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I. INTRODUCTION

The art of making computer-generated images appear more realistic is called

rendering and is an ongoing area of research in the field of computer graphics.

Realistic images are important to many scientific, technical and commercial

applications of computer graphics. Research is centered primarily on modeling the

way light interacts with objects made of various materials and textures, and how

the color for each point of the display device is determined.

Available literature abounds with mathematical models for reflected light

intensity calculations, called illumination models, and for color assignment

computations, called shading models [Refs. 1-9]. However, implementation details

are rarely discussed. The reason is economic. People make their livelihood from

generating realistic computer-generated images and their implementation must

remain secret if they are to maintain a competitive edge. The purpose of this

study is to unveil some of that secrecy and present full and complete

implementation details.

A. A MULTI-ILLUMINATION MODEL RENDERER

A Tenderer is a computer program that implements an illumination and

shading model for use on a computer-generated image with the goal of making

that image appear more realistic. A multi-illumination model (MIM) Tenderer, for

8





purposes of this study, is a Tenderer that incorporates multiple illumination and

shading models and allows the user to select the models to be utilized in rendering

a scene.

1

.

Inputs

A MIM renderer requires several inputs in order to render a scene. The

scene itself must be defined and consists of a background and graphics objects.

For purposes of this paper, a graphics object is a collection of polygonal surfaces.

The color and specific properties of the surfaces must be known in order to model

how light interacts with them. The light sources illuminating the scene are

defined in terms of intensity, location and composition. The view position must be

known in order to display the three-dimensional scene on the two-dimensional

display device.

2. Output

The final output of our Tenderer is the set of pixel values useful for

display on an RGB color monitor such as that found on a Silicon Graphics IRIS

2400 graphics workstation. The output necessary to effect the display of the

shaded scene is either an index into a color map, or a full 24-bit RGB color

specification.

B. METHODOLOGY

We begin by examining some of the currently known illumination and

shading models with the goal of understanding and capturing the precise inputs



necessary to implement each model. Once we have compiled a list of the input

data necessary, we present a data structure and beginning design for our MIM

Tenderer.

C. ORGANIZATION

The organization of this study follows the well-trodden path found in the

literature (Refs. 3, 6, 8: pp. 575-591, pp. 276-295, pp. 309-410]. We begin in

Chapter Two by reviewing some basics about light. Chapter Three examines a

simple illumination model, how it can be broken down to cover even simpler cases

and how it can be expanded to other cases. Chapter Four examines various

shading models. Chapter Five examines a recent illumination model that supports

ray tracing. Chapter Six examines the precise data required to support some of

the models discussed in previous chapters and how that data is obtained.

Implementation details are presented in Chapter Seven. Known limitations of the

data structure are presented in Chapter Eight. Chapter Nine outlines areas for

future research and contains concluding remarks.

10



II. THE INTERACTION BETWEEN LIGHT RAYS AND OBJECTS

Before we can examine illumination models, the basic properties of light and

its interaction with objects must be understood. We therefore review some basic

properties of light.

A. LIGHT SOURCES

For purposes of modeling light behavior in computer graphics, light sources

are generally classified as either point sources or distributed sources in the

literature. A point source is small in size relative to the scene it is illuminating, as

viewed from the scene, and is distant enough so that its light rays can be assumed

to be parallel. A distributed source, on the other hand, is relatively large when

viewed from the scene and its light rays can not be considered parallel. An

additional consideration with respect to distributed light sources is that many

rays from a single distributed source can illuminate the same point on an object,

such as a neon light illuminating a chair. A special case of a distributed light

source is the background, or ambient, illumination present in scenes. This

illumination comes from the multiple reflections from objects in the scene whether

visible from the viewing position or not. Hence the "source" is the whole scene.

Ambient light is responsible for objects in shadow with respect to other light

11



sources being visible. Distributed light sources so far from the scene that their

light rays illuminating the scene are nearly parallel are considered point sources.

A third type of light source is one that is small in relation to the scene as

viewed from the scene, yet is so close that its rays cannot be assumed parallel. We

call such light sources near point sources. The rays from a near point source are

considered to emanate from a single point yet are not parallel. Therefore, each

point on an object is illuminated by a single ray from the near point source.

B. THE INTENSITY OF INCIDENT LIGHT

Incident light is the light that illuminates an object or scene. As light travels

outward from its source, its intensity decreases inversely as the square of the

distance traveled. This well-known property of light is readily illustrated by the

fact that objects closer to a light source appear brighter than objects that are

farther away. The intensity of the light incident on an object is thus less than the

intensity of the light source itself.

C. WHAT HAPPENS WHEN LIGHT STRIKES AN OBJECT?

Figure 2.1 illustrates the three possible results when a light ray strikes an

object. The incoming light vector, L, strikes the surface of the object at point P.

Two of the results are illustrated by vectors R. and T . Vector R is the reflected

vector while f is the transmitted vector. The third possibility is that all or part of

the light is absorbed by the object. Absorbed light is converted to heat energy.

This explains why stage performers can be sweating under stage lights while

12
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members of the audience sitting in the darkened auditorium feel chilly. If the

surface at point P is colored and and the incident light is white, Figure 2.1

expands to Figure 2.2. The light vector I is represented by its three color

components: red, green and blue. The surface of the object at point P is assumed

to be blue and slightly translucent. The red and green components are totally

absorbed and converted to heat energy while the blue component is both reflected

and transmitted. We concern ourselves now with the reflected and transmitted

rays.

1. Reflected Light

For reflected light, we have two types of reflection: diffuse reflection and

specular reflection. Diffuse reflection results from the graininess of the surface of

an object and is of equal intensity in all directions as illustrated in Figure 2.3. The

intensity of the diffuse reflection of light from a point source by a perfect diffuser

is determined from Lambert's cosine law. This law states that the intensity is

proportional to the cosine of the incident angle (Figure 2.4). The incident angle, $,

is the angle between the light vector, E, and the normal to the surface, N. The

cosine of the angle between the two vectors is equal to their dot product divided

by the product of their length (Figure 2.5). Hence

ff-£
cos(#) =

fflltl

14



Figure 2.2

Reflection and Transmission Dependent on RGB Component
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Figure 2.3 - Diffuse Reflection
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Figure 2.4

Intensity of Diffuse Reflection

Proportional to Incident Angle
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Figure 2.5 - Lambert's Cosine Law
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If we let t be the unit light vector and N be the unit surface normal, then the

above equation becomes

cos(#) - fl • t

Therefore, the intensity of diffuse reflection is proportional to the dot product of

the unit surface normal and the unit light vectors.

Whereas diffuse reflection is non-directional, specular reflection is

directional. For a perfect reflector, it lies along the reflectance vector, R, shown in

Figure 2.6, and is equal in intensity to that of the incident vector, t. Real objects

are seldom perfect reflectors, however, and exhibit a spatial distribution about R

forming a specular cone. The intensity within the cone is strongest along R and

falls off to at the edge of the cone. The size of the specular cone and intensities

at various points within the cone depend on surface properties of the object, the

intensities of the components making up the light and the incident angle, 6.

2. Transmitted Light

The light that passes through a translucent object is called transmitted

light. Figure 2.7 illustrates the bending, or refraction, of the incident light vector,

£, resulting in the transmitted vector, f, having a different direction. The

direction of the transmitted vector obeys Snell's Law which is

r 1 xsin(#|) = ra xsin(#r )

where

- r, is the index of refraction for the medium through which the incident vector

arrives.
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Figure 2.6 - Specular Reflection and Cone
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- r2 is the index of refraction for the medium through which the transmitted

vector passes.

- 0, is the angle of incidence.

- $r is the angle of refraction.

Figure 2.8 illustrates what happens when the refracted vector passes

completely through the intervening material. The incident vector is refracted

upon entering the material in accordance with Snell's Law and again when it exits

the object. The cumulative effect is that the resultant vector, ?, is parallel to the

incident light vector, L, but shifted. The magnitude of the shift depends on the

index of refraction of the object and the distance the refracted ray must travel

through the object.
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III. ILLUMINATION MODELS

As the number of existing illumination models is large, we limit ourselves to

examining only a few. We first examine a model which calculates intensity due to

diffuse and specular reflection from point sources. We then propose a model for

reflected intensity from distributed light sources. These models are termed "local"

in that they model only the interaction between an object and the light source

while ignoring the interaction of light rays reflected between objects. We examine

a "global" model proposed by Whitted [Ref. 9: pp. 343-349] that models the local

illumination due to reflected light as well as the global illumination due to

reflected and transmitted light in a later chapter. In all cases, we strive to

understand not only the illumination model, but also what data is required by

each to perform the calculation.

A. A LOCAL MODEL FOR POINT LIGHT SOURCES

Phong [Ref 7: pp. 311-317] proposed an illumination model that modeled the

effects of diffuse and specular reflection. We examine a model based on Phong

which is a merging of models in Hearn and Baker [Ref. 6: p. 280] and Rogers [Ref.

