
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1989

Analysis of the EPMIS data base

Short, William Baaclo

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/25671

a ./! HY

NAVAL POSTGRADUATE SCHOOL
Monterey, California

6 yfl yy
ANALYSIS OF THE EPMIS DATA BASE

by

William Baaclo Short

and

Jeffrey Mark Bockenek

September 1989

Thesis Advisor:
Thesis Co-advisor

Daniel R. Dolk
Magdi Kamel

Approved for public release; distribution is unlimited

REPORT DOCUMENTATION PAGE

REPO"' SEC-R _a jy - '- - u
UNCLASSIFIED

SECURE' C-AS; =.U

decass^ca-on -j NG SCHEDULE

d RESTRiC'.wE MARmNGS

3 Distribution availability of re^or"

Approved for public release;
distribution is unlimited

PERFORMING ORGAN,ZATiON REPORT NUMBER S '> MONITORING ORGANIZATION REPORT NUMBER;';.

NAME OP PERFORM N'G ORGAN,ZATiON

aval Postgraduate School

CD OFFICE SYMBO.
(/' applicable)

Code 54

7a NAME O- MONITORING ORGANIZATION

Naval Postgraduate School
;
ADDRESS (C/ty, State ana ' ZiPCooe)

Dnterey, California 93943-5000

7d ADDRESS (C/fy. State, and ZIP Code)

Monterey, California 93943-5000

NAME 0= F'JND'NG SPONSORING
ORGANIZATION

Be OFF CE S>MBO;
(it applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ADDRESS (Ot> State, ana Zip Coae: iOI ivr: iD>N<

PROGRAM
ELEMENT NO

^ROJECl
NO

TASK
NO

\OPf UNIT
ACCESSION NO

TiTlE (/nc/uoe Secunr> Classification)

ANALYSIS OF THE EPMIS DATA BASE

PERSONA. A_'-0- S

lort, William B. and Bockenek, Jeffrey M,

TV(

aster's Thesis
Di'E D : PE°0 :: "' <rea- Mcntn Day}

19 89, September
; AGL CO
116

e views expressed in this thesis are those of the author and do not reflect the official

i licv or position of the Department of Defense or the U.S. Government.

fc Sjb.EC' TERN'S \Conimue on reverse it necessa'i ana iaentit, o> £><oc* number)

EPMIS, INGRES

ABSTRACT [Continue on re.e'Se it necessary ana ioentit-
y by to/oo number)

The Emergency Preparedness Management Information System (EPMIS) has been

iveloped as part of a research project with the Defense Communications Agency

3 build a decision support system for tracking national communications sys-

2ms in times of emergency. The current EPMIS data base is implemented on the

UGRES relational data base management system in a DEC MicroVax environment.

le EPMIS program which interfaces with this data base operates at an extremely

flow speed. in addition, documentation defining the structure and relation-

nips within the data base is incomplete making it difficult to analyze and

rnprove on its performance.

This thesis generates documentation for the EPMIS data base, including an

Intity-relationship diagram, in order to understand the logical structure of

he data base. The EPMIS program is then analyzed to identify processing
pttlenecks that degrade system performance. Modifications to the program are

D S'R'Bl t ON
3f \C:ass •

A3S-RAT- SEC.JR7* CiASS i.cation
Unclassified

Irof. Daniel R. Dolk
. : !' n CiuOt A rfd ^ OO*- I ,

(408) 646-2260 'Co"de""5"4 Dk~

:» FORM 1473. -
3-<= /osoe'e o _ ; ;, o. t C'.ct I it » —6Ci ?•

UNCLASSIFIED

i>557

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (TTh«n Dmtm Enf»r»<©

#19 - ABSTRACT - (CONTINUED)

made to eliminate the bottlenecks and improve
system performance.

S N 0)02- lF- 0)4- ciZ]

ii UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGECWh.n Data Enffd)

Approved for public release; distribution is unlimited

Analysis of the EPMIS Data Base

by

William Baaclo Short
Lieutenant Commander, United States Navy

B.S., University of California at Los Angeles, 1977

and

Jeffrey Mark Bockenek
Lieutenant, United States Navy
B.S., Auburn University, 1983

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
September 1989

67

ABSTRACT

The Emergency Preparedness Management Information Sys-

tem (EPMIS) has been developed as part of a research project

with the Defense Communications Agency to build a decision

support system for tracking national communications systems

in times of emergency. The current EPMIS data base is

implemented on the INGRES relational data base management

system in a DEC MicroVax environment. The EPMIS program

which interfaces with this data base operates at an

extremely slow speed. In addition, documentation defining

the structure and relationships within the data base is

incomplete making it difficult to analyze and improve on its

performance.

This thesis generates documentation for the EPMIS data

base, including an entity-relationship diagram, in order to

understand the logical structure of the data base. The

EPMIS program is then analyzed to identify processing

bottlenecks that degrade system performance. Modifications

to the program are made to eliminate the bottlenecks and

improve system performance.

TABLE OF CONTENTS

I. INTRODUCTION ±

A. BACKGROUND 1

B. EPMIS SYSTEM DESIGN 3

C. EPMIS DATA BASE 4

D. SCOPE OF THE THESIS 5

E. METHODOLOGY 6

F. THESIS STRUCTURE 6

II. EPMIS DATA BASE FUNCTIONS 8

A. CENTRALIZED NATIONAL TELECOMMUNICATIONS
DATA BASE (CNTDB) 8

B. SPECIAL ACCESS AND/OR RELATED PROGRAMS 10

C. EPMIS SOFTWARE PROGRAMS AND APPLICATIONS 16

III. ANALYZING THE LOGICAL STRUCTURE 19

A. BACKGROUND ON THE ENTITY-RELATIONSHIP
APPROACH 19

B. REVERSE ENGINEERING: STEPS IN GENERATING
THE E-R DIAGRAM 23

C. DECOMPOSING THE DATA BASE 24

D. IDENTIFYING RELATIONSHIPS 26

E. GROUPING THE RELATIONSHIPS 27

F. GENERATING THE E-R DIAGRAM 29

G. ANALYZING THE LOGICAL STRUCTURE 30

IV. PHYSICAL STRUCTURE OF THE DATA BASE 38

A. PHYSICAL STRUCTURE CONCEPTS 38

B. INGRES METHODS FOR STORING DATA 39

v

C. INGRES STORAGE STRUCTURES 40

D. EPMIS DATA BASE STORAGE 48

V. THE EPMIS PROGRAM 50

A. EMERGENCY ACTIVATION PROCEDURES 50

B. EMERGENCY POINTS OF CONTACT 52

C. RESOURCE MANAGEMENT 52

D. DAMAGE ASSESSMENT 53

E. SERVICE REQUESTS 55

F. COMMUNICATIONS 56

VI. ANALYSIS AND MODIFICATIONS 58

A. LIMITATIONS AND ALTERNATIVES 58

B. OPTIMIZATION FEATURES WITHIN INGRES 61

C. THE ANALYSIS PLAN 64

D. PROGRAM ANALYSIS 66

E. TRADEOFFS OF PROPOSED SOLUTIONS 87

F. GENERAL IMPROVEMENTS 90

VII. CONCLUSION 91

APPENDIX: EXHIBITS 94

LIST OF REFERENCES 108

INITIAL DISTRIBUTION LIST 109

VI

I. INTRODUCTION

The Emergency Preparedness Management Information System

(EPMIS) is an automated tool which is being implemented to

assist the Federal Government in the management of the

Nation's Telecommunications Resources during times of

national crisis or emergencies [Ref. l:pp. ES 1-2]. EPMIS

is being designed to provide timely, accurate, and relevant

information concerning telecommunications capabilities.

This information will support the roles of various managers

tasked with maintaining the communication links across the

country. INGRES is the relational data base management

system used to implement the EPMIS data base.

A. BACKGROUND

The responsibility for preparing, coordinating, and

maintaining a Federal Telecommunications Emergency

Management Organization and plan falls on the Office of the

Manager, National Communications System (OMNCS) [Ref. 2:p.

2-1]. In 1982, a national level exercise was conducted and

the emergency telecommunications management and response

procedures used by the NCS Emergency Preparedness

organization were reviewed. It was at that time that the

need for an automated decision support system to assist in

the management and tracking of Federal telecommunications

was identified. [Ref. 2:p. 2-2]

The EPMIS project was developed from the results of

these studies and reviews, and is the information processing

and decision support component of the National Telecommuni-

cations Management System (NTMS) . The development was

conducted in six phases beginning in March 1983 with the

Functional System Description. A prototype for EPMIS was

developed and was followed by the development of a portable

system known as FAMIS. A portable unit, FAMIS was deployed

to NCS regional managers. It was designed to perform

similar functions as EPMIS but with reduced capabilities.

The prototype EPMIS and FAMIS were tested during national

level exercises in 1984. The exercises were used to

represent the operational and feasibility test for the

prototype system. [Ref. 2:pp. 2-2—2-3] The results of the

exercise validated the concept of "automated telecommunica-

tions management support" [Ref. 2:p. 2-2]. The next phase

was the development of a Full-Scale Integrated EPMIS/FAMIS

which reached its Initial Operational Capability in 1986

[Ref. 2:p. 2-6]. The next development phase consisted of

enhancements to the system design based on user interaction

and input. An Integrated system with Full Operational

Capability and system operation/maintenance are the final

two phases in the development of the EPMIS project. The

programming period for EPMIS began in FY87 and is due to be

completed in FY91. The system is scheduled to attain full

operational capability in 1990. [Ref. 2:pp. 2-4--2-6]

B. EPMIS SYSTEM DESIGN

The EPMIS system was designed to perform three different

functions in support of national emergency and security

issues. These include the following situations:

1. Localized regional emergencies such as floods and
other natural disasters.

2. Emergencies affecting multiple regions of the nation
that require national-level coordination, e.g. , Three
Mile Island incident.

3. Nationwide emergencies such as a potential nuclear
attack. [Ref. 2:p. 4-2]

In order to support these functions, EPMIS was divided

into three operational components:

1. National Level Component.

2. Regionally Deployed Component.

3. Regional Level Component.

The National Level component enables the monitoring,

coordinating, and controlling of telecommunications during a

national emergency. These duties would be performed under

the auspices of the Manager, NCS . [Ref. 3:p. 2]

The Regionally Deployed component will be used for

regional emergencies and/or multiple regions of the nation.

It will be used for monitoring regional emergencies and for

the coordination of actions which will affect multiple

regions. [Ref. 3:p. 3]

The Regional Level component will provide the ability to

manage information at a local level. This will enable

regional/local managers to resolve local emergencies without

the direct involvement of the national level NCS . [Ref.

3:p. 3]

C. EPMIS DATA BASE

Two types of data bases are being maintained in support

of EPMIS. The National Data Base will be used to collect

and disperse data to the distributed data bases (discussed

below) and can be used as a baseline to provide information

on telecommunications resources available in the case of an

emergency situation. Duplicate copies will be maintained at

each region. These copies will be referred to as "shadow

data bases." [Ref. 3:p. 3] A local data base will also be

maintained at each region and will contain additional data

which may be required by the regional managers to perform

their mission at the local level. Data entered at the

regional level can be used to update the National Data Base

if appropriate. [Ref. 3: pp. 3-4] There are two sets of

data which are available in the EPMIS Data Base. One set

consists of government information and the other consists of

industry information. Presently, only industry information

on AT&T and MCI is available. [Ref. 3:p. 19] There are

seven types of data contained in the EPMIS National Data

Base consisting of the following:

1. Personnel.

2. Networks.

3. Nodes.

4. Links.

5. Operations Centers.

6. Assets.

7. Asset Centers. [Ref. 3:p. 19]

Data collection was undertaken in 1986 [Ref. 3:p. 19].

OMNCS has been trying to get the support necessary so that

each member agency will be responsible for adding, updating,

and maintaining their data in the data base. The NCS Data

Base Administrator has the ultimate responsibility to ensure

that the data are both accurate and complete. The Data Base

Administrator also has the responsibility to provide the

proper procedures for submitting and entering data to the

appropriate federal and industry agencies. Specifications

on data entry procedures and data submission procedures will

also be provided by the Administrator. [Ref. 3:pp. 20-21]

D. SCOPE OF THE THESIS

Presently, the EPMIS program which interfaces with the

data base operates at a very slow speed. It is often too

slow to be used in a "real life" emergency and needs to be

reworked, if possible, so that the program operates at a

reasonable speed. The objective of this thesis will be to

restructure the EPMIS data base design to improve the

overall performance of the program.

The research will be limited to the analysis of the

current EPMIS data structures and will include the

construction of an Entity-Relationship model, the

identification of processing bottlenecks within the EPMIS

program, and proposals for changes to the physical data base

design that will reduce or eliminate the bottlenecks.

E. METHODOLOGY

The thesis will be performed in five steps which will be

done in two separate sections. The first section will

concentrate on the conceptual design of the data base and

will consist of the following steps:

1. Generation of the Entity-Relationship models using the
current data tables documented by the program
developers.

2. Analysis of the logical structure of the EPMIS data
base, which will include a description of the
relationships between data groups.

The second section will deal with the physical design of

the data base and will include:

3. Study of the physical structure of the EPMIS data
base, including a description of INGRES data storage
methods and how each data group is physically stored.

4. Analysis of the EPMIS program to identify possible
bottlenecks within the system. This process will
include identifying which modules access which tables.

5. Proposals for changes to the physical data base design
that will reduce or eliminate the bottlenecks.

F. THESIS STRUCTURE

The remainder of the thesis will be structured as

follows.

Chapter II presents a more comprehensive review of the

EPMIS Data Base structure as well as a review of the EPMIS

systems supported by the Data Base.

Chapter III analyzes the Logical Structure of EPMIS.

Included is a review of the Entity-Relationship approach,

Reverse Engineering, and the Entity-Relationship diagram

generated.

Chapter IV reviews the Physical Structure of the Data

Base and the various storage structures provided by the

INGRES Data Base Management System.

Chapter V analyzes the EPMIS Program. The analysis

covers the six modules within the EPMIS Program and

concentrates on the response times for various queries.

Chapter VI presents specific recommendations to improve

the efficiency of the EPMIS Program.

Chapter VII concludes the thesis by reviewing the intent

of the thesis, summarizing the findings, and discussing the

advantages of implementing the recommendations.

II. EPMIS DATA BASE FUNCTIONS

The information necessary to monitor and maintain the

nation's telecommunications resources during times of

national emergency or war is provided through the EPMIS Data

Base. A key component in the EPMIS system, the Data Base

not only provides information to each component level within

EPMIS, but is also used to interact with many of the special

access and other related programs which have a role in the

overall management process. How this information is

dispersed throughout the system and the support the Data

Base provides to the various programs will be the focus of

this chapter.

