
NPS52-85-011

NAVAL POSTGRADUATE SCHOOL

Monterey, California

A Benchmarking
Database Computer

P

Methodology for the Centra!

with Expandable and Parallel

rocessors and Stores

.ized-

Database

Steven A Demurj ian

David K. Hsiao

James R. Vincent

August 1985

Approved for public release; distribution unlimited

Prepared for:

Chief of Naval Research
Arlington, VA 22217

FedDocs
D 208.14/2
NPS-52-85-011

ddLdboeA

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Hear Admiral K.M. Shumaker D. A. Schrady
Superintendent Provost

The work reported herein was supported by Contract
from the Office of Naval Research.

Reproduction of all or part of this report is authorized

This report was prepared by:

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PACE (*n*n Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1 REPORT NUMBER

NPS52-85-011

2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

« TITLE (and Subtitle) 5. TYPE OF REPORT ft PERIOD COVERED

A Benchmarking Methodology for the Centralized-
Database Computer with Expandable and Parallel
Database Processors and Stores 6 PERFORMING ORG. REPORT NUMBER

7. authors;
Steven A. Demurj ian
David K. Hsiao
James R. Vincent

• CONTRACT OR GRANT NUMBERf*;

9 PERFORMING ORGANIZATION NAME ANO ADDRESS

Naval Postgraduate School
Monterey, CA 93943

10. PROGRAM ELEMENT. PROJECT, TASK
AREA * WORK UNIT NUMBERS

61153N; RRO14-0 8-01
N0001485WR24046

II CONTROLLING OFFICE NAME AND ADDRESS

Chief of Naval Research
Arlington, VA 22217

12. REPORT DATE

August 1985
13. NUMBER OF PAGES

46
14 MONITORING AGENCY NAME 4 ADDR ESSf// dltlaranl Irom Controlling Olllce) 15. SECURITY CLASS, (ol thla raport)

Unclassified

IS« DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16 DISTRIBUTION STATEMENT (ol this Raporl)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ol the abatract antarad In Block 20, II dlllaranl from Raporl)

IB SUPPLEMENTARY NOTES

19 KEY WORDS (Contlnua on ravaraa alda II nacaaaary and Identity by block number)

20. ABSTRACT (Continue on ravaraa alda II nacaaaary and Identity by block number)

In this paper a benchmarking methodology for a new kind of database

computers is introduced. The emergence in the research community and in the

commercial world of this kind of database computer (known as the multiple-

backend database computers), where each computer system is configured with two

or more identical processors and their associated stores for concurrent

executionof transactions and for parallel processing of a centralized database

spread over separate stores, is evident. The motivation and characterization

of the multiple-backend database computer are first given. The need and lack

DD
l jan 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

S N 0)82- LF-0U- 6601
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Kntered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PACE (Whan Dmtm Bnffd)

of a methodology for benchmarking the new computer with a variable number of
backends for the same database or with a fixed number of differenct capacities
are also evident. The measures (benchmarks) of the new computer are articulated
and established and the design of the methodology for conducting the measure-
ments is then given. Because of the novelty of the database computer architc-
ture, the benchmarking methodology is rather elaborate and somewhat complicated
To aid our understanding of the methodology, a concrete sample is given herein.
This sample also illustrates the use of the methodology. Meanwhile, a CAD
system which computerizes the benchmarking methodology for systematically
assisting the design of test databases and test-transaction mixes, for auto-
matically tallying the design data and workloads, and for completely generating
the test databases and test-transaction mixes is being implemented.

S<N 0)02- LF- 014-6601

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEfWh«n Dmlm Bnt»t»d)

A Benchmarking Methodology for the Centralized-Database Computer

'with Expandable and Parallel Database Processors and Stores *

Steven A. Demurjian, David K. Hsiao and James R. Vincent ^*

Department of Computer Science

Naval Postgraduate School

Monterey, California 93943

U. S. A.

August 1985

ABSTRACT

In this paper a benchmarking methodology for a new kind of database computers is introduced. The

emergence in the research community and in the commercial world of this kind of database computer

(known as the multiple- bachend database computers), where each computer system is configured with two

or more identical processors and their associated stores for concurrent execution of transactions and for

parallel processing of a centralized database spread over separate stores, is evident. The motivation and

characterization of the muhiple-backend database computer are first given. The need and lack of a

methodology for benchmarking the new computer with a variable number of backends for the same

database or with a fixed number of backends for different capacities are also evident. The measures

(benchmarks) of the new computer are articulated and established and the design of the methodology for

conducting the measurements is then given. Because of the novelty of the database computer

architecture, the benchmarking methodology is rather elaborate and somewhat complicated. To aid our

understanding of the methodology, a concrete sample is given herein. This sample also illustrates the use

of the methodology. Meanwhile, a CAD system which computerizes the benchmarking methodology for

systematically assisting the design of test databases and test-transaction mixes, for automatically tallying

the design data and workloads, and for completely generating the test databases and test-transaction

mixes is being implemented.

* The work reported herein is supported by grant* from the Department of Defense STARS Program and from the Office of

Naval Research and conducted at the Laboratory for Database Systems Research, Naval Postgraduate School, Monterey, CA 93943.

** CAPT James R. Vincent is now at HQ/SIPN. Scott AFB. IL G2225.

TABLE OF CONTENTS

ABSTRACT 1

1. THE MOTIVATION AND NEED 3

2. THE ARCHITECTURE AND CHARACTERISTICS OF THE
MULTIPLE-BACKEND DATABASE COMPUTER 5

2.1. The Backend Controllers 6

2.2. The Interconnecting Network 6

2.3. The Expandability Requirements 6

2.4. The Database Organization 6

3. THE MEASURES (BENCHMARKS) OF THE
MULTIPLE-BACKEND DATABASE COMPUTER 8

3.1. A Measure (Benchmark) on Performance Gains 8

3.2. A Measure (Benchmark) on Capacity Growth 10

3.3. The Test (Benchmark) Transactions and the Test (Benchmark) Databases 12

4 THE DESIGN AND GENERATION OF TEST(BENCHMARK) DATABASES 12

4.1. The Concept of Database-Size Multiples 12

4.2. The Determination of the Possible Test Configurations 13

4.3. The Choice of Database Sizes and Record Sizes 14

4.4. The Calculation of the Database-Size Multiple 15

4.5. The Consideration of Database Formats 16

4.6. The Formation of Partitions (Clusters) 19

4.7. The Definition of Record Templates and Directory Data 27

4.8. A Summary of the Test-Database Methodology 33

5. THE DESIGN AND GENERATION OF TEST-TRANSACTION MIXES 35

5.1. The Emphasis on Generic. Primary Database Operations 35

5.2. The Test-Transaction Mixes 37

5.2.1. Data-Intensive and Overhead-Intensive Retrievals 37

5.2.2. Simple. Data-Intensive Updates 38

5.2.3. Data-Intensive and Overhead-Intensive Common Retrievals 39

5.2 4. Simple and Complex Inserts 40

5.2.5. Overhead-Intensive and Data-Intensive Deletes 41

5.2.6. Complex Data-Intensive and Overhead-Intensive Updates 42

5.2 7. The Benchmarking Sequence 43

5.2.8. A Summary of the Test-Transaction Methodology 43

6 CONCLUDING REMARKS 44

REFERENCES 45

1. THE MOTIVATION AND NEED

We need to benchmark a new kind of database computers. The need is accentuated by the claims

that the new breed of database computers can achieve performance gains and capacity growth. In other

words, unless and until we have benchmarked these computers, we will not be able to verify their claims.

These computers are new because they resemble neither the traditional approach to database management

by placing the system software in a mainframe computer such as SQL/DS in an IBM 3033 [l], nor the

more recent approach to database management by utilizing the dedicated hardware and software in a

single backend computer such as the Britton-Lee IDM 500 [2]. Whereas in the mainframe- based approach

a database system is characterized as an applications program (albeit, a major one), which shares the

resources of the mainframe computer with other applications programs (depicted in Figure 1), in the

single-backend approach a database system has the exclusive control and use of the resources of the entire

backend computer (depicted in Figure 2). The term backend is meant to be in the 'back' of terminals or

general-purpose computers [3], where neither the terminals nor the general-purpose computers (termed the

hosts) provide the database management services. Instead, the database management services are

provided by the backend computer to the user or user programs (transactions) via the terminals or the

hosts.

The new kind of the database computers (depicted in Figure 3) is of the multiple- backend approach

where no database system is mainframe-based and each database system consists of one or more backend

controllers (starting with one) and two or more backends (beginning with two usually) and their disk

systems interconnected by a network. The controller software is mainly dedicated to the communication

with the hosts and the terminals, to the scheduling and control of transaction executions by the backends

and to the routing of the responses coming from the backends back to the users. The backend software in

the multiple backends is identical and is responsible for carrying out the primary database operations such

as the retrieve, insert, delete, and update for the transactions. The sort-and-or-merge operations may also

be carried out by the backends either with the help of the controller if the communications network is a

simple network or with the help of the interconnecting network if the communications network is also a

A Mainframe Computer

Database
Transactions
and other

Applications

Operating
System

Database
Management

System

Disk System

fCT}

Database,files
and other data

of the computer.

Figure 1. The Mainframe-Based Approach to Database Management.

A Mainframe
Computer (Host]

A Backend Computer

Other
Applications

Operating
tern

)pera
SysU

I

Transactions

Responses

Database
Management

System

Disk System

£T> CDi

Disk System

Centralized
Databases

Files and
other data
of O. S

Figure 2. The Single-Backend Approach to Database Management.

Host

Other
Applications

Operating
tern

)pera
Svsu

Transactions

Responses

Backend
Controller

Disk System

*5

Files an<
other dat
of O S.

Database
Backend

Database
Backend

__| Database
Backend

Two or more
parallel

processors.

Disk System

ST
*•

—

j

Disk System

£ cb»

V *

Disk System

A partitioned
(clustered)
centralized
database.

Figure 3. The Multiple-Backend Approach to Database Management.

sorting-and-or-merging network. Examples of the mult iple-backend approach to database management

can be found in the experimental Multi-Backend Database System (MBDS) utilizing an Ethernet

interconnection 4 and the commercial Teradata DBC'1012 system consisting of a communications and

sorting network, known as the Y-net [5].

Unlike the mainframe-based and single-backend approaches, the multiple-backend approach

emphasizes great-capacity and high-performance database management, furthermore, it attempts to

relate the capacity growth and performance gains to the number of backends used in the system. In other

words, when new backends and their disk systems are added to a multiple-backend database computer, an

increase in both the capacity and the performance would likely be produced. In the case of MBDS, the

system is expandable in terms of tens of backends and associated disk systems, whereas the DBC/1012 is

expandable in terms of hundreds of backends and disks. We may then ask whether of not in the former

case the capacity growth and performance gains can be measured in tens and in the latter case in

hundreds. Clearly, we need a benchmarking methodology for the multiple-backend database computers so

that we can verify their growth and gains.

The design of the benchmarking methodology is complicated by the fact that (1) there is the need of

test databases which can be used for testing backends of varying numbers, for deriving partitions

(clusters) of a database, and for placing the partitions (clusters) on parallel stores; (2) there is the need of

test-transaction mixes which can be used for measuring primary database operations in terms of their

response times, for verifying the response-time reductions due to additions of backends and the

redistribution of the same database, for clarifying the response-time invariance on account of various

growths in database capacity with various additions of backends and backend stores; (3) there is the need

of systematic ways to generate the test databases and the test-transaction mixes, to conduct the tests, to

collect the test results, to interpret the results and to verify the results against established measures

(benchmarks). The major portions of the paper consist of the articulation and establishment of the

measurement criteria and measures, the design, interpretation, and generation of the test databases, the

test-transaction mixes, the test procedures, and the test configurations.

Before presenting our benchmarking methodology, we first outline the architecture and

characteristics of the multiple-backend database computers. We also establish the measures (i.e.,

benchmarks) of the computers These measures (benchmarks) should provide us with precise, quantitative

definitions of the notions of capacity growth and performance gains as functions of the numbers of

backends.

2. THE ARCHITECTURE AND CHARACTERISTICS OF THE MULTIPLE-BACKEND

DATABASE COMPUTER

In this section we review the architecture and characteristics of the multiple-backend database

computer. From Figure 3. we observe that certain features of the multiple-backend approach to database

management must be examined for benchmarking. These features are examined from both hardware and

software perspectives. We are also interested in the expandability of the multiple-backend approach.

All of the backends have identical hardware and replicated software which handles concurrent

execution of transactions. Consequently, a backend performs directory management, access-path

- 5 -

selections, access operations, concurrency control and record (tuple*) processing for insertion, deletion,

and update. The backend also controls its own disk system. The number of backends in a given system

may be in tens or hundreds.

