
Calhoun: The NPS Institutional Archive

Reports and Technical Reports All Technical Reports Collection

1988-01

Edifont - an interactive font editing

system / [by] Hector J. Mariscal Olivera,

C. Thomas Wu, [and] Michael J. Zyda.

Zyda, Michael J.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/25864

NPS52-88-001

NAVAL POSTGRADUATE SCHOOL

Monterey, California

EDITFONT - AN INTERACTIVE FONT EDITING SYSTEM

Hector J. Mariscal Olivera

C. Thomas Wu

Michael J. Zyda

January 1988

Approved for public release; distribution is unlimited

""spared for:

FedDocs
D 208.14/2 a ^ Ocean Systems Center

NPS-52-88-001 Diego, CA 92152

oo\

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin

Superintendent

D. A. Marshall

Acting Provost

This work was supported in part by a grant from the Naval Ocean Systems Center,

San Diego. This work was generated from Hector J. Mariscal Olivera's Master's Thesis.

Reproduction of all or part of this report is authorized.

This report was prepared by:

MICHAEL J. ZYl

Associate Professor

of Computer Science

Reviewed by:

VINCENT Y. L)

Chairman

Department of Computer Science

Released by:

m^torATION OF THIS PAGE
DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHO

REPORT DOCUMENTATION PAGE MONTEREY CA 93943-510'

la REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

lb RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

2b DECLASSIFICATION /DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

NPS52-88-001
5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

6b OFFICE SYMBOL
(If applicable)

52

7a NAME OF MONITORING ORGANIZATION

6c. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943
7b ADDRESS (City, State, and ZIP Code)

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION

Naval Ocean Systems Center

OFFICE SYMBOL
(If applicable)

COde 443

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code)

San Diego, CA 92152

10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT
ELEMENT NO NO

TASK
NO

WORK UNIT
ACCESSION NO

11 TITLE (Include Security Classification)

EDITFONT -- AN INTERACTIVE FONT EDITING SYSTEM (U)

rfaV^sca^TjtW&Ti Hector J, LTjg Peruvian Navy, Wu, Chen Thomas, Zyda, Michael Joseph

I3a. TYPE OF REPORT 13b TIME COVERED
FROM TO

14 DATE
1
OyEP

fa
R
n
T
u
^ar.Momh.DaW 15 PAGE

ft

16. SUPPLEMENTARY NOTATION

COSATI CODES 1 8 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

The major goal of this work has been the development and implementation of an interactive

bit mapped font editor that enables the graphics programmer to create different fonts and

icons for use in application programs. The font editor, called edit-font, has been imple-

mented on the Silicon Graphics, Inc. IRIS workstation. Editfont consists of approximately

3500 lines of code, including the program documentation. Fonts created by editfont can be

retrieved from disk and high level routines implemented with the IRIS graphics library. One

feature of the system is the capacity for font extraction from a picture. The steps for

font generation via font extraction are explained in detail. File formats, data structures

and routines used by the system are also described. Software and hardware limitations of

the system are outlined, as well as possible future extensions.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT

QQ UNCLASSIFIED/UNLIMITED ES SAME AS RPT DTIC USERS

21 A8STRACT SECURITY CLASSIFICATION

UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL

Michael J. Zyda

22b TELEPHONE (Include Area Code)

(408)646-2305
22c OFFICE SYMBOL

52Zk

DO FORM 1473, 84 mar 83 APR edition may be used until exhausted

All other editions are obsolete
SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Editfont ~ An Interactive Font Editing System

Hector J. Mariscal Olivera, C. Thomas Wu and Michael J. Zyda *

Naval Postgraduate School,

Code 52, Dept. of Computer Science,

Monterey, California 93943

ABSTRACT

The major goal of this work has been the development and implementation of

an interactive bit mapped font editor that enables the graphics programmer to create

different fonts and icons for use in application programs. The font editor, called edit-

font, has been implemented on the Silicon Graphics, Inc. IRIS workstation. Editfont

consists of approximately 3500 lines of code, including the program documentation.

Fonts created by editfont can be retrieved from disk and high level routines imple-

mented with the IRIS graphics library. One feature of the system is the capacity for

font extraction from a picture. The steps for font generation via font extraction are

explained in detail. File formats, data structures and routines used by the system are

also described. Software and hardware limitations of the system are outlined, as well

as possible future extensions.

$ This work was supported by • grant from the Naval Ocean Systems Center, San Diego and the Naval Postgraduate

School's Direct Funding Program. This work was generated from Hector J. Mariscal Olivera's Masters Thesis.

* Contact author.