A. CENTRALIZED NATIONAL TELECOMMUNICATIONS DATA BASE
(CNTDB)

The CNTDB, which is also known as the Master Data Base,

is maintained by the National Level component of the EPMIS

System. It is physically maintained at the NCS in

Arlington, Virginia and provides the data for the National

and Regionally Deployed EPMIS components. As the Master

Data Base, it is considered to be the most current data base

and is used to resolve any discrepancies in the updating of

the information. In addition, it serves as the collection

and dissemination point for data that resides on the other

data bases deployed throughout the system. [Ref. l:p 4-4]

As part of the EPMIS System, Shadow Data Bases are

maintained at each of the regionally deployed component

level sites and are designated as alternate sites for the

Master Data Base in times of emergency. These data bases

are exact duplicates of the Master and are used for ensuring

EPMIS survivability, and to provide for independent regional

operations in solving telecommunication problems at the

lowest level possible. In addition, Regionally Deployed

Data Bases are also maintained at the regional component

level. These data bases not only provide the Regional

Managers with national level data found on the Master Data

Base, but also provide data which are specific to each

region and that are not maintained at the other component

levels. Examples of the type of data specific to a region

include: Local commercial carrier Point of Contact

information and Local NCS Member Agency Point of Contact

information. [Ref. 2:pp. 4-5—4-7]

Acting as the baseline for telecommunication resources,

the CNTDB is considered the National Data Base and provides

the NCS with information on the resources which would be

available during a national emergency. However, if an

emergency occurs where the communication lines are broken,

an alternate site (one of the Shadow Data Bases) may be

assigned until such time that the communication lines are

restored. It is for this reason that the information

maintained in the Shadow Data Bases must be consistent with

the master. [Ref. 2:p. 4-4]

The updating of the information to the Master Data Base

is accomplished in one of three ways: on-line individual

transactions, batch processing, or batch updates received

from the deployed data bases [Ref. 2:pp. 4-4—4-5]. Since

the information in the data base is constantly being updated

and revised, maintenance known as "copy cleanups" [Ref. 2:p.

4-5] is done on a periodic basis to the Master Data Base.

This is done to ensure the efficiency of data access by

removal of unusable space, and to assist in the elimination

of data base corruption. [Ref. 2:p. 4-5]. After completion

of each cleanup, both the Shadow Data Bases and the

Regionally Deployed data bases will receive an entire copy

of the Master Data Base. In addition, periodic updates are

performed to ensure that each of the data bases deployed

have current data. How often these periodic updates are

accomplished may be determined by the "number of update

transactions made to the CNTDB, a specific time period, or a

combination of both." [Ref. 2:p. 4-5]

B. SPECIAL ACCESS AND/OR RELATED PROGRAMS

The various programs that interact with the EPMIS

program will be reviewed in this section.

10

1 . National Telecommunications Management Structure
(NTMS)

This structure is being developed to "support the

national security emergency preparedness (NSEP) telecom-

munication requirements" [Ref. l:p. 5-1] which will be

present during a national emergency or war. Within the

structure there is a National Coordinating Center (NCC) as

well as Regional Coordinating Centers located in each one of

the seven telecommunication industry regions [Ref. l:p. 5-

1] . The NCC coordinates the telecommunications at the

national level and the RCCs coordinate the NCC mission in

their respective regions. Should the NCC be unable to

provide the required NSEP support, one of the RCCs will

assume the role of the national coordinator. The RCC

designated will continue to perform its functions in the

region assigned. Each of the RCCs has the capability to

assume the role of the NCC. The basic concept of NTMS is to

manage the resources below the national level (e.g.

,

regional or local) whenever feasible. [Ref. l:p. 5-1]

EPMIS is used as the Decision Support System for

NTMS and "provides emergency telecommunications management

information in support of NTMS operations." [Ref. l:p. 5-2]

EPMIS also provides information concerning those personnel

vital to the operations of communication operations. This

information is provided through several EPMIS functions and

includes such items as emergency recall lists for NCS

personnel, emergency points of contacts (phone and pager

11

numbers) , and location information (home, work, and

emergency) for designated personnel. Designed to support

operations at the proper level, EPMIS eases the delegation

of operations to the regional or local level when deemed

appropriate. [Ref. l:p. 5-2]

2

.

National Telecommunications Coordinating Network
(NTCN)

A communication network which supports the NTMS

,

NTCN is "an integration of Public Switched Networks (PSNs)

and Government communication networks, systems and

facilities augmented pre-positioned dedicated equipment to

provide a survivable and enduring network." [Ref. l:p 5-2]

The network is activated following the disruption of normal

telecommunications connectivity. It would provide a "thin-

thread communication link among the surviving NTMS locations

requiring connectivity." [Ref l:p. 5-2]

EPMIS is used in providing secure voice and data

transfer between the NCC and RCCs via the NTCN. The NTCN

facilitates communication between the EPMIS computers at the

NCC and RCCs and should the NCC go down, also ensures

connectivity between the RCC designated as the national

level center and the remaining locations in the EPMIS

system. [Ref. l:p. 5-3]

3

.

Nationwide Emergency Telecommunications Service
(NETS)

NETS "is based on the concept of increasing the

connectivity between the surviving switches and transmission

12

facilities within the Public Switched Network (PSN) during

and after national emergencies." [Ref. l:p. 5-4] It

provides the capability for low speed data communications by

using those surviving switching and transmission facilities

of commercial, private, and government networks [Ref. l:p.

5-4]. In effect, NETS takes those routing options that are

not normally used for PSN calls and pieces them together to

form usable connections. This enables calls to be routed

around those areas in the PSNs that have been damaged.

Since EPMIS does rely on the use of PSNs for some

external data communications, it may be dependent on the use

of NETS to provide that function. Information on which

nodes in a particular network have call controllers, used by

NETS to implement these new connections, can be maintained

by EPMIS. EPMIS also has the ability to perform damage

assessment on those nodes. [Ref. l:pp. 5-4— 5-5]

4 . Expert Telecommunications Resource Allocation Module
(XTRAM)

This module is an expert system enhancement to EPMIS

which can be used in stand alone mode or interfaced with

EPMIS. It provides the Resource Allocation Officer with

"recommendations as to the desired allocation of the

residual telecommunications resources in response to

prioritized government requirements." [Ref. l:p. 5-6] In

addition, the system can provide a description of the

decision process used in the generation of the

recommendations

.

13

EPMIS is used to provide the list of prioritized

service requests and telecommunications resource

information. However, problems do exist with this system.

XTRAM does not provide the results of its analysis to the

data base which results in the data base not being kept

current. Also, "XTRAM was implemented on the DEC VAXstation

and is unable to operate on the current Epmis hardware

configuration" [Ref. l:p. 5-7] as the shell software used by

XTRAM cannot run on the DEC MicroVAX II minicomputer which

supports EPMIS. Before XTRAM can be deployed, it must

reflect the current hardware configuration used by EPMIS.

Integrating XTRAM and EPMIS is the next step in XTRAM'

s

development process and is currently underway. However,

EPMIS uses INGRES as an information management tool and

XTRAM does not. This will cause additional complications

when XTRAM attempts to retrieve information from EPMIS.

[Ref. l:p 5-7]

5 . Telecommunications Service Priority System (TSP)

TSP "is being developed to replace the current

Restoration Priority (RP) system" and "will be used to

process requests for assignment of provisioning and

restoration priorities to new or existing NSEP

telecommunications services." [Ref. l:pp. 5-7— 5-8] TSP

MIS is used to provide automated support for the TSP system.

It is a data base oriented application system and ensures

14

effective and timely priority assignment and monitoring of

NSEP services by the TSP system. [Ref. l:p. 5-8]

EPMIS must have access to the TSP system data base

in order to properly prioritize the requests for the

remaining telecommunication resources. EPMIS "can use the

service priority assignments contained within TSP MIS to

determine restoration priorities" and then uses this data

"to determine which NSEP telecommunications service users

should be given access to in the event of an emergency."

[Ref. l:p. 5-8]

6 . Shared Resources (SHARES) High Frequency Radio
Program

The SHARES network "will provide a backup capability

to exchange critical information among Federal entities to

support NSEP." [Ref. l:p. 5-9] A communications infra-

structure of federally controlled HF radio resources will be

established and through this network, messages of critical

importance will be passed among Federal agencies. SHARES

can be used to pass information between EPMIS installations.

Any classified information will require encryption prior to

transmission via SHARES. [Ref. 1: p. 5-9]

EPMIS can be used to store information pertaining to

SHARES stations. This would include primary and secondary

transmitting frequencies, station locations, operating

personnel, and assets. [Ref. l:p 5-10]

15

C. EPMIS SOFTWARE PROGRAMS AND APPLICATIONS

The various software applications and programs used

within EPMIS include both commercial application packages

and those custom packages developed by the EPMIS designers.

1. INGRES

INGRES is the relational data base management system

in which EPMIS is implemented. It includes the implementa-

tion of Query Language (QUEL) as well as application

development tools. In EPMIS, INGRES will run on a Micro-VAX

platform. [Ref. 3: p. 11]

INGRES/STAR is a distributed data base product which

will enable different applications to efficiently access

data across a variety of computer systems. "It provides

universal access to information while at the same time

allowing the local systems to maintain control of the

security and integrity of local information." In EPMIS,

INGRES/STAR will allow a PC at a regional site to access

data which is located on a Micro-VAX and also will

facilitate data transfer between Micro-VAXs located in

different regions. [Ref. 3:p. 11]

INGRES NET coordinates the processing of an

application program and the data base on two separate

machines simultaneously. It is also used as a link between

INGRES/STAR and data bases in remote locations. [Ref. 5:p.

10-11]

16

2. KERMIT

KERMIT is a protocol which is designed for the

transfer of files over ordinary serial communication lines.

This will allow EPMIS users to transfer files from a PC to a

Micro-VAX and vice versa. It will also allow for storage of

information on floppy disks and the transfer of data between

locations. KERMIT will only be used for other than normal

EPMIS communications. DECNET, INGRES/STAR, and/or INGRES

NET will be used for normal communications. [Ref. 3:p. 12]

3. DECNET

Developed by Digital Eguipment Corporation (DEC)

,

"DECNET is a set of programs and protocols for use on DEC

computer systems." [Ref. 3: p. 12] DECNET will be used to

link the various MicroVAXs, which will be deployed

throughout the country, to form a wide area network and will

allow communications to occur between the regional Micro-

VAXs as well as with the Micro-VAX located at NCS . It will

also allow EPMIS users to use the VMS Mail and Phone

utilities to communicate with other EPMIS users. [Ref. 3:p.

12]

4

.

PC Software Applications

The following applications will reside on the EPMIS

PC and will provide the user with additional capabilities.

1. Desqview— a multiple tasking software program
providing "windows" which allow the user to have more
than one application operating at a time. [Ref. 3: p.

13]

17

Multimate—has been chosen as the word processing
program on the EPMIS PC and Lotus 1-2-3 will be the
spreadsheet application for EPMIS users. [Ref. 3: p.

13]

PC-DACS—a PC security system which will be required
on the PCs. It will be used to ensure that only
authorized users gain access to the system. This will
be accomplished through the checking of usernames and
passwords. It will also control data access by
privileged users. [Ref. 3:p. 14]

18

III. ANALYZING THE LOGICAL STRUCTURE

A. BACKGROUND ON THE ENTITY-RELATIONSHIP APPROACH

Before starting an analysis of the logical structure of

the EPMIS data base, it is useful to review the various

elements that make up a data base and how a data base is

designed. Much of the following descriptions are taken from

Reference 4

.

A data base is a collection of records which in turn is

a collection of data items. For example, a record called

STUDENT can contain data relevant to a particular student.

A record is divided into several fields, or elements, which

describe the data. NAME and GRADE are possible elements of

the record STUDENT. As an example, "John Doe" may be the

value of a data item described by the element NAME while

"Sophomore" may be the value of a data item described by the

element GRADE. These data items are also called attributes.

A record is a collection of these attributes. A file is a

collection of records of the same type. For instance, the

file called STUDENT may be a collection of STUDENT records.

A data base may contain many files and records. The process

of organizing and storing these files and records is called

data base design.

Data base design can be divided into two steps: logical

design and physical design. "Logical data base design is

19

the process of designing the logical data structure for the

data base." [Ref. 4:p. 4] Logical data base design

involves analyzing the environment in which the data will be

used, the data base system to be used, and the logical data

structure types available in the data base system. "Physi-

cal data base design is the process of selecting a physical

data structure for a given logical data structure." [Ref.

4:p. 4] Physical data base design involves the method used

to store data onto physical data storage devices. Physical

data structures are discussed in more detail in Chapter IV.

In this chapter we concentrate on the logical structure.

"Currently there are few tools to aid the logical data

base design process; the data base designer usually has to

rely on intuition and experience. As a result, many data

bases existing today are not properly designed." [Ref.

4:p. 4] Most data bases existing today were designed using

the conventional data base design approach. This approach

involves identifying the relevant data, then designing the

logical structure into which the data will be organized and

managed. There are two main problems with the conventional

data base design approach. The first problem is that it is

a complex task to accomplish. There are many things to

consider, e.g., limitations imposed by the data base system

on the way data can be structured, determination of access

paths to each record, concern with the efficiency of updates

and retrievals, etc. The second problem with the

20

conventional approach is that it is difficult for the

designer to represent his logical description of the data

base, called the schema, in a way that others can easily

understand. This makes it hard for others to make changes

or improvements on the data base. These two problems led to

the development of the Entity-Relationship (E-R) approach by

Professor Peter Chen in 1976.

As its title implies, the E-R approach involves

"entities" and "relationships." "An entity is a 'thing*

which can be distinctly identified." [Ref. 4:p. 17] There

are many "things" in the real world. It is the responsi-

bility of the data base designer to select the entities that

are relevant to his data base (for the purposes of this

discussion, entities can be thought of as files) . A

"relationship" is a connection or commonality between two or

more entities. For example, MARRIAGE is a relationship

between two person entities. The idea behind the E-R

approach is to add an extra step between identifying the

data and designing the logical structure. This middle step

involves viewing the data from the "point of view of the

whole enterprise" [Ref. 4:p. 9]. The description of this

enterprise view is called the enterprise schema. "The

enterprise schema should be a pure representation of the

real world and should be independent of storage and

efficiency considerations." [Ref.4:p. 9] This enterprise

21

schema is defined during the first phase of the E-R

approach.

The E-R approach consists of two phases: constructing

an E-R diagram to define the enterprise schema, and

translating the enterprise schema into a logical structure.

The E-R diagram, or E-R model, is the foundation of the E-R

approach. The diagram consists of rectangles, which

represent entities, connected by hexagons, which represent

relationships. By taking the individual entities and

determining the relationships between them, and then

plotting the relationships onto an E-R diagram, the

enterprise schema is developed. The enterprise schema shows

the different groupings of related data items. This helps

in getting a picture of the overall data base. The logical

structure of the data base is derived from the enterprise

schema. This is done by translating the E-R diagrams into

data-structure diagrams. Developing data-structure diagrams

involves determining whether relationships are one-to-one,

one-to-many, or many-to-many, and analyzing the attributes

of each entity to determine the key, which uniquely

identifies each record in an entity, and the foreign keys

which determine the relationship between entities. More

than one data-structure diagram can be generated from the

same E-R diagram. The data base system being used, along

with the level of efficiency and interdependence desired,

will determine the type of data-structure diagram. "The

22

logical data structure of data bases... can be expressed in

terms of data-structure diagrams." [Ref. 4:p. 28] The E-R

approach concludes after the development and implementation

of this data-structure diagram.

