has been a large amount of

progress towards solving the extended problem for wheeled vehicles !Ref. 5). (We note that the

success of this work critically relies on the capabilities of wheeled vehicles relative to roadways as

traversable media.) This being given, we select legged entities as the capability model for this

study. This class contains animals (humans) and legged autonomous vehicles. Further, as much

path planning work is relevant to the robotics area, we select legged autonomous vehicles as the

specific model. This subject has the further advantage of the availability of precise mathematical

descriptions of motion. Note that this selection does not cause the work to be overly specific and

non-generalizable. A different selection would cause a new definition of capability constraints. The

general solution produced should still be applicable to planning human motion as well as planning

the location of static linear features such as roadways or pipelines.

3.2. The Ternary Case Assumption

The capabilities of a specific model can now be exploited Legged, autonomous vehicles
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have characteristics which greatly differentiate them from wheeled vehicles [Ref. 9]. First, road-

ways do not exhaustively define the set of most favorable terrain features for traversability.

Clearly, using a human model for illustration, one can walk across an open field as easily as a

road. A second characteristic of legged machines is that their total range of attainable speeds is

not as great as that of wheeled vehicles. Thus, a collection of terrain features grouped into a sin-

gle homogeneous region based on a generalized range of attainable speeds contains more members

than a region created using wheeled vehicles as the model. Based upon these two general capabil-

ity traits, as well as the discussions concerning Snell's Law, an assumption pertaining to the crea-

tion of homogeneous regions is appropriate. Accordingly, we posit the ternary case assumption:

all physical terrain features can be placed into one of three disjoint equivalence classes by a

traversability relation based upon legged vehicle capabilities. The first class contains optimum

(per traversability) features such as roads, open fields, non-wooded areas with little elevation

change, pastures and trails. All of these features can be traversed at relatively the same speed by

a legged machine (much as they can be by a walking human). The second class contains terrain

features which are traversable, but not at an optimum speed. Typical class members are sparsely

wooded areas, marsh or rocky areas with marginal footing, areas with moderate elevation changes

or slopes and congested areas, such as townships. The final class contains non-traversable features.

This class contains such features as rivers, buildings, densely wooded areas, steep mountains and

restricted areas With minimum time paths as the goal, this last class can also contain some

features which are physically traversable, but should be avoided due to the extreme computation

requirements they impose on the robot's local sensor systems. A moderately dense wooded area is

an example of such a feature. (liven that features can be recognized (or provided a prion), an

algorithmic means to utilize the ternary case assumption and solve the extended Find-Path prob-

lem is presented.

3.3. Path Planning Through Elliptical Limiting

An algorithmic means of solving the extended Find-Path problem which combines the

advantages of human and graph theoretic models is the desired goal We have observed that



- 15 -

human solutions are efficient while graph theoretic methods produce optimality. This suggests a

natural division of the algorithmic organization into two primary parts. The first part relies upon

human inspired traits to efficiently produce a possibly non-optimal solution. This solution is used

as a bound to constrain the efforts of a second stage process which is designed to ensure optimal-

ity.*

The initial step in our method is to perform an opportunistic decomposition of the problem

by recognizing corridors through impassable regions. A knowledge based component can perform

this function. Each part of this decomposition can be solved independently. An appropriate

overall solution is achieved by geometrically linking the subproblem solutions together at corridor

entry exit points Since each subproblem is independent, we only need to concern ourselves with

the solution to a single problem.

The second step solution process resembles a bidirectional A* search [Ref. 10] over a dynam-

ically created graph and uses a straight line hypothesis to guide a generate and test methodology.

A homogeneous region representation is used to dynamically construct the graph. The difficulties

associated with interacting subproblems are avoided by using bidirectional A* search and selec-

tively remembering nonobstructed links. In the case where only one obstacle lies between the

start and goal there is no opportunity for subproblem conflicts to occur. Our solution technique

utilizes recursion to extend this situation over the entire graph.

Our method operates in the following fashion. First, we propose a straight line path from

start to goal. If a collision occurs on this path, we determine those vertices which facilitate move-

ment around the associated obstacle. We then treat each obstacle vertex as the current location

and generate two new paths from this point, one to the start and one to the goal. Similar actions

occur when traversable, but non-optimal areas are intersected. We determine the vertices which

In all further discussion we assume that terrain features have been recognized and grouped according to the ter-

nary case assumption. Conceptually, we assume the existence of a two dimensional plane where nonoptimal,

traversable class features and obstacle class features are represented as convex polygons. In this system, optimal

class features are not specifically presented but are considered to be the "background" over which the polygons are

superimposed. The linear sides of polygonal figures support application of Snell's Law. Convexity facilitates locat-

ing vertices which allow movement around the obstacle.
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facilitate movement around the region and treat these as new, current locations. We also compute

the best path through the region in accordance with Snell's Law. This path terminates at the

start, the goal, or another region intersection. Eventually, the entire process finds an unob-

structed link set to both the start and goal. At this point, the process stores only those links

which directly connect an obstacle vertex to either the start or goal. Once this process has been

completed, all the "best" links going into the start and into the goal have been located. We then

use the A* estimate function to approximate the cost of completing the middle of each possible

path When the most favorable start and goal link pair has been determined, we treat the interior

endpoints of the links as new start and goal locations and recursively apply the same technique.