TABLE OF CONTENTS

I. INTRODUCTION 7

A. OVERVIEW 7

B. BACKGROUND 7

C. ORGANIZATION 9

H. EDITFONT : SYSTEM OVERVIEW 11

A. STARTING EDITFONT 1

1

B. MAIN MENU 1

1

1. Selecting a file from the directory 11

2. Options on the main menu 13

a. COPY 13

b. NEW 13

c. DELETE 13

d.EDIT 14

e. SET PICTURE 14

f.EXIT 14

C. CHARACTER SELECTION MODE 14

1. ASCII correspondence and example area 14

2. Selecting a character 17

3. Options on the character selection mode 17

a. OPEN 17

b. PICTURE 17

c. SAVE 17

d. ABORT 17

D. CHARACTER EDIT MODE 18

1. Pen options 19

a. Xor pen type 19

b. Xand pen type 19

2. Line options 19

a. Drawing lines 19

b. Erasing lines 20

3. Scaling 20

4. Changing the bitmap size 20

5. Moving the character around 20

6. Copying a character 21

7. Undoing the last command 21

8. Erasing the bitmap 21

9. Changing the character parameters 21

10. Saving the character bitmap 23

E. EDITFONT AS AN ICON EDITOR 23

F. SYSTEM WARNING SIGNALS 24

HI. FONT GENERATION FROM AN IMAGE 25

A. TAKING PICTURES FOR EDITFONT 25

B. USING THE PICTURES FOR FONT EXTRACTION 26

C. FONT EXTRACTION MODE 27

1. Selecting the ASCII correspondence 27

2. Changing the brightness of the image 29

3. Changing the size of the lens 29

4. Extracting a character 29

5. Moving the image 30

6. Exiting font extraction mode 30

D. IMAGE FILE FORMAT 30

IV. FONT UTILIZATION 32

A. SYSTEM LIBRARY ROUTINES 32

l.defrasterfont 32

2. font 33

3. getfont 34

4. getheight 35

B. HIGH LEVEL ROUTINES 35

l.fontdef 35

2. delfont 35

C. AN EXAMPLE PROGRAM 36

D. FONT FILE FORMAT 37

V. SYSTEM CONSIDERATIONS AND CONCLUSIONS 41

A. SOFTWARE LIMITATIONS 41

B. HARDWARE LIMITATIONS 42

C. CONCLUSIONS AND RECOMMENDATIONS 42

APPENDIX A - KANJI FONT FILE CREATED BY EDITFONT 44

APPENDS B - FONT DATA STRUCTURE 54

APPENDIX C - HIGH LEVEL ROUTINES 55

LIST OF REFERENCES 60

INITIAL DISTRIBUTION LIST 61

LIST OF FIGURES

1.1 Font handling routines 10

2.1 Main menu display 12

2.2 Character selection mode 15

2.3 Non-printable characters display 16

2.4 Character edit mode 18

2.5 Character parameter mode 22

3.1 Font extraction mode 28

4.1 Display of a character 34

4.2 Example program 38

4.3 Example font file 39

I. INTRODUCTION

A. OVERVIEW

The Graphics and Video Laboratory of the Department of Computer Science at the

Naval Postgraduate School is equipped with several high performance graphics

workstations manufactured by Silicon Graphics, Inc. of Mountain View, California.

These workstations are based on the Motorola 68020 processor. The workstations have a

graphics library. One of the major deficiencies of the IRIS workstation is its relatively

low-level support functions for defining fonts. Additionally, the system comes with only

a single 9 by 9 bitmapped font. It is the purpose of this study to improve the support on

the IRIS for font and icon construction. For that goal, we have implemented in the C

programming language a font editor, editfont, and a set of font support software.

Editfont is a full featured font editor with capabilities for font definition through a

paint-like interface and for font extraction from digitized images. The font support

software is constructed on the low-level font definition routines available in the IRIS

graphics library. The support software reads into IRIS font memory from disk fonts

defined by editfont.

B. BACKGROUND

The IRIS workstation has the capacity for users to define different fonts for

application programs. It provides a set of utility commands implemented as routines

callable from the "C" language. These routines are :

defrasterfont : define a raster font.

font : selects the desire font.

getfont : returns the number designating the font currently in use.

getheight : returns the maximum height value of the font

strwidth : returns the width (in pixels) of the text string.

The defrasterfont function is the one that defines a raster font. This function loads

the font information from main memory into the special IRIS font memory. This routine

has six input parameters. This information includes sizes of each character, the bitmap

information and the relative position of the bitmap with respect to the current character

position pointer. Besides this routine, no other support is provided for font definition. No

documented file format or font editor is provided. There is a need for a tool that enables

the user to create complex fonts and store them on disk as well as high level routines that

can call the defined fonts.

The editfont font editor is a system that runs on the Silicon Graphics, Inc. IRIS

workstation. Editfont has been implemented applying the concept of user friendly

interfaces. It uses the mouse as its primary input and is a window driven system that

detects any user input errors and warns the user by displaying messages or by beeping the

alarm bell. Chapter II explains the use of editfont to create fonts.

Font generation via font extraction from images is a feature of editfont. This feature

enables the user to extract different characters from a picture taken with a digitizer

camera. Chapter III explains the steps necessary for font extraction.

High level routines are needed to reduce the complexity of defining fonts from that

provided in the IRIS package. There are two routines available for the programmer to

use in his application program :

fontdef : loads a font file from disk to font memory.

delfont : erases the font definition from font memory.

A detailed description of these routines is provided in Chapter IV. Figure 1.1 shows

how the font information is handled by the different parts of the system. Defrasterfont

loads the font information from main memory to font memory. Editfont creates fonts in

disk files and the fontdef routine loads the information from disk directly to font

memory. The dashed lines indicate that internally this routine has to read the information

first to main memory and then move it to font memory. This data movement is

transparent to the user.

C. ORGANIZATION

The above sections have provided an overview of the support tools for font definition

available in the IRIS workstations, and how can this support be improved. Chapter II

provides information on how to use the editfont system for font construction. Chapter

III covers the steps necessary for font generation via font extraction. Chapter III also

includes information about the image format used by editfont, and how to create

compatible image files. Chapter IV covers font utilization using the system functions and

the high level routines. Chapter IV also explains the different parameters needed to

define a font. Chapter IV also shows the font file format used by the font editor. Chapter

V covers the system's limitations and future recommendations.

rl

defras terfont

EDIT FONT

1 npu t

f on t memor y lr

RAM memory

f on tde f

font data

T

LJ DISK

Figure 1.1 Font handling routines

10

E. EDITFONT : SYSTEM OVERVIEW

Editfont is a simple, easy to learn, easy to use font editor implemented on the IRIS

workstation. The system is menu driven and commands are entered using the mouse

device. Users errors are checked by the system and appropriate warning messages as

well as sound signals are issued. Editfont consists of four main windows or modes

which the user can enter at any time. These modes are: the main menu, character

selection mode, character edit mode and font extraction mode.

A. STARTING EDITFONT

To start the font editor, one types "editfont" on the IRIS. The main menu then

appears on the screen. The user must be in the directory in which the font files reside.

B. MAIN MENU

The first screen shown by the system is the main menu. The MIDDLEMOUSE is

used to select options from this menu. Figure 2. 1 shows how this window is displayed on

screen. The main menu contains six options, mostly for handling font files, and a

directory window that displays the file names stored in the current directory.

1. Selecting a file from the directory

At the main menu, the system displays the current directory in a small window.

At most, 15 file names can be seen in this window. If the user needs to see more file

names, the directory can be scrolled by clicking inside the upward or downward arrows.

11

Figure 2. 1 Main menu display

To select a font file or a picture file, the cursor must be moved so it points to the

desired file name. Then MIDDLEMOUSE must be pressed. The selected file is then

highlighted. Editfont takes this file name for later operations.

12

2. Options on the main menu

a. COPY

This option allows the user to copy a font file into a file of a different name.

To copy a file, the user has to select one from the directory window and then select the

copy option. The system then prompts the user for the name of the new file. The user

can enter any name using the keyboard. The system does not accept special characters as

part of the name, it ignores such characters. If the user hits the carriage return key

without typing a name, the system returns to the main menu without creating a new file.