The E-R approach has many advantages: (1) it simplifies

and organizes the data base design process; (2) the

enterprise schema is easier to design than the logical

structure since it is not restricted by the capabilities of

the data base system; (3) the enterprise schema is

independent of the data base system, if it becomes necessary

to change data base systems, the E-R diagram can serve as

the basis for logical reconstruction of the data base; (4)

it is a useful documentation tool since it is easy to get a

grasp of the logical data base design by looking at the E-R

diagram.

Because the E-R diagram makes it easier to understand

the logical design of a data base, the analysis of the EPMIS

data base will start with the construction of an E-R

diagram. Since the logical data base design has already

been developed, construction of the E-R diagram in this case

will involve a reversal of the E-R approach. This process

is referred to as Reverse Engineering.

B. REVERSE ENGINEERING: STEPS IN GENERATING THE E-R
DIAGRAM

In order to perform an analysis of the EPMIS data base,

an Entity-Relationship (E-R) model of the data base is

23

needed. This requires decomposing the data base to

determine the entities, attributes, and relationships

between the various entities. At the start of this thesis,

only two documents were available that described the data

base in any detail. The first document is the Data

Dictionary generated by Booz-Allen Inc. --the prime

contractor for the development of the EPMIS system. This

dictionary defines all the tables in the data base and all

the elements in each of the tables. The second document is

a printout from the INGRES Data Base Management System

(DBMS) which also describes all the tables in the data base.

This second document provides information omitted from the

Booz-Allen Data Dictionary. These two documents plus

additional interviews with Mark Berman of Booz-Allen,

provided the major sources for analysis of the EPMIS data

base structure.

Using the two documents, construction of the E-R diagram

can begin. The Reverse Engineering process involves four

main steps: decomposing the data base, identifying the

relationships, grouping the relationships, and generating

the E-R diagram. After the E-R diagram is generated, an

analysis of the logical data base structure can be done.

C. DECOMPOSING THE DATA BASE

An inspection of the data base shows that the data

tables can be broken down into four categories: permanent,

temporary, indexes, and views (although views are not

24

actually data tables, they are categorized as such for ease

in breaking down the data base) . The permanent tables are

files that store data. The temporary tables are empty data

tables which are filled only when information is to be

printed out. These temporary tables are used to overcome

the limitations of INGRES, which limits the number of line

items that can be printed directly from the screen to ten.

When the printing is done the information is erased from the

temporary tables. Index tables effectively sort permanent

data tables on different keys. The views are virtual tables

not physically stored in the data base but derived from

other data tables. Based on the original Booz-Allen Data

Dictionary, there were 40 permanent tables, 25 temporary

tables, 19 indexes, and six views. However, due to changes

and updates, these numbers are no longer accurate. They are

shown to give an idea of the size of the EPMIS data base.

Exhibit 1 shows the grouping of the data tables.

Although the size of the data base indicates approxi-

mately 84 established tables, only the 36 permanent tables

that are still active need to be analyzed. The temporary

tables are only used for printing out information and

therefore are not part of the entity-relationship structure

of the data base. In addition, the indexes are auxiliary

structures on permanent tables and therefore need not be

treated as separate and distinct tables. Although views are

logical representations of information from different

25

tables, EPMIS uses the views to merely make complex queries

easier. As a result, the views do not represent real

relationships in the data base and will not be considered.

The process of determining the relationships within the

EPMIS data base, and thus generating an E-R model of the

data base, will be limited to the 36 permanent tables.

D. IDENTIFYING RELATIONSHIPS

The first step in determining what the entity-

relationships are is to identify all the keys and foreign

keys in each of the 36 permanent tables. Identifying these

keys helps in making correlations between tables which, in

turn, helps in determining relationships. Since the Booz-

Allen Data Dictionary does not have any information

concerning the keys, the INGRES DBMS report, along with

information from Mark Berman, is the sole source for

identifying the keys. Knowing the keys, it is a simple task

to go back and identify all the foreign keys in each table.

The foreign keys tie together different tables that

share common information. By identifying all those tables

that are tied together, and by studying the description and

purpose of each table, tentative relationships can be

formulated. A simple example involves the two tables ASSET

and ASSETCNTR. The ASSETCNTR table lists all the Asset

Centers in the National Communications System along with

information on the centers themselves. Its key is the

element, asst_ctr_nam, which is also a foreign key in the

26

table ASSET. The ASSET table contains information on

specific assets. It becomes apparent that specific assets

listed in the ASSET table can be associated with the Asset

Center it belongs to by taking the foreign key and crossing

it into the ASSETCNTR table. Thus, by using the key

attribute asst_ctr_nam to tie the two tables together, a

relationship is established between ASSET and ASSETCNTR.

Although establishing relationships between all 36 tables is

much more complex, the basic process of using the foreign

keys to tie tables together is the underlying method for

establishing these relationships.

E. GROUPING THE RELATIONSHIPS

As relationships are established between all 36

permanent tables, four main groupings and two minor

groupings emerge. Each group contains tables that are

closely related. However, a grouping itself has basically

no relationship with any of the other groupings. The four

major groups are: Communication Networks, Damage Assess-

ment, Service Requests, and Facility Requests. The two

minor groups are: Emergency Activation Documents and

Regional Situation. Exhibit 2 shows the breakdown by

groups.

1 . Communication Networks Group

The Network Asset Location grouping contains tables

that describe each network in the National Communication

Network including all resources such as assets, asset

27

centers, operation centers, personnel, links, and nodes that

make up each of the various networks. In addition, the

location of each of these resources is also described.

2

.

Damage Assessment Group

The Damage Assessment grouping contains tables that

deal with determining the extent of damage to communication

resources based on observed damage inputs. Certain tables

in this grouping contain parameters that are used to

determine the probabilities of destruction of certain

communication resources and to predict the operational

status of those resources.

3

.

Service Request Group

The Service Requests grouping contains tables that

comprise all the information required to submit a service

request to perform maintenance on communication resources.

It also contains tables that store all the information on

each service request, the status of each service request,

and a journal or historical file of all previous service

requests

.

4

.

Facility Request Group

The Facility Requests grouping is similar in

structure and function to the Service Request grouping

except that its tables deal with requests to install new

communication facilities.

As Exhibit 2 shows, four tables are shared between

different groups: NETWORK, RESLOC, AGCYFUNCT and TSPRPMAP.

28

Although these tables are shared, no logical relationship

exists between the different groups.

F. GENERATING THE E-R DIAGRAM

With the relationships between the 36 permanent tables

determined, the final step is to plot the relationships onto

an Entity-Relationship (E-R) Diagram. Reference 4 is the

major source of guidance for generating the E-R Diagram. In

addition, a software program entitled "ER-Designer" by Chen

& Associates, Inc., was used to do the physical plotting of

the model. Four separate E-R Diagrams correspond to the

four major groupings. The diagrams show each table and the

relationships between the tables (see Exhibits 3-6) . Since

the minor groups consist of only two tables each, an E-R

Diagram will not be generated for them. Rectangles are used

to represent the tables (entities) while hexagons are used

to represent and describe the relationships. By viewing the

E-R Diagrams it is much easier to understand the interac-

tions and workings of the data base. Since the Booz-Allen

Data Dictionary is the only document available for studying

the data base, the E-R Diagrams will be extremely helpful in

allowing closer analysis of the logical structure of the

EPMIS data base. This closer analysis is required in order

to discover inefficiencies in the performance of the INGRES

Data base Management System.

29

G. ANALYZING THE LOGICAL STRUCTURE

By using the E-R diagrams, it is possible to perform an

analysis of the logical structure of the data base. As the

E-R Diagrams show, the data base is logically divided into

four major groups and two smaller, independent groups.

1 . Communication Networks

The first major grouping deals with EPMIS communica-

tion networks and the resources belonging to these networks.

The relationships within this group revolve around two key

tables, NETWORK and RESLOC.

The NETWORK table lists and describes all the

various communication networks throughout the country. Each

communication network contains the following resources:

nodes (which are listed in the NODE table) , links (LINK

table) , Asset Centers (ASSETCNTR table) , Operation Centers

(OPTRNCNTR table) , and personnel who work on the network

(PERSONNEL table) . The tables that maintain these resources

not only describe each resource, but also indicate to which

specific communication network the resource belongs. These

tables, therefore, have a direct relationship with the

NETWORK table. The type of relationship they have is a

many-to-one, i.e., a network can have many resources, but a

specific resource can belong to only one communication

network.

The other key table, RESLOC, also has a many-to-one

relationship with all but one of the same tables as NETWORK.

30

In this case, each resource can have only one location, but

one location can contain many resources. The one table that

does not have a relationship with RESLOC is LINK. Links are

defined by two different nodes situated at two different

locations. As a result a link cannot be assigned a specific

location and therefore has no relationship to RESLOC. The

relationship between NETWORK and RESLOC is also many-to-one

since a location may contain many networks while a network

can only have one location. RESLOC has a relationship with

one additional table, STATICLOC, which contains basically

the same information as RESLOC. It is a static location

table that is used mainly to help a user select a latitude/

longitude and horizontal/vertical combination based upon a

user entered city and state. Its relationship with RESLOC

is one-to-one.

The relationship between the ASSET table, which

lists each unique asset in the system, and the ASSETCNTR

table, is many-to-one. Each Asset Center can have more that

one asset, but each asset is uniquely identified with one

Asset Center. In the PERSONNEL table each person listed has

a "personnel status" assigned indicating his availability.

The allowable descriptions for this status element are

listed in the PERSTATUS table. This means that when the

status of a person is entered into the PERSONNEL table, the

system verifies the entry with the PERSTATUS table to ensure

the entry is a valid one. There is a one-to-many

31

relationship between the PERSONNEL table and the PERSTATUS

table in that a specific "status" description can appear for

more than one person, but an individual person can have only

one "status" description. The NODE table and the LINK table

are also related. Each communication link always consists

of exactly two nodes. A node, on the other hand, can be a

part of many links or, in some cases, not a part of any

link. This type of relationship is many-to-many.

2 . Observed Damage

The second major grouping deals with the observed

damage to a communication facility. The key table in this

grouping is the DMGOBSRVD table which contains information

on the location and on the radii of destruction and

impairment of the damage. Every table in this group has a

relationship with the DMGOBSRVD table.

The tables LAYDOWN, RECTANGLE, and DMGEDRES are

related to DMGOBSRVD in that each table provides additional

information to the observed damage. LAYDOWN contains

laydown information such as lat/lon of the observed damage,

in addition to the coordinates, height of burst, and weapon

yield. RECTANGLE provides information used in a damage

assessment algorithm for determining the extent of

rectangular damage. DMGEDRES contains the resources that

have been predicted as being damaged. LAYDOWN and RECTANGLE

have a one-to-one relationship with DMGOBSRVD while DMGEDRES

has a many-to-one relationship.

32

Both STATEREG and DIRECTION have a one-to-many

relationship with DMGOBSRVD. Both are static tables that

not only contain the allowable values for certain elements

in the DMGOBSRVD table, but also provide additional

information on that element. STATEREG provides the state

abbreviations for the state element along with the regions

associated with that state and the latitudes and longitudes

of an imaginary 'box 1 around each state. DIRECTION provides

the compass heading for the direction element along with

damage direction and angles used for calculating rectangular

damage information. Values of STATEREG and DIRECTION can be

used for more than one observed damage. However, an

observed damage can use only one value of STATEREG and

DIRECTION.

Since JDMGOBSRVD is an exact duplicate of DMGOBSRVD,

there a one-to-one relationship between the two. JDMGOBSRVD

serves as a historical record of all damage reports.

The DMGEDRES table has a many-to-one relationship

with the RESLOC table. A location can contain many damaged

resources, but a damaged resource can have only one

location. Although this relationship provides a link with

the first group of tables that deal with Communication

Networks, there is no other logical relationship between the

two groups.

33

3 . Service Requests

The third grouping deals with the information

required for an agency to request maintenance service on

resources located at its facility. The key table in this

group is the SERVREQUEST table.

The SERVREQUEST table contains all of the

information related to a service request with the exception

of additional comments. The table SERVCOMMENT contains the

additional comments pertaining to that service request. The

attribute ncc-number, which is a unique number by which NCC

identifies service requests, is provided to the SERVCOMMENT

table by the SERVREQUEST table. Their relationship is one-

to-one.

The tables CARRIERS, AGCYFUNCT, TSPRPMAP, and

REQSTATUS all have a one-to-many relationship with

SERVREQUEST. Each table provides the allowable values for

specific elements in SERVREQUEST. CARRIERS provides the

abbreviated names of commercial carriers for the

carrier_name element, AGCYFUNCT provides the list of

agencies that may request service for the agency element,

TSPRPMAP provides the Telecommunications Service Priority

(or TSP) code for the tsp element, and REQSTATUS is a static

table that provides the allowable status descriptions for

the status element. A service request can have only one

value from each of these tables, however, values from these

34

tables can appear on more than one service request, thus a

one-to-many relationship exists.

The JOURNREQUEST table is just a historical record

of all service requests. It contains the same elements and

values as the SERVREQUEST table. Its relationship with

SERVREQUEST, therefore, is one-to-one, and its relationship

to the other tables is similar to SERVREQUEST. Similarly,

JOURNCOMMENT is an exact duplicate of SERVCOMMENT and has a

one-to-one relationship with both SERVCOMMENT and

JOURNREQUEST.

The last table in this group is the FUNCTMAP table.

It is related to the AGCYFUNCT table in that it contains the

list of function codes and priorities that are assigned to

an agency. These codes and priorities are used for

prioritizing service requests. Since an agency can have

only one function code/priority, while a function code/

priority can be assigned to more than one agency, there is a

one-to-many relationship between AGCYFUNCT and FUNCTMAP.

4 . Facility Requests

The fourth grouping of tables deals with an agency's

request to establish a new facility. The structure of this

group is similar to the Service Request Group. As a result,

some of the tables used in the Service Request Group are

also used in this group. The key table in this group is

FACLTYREQ

.

35

FACLTYREQ contains all the information involved in a

facility request except for additional comments. FACLTYCOM

contains the additional comments that apply to the facility

request. FACLTYREQ and FACLTYCOM have a one-to-one

relationship. There is also a one-to-one relationship

between FACLTYREQ and CLAIMNO. CLAIMNO is a table that is

used to generate a sequential number, called a claim number,

that uniquely identifies a facility request. As a result,

when a facility request is assigned a claim number this

claim number can not be assigned to any other facility

request. Thus, there is a one-to-one relationship.

FACSTAT, TSPRPMAP, AGCYFUNCT, and NETWORK all have a

one-to-many relationship with FACLTYREQ. FACSTAT contains

all the valid values for the status of a facility request.