8: pp. 311-317]. The model is

d + dQ

24



where

- I is the total intensity reflected from the point on the surface of an object.

- kd is the diffuse coefficient.

- I. is the intensity of ambient light.

- I
p

is the intensity of the illuminating point source.

- d is the distance of the object from the view position.

- d is an arbitrary constant to avoid division by when d is small.

- ft is the unit normal to the surface at the point.

- £ is the unit incident light vector in the direction to the light source.

- k, is the specular coefficient.

- ft is the unit reflection vector of £ at the illuminated point.

- V is the unit view vector in the direction of the viewer.

- n is Phong's specular exponent.

The model can be easily expanded to include multiple light sources and color

[Refs. 6, 8: p. 379, p. 315]. The expanded model is

l = r,g,b

[kd,(fi
• £,) + k.(ftj • V)-]

d + d

where

- i varies through the red, green and blue components of light.

- j varies from 1 to the number of point light sources.

- Is is the number of point light sources.

In the simple model, the first term models the intensity of reflection due to

ambient light, the second term models the intensity due to diffuse reflection of

light incident from a point source, and the last term models the intensity of the

specular reflection. Since the model is simply a linear sum, it can be broken down

to model the intensity of illumination due to ambient light alone, the intensity of

25



illumination due to diffuse reflection alone, the intensity of illumination due to

specular reflection alone, or any combination of these. We examine each term

separately.

1. Ambient Term

The ambient term, kdI,, models the intensity of reflection from a point on

the surface of an object due to the ambient light source. The diffuse coefficient,

kd , varies from 0.0 for no diffuse reflection to 1.0 for a perfect diffuser to account

for the fact that all objects are not perfect diffusers. Rogers [Ref. 8: p. 313] and

Foley and Van Dam [Ref. 3: p. 576] use a separate ambient coefficient which is

different from the kd of the diffuse term, while others, such as Whitted [Ref. 9: p.

344], delete it altogether. However, the reflection due to ambient light is a diffuse

reflection and the diffuse coefficient can serve both the ambient and diffuse terms.

Since different surfaces reflect different amounts of the ambient light, the

modeling coefficient is retained.

Table 3.1 lists the input necessary for computing the ambient term. The

object column lists the data that changes from object to object or from polygon to

polygon within an object. The view column lists data that is either view-

dependent or global to the scene. The light column lists data that is associated

with each light source.

26



TABLE 3.1 - DATA REQUIRED BY AMBIENT TERM

OBJECT VIEW LIGHT

k
a

Ja r

r

d g s
d b

x
*b
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2. Diffuse Term

kdIP (tf
' t)

The diffuse term, —^—
, models the intensity contribution from

d + d

diffuse reflection of incident light from the point source. I
p
represents the intensity

of the illuminating point source. As mentioned in the previous chapter, the

intensity of light decreases inversely as the square of the distance traveled. Hence,

this effect can be modeled by . However, if the source is sufficiently far

from the scene, the diffuse term offers no contribution. Hearn and Baker [Ref. 6:

pp. 278-279] and Rogers [Ref. 8: p. 313] point out that experience has shown that

a linear attenuation of — works well asthetically in modeling the decrease in
d

intensity over distance. In this case, the distance is taken to be in relation to

either the view position or in relation to the object closest to the light source. If

the latter approach is taken, the closest object is assigned a distance d of while

other objects are assigned a distance equal to their distance from that object.

One result is that the object closest to the light source is illuminated by the full

intensity of the light source while the objects further away are dimmer. We take d

in relation to the view position. Therefore, the view position and the position of

the illuminated point must be known. d is arbitrarily chosen to prevent division

by 0. It can also be varied to fine tune the resulting rendered scene.

Diffuse reflection obeys Lambert's Cosine Law. Hence, diffuse reflection

from a point on a perfect diffuser is proportional to the cosine of the angle of

28



incidence, #. The diffuse term models this by making use of

cos# = ft • t

where ft and £ are the unit normal and incident light vectors, respectively. The

position of the light source and the illuminated point must be known to determine

£. A unit surface normal, ft, is associated with each polygon of the graphics

object. It is obtained by taking the cross product of two non-parallel edges of the

polygon. Since most real objects are not perfect diffusers, the diffuse coefficient,

kd , is included to give the percentage of incident light that is diffusely reflected by

the object. Table 3.2 summarizes the data necessary to compute the diffuse term.

3. Specular Term

MpC* • ft)'
is the specular term based on Phong and models the

d+d

intensity due to specularly reflected light. Table 3.3 lists the data required for

computing the specular term. V • ft gives the cosine of the angle a between the

unit view vector, "v\ and the unit reflection vector, ft (Figure 3.1). This models the

falloff in intensity of the specularly reflected light as a increases. However, V • ft

models a constant-size specular cone and falloff in intensity while the specular

cones and falloff rates for different objects differ depending on the surface

material. In general, the spatial distribution, and hence the diameter of the

specular cone, is small for glossy surfaces and large for dull surfaces. Also, the

falloff in intensity as V moves away from ft is more rapid than that modeled by

29



TABLE 3.2 - DATA REQUIRED BY DIFFUSE TERM

OBJECT VIEW LIGHT

r
d z

p r

d g
Position of
Viewpoint \

d b
J
p b

->
N Position of

Position of Light

Illuminated
Point
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TABLE 3.3 - DATA REQUIRED BY SPECULAR TERM

OBJECT VIEW LIGHT

k*
r

d
o

Ip

"-. Position of
Viewpoint \

k
*b

x
pb

-
N Position of

n Light

Position of
Illuminated
Point
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Figure 8.1 - Angle Between View and Reflection Vectors
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V • ft. Therefore, Phong included the specular exponent, n. For very shiny surfaces

n is made very large, greater than 200, while for dull surfaces n is made smaller.

The unit reflection vector, ft, may be obtained directly from the unit light

vector, Z, and unit normal vector, ft. Referring to Figure 3.2, we first obtain £

'

from

i = £

t-ft|

£' is then the vector in the same direction as £, but with a length equal to the

distance from the illuminated point, P, and the intersection of £ with a line

parallel to the tangent at P and passing through the head of ft. We now obtain

ft' by

ft = £' + 2ft

As illustrated in Figure 3.3, ft' makes an angle with ft which is equal to the angle

of incidence, i. Therefore, ft' is in the same direction as ft. We may now

determine ft by

ift'i

The view vector is obtained from the view position and the position of P.

again models the decrease in intensity of the incident light over distance.
d + d

k, is the specular coefficient and models the fact that only a percentage of the

S3
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Figure 3.3 - Determining the Reflection Vector
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incident light is reflected specularly. It varies from 1.0 for total specular reflection

to 0.0 for no specular reflection.

B. A LOCAL MODEL FOR DISTRIBUTED LIGHT SOURCES

The above model for local reflection due to a point source can be easily

expanded to model the local reflection due to distributed light sources. A point

source illuminates a point with one light ray. As illustrated by Figure 3.4, a

distributed light source illuminates a point with infinitely many rays. To model

this, we sample light rays emanating from across the face of the light source. Our

expanded model is

1 " ** +
jjf, [

n,(d,'

J

'+do) [
M* '^ + k-(fiu "Hi

where

- Is is the number of point light sources.

- j varies from 1 to Is.

- m is the number of light rays sampled.

- i varies from 1 torn.

- Id is the intensity of the j
th distributed light source.

- d,j is the distance of the point on the object from the point on the j
th

distributed light source originating the i
th ray.

The distance, d,j, is considered with respect to the point on the j
th distributed

light source originating the i
th ray. Since the light source is not far enough away

to be considered a point source, the distance is computable. The sample rate, m,
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Figure 3.4 - Distributed Illumination
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is a function of the distance of the illuminated point from the light source and the

dimensions of the light source. The intensity of the distributed source must be

divided by the sampling rate to avoid the intensity of the reflected light being

greater than that of the light source itself. This model is approximately m times

as expensive computationally as the local model for point sources.

The data required to compute the intensity of a point by this model is listed

in Table 3.4. The data required under the OBJECT and VIEW columns is the

same as that for point sources. The amount of data required under the LIGHT

column is increased. In addition to the intensity and position of the light source,

we must know the dimensions of the light source. The position of the source is

taken to be the position of the center of the source. We also limit ourselves to

rectangular or circular sources for ease of computing the locations on the surface

generating the sampled rays. Therefore, the type of geometry, circular or

rectangular, is given.
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TABLE 3.4 - DATA REQUIRED BY DISTRIBUTED MODEL

OBJECT VIEW LIGHT

r
Xa r

xa r

d g % **.

d b
r
*b

z
< b

ks
d Position of

r Light
Position of

k
s e

Viewpoint Dimensions
g of the

k
s b

Light Source

Geometry
—

>

N
of the
Light Source

n

Position of
Illuminated
Point
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IV. SHADING MODELS

Color assignment computations are performed by a shading model. Such a

model may or may not make use of an illumination model. The most simple case

in which an illumination model is not used is when the color of the object is

provided in the object data base and the shader accepts this value. The result is

that the object is drawn with the predefined shade each time it is displayed. This

results in constant shading no matter what the view or light positions happen to

be. We are interested in shading models that utilize the local illumination models

previously discussed. We therefore examine models due to Gouraud [Ref. 4] and

Phong [Ref. 7: pp. 311-317].