The copy option is not restricted to act only for font files, any file selected by the user can

be copied.

b. NEW

This option allows creation of a new font file. When activated, a prompt

appears asking for the name of the new file to be created. After the file name has been

entered, the system is placed into character selection mode. This mode is described

below.

c. DELETE

This option is used to erase any undesired font file from disk. To use this

option, a file must be selected and then the MIDDLEMOUSE clicked on DELETE. At

this point, a warning window appears, showing the name of the file that is going to be

erased. The user has the option of clicking in CONTINUE, to erase the file, or clicking in

ABORT to cancel the delete option. This command deletes any selected file, including

non-font files.

13

d. EDIT

This option allows the modification of an existing font file. By selecting a

font file and clicking on EDIT, the system is put into character selection mode. If the

selected file is not a font file, the system warns the user by ringing the keyboard bell.

e. SET PICTURE

This option allows the user to select a picture file name for character

extraction. The system does not check if the file is a valid picture file until the PICTURE

option is selected on the character selection menu. Information about character

extraction from a picture can be found in Chapter III.

f. EXIT

This option terminates the execution of editfont.

C. CHARACTER SELECTION MODE

Character selection mode is entered when the user selects NEW or EDIT on the main

menu. This mode is used to select the characters that the user wants to edit or create.

This mode displays the font file name that is currently being used, the ASCII

correspondence characters, and an example of how the font characters currently look.

Figure 2.2 shows how this window is displayed on screen.

1. ASCII correspondence and example area

The ASCII correspondence characters that are printable characters are

displayed. Non-printable characters are displayed and marked specially. Figure 2.3

shows how the non-printable characters are displayed in character selection mode.

14

Figure 2.2 Character selection mode

15

000 = nil 017 = AQ

001 = A A 018 = A R

002 = A B 019 = A S

003 = A C 020 = A T

004 = A D 021 = AU

005 = A E 022 = A V

006 = a F 023 = AW
007 = AG 024 = AX

008 = A H 025 = aY

009 = A
I 026 = A Z

010 = A
J 027 = M

Oil = AK 028 = A
/

012 = A L 029 = A
]

013 = AM 030 = A A

014 = aN 031 = A

015 = A 032 = blank

016 = A P 127 = A?

Figure 2.3 Non-printable characters display

The example area displays font characters already created. When the user enters

character selection mode, all the defined alphabetical characters are displayed in the

example area. To see the rest of the characters (non-printable and special characters), the

user must click inside the rectangle containing the word "example".

16

2. Selecting a character

To select a character in this mode, the user has to click inside the square in

which the ASCII correspondence character is located. The selected character is then

highlighted. Another way of selecting a character is by clicking on the characters

displayed as examples. This mode is useful for when the font on which we are working is

non-Roman.

3. Options on the character selection mode display

a. OPEN

The OPEN option displays the bitmap of the selected character as filled

polygons or "fat bits". When this option is selected, the system enters edit mode. Edit

mode is explained below.

b. PICTURE

The PICTURE option transfers control to character extraction mode. To

enter this mode, the user should previously have selected a picture file from the main

menu. For information about character extraction techniques, see Chapter HI.

c. SAVE

The SAVE option stores all the changes that have been made to the current

font. This option returns the user to the main menu window.

d. ABORT

The ABORT option does not save the changes to the current font file. This

option returns the user to the main menu window.

17

D. CHARACTER EDIT MODE

Character edit mode allows the modification of the bitmap information of the

selected character of the current font file. Figure 2.4 shows how this mode looks on the

screen. The display consists of the following :

1) Filled polygon (Fat bit) view of the character.

2) Actual size view of the character.

Figure 2.4 Character edit mode

18

3) Information on the edited character:

- Character name.
- ASCII correspondence.

- Character bitmap height.

- Character bitmap width.

4) Option area showing the editing options.

1. Pen options

Character edit mode has two pen types for the user to choose, Xor pen and Xand

pen. The system pen type default is Xor.

a. Xor pen type

Xor pen type has the following behavior: If the selected fat bit is OFF [ON]

then it is set to ON [OFF]. If the user moves the cursor with the mouse without releasing

the button, then the fat bits that are touched by the cursor are set ON[OFF].

b. Xand pen type

Xand pen type has the following behavior: If the selected fat bit is ON

[OFF] then it remains so. If the user moves the cursor with the mouse without releasing

the button, then the fat bits that are touched by the cursor are set ON [OFF].

2. Line options

a. Drawing lines

To draw a line on the bitmap, the user must select first the Xor option. In

this case, the Xor option enables the drawing of the lines. Then, the user must select a

line type option. There are four options for the type of line to be drawn. These option are:

HORZ to draw horizontal lines.

VERT to draw vertical lines.

L. DIAG to draw left diagonals.

R. DIAG to draw right diagonals.

19

By clicking at the desired position inside the bitmap of fat bits, the system

draws the corresponding lines. The system continues drawing lines if the user does not

release the button but moves the cursor. This is desirable as a "paint mode" for the

bitmap.

b. Erasing lines

To erase a line on the bitmap, the user must select first the Xand option. In

this case, the Xand option acts like an erase mode. Then, the user must select a line type

option. By clicking at the desired position inside the bitmap of fat bits, the system erases

the corresponding lines.

3. Scaling

The fat bits can be scaled up or down to enable the user a better view of his

work. This option does not alter the bitmap size, it only varies the fat bit display's size.

Display scaling is performed by clicking in +SCALE or -SCALE.

4. Changing the bitmap size

The size of the bitmap can be changed by using the +HEIGHT/-HEIGHT

options to increase/decrease the height of the bitmap and by using the +WIDTH/-

WIDTH options to increase/decrease the width of the bitmap. The system allows heights

and widths ranging from to 64 bits.

5. Moving the character around

Options to move the character inside the bitmap are available. These options

are: RIGHT, LEFT ,UP and DOWN. No restriction is placed on the user. It is possible to

lose the character by moving it outside the bitmap.

20

6. Copying a character

The user can transfer the bitmap information of any character into the currently

opened character. Copying a character does not erase the bitmap information of the

currently opened character. The transfered character is overlayed with the existing

character. This behavior is desired for constructing a character from other defined

characters in the font. To copy a character, the user must select the TRANSFER option.

This option displays a menu similar to the one shown by character selection mode. The

user selects from this menu the character he wants to copy into the currently opened

bitmap. There are two options under this mode: ABORT option and SAVE option. To

transfer the selected character, the user must click in the SAVE option. Otherwise, he

selects the ABORT option. Both options return the user to the currently opened bitmap.

7. Undoing the last command

The user has the option of undoing the last changes to the bitmap. To do so, the

user must click inside the UNDO option in the command area. Changes to the bitmap

sizes are not undone by this option. The user has to increase or decrease the size of the

bitmap using the commands described above.