One of these values is assigned to the status element of

FACLTYREQ. TSPRPMAP provides the TSP (or priority) code for

the tsp element, and AGCYFUNCT provides the list of agencies

that may make facility requests for the agency element.

NETWORK provides the abbreviated name of the network that

the new facility will be incorporated into. As with the

other tables, the system checks to see that the abbreviation

that is entered into the net_abbr_nam element of the

FACLTYREQ table is valid by verifying it with the NETWORK

table.

36

The JRNFACREQ table is a historical record of all

facility requests and is an exact duplicate of the FACLTYREQ

table. They have a one-to-one relationship. Likewise,

JRNFACCOM is a duplicate of FACLTYCOM and has a one-to-one

relationship with both FACLTYCOM and JRNFACREQ.

5

.

Emergency Activation Documents

The first of the two smaller groupings deals with

emergency activation documents (ead's). This group consists

of only two tables, EADLIST and EADS . EADLIST maintains

ead's and their associated issue and rescind information.

Each individual ead is identified by the ead_id element.

EADS contains the text of each ead. The relationship

between EADLIST and EADS is one-to-one.

6

.

Regional Situation

The final grouping deals with the functional status

of each region in the nation. This group also consists of

only two tables, STATNATN and SONSIT. STATNATN maintains

the current situation for the nation and each region. The

possible situations that can be used are obtained from the

SONSIT table. Since a region can be in only one situation,

and since a particular situation can apply to more than one

region, the relationship between STATNATN and SONSIT is one-

to-many.

With the analysis of the logical structure

accomplished, the next step in analyzing the EPMIS data base

is to examine the physical structure of the data base.

37

IV. PHYSICAL STRUCTURE OF THE DATA BASE

An analysis of the physical structure of the EPMIS Data

Base consists of four parts: (1) reviewing the concept of

physical structure and how it affects the speed of data

retrieval and data storage capacity; (2) explaining how the

INGRES Data Base Management System stores data; (3)

describing the storage structures available in INGRES and

the applicable situations in which they should be used; and

(4) reviewing how the data in the EPMIS Data Base is

actually stored. The last review will be done by looking at

each table and identifying the storage structure currently

used.

A. PHYSICAL STRUCTURE CONCEPTS

There are several areas of concern when determining

which type structure to choose for storing data. Two of the

major issues include access speed and disk space. Each

structure offers certain advantages and disadvantages in

these areas and it must be determined what type of data

support is needed prior to the actual design of the data

base. Some structures offer greater speed in accessing

data, going directly to a record rather than scanning an

entire table. Certain structures require more disk space

than others because of the way the data is stored. It is

important to fully understand these concepts and how they

38

will affect the performance of the data base once

implemented. As the different storage structures available

through INGRES are explored, these concepts will be further

examined and the situations for which each structure is

best-suited will be discussed.

B. INGRES METHODS FOR STORING DATA

In INGRES each table is stored as a file. Each file is

then divided into pages based on the number of bytes of

information. INGRES stores 2048 bytes to a page with 2008

bytes allowed for user data [Ref. 6:p. 3]. The remaining

bytes are assigned as INGRES overhead. Each page is divided

into records and the number of records per page is

determined by the record width and storage structure. It

should be noted that records cannot be split between pages.

Pages become important because they become a factor in both

access speed and disk storage reguirements. For example, it

takes as many disk I/Os (input/output transactions) to

retrieve an entire table as there are pages in that table,

and with a large table it is desirable to avoid scanning

every page unless absolutely necessary. Scanning each page

takes considerably more time than going directly to the

particular page in which your data is stored. The ability

to go directly to a particular page rather that scanning the

entire table is a function of the storage structure and will

be discussed in the following sections. [Ref. 6:p. 4]

39

C. INGRES STORAGE STRUCTURES

There are four storage structures available with INGRES.

The characteristics of each storage structure will be

reviewed along with the best situations in which to use that

particular structure. A table is provided at the end of

this section which ranks the best storage structure to use

for different tasks.

1. Heap

The heap structure is the most basic of the four

structure types. It is basically a default storage

structure using seguential entry and access as its primary

means for storing and retrieving data. The tables have no

key columns so gueries must scan every page in a table when

retrieving data. Space is often wasted in this format

because appends are placed at the end of the table,

duplicate rows are not removed, and space from deleted

records is not reused. This results in holes in the tables

and wasted space. [Ref. 6: p. 9]

The heap size (number of records per page) is

computed by dividing 2008 by the row width + 2 (tuple id)

and the number of pages in the heap table is computed by

dividing the number of records by the number per page [Ref.

6: p. 7]. These formulas calculate the amount of data that

will be stored in a heap table.

A Heap table is best utilized in any of the

following situations: (1) when loading a significant amount

40

of data for the first time as it is the fastest structure

for appending data; (2) when the table has only a few pages;

and (3) when queries are such that they always select the

entire table (e.g., batch applications where every record

must be processed). [Ref. 6:p. 10]

Situations in which a Heap table would not be very

efficient include when: (1) fast access is required to one

row or a subset of rows; (2) the tables are large; and (3)

the need exists for unique keys (e.g., as would be needed in

a Hash table). [Ref. 6:p. 10]

2 . Hash

A Hash table is normally used for random accessing

of records, but sequential access is also possible.

Attempting to retrieve data without using the assigned key

value or an exact key match will result in a sequential

search of a Hash Table. However, the efficiency provided by

storing records in a Hash table is lost if used for

sequential access. Random or direct access is used to

identify a specific record by its assigned key value

alleviating the need to search the entire table. The key

value (hash value) is determined by using a "hashing

algorithm" which consists of nothing more than performing an

arithmetic operation on a specified field within a record.

The result of this operation is then used as the address for

that record within the file. For example, in a personnel

file, the employee number may be used to determine the

41

address of each record. Taking the last three or four

digits of the employee number and then using that sequence

of numbers as the record address is one addressing scheme

[Ref. 7:p. 627]. This method is known as the "division/

remainder" [Ref. 7:p. 627] method and can use other number

series to come up with the sequence (e.g., using the first,

third, and fifth digit of the employee number) . This

scheme, however, may result in addresses that are not unique

which will affect the performance of the hash table.

Another hashing method known as "folding" splits the key

into parts and then summing these parts, takes the total or

a part thereof and uses that number as an address [Ref. 7:p.

627]. Folding can be combined with division/remainder to

form an effective addressing scheme. [Ref. 7:p. 627]

The Hash table is structured with a number of main

pages, each with a number of records assigned. The number

of main pages is determined by the number of records in the

table as well as the number of records which will fit on a

page. The number of records on each page varies and is

assigned to a main page based on the hashed value of its

key. Should a main page become completely filled with

records, an overflow page is used for any additional records

assigned to that filled main page. In order to control the

number of overflow pages needed, a fillfactor is estab-

lished. The fillfactor determines how much space is left in

each main page for additional records. The default factor

42

is 50% [Ref. 6:p. 14]. It is important to minimize the

number of overflow pages because they result in duplicate

keys and slow the processing time. It should be noted that

the user can control the number of main pages and the

fillfactor with the MODIFY command and that the number of

main pages is fixed at the time of a modification. So, if a

large amount of data is added which results in a number of

overflow pages, a modification of the hash table will result

in additional main pages and fewer overflow pages. [Ref.

6:p. 16]

As with the other structures, there are times when

the Hash tables are the most efficient. When data are to be

retrieved using exact key values, then the Hash table is the

best storage structure to use. However, there are retrieval

situations for which Hash tables are not effective: (1)

when retrievals require range searches or pattern matching;

(2) if retrievals use only a part of a multi-column key; (3)

when you are required to scan an entire table; (4) when you

join two tables without any restrictions; or (5) when you

have many overflow pages after modifying a table but without

many duplicate keys. [Ref. 6:p. 17]

3 . Indexed Sequential Access Method (ISAM)

With the ISAM storage structure, either sequential

or random processing can take place. When using sequential

processing, the search can be started at the beginning of a

file or at a particular record within a file. On the other

43

hand, random processing accesses a specific record which is

located by the key value through the use of indexes. [Ref.

7:p. 620]

The ISAM table consists of "prime areas," "overflow

areas," and "indexes" [Ref. 7:p. 620]. The prime area is

used to store records/files and is the same as the main

pages described in the previous section on Hash. The

overflow area is used to place additional records in the

table that are not able to fit in the prime area. This area

equates to the overflow page in the Hash table. The third

area called indexes is used to locate a specific record when

using random processing [Ref. 7:p. 620]. ISAM searches a

table using the indexes until it points to the desired

location. It then uses a sequential search to find the

particular record stored in that location. The number of

queries needed for using this method is less than the number

required for a search of the entire file. Using an ISAM

table can be compared to using a dictionary to find the word

"search." The process begins by using the index to access

the "S" section of the dictionary and then doing a

sequential search of the section until the word is found.

Unlike the Hash table, ISAM allows the use of range

searches and pattern matching when accessing data. This

method also has a fillfactor with a default value of 80%

[Ref. 6:p. 19]. It should be noted that both the index and

main pages are static after using the modify command and

44

therefore the table must be modified often if large amounts

of data are to be inputted. [Ref. 6:p. 19]

Although similar in structure to the Hash table,

ISAM uses a different access methodology and therefore is

useful in somewhat different situations: (1) queries

involving the use of range searches and pattern matching as

described above; (2) a table that grows very slowly; (3) a

large key; and (4) a table that is small enough so that

frequent modification can still be performed efficiently.

Times when ISAM would not be appropriate include: (1) when

only exact matches are being done; (2) when a table is large

and growing rapidly (use of binary tree would be more

appropriate in this case); and (3) when the table cannot be

modified on a regular basis. [Ref. 6:p. 20]

4 . Binary Tree

The final structure that INGRES supports is the

BINARY TREE (BTREE) table which has the same basic features

as ISAM. The main difference is that with the BTREE the

index is dynamic, meaning that as the amount of data

increases so does the size of the index table [Ref. 6:p.

22]. The "BTREE table is a multilevel index that allows

both sequential and direct processing of data records."

[Ref. 7:p. 643] The table consists of two parts: (1)

Sequence Set; and (2) Index Set. The Sequence Set allows

for sequential access to data records by providing a list of

pointers to each of the data records in the table. This is

45

in physical sequence and uses primary key values for

accessing the records. On the other hand, the Index Set

provides a rapid, direct access to records by providing an

index which points to groups of entries in the sequence set.

As the BTREE drops to a lower level, the seach area gets

smaller. The structure of the BTREE is balanced, meaning

that each data record is the same distance from the highest

level of the index set. All data records that are in the

table reside at the same level (lowest) of the BTREE. [Ref.

7:p. 643]

An example of how a record is accessed from a BTREE

table is illustrated in Exhibit 7 [Ref. 6:p. 21]. In this

example, the table consists of a set of records with

numerical values ranging from 20 to 64. The records are

indexed in sequential order based on their numerical value.

A search for a specific record begins by assigning values to

the highest level index. For this example, the record with

numerical value 42 will be accessed. The highest level

index consists of two pointers (links) assigned the values

less than or equal to 35 and greater than or equal to 36

which splits the table in half. Note that a less than or

equal to relationship points to the largest value on the

page(s) and a greater than or equal to relationship points

to the lowest value on the page(s) [Ref. 6:p. 21]. Pointers

then lead to the next level where the assigned values cut

the search area in half once again. This pattern continues

46

until a pointer is pointing to the record being accessed.

In this case, the search for record 42 would continue

another two levels before being accessed. A total of five

accesses would be needed to retrieve record 42 by the the

indexes and 19 accesses would be needed to retrieve record

42 by sequential search.

Binary Tree requires more overhead than does ISAM.

This is because the index is more complex and it grows as

the amount of data grows. Also the index does not decrease

as data is deleted. The modify command must be used in

order to shrink the index and to delete empty spaces within

the pages which are caused by deletion of data. [Ref. 6:p.

22]

The Binary Tree table is most useful under the

following circumstances: (1) the table is growing very

quickly and has become too big to modify; (2) you require

access through pattern matching and range searches but

cannot afford to modify the table to ISAM; or (3) you will

be joining entire tables to each other. On the other hand,

you would not use Binary Tree when: (1) the table is static

or growing slowly; (2) the key is large (it will have to be

stored twice); or (3) when there are many users appending to

the end of the table in a concurrent environment. This may

cause a deadlock in the index as it grows larger. [Ref.

6:p. 23]

47

Table 1 [Ref. 6:p. 24] summarizes the above

information and provides a ranking system to the storage

structures available based on a variety of tasks. The

rankings are as follows with 1 being the most desirable

structure to use:

TABLE 1

RECOMMENDED STORAGE STRUCTURES

Task Structure (s)

Bulk Loading Table w/ data Heap - 1, BTree - 2

Removing duplicate rows Hash , ISAM, or BTree - 1

Exact Match Hash - 1, ISAM or BTree - 2

Range/Pattern Matching ISAM or BTree - 1

Sequential Searches Heap - 1, ISAM or BTree - 2,
Hash - 3

Partial Key ISAM or BTree - 1

Access to Sorted Data BTree - 1

Joins on Large Tables ISAM or BTree - 1

Index grows as Table grows BTree - 1

Very Small Table Heap - 1

Very Large Table (> 1 mil) BTree - 1

D. EPMIS DATA BASE STORAGE

Each of the permanent tables, temporary tables, and

indexes in the EPMIS Data Base is stored using one of the

storage structures reviewed above. The initial question

that must be answered concerning the data is whether or not

it is stored in the manner that is the most efficient for

its defined tasks. In order to determine this, the tables

must be analyzed as to what their function is, what type of

data is stored in the tables, how the data is stored in the

tables, and what type of queries and updates are performed

48

on these tables. Most of the analysis of the data will take

place with the analysis of the EPMIS program and will be

reported in the next chapter. However, Exhibit 8 has been

developed to facilitate the initial review of how each of

the tables is stored. The exhibit is broken down by storage

structure with each of the tables and/or indexes listed

under the appropriate structure. The tables listed are

permanent tables unless otherwise designated.

49

V. THE EPMIS PROGRAM

Improvements in the performance of the EPMIS program are

contingent upon an understanding of what the program does

and how it is organized. EPMIS is a menu driven program

that allows the user to perform a number of different

operations on the data base. The first screen the user sees

upon entering the EPMIS program is the main menu. From this

main menu the user has six categories from which to choose:

(1) Emergency Activation Procedures; (2) Emergency Points of

Contact; (3) Resource Management; (4) Damage Assessment;

(5) Service Reguests; and (6) Communications (see Exhibit

9) . This discussion will only deal with the major modules/

submodules in the program.

A. EMERGENCY ACTIVATION PROCEDURES

This module allows the user to retrieve and display

Emergency Action Documents (EAD) . These documents are used

to assist NCS personnel in emergency situations. Examples

of EADs are: (1) Telecommunications Orders (TELORDS)

;

(2) Telecommunication Instructions (TELINSTR) ; and (3)

Presidential Executive Action Documents (PEADS) . In

addition, this module contains information on the current

state of emergency in each of the ten federal regions and in

the nation as a whole. A recall hierarchy of NCS personnel

is also maintained by this module.