A. GOURAUD SHADING

If a shading model utilizes the local illumination models previously discussed

to calculate the intensity of each visible point in the scene, the resulting rendered

objects appear faceted. This results from the sharp edges and angles between the

polygons making up the graphics object. Gouraud [Ref. 4] developed a technique

that results in smoother shading.

1. Gouraud's Method

Gouraud 's technique utilizes a scan line algorithm to render an object.

The first step is to determine the intensity of light reflected from each of the
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vertices of the polygonal surface. This is done by utilizing the normal of a vertex

when applying the illumination model instead of the surface normal. The vertex

normal is the average of the surface normals for all polygons sharing that vertex.

After the intensity at each vertex is determined, a bilinear interpolation is applied

to the intensities at the vertices to determine the intensity of a point.

2. Determining the Vertex Normal

Figure 4.1 illustrates how the normal at vertex A is obtained. Point T is

an inside point for the object comprised of three surfaces. The edge vectors

containing vertex A as an endpoint are AB, AC, and AD. The coordinates of the

points are: A ( a,, a2 , a,), B ( b,, b2 , b8 ), C ( c,, c2 , c 8 ), D ( d,, d2 , d4 ). The direction

of the surface normal at vertex A, N A , is determined by taking the average of the

cross products of all the edge vectors which contain vertex A as an endpoint.

Thus,

NA = (AB x AD) + (AD x AC) + (AC x AB)

This is in counterclockwise order as viewed from the "outside" of the object, that

is, the side away from the inside point, T . The vector equations for the edges are:

AB = (b,-ai )i + (b2-a2 )j + (b,-a,)k

= e,i + ej + e8k

AB = (^-a^i + (c2-a2)j + (c 8-a8)k

= fii + fjj + f«k
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Figure 4.1 - Determining the Vertex Normal
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AB = (d,-a,)i + (d3-a3)j + (d,-»,)k

= gii + gaJ + g«k

The cross products of the edge vectors with A as an endpoint are:

ABxAD = [(e3)(g8)-(e8)(g3 )]i + [(e,)(g
1)
-(e 1 )(gs)]j + [(e

1 )(g3)-(e3)(g 1)]k

= n^i + mj + m8k

ADxAC = [(g3)(f,r (g,)(f,)]i + [(g,)(fi
)
-(g l )(f,)]j + [(gi)(f3)-(g3)(f,)]k

= n,i + n-j + n8k

ACxAB = [(f2)(es)-(f8)(e3 )]i + [(f,)(e
1)
-(f1 )(e8)]j + [(Vie^^M}*

= p,i + PaJ + P«k

The average of the cross products gives the direction of the vertex normal at A.

NA = (nii + n, + pji + (m3 + n3 + p3 )i + (m8 + n8 + p8 )i

= t,i + tjj + t8k

Dividing by the number of normals averaged does not yield the unit vertex

normal. To obtain the unit vertex normal, the average normal must be divided by

its magnitude. The unit vertex normal at A , N A , is then

NA

t,i + tj + t8k

(t? + if + t?)
2

The vertex normal as derived above points in the correct direction because all
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:,. 1

cross products were taken in a. counterclockwise fashion as viewed from outside

the graphics object.

3. Determining the Intensity at

Figure 4.2 illustrates the steps to determine the intensity of a point on the

surface of an object. To determine the intensity of point P, the illumination

model is applied directly to each vertex of the polygon to determine its intensity.

A scan line is then generated passing through P and intersecting two edges of the

polygon. KL at point A and MN at point B . The intensity at A is then

determined by interpolation.

IA
Jall

Ik + Jkal
|KL| |KL|

where

- IA is the intensity at point A.

- IK is the intensity at vertex K .

- IL is the intensity at vertex L .

The intensity at B, IB , is similarly obtained.

,B = -&IM + -SUn
|MN| |MN|

The intensity at P , IP , is then obtained by interpolation.

Ip =J&Ia + J2L,B
|AB| |AB|

This calculation can be performed incrementally along the scan line.

IP ,
= Ip,

, + (AIAD)
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where

- IP is the intensity of the i
th point on the scan line.

- IP is the intensity of the previous point on the scan line.

- i is the index where < i < number of pixels on the scan line.

- AI is the change in intensity between A and B per unit distance.

- AD is the distance between two adjacent points of the object on the scan

line.

4. Performance

Gouraud shading produces smoother shading than constant shading. Yet

there exist three problems [Refs. 6, 8: pp. 290-291, pp. 324-325]. One is the

evidence of Mach banding due to the sharp edges between polygons. Another is

that two adjacent polygons may be on different planes but still have vertex

normals that are the same, resulting in the surface appearing flat. This can be

overcome by assigning normals to the common vertices manually such that a

vertex has one normal when associated with one polygon, and another normal

when associated with another polygon. Another fix involves the addition of

polygons near the crease to manually smooth the angle at the crease and thus

ensure that the normals at the vertices are not the same. However, this can be

time consuming and difficult. The third problem is that the shape of specular

highlights are greatly influenced by the shape of the underlying polygons.

Therefore, an illumination model consisting of the ambient and diffuse terms, or

just the diffuse term, of the local models previously discussed is usually used for

Gouraud shading. Table 4.1 summarizes the data necessary to
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TABLE 4.1 - DATA REQUIRED BY GOURAUD SHADING

OBJECT VIEW LIGHT

Polygon Viewing
Vertices Parameters

Position of
Illuminated
Point

Position
Scanline
Intersects
Polygon
Edges
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perform the shading calculations without considering the data required by the

illumination model.

B. PHONG SHADING

The problems noted above are mostly solved by a technique developed by

Phong [Ref. 7]. Instead of interpolating intensity values across the scan line,

Phong shading interpolates the surface normal vector for each point and then

applies the illumination model. This method is more expensive computationally

than Gouraud shading but produces more realistic images.

1. Phong's Method

The first step in determining the intensity of point P (Figure 4.2) is the

calculation of the unit normal vectors for all vertices of the polygonal surface as

described above. A scan line is then generated. The unit surface normals at the

points where the scan line crosses edges of the polygon are determined. The scan

line intersects KL at A and MN at B . The unit normal at A, NA , is determined

by interpolation.

Na = 1^Lnk + 1*±LNl
IKLI IKLI

where

NA is the unit surface normal at point A.

NK is the unit surface normal at vertex K.

NL is the unit surface normal at vertex L.
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The unit surface normal at B . N B , is similarly obtained.

Nb = -&NM +»NN
|MN| |MN|

The unit surface normal at P , NP , is then obtained by interpolation.

Np - H£LNa + J2LN.
|AB| |AB|

This calculation can be performed incrementally along the scan line.

NP ,
= NPj ,

+ (ANAD)

where

- NP( is the unit surface normal of the i
th point on the scan line.

- NP( ^

is the unit surface normal of the previous point on the scan line.

- i is the index where < i < number of pixels on the scan line.

- AN is the change in the unit surface normals between A and B per unit

distance.

- AD is the distance between two adjacent points of the object on the scan

line.

The final step is to apply the illumination model for point sources, discussed in

Chapter III, to the point P utilizing the unit surface normal at P .

2. Performance

Phong shading corrects or reduces the problems associated with Gouraud

shading. However, it still has slight Mach banding which can be worse than that

for Gouraud shading for certain cases, such as spheres [Ref. 8: p. 326]. When these

cases are avoided, the resulting rendered image is more realistic in appearance

than the same image rendered with Gouraud shading. The price is the increased

computational expense due to applying the illumination model at each displayed

point instead of just at the vertices. Phong shading can utilize the local
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illumination models previously discussed with ambient, diffuse and specular

terms. Table 4.2 summarizes the data required by Phong's shading model without

considering the data required by the illumination model.
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TABLE 4.2 - DATA REQUIRED BY PHONG SHADING

OBJECT VIEW LIGHT

Polygon
Vertices

Viewing
Parameters

Position of
Illuminated
Point

Position
Scanline
Intersects
Polygon
Edges
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V. RAY TRACING

A. INTRODUCTION

In the real world, a viewed object can be illuminated by rays which have been

reflected or refracted by one or more surfaces as well as by direct rays from the

light source. In Figure 5.1, point P is illuminated by three rays: one refracted by

object A, one reflected by object B and one from the light source L. Ray tracing is

a method which models this interaction between light and objects. As the name

suggests, rays originating from some point are traced as they travel through the

scene. When the ray encounters an object, the appropriate reflection and

refraction are calculated and each of these is then traced. One technique

originates rays at the light source while another technique originates rays from the

view position. The first technique traces many rays which do not reach the view

position. Therefore, the second technique is more efficient and is most often used.