2.1. The Backend Controllers

All of the backend controllers have identical hardware and replicated software which handle pre-

processing of the transactions, broadcast the transactions to the backends, keep track of the execution

progress of the transactions, assemble the responses from the backends, and route the responses to the

users or user transactions originated at the hosts or terminals. The number of backend controllers in a

given system is usually one but may be more for redundancy and reliability.

2.2. The Interconnecting Network

The interconnecting network can range from a broadcasting network to a cross-bar network.

However, since database management involves aggregate functions such as maximum and minimum and

sort-and-merge functions such as sequencing and merging (relational joins), the network may have local

memories and processors for such functions. Since backends are intended to perform most of the database

management operations on their database partitions (clusters) independent of one another, there are

minimal communications among the backends and between the controller and its backends. Thus the

interconnecting network does not have to be a high-bandwidth communications network. Instead, the

network may assist the backends in performing aggregate and sort-and-merge functions. As there is

usually only one controller, the use of broadcasting and tree-like networks becomes common.

2.3. The Expandability Requirements

The multiple-backend database computer is expandable. The expansion requires the use of the same

backend hardware, the replication of the existing backend software on the new hardware, the

redistribution of the partitions (clusters) on the old and new disks in order to achieve the desirable effect

where multiple transactions being executed in the backends are reading (or writing) and processing

multiple data streams of partitions (clusters) coming from (or going to) disks. This effect allows

partitionfrlusttrj-parallel- and- record(tuple)-serial operations.

2.4. The Database Organization

A database must !><• partitioned (clustered) at the database-creation time. Each partition (cluster)

must be placed on the respective disks of the separate backends one block (track) at a time. For a

round-robin database placement algorithm, if a partition (cluster) is. for example, of 25 blocks (tracks)

and the first available disk track to be used is at Backend 2. then for a 10-backend database system

Backend 2 through Backend 6 will have 3 blocks (tracks) of records (tuples) on each of their respective

disks, while Backend 1 and Backend 7 through Backend 10 will have only two blocks (tracks) of records

'Certain concepts and terminologies of the non-relational database and relational database are similar. Thus, files mean rela-

tions; records tuples; partitions clusters; tracks blocks; merging of two files relational joins; and so on. We shall enclose the similar

terms in parentheses.

- 6 -

(tuples) on each of their respective disks. (See Figure 4.)

The controller is responsible for determining the first block (track) (i.e., the first backend) to be

used for the data placement and the backends are responsible for placing the records (tuples) on their

available tracks. Although different partitioning (clustering) schemes and database placement algorithms

may be utilized for a given system, the design of the schemes and algorithms is to create the

partition(cluster)-parallel-and-block(therefore, record)-serial effect for the subsequent access operations of

the system. More specifically, in the above example we can conclude intuitively that the access and

process times for the 25 blocks (tracks) of records (tuples) are shortened to the times for 2 or 3 blocks

(tracks) of records (tuples). Thus, a 10-backend database computer may have a throughput of, at least, 8

times that of a single-backend database computer or of a mainframe-based database system.

As new records (tuples) are being inserted into a database, the database placement algorithm will be

activated frequently to place the new records on the next available blocks (tracks). This does not require

any redistribution of the database. However, as the new backends are being added to the system, it

becomes necessary to execute the database placement algorithm for the entire existing database in order

to maintain the optimal effect of partition(cluster)-parallel-and-block(track)-serial operations. This is

termed the redistribution of the database. Such redistribution, although time-consuming, is infrequent

(i.e., new backends are not added every day) and has the desirable effect on system performance (i.e., new

distribution of partitions or clusters allows a higher degree of parallel access operations).

Backend
Controller

Data \ Data 1

Block Block]
11 / 21

Data \ Data \ Data'
iBlock Block Block]

2 / 12 / 22

Data \ Data
Block Block

9 / 19

Figure 4. A Round-Robin Database Placement Algorithm for Placing

25 Blocks of Data in a 10-Backend Database Computer.

3. THE MEASURES (BENCHMARKS) OF THE MULTIPLE-BACKEND DATABASE
COMPUTER

There are two measures (benchmarks) of the multiple-backend database computer. One measure

(benchmark) relates to its performance-gains capability, while the second measure (benchmark)

corresponds to its capacity-growth potential. Each of these measures (benchmarks) are examined in the

following sections. The third part of this section introduces the development and specification of the test

(benchmark) transactions and the test (benchmark) databases which are used to conduct the

performance-gains and capacity-growth measures (benchmarks).

3.1. A Measure (Benchmark) on Performance Gains

Since a multiple-backend database computer may be configured with two or more backends for

parallel processing and access, there can be many different configurations. For example, we may want to

benchmark a ten-backend configuration versus a twenty-backend configuration. The performance gain of

one configuration over the other configuration is measured in the amount of response- time reductions from

the one computer configuration to the other configuration for the same transaction against the same

database. The response time of a transaction is defined as the elapsed time between the time that the

transaction is issued (i.e., received by the backend controller) and the time that the last response of the

transaction is produced (i.e., routed to the transaction) in a single-user, stand-alone environment. Thus,

this response time represents the best possible (i.e., shortest) response time that the transaction may

incur in a given computer.

Since the contents of both the database and the transaction are not to be changed for this measure,

the only changes are the different numbers of backends and the different distributions of the same

database in the two configurations. In other words, in a certain configuration X. we have i number of

backends and one distribution of the database In configuration Y. we have y number of backends and a

redistribution of the same database Since all of the software and the hardware of the backend. the

backend controller and the interconnecting network are the same, the following formula establishes the

performance-gains measure (benchmark) of configuration Y with respect to configuration X for a specific

transaction and database.

\

The

Response -Time]

Reduction

The Response
Time of

Con f jguration V

The Response
Time o f

Configuration X

Equation 1. The Response-Time-Reduction Formula

Let z, the number of backends for configuration X. be 20. and y, the number of backends for

configuration Y, be 60, then ideally we would like the ratio of response times of configuration Y of 60

backends and configuration X of 20 backends to be 1 3. Consequently, the response-time reduction of

the 60-backend database computer over the 20-barkend database computer would be 2 3. This example

- 8

illustrates that if we triple the number of backends of an existing database computer and redistribute the

same database on the existing and new disks, we would expect to cut the response time of a transaction

by two-thirds. In other words, the response-time reduction is inversely proportional to the ratio of the

number of backends of the two configurations.

In reality, the response-time reductions are not likely to reach their ideal proportions. The issue is

therefore how close a given multiple-backend database computer can reach its ideal response-time

reductions. As shown in Figure 5, we must measure (benchmark) a sufficient number of configurations for

a given transaction and database in order to determine the system overheads and their impact on the

response times (therefore, on the response-time reductions) of the transaction and the database.

Ideally, we would expect that in Figure 5 R, = — for t = 1, 2, ..., n , and for large n, Typically,
t

Aj = and A 2 < A s < • < A n where A, is the system overhead incurred in handling the

transaction in the t -backend configuration. In studying Figure 5, we may expect the benchmarking effort

to address the following issues:

(1) What are the values of A, for the given i-backend computers under benchmarking?

(2) How large will n be when there is no further reduction in response time (i.e., Rn > Rn + ,)?

(3) How large will n be when the system overhead becomes pronounced (i.e., »)?

a)

c
o

3

0;

E

m
c
o
a.
in

V

Ideal Reduction

(".*.)

M (Multiplicity of Backends)

Figure 5. The Response-Time Reduction Measure

- 9

3.2. A Measure (Benchmark) on Capacity Growth

The capacity growth of one configuration over the other configuration is characterized by the sizes

of the responses to the same transaction. As the database grows, the responses to the same transaction

increase also. Consequently, the capacity growth of one configuration over the other configuration is also

characterized by the sizes of their databases. What we want to measure (benchmark) is whether the

response time of a transaction can be held constant despite the capacity growth in a new configuration.

To compensate for the extra work necessary in capacity growth, the multiple-backend database computer

can offer new configurations with additional backends.

Unlike the previous measure (benchmark) on performance gain where the size of the database has

not been changed but the database has only been redistributed in the new configuration, in the capacity-

growth measure (benchmark) the size of the database is both changed and redistributed in the new

configuration. The change of the database size is deliberate in order to induce a change in the amount of

responses to the same transaction. Obviously, if we are to induce, for example, twice the amount of the

responses to a transaction in the new configuration over the amount of responses to the transaction in the

old configuration, the size of the database in the new configuration is likely to be a multiple of (say,

twice) the size of the database in the old configuration. To compensate for the increase in the database

size and the response-set size, the new configuration is given a corresponding increase in number of

backends and their disk systems. For this example, if the database size and the response-set size are

doubled, then the number of backends and disks in the new configuration would be doubled. Therefore,

what we want to measure (benchmark) is the invariance of the response time of the same transaction as

the size of response sets and the number of backends increase in the same proportions. We characterize

the capacity-growth measure (benchmark) as the response-time invariance and present the formula in

Equation 2 below.

The
Response - Time

Invariance

The Response
Time of

Conf iguration Z

The Response
Time of

Conf iguration X

Equation 2. The Response-Time-Invariance Formula

Again, let i . the number of backends for configuration X, be 20. and z . the number of backends for

configuration Z, be 60, then ideally we would like the ratio of response times of configuration Z of 60

backends and configuration X of 20 backends to be 1. Consequently, the response-time invariance of the

60-backend database computer over the 20-backend database computer would be 0, i.e., no variance. Of

course, in this example, the transaction receives three times more responses in the 60-backend database

computer than the response to the same transaction in the 20-backend database computer.

This example illustrates that if we triple the number of backends of an existing database computer

for the grown and redistributed database, we would expect to maintain the same response time of the

transaction despite the fact that, the transaction is now processing three times more responses than before.

For the purpose of maintaining the same response time of a transaction, it is ideal if the number of

backends added to the existing configuration is in proportion to the increase in the amount of the

responses. In this example, we need to add three times as many new backends and their disk systems to

the existing database computer in order to hold the response time invariant.

In reality, some variances in response times will always exist. The issue is therefore how close a

given multiple-backend database computer can maintain its ideal response-time invariances. As shown in

Figure 6, we must measure (benchmark) a sufficient number of configurations for a given transaction and

a similar number of databases in order to determine the system overheads and their impact of the

response times.

Ideally, we would expect that in Figure 6 5, = i for t = 1,2, ..., n and for large n. However, in

typical cases, <!> , and 6 2 < f> j < < ^ „ . where S, is the system overhead incurred in handling the

transaction in the i -backend configuration In studying Figure 6, we may expect the benchmarking effort

to address the following issues:

(1) What are the values of 6 , for the given i -backend computers under benchmarking?

(2) How large will n be when there is no invariance in response time (i.e., Sn ^ Sn + t)?

i n+ i
6 n

(3) How large will n be when the system overhead becomes pronounces (i.e., »)?
n + 1 n

9,

c/:

Ideal Invariance , i.e.. no variance.

(n. n)

in.Sn)

t-*- M (Multiplicity of Backends)

Figure 6. The Response-Time Invariance Measure

- 11

3.3. The Test (Benchmark) Transactions and the Test (Benchmark) Databases

The aforementioned measures on performance gains and capacity growth have focused on measuring

(benchmarking) one transaction at a time. In other words, the same transaction is used to measure

(benchmark) the response-time reductions and invariances over a large number of computer

configurations To provide a comprehensive measure of the multiple-backend database computer, we

should use a number of 'standard' transactions (benchmarks). Among the primary operations of the

database computer, the retrieve, delete and update operations tend to involve all of the backends of the

computer, whereas the insert operation does not. Consequently, we must emphasize test transactions

(benchmarks) which consist of various retrieve, delete and update operations. In Section 5, we propose a

methodology for generating test-transaction (benchmark) mixes involving retrieve, delete, insert and

update operations.

The test (benchmark) database for the measures must be distributed 'evenly' on the disks of a

number of configurations with different numbers of backends. Consequently, we need a methodology not

only to generate test (benchmark) databases but to allow even distribution and redistribution of the same

test (benchmark) databases on the new configurations. Furthermore, each test (benchmark) database

must induce just the right amount of increase in responses for the test-transaction (benchmark) mix for

every new configuration when measuring (benchmarking) response-time invariance. This methodology is

expounded in the following section.

4. THE DESIGN AND GENERATION OF TEST(BENCHMARK) DATABASES

Let us consider the possible configurations for a database computer with m backends. Let s denote

the total number of b\tcs in the database of the one-backend database computer. Depending on the

configuration being chosen, we would like to benchmark the m-backend computer against the i -backend

computer where i = 1. 2 or [m]). Furthermore we would want to evenly distribute the

database of size « to 1, 2. 3 or m backends.