50

Upon entering this module, the user encounters a submenu

with three options: (1) Emergency Action Documents; (2)

Emergency State of the Nation; and (3) NCS Emergency Recall

List.

1

.

Emergency Action Documents (EAD)

This submodule produces a table of all the EADs

currently stored in the data base. For each EAD listed, the

user can issue or rescind that EAD by entering the date of

the issue/rescind action in the appropriate column to the

right and then saving the newly entered data. The user can

also display all the information pertaining to a specific

EAD. In addition, the user can produce a printout of any of

this information if so desired.

2

.

Emergency State of the Nation

This submodule allows the user to view and/or modify

the time line, the type, and the situation description of

the state of the nation. The time line indicates the "state

of the nation" that a region or nation is in, i.e., NORMAL,

PLAN D, etc. The type is an additional description of the

time line, i.e., PRE, TRANS, POST, etc. The situation

description describes the actual situation, i.e., DAY-TO-DAY

OPERATIONS, ATTACK, NUCLEAR DISASTER, etc. This submodule

produces a table that lists the status of the ten regions

and of the nation as a whole. The user can make changes to

any of this information directly on the screen.

51

3 . NCS Emergency Recall List

This submodule allows the user to review the NCS

Emergency Recall List. When entering this submodule, the

initial display is the name of the first person on the NCS

recall list and his phone number. The list of people that

this first person is supposed to call can then be displayed

along with the people they are supposed to call. In this

way the user can cycle through the whole hierarchy of the

Emergency Recall List. All the different phone numbers are

listed for each person (autovon, commercial, pager, etc.)

along with a description of his position.

B. EMERGENCY POINTS OF CONTACT

This module displays all the personnel who are

designated as Emergency Points of Contact (EPOC) . The

personnel are presented one at a time in alphabetical order.

In addition to the person's phone number, the address,

region, building, and location (given in latitude and

longitude degrees) are also shown.

C. RESOURCE MANAGEMENT

This module contains information on telecommunication

resources. These resources are broken down into seven

functional groups: (1) Networks; (2) Nodes; (3) Links; (4)

Operation Centers; (5) Asset Centers; (6) Assets; and (7)

Personnel. Resources within a group can be listed on the

screen based on user specified parameters, i.e., all nodes

52

in the state of California, or all links that are currently

down, etc. A specific resource can also be selected by the

user and all the information on file for that resource can

be retrieved for review or update. New resources can also

be added to the data base via this module.

The first screen that the user sees upon entering this

module is a menu with two options: (1) Enter Resources; or

(2) Monitor Resources. Selecting either option will produce

another menu which lists all seven functional groups. After

a functional group is selected, a blank form with headings

pertaining to that specific group is displayed. If the

Enter Resources option is selected, the user can then enter

the data directly onto the form. If the Monitor Resources

option is selected, the user can either display all the

resources or enter the parameters to display a specific list

of resources. Each resource will be displayed one at a time

and will include all the information pertaining to that

resource.

D. DAMAGE ASSESSMENT

This module uses information inputted by the user

concerning location and extent of damage from a nuclear

attack or natural disaster, and predicts which telecom-

munications resources will be impaired or destroyed. The

initial screen display is a menu with four options: (1)

53

Enter New Damage; (2) Execute Damage Information; (3)

Monitor Damage Information; and (4) Review Journal Damage.

1

.

Enter New Damage

Selecting this submodule produces another menu.

This menu lists the four types of damage information that

can be entered: (1) Laydown Information; (2) Nuclear

Damage; (3) Circular Damage; and (4) Rectangular Damage.

Laydown information includes latitude/longitude coordinates,

height of burst, and weapon yield. Nuclear Damage includes

type of nuclear explosion, maximum range, etc. Both

Circular and Rectangular Damage include city, state,

direction, radius, height, width, and latitude and longitude

in degrees, minutes, and seconds.

2

.

Execute Damage Information

This module gives the user the option of executing

all damage information that has been entered to date, or

executing just the newly entered damage information that has

not been previously executed. Execution involves the

processing of several mathematical algorithms in order to

produce a list of resources that are predicted to be damaged

or impaired.

3

.

Monitor Damage

This module produces a menu with three options:

(1) Monitor Damage Observation; (2) Monitor Damage

Resources; and (3) Damage Reports. Monitor Damage

Observation will produce a table of damaged locations and

54

The table can cover either a specific region or the entire

nation. Monitor Damage Resources will produce a list of

resources that have been predicted damaged. The Damage

Reports submodule allows the user to produce a printout of

the Damage information.

4 . Review Journal Damage

This module allows viewing of old damage reports

that have been previously journaled. The user has the

option of viewing all journaled damage reports or just

viewing specific ones.

E. SERVICE REQUESTS

This module allows the user to record and manage claims

for service and facility requests. Service requests are

generated when an agency wishes service restored, or

initiated in an emergency situation. Facility requests are

generated when nodes and/or operating centers no longer

provide vital communications. Each request is assigned a

priority and is reviewed and managed by NCS . The priority

is based on the function of the agency. As the national

situation changes, the services are reprioritized. This

module also enables journalizing of old service and facility

requests.

Upon entering this module the user is presented with a

submenu consisting of two options: (1) Manage Service

Requests; and (2) Manage Facility Requests. Selecting the

Manage Service Requests option produces another submenu with

55

three options: (1) Enter Service Request; (2) Copy An

Existing Service Request; and (3) Review/Resolve Service

Requests. Each of these options produces a form into which

the user must enter the appropriate information. Selecting

the Manage Facility Requests also produces a submenu with

the following options: (1) Enter Facility Request; (2)

Review/Resolve Facility Request; and (3) Review Journaled

Facility Requests. Selecting any of these options will also

produce a form into which the user must enter the

appropriate information.

F. COMMUNICATIONS

This module provides communication between EPMIS users.

There are three methods of communication available: (1)

mail; (2) phone; and (3) messages. The mail method produces

a preformatted message form that the user can fill in and

have mailed. The phone method allows a modem hook-up with

another user and permits interactive communication. The

message method is similar to the mail method in that it

provides non-interactive communication only. This module is

only a communication service available to the EPMIS system

user. It does not interact with the EPMIS data base at all.

Consequently, this module will not be discussed in the

analysis of the EPMIS data base.

Within the modules and submodules discussed above are

numerous smaller submodules which contain code that

manipulates the EPMIS data. During the processing of these

56

procedures and the manipulation of the data, bottlenecks are

encountered which cause a significant delay in the

processing of the program. The analysis in the next chapter

attempts to pinpoint and resolve each bottleneck encountered

in the EPMIS program.

57

VI. ANALYSIS AND MODIFICATIONS

The analysis of bottlenecks in the program will begin

with time trials on each module and submodule of the

program. The time trials consist of running each

module/submodule of the EPMIS program three separate times

and taking the average response time. The response time is

the amount of time that elapses from the moment the "DO" or

"ENTER" key is pressed until the information is presented on

the screen. These time trials will be run using a DEC VAX

minicomputer in a single user environment. Modules with

response times of over five seconds are considered bottle-

necks and will be analyzed for causes. However, there are

many limitations to our ability to discover and correct

bottlenecks, and as a result, alternatives to these methods

will need to be discussed.

A. LIMITATIONS AND ALTERNATIVES

The EPMIS program and data base being used for analysis

are also being used by Roland and Associates, a private

business subcontracted to develop the Damage Assessment

portion of the EPMIS system. Because of this, our access to

many of the modules and operations in the program is

restricted. Since many of the modules have restricted

access, time trials cannot be performed on them. However,

these modules may still have operations which can cause

58

bottlenecks. As a result, many of the bottlenecks in these

restricted modules will have to be identified by analyzing

their code. This will involve close to 200 procedures with

an average of approximately 250 lines of code per procedure.

One way of making this task easier is to first analyze those

bottlenecks that can be immediately identified via time

trials. By determining the causes for these bottlenecks and

recognizing the situations that can lead to a bottleneck,

reviewing the code can be accomplished by looking

specifically for those situations with potential for

creating a bottleneck. Using "modular testing," separate

time trials on code determined to have potential bottlenecks

can then be run, thereby allowing identification of actual

bottlenecks without needing to perform time trials on those

program modules that have restricted access.

Modular testing will not only be used for discovering

bottlenecks in modules that have restricted access, but also

for finding solutions to fix the bottlenecks. Changes to

the EPMIS program or to the EPMIS data base cannot be done,

because both the program and the data base are also being

used by Roland and Associates. Therefore, to determine

whether a proposed solution will work, modular testing will

be required. To perform modular testing, it is necessary to

isolate the particular process that is causing the

bottleneck and determine which data tables are being

utilized by the process. Then by creating a separate and

59

"local" data base with the desired data tables included, the

process can be duplicated and run against the local data

base. Changes can then be made to the code or to the data

base structure without affecting the actual EPMIS system.

The system is not affected since changes are now being done

within the local data base and not within the EPMIS data

base. This is referred to as modular testing since the

testing is being performed on only a small part or "module"

of the EPMIS program and is separated from the rest of the

program. Through modular testing, bottlenecks in those

modules that have restricted access can be identified, and

solutions to fixing the bottlenecks can be tested. Even

though it can only be shown that the solutions work on the

modules, there is no reason to suspect that these same

changes will not also work when made to the actual EPMIS

system.

There are two types of bottlenecks that this thesis will

not resolve: (1) those caused by the operating system; and

(2) those caused by security access validation procedures.

The print function in many modules involves retrieving

information to be printed and then invoking an operating

system procedure to do the actual printing. Although the

process of retrieving the information can be analyzed for

bottlenecks, the performance of the operating system in

printing this information is beyond the scope of this

thesis. Therefore, bottlenecks that are caused by operating

60

system processing will not be resolved. In addition, the

EPMIS system has special procedures and data tables that are

used strictly for checking and verifying user names, pass-

words, and authorized access to certain data tables. Not

only will INGRES not allow us to view these data tables, it

will also not allow us to access the code. Therefore,

bottlenecks that are caused by procedures verifying access

clearance also will not be resolved. Although these types

of bottlenecks cannot be resolved here, solutions proposed

in the resolution of other accessible bottlenecks may work

here as well if implemented by someone with authorized

access to the modules and data tables.

Identification of those modules and submodules with slow

response times leads to an analysis to locate the cause of

the bottlenecks. By identifying the causes, methods to

eliminate them can be proposed that will significantly

improve the performance of the EPMIS program. In order to

analyze how the processing takes place within the program,

however, it is necessary to understand some of the

capabilities and limitations of the INGRES Data Base

Management System.

B. OPTIMIZATION FEATURES WITHIN INGRES

As discussed in Chapter II, INGRES is a relational Data

Base Management System (DBMS) that stores data as tables.

Retrieval of data requires a search by INGRES for the

applicable table. Included in the INGRES data retrieval

61

mechanism is a subcomponent called an "optimizer." The

function of the optimizer is to "choose, for each query it

processes, an optimal access strategy for implementing that

query." [Ref. 8: p. 25] With INGRES, when the user requests

data, he does not have to be concerned with where the data

is or how the data is accessed. This is left to the INGRES

optimizer. The optimizer will determine the quickest and

most efficient access strategy for retrieving the data. The

access strategy attempts to avoid sequential searches of

large data files by using keys and indexes to rapidly locate

data. The strategy that the optimizer uses is referred to

as the access path. It is important to note that the

optimizer can only utilize access paths (e.g., indexes) that

are available or have been established by the user within

the data base. If the user does not create efficient access

paths, the optimizer will have no choice but to use whatever

path is available. Some ways that the user can create

efficient access paths are by changing the physical storage

of the data, creating indexes, or even combining tables to

eliminate expensive joins. However, any change to the data

base to improve data retrieval efficiency may affect the

processing efficiency of some other process such as data

input. It is up to the user to determine what the tradeoffs

will be.

INGRES has another optimization feature that doesn't

require making tradeoffs. It is the OPTIMIZEDB command.

62

When the optimizer determines the optimal access path to

take, it refers to the INGRES Data Dictionary to determine

what access paths are available. The INGRES Data Dictionary

is a "repository for information. .. concerning various

objects that are of interest to the system itself." [Ref.

8:p. 103] Information on such objects as tables, views,

indexes, etc., are maintained in the Dictionary. Some of

the information is always kept up to date; others are

"updated only on request, because the overhead of

maintaining them continuously would be too great." [Ref.

8:p. 235] The OPTIMIZEDB command is the method for

requesting that all the information in the Dictionary be

updated. This command should be utilized whenever "a

significant amount of update activity occurs on a given data

base." [Ref. 8:p. 235] Since there are no additions,

deletions, or changes made to the data base, OPTIMIZEDB is

one method for improving the retrieval efficiency of a

program without degrading the efficiency of other processes

within the same program.

Another method for improving retrieval efficiency is to

determine whether the storage structure used for each table

is the most efficient. Chapter IV discussed the various

storage structures available with INGRES and under what

conditions each storage structure is most efficient. By

studying the characteristics and uses of each data table,

the most efficient storage structure can be determined. If

63

the actual storage structure is different, the performance

of the program can be improved by changing it to the more

efficient structure.

Other methods available within INGRES for improving

program performance are: (1) compressing data which saves

disk space and can improve performance; (2) specifying the

fill factor for data pages, a hash storage scheme does not

work well if the pages are filled close to 100% capacity, a

50% fill factor is normally best; and (3) utilizing EQUEL, a

high-level language consisting of QUEL statements embedded

into a programming language (such as C, FORTRAN, Pascal,

etc.)* EQUEL has capabilities not available with QUEL and

can be used in conjunction with QUEL statements. Aside from

the use of EQUEL, these methods will not normally cause a

significant improvement in efficiency. They should normally

be used to "fine tune" the performance of a program that is

already fairly efficient.

C. THE ANALYSIS PLAN

With this knowledge of some of the capabilities and

limitations of INGRES, a plan on how to look for processing

bottlenecks and how to fix them can be developed. Three

major areas will be looked at: (1) the logical structure of

the data base; (2) the physical structure of the data base;

and (3) the program code. When looking at the logical

structure, the main emphasis will be on finding "join"

operations. "Join" operations involve the joining of two or

64

more different data tables. They usually occur when

processing a retrieval command which has a search clause

involving more than one table. These joins are generally

expensive to process. By changing the logical structure of

the data base (i.e., combining tables, adding/deleting

elements) joins can be minimized. When looking at the

physical structure we will analyze the retrievals that are

done on those data tables that have been identified as being

involved in a bottleneck. The analysis will include

determining what access path the optimizer is using to make

the retrieval and to see if a more efficient access path can

be created. Analyzing the access path will involve studying

the storage structure used by those data tables that are

involved with bottlenecks and determining if the structure

is the most efficient. The physical structure of the data

base will be the major area of concentration in resolving

bottlenecks. When looking at the program code, a review of

the application program will be done to determine if more

efficient programming can be used to take advantage of the

optimizer and the storage methods used. By using these

three major areas as a guide, analysis of the bottlenecks

can start. The procedure names of executable files which

contain the bottleneck will be used to identify the location

of the bottleneck within the EPMIS program.