The models previously discussed were local in that they modeled only the

interaction of the light rays with the point illuminated. An illumination model

proposed by Whitted [Ref. 9: pp. 343-349] models not only the local effects, but

also the global interaction between light rays and all the objects within the scene.

Whitted's model utilizes a ray tracing visible surface algorithm that provides the

required global data. We examine the illumination model, the visible surface
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Figure 5.1 - Multiple Rays Illuminating an Object
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algorithm, the shading model and the data required to calculate the color

assignment for each pixel in the scene.

B. THE ILLUMINATION MODEL

Whitted's model is

1 = 1. + kd£(S £j) +k.S +k
t
T

where

- I is the total intensity at the point.

- I. is the ambient intensity.

- kd is the diffuse coefficient.

- f$ is the unit surface normal at the point.

- Lj is the unit light vector to the j
th light source.

- k, is the specular coefficient.

- S is the global specular term.

- k
t

is the tranmission coefficient.

- T is the global transmission term.

As pointed out previously, Whitted drops the diffuse coefficient for the ambient

term. He retains the diffuse term utilized by Phong [Ref. 7]. He makes no mention

of including the local effects of specular reflection. This can easily be added by

'• k,L(ft • V)
including the local specular term J]

— *n the model. We discuss the
J=1

dj + d

model though as presented by Whitted.

Figure 5.2 illustrates the specular and transmission terms. The intensity

reflected back to the view position due to specular reflection is a percentage (k,) of
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Figure 5.2 - Ray Tracing
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the intensity of light, S, inbound along the —f direction and reflected back in the

—V direction. V is the ray in the direction from the view position to the intersected

point as distinguished from V which is the unit vector in the direction from the

illuminated point to the view position. ? is the reflection ray of V as distinguished

from ft, the unit reflection vector of the incident light vector. The intensity passed

in the —V direction due to transmission is a percentage (k
t ) of the intensity of

light, T, inbound along the -p direction and refracted back along ? to the view

position, f and p are functions of the unit normal vector, ft . and the unit light

vector, £ and given by (See Figure 5.3)

v '-
V

,v-£|

? = V + 2ft

jj = k f(ft + V) - ft

kr= ((k n |?'|)
2 -|v' + ft|

2

)

k =i

1' is a vector in the same direction as V but with a length equal to the distance

from the the illuminated point and the intersection of a line passing through the

head of the unit surface normal which is parallel to a line tangent to the

illuminated point. q x
and 9, are the refraction coefficients for the mediums V and

p pass through respectively. If the denominator of the Fresnel coefficient, kf, is

imaginary, total internal reflection occurs and the transmission coefficient is 0.
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Figure 5.3 - Determining the r and p Directions
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The specular component does not spread out the specular reflection exactly as

does Phong's. One of two methods is applied. If S is due to light from a point

source, Phong's specular term is used. However, the specular term cited by

Whitted [Ref. 9: p. 344] is not the same as that cited by Phong [Ref. 7]. It is

Phong's specular term only insofar as it utilizes Phong's specular exponent. If S is

not due to a point source, a random perturbation is added to the surface normal

to simulate the graininess, or roughness, of the surface. For glossy surfaces, the

perturbation has a small variance, while for rougher surfaces the variance is

increased. Whitted points out that too large a variance results in aliasing artifacts

appearing in the rendered scene. "Too large" is not defined in Whitted's paper.

The data required by Whitted's illumination model is listed in Table 5.1.

C. THE VISIBLE SURFACE PROCESSOR

1 . Overview

«

The visible surface processor is a ray tracing algorithm. As such, it traces

rays as they interact with the objects in the scene. Since the model requires only

the rays which reach the viewer, rays are originated from the view position. A ray

is traced from the view position through each pixel position on the projection

plane towards the scene. This initial ray is ?. Intersection tests, described in a

later section of this chapter, are performed to determine if the ray intersects any

objects in the scene. If it does, the closest intersected object to the source of the

ray is determined. From the intersected point two rays are generated in the ? and
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TABLE 6 - DATA REQUIRED BY RAY TRACING

OBJECT VIEW LIGHT

k
a r **T

l
*r

k
" g \ \
d b ^b *b

k
s
r

d X
P r

"« Viewing
Parameters \

k
s b

Index of
Refraction
for Global
Medium

X
Pb

Position of

Light

\
\
N

«

n

Position of
Illuminated
Point

Index of
Refraction

Bounding
Sphere
Radius
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p directions. Theses rays are then traced in the same fashion as V. The process

continues with new rays being generated for the closest point of intersection of a

ray with an object until no ray intersects an object, indicating that all rays have

left the scene, or maximum allocated storage is reached. Figure 5.4 illustrates the

full trace of an initial ray, ?. The resulting path is easily represented in tree form,

as in Figure 5.5. The branches are the generated rays. The interior node contains

the information from the definition of the intersected object required to calculate

the local terms of the illumination model. The leaf nodes have an intensity of

since the branch either left the scene or maximum allocated storage was exceeded.

After being built by the visible surface processor, the tree is traversed by the

shader to calculate the intensity of the pixel V passed through.

2. Mechanics

V is determined from the xyz coordinates of the view point and the point

on the projection plane which corresponds to the center of a display device pixel.

Intersection tests are discussed in the next section. The object first intersected by

a ray is determined by comparing the distances between the xyz coordinate of the

point originating the ray and the xyz coordinate of all intersected points. The

object whose intersection distance is least is the closest. Interior nodes contain, at

a minimum, the xyz coordinates of the intersected point and a pointer to the

intersected surface along with data required for the tree representation. The

shader traverses the tree in either inorder or postorder traversal, calculating the

intensity of interior nodes by applying the illumination model. The intensity of
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Figure 6.4

Obtaining Global Data Reflection and Transmission Rays
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Figure 5.5 - Glabal Data Tree
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all leaf nodes is 0. The global specular term, S, of the illumination model for an

interior node is provided by that node's F branch while the global transmission

term, T, is provided by the p branch. The root node's intensity is assigned to the

pixel through which V passed.

At the closest intersection of a ray with an object, an additional ray is

generated in the direction of each light source, as well as f and p. These rays are

termed shadow feelers and serve to determine if the intersected point lies in

shadow with respect to a particular light source. In Figure 5.6, all light feelers

except 14 reach the light source L before intersecting an object. \4 intersects an

object first. Therefore, the contribution of the light source to the local terms of

the illumination model for the originating point is attenuated.

3. Determining Object Intersection

Whitted points out that ray tracing algorithms typically spend 75 to 95

per cent of their time determining object intersection. In* order to determine if a

ray intersects an object, it must be determined if the ray intersects any of the

polygons making up the object. To determine if a ray intersects a polygon, it

must first be determined if the ray intersects the plane containing the polygon. If

so, a bounding test is performed to see if the point of intersection lies withing the

polygon boundaries. This is expensive since most graphics objects are made from

polygonal approximations made up of many polygons.

The use of bounding volumes can decrease the number of tests required to

determine if a ray intersects an object. The bounding volume used is the
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Figure 5.6 - Light Feelers
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minimum size required to completely contain the object being bounded. When a

ray does not intersect an object's bounding volume, no further intersection testing

needs to be done for that object. For a bounding box, which is more efficient in

terms of empty space between the bounding box and bounded object for some

objects, an intersection test must be performed for at least three of its sides. For a

bounding sphere, only one test needs to be made. The minimum distance between

the ray and the center of the bounding sphere is determined. This distance is

compared to the radius of the sphere. If the radius is less than the minimum

distance, the ray does not intersect the object and no further tests need be done

for the bounded object. Whitted has a discussion of intersection tests for objects

consisting of bicubic patches, which we do not cover here [Ref. 9: p. 346].

D. ANTI-ALIASING

In order to decrease the effects of aliasing, Whitted defines a pixel as a square.

Rays are projected out from each corner of the pixel square. If the resulting

intensities are equal, or nearly so, their average is assigned to the pixel. If they are

not nearly equal, the pixel square is subdivided and the process repeated for each

resulting subsquare. This procedure is repeated until the computer runs out of

resolution or an adequate amount of information about the pixel has been

recovered.