4.1. The Concept of Database-Size Multiples

To determine a database size which permits an even distribution and redistribution of data to each

backend in the configuration, we find the least common multiple (LCM) for the possible configurations of

1. 2. 3. 4 or m backends. For example, consider the case where up to four backends are used. The

four possible computer configurations are foi 1. 2. 3, and 4 backends. To enable us to allocate the

database in s / 1, s j 2, s j 3, and s 4 increments, the database size must be a multiple of 12, i.e., the

LCM{1, 2. 3. 4}. If we select a database with 24.984 200-byte records for the one-backend database

computer (i.e., a total of 4.8 megabytes), the configurations listed in Table 1 are possible. We may

measure the performance of a one-backend computer. Then, we distribute the database evenly on the

disk systems of a two-backend computer, three-backend computer, and four-backend computer, and

measure the performance for each configuration The distribution of data in bytes for the four

configurations is also given in Table 1. An analysis of data for this series of tests may produce a graph

similar to Figure 5. Table 2 summarizes the method for determining « , the database size, for a computer

12 -

with m backends.

We note that the expression for calculating the common database-size multiple requires a factor of

32. The need for this factor is explained later when we consider the record sizes of the database in

Section 4.5.

Number of

Backends—
r

Number of Megabytes

per Backend

4.8

n

2.4

I 6
_ -—

7.2~

Table 1. Sample Computer Configurations.

Number of Backends

in the Computer
With rec size expressed in bytes,

« is a multiple of

1
(2 x 32 x rec size)

2

3

(2 x 32 x rec size)

(6 x 32 x rec size)

4
(12 x 32 x rec size)

5
(60 x 32 x rec size)

(60 x 32 x rec size)6
"

7 (420 x 32 x rec_size)

m (LCM{l,2,...,m } x 32 x rec_size)

Table 2. Database-Size Multiples.

4.2. The Determination of the Possible Test Configurations

I sing s as determined in Table 2. we can easily summarize the database-size requirements for

conducting various performance-gains and capacity-growth measurements (benchmarks). Depicted in

Table 3. for example, if we benchmark a t hree-backend computer and a one-backend computer for the

performance-gains measure, we must configure the computer first with all of the database on one backend,

then with the database distributed evenly on two backends. and finally with the database distributed

evenly on three backends For the capacity-growth measure, we benchmark first all of the database on

one backend. then double the size of the database and distribute n evenly on two backends, and finally

triple the size of the database and distribute it e\enl\ on three backends.

In general, when we have a database computer which is expandable to a maximum of m backends,

then the number of benchmark configurations for performance gains in terms of response-time reductions

is m , and the number of possible benchmark configurations for capacity growth in terms of response-time

invariances is (m - 1), thereby making the total number of distinct benchmark configurations to be

(m - (m — 1)), i.e., (2m - 1) Using this methodology, a system evaluator may select certain distinct

test configurations for the performance-gains and capacity-growth measurements of a database computer

with anv number of backends.

- 13 -

Configuration

Number
Number of

Backends

Megabytes per

Backend

Total database

Size in Megabytes

1 1 s 6

2 2 8 /2 s

s3 3 «/3

4 2 s 2«

5 3 s 3<

Note:

Configurations 1, 2 and 3 are required to benchmark the performance gains.

Configurations 1, 4 and 5 are required to benchmark the capacity growth.

Table 3. Test Configurations with One to Three Backends

4.3. The Choice of Database Sizes and Record Sizes

Next, we consider how to determine the database size, « . More importantly, the database-size

multiple of s. To adequately measure the performance characteristics of a multiple-backend database

computer, we propose that three different database sizes be selected. One size should represent a small

database, one size should represent a large database, and the third should represent an intermediate size

between the largest and smallest ones. We decide that the smallest database size is « / 4, while the

intermediate size is s / 2.

The database sizes are dependent on the disks used. Therefore, we propose the following

methodology which may be easily applied to any disk organization. First, the largest database size is

proportional to the maximum formated capacity, in megabytes, of the backend's disk. For example,

assume that for a three-backend database computer, each backend has a single disk drive with a

maximum formated capacit\ of 300 megabytes for the database use*. From Table 2 we see that « must

be divisible by (6 x 32 x rec_size). Although »p have yet to consider the record size, this requirement

implies that the largest database must be divisible by 6 x 32, i.e., 192.

Now we consider record size before selecting the final value for a . Strawser notes that record-size

selection is also hardware specific, since it depends on the size of the unit of data accessed by the

particular computer |6]. For example, suppose the disk-track size is 4 kilobytes. Using Strawser's scheme

for blocking records of four sizes into a 4-kilobyte track, we may select sizes of 2000, 1000, 400, and 200

bytes per record, resulting in a range of 2 to 20 records per track. For a computer which supports a 16-

kilobyte track size, we may select record sizes of 4000. 2000. 800, and 400 bytes per record, which results

in a range of 4 to 40 records per track.

The key to record-size selection is to ensure that one record size is large and one small, with the

other two record sizes representing intermediate \alues between the largest and smallest values picked.

This will enable us to contrast performance for cases where there are many small records per track to

cases where there are a few large records per track. In addition, we require that the three smaller record

sizes be evenly divisible into the largest record size, since this simplifies the process of determining

'In this study, the Fujitsu Eagle disk drive is used. Out of the 380-megabyte formated capacity, 80 megabytes are reserved

for use by the directory. (See Section 4.7 on directory data.) The remaining ?>00 megabytes are used for the database.

database size. With this requirement, we may concentrate on sizing the database for the largest record

size, and be assured that the selected database will accommodate the smaller record sizes as well. Since

track sizes differ for various disk installations, each system evaluator may determine unique record sizes

which will be compatible with the specific unit of data access and storage.

Assume that we decide to use 4-kilobyte tracks, with record sizes of 2000, 1000, 400, and 200 bytes

per record. We use this; assumption to continue the development of test databases for a three-backend

database computer.

4.4. The Calculation of the Database-Size Multiple

We can now determine the required database-size multiple for our sample application as follows:

(6 x 32 x 2000) = 384,000.

Therefore, s will be the largest multiple of 384,000 bytes for a maximum formated database capacity of

300 megabytes. For simplicity, let a million bytes be a megabyte. Since 781 x 384,000

— 299.904 megabytes, we have

s j 4= 74.976 megabytes,

« / 2= 149.952 megabytes, and

s = 299.904 megabytes.

In other words, the large database size, s . is 781 multiples of 384,000 bytes.

Tables 4, 5 and 6 show that for our sample the three proposed test databases are feasible, since they

permit each database to be distributed evenly as required for all of the feasible test configurations.

Configuration

N um ber

Number of

Backends

1 1

2 2

3 3

4 2

5 3h-

Megabytes per

Backend

74.976^

37\488

24.992

74.976

74 .976

"

Total database

Size in Megabytes

74.976

74.976

74.976

149.952

299.904

Note:

Configurations 1. 2 and 3 are required to benchmark the performance gains.

Configurations 1, 4 and 5 are required to benchmark the capacity growth.

Table 4. Test Configurations for the Three-Backend Computer with

Small Databases (« / 4 = 74.976 megabytes).

- 15

Configuration

Number
Number of

Backends
Megabytes per

Backend

T49T952

74.976

49.984

1 49.952

Total database

Size in Megabytes
I 1 149.952

2 2 149.952

3

4

3

2~
149.952

299.904
5 3 149.952 449.856

Configurations 1, 2 and 3 are required to benchmark the performance gains.
Configurations 1, 4 and 5 are required to benchmark the capacity growth.

Table 5. Test Configurations for the Three-Backend Computer with
Medium Databases (« / 2 = 149.952 megabytes).

Configuration

Number
Number of

Backends

Megabytes per

Backend
Total database

Size in Megabytes

1 1 299.904 299.904

2 2 149.942 299.904

3 3 99.968 299.904

4 2 299.904 599.808

5 3 299 904 899.712

Note:

Configurations 1, 2 and 3 are required to benchmark
Configurations 1, 4 and 5 are required to benchmark

the performance gains,

the capacity growth.

Table 6 Test Configurations for the Three-Backend Computer with

Large Databases (« = 299.904 megabytes).

4.5. The Consideration of Database Formats

Next, we consider how to format the test databases in terms of record sizes. Two options seem

feasible. We may use only one record size per database, or we may include all four record sizes in a

database Consider the case where we use only one record size per database. As we have four record

sizes, we must create four separate databases, i.e., one for each record size. Further, we also want to test

with small, medium and large databases. We therefore have 12 (i.e., 3x4) different database

configurations to be used for testing. Since there are 5 possible computer configurations for a three-

backend database computer, the measurement tests may run as high as 60 times, i.e., 12 x 5. In addition,

there is a separate mix of test transactions for each record size and database size. Multiply this number

with the number of test-transaction mixes, and the resulting number of tests may be unreasonably large.

Consider the case where four different record sizes appear in a single database In this case, we

require just three test databases instead of twelve, since each database contains four record sizes. This

database configuration may be easier to use for testing, since only 15 sets (i.e., 3x5) of measurement

tests need be run. Each mix of test transactions is larger, since it includes transactions for testing all four

record sizes. However, the size of responses for the test-transaction mix is smaller. As records of all four

sizes are distributed over the available secondary storage, fewer records per record size are stored. Because

the available secondary storage is now shared by records of four different sizes, we must consider how to

distribute the records of different sizes. One option would be to use an equal number of records per record

size. The disadvantage of this approach is that the resultant database distribution is not even.

An even distribution would be to split the database into four equal quarters, with each quarter of

the database corresponding to one of the four record-size categories. We apply this technique to our

example of the three-backend database computer. First, consider the small database of 74.976 megabytes,

i.e., « / 4. Then, there are 18.744 megabytes per quarter. Therefore, we have for four record sizes:

(18.744 megabytes)/(2000 bytes/record) = 9,372 records

(18.744 megabytes)/(l000 bytes/record) = 18,744 records

(18.744 megabytes) (400 bytes/record) = 46,860 records

(18.744 megabytes)/(200 bytes/record) = 93,720 records

Following through with similar calculations for « / 2 and e , we can derive Tables 7, 8 and 9 for small,

medium, and large databases consisting of four record sizes in equal quarters per database. We see from

these tables that our database design permits each database to be distributed evenly as required for all of

the possible test configurations.

Configuration

Number
Number

of

Backends

Record

Size in

Bytes

2000~

1000

400

200

Number of

!

Records per

Backend

9,372

18,744

46,860

93,720

Megabytes

per

Backend

18.744

18 744

18.744

18.744

i
Database

Size in

i Megabytes
1 1

|
J>

—

I

74.976

2 2 2000

1000

400

200

4,686

9,372

23,430

46,860

3~124
"

6,248

15,620

31,240

9.372

9.372

9.372

9.372

74.976

3

"~T~

1

1

- - J

3 2000

1000

400

200

6.248

6.248

6.248

6.248

74.976

2 2000

1000

400

200

9,372

18,744

46,860

93,720

18.744

18.744

18.744

18.744

18744]

18 744

18.744

18.744

149.952

224.928

3 2000

1000

400

200

9,372

18,744

46,860

93,720

Table 7. Small Test Databases for Different Configurations.

- 17 -

Configuration Number Record Number of Megabytes Database

Number of Size in Records per per Size in

Backends Bytes Backend Backend

"37.4 88

Megabytes

\
1 2000 18.744

1000 37,488 37.488

400 93,720 37.488 149.952

200 187,440 37.488

2 2 2000 9,372 18.744

1000 18,744 18.744

400 46,860 18.744 149.952

200 93,720 18.744

3 3 2000 6,248 12.496

1000 12,496 12.496

400 31,240 12.496 149.952

200 62,480 12.496

4 2 2000 18,744 37.488

1000 37,488 37.488

400 93.720 37.488 299.904

200 187,440 37.488
' H5 3 2000 18,744 37.488

1000 37.488 37.488

400 93,720 37.488

37.488

449.856
1

1

200 187,440

Table 8. Medium Test Databases for Different Configurations.

Configuration N um ber

of

Record Number of Megabytes
1

Database

Number Size in Records per per Size in

Backends B>tes Backend

3Y,,4 88

Backend ! Megabytes

"Y4T9Y61 1 2000

1000 74,976 74.976

i

400 187,440 74.976 299.904

200 374,880 74.976

2 2 2000 18,744 37.488

1000 37,488 37.488

400 93,720 37.488 299.904

200 187,440 37.488
"3

3 2000 12,496 24.992

1000 24,992 24.992

400 62,480 24.992 299.904

200 124,960 24.992

4 2 2000 37,488 74.976

1000 74,976 74.976

400 187,440 74.976 599.808

200 374,880 74.976
1

5 3 2000 37,488 74.976

1000 74,976 74.976

400 187,440 74.976 899 712

200 374,880 74.976

Table 9. Large Test Databases for Different Configurations.