65

D. PROGRAM ANALYSIS

1 . Emergency Activation Procedures Module

There are two major bottlenecks in this module, one

which occurs in the three submodules, and one which occurs

in the NCS Emergency Recall List submodule. The bottleneck

that occurs in the three submodules involves the print

function in which temporary tables are used. When the print

operation is executed the first process that occurs is to

load the temporary table with the data to be printed out.

This is done by using the "unloadtable" command to extract

the data from the table field (the information that is on

the screen and which is to be printed out) , and then using

the "append" command to load the extracted data into the

temporary table. When this is done a "call system" command

is made to the operating system to print out the information

that is in the temporary table.

The average time for the print function to process

before printing starts is 36.82 seconds. An analysis of the

"unloadtable" and "append" commands shows that both

transactions together take less than three seconds. The

delay apparently occurs when the "call system" command is

made. Therefore, the bottleneck is caused by the operating

system and not the data base management system. As

previously discussed, this type of bottleneck will not be

resolved by this thesis effort. It is presented here to

show how the conclusion is reached that the operating system

66

is the cause of the bottleneck in the print operations.

This same type of delay is seen in all the print functions

throughout the EPMIS program. Analysis shows that the cause

is the same in all of them. Therefore, the print function

bottleneck will not be discussed further.

The second bottleneck in this module involves the

submodule NCS Emergency Recall Lists which makes numerous

accesses to the PERSONNEL table. Each access involves

retrieving data from the table based on selection criteria.

For example, in the procedures 'erecalll 1 and 'egetrcrpl,'

there is a retrieval command for all personnel whose

POSITION attribute has the value "NCS/DCAOC":

retrieve (personnel .position,
personnel

.
pers_name

,

personnel . ddd_phone

,

personnel . fts_phone,
personnel . von_phone

,

personnel .pager)
where personnel .position = "NCS/DCAOC" .

There is also a separate retrieval command for all

personnel whose POC_RECLDBY attribute also has the value

"NCS/DCAOC"

:

retrieve (pos = personnel .position,
personnel

.
pers_name

,

personnel . ddd_phone

,

personnel . fts_phone

,

personnel . von_phone

,

personnel
.
pager)

where personnel .poc_recldby = "NCS/DCAOC" .

The average processing time for each of these

submodules, with both retrievals in it, is 19.15 seconds.

Separate time trials on each retrieval command shows that

67

the retrieval using the POSITION attribute as the selection

criterion takes less than two seconds while the retrieval

using the POC_RECLDBY attribute as the selection criteria

takes an average of 17.46 seconds. The bottleneck is

obviously with the POC_RECLDBY retrieval. To find out why

this bottleneck exists, a determination of the access path

that the INGRES optimizer is taking to access the data is

required. This involves studying the storage structure and

the indexes of the PERSONNEL table.

The PERSONNEL table uses a binary tree storage

method with the elements (attributes) PERS_NAME and STATUS

as its keys. There are also four indexes on the PERSONNEL

table: (1) X1PERS0NNEL, which uses a binary tree structure

with POSITION as the index key; (2) PERSNET, binary tree

with index keys NET_ABBR_NAM and PERSONL_INFO ; (3)

PERSLATLON, binary tree with index keys LATITUDE and

LONGITUDE; and (4) PERSDMG, isam with index key DMGCNT.

Since the index X1PERS0NNEL has POSITION as its index key,

the INGRES optimizer uses this index when performing a

retrieval operation on the PERSONNEL table with POSITION as

the selection criteria. As a result, the retrieval is

performed rapidly. Since there are no indexes with

POC_RECLDBY as the index key, the optimizer must do a

sequential search of the entire PERSONNEL table when

performing a retrieval operation with POC_RECLDBY as the

selection criteria. Since the PERSONNEL table currently

68

holds 904 rows of information this retrieval takes a much

longer time, resulting in a processing bottleneck. The

solution to this bottleneck is to create a new index on the

PERSONNEL table with POC_RECLDBY as the index key. To test

this solution, the index needs to be established and new

time trials taken. As stated above, a retrieval against the

PERSONNEL table with POC_RECLDBY as the selection criteria

takes an average of 17.46 seconds without the index. After

the index is created the average time for a retrieval is

1.56 seconds. This is a 91% improvement in processing

efficiency. By creating an index on the PERSONNEL table

with POC_RECLDBY as the index key, the processing time for

the Emergency Recall List submodule can be reduced from an

average of 19.15 seconds to an average of 3.25 seconds.

2 . Emergency Points of Contact (EPOC)

This module consists of only one procedure,

•pemgypocl,' and has an average processing time of 29.29

seconds. As with the NCS Emergency Recall List submodule,

this module also accesses only the PERSONNEL table, and

produces a bottleneck when retrievals are made against the

table. However, when the retrieve command is issued in this

case, the search criterion is any person whose POSITION

attribute has the letters "EPOC" appearing anywhere in the

attribute:

69

retrieve (personnel .position,
personnel

.
pers_name

,

personnel . ddd_phone

,

personnel . fts_phone,
personnel . von_phone

,

personnel
.
pager)

where personnel .position = "*-EPOC*"
sort by pers_name

Since there already is an index with POSITION as the

index key (X1PERS0NNEL) , it seems that the optimizer would

use this index for retrieving the data, and that the

retrieval process should be much faster. However, since the

search criterion is for a series of letters that could

appear anywhere in the title (vice only in the beginning)

,

the INGRES optimizer realizes that the index will not help

in this case and therefore performs a sequential search on

the base table. To improve the performance, therefore, the

logical structure of the table will have to be adjusted. By

adding a new element called EPOC to the base table, this

element can be used to designate those personnel who are

EPOCs, i.e., if the person is an EPOC the EPOC attribute

will have a value of "y," if not the attribute will be

blank. By then creating an index on the PERSONNEL table

with the new element EPOC as the index key, a retrieval for

all personnel who are EPOCs will process in less than three

seconds eliminating a major portion of the bottleneck.

Although this is a big cause of the bottleneck, it is not

the only contributor.

By running separate time trials for each command

issued against the PERSONNEL table, we discovered that

70

another major contributor to the bottleneck is the "sort"

command which takes an average of 10.8 seconds to process.

The "sort" command is used after the retrieve command to put

the EPOC names in alphabetical order. However, by studying

the physical structure of the PERSONNEL table, we discovered

that this "sort" command is unnecessary. Since the

PERSONNEL table uses a binary tree storage structure with

PERS_NAME as the key, a sequential retrieval of the data

from the table would be in PERS_NAME (alphabetical) order.

As previously mentioned, when the retrieve statement is

executed, the optimizer performs a sequential retrieval

against the base table. The result, therefore, is already

in alphabetical order eliminating the need for the "sort"

command. Taking out the "sort" command reduces the

processing time for the module from an average of 29.29

seconds to 18.49 seconds. A comparison between the output

of a retrieval with the "sort" command and the output of a

retrieval without the "sort" command shows that the outputs

are exactly the same.

As discussed above, this module has two bottleneck

solutions: (1) adding the EPOC element to PERSONNEL and

creating an index with EPOC as the key; and (2) eliminating

the "sort" command. These two solutions, however, cannot be

implemented together. The problem is that if the EPOC index

is created and used by the optimizer to retrieve the data,

the output will no longer be in alphabetical order. Thus,

71

the "sort" command will still be required and an 18 second

bottleneck will still exist. The way to get around this

problem is to add the PERS_NAME element to the EPOC index,

i.e., create an index with EPOC as the primary sort key and

PERS_NAME as the secondary sort key, e.g.,

index of personnel is xperson (epoc, pers_name)

.

This will put the EPOC personnel in PERS_NAME order so that

when the retrieval of EPOC personnel is made the output will

be in alphabetical order. Consequently, the "sort" command

can now be eliminated. By creating this index with EPOC and

PERSNAME as the keys and eliminating the "sort" command,

the processing time for this module can be reduced from an

average of 29.29 seconds to under four seconds, an 86%

improvement in processing efficiency.

3 . Resource Management

This module has a number of bottlenecks, many of

which are caused by the same transaction. For example,

there are 11 procedures which use the exact same

transaction: (1) uvalidloc; (2) mupdpersl; (3) mupdocl; (4)

mupdnodel; (5) mupdnetl; (6) mupdacl; (7) maddpersl; (8)

maddocl; (9) maddnodel; (10) maddacl; and (11) maddnetl.

The transaction is a retrieval of data from the RESLOC

table, which contains information on the location of various

telecommunication resources. The retrieval is requested

72

using six selection criteria: (1) LAT_DEGREES; (2)

LAT_MINUTES ; (3) LAT-SECONDS ; (4) LON_DEGREES ; (5)

LON_MINUTES; and (6) LON_SECONDS

:

retrieve (latitude = resloc. #latitude,
longitude = resloc. #longitude)

where resloc. #lat_degrees = lat_deg
and resloc. #lat_minutes = lat_min
and resloc. #lat_seconds = lat_sec
and resloc. #lon_degrees = lon_deg
and resloc. #lon_min = lon_min
and resloc. #lon_seconds = lon_sec .

A review of the resloc table shows that it uses a hash

structure with LATITUDE and LONGITUDE as the keys. There

are no secondary indexes. Since there are no indexes that

can used to access the data, the optimizer must perform a

sequential search of the data table. Since this table

contains 784 rows the transaction can take some time.

However, since the number of pages is small (113 as compared

to 346 for the PERSONNEL table) , the transaction by itself

only takes 4.47 seconds. Unfortunately, not only does this

transaction appear in 11 procedures, it also appears twice

in all but 'uvalidloc.

•

The second time this type of transaction appears

within a procedure, it is in the form of a "delete" command.

The transaction involves deletion of data from the RESLOC

table that matches the selection criteria:

delete resloc
where resloc. lat_degrees = lat_deg

and resloc. lat_minutes = lat_min
and resloc. lat_seconds = lat_sec
and resloc. lon_degrees = lon_deg
and resloc. lon_minutes = lon_min
and resloc. Ion seconds = Ion sec

73

Although the retrieve and the delete are two

different commands, the optimizer performs the same

operation in both. This means that the optimizer must

perform another sequential search of the table to the find

the data to delete. As a result, to process entirely

through one procedure will take at least 8.94 seconds.

Since more than one of these procedures may have to be

called in order to process one module/submodule, the total

transaction time can become very long. As before, the

solution to the bottleneck is to create an index on the

RESLOC table with LAT_DEGREES, LAT_MINUTES, LAT_SECONDS,

LON_DEGREES, LON_MINUTES, and LON_SECONDS as the keys. With

this index, processing time is reduced to 2.16 seconds.

However, since this transaction is repeated a number of

times, a faster transaction time is desired. When an index

is created, INGRES automatically uses an isam structure for

the index. In this case, though, since the selection

criteria is an exact match of the index keys, use of a hash

structure will result in a faster retrieval. When the index

is modified from isam to hash the transaction time is

reduced to 1.73 seconds. The decrease from 4.47 seconds to

1.73 seconds is a 61% improvement in processing efficiency

and becomes significant when this retrieval is performed

frequently.

There are two additional procedures that also access

the RESLOC table in a similar fashion, and may cause

74

bottlenecks when combined with other procedures. Both

'rcombine' and 'mcombine' process an append command that

takes data from the RESLOC table and appends it to a tempor-

ary table. This append command appears twice in each proce-

dure. The append is issued using two selection criteria:

range of 1 is resloc
append to combloc (lat_degrees = 1 . lat_degrees,

lat_minutes = 1 . lat_minutes,
. . . etc.)

where l.#city = city and l.#state = state .

As with the retrieve and delete commands, the

optimizer must perform a sequential search of the RESLOC

table to find the data since there are no indexes that can

be used. A transaction time of 4.49 seconds is reduced to

1.58 seconds with the creation of a new index using CITY and

STATE as the keys, a 65% improvement in processing

efficiency. Since the append transaction appears twice in

each procedure, this bottleneck is reduced from 8.98 seconds

to 3.16 seconds.

The major source of bottlenecks in the Resource

Management module is the result of "join" transactions. A

join occurs when data is retrieved using selection criteria

that involves more than one table. For example, retrieval

of information on a person whose location appears in both

the PERSONNEL table and the RESLOC table will require a join

of both tables. A join can be viewed as taking the

cartesian product of both tables and then deleting those

rows that do not meet the selection criteria. This means

75

that if one table has three rows and the second table has

four rows, the cartesian product will produce a virtual

table with 12 rows from which those rows that do not meet

the selection criteria will be eliminated. It is easy to

see how joins can become very time consuming if just one of

the tables is large. The cartesian product of the PERSONNEL

table (904 rows) and the RESLOC table (784 rows) will result

in a virtual table of 708,736 rows. This is compounded if

additional tables are included in the selection criteria

requiring additional cartesian products. Although the

INGRES optimizer will not necessarily perform a cartesian

product to process every join, the processing time is still

significantly affected by the size of the tables being

joined. When performing joins of many tables, the optimizer

attempts to find a sequence that will produce the smallest

number of searches. It will attempt to process the most

restrictive selection criterion first, thereby minimizing

the number of rows to join. Although there are joins

appearing in a number of procedures, the ones that cause a

bottleneck in this module involve the use of views.