Small objects can be missed if care is not taken. Each object must have a

bounding sphere whose radius is above a certain minimum. The minimum is
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determined based on pixel square size and object distance from the viewer. If a

bounding volume is intersected, but not the bounded object, the pixel square is

subdivided and the algorithm repeated until the object is intersected. In the case

of rays being reflected from curved surfaces, the resolution of the of the computer

can be reached before the object is found.
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VI. DATA REQUIRED TO SUPPORT THE MODELS

Having presented some illumination and shading models, we review the data

required to support them. The data is grouped into three categories: OBJECT

(Table 6.1), VIEW (Table 6.2) and LIGHT (Table 6.3). Under each category, we

review why each piece of data is required and how it is obtained.

A. OBJECT DATA

Data in this category is associated with each graphics object as a whole or

with the individual polygons making up the graphics object. We examine each

piece of data.

1. Polygon Vertices

A graphics object is a collection of polygons. Each polygon is denned by

three or more vertices. Each vertex is denned by an xyz coordinate. Polygon

vertices are provided in the object data base.

2. Coefficients

Each polygon has associated with it a specular, diffuse and transmission

coefficient. The coefficients model the fact that only a percentage of the incident

light is reflected diffusely, reflected specularly, or transmitted. The percentage for

each is dependent on the wavelength of the incident light. Therefore,
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TABLE 6.1 - OBJECT DATA

Polygon Vertices

Coefficients

Diffuse k
d rgb

Specular k s rgb

Transmission kt rgb

Unit Surface No rmal - N

Unit Vertex Normals " Nv

Position of the Illuminated Point - P

Scan Line Intersections with Polygon

Specular Exponent - n

Inside Point - IP
«

Index of Refraction - V

Bounding Sphere Rad:Lus and Center
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TABLE 6.2 - VIEW DATA

Ambient Intensity - I
rgb

Viewing Parameters

Index of Refraction for Global Medium

Constant to Prevent Division by Zero
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TABLE 6.3 - LIGHT DATA

Intensity of the Light Source - I-.

rgb

Light Source Type

Light Source Position

Light Source Geometry

Light Source Dimensions
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each coefficient has a red. green and blue component. The coefficients are

provided in the object data base and vary from 0.0 to 1.0 in value.

3. Unit Surface Normal

The unit surface normal is utilized by a shader that does not use intensity

or vertex normal interpolation. Ray tracing may use it, depending on the

implementation, as well as a shader applying a local illumination model at each

point without interpolation. It consists of the i, j, and k coefficients for the vector.

It is obtained by either direct calculation or from the object data base.

4. Unit Vertex Normal

The unit vertex normal is associated with each vertex of a polygon. It is

utilized by both Gouraud and Phong shading, and may be utilized in ray tracing

depending on the implementation. The vertex normals can be an average of the

unit normals of the surrounding polygons, or they can be equal to the unit surface

normal of the polygon itself, such as when a cube is being rendered. When a cube

is rendered, the vertex normal must not be obtained by averaging if the sharp

edges are to be retained. Therefore, the unit vertex normal is provided in the

object data base. It consists of the i, j, and k coefficients for the vector equation.

5. Position of the Illuminated Point

The position of the illuminated point is expressed in terms of an xyz

coordinate in the world coordinate system. The local shading models obtain the

coordinates from the scan line algorithm implemented by the renderer. Ray

tracing obtains the position of the point from intersection calculations performed
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by the visible surface processor. The coordinates of the point are utilized in

determining the unit light, surface normal, view and reflection vectors as well as

color assignment by the shader.

6. Position Scan Line Crosses Polygon Edges

Both Phong and Gouraud shading utilize the points the scan line crosses

the edges of a polygon in their calculations. Ray tracing may also make use of

them if the implementation utilizes unit vertex normal interpolation to arrive at

the unit surface normal at the point of ray intersection with a surface. The

position is provided by the scan line algorithm implemented in the Tenderer or on

the target system.

7. Phong's Specular Exponent

Phong's specular exponent models the rapid falloff in intensity of

specularly reflected light as the view vector deviates from the reflection vector. Its

value is dependent on the surface properties of the surface being modeled. A

glossy surface has a value of 200 or greater while less shiny surfaces have a smaller

value. It is obtained from the object data base.

8. Inside Point

The inside point of the graphics object is a point in the interior of the

object. It is used in the determination of the outward facing surfaces of the

polygons. Some graphics objects are actually made from two or more subobjects,

such as an object made up of cylinders and spheres. Such graphics objects do not

have an inside point common to the entire graphics object. Therefore, the inside
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point of each subobject making up the graphics object must be known. It is an

xyz coordinate in the world coordinate system and is provided in the object data

base.

9. Index of Refraction

The index of refraction is utilized in calculating the global transmission

term of Whitted's illumination model for ray tracing. It is provided in the object

data base.

10. Bounding Sphere Center and Radius

The center and radius of the bounding sphere are utilized by the visible

surface processor in conjunction with ray tracing in an attempt to reduce the

number of intersection tests between rays and graphics objects. The center and

radius must be such that the bounding sphere completely encloses the graphics

object. Since a graphics object can be built from various subobjects, we require

that a bounding sphere also be associated with each subobject with center being

equal to the inside point of the subobject. If we adopt this strategy, the number of

polygons of the graphics object requiring intersection test will be reduced to those

of the subobjects whose bounding spheres are intersected. The center is already

provided as the inside point of a subobject in the object data base. The radius is

also provided in the object data base and is in world coordinate units.
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B. VIEW DATA

The data defining the global context for the scene is termed view data. View

data includes any data which is required by all the graphics objects in the scene.

Table 6.2 lists the view data. We examine each item.

1. Viewing Parameters

In order to determine which points on an object correspond to pixels on

the display device, the viewing parameters of the scene must be known. They

consist of an xyz coordinate in the world coordinate system that is the view

position, a projection plane that is usually expressed as a distance from the view

position to the projection plane in world coordinate units, and a set of clipping

planes. The specific requirements vary depending on the implementation. The

viewing parameters are either determined by the implementation of the Tenderer,

or are provided in the view data base.

2. Constant to Prevent Division by Zero

The constant to prevent division by zero, d , is utilized during calculation

of the local diffuse and specular terms of the illumination models presented. It has

a minimum value equal to the smallest positive non-zero value representable on

the target computer system. It can also be utilized to fine tune the rendering of

the scene, thus it may have values larger than the minimum. Therefore, it is

provided in the view data base with a check being required in the Tenderer to

ensure it is not less than the target system's minimum.
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3. Refraction Index for the Global Medium

The refraction index of the global medium through which the initial view

vector passes in support of ray tracing must be known. It is utilized in calculating

the global transmission term of Whitted's illumination model for ray tracing. This

must be provided in the view data base.

4. Ambient Light Intensity

Ambient light is the background light due to multiple reflections of light

from the objects in the scene. It is broken down into its red, green and blue

components and is expressed as a percentage of the maximum color intensity

value for the target computer system. It varies in value from 0.0 to 1.0 for

maximum displayable intensity. Since ambient light is global to the scene, it is

provided in the view data base.

C. LIGHT DATA

The data associated with each light source illuminating the scene is termed

light data. Table 6.3 lists the light data required by the illumination and shading

models presented. We examine each item.

1. Light Source Intensity

The intensity of the red, green and blue components of the illuminating

light source must be provided in the light data base. It is utilized in all

illumination model intensity calculations other than those consisting of just the

ambient term. The intensities of the components varies from 0.0 to 1.0.
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2. Light Source Type

A light source can be a point source or a distributed source. The type is

provided in the light data base.

3. Light Source Position

The position of a light source is used in determining the unit light vector

and unit reflection vector. For a distributed light source, the position corresponds

to the center of the light source. The position is provided in the light data base

and consists of an xyz coordinate in the world coordinate system.

4. Light Source Geometry

The geometry of a distributed light source is used in determining the ray

sampling rate and position on the light source originating each individual ray in

support of the local illumination model for distributed light sources. For

simplicity, we restrict the geometry to either rectangular or circular. The

geometry of a distributed light source is provided in the light data base.

5. Light Source Dimensions

The dimensions of a distributed light source must be known in order to

determine the sampling rate and to determine the position on the light source

originating individual rays. The dimensions are length and width for rectangular

sources and radius for circular sources. Dimensions are in world coordinate units

and are provided in the light data base.
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VII. IMPLEMENTATION DETAILS

We present the data structure to be utilized by the multi-illumination model

Tenderer for representation of the external data required to render a scene. Our

implementation is in the C programming language and makes use of dynamic

arrays by use of the calloc command. This provides maximum flexibility while

making efficient use of memory. We use the name of the pointer to the dynamic

array to refer to the array.

A. PICTURE

The primary data structure is the record PICTURE (Figure 7.1). The number

of objects, NUM OBJECTS, can change from scene to scene. Therefore, a

dynamic array OBJECTS is utilized to store the data for each object. Each

element of OBJECTS is a record, OBJECT REC. NUM OBJECTS is stored to

serve as an upper bound for indexing into OBJECTS. The number of lights,

NUM LIGHTS, also can vary between scenes. So a dynamic array, LIGHTS,

indexed from to NUM LIGHTS- 1, is utilized to store light source data. Each

element of LIGHTS is a LIGHT REC.