We may now explain the requirement for the multiple of 32 in the database-size relation of Table 2.

First, recall that, in general, s is a multiple of (LCM{1.2 M} x 32 x rec size) In our methodology for

18

selecting a small, medium, or large database, we derided to select database-size increments of e / 4, « / 2,

and « . Thus, a is a multiple of 1, 2, and 4. Since the LCM{1,2,4} is 4, then a must be divisible by 4.

Secondly, to enable us to handle the four record sizes in a single database, we must be able to split the

database into four even quarters. In the case of the small-size database, a j 4 must be divisible by 4 again

to yield even quarters. Since, (« / 4)/ 4 is the same as a / 16, the effect is to require that the total

database size, s ,
be divisible by 16. Finally, we require that the small database size represented by a / 16

be further divisible by 2. This final requirement is actually related to the partitioning (clustering)

mechanism of the multiple-backend database computers which groups records into partitions (clusters).

By requiring that the database be divisible by this final factor of 2, we make it possible for each partition

(cluster) to hold an even number of records. Thus, we can control the size of partitions (clusters), say,

forming a new partition (cluster) of one half of the records of an existing partition (cluster). Although

this factor is not a general requirement for a partitioning (clustering) mechanism, and can be eliminated

without any loss of generality in our methodology, there will be less work in conducting the benchmarking

experiments (i.e.. controlling the partition (cluster) size), and in interpreting the benchmarking results.

Therefore, we have (s / 16)/ 2, which means that « must be a multiple of 32 times the LCM{ 1,2,...,M}

times the record size.

4.6. The Formation of Partitions (Clusters)

Although partitioning (clustering) schemes are different in different multiple-backend database

computers, they all generate partitions (clusters) with variable numbers of records. The number of

records per partition (cluster) is determined by the indices used, which will be elaborated on in a later

section. Here we propose a way to form \ ariable-size partitions (clusters) fur even distribution. We have

selected nine partition (cluster) categories, with each partition (cluster) containing from 2 to 10 blocks of

records. This design provides a uniform range of cluster sizes and facilitates the design of extensible and

versatile test-transaction mixes. For example, the cluster category with two blocks per cluster has four

2000-byte records per cluster, eight 1000-byte records per cluster, twenty 400-byte records per cluster, and

forty 200-byte records per cluster. These values are calculated by multiplying the number of records per

block by the number of blocks per cluster. Thus, there are nine categories of clusters and their records

per cluster are depicted in Table 10.

Our next consideration is to determine how many partitions (clusters) of each partition (cluster)

category should be chosen for each of t h«* four record sizes comprising a test database. Let us return to

our three-backend computer configuration, and integrate the data on clusters, records, blocks and others

for the small test database, with 74.976 megabytes, i.e.. of * ' 4

Configuration 1 of Table 7 shows that we have 9.372 records for the 2000-b\te record size. We wish

to distribute these records according to the nine cluster categories of Table 10. Let us consider a simple

illustration. We use the nine cluster categories and the corresponding values of the number of records per

cluster category for the 2000-byte record size. We again assume a three-backend computer, with four

clusters for each of the cluster categories. This results in the distribution shown in Table 11.

19

Cluster

Category

Blocks

per

Cluster

Recorc

2000

1 Size in Bytes:

1000 400 200

1 2 4 8 20 4U

2 6

8

"
12

~16
30

~To
61)

80S 4

4 10 ' 20 50 100

5
.

_

^ 6 12
|

24 60 120

6 7 14 28 70 140
'

7 8 16^ 32 80 160

8 9 18 36 90 180

9 10 20 40 100 200

Table 10. Number of Records per Cluster Category

Record Number of Number of Total Total Total
Size Blocks Records Number Number Number
in per per of of of

Bytes Cluster Cluster Clusters
_____ Records

~16~
""

Blocks

2,000 2 4

3 6 4 24 12

4 8 4 32 16

5 10 4 40 20
6 12 4 48 24
7 14 4 56 28
8 16 4 64 32
9 18 4 72 36
10 20 4 80 40

Sub-tota s: 36 432 216

Table 11. Sample Record Distribution.

Given the distribution of Table 11. wc sec that the database computer distributes the blocks across

three backends to effect an even record distribution The first cluster category consists of two blocks per

cluster, for four clusters, resulting in a total of eight blocks to be distributed across three backends. Since

eight is not evenly divisible by three, two backends will receive three blocks of records, while one backend

will receive two blocks of records The database computer distributes the blocks for the rest of the

clusters in a similar fashion Table 12 shows the block and record distribution for this example.

Notice in Table 12 that during block distribution the database computer ensures that each backend

ends up with an equal number of blocks. W e observe that Backend 3 has received one less block for the

first cluster category. During distribution of the blocks for the third cluster category, the database

computer has compensated it b\ inserting six blocks at Backend 3. while inserting only five blocks each at

Backends 1 and 2. The same situation occurs between cluster categories four and six, and between

categories seven and nine of Table 12 Although it is not possible for the the database computer to

distribute blocks equally for every individual cluster, it does work to achieve an equal distribution in the

long run for the entire cluster collection.

20

Cluster

Category

Number
of

Blocks

Back ?nd 1 Backend 2 Backend 3

Number Number Number Number Number Number
per of of of of of of

Cluster Blocks Records Blocks Records Blocks Records

1 2 3 6 3 IT ~

2 4

2 3 4 8 4 8 4 8

3 4 5 10 5 10 6 12

4 5 7 14 7 14 6 12

5 6 8 16 8 16 8 16

6 7 9 18 9 18 10 20

7 8 11 22 11 22 10 20
8 9 12 24 12 24 12 24

.__
9

-
10 13 26

144

13 26 14 28

Sub-totals:
....

>: (72 x 3)

72 144 72 144

Not< - 216 bloc ks. Note (144x3
|
= 432 records.

Table 12. Record Blork Distribution for Table 11 Example.

With this understanding of the cluster distribution process, let us return to the task of determining

the required number of clusters for a total of 9,372 2000-byte records. If we sum all of the number of

records per cluster, we have 108 records distributed over all nine cluster categories. We therefore simply

divide 9,372 by 108. The result is 86, with a remainder of 84. This means that we are 24, (108- 84),

records short of being able to use 87 clusters for each of the 9 cluster categories. This deficit is easily

resolved by using 86 clusters for the first and last cluster categories, since 4 -* 20 — 24 The other seven

categories will each have 87 clusters.

We may use the same compnt ation to arrive at the record and block distributions of the 200-byte.

400-byte. and 1000- byte record sizes for Configuration 1 of Table 7. since 200. 400. and 1000 are all

divisors of 2000. The resulting cluster distribution is also shown in Table 13.

Record Number of Number of Totaf Total Total Number of

Size Blocks Records Number Number Number Blocks

in per per of of of per

Bytes Cluster Cluster Clusters Records Blocks Backend

~~I.ooo
-

2 8 86 688 172 172

3 12 87 1,044 261 261

4 16 87 1,392 348 348

5 20 87 1,740 435 435

6 24 87 2,088 522 522

7 28 87 2,436 609 609

8 32 87 2,784 696 696

9 36 87 3,132 783 783

10 40 86 3,440

18,744

860 860

Sub-totals: 781 4,686 4,686

"loo
-

2 20 "86 1,720^ 172 172

3 30 87 2,610 261 261

4 40 87 3,480 348 348

5 50 87 4,350 435 435

6 60 87 5,220 522 522

7 70 87 6,090 609 609

8 80 87 6,960 696 696

9 90 87 7,830 783 783

10 100 86 8,600 860

4,686

172

860

4,686

172

Sub-totals: 781 "~46,860~

3,440Too"

"

2 40 86

3 60 87 5,220 261 261

4 80 87 6,960 348 348

5 100 87 8,700 435 435

6 120 87 10.440 522 522

7 140 87 12.180 609 609

8 160 87 13.920 696 696

9 180 87 15,660 783 783

10 200 86 17,200 860 860

Sub-totals: 781 93.720 4,686 4,686

Table 13. Record Block Distribution. Small Database. Configuration 1

There are two backends in configuration 2. throe backends in configuration 3. two again in

configuration 4 and three again in configuration 5. Each of there configurations have different

record block distributions for the same database. The following seven tables are for the remaining four

configurations. We do not include the eight tables for the medium database size of the five

configurations. Nor do we include the eight tables for the large database size. The interested reader may

refer to 7 for the tables.

Record Number of Number of Total Total Total Backend 1 Backend 2

Size

in

Blocks

per

Records

per

Number
of

Number
of

Number
of Number of Number of

Bytes Cluster Cluster Clusters Records Blocks Blocks Blocks

2000 2 4
~86™

344 172 86 86

3 6 87 522 261 131 130

4 8 87 696 348 174 174

5 10 87 870 435 217 218

6 12 87 1,044 522 261 261

7 14 87 1,218 609 305 304

8 16 87 1,392 696 348 348

9 18 87 1,566 783 391 392

10 20 86 1,720 860 430 430

Sub-totals: 781 9,372 4,686 2,343 2,343

1000 2

86 688 172 86 86

3 12 87 1,044 261 131 130

4 16 87 1,392 348 174 174

5 20 87 1,740 435 217 218

6 24 87 2,088 522 261 261

28 87 2,436 609 305 304

8 32 87 2,784 696 348 348

9 36 87 3,132 783 391 392

10 40 86 3,440 860 430 430

Sub-totals: 781 18,744 4,686" 2,343 2,343

400 2 20 86 1,720 172 86 86

3 30 87 2,610 261 131 130

4 40 87 3,480 348 174 174

5 50 87 4,350 435 217 218

6 60 87 5,220 522 261 261

7 70 87 6,090 609 305 304

8 80 87 6,960 696 348 348

9 90 87 7,830 783 391 392

10 100 86 8,600 860 430 430

Sub-totals:

2

781 46,860 4,686 2,343 2,343

200 40 86
~

3,440 172 86 86

3 60 87 5.220 261 131 130

4 80 87 6,960 348 174 174

5 100 87 8,700 435 217 218

6 120 87 10,440 522 261 261

7 140 87 12,180 609 305 304

8 160 87 13,920 696 348 348

9 180 87 15,660 783 391 392

10 200 86 17,200 860 430 430

Sub-totals: 781 93,720 4~686 2~343 2.343

Table 14 Record Block Distribution, Small Database, Configuration 2.

23

Record Number of Number of Total Total Total Number of

Size in Blocks per Records per Number of Number of Number of Blocks per

Bytes Cluster Cluster Clusters Records B)o< ks Backend

2.Q00 2 4 86 344 172

3 6 87 522 261

4 8 87 696 348 (See

5 10 87 870 435 below)

6 1 2 87 1,044 522

7 14 87 1,218 609

8 16 87 1,392 696

9 18 87 1,566 783

10 20 86 1,720 860

Sub-totals: 781 9,372 4,686

Number
of

Blocks per

Back end 1 Back End 2 Backend 3

Number of Number of Number of Number of Number of Number of

Cluster Blocks Records Blocks Records Blocks Records

2 58 116 57 114 57 114

3 87 174 87 174 87 174

4 116 232 116 232 116 232

5 145 290 145 290 145 290

6 174 348 174 348 174 348

7 203 406 203 406 203 406

8 232 464 232 464 232 464

9 261 522 261 522 261 522

L >° 286 572 287 574 287 574

Sub-totals 1,562 3,124 1,562 3,124 1,562 3,124

Table 15a. Record/Block Distribution, Small Database, Configuration 3.

Record Number of Number of Total Total Total Number of

Size in Blocks per Records per Number of Number of Number of Blocks per

Bytes Cluster Cluster Clusters Records Blocks Backend

1,000 2 8 86 688 172

3 12 87 1,044 261

4 16 87 1,392 348 (See

5 20 87 1,740 435 below)

6 24 87 2,088 522

7 28 87 2,436 609

8 32 87 2,784 696

9 36 87 3,132 783

L_
10 40 86 3,440 860

Sub-totals: 781 18,744 4,686

Number
of

Blocks per

Back end 1

Number of

Back end 2 Backend 3

Number of Number of Number of Number of Number of

Cluster Blocks

58

Records

232

Blocks Records Blocks Records

~2282 57 228 57

3 87 348 87 348 87 348

4 116 464 116 464 116 464

5 145 580 145 580 145 580

6 174 696 174 696 174 696

7 203 812 203 812 203 812

8 232 928 232 928 232 928

9 261 1,044 261 1,044 261 1,044

10 286 1,144 287 1,148 287 1,148

Sub-totals: 1,562 6,248 1,562 6,248 1,562 6,248

Table 15b. Record Block Distribution, Small Database, Configuration 3.