There are six procedures that utilize a view: (1)

mlstpersl (uses view LISTPERS) ; (2) mlstasstl (uses view

LISTASSETS) ; (3) mlstnetl (uses view LISTNET) ; (4) mlstnodel

(uses view LISTNODE) ; (5) mlstocl (uses view LISTOC) ; and

(6) mlstacl (uses view LISTAC) . The reason why joins in

these procedures produce bottlenecks is because of the

76

number of joins involved in creating the view. For example,

the code that defines the view LISTNODES is as follows:

range of n is node
range of 1 is resloc
range of rv2 is network
range of s is statereg
define view listnodes (

node_name = n.node_name,
net_abbr_nam = n. net_abbr_nam,
ccf_indctr = n. ccf_indctr

,

ccm_indctr = n. ccm_indctr

,

lat_degrees = 1 . lat_degrees,
lat_minutes = 1 . lat_minutes,
lat_seconds = 1 . lat_seconds,
lat_direct = 1 . lat_direct

,

lon_degrees = 1 . lon_degrees,
lon_minutes = 1 . lon_degrees

,

lon_seconds = 1 . lon_seconds,
lon_direct = 1 . lon_direct

,

latitude = 1. latitude,
longitude = 1. longitude,
state = 1. state,
region = s. region,
a_status = n. act_status,
p_status = n.pred_status,
agency = rv2. agency)

where (n. longitude = 1. longitude)
and (n. latitude = 1. latitude)
and (n. net_abbr_nam = rv2 .net_abbr_nam)
and (s. st_abbr_name = 1. state)

As can be seen, the creation of LISTNODE involves

the joining of four tables. Although to the user, a view

can be treated as an actual data table, in reality it is

merely a collection of data from different tables. However,

the actual creation of the view is not made until the view

is named in a retrieval operation, like in the procedure

'mlstnodel '

:

nodelist = retrieve
(1 istnodes . node_name

,

1 istnodes . net_abbr_nam,
listnodes. ccf_indctr

,

listnodes . ccm indctr,

77

1 istnodes . lat_degrees

,

listnodes . lat_minutes

,

1 istnodes . lat_seconds

,

listnodes. lat_direct,
listnodes. lon_degrees,
1 istnodes . lon_minutes

,

1 istnodes . lon_seconds

,

listnodes. lon_direct

,

1 istnodes. pred_status)
where 1 istnodes. node_name = sel_node_name

and listnodes. net_abbr_nam = sel_net_name
and listnodes. a_status = sel_status
and listnodes. agency = sel_agency
and (listnodes. state = sel_scope or

listnodes. region = sel_region)

When processing this retrieval, the optimizer

combines the selection criteria for creating the view

LISTNODE with the selection criteria for this retrieval and

processes them as one transaction. As a result, the

optimizer actually processes the following retrieval:

range of n is node
range of 1 is resloc
range of rv2 is network
range of s is statereg
retrieve (

n.node_name, n. net_abbr_nam,
n.ccf_indctr, n.ccm_indctr,
1 . lat_degrees, 1 . lat_minutes,
1 . lat_seconds, 1 . lat_direct

,

1 . lon_degrees, 1 . lon_minutes,
1 . lon_seconds, 1 . lon_direct

,

1
.
pred_status)

where n. longitude = 1. longitude
and n. latitude = 1. latitude
and n.net_abbr_nam = rv2 . net_abbr_nam
and s . st_abbr_name = 1 . state
and n.node_name = sel_node_nam
and n. net_abbr_nam = sel_net_nam
and n.act_status = sel_status
and rv2. agency = sel_agency
and (1. state = sel_scope or

s. region = sel_region)

The values of sel_node_nam, sel_net_nam, sel_status,

sel_agency, sel_scope, and sel_region are determined by the

78

user. If the user wants only those nodes that are in region

1 he inputs a "1" for sel_region. If the user wants the

above information retrieved on all nodes, he inputs "*" for

every selection. As mentioned above, the optimizer attempts

to process the most restrictive selection criterion first.

Therefore, if the user wanted only the information retrieved

for a specific node (e.g., ISIC) , the optimizer would first

process the criterion "n.node_name = sel_node_nam" (where

sel_node_nam equals "ISIC") . This would produce just one

data item, greatly simplifying the remaining joins, and

resulting in a fast retrieval. If the user wanted

information on all nodes in region 1, and there were only a

few nodes in that region, the optimizer would process the

criterion "s. region = sel_region" first (where sel_region =

1) , again producing a fairly rapid retrieval time. If,

however, the user wanted all the information on all the

nodes, there would be no selection criterion that would be

very restrictive. As a result, the joins would become very

complex because of all the data manipulation, resulting in a

long retrieval time.

The processing time for each procedure that uses a

view is directly related to the size of the data tables that

the view accesses. Views that use large tables, such as

LISTNODES, produce transaction times of up to 56.2 seconds

while views that use smaller tables, such as LISTNET,

produce shorter transaction times down to 6.31 seconds (this

79

is assuming the user wants a retrieval of all data in the

view) . To resolve this bottleneck, we need to break the

retrieval into two types: (1) retrievals of all data, i.e.,

all "sel_" values equal "*" ; and (2) retrievals of selected

data, i.e., sel_region = 1.

If selected data is requested by the user, the

optimizer processes that particular selection criteria

first. If an index is available then the transaction is

rapid, and if the amount of data retrieved is small the

entire retrieval process is fairly quick. Therefore, the

first thing that must be done, is ensure that the proper

indexes are available to the optimizer. The following

elements are used as selection criteria: (1)

NODE . NODE_NAME ; (2) NODE . NET_ABBR_NAM ; (3) NODE . ACT_STATUS •

;

(4) NETWORK. AGENCY; (5) RESLOC . STATE ; and (6) RESLOC . REGION.

Of these elements, only NODE_NAME is a key. As a result,

retrievals using a specific node name take less than three

seconds. On the other hand, retrievals using specific

information on the other elements take between 30 and 60

seconds, except for NETWORK. AGENCY which takes less than 15

seconds (this is because NETWORK is a fairly small table,

while RESLOC and NODE are large tables) . By creating

indexes on each of these elements, retrievals fall below

four seconds on the average.

The second type of retrieval, retrievals of all

data, is a much more complex and time-consuming transaction.

80

Since there is no restrictive selection criterion for the

optimizer to use, it must perform joins on all the tables

with large amounts of data. Although the optimizer does not

actually perform cartesian products of the tables, it does

have a specific algorithm that it performs to process the

joins. Since it is an INGRES algorithm, we cannot determine

exactly what the optimizer does, but we can observe some of

its peculiar effects. One peculiar effect is that the more

indexes there are, the longer the process takes. Although

creating all those indexes helps improve retrievals of

selected data, it can increase the processing time for

retrievals of all data from 56.2 seconds to one minute and

33.97 seconds (we are not sure exactly why this happens).

Because of this algorithm, we are unable to determine what

path the optimizer takes in processing the retrieval.

Therefore, a hit-and-miss method is used to try and find a

solution to the bottleneck. The following are some methods

that result in little or no success: (1) shuffling the

selection criteria; (2) changing physical storage struc-

tures; (3) creating new indexes; and (4) resorting the base

table so that the data is physically adjacent and not just

logically adjacent resulting in improved sequential search

times. The only method that shows any improvement (only a

two second decrease in processing time) is eliminating all

indexes. However, this is not a good solution since it

increases the processing time dramatically for those

81

retrievals that use the indexes. Changing the logical

structure will not work in this case either. Since all the

views use RESLOC, NETWORK, and STATEREG, combining these

tables with other tables would create too big a data table

and would affect other transactions that use these tables.

As a result, we are unable to resolve this particular type

of bottleneck.

There are other bottlenecks in this module that are

caused by using unnecessary "sort" commands. Two of the

procedures that retrieve data from views also use a sort

command. The sort that makes the most significant impact is

used in the 'mlstpersl' procedure which sorts the output in

alphabetical order:

retrieve (listpers.pers_name,
listpers. posit ion,
etc.

)

where listpers. persname = sel_pers_name
and (listpers.net_abbr_nam = sel_net_name or

listpers. personl_info = temp_net)
and . . . etc.

sort by pers_name, net_abbr_name

Assuming no changes are made to the current retrievals, a

transaction time of 39.73 is reduced to 16.63 by eliminating

the sort command, a performance improvement of 58%. Because

of the access path that the optimizer takes in processing

the retrieval, the result is already in alphabetical order.

In addition, since there is only one appearance of each

person in the table, the second sort on the element

NET_ABBR_NAME is also unnecessary, eliminating the need for

the sort command. Outputs from retrievals with and without

82

the sort command are exactly the same. Of lesser

significance is the sort used by the procedure mlstnodel

which sorts the output in NET_ABBR_NAM order. In this case

the transaction time is reduced from 57.19 seconds to 49.59

seconds, an improvement of only 13%. The outputs are also

identical with or without the sort command because the

access path that the optimizer takes puts the result in

NET_ABBR_NAM order. In these two cases, although the

bottleneck is not actually eliminated, the transaction time

is reduced without affecting the results of the output.

This module also contains two instances of erroneous

coding that, although it technically does not create a

bottleneck, prevents the module from processing. Both the

procedures mlstlinkl and mentpersl attempt to retrieve data

from a table, LOCATION, that no longer exists in the data

base. Research shows that the LOCATION table has been

replaced by the tables RESLOC and STATICLOC, and has been

erased from the data base. Attempts to process the module

that calls either of these two procedures results in an

error message saying that the table cannot be found. No

attempt to fix this error is made here.

4 . Damage Assessment

The only bottleneck in this module appears in two

procedures that perform basically the same transaction. The

transaction consists of appending data to a number of

tables, with each append requiring a join of at least two

83

tables. Both the 'ddmgres2' and the 'dlstres2' procedures

attempt to retrieve data from four tables: (1) OPTRNCNTR;

(2) NODE; (3) ASSETCNTR; and (4) PERSONNEL, e.g.:

append to dresrecd (type = "p",
resource = personnel .pers_name,
network = personnel . net_abbr_nam,
state = resloc. state,
status = "CASUALTY",
user name = uname)

where personnel .dmgcnt >

and personnel . latitude = resloc. latitude
and personnel . longitude = resloc. longitude

Since OPTRNCNTR and ASSETCNTR are small tables, appends to

them are fairly rapid, averaging under three seconds.

However, appends to NODE and PERSONNEL take an average of

21.76 and 17.49 seconds respectively.

This bottleneck is different from previous ones in

that one of the selection criteria is a range criterion vice

an eguality criterion, specifically, all values of the

DMGCNT attribute that are greater than zero. Since this

attribute appears as a key in indexes for both NODE and

PERSONNEL, the optimizer should be able to use the indexes

to locate the desired data. However, the INGRES optimizer

does not treat the range comparison the same as an eguality.

Because the optimizer sees the 'greater than' sign instead

of an 'equal' sign, the optimizer does not use the indexes

but instead performs a sequential search of the base table

causing the bottleneck in the processing time. The way to

resolve this bottleneck is to force the optimizer to use the

84

index to make its search. This requires a change in the

program code.

The program code currently calls for retrieving data

form the NODE and PERSONNEL table. The indexes that are

sorted on the element DMGCNT are NODEDMGSTAT and PERSDMG

respectively. The program code needs to be changed so that

data are retrieved from NODEDMGSTAT and PERSDMG vice NODE

and PERSONNEL respectively. In this way, the optimizer is

forced to use the indexes to retrieve the data, e.g.:

append to dresrecd (type = "p",
resource = persdmg.pers_name,
network = persdmg. net_abbr_nam,
state = resloc. state,
status = "CASUALTY",
user name = uname)

where persdmg. dmgcnt >

and persdmg. latitude = resloc. latitude
and persdmg. longitude = resloc. longitude

By using the index, the optimizer can immediately locate the

first value greater than zero and begin retrieving all data

starting from that point, resulting in a much quicker access

time than a sequential search. One problem with this is

that all the data that is required to be retrieved does not

reside in the indexes. Since the retrieval is being made

from the indexes vice the base table, the index must contain

the data to be retrieved. Therefore, the indexes must be

expanded to include not only DMGCNT but the additional data

required to be retrieved:

85

index of personnel is persdmg (dmgcnt, latitude, longitude,
pers_name, net_abbr_nam, state)

By making these changes to the index, and changing

the code to reflect retrieval from the index vice the base

table, the average processing time decreases from 21.76

seconds to 4.21 seconds for the NODE table and from 17.89

seconds to 2.28 seconds for the PERSONNEL table. This

represents an 80% and 87% increase in processing efficiency

respectively. To improve the processing efficiency for the

entire procedure, the same type of changes can be made to

the retrievals from OPTRNCNTR and ASSETCNTR reducing their

processing time to under two seconds.

5 . Service Requests

The only significant bottleneck in this module

involves the use of the sort command. However, in this

case, the sort command is necessary and, in fact, is the

main function of the procedure. The procedure ' ssortl' is

called to retrieve data and to sort it into the order

determined by the user. Time trials on the retrievals show

that without the sort command, transaction time is only 3.04

seconds, an acceptable speed. However, with the sort

command, the transaction time jumps to 9.66 seconds. The

only way to eliminate the bottleneck is to eliminate the

sort command. The only way to eliminate the sort command is

to force the optimizer to retrieve data so that the output

is already in the order desired.

86

Forcing the optimizer to take a particular access

path will normally require a different index for each

different sort format, which can mean quite a lot of

indexes. However, an analysis of the structure of the

SERVREQUEST table, from which the data is being retrieved,

shows that even though there are seven different sort

options available to the user, only two indexes will have to

be created while five existing indexes will need to be

modified. SERVREQUEST uses a binary tree structure and has

five indexes already created. The modifications to the

existing indexes merely consist of adding additional keys to

the indexes. Test runs after the changes are made show that

the outputs are sorted in the order desired without the use

of the sort statement. By making these changes to the

physical structure of the SERVREQUEST table, normal

transaction time can be reduced from 9.66 seconds to 3.04

seconds, a performance improvement of 69%. The modification

to five indexes and the creation of two indexes, however,

raises the question of negative effects resulting from the

creation of additional indexes.

E. TRADEOFFS OF PROPOSED SOLUTIONS

The most obvious tradeoff of creating additional indexes

is the increase in processing time when adding information

to the data tables. Whenever new information is added to

the base table, all the associated indexes must also be

updated. The more indexes there are, of course, the longer

87

the process takes. To determine how much of an impact this

will cause, time trials are needed to measure the

transaction time of adding data before and after the indexes

are created. The PERSONNEL table will be used as a test

table since it is a large table and will provide a better

spread of time measurements.

Prior to adding any indexes to the PERSONNEL table, the

processing time for appending data to the table is measured.

When data are added to a table, the optimizer looks at the

element or elements that are keys to the table. It takes

this value and quickly determines where in the table the

data are to be stored. Because it is using the keys, and

not performing a sequential search, adding data is normally

fairly rapid. The optimizer also uses the keys when

updating the table indexes. As a result, additions to the

data tables are normally faster than retrievals since there

is very little sequential searching. In addition, unless

the table is incredibly huge and there are a lot of overflow

pages, the size of the table does not significantly affect

the update time. Since keys are used, the location for

storing the new data is quickly determined. The critical

factor in update time is the number of indexes that a table

has. For every data item that is added to the base table,

each index must also be updated. The average processing

time for adding data to the PERSONNEL table, without

indexes, is 2.5 seconds. After adding one index, the

average processing time changes insignificantly to 2.58

seconds. However, when five indexes are added, the

processing time increases to an average of 3.2 seconds.

Even though this is a 28% increase in transaction time, the

actual time is still small. Since adding indexes can make a

significant improvement to the processing efficiency for

retrievals, the tradeoff seems to favor adding the index.

However, it should be noted that there are other factors

which will affect the decision. If the retrieval is already

fast, the small decrease in processing time will be offset

by the small increase in update time. Therefore, indexes

should only be used when a significant improvement can be

realized. Also, consideration should be given to how often

updates are done compared to retrievals. This will also

help determine whether the index should be created or not.

Another tradeoff of creating additional indexes is the

additional memory reguired to store the indexes. The size

of the base table determines the amount of memory needed to

create the index. However, in most cases, this is an

insignificant amount. Although it is up to the user to

determine what kind of tradeoffs to make with regard to

creating indexes, it is shown here that the negative aspects

of additional indexes is minimal and far outweighed by the

improvement in processing efficiency.

89

F. GENERAL IMPROVEMENTS

Improvements in processing efficiency need not be

limited to specific changes to the data base structure.