The view data, being global to the scene, is also contained in PICTURE. The

refraction index of the global medium, GLOBAL REFRAC, is stored as a floating

point number. The constant to prevent division by zero, NO ZERO, is also stored
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PICTURE

NUMOBJECTS

OBJECTS

NUMLIGHTS

LIGHTS

GLOBALREFRAC

NOZERO

NUMOBJECTS

OBJECTS

NUMLIGHTS

LIGHTS

GLOBAL_REFRA<

NO_ZERO

- the number of object records in

OBJECTS

- a dynamic array of object records

- the number of light records in

LIGHTS
- a dynamic oarray of light records

j - the refraction index of the

global medium

- the constant to prevent division

by zero

Figure 7.1 - PICTURE Data Structure
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as a floating point number. The multi-illumination model Tenderer mu l perform

a test when reading in this value from file to ensure that it is above the minimum

value allowed for the target system. The last item of global data is the ambient

intensity. It is stored in AMBIENT as a tuple of floating point numbers.

B. OBJECT REC

Each OBJECTREC contains the data required by the multi-illumination

model renderer that is associated with each indivdual object. Figure 7.2 illustrates

an OBJECT REC. Earn graphics object is made up of one or more subobjects.

The dynamic array SUB OBJ contains the data for each subobiect.

NUM SUB OBJS contains the number of subobjects in the object. Each element

of SUB OBJ is a SUB OBJ REC. Associated with each object is a bounding

sphere, defined in OBJ B SPHERE, a record consisting of the ryz coordinate of

the sphere's center and the sphere's radius. The data item OP CODE is decoded

by the multi-illumination model Tenderer to indicate certain information. Current

usage consists of a digit indicating whether or not vertex normals are ctored and a

digit indica+ing whethe: < r lot surface n >rmals are stored. In both c<^ses a

indicates not stcred "iiile a i indicates stored.

C. SUBOBJ REC

Since intersection testing take*; th-> l'on's sh^re of time in ray racn tg,

include a bounding sphere, SUB B SPHERE, tor each subobject. This red ices tho

number of polygons for which an intersection test must be performed if the
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OBJECTREC

NUMSUBOBJS

—SUBOBJS

OBJ_B_SPHERE

OPCODE

NUM_SUB_OBJS

SUB_OBJS

OBJ_B_SPHERE

OPCODE

- the number of subobject records

in SUBJDBJS

- a dynamic array of subobject

records

- the bounding sphere for the

object consisting of a center and

a radius

- indicates whether or not surface

and vertex normals are stored

Figure 7.2 - OBJECT_REC Data Structure
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object's bounding sphere is intersected. The center of the bounding sphere is also

the interior point for the subobject.

Each subobject is a collection of polygons. Associated with each polygon are

attributes such as specular exponent and diffuse coefficient. In order to conserve

memory and make the Tenderer more efficient, polygons sharing the same

attributes are grouped together. The dynamic array COMMON PART contains

one or more groupings of polygons in the structure COMM PART REC. The

number of such groupings is stored as NUM COMM PARTS. Figure 7.3

illustrates the structure SUB OBJ REC.

D. COMM PART REC

The polygons in each grouping share common attributes. The attributes are

diffuse coefficient kd, specular coefficient ks, transmission coefficient kt, refraction

index REFRAC and specular exponent SPEC EXP. The coefficients are stored as

tuples of floating point numbers representing the coefficients for the red, green

and blue components of light. The polygons sharing these attributes are stored in

the dynamic array POLYGONS. The number of polygons in the array is

NUM POLYGONS. Figure 7.4 illustrates the structure COMM PART REC.

E. POLYGON REC

Figure 7.5 illustrates the structure POLYGON REC. The vertices of the

polygon are stored in the dynamic array VERTICES, each entry of which is an

xyz coordinate. A dynamic array VERT NORMALS holds the vertex normals if
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SUB_OBJ_REC

NUM_COMMON_PARTS

—COMMON_PARTS

SUBBSPHERE

NUM_COMMON_PARTS - the number of common part

records in COMMON_PARTS

COMMON PARTS - a dynamic array of common part

records

SUB B SPHERE - the bounding sphere for the

subobject consisting of a

center and radius

Figure 7.3 - SUB_OBJ_REC Data Structure
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COMMONPARTREC

kd

k
s

kt

REFRAC

SPECEXP

NUMPOLYS

^POLYGONS

*d - the diffuse coefficient

k
s

- the specular coefficient

*t
- the transmission coefficient

REFRAC - the refraction index for the

common attribut part

SPEC_EXP - Phong's specular exponent for the

common attribut part

NUM_POLYS - the number of polygon records in the

array POLYGONS

POLYGONS - a dynamic array of polygon records

Figure 7.4 - COMMON_PART_REC Data Structure
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POLYGONREC

NUMVERTICES

—VERTICES

VERTNORMALS

SURFACE_NORMALS

NUM_VERTICES

VERTICES

VERTNORMALS

SURFACE_NORM/

- the number of vertices records

in VERTICES and the number of

normals in VERT_NORMAL

- a dynamic array of points

defining the polygon

- a dynamic array of normals for

each vertex

LLS - the unit surface normal for the

polygon

Figure 7.5 - POLYGON_REC Data Structure
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LIGHTREC

INTENSITY

LT_POSIT

LT_DIM

INTENSITY

LT_POSIT

LT_DIM

- the intensity of each o

green and blue componen

- the position of the cen

light source

- the dimensions of the 1

f the red,

ts of light

ter of the

ight source

Figure 7.6 - LIGHT_REC Data Structure
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they are stored. NUM VERTICES gives the number of vertices and, if stored,

vertex normals in their respective arrays. The surface normal is stored in

SURF NORMAL. All normals are represented as tuples consisting of the i, j and k

coefficients for the vector equation.

F. LIGHT REC

The data associated with a light source is stored in a LIGHT REC (Figure

7.6). INTENSITY is a tuple of floating point numbers representing the intensity of

the red, green and blue components of the light source. LT POSIT is the xyz

coordinate of the position of the center of the light source. LT DIM stores the

dimensions of the light source and is a record of two floating point numbers,

DIM1 and DIM2. If DIM2 is zero, the source is a distributed source with radius

given by DIMl. If DIMl is zero, the source is a point source. If DIMl is non-zero

and DIM2 is zero, the source is a circularly distributed light source with radius

equal to DIMl. If both DIMl and DIM2 are non-zero, the source is a rectangular

light source with length of DIMl and heigth of DIM2.
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VIII. LIMITATIONS

The data structure presented provides flexibility, good memory management

and, in the case of ray tracing, a potential time savings due to bounding spheres

being defined for all subobjects. Certain limitations, however, do exist. One

limitation involves the inside point. One common inside point is used to

determine which face is facing outward for all polygons in the subobject.

Therefore, subobjects must not contain surfaces which are so concave that no

point can be found which is inside with respect to all the polygons in the

subobject. The handle of a teapot or the inside surface of a cylinder are examples

of such subobjects. These subobjects must be further broken down until an inside

point can be found for each part. An alternative to this procedure is to define an

inside point for each polygon. The POLYGON REC must then contain an

INSIDE POINT field and the center of the bounding sphere for the subobject

would no longer be considered the inside point for all polygons in the subobject.

This solution can be expensive in terms of memory space but is no more expensive

than storing the surface normal for each polygon. Another solution which is

potentially less expensive is to include the inside point as an additional attribute

for the common parts of each subobject.

Another limitation is that the data structure requires all objects to be

comprised of polygons. Objects created from revolutions, splines and patches must
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be broken down into their polygonal representations. [Ref. 10] is an example of

such a method for spline patches.

Defining a bounding sphere for each subobject can result in more intersection

tests in some cases, such as objects with subobjects consisting of one polygon. The

intersection test for the bounding sphere becomes redundant. One solution to this

problem is to include another field in OPCODE which indicates whether or not

the bounding spheres for the subobjects are to be utilized during intersection

testing.

88



IX. AREAS OF FUTURE RESEARCH AND CONCLUSIONS

A. AREAS OF FUTURE RESEARCH

Having examined various illumination and shading models and presenting a

data structure to be utilized by them, the next step is to examine the actual

implementation of one or more of the models. The most promising candidate for

initial implementaion is ray tracing for several reasons. The method requires no

other algorithms for hidden surface elimination, inclusion of shadows and

transparency, clipping or identification of the illuminated point and its position

(usually via a scan line algorithm). The algorithm breaks down naturally into the

computationally expensive building of the global tree for each view ray and the

traversing of the tree to arrive at the intensity for the pixel. Rays can be

generated by one processor and then handed off to other processors for building

and traversing of the tree to arrive at the intensity for the root ray. This has

potential for greatly decreasing the time necessary to render a scene.