Record Number of Number of Total Total Total Number of

Size in Blocks per Records per Number of Number of Number of Blocks per

Bytes Cluster Cluster Clusters Records Blocks Backend

400 2 20 86 1,720 172

3 30 87 2,610 261

4 40 87 3,480 348 (See

5 50 87 4,350 435 below)

6 60 87 5,220 522

7 70 87 6,090 609

8 80 87 6,960 696

9 90 87 7,830 783

10 100 86 8,600 860

Sub-totals: 781 46,860 4,686

Number
of

Blocks per

Backend 1 Back end 2 Backend 3

Number of Number of Number of Number of Number of Number of

Cluster Blocks Records Blocks Records Blocks Records

2 58 580 57 570 57 570

3 87 870 87 870 87 870

4 116 1,160 116 1,160 116 1,160

5 145 1,450 145 1,450 145 1,450

6 174 1,740 174 1,740 174 1,740

7 203 2,030 203 2,030 203 2,030

8 232 2,320 232 2,320 232 2,320

9 261 2,610 261 2,610 261 2,610

10 286 2,860 287 2,860 287 2,860

15,620Sub-totals: 1,562 15,620 1,562 15,620 1,562

Table 15c. Record/Block Distribution, Small Database, Configuration 3.

Record ! Number of Number of Total Total Total Number of

Size in Blocks per Records per Number of Number of Number of Blocks per

Bytes Cluster

2

Cluster Clusters Records Blocks Backend

200 40 86 3,440 172

!
1

3 60 87 5,220 261

1 4 80 87 6,960 348 (See

5 100 87 8,700 435 below)

6 120 87 10,440 522

7 140 87 12,180 609

8 160 87 13,920 696

9 180 87 15,660 783

10 200 86 17,200 860

~4,686

Bark

Number of

Sub-totals: 781 93,720

Number
of

Backend 1 Back end 2

Number of

end 3

Blocks per
[
Number of Number of Number of Number of

Cluster Blocks Records Blocks Records Blocks

57

Rei ords

2 58 1.160 57 1,140 1.140
Q 87 1,740 87 1,740 87 1,740

4 116 2,320 116 2,320 116 2,320

5 145 2,900 145 2,900 145 2,900

6 174 3,480 174 3,480 174 3,480

;
7 203 4,060 203 4,060 203 4,060

8 232 4,640 232 4,640 232 4,640

9 261 5,220 261 5,220 261 5,220

10 286 5,720 287 5,740 287 5,740

Sub-totals:
i

1,562 31,240 1,562 31,240 1,562 31,240

Table 15d Record Block Distribution, Small Database, Configuration 3.

- 25

Record Number of Number of Total Total Total Number of

Size Blocks Records Number Number Number Blocks

in per per of of of per

Bytes Cluster Cluster Clusters Records Blocks Backend

2000 4 8 86 688 344 172

6 12 87 1,044 522 261

8 16 87 1,392 690 348

10 20 87 1,740 870 435

12 24 87 2,088 1,044 522

14 28 87 2,436 1,218 609

16 32 87 2,784 1,392 696

18 36 87 3,132 1,566 783

20 40 86 3,440 1,720 860

Sub-totals: 781 18,744 9,372 4,686

1000 4 16 86 1,376 344 172

6 24 87 2,088 522 261

8 32 87 2,784 696 348

10 40 87 3,480 870 435

12 48 87 4,176 1,044 522

14 56 87 4,872 1,218 609

16 64 87 5,568 1,392 696

18 72 87 6,264 1,566 783

20 80 86 6,880 1,720 860

Sub-totals: 781 37,488 9,372 4,686

400 4 40 86 3,440 344 172

6 60 87 5,220 522 261

8 80 87 6,960 696 348

10 100 87 8,700 870 435

12 120 87 10,440 1,044 522

14 140 87 12.180 1,218 609

16 160 87 13.920 1,392 696

18 180 87 15,660 1,566 783

20 200 86 17,200 1,720 860

Sub-totals: 781 93,720 9,372 4,686

2000 4 80 86 6,880 344 172

6 120 87 10,440 522 261

8 160 87 13.920 696 348

10 200 87 17,400 870 435

12 240 87 20,880 1,044 522

14 280 87 24.360 1,218 609

16 320 87 27,840 1,392 696

18 360 87 31,320 1.566 783

20 400 86 34.400 1.720 860

4.686Sub-totals: 781 ~78T.440 9,372

Table 16. Record/Block Distribution, Small Database, Configuration 4.

- 26 -

Record Number of Number of Total Total Total Number of

Size Blocks Records Number Number Number Blocks

in per per of of of per

Bytes Cluster Cluster Clusters Records Blocks Backend

2000
~6~~

12 86 1,032 516 172

9 18 87 1,566 783 261

12 24 87 2,088 1,044 348

15 30 87 2,610 1,305 435

18 36 87 3,132 1,566 522

21 42 87 3,654 1,827 609

24 48 87 4,176 2,088 696

27 54 87 4,698 2,349 783

30 60 86 5,160 2,580 860

Sub-totals: 781 28,116 14,058 4,686

1000
~~6~ _

2A~ ~86~
2,064 516 172

9 36 87 3,132 783 261

12 48 87 4,176 1,044 348

15 60 87 5,220 1,305 435

18 72 87 6,264 1,566 522

21 84 87 7,308 1,827 609

24 96 87 8,352 2,088 696

27 108 87 9,396 2,349 783

30 120 86 10,320 2,580 860

Sub-totals: 781 56,232 14,058 4,686
1

i

400 6 60 86 5,160 516 172

9 90 87 7,830 783 261

12 120 87 10,440 1,044 348

15 150 87 13,050 1,305 435

18 180 87 15,660 1.566 522

21 210 87 18,270 1.827 609

24 240 87 20,880 2,088 696

27 270 87 23,490 2,349 783

L 30 300 86 25,800 2,580 860

Sub-totals: 78] 140,580 14,058 4,686
~~ 200~ 6 1 20 86 10,320 516 172

9 180 87 15,660 783 261

12 240 87 20,880 1.044 348

15 300 87 26,100 1,305 435

18 360 87 31,320 1,566 522

21 420 87 36,540 1,827 609

24 480 87 41,760 2,088 696

27 540 87 46,980
*

2,349 783

30 600 86 51,600 2,580 860

Sub-totals: 781 281,160 14,058
"

7.686

Table 17. Record Block Distribution, Small Database, Configuration 5.

4.7. The Definition of Record Templates and Directory Data

To complete the development of the test databases, we must specify the record templates for each of

the four record sizes A record template is the formal specification of the directory and non-directory

attributes which make up the record structure and determine the intended attribute-value ranges and

attribute values (for short, descriptors) of directory attributes. Often, these descriptors are also known as

indices. Since the four record sizes we have chosen are all divisible by 10. we set the attribute size to 10-

27

bytes per attribute. Thus, the number of attributes per record is one tenth of the record size.

We specify the record templates for each record class in Table 18. For the four record templates,

the attributes TEMPLATE, INT2001, 1NT1001, INT401, INT201, INT2002, INT1002, INT402, and

INT202 are directory attributes, while the remaining attributes of each template are non-directory

attributes. We also note that TEMPLATE is an attribute with unique values, whereas the attributes

beginning with INT have value ranges.

Attribute Attribute Attribute

Number Name Type

1 TEMPLATE^ string

2 INT2001 integer

3 INT2002 integer

4 MULTIPLE string

5 STRINGOOl string

6 STRING002 string

199

200

STRING 195

STRING 196

string

string

Attribute

Number
Attribute

Name
Attribute

Type

1

2

3

4

5

6

.

99

100

TEMPLATE
INT1001

INT1002
MULTIPLE
STRINGOOl
STRING002

STRING095
STRING096

string

integer

integer

string

string

string

string

string

Table 18a. Record Template for 2000-Byte Records. Table 18b. Record Template for 1000-Byte Records.

Attribute

Number

1

2

3

4

")

6

39

40

!
Attribute

Name
j

Attribute

Type

TEMPLATE
1NT401

1NT402
MULTIPLE
STRINGOOl
STRING002

STRING035
STRING036

' string

integer

integer

string

string

string

string

string

Attribute

Number

2

3

4

5

6

19

20

Attribute

Name
TEMPLATE
INT201
INT202

MULTIPLE
STRINGOOl
STRING002

STRING015
STR1NG016

Attribute

Typ.e_ i

string

integer

integer

string

string

string

string

string

Table 18c. Record Template for 400-Byte Records. Table 18d. Record Template for 200-Byte Records.

Next, we must describe the range of values for each of the record attributes listed in Table 18.

Again, we use the term dtsrriptor for the attribute-value pair or the attribute-value range and the

notation Di-j to identify thp j-th descriptor for the i-th director) attribute The TEMPLATE attribute is

used to correlate each record with its corresponding record template This attribute may take on the four

values listed in Table 19 corresponding to the four record sizes In each record template, the range of

values for the attributes, 1NT2001, INT1001, 1NT401, and INT201, is a function of the individual record

size, (2000, 1000, 400, or 200-bytes). the database-size category, (small, medium, or large), and the test

configuration, (1, 2, 3, 4, or 5 for a maximum of three backends. for example). This means that a total of

nine test databases are required for benchmarking the database computer with a maximum of three

backends. In the discussion to follow, we will refer to these nine databases by their acronyms DBl to

DB9. as described in Table 20.

TEMPLATE Descriptor

Value Identifier

TEMP2000 1)1-1

TEMP1000 Dl-2

TEMP400 Dl-3

TEMP200 Dl-4

Table 19. The Values and Ids of the Attribute, TEMPLATE.

Test Database Database Size Database Size

Acronym Category in Megabytes

DB1 Small s = 74.976

DB2 Small 2s = 149.952

DBS Small 3s - 224.928

s"^"l49.952DB4 Medium
DB5 Medium 2s = 299.904

DBG Medium

Large

3s = 449.856

DB7 s = 299.904

DB8 Large 2s = 599.808

DB9 Large 3s = 899.712

Table 20. List of Test Database Acronyms.

We use database DBl, which is used for configurations 1. 2. and 3 of Table 7, to develop the value

ranges for the remaining record attributes. The entries for configuration 1 of Table 7 specify 9.372 2000-

byte records, 18,744 1000-byte records, 46,860 400-byte records, and 93,720 200-byte records. We use

nine descriptors to classify the value ranges for these attributes, corresponding to the nine cluster

categories of Table 10 For the DBl database, column 5 of Table 13 (Total Number of Records) shows

the pertinent values to use for these nine descriptors. The range of values for the nine descriptors for each

of the attributes. INT2001, INT1001. INT401, and INT201, are listed in Table 21.

The third directory attribute. !NTxx2, enables us to group the records in each of the nine cluster

categories (identified by the INTxxl attributes) into subsets. Referring to column 4 of Table 21, we see

that the easiest way to subset each cluster category is to subdivide it into individual clusters. If, for

example, we consider attribute INT2002 for the 2000- byte records, we see that we have 86 clusters with 4

records per cluster for a total of 344 records. Therefore, we use 86 descriptors, one per cluster, which is

identified by the 1NT2001 descriptor. D2-1.

The I.\Txx2 attribute-value ranges are calculated via the relationship w - xy - (x-1); w - xy ,

which is desc-ibed in Figure 7. The lower bound of the range is represented by the term (w - xy - (x-1)).

while the second term, w - xy, represents the upper bound. Applying this relationship for the first

cluster of the 2000-byte records for the DBl database, we use w = 0, x = 4, and y = {l,...,86}.

Therefore, the range of values for INT2002 becomes jl;4 ,
i5;8

, 9:12 , ..., |341;344!. For the second

cluster, we have w = 344, x = 6, and y = {!,.. .87}, to derive the ranges ,345;350j, 351;356j, ..., [861;866!.

29 -

Directory Descriptor Range Number of Records

Attribute Identifier of Values whose Attribute Values

are in the Range

INT2001 D2-1 !l;344] 344

D2-2 [345,866] 522

D2-3 |867;1,562] 696

D2-4 [1,563;2,432] 870

D2-5 [2,433;3,476] 1,044

D2-6 [3,477;4,694] 1,218

D2-7 [4,695;6,086] 1,392

D2-8 |6,087;7,652] 1,566

D2-9 [7,653;9,372] 1,720

INT1001 D3 1 [l;688j 688

D3-2 [689;l,732j 1,044

D3-3 [1,733:3,124] 1,392

D3-4 3,125.4.864| 1,740

D3-5 [4,865;6,952] 2,088

D3-6 j6.953;9.388] 2.436

D3-7 9.389:12,172 2.784

D3-8 jl2,173;15.304 3,132

D3-9 [15,304;18.744] 3,440

1.720INT401 1)4^1 ^T;l,720

D4-2 [l,721;4,S30j 2,610

D4-3 J4,331;7,810J 3,480

D4-4 [7.811:12,160! 4,350

D4-5 [l2,161;17,380: 5,220

D4-6 [17,381;23,470J 6,090

D4-7 |23,471;30,430! 6,960

D4-8 [30,431;38,260] 7,830

D4-9 [38.26 1
;

4('». 860!