When the actual cost of completing the most favorable partial path is zero, the best "straight

line" solution has been found.

The above process requires the use of the straight line hypothesis. A form of the hypothesis

based on the ternary case assumption is available. Clearly, the hypothesis is valid inside a single

homogeneous region. This includes the case of going around obstacles where only the leftmost

and rightmost (conceptually) vertices need to be located. The difficulty arises when passing

between slow and high speed traversable areas. In this case, Snell's law can be applied to find the

optimal entry exit point on the slow fast region boundary. Once Snell's law has found the per-

tinent boundary points, they can be added to the dynamically created graph as easily as obstacle

vertices.

Figures 3 through 5 illustrate the operation of the second step process. In each figure, the

original start is located at the origin. The goal has coordinates (30,25). The filled rectangles

represent obstacles. The single, unfilled rectangle represents a non-optimal, traversable region. In

Figures 3 and 4. the dashed lines represent unobstructed links to the start while the solid lines

depict similar links for the goal. Figure 3 shows the solution state at the end of the first recursion

where the start and goal are as listed above. There are 3 links connected to the goal and 5 for the

start. Of the start links, two involve the non-optimal region. There is a straight line segment con-

necting the upper left vertex of this region to the start. This point is static. The second link is a
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Figure 3
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Figure 4
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Figure 5

Resulting Optimal Path
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path perturbed by Snell's Law which connects the start to an obstacle vertex at coordinates

(10,20). The path (and path cost) is static as are the endpoints. Subsequent paths through the

region require new computations. As an example, if it proves desirable to move from the vertex at

(4.6) to the vertex at (10,20), a new Snell's Law path must be computed.

At the end of the first recursion, all possible pairs of start links and goal links are matched

to determine the most promising pair. Note that two complete paths already exist. However, their

costs are greater than the actual cost of the (0,0) to (6.4) link plus the actual cost of the (30,25)

to (20.10) link plus the estimated cost of the uncompleted portion of the remaining, middle link.

This particular, hypothetical path has the most favorable cost estimate of any link pair. Thus.

(6.4) is selected as the new start and (20,10) the new goal to be used in the second recursion (Fig-

ure 4). The second recursion finds a complete path between these two points which also happens

to have the least cost estimate of any pair of links discovered to that point. Therefore, the process

is complete and the path 1(0,0), (6,4), (11,9), (20,10). (30,25)] is returned as the optimal solution

at the conclusion of two recursive applications (see Figure 5).

The second step portion has been implemented. The execution times recorded by the

method compare very favorably to those of the V'Graph technique in the solution of binary case

problems (see Table l). Both algorithms were implemented in an interpreted version of Prolog on

a time shared VAX 11/780 computer. As much as possible, both implementations use identical

sections of code for low level functions (such as line intersection checking). Efforts were made to

insure that the two implementations differed in control strategy only. In Table 1, execution times

are in seconds (wall clock time) as measured by a Prolog predicate. Obstacles were added to a

problem one at a time. Each algorithm was used to solve the problem after the addition of a sin-

gle obstacle. The addition of obstacles 3 through 6 did not alter the optimal path This is reflected

in the nearly static execution times of the step two algorithm. (Decreases are due to fluctuation in

computer loads.) The VGraph execution time increases are due to the need to build ever larger,

exhaustive graphs.

The result of the second step process is a reasonable, perhaps nonoptimal, path through a
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Table 1: Execution Time Comparison

Number of VGraph Step Two
Obstacl es Method Process

1 4.48 4 1

2 7.28 4.75

3 11.35 4.65

< 16.37 4.66

5 22.96 4.63

6 32.33 4.71

I
46.08 6.32

region characterized according to the ternary case assumption. The process relied on homogene-

ous regions, a dynamically created graph, guidance by a form of the straight line hypothesis, plan-

ning for interaction conflicts, opportunistic decomposition, recursion to save useful results and

intelligent, bidirectional search. The solution has been achieved relatively quickly and wasteful

computations have been avoided. It remains to ensure optimality.

The third step of the elliptical limiting method is designed to provide an optimal solution.

Here, a lower level of abstraction is appropriate. Assume that the homogeneous regions format

can be converted (or is otherwise available) to a lattice representation such as that used in the

wavefront propagation methods. Given this representation, the solution obtained in the second

step can be used as a bound to constrain the efforts required for a wavefront propagation tech-

nique. (For simplicity of discussion, assume that time is the factor to be optimized.) Any optimal

solution must have a cost less than or equal to that required by the second step solution The

time cost of that solution is known We compute the greatest distance that can be traveled in an

equal amount of time if only the fastest speed regions are traversed. We then construct an ellipse

as discussed previously. Any optimal solution must lie entirely within this ellipse. The number of

points interior to the ellipse can be reduced by eliminating any points belonging to the obstacle

class as defined in the homogeneous region classification. We then conduct a wavefront propaga-

tion over the lattice of remaining points to find the optimal solution.