Another area of research is the implementation of the non-ray tracing

methods. The obtaining of the prerequisite data that can not be provided in the

data base requires study. How much of this data can be obtained from the target

system and how much of it must be obtained from software implementations

needs to be determined. The portability issue also needs to be considered.
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A skeletal modeling program has been implemented in support of the

proposed MIM Tenderer. The modeler must be completed to provide the necessary

data to a file for use by the Tenderer.

B. CONCLUSIONS

We have reviewed a number of illumination and shading models, presenting

the methods, the data required by each model and how each piece of data is

obtained. We then presented a data structure for representing the data that is not

system dependent and that is utilized often during the process of performing the

required calculations to render the scene. The data structure is general enough

that it can be utilized by a multi-illumination model Tenderer that implements the

models presented. It makes efficient use of memory, provides potentially greater

efficiency for the ray tracing model, and is general enough to be utilized by all the

models presented.

Appendix A provides the C code declarations and definitions for the data

structure presented. Appendix B contains an extension of the data structure that

is implemented on a skeletal modeling program in support of the MIM Tenderer.

The major difference is the extensive use of pointers. Finally, Appendix C

provides a sample file of data for a simple scene that is the output of the final

modeling program and the input to the MIM renderer.
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APPENDIX A - DATA STRUCTURE DEFINITION

/**********************************************************************

** MAXCODES
**

** maximum number of opcodes utilized by Tenderer
******************************************************+***************/

#define MAXCODES 2

/***************+******************************************************

** rgb
**

** structure to hold the percentage of maximum intensity for

** the red, green and blue components of light

**

* * red - percentage of full red intensity

* * green - percentage of full green intensity

* * blue - percentage of full blue intensity
**********************************************************************/

typedef struct {

float red;

float green;

float blue:

} rgb;
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/
**

**********************************************************************

point
**

** structure to hold the xyz coordinates of a point
**

** x coord - x coordinate of the point

* *
y coord - y coordinate of the point

* *
z coord - z coordinate of the point

**************"********************************** **********************/

typedef struct {

float x coord;

float y coord;

float z coord;

} point;

/**********************************************************************

** dim rec
**

structure to hold the dimensions of a light source
**

* S| diml - first dimension
** - if 0, source is a point source
** - else, source is a distributed source
** dim2 - second dimension
**

- if not 0. source is rectangular
** - else, if diml not 0. source is circular

** else, source is point source
*************************"*********************************************

typedef struct {

float diml;

float dim2;

} dim rec;
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/**********************************************************************

** b sphere
**

**

**
structure to hold the definition of a bounding sphere

** center - xyz coordinates of the bounding sphere's center
** radius - the radius of the bounding sphere
**************************************************** ******************/

typedef struct {

point center;

float radius;

} b sphere;

/
**********************************************************************

norm rec
**

** structure to hold the coefficients for the vector equation
** of a normal vector
**

**
i coef - coefficient for the i term

**
j coef - coefficient for the j term

**
k coef - coefficient for the k term

************* *********************************************************

typedef struct {

float i coef;

float j coef;

float kcoef;

} norm rec;

93



/
**

**********************************************************************

polygon rec
**

** structure to hold data associated with a polygon
**

** num vertices - the number of vertices denning the polygon
** * vertices - pointer to dynamic array of vertices

* * * vert normals - pointer to dynamic array of vertex normals
* * surface normal - the unit surface normal for the polygon
*******************"***************************************************/

typedef struct {

int num vertices;

point ^vertices;

norm rec "vert normals:

norm rec surface normal;

} polygon rec:

/****:r************* *****************************************************

** common part rec
* *

structure to hold data associated with polygons which share the

** common attributes: diffuse, specular and transmission coefficients

** refraction index
*" specular exponent (Phong's)
**

** kd - diffuse coefficient

** ks - specular coefficient

**
kt - transmission coefficient

refrac - refraction index

spec exp - specular exponent

num polys - number of polygons sharing these attributes

* polygons - dynamic array of polygons sharing attributes
**********************************************************************

**

**

**

typedef struct {

rgb kd, ks, kt:

float refrac;

int spec exp;

int num polys;

polygon rec * polygons;

} common part rec;

/

94



/**********************************************************************

** sub obj rec
**

** structure to hold data associated with each subobject

* * num common parts - number of parts sharing
** common attributes

*common parts - dynamic array of common parts
** sub b sphere - bounding sphere for the subobject
*************** ******************************************************* I

typedef struct {

int num common parts;

common part rec *common parts;

b sphere sub b sphere;

} sub obj rec:

/
**

**********************************************************************

object rec

structure to hold data associated with each object

**

**

**

* * num sub objs - number of subobjects in object
** *sub objs - dynamic array of subobjects

obj b sphere - bounding sphere for the object
** opcodej

]

- array of MAXCODES characters
** decoded by Tenderer
**********************************************************************

typedef struct {

int num-sub objs;

sub obj rec *sub objs;

b sphere obj b sphere;

char opcode[MAXCODES];

} object rec;

/
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/
**

**********************************************************************

light rec
**

** structure to hold data associated with light sources
**

** intensity - intensity of light source
**

It posit - xyz position of light source

* *
It dim - dimensions of light source

**********************************************************************

typedef struct {

rgb intensity;

point It posit;

dim rec It dim:

} light rec;

/
**

**********************************************************************

picture
**

** structure to hold all data associated with the scene to be rendered
**

* * num objects - number of objects in scene
** * objects - dynamic array of objects

num lights - number of lights illuminating scene
** * lights - dynamic array of lights

global refrac - refraction index of global medium
no zero - constant to prevent division by zero

**
- for Silicon Graphics IRIS 2400

** minimum is approximately 1.8e-38
*********************************************************************/

typedef struct {

int num objects;

object rec ^objects:

int num lights;

light rec * lights;

float global refrac;

float no zero;

} picture;
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APPENDIX B SUPPORTING MODELER DATA STRUCTURE

**********************************************************************
/
** MAXCODES
**

** maximum number of opcodes utilized by modeler
**********************************************************************

#define MAXCODES 2

/
**

**********************************************************************

point

** structure containing xyz coordinates of a point
**

** x - x coordinate
**

y - y coordinate
**

z - z coordinate
**********************************************************************

typedef struct {

float x;

float y;

float z;

} point;
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/
**********************************************************************

norm rec
**

** structure containing coefficients for vector equation

**
i coef - i coefficient

**
j coef - j coefficient

** k coef - k coefficient

************* ** *******************************************************

typedef struct {

float i coef;

float j coef;

float k coef;

} norm rec;

/
********************************************* ***********x*************

poly rec
**

**

* A

* *

structure containing data defining a polygon

num points - number of points defining polygon

*poly pts - dynamic array of points defining polygon

vert normals - dynamic array of coefficients of unit
** vertex normal for each point
** *next poly rec - pointer to next poly rec
*****************"********************************"*********************

struct poly rec {

int

point

norm rec

struct poly rec

};

num points;

* poly pts;

vert normals;

*next poly rec;
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********************* *********************** * * *************************

** comn atr rec
**

**

**
structure containing data for polygons sharing common attributes

** kd - diffuse coefficient

** ks - specular coefficient

**
kt - transmission coefficient

**
refra( - refraction coefficient

** spec exp - specular exponent
**

c indlex - index into a colormap, an array of
** rgb color intensities

** num polys - number of polygons
** * first poly - pointer to first poly rec in linked list

**
*last poly - pointer to last poly rec in linked list

*****:*** ************* *><************************ **r**** ** * * *************

typedef struct {

rgb kd:

rgb ks;

rgb kt;

float refrac;

int spec exp;

int c index;

int num polys;

struct poly rec * first poly;

struct poly_rec *last poly:

} comn atr rec;
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***********************************************************************

** sub obj rec
**

** structure to hold data associated with each subobject
**

** num comn atr parts - number of parts sharing
** common attributes

interior point - xyz coordinates of interior point
** *comn part - dynamic array of common parts

* first poly - pointer to first polygon in subobject
**

*last poly - pointer to last polygon in subobject
**********************************************************************/

typedef struct {

int num comn atr parts;

point interior point:

comn atr rec 'comn part:

struct poly rec *first poly:

struct poly rec Mast poly;

} sub obj rec;

/
* *

**********************************************************************

object rec

structure holding data associated with an object

**

**

**

num sub objects - number of subobjects in the object
** *sub obj - dynamic array of subobjects
**********************************************************************/

typedef struct {

int num sub objects;

sub obj rec "sub obj:

} object rec:
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APPENDIX C - SAMPLE DATA FILE

* VIEW PARAMETERS GO HERE*
NO ZERO
1.800000e-38

GLOBAL REFRAC
1.000000

"