8. Erasing the bitmap

Each fat bit of the bitmap can be erased using the pen types described above.

The user can erase the entire bitmap by using the ERASE option in the command area.

This option resets all the bits of the currently opened bitmap.

9. Changing the character parameters

Editfont initializes all character parameters to avoid forcing the user to set each

parameter for each character. The bitmap size is set as explained above. The other

21

parameters are set by clicking in the PARAMS option. The PARAMS options displays a

menu showing the currently set parameters for the character. Figure 2.5 shows how this

is displayed on screen.

By clicking inside the "+" or "-" areas, the PARAMS option increases or

decreases the values of the parameters. The user can change three parameters in this

Figure 2.5 Character parameter mode

22

option : the X offset of the bitmap, the Y offset of the bitmap and the skipwidth.

Information about character description parameters can be found in Chapter IV. The

ranges accepted by the system are from -64 to 64.

A special case to be noted is the setting of the skipwidth. By default, the system

sets this parameter automatically to one more than the actual character bitmap width. If

the user changes the skipwidth, it no longer varies with the character width and remains

constant. The only way to tell the system to set this parameter automatically is to again

set its value to one more than the current bitmap width. The defaults values are as

follow:

X offset =

Y offset =

Skipwidth = 1 + width of bitmap

10. Saving the character bitmap

To save the current character of the font, the user must click inside the SAVE

option. If the user is not sure of the changes he has made, and does not want to save it,

he can click in the ABORT option. ABORT places the system in character selection

mode.

E. EDITFONT AS AN ICON EDITOR

Many graphics application programs need to use several small icons. Although

editfont was implemented for the creation of fonts, the system editing features and the

font extraction from images capability, makes this font editor a nice tool for the creation

of icons.

23

Icons can be mapped to the ASCII characters instead of font characters. By calling the

high level routines explained previously, these icons can be treated like character fonts.

There is a limit when it cames to the size of the icon that can be created. Editfont

maximum heights and widths of the character bitmap range between and 64.

F. SYSTEM WARNING SIGNALS

A good user interface signals the user of the application of any errors that he has

committed. Editfont tries to signal the user when an invalid option has been selected or

something wrong has happened. The system issues a sound signal on the following

conditions:

- User tries to edit a non-font file.

- When there are no more files on the directory and the user keeps scrolling.

- User types a wrong file name.
- User tries to create a new font file with the same name as an old one.

- User tries to open a non-picture file for font extraction.

- User tries to edit a character without selecting one.

- User exceeds the limits on sizes, limits on parameter ranges etc.

24

III. FONT GENERATION FROM AN IMAGE

Font generation via font extraction is a technique that enables the user to create fonts

by extracting characters from a digitized image. The Graphics and Video Laboratory of

the Department of Computer Science at the Naval Postgraduate School is equipped with

an Eikonix digitizer camera. This device is connected to a VAX/VMS 1 1/780 computer.

Software for creating images with the Eikonix camera can be found in reference 1. This

reference presents two useful programs. The first program called camera, digitizes an

image using the Eikonix digitizer camera, and stores the data in a file. The second

program called display, displays the image on the IRIS workstation.

The editfont font editor has the capacity for easy and rapid font extraction from an

image. Editfont uses the same image format as the camera and display programs. The

image format is explained in the last section of this chapter. The next section explains

the actions necessary when using the camera program. These steps generate a

compatible image for use in editfont.

A. TAKING PICTURES FOR EDITFONT

-Turn on the camera and prepare the camera according to the user instructions.

-When ready, run the camera program.

-At the prompt "What is the output filename", enter the desired name of the file in

which the picture is going to be stored.

-At the prompt "Do you wish to do black and white or color image", enter 1.

Editfont only accepts black and white images.

25

-At the prompt "Do you wish the center of your image to be the same as the center of

the cross hairs on the camera", enter 1. Centered images are recommended for font

extraction.

-At the prompt "Enter the number of columns wide the digitized image will be",

enter 1024. This value is the maximum width resolution on the IRIS display. Editfont

does not accept values greater than 1024. It accepts values less than this number.

-At the prompt "Enter the number of lines deep the digitized image will be" , enter

768. Editfont does not accept images with more than than 768 pixels of height.

-At the prompt "Enter the title of the image", the user can type any comment

Editfont does not use this information.

-When "push the run switch" is prompted, be sure that the camera is correctly set and

push the corresponding button.

-If no error occurs, the user will have a compatible image for the use with editfont

system.

B. USING THE PICTURE FOR FONT EXTRACTION

After taking the desired pictures with the digitizer camera, and transfering the

corresponding files onto the IRIS workstation, the user has to enter editfont as explained

in Chapter n. At the main menu, the user has to select the desired image file. Selection

of the image file is done in the same way as selecting a font file. This was explained in

Chapter n. When the image file name is highlighted, the user has to click in the option

SELECT PICTURE. Editfont uses this image file when the user enters font extraction

mode.

26

At this time, the user has to select the font file where the extracted characters are to

be stored. This is done by creating a new font file or editing an old font file. By clicking

in NEW or EDIT options at the main menu, the user is sent to character selection mode.

Inside this mode, the user has to select the PICTURE option. This option puts the user

into font extraction mode.

C. FONT EXTRACTION MODE

Font extraction mode displays the menu shown in Figure 3.1. In this mode, there are

two areas: the image display area and the command area. When the cursor is moved into

the image area, the arrow shaped cursor changes to a square shaped cursor with

transparent interior. This cursor is used as a camera lens. The user must move this cursor

to select the character for extraction. Font extraction mode contains the following

display:

-Display of the selected image.

-Cursor shown as a square for extracting the desired pixels.

-The command area contains:

-Selection of the ASCII correspondence character

-Manual/Automatic selector

-Brightness/darkness selector

-A view of the extracted character

-Option for moving the image UP or DOWN
-Exit option

1. Selecting the ASCII correspondence

The current ASCII correspondence character that is assigned to the extracted

character is displayed inside the command area. When the user enters font extraction

mode for the first time, the ASCII correspondence is set to the letter "A". There are two

modes for changing the ASCII correspondence value: the MANUAL mode and the

27

aH 9 r i *,' f U *7 * £ A x h flj

P

*

*• *r * *« s 7 It It y 6* I 3|
? * (l/Ul L .. r A i» tf * M * */ ..-

lb * (<*») *> + tu

Utu) o 7 i* X f- U> t f\
4* * m i; s lu o yt n$ fc * M <rr /

]

H ha tt /* A< r> t
An
</u> -4- 7 k$ "S -"V A* a irf

%t \ma J » n»» A MM V t* m t> > mo i *3
-v

• ">•* *» * >» »J> jl » X m \

R r« *> 9 rj •; r« * K ft ft U t* * 0<m
W

:

« *J 7 (f«)i * 4 (»k * * <*)• * -y
j

N fi«* A. v

Figure 3.1 Font extraction mode

AUTOMATIC mode. In the MANUAL mode, change of the ASCII value is done by

clicking into the "+" or "-" options. The "+" option increases the ASCII value and the
"-"

option decreases the ASCII value. For each extracted character, the user has to change

this setting. In the AUTOMATIC mode, the user has to set only one time the ASCII

value. Then for each extracted character, the system increases the current ASCII value to

the corresponding successor value.