1 ;.*'.. 440

8,600

3,4401NT201 D5-1

D5-2 3,441:8,660 5,220

D5-3 [8.661;15,620] 6,960

D5-4 [15,621;24.320] 8,700

D5-5 24.321;34,760] 10,440
*

D5-6 34. 761:46,940[12,180

D5-7 16.941:60.860! 13,920

D5 -8 60. 861:76. 520 15,660

1)5-9 76.521:93.720 17,200

Table 21. The Attributes, Their Ids and Their Value Ranges.

Continuing in this manner, we derive the entries shown in Table 22 for the 1NT2002 range of values.

We do not present tables for the corresponding attribute values for the 1NT1002. 1NT402. and INT202,

since the procedure for deriving these values is identical to that shown for Table 22. Note, however, that

the INT1002 descriptor range from D7-1 to D7-781: the INT402 descriptor range from D8-1 to D8-781,

and the 1NT202 descriptor range form D9-1 to D9-781

The MULTIPLE attribute is a character string which enables us to easily increase the number of

records within each cluster. This is required when we need to double or triple the database size to test

configurations 4 and 5. For configurations 1, 2. and 3. which use the DBl database, ML'LTIPLE is set to

'One'. To double the database size for configuration 4, each (INTxxl, INTxx2) pair must match up with

[lower-bound; upper-bound] - !v% xy - (x - 1); w + xyj

where:

w = sum of records fror.i all pievious clusters.

— > Initia' y. w = 0;

= > At one1

of each cluster category, before advancing

to the ntfxt, INTxxl descriptor, reset w.

= > w = w + xy,

where y is the max value for this INTxxl descriptor.

x = Number of record per cluster

{4, 6, 8, 10, 12, 14, 16, 18, 20} for 2000-byte records.

{8, 12, 16, 20, 24, 28, 32, 36, 40} for 1000-byte records.

{20, 30, 40, 50, 60, 70, 80, 90. 100} for 400-byte records.

{40, 60. 80, 100, 120, 140, 160, 180, 200} for 200-byte records.

y = {1 A

z -- {{86.87}, {172. 174}, {344, 348}}

= > 2 - {86, 87} for small database, (s/4).

-> z = {172. 174} for medium database, (s/2).

= > z = {344, 348} for large database, (s).

Figure 7. !NTxx2 Attribute-Value Range Relationship.

MULTIPLE attribute values of One' and Two'. To triple the database size for configuration 5, each

(INTxxl. !NTxx2) pair must match up with MULTIPLE attribute values of 'One', 'Two', and 'Three'.

This relationship is shown in Table 23.

Finally, the attributes STRlNGxxx are used as filler fields, and are all set to the character-string

value Xxxxxxxxx. Note that this represents a nine-character string, requiring nine-bytes of storage,

whereas the allocated attribute size is ten-bytes. The reason that only nine characters are used is that the

C language compiler inserts a null character, (i.e., a backslash-zero), to mark the end of each character

string. Therefore, although we use ten-byte attribute, we only have nine usable bytes for our character-

string values. The STRlNGxxx attributes are also used to allow flexibility in retrieving portions of the

database. For example, in the test-transaction mixes we present in this section, we use UPDATE

operations to change certain STRlNGxxx attributes to values such as OneEighth. One-Qtr. and One-Half.

We then use RETRIEVE operations to key on the applicable STRlNGxxx fields in order to retrieve 1
'8,

1 i A, and 1 2 of the database, respectively

W e have now described all of the attributes for the record templates of Table 18. The general

la\out of the 2000-bvte record file for the DBl database is shown in Table 24.

31 -

INT2001 INT2001 INT2002 INT2002
"

Descriptor Range Descriptor Range

Identifier of Values Identifier of Values

D2-1 [1;344] D6-1 [1;4]

D6-2 [5;8]

D6-86 j341;344]

D2-2 [345;866] D6-87 [345;350]

D6-88 j351;356]

D6-173 |861;866]

D2-3~~ [867;1,562] D6-174
~

[867;874]

D6-175 [875;882j

D6-260 |1
?
555;1,562]

~D2M~ ;l,563;2,432j D6-261 [l,563;l,572j

D6-262 [1.57S;1,582]

D6-347 |2.423;2.432j

D2-5 ^433-3^476 D6-34 8 M 2T433";2^444r

D6-349 ;2.445;2,456j

1)6-434 [|3,465;3,476i j

D6-435 |3.477;3,490]D2-6 3.477,4.694

D6-436 [3,491,3,5041
: ;

'
i

D6-521 [4.681;4,694; 1

"
D2-7 ~4.695;6.086" D6-522 !4.695;4,710'

'

D6-523 4,711:4.726

6,087;7~652]

D6-608 i {6 :071;6,086|
j

D2-8 D6-609 |6,087;6,104]

D6-610 [6.105;6,122;

7. 653:9. 372

D6-695 |7,635;7.652

1)2-9 D6-696" :7.653:7,672

D6-697 7.673:7.692

D6-781 9.353:9,372

Table 22. The Value Kanges of the Attribute. INT2002.

TEMPLATE INT2001 1NT2002 MULTIPLE

TEMP2000 1

2

1

2

One
One

8.. 372

1

2

9,372

1

2

One
Two
Two

9,372

1

2

9,372

1

2

Two
Three

Three
. . .

9.:', 7 2 9.372 Three

I - _

Table 23. Use of the Attribute. MULTIPLE, for Database UBS (of 3s-Megabytes).

Attributes

TEMPLATE 1NT200 1NT2002 I MULTIPLE"I

TEMP2000
TEMP2000
TEMP2000
TEMP2000

TEMP2000
TEMP2000

9.371

9.372

1

2

3

4

9,371

9,372

One
One
One
One

One
One

STRING 001

Xxxxx.xx.xx

Xxxxxxxxx
Xxxxxxxxx
Xxxxxxxxx

Xxxxxxxxx
Xxxxxxxxx

STRING 196

Xxxxxxxxx

Xxxxxxxxx
Xxxxxxxxx
Xxxxxxxxx

Xxxxxxxxx
Xxxxxxxxx

Table 24 File Layout of the 2000-Byte Records for DBl

4.8. A Summary of the Test-Database Methodology.

Let us summarize these database-design considerations. First, we decide to test with three database

sizes, (small = s 4. medium - s 2, and large *). The largest database is approximate!) the

maximum formated capacity of a backends' disks for the database storage.

Second, to determine the largest feasible upper-bound for each test (benchmark) database, we find

the corresponding multiple of database size from Table 2. If the system being evaluated has rn backends.

6 must be divisible by (LCM{1. 2 m } x 32 x rec_size). The (LCM{1, 2...., m } x 32) portion of the

database-size multiple, not including recsize. is used to determine an upper-bound for the large database

size, s .

Third, we consider the record-size parameter. W e select four record sizes on the basis of the size of

the data-storage-and-access unit used by the particular computer. We select one large and one small size,

with two intermediate sizes. We require that the largest record size be divisible by each of the three

smaller record sizes to simplify the database sizing process.

Fourth, we calculate the required database multiple in accordance with Table 2, using the largest

record size selected in the previous step for the rec size parameter value Since the other three record

- 33

sizes are divisors of the rec_size parameter, we are assured that the database we create using this database

multiple will be divisible by all four record sizes.

Fifth, since the database multiple is now known, we calculate the required values of a , » / 2, and

a J 4, respectively. This calculation enables us to verify that these three databases are feasible, since they

permit each database to be distributed evenly as required for all of the feasible test configurations.

Sixth, we format the test (benchmark) databases. We include all four record sizes in each database

to streamline the benchmarking task. These databases are formated in Tables 7, 8 and 9, for example.

These formats show that whichever database size and four record sizes are selected, our design generates

test (benchmark) databases in which each database may be evenly distributed on the disks of the

backends as required for all of the feasible test (benchmark) configurations.

Seventh, we specify the record templates for each of the four record sizes for each test database, and

we develop the descriptors for the 2000- byte record file for the DBl database, for example. The

development of the descriptors for the rest of the files is straightforward, and follows the steps presented

for the case of the 2000-byte record file exactly. The descriptors for the database DBi (where i = 2 or 3 in

our samples) are also developed for the capacity-growth measures similarly as for DBl. The only change

is that the number of records per cluster doubles, for example in DB2, or triples, for example, in DB3.

Therefore the corresponding ranges of values for the descriptors of INTxxl and INTxx2 must be also

doubled and tripled, respectively.

For the databases DBj (where j= 4, 5 or 6 in our sample), there are 1,562 descriptors of INTxx2 for

each record template, since the number of clusters doubles for the medium-size database. Similarly, there

are 3.124 descriptors of INTxx2 per record template for the databases DBk (where k= 7, 8 or 9 in our

sample), since the number of clusters doubles again from the medium to large database set.

Although the methodology presented in this section is straightforward, the amount of work involved

in the design and generation of a specific set of test databases for benchmarking a mult iple-backend

database computer is still heavy. Consequently, much of the methodology is being computerized as a

CAD system.

Having established these test databases, we may now turn the attention to the test-transaction

mixes to be used with these test databases for measuring the performance and growth of the three-

backend database computer In Section 5, we present the methodology for designing and generating test-

transaction mixes In order to provide the reader and system evaluator with a feel of the workload

generated by the mixes for the multiple-backend database computer, we need to focus on a sample set of

test databases. Thus our application of the methodology for the design and generation of test databases

for a specific three-backend database computer reported herein becomes a timely exercise. Although the

application is rather long and tedious, it is important to our understanding of the methodology and it is

necessary for our calculation of the workloads of the test-transaction mixes presented in the following

section.

5. THE DESIGN AND GENERATION OF TEST-TRANSACTION MIXES

As noted earlier, if we are to test the response-time invariance of multiple-backend database

computers, we must ensure that any increase in the size of the response set returned by the test-

transaction mix is accompanied by a proportional increase in the number of backends in the computer.

To induce the increase in responses, we have introduced a methodology in the previous section to increase

the size of the test databases. However, the selection of a test-transaction mix which will permit the

database size to increase in the same proportion as the increase in the response-set size is much more

complex. The selection requires an understanding of the characteristics and features of the data model

and data manipulation language. Also, the directory structure and storage strategies of the computer play

a major role. Nevertheless, we must show how to design a test-record organization, a test-database

structure, and a test-transaction-mix set which enables the system evaluator to use the same organization,

structure, and set for all system configurations without modification! Furthermore, the transactions that

we select must ensure the system evaluator that the database size will increase in exactly the same

proportion as the increase in the response-set size.

In addition to the development of test-transaction mixes for the two established measures, we also

develop test-transaction mixes to measure the overall performance of the multiple-backend database

computer. In [8], Hawthorn and Stonebraker, suggest that three types of test transactions be used to

measure the overall performance. One type consists of overhead-intensive transactions for which the

actual time required to process the required data is much less than the system overhead required to carry

out the transaction. The data processing time is defined as the time required for the computer to fetch and

manipulate the required data, whereas system overhead involves both the times spent by operating and

database management systems for such tasks as user communication, transaction parsing and validity

checking. In essence, overhead-intensive transactions reference very little data. The second type of

transaction is data-intensive where the data processing time is much greater than the system overhead.

Therefore, data-intensive transactions reference large quantities of data. Finally, the last type of

transaction, is for multi-relation or multi-file transactions They are intended for relational joins or file

merges for transactions involving more than one relation (file). These types of operations correspond to

the relation join in the DBC 1012 and the retrieve-common operation of MBDS. We consider all of these

factors in selecting transactions to measure the performance gains and capacity growth of the multiple-

backend database computer as well as its overall performance.

5.1. The Emphasis on Generic. Primary Database Operations

Instead of focusing our discussion of database operations on the basis of a specific set of data model

and data language of the database computer, we refer to the primar> database operations genencally. All

database computer, whether or not they are multiple-backend and whether or not they are relational,

have these five primary database operations, namely, DELETE, INSERT, RETRIEVE, UPDATE and

RETRIEVE-COMMON.