INGRES optimization features such as the "optimizedb"

command can also be routinely utilized to ensure the

optimizer has all the access paths available to it. In

addition, compression of data and verification of fill

factors should also be periodically performed. These tasks

are normally the responsibility of the Data Base Adminis-

trator (DBA) . Another important tool is the data diction-

ary. Although a data dictionary in itself does not improve

processing efficiency, it provides an excellent means of

managing the data tables within the data base. Information

on what indexes are available, what the keys are, and what

storage structure a table is using are all vital information

in determining how to improve the processing efficiency of

the program. If this information is not available to the

programmer, he will not know when retrievals are inefficient

nor how to make them efficient. Consequently, the data

dictionary becomes an important tool in improving the

processing efficiency of the program.

90

VII. CONCLUSION

This thesis has attempted to accomplish two major goals:

(1) generate documentation that describes the EPMIS data

base in detail; and (2) use the documentation to make

significant improvements in the processing efficiency of the

EPMIS program. The documentation includes: (1) a listing

of all data tables within the EPMIS data base grouped by

permanent tables, temporary tables, indexes, and views; (2)

a table showing the separation of the permanent tables into

major groups; (3) an Entity-Relationship Diagram graphically

illustrating how the various entities within each group are

related; and (4) a listing of the physical storage structure

used by each table. Using this documentation, an analysis

of the EPMIS program has resulted in proposed changes to the

EPMIS data base that reflect significant improvements in

processing efficiency. These proposed changes are

summarized in Exhibit 10. General recommendations are also

made on improving the processing efficiency even further.

Implementation of these changes and recommendations can

result in an EPMIS program that responds much more rapidly,

greatly enhancing its viability in crisis situations. In

concluding this effort, some proposals for follow-on

projects concerning the EPMIS program are offered.

91

One possible follow-on project involves a study of the

predicted usage of the EPMIS data base, determining how each

data table will grow, and using this information to predict

potential future bottlenecks in the program. This thesis

concentrated on bottlenecks that exist based on the amount

of data currently loaded into the data base. During the

analysis, however, situations were discovered that could

lead to potential bottlenecks if the data tables were to

grow significantly. Another project would be to develop a

more comprehensive active data dictionary within INGRES.

The current INGRES data dictionary provides only a list of

all data tables, their elements, and technical information

such as physical storage structure and secondary indexes. A

more complete data dictionary would not only provide the

technical information on each data table, but would also

provide a descriptive explanation of what each table is used

for, a definition of all the elements in the table, and a

cross reference of each table to the procedures that it is

used in. In addition, by being an active data dictionary,

it would accurately reflect all changes to the data base.

The importance of this is shown in Exhibit 11 which lists

all the tables that have already been added to the EPMIS

data base since this thesis began and therefore are not

included in the earlier exhibits or in the E-R diagram. A

final project would be to look at the bottlenecks this

thesis did not examine, i.e., bottlenecks caused by the

92

operating system and bottlenecks involving security access

validations. These bottlenecks still exist in the current

EPMIS program and may be a source of significant delays in

program processing.

93

APPENDIX

EXHIBITS

The following exhibits describe the logical and physical

structure of the EPMIS data base, and provide a list of

processing bottlenecks as well as methods for resolving them.

94

BPMIS DATABASE

40 Permanent Tables:

agcyfunct
carriers
dmgedres
facltycom
jdmgobsrvd
jrnfacreq
network
perstatus
servcomment
staticloc

asset
claimno
dmgobsrvd
f acltyreq
journcomment
laydown
node
rectangle
servrequest
statnatn

* no longer being used

25 Temporary Tables:

assetcntr
direction
eadl ist
f acstat
journrequest
link
optrncntr
reqstatus
sonsit
telords *

baddam *

dlaylist *

eads
f unctmap
jrnfaccom
location *

personnel
resloc
statereg
tsprpmap

acrecd
dlistrecd
facreqrpt
nmaprecd
pocrecd
teadlrecd
tempreprecal

asstrecd
drectrecd
f reqrecd
noderecd
sreqrecd
teadr ecd

dcirrecd
dresrecd
linkrecd
ocrecd
srvcomrpt
temprec2

dlayrecd
f accomrpt
netrecd
persrecd
srvreqrpt
temprecall

19 Indexes

Index
dmgeloc
dmgosys
loclocsta
locstcty
nodenodnet
persnet
servagcy
servnccag
servstcar
streg

Indexed on
dmgedres
dmgobsrvd
location
location
node
personnel
servrequest
servrequest
servrequest
statereg

Index
dmgodir
dmgotyp
locstatus
nodeloc
persloc
persstat
servcir
servpr

i

stlat Ion

Indexed on
dmgobsrvd
dmgobsrvd
location
node
personnel
personnel
servrequest
servrequest
statereg

6 Views:

listacs
listnodes

1 istassets
1 istocs

1 istnet
1 istpers

Exhibit 1

95

DATA TABLES BROKEN DOWN BY GROUPS

COMMUNICATION NETWORKS

asset
node
resloc *

assetcntr
optrncntr
stat icloc

link
personnel

network *

perstatus

DAMAGE ASSESSMENT

direction
laydown

dmgedres
rectangle

dmgobsrvd
resloc

jdmgobsrvd
statereg

SERVICE REQUESTS

agcyfunct *

journrequest
tsprpmap *

carr lers
reqstatus

f unctmap
servcomment

journcomment
servrequest

FACILITY REQUESTS

agcyfunct
f acstat
tsprpmap

claimno
jrnf accom

f acltycom
jrnf acreq

f acltyreq
network

EMERGENCY ACTION DOCUMENTS

eadl ist eads

REGIONAL SITUATION

statnatn sons it

* Tables that appear in more than one group

Exhibit 2

96

¥>
3 / »H

1 / a 3
<
•-

i-
<\ _i

V) \<*-
tc \> *>
hi
•-

Exhibit 3

a7

1

C5

\
W
«

\ W
H
<r
H
CO

Exhibit 4

as

M/^ \
»-

/- >-\ u
/ho\ z
1 W Z)_ 3
i u iu r 1

\ 3 o / >-

\cr </ U
Vj i; <

z

Z lO
tH UJ

o o
It

Exhibit 5

99

z \ 1-

— >-\ o
h- O \ z
lO Z _ 3

u.UJ U / 13 O /
>-

Of </ O
uj 1/ <

Q o
Z

/ 2 Z \ JZ
1 2 O _

\ < ir> J

1 <r
l—' <i _3
\u 1/ O

Ph
I z\ <r
>- UJ\ n-.

Ph
CO/ 1o _ / On

CO

Exhibit 6

1QQ

<27

<35

>28

<44

>36

>45

20 (i.o)

<23 21 (1.1)

22 (1.2)

23 (1.3)

24 (2,0)

>24 25 (2.1)

26 (3.0)

27 (4.3)

28 (4.0)

<31 29 (4.1)

31 (3,1)

32 (2,2)

>32 32 (2,3)

33 (3.2)

35 (4.2)

36 (3.3)

<40 37 (6.0)

41 (5.3)

>41 42 (5,0)

43 (5.2)

44 (7.0)

45 (6,2)

<49 46 (6.1)

47 (7.2)

49 (5,1)

50 (6.3)

>50 55 (8.1)

64 (7.1)

Exhibit 7

1Q1

List of Tables by Storage Structure

HEAP

Acrecd (TT) Assetcntr Asstrecd(TT) Baddam
C 1 a i mn o Dcirrecd (TT

)

Dlaylist Dlayrecd(TT)
Dlistrecd(TT) Drectrecd (TT) Dresrecd (TT) Eadlist
Eads Facreqrpt (TT

)

Facstat Functmap
Laydown Optrncntr Perstatus Reqstatus
Sonsit Temprecall (TT) Tempreprecal (TT

)

Srvreqrpt (TT) Freqrecd(TT) Jdmgobsrvd Linkrecd(TT)
Netrecd (TT

)

Nmaprecd(TT) Noderecd(TT) Ocrecd(TT)
Persrecd (TT

)

Pocrecd(TT) Sreqrecd(TT) Statnatn
Teadlrecd(TT) Teadrecd (TT) Telords Temprec2 (TT)
Tsprpmap

HASH

Agcyf unct Asset Carr iers Direction
Dmgedres Dmgeloc(SI

)

Dmgosys (SI

)

Dmgotyp(SI

)

Faccomrpt (TT

)

Facltycom Facltyreq Journcomment
Journreqest Jrnfaccom Jrnf acreq Link
Location Locstatus (SI) Network Nodeloc(SI

)

Persloc(SI) Rectangle Servcomment Srvcomrpt (TT)
Statereg Streg(SI) Stat icloc Resloc

ISAM

Servpr i (SI) Stlatlon(SI)

BINARY TREE

Dmgobsrvd Dmgodir (SI

)

Loclocsta(SI

)

Locstcty(SI

)

Node Nodenodnet (SI) Persnet (SI

)

Personnel
Persstat (SI) Servagcy(SI

)

Servcir (SI

)

Servnccagf SI

)

Servrequest Servstcar (SI)

VIEWS

Listacs Listassets Listnet Listnodes
Listocs Listpers

TT - Temporary Table
SI - Secondary Index

Exhibit

102

z<o
u. -1

^3P LU
CO DC

CO DC CC
oUJ LU

Uj LU LU

go oc

158

CO
UJ

DC
UJ
D
O

Z °H
ujcoQ

oczt
iu = z

uj°-o

CO
UJ

co o
UJ QCo
oc
D
o
CO
UJ
oc

tr
UJ

UJ 5

D
o
CO
UJ
OC

0C

p

UJ

cos
UJ
QC

UJ UJ

Ul§§
S < <sSS
Sujqc

h- UJ?
z.x9
uj uj 2

l-
z
UJ

3 co

Q <

? Z
< UJ

coco

UJ UJ33OO
UJ UJ
cccc

UJ>

UJ?
COlC

CO

wcoO UJ

> D
OCO
UJ UJ
CO DC

UJ

2Q. 2

U LU U U
t

§

o
o
_l

Exhibit 3

103

SUMMARY OF BOTTLENECKS AND SOLUTIONS

Tranasact ion
Procedures
Affected Solution

Efficiency
Improvement

1. retrieve erecalll
egetrcrpl

create new
index 91 %

2. retrieve pemgypocl add new
element 82 %

3. sort pemgypocl eliminate sort
command 37 %

4. delete uval
mupd
mupd
mupd
mupd
mupd
madd
madd
madd
madd
madd

idloc
persl
ocl
nodel
netl
acl
persl
ocl
nodel
acl
netl

create new index
and

modify physical
storage structure
from isam to hash

61 %

5 . append rcombine
mcombine

create new
index 65 %

6 . join mlstpers
mlstasstl
mlstnetl
mlstnodel
mlstocl
mlstacl

create new
indexes

87-93 %

7. sort mlstpersl eliminate sort
command 58 %

Exhibit 10

104

§. §§ffe mlstnodel eliminate sort
command 13 %

9. append ddmgr es2
dlstres2

create new index
and

modify program
code 87 %

10. sort ssortl create new indexes,
modify old indexes,
eliminate sort
command 69 %

Summary of new indexes:

Base Table

personnel

personnel

resloc

resloc

node

node

network

resloc

resloc

personnel

node

servr equest

Element (s

)

poc_recldby

epoc

lat_degrees, lat_minutes,
lat_seconds, lon_degrees /

lon_minutes / lon_seconds

city, state

net_abbr_nam

act_status

agency

state

region

dmgcnt, latitude, longitude,
pers_name, net_abbr_nam, state

dmgcnt, dmgstatus, latitude,
longitude, node_name, net_abbr_nam

agency, priority, datetime

Exhibit 10

105

servrequest

servrequest

servrequest

servrequest

servrequest

servrequest

carr ier_name, priority, datetime

ncc_number , priority, datetime

priority, datetime

datetime, priority

circuit_num, priority, datetime

status, priority, datetime

Exhibit 10

106

RECENTLY ADDED DATA TABLES

Permanent Tables;

classify
ddgrpelt
ddtypeconv
low_map
repclass
weapon

combloc
ddlink
dmgeloc
nodex

ddelement
ddl inks
eerselect
person

status_trans tempgrp
wild xassetcntr

ddgroup
ddtemp
graphics
probdmge
vntk
xoptrncntr

Temporary Tables;

dmgrprecd
templink

dtmprcd
twponrecd

mapnodes tempelt
stat convert

Indexes

;

dmgelatlon
drestyp
persdmg

dmg e x f 1

g

jdmglatlon
perslat Ion

dmgoexec
nodedmgstat
probminmax

dmgolatlon
nodelatlon
xlpersonnel

Views

:

damage dmgodir

Exhibit 11

107

LIST OF REFERENCES

Booz-Allen & Hamilton Inc. , "Emergency Preparedness
Management Information System (EPMIS) Five Year Plan
(Draft)," 19 September 1988.

National Communications System, Office of Emergency
Preparedness, "Emergency Preparedness Management
Information System (EPMIS) Program Plan," 07 April 1986.

Booz-Allen & Hamilton Inc., "Emergency Preparedness
Management Information System (EPMIS) Deployment Plan,"
19 September 1988.

Chen, P. , The Entity-Relationship Approach to Logical
Data Base Design , QED Information Sciences, Inc., 1977.

Relational Technology Inc., INGRES Training Manual, QUEL
Course Version, Overview—Introduction to INGRES , 1

August 1987.

Relational Technology Inc., INGRES Training Manual. QUEL
Course Version, Performance Part I Storage Structures , 1

August 1987.

Kroenke, D.M. and Dolan, K.A. , Database Processing;
Fundamentals, Design, Implementation , 3d ed., Science
Research Associates Inc., 1988.

Date, C.J., A Guide to INGRES , Addison-Wesley Publishing
Co. Inc. , 1987

.

Relational Technology Inc. , INGRES Training Manual, QUEL
Course Version, Performance Part II Storage Structures .

1 August 1987.

108

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

LCDR William B. Short
1705 NW Viewmont Court
Silverdale, Washington 98383

LT Jeffrey M. Bockenek
Pacific Operations Support Facility
Box 9

Pearl Harbor, Hawaii 96860-7150

Professor Daniel R. Dolk, Code 54Dk
Naval Postgraduate School
Monterey, California 93943-5000

Prof. Barry Frew, Code 54Fw
Naval Postgraduate School
Monterey, California 93943-5000

Professor Magdi Kamel, Code 54Ka
Naval Postgraduate School
Monterey, California 93943-5000

Mr. Norman Douglas
Program Manager—EPMIS
National Communications System
8th & South Courthouse Road
Arlington, Virginia 22204

Mr. Jay Roland
Rolands & Associates Corporation
500 Sloat Avenue
Monterey, California 93940

No. Copies

109

rf

li sep e?

IS MAY 88

;>o ore p«

2 I

8 FE8 90

13 DCC 90
24 DEC 90

11 DCC 90

10 CEC 99

2^77
3 35 90

32.030
3 3 6 0*
3 6 U 9 6

"Keep this card in the book pocket

Book is due on the latest date stamped

paduuejs oiep \sd\e\ am uo anp si. >)Oog— aiiaa !«! £J*%n\t

Thesis
S4844 Short
c.l Analysis of the EPMIS

data base.