28

2. Changing the brightness of the image

Editfont has the capacity for changing the intensity of the image's brightness.

This allows the user to modify the intensity cut-off point for bitmap extraction. To

change the brightness of the image, the user has to move the brightness selector. This is

done by placing the cursor inside the brightness selection area. Pressing the

MIDDLEMOUSE and sliding the selector to the left, the brightness increases, and by

sliding the selector to the right, the brightness decreases. There are 255 possible intensity

values. A scale is provided for the user to refer to when changing the brightness.

3. Changing the size of the lens

To change the width of the bitmap extraction lens, the user must press the

LEFTMOUSE. This action increases the width until the user releases the button. To

change the height of the lens, the user must press the RIGHTMOUSE. This action

increases the height until the user releases the button. The lens width and height can

range from to 64. If the lens width or height is increased beyond the maximum, it wraps

around to zero. The default lens size is as follows:

Width = 30

Height = 30

4. Extracting a character

Extraction of a character is done by moving the lens around the image and

centering the image character inside the frame of the lens. When the user is ready to

extract the character, he must press the MIDDLEMOUSE. By doing this, a view of the

extracted character is displayed in the command area. If the user does not agree that the

character extracted is good, he can try again in the same manner. If the system is in

29

manual mode, then the user has to select the ASCII correspondence character for the next

character to be extracted.

5. Moving the image

The font extraction mode accepts images ranging from to 768 pixels high. In

order to display the command area, part of the image is not seen. There are two options

available to move the image display. The DOWN option displays the bottom part of the

image. The UP option displays the upward part of the image.

6. Exiting font extraction mode

When the user has finished extraction of the desired characters, he must click in

the EXIT option. This option returns the user to character selection mode. At this point,

the user can see how his new font looks. The next step is to clean up and remodel the

characters. This is done by opening the bitmap of each character. This procedure was

explained in Chapter II.

D. IMAGE FILE FORMAT

Throughout editfont, the image file format is transparent to the user. For

completeness, this section explains how the image data is handled by editfont.

There are three type of images that can be taken using the camera program: Black

and white images, Color images and Dithered images. Editfont can only handle black

and white images. The Eikonix camera has the capacity of taking images of sizes up to

4096 * 6400 pixels. This exceeds the IRIS screen resolution. For this reason, editfont

was implemented to accept images that range from to 1024 pixels wide and from to

768 pixels high. Any other image size is rejected by the system. The image format used

by the system consists of the following parts:

30

-Header

-Image pixels information

The header consists of: a two byte field for storing the type of image, a two byte field

for storing the number of lines in the image, a two byte field for storing the number of

columns in the image, and an eighty byte field for storing any user comment about the

image. The image pixel information for a black and white image is stored as follows: (1)

the image pixels are stored one by one from the upper left pixel in the first line to the

bottom right pixel in the last line, (2) one byte is needed to store each pixel of the black

and white image. Each pixel holds a value ranging from to 255. This value indicates

the gray level of the pixel. The value corresponds to the white color and the 255 value

corresponds to the black color.

Editfont has a default intensity value. If a pixel has a value less than the system

intensity, then editfont extracts this pixel as white. If the pixel value is greater than the

system intensity, then editfont considers this pixel as black. If the user changes the

intensity of the system, then the system changes the color ramp to recolor all the pixels

in the displayed image.

31

IV. FONT UTILIZATION

A. SYSTEM LIBRARY ROUTINES

Font memory is manipulated by calling font handling primitives or routines in the

IRIS graphics library. There are basically four C language routines that the IRIS user can

call.

1. defrasterfont

The defrasterfont routine defines a raster font It loads the font data from main

memory to the IRIS special font memory. The C language specification of this routine

is as follows: [2]

defrasterfont(n, ht, nc, chars, nr, raster)

Short n, ht, nc, nr;

Fonchar chars[];

short rasterQ;

The six input parameters store the font data. This font data includes:

n : The internal font name.

ht : The maximum height of the characters in the font,

nc : The number of characters in the font,

chars : The description of each character in the font,

nr : The size of the raster array.

raster : An array of one dimension with index from zero to nr.

This array contains the bitmap for each character.

The description of each character gives the relative position of the character

bitmap with respect to the current character position. It also provides the size of the

character bitmap. The chars array stores this description. For example, chars[V].w

holds the width of the character 'z\ The fields of this array are :

32

offset : The position inside the array raster where the character

bitmap information is stored,

w : The width of the bitmap character,

h : The height of the bitmap character,

xoff : The horizontal offset from the current character

position where the character is going to be displayed,

yoff : The vertical offset from the current character position

where the character is going to be displayed,

skipwidth : The amount to be added to the current character position

after drawing the character.

Figure 4.1 shows an example of a character displayed with its character

description. The current character position is determined from the user call cmov2i or by

the last string displayed. This example shows a 9 by 9 character. This size is the default

character font size.

When using the defrasterfont routine, the user has to manipulate the font data.

This means, the user has to define his own data structure, and assign the corresponding

values of the font to this data structure. This work can be avoided by using higher level

routines. The loading of the font data into the IRIS font memory then becomes

transparent to the user. These high level routines are described below.

2. font

The font routine is used to select one font from the ones stored in font memory.

Calls to routine charstr use this font selection. The C language specification is as

follows:

font(fntnum)

short fntnum;

fntnum is the internal name of the font that the user wants to call.

33

s k i

p
wi dtl

mncDE

position M

JLJlJC JLJ

J.he 1 gh

Iwid t h^ +>

offset = X

width = 8

height = 9

x of f s =

y of

f

s = -2

sk i pw = 12

charac t er

description

7e00, c300, c300

c300, 3c00, c300

c300, c300, 7e00

raster array
con tents
at pos i t ion X

Figure 4. 1 Display of a character

3. getfont

The getfont routine returns the number designating the font currently in use.