35 -

The RETRIEVE and DELETE operav'ons have very similar processing steps. Let us first consider

the RETRIEVE operation. The search for indices or index ranges for the predicates of the RETRIEVE

commences first. This is the descriptor- search phase These jndices enable the computer to determine the

partitions (clusters) which contain records satisfy ate, the predicates. This is the cluster-search phase.

Once the clusters are identified, the addresses of the partitioned (clustered) records can then be found.

This is the address- generation phast. i inally, in the record-processing phase the backends fetch the

clustered records from their respective disks. Record processing selects from the staged data set the

records that satisfy the predicates, extracts the relevant values from the selected records, performs the

required aggregate operations, and then forwards the results to the controller for post processing.

The DELETE operation follows almost the same phases. Following the descriptor search, cluster

search, and address generation, record processing fetches the selected records from the disks. Record

processing selects from the staged data set the records that satisfy the predicates, marks the selected

records for deletion, and then returns them to the disks Record processing then sends a completion

message to the controller. We expect that the RETRIEVE and DELETE operations will provide

important statistics for verifying the performance-gains and capacity-growth measures. Therefore, we

design a diverse mixture of overhead-intensive and data-intensive transactions involving RETRIEVES and

DELETES.

The RETRIEVE-COMMON operations provide the opportunity to test multi-file or multi-relation

operations, i.e., relational joins. Logically, record processing handles two RETRIEVE operations, and

fetches two sets of records from the disks. Record processing then selects from the two staged record sets

in the primary memory the records whose attribute values are common and whose attributes are specified

in the COMMON clause, and returns the results to the controller.

To test the INSERT operation, we propose two sets of transactions. One set inserts new records

into existing partitions (clusters), while the second set inserts records into new partitions (clusters).

Similarly, three types of UPDATE operations are possible One type of UPDATE operation returns the

modified records to the same, existing partitions (clusters). The second type of LPDATE causes the

modified records to change partitions (clusters) The "old" records are deleted, and the "new" records are

inserted into different, existing partitions (clusters), or to neu partitions (clusters). Finally, the third type

of LPDATE is a blend of the first two types. That is. some of the modified records stay in the same,

existing partitions (clusters), while other records change partitions (clusters). We include all three types

of UPDATEs in our test-transaction mix.

We anticipate that the primary operation to be performed on a multiple-backend database computer

will be to retrieve data from the database store. Therefore, benchmarks which focus on the RETRIEVE

operation will provide useful data for conducting the performance-gains and capacity-growth measures.

To measure the overall computer performance, we propose test-transaction mixes which include a

complete set of the five generic and primary database operations, i.e., DELETE, INSERT, RETRIEVE,

RETRIEVE-COMMON, and UPDATE

36-

5.2. The Test-Transaction Mixes

Due to the presence of sample test databases in Section 4, we are able to estimate the workload of

each and every test-transaction mix to be introduced in the following section. These workload estimates

do provide precise and quantitative measurements of the test transactions intended.

5.2.1. Data-Intensive and Overhead-Intensive Retrievals

Table 25 displays the predicates used for our first three retrievals, while Table 26 represents an

analysis of the workload incurred by the transactions in Table 25. Let us briefly analyze the intent of

each of these transactions.

Transaction

N um ber

1

The Predicates of a RETRIEVAL

((TEMPLATE =_TEMP2000) and [INT2001^ 121) and (INT2001 sj 132))

(((TEMPLATE = TEMP2000) and (1NT2001 > 4,823) and (INT2001 < 4,870))

j>r_(]TEMPLATE_=_TEMP2000)_and (INT2001J? 6,087) and (1NT2001 ^ 6,122)))

((TEMPLATE = TEMP2000) and (INT2002 < 2,343))

~

Table 25. Transaction Mix 1.

Transaction

Number

T~

Number of

Clusters

Examined
"~86

174

339~

Vrolume of

Database

Accessed

344 records
" 3L56%

""

25.09%"

Volume of

Database

Retrieved

12 records

84 records

25.00%

Table 26 Transact ion-Mix-1 Workload

Transaction 1 examines the small portion of the database represented by the attribute 1NT2001 and

its descriptor-id D2-1. (See Table 21 again.) This transaction causes 344 records to be staged from the

disks to the primary memory. However, only the 12 records from clusters C30, ("31. and C32 are answers

of the transaction. Therefore, the transaction evaluates how well the database computer performs when it

examines a small amount of data (344 9372 records, or 3.67°7 of the database), and retrieves only a small

amount of data from the set examined (12/344 records, or 3.49%). (See Table 14 again.) We classify

transaction 1 as overhead-intensive.

Transaction 2 is designed to examine a large portion of the database (31.56%). but to retrieve only a

small portion of the data examined. Although the transaction causes 2.958 records to be staged from the

disks to the primary memory, only 84 records (48 from clusters C530. C531. and C532. and 36 from

clusters C609 and C610) participate in the response set. Thus, this transaction evaluates how well the

database computer performs when it retrieves only a small amount of data from a large amount of data

(84 2958 records, or 2.84%) which must be examined Although the amount of data retrieved is small,

the database computer must access a large amount of data to satisfy the predicates. Therefore, we

classify transaction 2 as data-intensive.

- 37 -

Transaction 3 retrieves 25% of the database. The transaction examines a large portion of the

database (25.09%, or 2,352 records). Of the 2,352 records which are si aged to the primary memory,

99.62% (2343/2352) are relevant to the response set Therefore, this transaction evaluates how well the

database computer performs when nearly alj of the data examined are answers to the transaction. We

classify transaction 3 as data-intensive.

5.2.2. Simple, Data-Intensive Updates

Table 27 displays the predicates for transactions 4, 5, and 6. They are all UPDATEs which will

return the updated records to their same, existing clusters. Table 28 depicts an analysis of the workload

associated with each of these UPDATEs. The intent of transactions 4, 5, and 6 is to update 1/8, 1/4, and

1/2 of the database, respectively.

h

Transaction

Number

~1T
I

» V_7_

The Predicates of an UPDATE

((TEMPLATE - TEMP2000) and (INT2002 ^ 1,172)) (STRING001 = OneEighth)

((TEMPLATE = TEMP2000) and (1NT2002 ^ 2,343)) (STRING005 = OneQuartr)

((TEMPLATE - TEMP2000) and (INT2002 > 4,686)) (STRING010 = One-Half)

Table 27. Transaction Mix 2.

Transaction

Number
Number of

Clusters

Examined

Volume of

Database

Accessed

Volume of

Database

Updated

4 212 12.57% 12.50%

5 339 25.09% 25.00%

6 261 50.06% 50.00%

Table 28. Transaction-Mix-2 Workload.

Transaction 4 updates one-eighth of the database causing 1,178 records from 212 clusters to be

staged from the disks to the primary memory. Then. 1.172 records (1/8 of 9.372) have the values of the

attribute STRING001 changed to the character-string value OneEighth. These records are then returned

to their original, existing clusters in the disks. This transaction evaluates how well the database computer

performs when nearly all of the accessed data (1172 1178 records, or 99.49%) is updated. Since most of

the workload for this transaction involves accessing and processing data records, we classify transaction 4

as data-intensive.

Transaction 5 updates one-quarter of the database With this transaction. 2,343 of the 2.352

accessed records are updated and returned to the same, existing clusters on the disks. This transaction

updates the values of the attribute STRING005 to the new character-string value One-Quartr. Similarly,

transaction 6 updates one-half of the database. The transaction updates 4.686 of the 4,692 accessed

records, and returns them to their original, existing clusters on the disks. Transaction 6 changes the

STRINGOIO value to One-Half. We classify transactions 5 and 6 as data-intensive. We note that the

attribute STRING001 is a non-directory attribute. In general, updates of the values of non-directory

attributes require no change of the clusters for the records.

5.2.3. Data-Intensive and Overhead-Intensive Common Retrievals

Table 29 depicts the transaction specifications for transaction 7, 8, and 9, which are all

RETRIEVE-COMMON operations. The corresponding workload statistics are shown in Table 30.

Transaction
|

RETRIEVE-COMMON Specification

Number

RETRIEVE ((TEMPLATE = TEMP2000) and (INT2001 £ 121)

and (INT2001 < 132)) (INT2001)

COMMON(INT2001, INT1001)

RETRIEVE ((TEMPLATE = TEMP1000) and (INT1001 ^ 264)) (INTlOOl

RETRIEVE ((TEMPLATE = TEMP2000) and (STRING010 = One-Half))

(INT2002)

COMMON(INT2001, INT1001)

RETRIEVE ((TEMPLATE = TEMP1000) and (STRING010 - One-Half))

(INT1002)

RETRIEVE
(
[TEMPLATE -TEM P2000)"and (INT2001 ^"47686^

(INT2001)

COMMON (I NT2002, INT 1002)

RETRIEVE ((TEMPLATE = TEMP1000) and (INT1001 > 3,515)

and (INT1001 s 4,686)) (INTlOOl)

Table 29 Transaction Mix 3

Trans. Number of

N um ber Clusters

Examined
by the

Source

7
- 4

8

Trans.

86

781

9 261

Number of

Records

Accessed

by the

Source

Trans.
~
344

_
"
9,372

Number of Number of Number of Number of Size of

Records Clusters Records Records the

Relevant Examined Accessed Relevant Result

to the by the by the to the Record

Source Target Target Target Set in

Trans. Trans. Trans. Trans. Records

12 86 688 264 12

4.686 781 18,744 9,372 4,686

4,686 87 1,740 1,172 1,172

Table 30. Transact ion-Mix-3 Workload.

We interpret transaction 7 as follows. The first RETRIEVE on the 2000-byte record file of database

DBl is called the source transaction. This source transaction causes 344 records to be staged from the

disks to the primary memory. The 12 records which satisfy this source transaction are retrieved and

stored in a buffer area which we refer to as the source record set.

The second RETRIEVE, which retrieves records from the 1000-byte record file, is called the target

transaction. When it processes this target transaction, the database computer stages 688 records to the

primary memory, selecting the 264 records which satisfy the target transaction and saves them in a second

buffer area which we call the target record set.

Finally, the database computer does a pairw ise-merge operation between the records of the source

and target record sets. During this merge, the computer selects the 12 records from the source and target

record sets which share common 1NT2001 and INTlOOl attribute values, and returns them to the

controller. Note that we retrieve the smallest number of records from the source file, while the larger file

to be searched against is designated as the target file. This feature is intrinsic to the efficient merge

39-

operation. The purpose of this transaction is to see how well the computer performs a RETRIEVE-

COMMON (relational join) operation, when it examines a small amount of data for both the source and

target transactions, for which only a small amount of the staged data is relevant to the answer. Relative

to the next two RETRlEVE-COMMONs, transaction 7 may be categorized as an overhead-intensive

transaction.

Transaction 8 causes all 9,372 records to be accessed from the 2000-byte record file. Of these, 4,686

records (50%) are relevant to the source transaction, and are selected for the source record set. The

target transaction accesses all 18,744 records from the 1000-byte record file, of which 9,372 records (50%)

are relevant to the target transaction, and are selected for the target record set. The database computer

performs the merge operation between the source and target record sets, and returns the 4,686 records

which have common INT2001 and INT1001 attribute values to the user via the controller. The purpose

of this transaction is to gauge the performance of the computer when it stages large quantities of data

from the disks, for which 50% of the staged data is relevant for both the source and the target

transactions Thus, transaction 13 exemplifies a data-intensive query, which also experiences a significant

amount of overhead.

The number of records in the source record set for transactions 7 and 8 directly corresponds to the

relevant data to be returned to the user. We assume the opposite approach with transaction 9. The

source transaction for transaction 9 causes 4,692 records from the 2000-byte record file to be staged to the

primary memory. Of these records, 4,686 are relevant to the source transaction, and enter into the source

record set. The target transaction stages 1,740 records from the 1000-byte record file, of which 1,172

records are relevant to the target transaction. Here, we force the database computer to execute an

inefficient merge operation by using a source record set which is much larger than the target record set.

As a result of the merge operation on the source and target record sets, the 1,172 records which share

common INT2002 and INT1002 attribute values are returned to the user via the controller. Transaction 9

gauges the database computer performance for the case where nearly all of the records staged for the

source transaction are relevant to the source transaction, while only 25% of the records staged for the

target transaction are relevant. We categorize transaction 9 as being overhead-intensive and data-

intensive.

5.2.4. Simple and Complex Inserts

Table 31 shows the records to be inserted by transactions 10 and 11. respectively The intent of

transactions 10 and 11 is to see if a single INSERT experiences a response-time variance as the number of

backends in the test configuration increases Transaction 10 inserts a record into an existing partition

(cluster) (i.e.. Cl). while transaction 11 inserts a record into a new partition (cluster). We term the

former a simple INSERT, the latter a complex INSERT, since the calculation and creation of a new

cluster is a complex process.