NUM LIGHTS
2

INTENSITY
1.000000

0.500000

0.000000

LT POSIT
-100.000000

200.000000

100.000000

LT DIM
0.000000

0.000000

INTENSITY
1.000000

1.000000

1.000000

LT POSIT
20.000000

20.000000

10.000000

LTDIM
2.000000

8.000000

NUM OBJECTS
2

OPCODE
11

BSPHERE
2.000000

2.000000

0.000000

1.369306
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NUM SUB OBJS
1

B SPHERE
2.000000

2.000000

0.000000

1.369306

NUM COMM PARTS
6

kd

0.000000

0.000000

0.750000

ks

0.000000

0.000000

0.200000

kt

0.000000

0.000000

0.000000

REFRAC
0.000000

SPECEXP
50

NUM POLYGONS
6

SURF NORMAL
0.000000

0.000000

-1.000000

NUM VERTICES
4

VERTEX
1.375000

2.625000

-0.625000

VERTEX 1

2.625000

2.625000

-0.625000
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VERTEX 2

2.625000

1.375000

-0.625000

VERTEX 3

1.375000

1.375000

-0.625000

VERT NORMAL
0.000000

0.000000

-1.000000

VERT NORMAL 1

0.000000

0.000000

-1.000000

VERT NORMAL 2

0.000000

0.000000

-1.000000

VERT NORMAL 3

0.000000

0.000000

-1.000000

SURF NORMAL
0.000000

0.000000

1.000000

NUM VERTICES
4

VERTEX
2.625000

2.625000

0.625000

VERTEX 1

1.375000

2.625000

0.625000

VERTEX 2

1.375000

1.375000

0.625000

VERTEX 3
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2.625000

1.375000

0.625000

VERT NORMAL
0.000000

0.000000

1.000000

VERT NORMAL 1

0.000000

0.000000

1.000000

VERT NORMAL 2

0.000000

0.000000

1.000000

VERT NORMAL 3

0.000000

0.000000

1.000000

SURF NORMAL
0.000000

1.000000

0.000000

NUM VERTICES
4

VERTEX
1.375000

2.625000

-0.625000

VERTEX 1

1.375000

2.625000

0.625000

VERTEX 2

2.625000

2.625000

0.625000

VERTEX 3

2.625000

2.625000

-0.625000
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VERT NORMAL
0.000000

1.000000

0.000000

VERT NORMAL
0.000000

1.000000

0.000000

VERT NORMAL
0.000000

1.000000

0.000000

VERT NORMAL
0.000000

1.000000

0.000000

SURF NORMAL
0.000000

-1.000000

0.000000

NUM VERTICES
4

VERTEX
1.375000

1.375000

-0.625000

VERTEX 1

2.625000

1.375000

-0.625000

VERTEX 2

2.625000

1.375000

0.625000

VERTEX 3

1.375000

1.375000

0.625000

VERT NORMAL
0.000000

-1.000000

0.000000
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VERT NORMAL 1

0.000000

-1.000000

0.000000

VERT NORMAL 2

0.000000

-1.000000

0.000000

VERT NORMAL 3

0.000000

-1.000000

0.000000

SURF NORMAL
-1.000000

0.000000

0.000000

NUM VERTICES
4

VERTEX
1.375000

1.375000

-0.625000

VERTEX 1

1.375000

1.375000

0.625000

VERTEX 2

1.375000

2.625000

0.625000

VERTEX 3

1.375000

2.625000

-0.625000

VERT NORMAL
-1.000000

0.000000

0.000000

VERT NORMAL 1

-1.000000

0.000000

0.000000
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VERT NORMAL 2

-1.000000

0.000000

0.000000

VERT NORMAL 3

-1.000000

0.000000

0.000000

SURF NORMAL
1.000000

0.000000

0.000000

NUM VERTICES
4

VERTEX
2.625000

1.375000

-0.625000

VERTEX 1

2.625000

2.625000

-0.625000

VERTEX 2

2.625000

2.625000

0.625000

VERTEX 3

2.625000

1.375000

0.625000

VERT NORMAL
1.000000

0.000000

0.000000

VERT NORMAL 1

1.000000

0.000000

0.000000

VERT NORMAL 2

1.000000

0.000000

0.000000
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VERT NORMAL 3

1.000000

0.000000

0.000000

OPCODE
11

B SPHERE
1.000000

1.000000

2.000000

1.732051

NUM SUB OBJS
2

B SPHERE
1.000000

1.000000

2.000000

1.732051

NUMCOMM PARTS
1

kd

0.100000

0.200000

0.100000

ks

0.900000

0.700000

0.900000

kt

0.100000

0.000000

0.100000

REFRAC
0.050000

SPEC EXP
200

NUM POLYGONS
3

SURF NORMAL
0.000000

0.000000

-1.000000
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NUM VERTICES
4

VERTEX
0.000000

2.000000

1.000000

VERTEX 1

2.000000

2.000000

1.000000

VERTEX 2

2.000000

0.000000

1.000000

VERTEX 3

0.000000

0.000000

1.000000

VERT NORMAL
0.000000

0.000000

-1.000000

VERT NORMAL 1

0.000000

0.000000

-1.000000

VERT NORMAL 2

0.000000

0.000000

-1.000000

VERT NORMAL 3

0.000000

0.000000

-1.000000

SURF NORMAL
0.000000

0.000000

1.000000

NUM VERTICES
4
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VERTEX
2.000000

2.000000

3.000000

VERTEX 1

0.000000

2.000000

3.000000

VERTEX 2

0.000000

0.000000

3.000000

VERTEX 3

2.000000

0.000000

3.000000

VERT NORMAL
0.000000

0.000000

1.000000

VERT NORMAL 1

0.000000

0.000000

1.000000

VERT NORMAL 2

0.000000

0.000000

1.000000

VERT NORMAL 3

0.000000

0.000000

1.000000

SURF NORMAL
0.000000

1.000000

0.000000

NUM VERTICES
4

VERTEX
0.000000

2.000000

1.000000
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VERTEX 1

0.000000

2.000000

3.000000

VERTEX 2

2.000000

2.000000

3.000000

VERTEX 3

2.000000

2.000000

1.000000

VERT NORMAL
0.000000

1.000000

0.000000

VERT NORMAL 1

0.000000

1.000000

0.000000

VERT NORMAL 2

0.000000

1.000000

0.000000

VERT NORMAL 3

0.000000

1.000000

0.000000

BSPHERE
1.000000

0.000000

2.000000

1.414000

NUMCOMM PARTS
1

kd

0.100000

0.200000

0.100000

ks

0.700000

0.700000

0.800000
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kt

0.400000

0.400000

0.400000

REFRAC
0.050000

SPEC EXP
200

NUM POLYGONS
1

SURF NORMAL
0.000000

-1.000000

0.000000

NUM VERTICES
4

VERTEX
0.000000

0.000000

1.000000

VERTEX 1

2.000000

0.000000

1.000000

VERTEX 2

2.000000

0.000000

3.000000

VERTEX 3

0.000000

0.000000

3.000000

VERT NORMAL
0.000000

-1.000000

0.000000

VERT NORMAL 1

0.000000

-1.000000

0.000000
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VERT NORMAL 2

0.000000

-1.000000

0.000000

VERT NORMAL 3

0.000000

-1.000000

0.000000

B SPHERE
1.000000

1.000000

2.000000

1.732051

NUMCOMM PARTS
2

kd

0.900000

0.100000

0.000000

ks

0.200000

0.700000

0.900000

kt

0.000000

0.000000

0.000000

REFRAC
0.000000

SPECEXP
100

NUM POLYGONS
1

SURF NORMAL
-1.000000

0.000000

0.000000

NUM VERTICES
4

VERTEX
0.000000

0.000000

1.000000
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VERTEX 1

0.000000

0.000000

3.000000

VERTEX 2

0.000000

2.000000

3.000000

VERTEX 3

0.000000

2.000000

1.000000

VERT NORMAL
-1.000000

0.000000

0.000000

VERT NORMAL 1

-1.000000

0.000000

0.000000

VERT NORMAL 2

-1.000000

0.000000

0.000000

VERT NORMAL 3

-1.000000

0.000000

0.000000

kd

0.000000

0.900000

0.000000

ks

0.000000

0.200000

0.000000

kt

0.000000

0.000000

0.000000

REFRAC
0.000000
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SPEC EXP
50

NUM POLYGONS
1

SURF NORMAL
1.000000

0.000000

0.000000

NUM VERTICES
4

VERTEX
2.000000

0.000000

1.000000

VERTEX 1

2.000000

2.000000

1.000000

VERTEX 2

2.000000

2.000000

3.000000

VERTEX 3

2.000000

0.000000

3.000000

VERT NORMAL
1.000000

0.000000

0.000000

VERT NORMAL 1

1.000000

0.000000

0.000000

VERT NORMAL 2

1.000000

0.000000

0.000000

VERT NORMAL 3

1.000000

0.000000

0.000000
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