The C language specification is as follow:

long getfontQ

34

4. gethcight

The getheight routine returns the maximum height value of the font currently in

use. The C language specification is as follow:

long getheight()

B. HIGH LEVEL ROUTINES

There are two high level routines available for the use in any application program,

fontdef and delfont. Using these routines, data structures and data transfers into font

memory are transparent to the user. Appendix B shows the data structure used by these

routines and by the font editor. Appendix C shows the C code of the fontdef and delfont

routines.

1. fontdef

The fontdef routine loads a font file, created by editfont, from disk to the IRIS

font memory. The C language specification is as follow:

fontdef (n, filename)

short n;

char fllename[];

The two input parameters are:

n : The internal name that the font will take,

filename : The file that holds the desired font.

2. delfont

The delfont routine deletes a font from the IRIS font memory. The C language

specification is as follow:

35

delfont (n)

short n;

The input parameters is:

n : The internal name of the font.

C. AN EXAMPLE PROGRAM

Once a font is generated using editfont, the user can use the font font in his

application program. Fig 4.2 shows an example program that loads two different fonts

into font memory, and displays two strings using these fonts.

The high level routines are stored in the file "fontdef.c". The first step is to get the

portion of the code containing the high level routines. This is done by the statement

#include 'fontdef.c'.

The loading of the different fonts is done by calling the fontdef routine. In the

example, the font stored in the file myfontl is loaded into font memory using 1 as the

internal name. The font stored in the file myfont2 is loaded to font memory with the

internal name 2. The value is reserved for the standard IRIS font. The user can not use

this internal name to define any other font. Once the desired fonts are loaded, the user

can invoke these fonts at any time. In the example, font(l) is called first. The system

uses the invoked font style when drawing text strings.

The characters are displayed using the current color definition. This can be changed

by using the color() library routine. The example program displays two strings with

different font style and different color definition.

The position where the text is going to be located on screen is set by calling the

cmov2i routine. The position of each character with respect to the previous character is

determined by the skipwidth of the previous character. The skipwidth by default is one

more than the width of the character. This can easily be changed by going back to the

font editor and selecting the PARAMS options inside character edit mode.

Font memory is limited by hardware configuration. After loading and using the

desired fonts, these must be deleted from font memory to avoid overloading it. This is

done by calling the delfont routine. Programs that use different fonts and textures

commonly overload the font memory. If this happens, all characters are displayed using

the standard font. The user must delete some textures and fonts from font memory to

recover from this.

D. FONT FILE FORMAT

Editfont and the high level routines use the same file format for reading or writing

the fonts. Fig 4.3 shows the bitmap information of one character stored on disk.

Appendix A shows an entire font file created by editfont using the font extraction mode.

The first line of a font file contains the font maximum height This value is computed

by editfont when the user creates a font The font maximun height value ranges from to

64. Each character is stored in sequential alphabetical order. Characters not defined by

the user do not occupy space in the font file. The information stored for each defined

character is divided in two groups:

-The character description.

-The bitmap information.

37

#include "fontdef.c'

main()
*

*

fontdef(1 ."myfontl ");

fontdef(2,"myfont2");

*

*

font(l);

color(YELLOW);

cmov2i(100,400);

charstr("This is written using font 1");

*

*

font(2);

color(YELLOW);

cmov2i(700,200);

charstr("This is written using font 2");

*

*

delfont(l);

delfont(2);}

Figure 4.2 Example program

38

! 6 33 10 1 25
7800
fcOO
fcOO
fcOO
fcOO
fcOO
fcOO
fcOO
fcOO
fcOO
fcOO
fcOO
fcOO
fcOO
fcOO
fcOO
fcOO
fcOO
fcOO
fcOO
fcOO
fcOO
fcOO
7800
0000
0000
0000
0000
7800
fcOO
fcOO
fcOO
fcOO

-^ASCII correspondence
^ w i d t h

_^»~he ight

-^x offset
-^-y offset
-^-s k ipwi d t h

Ch arac t er

b i tmap

Figure 4.3 Example font file

39

The description of each character is stored in one record in the following order:

-ASCII correspondent

-Bitmap width

-Bitmap height

-X offset

-Y offset

-Skipwidth

The bitmap of each character is stored in several records depending on the character

size. Each record contains a hexadecimal value which represent 32 bits of information

taken from left to right and from top to bottom of the bitmap.

V. SYSTEM CONSIDERATIONS AND CONCLUSIONS

The editfont system code is comprised of 5 program files and 2 support files with a

total of 3,500 lines including documentation. The code and documentation for the current

version of editfont is available in the Naval Postgraduate School's Graphics and Video

Laboratory in the Department of Computer Science.

A. SOFTWARE LIMITATIONS

The system maximum font size is 64 pixels in height and 64 pixels in width. These

values have been calculated by taking the average font size needed in different graphics

programs. Although the system can be changed to accept values greater than the specified

above, it is not recommended as larger fonts easily overload the font memory of the

IRIS.

Inside character edit mode, the user experiences some system degradation when the

bitmap size is increased to its maximum. This degradation is minimal. It occurs because

of the large number of filled polygons on the screen. One factor that influences this

degradation is the fact that editfont has been implemented using double buffering.

Double buffering was chosen for its capability for smooth picture transitions.

The image format used by the system is not an IRIS standard image format. The

image format implemented for the system, was chosen because of its simplicity and easy

data manipulation. Modification of the image format for font extraction is suggested to

make editfont more standard.

41

The font extraction mode permits the user to extract different fonts from printed

documents. This mode can also be used for icon extraction. In this case, the icon sizes

are limited to the maximum of the font characters. The implementation of an icon editor

based on the editfont program is recommended.

B. HARDWARE LIMITATIONS

The font editor has been implemented to run on IRIS workstations with at least 12

bit planes. Editfont uses somes bits of the planes to mask the character bitmap lens in

font extraction mode.

Font memory is limited in storage to 16K 16 bit words. The user is at risk of

overloading the font memory when he uses many fonts and textures at the same time in

his application program. If the font memory is overloaded, then the text drawings are

displayed using the standard font. To avoid overloading the font memory, the user must

load a maximum of one or two fonts into the font memory. After using these fonts, delete

them from font memory using the delfont routine explained previously, and then load

the new fonts.

C. CONCLUSIONS AND RECOMMENDATIONS

This study has presented support tools for font generation on the IRIS graphics

workstation. Graphics applications programmers can use the proposed font editor to

improve the different text displays of their applications. A new technique for font

generation is implemented in the proposed font editor. Font generation via font

extraction. This powerful tool enables the user to generate complex fonts by extracting

them from printed documents.