Transaction

Number

10

11

Record to be INSERTed

(<TEMPLATE,TEMP2000>)
<INT2001 % l>,(INT2002,l>,<MULTIPLE,Four>,

<STRINC001,Xxxxxxxxx>, < STRINC.196,Xxxxxxxxx>)

(<TEMPLATE,TEMP2000>,<INT2O01 1-,(INT2002.400 >. \nTTIPLE,One>,
<STRING001.Xxxxxxxxx>, ..., <STRINGl9G,Xxxx.\\xxx>)

Table 31. Transaction Mix 4.

5.2.5. Overhead-Intensive and Data-Intensive Deletes

We expect to note that performance-gains statistics from DELETEs will be comparable to those

collected by RETRIEVES, since the processing steps associated with each of these database operations are

very similar. Consequently, we select the three DELETEs shown in Table 32 which are designed to

imitate the workload of the transactions 1. 2 and 3 for retrievals. Table 33 depicts the workload analysis

corresponding to these DELETE operations.

The Predicates of a DELETETransaction

Number
~12

i ((TEMPLATE : TEM P2000)" a nd~(INT200T ~S T27fan d"(TNT200" f^~iS2)
)

~

"is"
! ((

(TEMPLATE - TEMP2000) and (INT2001 ^ 4,823)and (INT2001 ^ 4,870))

11

or ((TEMPLATE = TEMP2000] and (INT2001 > 6,087)and (INT2001 < 6,122)))

((TEMPLATEV fEMP2000) and (Tvf2002 ^ 7.030))"
~\

Table 32. Transaction Mix 5

Transaction
I
Number of Volume of Volume of

Number Clusters Database Database

!
Examined Accessed Deleted

86

J14
121 _25.07%

12
_

13

14

344 records 12 records

3 1 . 56%
T

84 records !

25.00%

Table 33. Transaction-Mix-5 Workload.

The DELETE operation for transaction 12 will cause the database to stage 344 records to the

primary memory, but will only delete the 12 records from clusters C30, C32. and C32. Therefore, this

transaction gauges the computer performance when it examines a small amount of data (344 '9,372

records) and deletes only a small amount of data from the set examined (12/344 records). We classify

transaction 12 as primarily overhead-intensive.

Similarly, transaction 13 causes 2.958 records to be staged to the primary memory, but only deletes

84 of the records accessed. Thus, the transaction evaluates how well the database computer performs

when it deletes only a small amount of data from a large amount of data which must be accessed (84/2958

records, or 2.84%). We classify this transaction as both overhead-intensive and data-intensive, since it

must examine a large-number of records, although only a small number of records are relevant to the

answer

41

Transaction 14 causes the database computer to examine a large portion of the database (25.09%, or

2,352 records), and delete 99.62% (2,343/2,352) of ;,he records examined. Thus, transaction 14 gauges the

computer performance when nearly all of the dat? examined is deleted. Transaction 14 is therefore a

data-intensive transaction.

5.2.6. Complex Data-Intensive and Overhead-Intensive ITpdates

Table 34 specifies the predicates for our set of complex UPDATEs, while Table 35 depicts the

corresponding workload analysis. By complex, we mean again that the operation will involve the

calculation and creation of new partitions (clusters) or the migration to other existing partitions (clusters).

Transaction 15 will cause the database computer to update 12 records, causing the records to switch to

brand new partitions (clusters). Therefore, the 12 "old" records will be deleted from the existing

partitions (clusters), and the 12 "new" records will be inserted into newly created partitions (clusters).

This transaction will gauge how well the database computer performs when it must examine a small

amount of data (344 9372 records), and update a small amount of data from the set accessed (12/344

records), resulting in 12 record deletions and 12 record insertions. We classify transaction 15 as

overhead-intensive.

Transaction

Number

15

16
"

17

18

The Predicates of an UPDATE
and their Update Expression

19

20

((TEMPLATE - TEMP2000) and (INT2Q01 ^ 121) and (INT2001 ^ 132))

(INT2001 = 1NT2001 + 2,312)

((TEMPLATE = TEMP2000) and (INT2002 ^ 2,343))

(INT2001 - 1NT2001 4 4,694)

((TEMPLATE - TEMP2000) and (INT2002 > 7,653) and (INT2002 s$ 9,352))

(INT2002 = INT2002 -f 20)

j

((TEMPLATE = TEMP2000) and (INT2002 > 3,477) and (INT2002 < 3,504))

(INT2002 = INT2002 + 14)

((TEMPLATE = TEMP2000) and (INT2002 > 5.287) and (INT2002 ^ 5,350))

JJNT2002 1NT2002 -I- 8)

((TEMPLATE TEMP2000J~and (INT2001 > 7.029))

(INT2002 = INT2002 + 10)

Table 34. Transaction Mix 6.

Transaction
j
Number of Volume of Volume of

j

Number Clusters Database Database

Examined Accessed Updated

In

It)

17

18

19

20

86 344 records 12 records
•

339 25.09% 25.00%
•

86 18.35% 18.14%

2 28 records 1 28 records
;

4 64 records 64 records

172 35.06% 25.00%

Table 35 Transaction-Mix-6 Workload.

Transaction 16 is designed to update 25% of the database, causing the records to migrate to brand

new partitions (clusters). This transaction will cause 2,352 records to be staged into the primary memory.

- AO

Of these, 2,343, or 99.62% (2,343/2,352) will be updated. Tins will result in 2,343 record deletions,

accompanied by an identical number of record insertions into newly created partitions (clusters). Thus,

the transaction will test the database computer performance when it must access a large amount of data,

and then update nearly all of the accessed records, resulting in a sizable migration of records into newly

created partitions (clusters). We classify the transaction as data-intensive.

In contrast, the UPDATE operations of transactions 17 and 18 are designed to cause a migration of

records into existing clusters. Transaction 17 accesses 1,720 records, and causes 1,700 records, or 98.84%

of the records examined to switch to different, existing partitions (clusters). Therefore, the database

computer will delete 1,700 "old" records, and insert 1,700 "new" records into existing partitions (clusters).

Transaction 17 is data-intensive. Transaction 18 causes the database computer to examine just 28

records. However, all 28 records are updated and forced to migrate to different, existing partitions

(clusters). Transaction 18 is primarily overhead-intensive.

The purpose of the last two I PDATE operations is to have some records remain in the same

partition (cluster), some migrate to different, existing partitions (clusters), and others migrate to newly

created partitions (clusters). Transaction 19 causes MBDS to examine just 64 records. However, all 64

records accessed are updated. One-half of the updated records remain in their same, existing partitions

(clusters), while the others migrate to different, existing partitions (clusters). Transaction 19 is primarily

overhead- in tensive.

Finally, transaction 20 updates 25% (2,343/9,372 records) of the database which causes 3,286

records to be staged into the primary memory. Of these staged records, 2,343, or 71.30% (2.343/3,286)

are updated. Some of these records stay in the same partition (cluster), others migrate to different,

existing partitions (clusters), while the last 10 records migrate to a newly created partition (cluster). We

classify transaction 20 as data-intensive. It is important to observe that in these updates the attribute

values being updated are the values of the directory attributes.

5.2.7. The Benchmarking Sequence

The execution order of the benchmarks is an important factor to consider. We present a way to

sequence the test transactions and minimize the need to reload the test database. Transactions 1 through

14 may be executed in sequence. Transactions 15 through 20 do affect each other, since the various

I PDATE operations act on overlapping record sets. They should be executed separately.

5.2.8. A Summary of the Test-Transaction Methodology

The reader should note that these test-transaction mixes are only for the DBl database of Table 20.

which is used for test configurations 1. 2. and 3 for the small-size database set. However, the same

transactions may be used to test with the medium and large database. DB2 and DB3, respectively.

Although the number of records doubles from DBl to DB2. and triples from DBl to DB3,

attribute-value ranges for INT2001 and INT2002 remain the same For each pair of INT2001 and

1NT2002. the MULTIPLE attribute produces two unique records for the DB2 database, and three unique

43

records for the DH3 database Since the test-transaction mixes are all keyed on the attribute values of

INT2001 and INT2002, the effect is that the number of records retrieved by transaction 1, for example,

will double to 24 with the DB2 database, and triple to 36 with the DB3 database. Similar changes occur

with the number of records retrieved, deleted, or updated by the o|her test transactions.

Therefore, we have achieved the effect of increasing the size of the responses in the same proportion

to corresponding increases in the database size, using the same set of test-transaction mixes. In other

words, we have a test-record organization, a test-database structure, and a set of test-transaction mixes

which enable the system evaluator to use the same organization, structure, and set for all configurations

for a particular database size without modification!

The system evaluator must keep the following factors in mind, nevertheless. The test-transaction

mixes presented so far must be run for all four record (tuple) files (relations) for each test database, for all

three database sizes (small, medium, and large), and for all configurations, i.e., five, when testing a

computer with a maximum of three backends. Since the same mix of transactions may be used for all

configurat ions for a given database size, we require only 12 different mixes of test transactions (one each

for each record file, per database size).

Obviously, the required number of tests (benchmarks) grows considerably if a database computer

with more than three backends is to be benchmarked. Therefore, the system evaluator may choose a

subset of these test-transaction mixes for a quick estimation of the performance-gains and capacity-growth

of the mult iple-backend database computer.

6. CONCLUDING REMARKS

The use of a simple 3-backend database computer for the illustration of design and generation of the

test databases and test-transaction mixes is our attempt (1) to limit the length of this paper. (2) to

provide a concrete example for the application of the methodology, (3) to facilitate a quick understanding

of the general methodology for the reader, and (4) to demonstrate the computation of the design data and

workload characterizations without resorting to our CAD system for the methodology, since the CAD

system has not yet been completed.

Despite the overwhelming amount of tabulated design data and our focus on a simple multiple-

backend database computer with three backends. the benchmarking methodology presented herein is

general and effective It is ytncral because it works for any number of backends. It is also effective

because we are able to use the methodology for benchmarking an 8-backend database computer initially

and a 16-backend database computer later. Since we are in the process of computerizing the methodology

as a CAD system, the test databases and test-transaction mixes can be designed and generated with ease,

in the future. Furthermore, the tabulated design data and workload estimations can also be provided

automatically. Such a benchmark-design-and-generat ion s\slem can indeed apply the methodology to a

r/i-backend database computer for large m

- 44

REFERENCES

[1] "SQL/Data System - Concepts and Facilities," IBM, GH24-5013-2, Third Edition, August 1983.

[2] "IDM 500 Series - The Logical Approach to Intelligent Database Management," Britton-Lee, Inc.

(This is a recent brochure on Britton-Lee Database Computers.)

[3] Canaday, R. E., Harrison, R. D., Ivie, E. L., Ryder, J. L., and Wehr, L. A., "A Back-end Computer

for Data Base Management," Communications of the ACM, Vol. 17, No. 10, October 1974.

[4] Kerr, D.S., et al., "The Implementation of a Multi-Backend Database System (MBDS): Part I -

Software Engineering Strategies and Efforts Towards a Prototype MBDS," and He, X., et al., "The

Implementation of a Multi-Backend Database System (MBDS): Part II - The First Prototype MBDS

and the Software Engineering Experience," Advanced Database Machine Architectures, Hsiao, D. K.,

(Editor). Prentice-Hall, 1983.

[5] Neches. P. M., "Hardware Support for Advanced Data Management Systems," IEEE Computer, Vol.

17, No. 11, November 1984.

(6] Strawser, P. R., "A Methodology for Benchmarking Relational Database Machines," Ph.D.

Dissertation, The Ohio State University, Columbus. Ohio, March 1984

[7] Vincent. J. R., "A Performance Measurement Methodology for Software Multi-Backend Database

Systems," Master's Thesis, Naval Postgraduate School. Monterey, California, June 1985.

J8j
Hawthorn. P B., and Stonebraker, M., "Performance Analysis of a Relational Data Base

Management System," Proceedings of the ACM S1CMOD Conference on Management of Data, 1979.

45

INITIAL "DISTRIBUTION LIST

eferse Technical Information Center
ameron Station
.lexandria, VA 22314

Hidley Knox Library
ode 0142
aval Postgraduate School

onterey, CA 93943-5100

ffice of Research Administration
ode 012A
laval Postgraduate School
ilonterey, CA 93943-5100

[hairman, Code 52M1 40

Computer Science Department
laval Postgraduate School
lonterey, CA 93943-5100

)avid K. Hsiao 150

lode 52Hq
Computer Science Department
laval Postgraduate School
lonterey, CA 93943-5100

)hief of Naval Research 1

\rlington, VA 22217

Center for Naval Analyses 1

2000 N. Beauregard Street
Alexandria, VA 22311