The third step process results in a set of start to goal paths which all require the same

amount of traversal time The final step in the elliptical limiting process determines the actual,
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optimal path from this set. The wavefront technique implemented at Hughes Research jRef. 6]

requires heuristic measures to be applied to this set of paths so that the digital representation of

the true optimal path can be determined. Elliptical limiting need not resort to complex, heuristic

measures. The ternary case assumption requires that the environment be represented as contigu-

ous areas of homogeneous regions. Before the ternary grouping can be made, the boundaries of all

areal features in the environment must be recognized. Note that in an optimal path, turn points

only occur at feature boundaries because within a single region, the least cost path is always a

straight line. To find the optimal solution, we superimpose the solutions found in the third step

process over the original (unprocessed, analog map feature image) problem representation. Any

point in the third step solution set not corresponding to a boundary crossing can be eliminated. In

this representation, the single optimal path can be easily separated from the set of solutions gen-

erated by the third step process. Moreover, the accumulation of error present in "stairstep" digital

representations of straight, diagonal lines is eliminated.

Figures 6 through 9 illustrate the entire elliptical limiting process. Figure 6 presents an

unprocessed representation of the physical world to be traversed. For illustrative simplicity, the

problem contains only optimal and obstacle class regions. The optimal regions are composed of

roadways and open, flat fields. Obstacle class features include a river and several buildings (the

checkerboard filled rectangles). Figure 7 illustrates the initial step of the process. The optimal

path must cross the bridge over the river. The result is an opportunistic decomposition which

includes the formulation of additional start and goal locations. There is a new goal in the lower

subproblem and a new start for the upper subproblem. The dashed line through the river

represents the decomposition boundary. Figure 8 depicts the second step solution to the lower

subproblem. The shaded areas are obstacle regions. The background is the optimal region. This

situation is overly simplified by the absence of non-optimal traversable regions. In fact, the

absence of such areas results in a simple binary problem for which the second step process will

produce the exact, optimal solution. Figure 9 depicts the ellipse produced from the second step

solution and the optimal path found by the graph search performed as the third step. The final
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Figure 7
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Figure 8

Second Step Solution
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Figure 9

Third Step Solution and
Limiting Ellipse
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step requires that the set of optimal paths found in the graph search be overlayed on the original

problem representation*. The only turn point in the path produced by the graph search which

lies on a feature boundary corresponds to the obstacle vertex considered by the second step pro-

cess. Thus, the optimal path contains the start location, a single turn point, and the goal location

This path is exactly the route depicted in Figure 7, the second step solution.

3.4. Summary

We have developed and presented a new method to solve the extended Find-Path problem

Our system has individual traits which can be found in other paradigms. However, the similarities

to any other single method end at this low level. No system that we have examined resembles our

technique in total philosophy or methodology. We propose that this comment can be extended to

include efficiency of operation. The extant extended case solution methods exhibit one or more of

several, salient deficiencies Either they fail to produce optimal solutions, they are excessive com-

putationally, or they require heuristic, ancillary operations to determine the optimal path from a

set of solutions. Our system has none of these deficiencies.

Our system also includes new techniques (per the path planning problem). We have com-

bined human like capabilities with those of a machine. We have focused on discovering the

underlying, enabling principles which allow human efficiency and then employing these principles.

Also, our system includes a ternary problem representation and an efficient method to solve this

case Previously, only "intelligent" solutions to binary case problems or "brute force" techniques

for the n-ary case problems have been available. Also, this solution involves the implementation

of a bidirectional A* search. Further, previous efforts either resulted in an intelligent strategy

suitable for single processor machines or a brute force method amenable to parallel execution Our

technique includes both principles**. It features an intelligent, second step strategy usable on

uniprocessor architectures and a constrained third step process which can be implemented on

Note thai, for clarity, only a single path is depicted in Figure 9. Presenting the entire set of digitally equivalent

paths within the small ellipse hinders the explanatory effects of the figure.

Thi wavefront propagation technique, as a general method, has been implemented on parallel machines Ref. 12.

We rely on this demonstrated capability of the algorithm to claim suitability for multiprocessors.
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multiprocessors. Our process is also flexible. If timeliness is the paramount concern, only the first

two steps need be invoked to produce a quick, reasonable solution When optimality must be

ensured, all steps can be utilized

In summary, we have presented a solution technique which involves mutually cooperating

processes: each serves to ameliorate the poor performance aspects of the others. The first two

steps are efficient and need not be overly concerned with optimality (much as is the human path

planning process). The third step ensures optimality by searching a space which has been greatly

pruned by the efforts of the earlier processes. Further, the better the result of the second step, the

less effort required in the third step. Finally, the last step determines the true optimal path

without resort to heuristic, ancillary operations Our plans for the future include an implementa-

tion of the entire method so that it may be measured against competing processes as well as

diverse problem representations
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