42

Many applications displays represent objects by using icons. The editing capacity of

editfont, the font extraction feature, and the usage of the high level routines, enables the

graphics application user to generate not only fonts but icons as well. These icons can be

treated as font characters. The implementation of high level routines for icon handling is

recommended.

Replicated fonts files are very common when different applications use the same

fonts. The implementation of a font and icon library is recommended. This library

should be stored in a global directory. Any user should be able to load directly from this

directory the needed fonts or icons. A program should be implemented for searching the

available fonts and icons stored in this global directory. This program should display any

font or icons that the user wants to see. This reduces replicated data in a limited storage

enviroment such as the IRIS workstation.

43

APPENDIX A - KANJI FONT FILE CREATED BY EDITFONT

36

24 240026
00000000

00000000

00000000
00000000

00000000

00000000

00000000
00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000
00000000

00000000

00000000
00000000

00000000
00000000

00000000

00000000
A24 240026
00000000

00300000

07c01000

00801000
3ffel000

0081fe00

lffcl200

10841200

10841200

lffcl200

10841200

10841200

lffc2200

00802200

00802200
0ff84200

00804200
00808200

3ffd3cOO

00000000
04441000

08420800

10410400

00000000

B 24 24 26

00000000

00800000

018ffe00

03000600

02000c00

06003000

0420c000

0c230000

08630000

18c30000

fffleOOO

18c01800

18dffeOO

18800cOO

09800cOO

OdOOOcOO

05000cOO

07000c00

06000c00

07000cOO

Od001800

09031800
1981fOOO

00000000

C24 240026
00000000

OOcOOOOO

00300000

00000000

OlfOOOOO

00100000
00100800

00101000

7ff02000

45

0030cOOO

00530000
005c0000

00980000
00940000

01140000

01120000
02110000

02108000

04104000
08102000

10101800

60100600

OOfOOOOO

00000000

D24 2400-1
00000000

04020000
04040000

08080000

08100000

10202000

18401000

24fff800

24000400

44102200

44201000
04400800
048fc400

05104200

04284000

04448000

04830000

04030000

04048000

04084000

04102000

04201000

05cOOeOO

00000000
E24 240026
00000000
OOlffeOO

7fc08200

40408200

40408200

40408200

40410200
40410200
40420200
40420400

40440400

7fc80400

40401c00

40400000
405ffc00

40500400

40500400

40500400

40500400
40500400

40500400

d0044000
Iffc7f00

00000000

F24 240026
00000000

007c0000

01c60000
If7ff000

10183800

30000800

07038000

0a854000

07038000

00000000
00100000

00200000

00400000

00480000

00300000

00000000

00000000

OfffcOOO

laaa8000

0aa90000

OeabOOOO

03feOOOO

00000000

00000000

G 24 24 26

ffffffOO

47

80000100

80000100

9ffff900

90000900
90000900

93ffc900

92004900

92004900

927e4900

92524900

92724900

92024900

92024900

93fe4900

90004900

90004900

9fffc900

80000900

80000900

fffff900

00000100

00000100
ffffffOO

H24 240026
00000000

7fcff800

40480800

40480800
40480800

7fcff800

40480800

40480800

40480800

7fcff800

40000800

40000800

40000800

40000800

40000800

40000800

40000800

40010800

40008800

40004800

40002800

40001800

48

00000000

00000000
124 240026
ffffffOO

ffffffOO

cOOOleOO

c0003cOO

C0007800
OOOOfOOO

OOOleOOO

0003cOOO

00078000

OOOfOOOO

OOleOOOO

OffffOOO

OffffOOO

OOfOOOOO

OleOOOOO

03cOOOOO

07800000

OfOOOOOO

leOOOOOO

3c000300

78000300

f0000300

ffffffOO

ffffffOO

T24 240026
00000000

00000000

00000000

00000000

3eOOOOOO

08000000

08000000
ObcOOOOO

0a400000

0a7c0000

0a500000

Obd3cOOO

0a924000

3e520000
02520000

0253cOOO

00104000

007c4000

49

00024000

0003c000

00000000
00000000
00000000

00000000

U24 240026
00000000

00000000

OOffOOOO

00810000

04810000

04810000

04810000
04ff0000

04000000
04000000

07ffe000

00002000

000c2000

00182000

00302000

006c2000

7ffffe00

00c60000

01830000
03018000

0600c000

0c006000

00000000

00000000
V24 240026
03006000

0500d000
09819800

18810800

lOffOcOO

607e0400

C0000200

80000200

c387c300

4484cl00

44840100

44884100

84ccc200

36478200

8ffe2aOO

84fbc700

40830200
60932600

30da8600

18660400

06000400
01803800
OObfeOOO

00000000
W24 240026
00000000

00410000

00410000

OlfTcOOO

00410000

00410000

Offff800

00000000

00000000

OlffcOOO

01084000
01084000
01084000
OlffcOOO

01084000

01084000
01084000
OlffcOOO

00630000
00cl8000

0180cOOO

03006000

00000000
00000000
Z 24 24 26

00000000

00000000

00000000
00000000

00000000

00080000

002a0000

002a0000

002a8000

002a8000

51

002a8000

002a8000
007f8000

06408000
07428000

03f48000

01988000

008c8000

00c68000

00438000

00430000

00420000

00420000

00420000

q24 240026
00000000
00000000

18000c00

14001400

12002400

11004400

10808400

10410400

10220400

10140400

10080400

10000400

10000400

10080400

10140400

10220400

10410400

10808400

11004400

12002400

14001400

18000c00

00000000

00000000
w24 240026
00000000

00000000
OOffOOOO

01008000

02004000

04002000

52

08001000

10000800

10000800

10000800

10000800

10000800

10000800

10000800

10000800

10000800

10000800

08001000
04002000

02004000

01008000
OOffOOOO

00000000

00000000

53

APPENDIX B - FONT DATA STRUCTURE

/* this is an IRIS-2400 Program.

This is file fontdef.extern

It contains the external declarations for routine fontdef so that

other functions can access the font definition data arrays.

#define MAXRASTER 16384 /* max number of raster words available */

/* We compute this value in the following fashion:

The maxwidth of each char is computed in 16 bit

words. That value is multiplied by the maxheight.

That value is then multiplied by 128 chars in the

set. For example, 48 bit by 48 bit chars need

18432 raster spots. 64 bit by 64 bit chars need

32768 raster spots.

extern Fontchar chars[128]; /* the Font table */

extern unsigned short raster[MAXRASTER]; /* the raster defs for this font

extern long maxheight; /* the max pixel height for this font */

extern long maxwidth; /* the max pixel width for this font */

extern long chardefined[128]; /* TRUE if the char is defined, FALSE
otherwise */

extern long rptr; /* the last written spot in array raster */

extern unsigned long temp[1000]; /* this array is used to reverse the char

defs. It must equal maxwidth in 16 bit

words times maxheight. 256 is good for

max 64 by 64 chars.

*/

54

APPENDIX C - HIGH LEVEL ROUTINES

/* this is an IRIS-2400 program */

/* this is routine fondef

It defines a new raster character font.

It reads a specified font from a font file.

*/

#include <stdio.h>

#include "gl.h"

/* get the declarations for the font */

#include "fontdef.h"

fontdef(fontnum,filename)

/* you select the number you want to call this guy */

long fontnum;

/* passed in file name */

char filename[];

{

/* temp loop index */

long ij,k;

/* temp loop variable */

long jj;

/* file pointer for the font file */

FILE *rfp;

/* temp char value */

char charval;

/* size of this bitmap (real size) */

long width.height;

/* xoffset and yoffset for the char*/

long xoffset.yoffset;

55

/* amount to skip after this char is in */

long skipwidth;

/* temp char array */

char tmp[150];

/* number of words per row */

long words;

/* temp counter to read in the bitmaps */

long icnt;

/* clear the char table... */

for(i=0; i < 128; i=i+l)

{

/* no space for this char def */

chars[i].offset=0;

/* bitmap is zero in width */

chars[i].w=0;

/* bitmap is zero in height */

chars[i].h=0;

/* no x offset */

chars[i].xoff=0;

/* no y offset */

chars[i].yoff=0;

/* no skip width */

chars[i].width=0;

chardefined[i] = FALSE;

}

/* clear the raster array */

for(i=0; i < MAXRASTER; i=i+l)

{

raster[i]=0;

/* no max width yet... */

maxwidth=0;

56

/* open the named font file */

rfp=fopen(filename,"r");

if(rfp == NULL)
{

perror("FONTDEF: ");

printf("FONTDEF: cannot open file %s!0,filename);

exit(l);

/* read the max height in pixels */

fscanf(rfp,"%d",&maxheight);

/* scan past the end of the line */

fgets(tmp,150,rfp);

/* say that we havent used any raster space yet */

rptr = -l;

/* read until we run out of file */

while(TRUE)

{

/* get a char def line */

i=fscanf(rfp,"%c %d %d %d %d %d",&charval,&width,&height,

&xoffset,&yoffset,&skipwidth);

/* scan past the end of the line */

fgets(tmp,150,rfp);

if(i <= 0)

{

/*eof*/

break;

/* we have a character def... */

/* do we have a new max width? */

if(width > maxwidth)

{

maxwidth=width;

/* we have a character def */

j=charval;

57

/* say the char spot is defined */

chardefined|j]= TRUE;

chars[j] .offset=rptr+ 1 ; /* start of this bit map */

chars[j].w=width; /* width of this bitmap */

chars[j].h=height; /* height of this bit map */

chars[j].xoff=xoffset; /* x offset for the char */

chars[j].yoff=yoffset; /* y offset for the char */

chars[j].width=skipwidth; /* skip this many pixels after

you draw the char */

/* we need to read 'height' rows of data.

the first row we read is the last one to go into

array raster.

*/

/* compute number of words per row */

words = ((width- 1)/1 6)+ 1;

/* the total space we need is i times height */

i=words*height;

/* read each row... */

icnt = -l;

for(k=0;k< height; k=k+l)

icnt=icnt+l;

/* we read across the row but its backwards... */

for(jj=l
; jj <= words; jj=jj+l)

{

fscanf(rfp,"%4x",&temp[icnt+words-jj]);

icnt=icnt+words- 1

;

/* skip past end of line */

fgets(tmp,150,rfp);

58

/* reverse the values in the temp array */

for(k=i-l;k>=0;k=k-l)

{

rptr=rptr+l;

raster[rptr]=temp [k]

;

} /* end while there are char defs in the file */

/* check to see if we wrote past the end of raster... */

if(rptr >= MAXRASTER)
{

printf("FONTDEF: We have written beyond the end of array rasterlO);

exit(l);

/* call routine to set up raster font definition */

/* fontnum = the font number to use to call up this font

maxheight = the max height in pixels of characters in this font.

128 = the number of characters in this font.

chars = the character table.

rptr+1 = the number of words in array raster.

raster = the bit maps for the chars.

*/

defrasterfont(fontnum,maxheight, 1 28,chars,rptr+ 1 paster);

fclose(rfp);

}

/* this is an IRIS-2400 program */

/* this is routine delfont

It deletes a font from font memory */

delfont (fontnum)

/* internal font name */

long fontnum;

{

defrasterfont(fontnum,0,0,chars,0,raster);

59

LIST OF REFERENCES

[1] Sando, Jean M. and Wetherald, Thomas S., "Using the Eikonix Digitizer camera

with th IRIS Graphics Workstation," Technical Report, NPS-52-87-038, Naval

Postgraduate School, Monterey, California, February 1985.

[2] "IRIS User's Guide," Document number 007-1101-030, Silicon Graphics, Inc.,

Mountain View, California, 1985.

60

Distribution List for Dr. Michael J. Zyda

Defense Technical Information Center,

Cameron Station,

Alexandria, VA 22314

Library, Code 0142
Naval Postgraduate School,

Monterey, CA 93943

Center for Naval Analyses,

4401 Ford Avenue
Alexandria, VA 22302-0268

Director of Research Administration,

Code 012,

Naval Postgraduate School,

Monterey, CA 93943

Dr. Michael J. Zyda
Naval Postgraduate School,

Code 52, Dept. of Computer Science

Monterey, California 93943-5100

Mr. Bill West,
HQ, USACDEC,
Attention: ATEC-D,
Fort Ord, California 93941

John Maynard,
Naval Ocean Systems Center,

Code 402,

San Diego, California 92152

El Wells,

Naval Ocean Systems Center,

Code 443,

San Diego, California 92152

Roger Casey,

Naval Ocean Systems Center,

Code 84,

San Diego, California 92152

Dr. Al Zied,

Naval Ocean Systems Center,

Code 433,

San Diego, California 92152

2 copies

2 copies

1 copy

1 copy

150 copies

1 copy

1 copy

1 copy

1 copy

1 copy

DUDLEY KNOX UBF

3 2768 00337463 8

