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they offer increased accuracy and efficiency by virtue of
their independence on the CFL condition. Detailed resultsLagrange–Galerkin finite element methods that are high-order

accurate, exactly integrable, and highly efficient are presented. This and analyses are given in one-dimension in [13, 14] and in
paper derives generalized natural Cartesian coordinates in three two dimensions on the plane in [2, 3, 17]. Very little work
dimensions for linear triangles on the surface of the sphere. By has been done on the weak Lagrange–Galerkin methodusing these natural coordinates as the finite element basis functions

on spherical domains; a thorough review of the literaturewe can integrate the corresponding integrals exactly thereby achiev-
reveals no published work in this subject. This paper assistsing a high level of accuracy and efficiency for modeling physical

problems on the sphere. The discretization of the sphere is achieved in filling this gap in the literature. Spherical geodesic grids
by the use of a spherical geodesic triangular grid. A tree data struc- have been around for quite some time [20]. However, these
ture that is inherent to this grid is introduced; this tree data structure methods have recently been rediscovered [9], as more andexploits the property of the spherical geodesic grid, allowing for

more researchers have begun to move away from spectralrapid searching of departure points which is essential to the
Lagrange–Galerkin method. The generalized natural coordinates methods toward finite volumes, finite elements, and finite
are also used for determining in which element the departure points difference methods for spherical domains.
lie. A comparison of the Lagrange-Galerkin method with an Euler– On spherical geometries, spherical coordinates appear
Galerkin method demonstrates the impressive level of high order

to be the obvious coordinate system for formulating theaccuracy achieved by the Lagrange–Galerkin method at computa-
problem; however, there are numerical singularities associ-tional costs comparable or better than the Euler–Galerkin method.

In addition, examples using advancing front unstructured grids illus- ated with the poles. This issue can be circumvented by
trate the flexibility of the Lagrange–Galerkin method on different either rotating the spherical coordinate system as in [11]
grid types. By introducing generalized natural coordinates and the or by mapping to Cartesian coordinates whenever we are
tree data structure for the spherical geodesic grid, the Lagrange–

in the vicinity of the poles as is done in [19]. This paperGalerkin method can be used for solving practical problems on the
takes a different approach, namely, remaining in Cartesiansphere more accurately than current methods, yet requiring less

computer time. Q 1997 Academic Press space throughout [15]. This strategy offers some clear ad-
vantages.

First, the spherical geodesic grids are constructed in
1. INTRODUCTION Cartesian space. While it is relatively inexpensive to com-

pute and store the spherical coordinates as well, it is unnec-
Advection governs the most important phenomena of essary and can be omitted. Second, in Cartesian space we

atmospheric and ocean dynamics, namely the transport
can construct natural (or area) coordinates for triangles.processes of the velocities. However, this process presents
This paper shows that these natural coordinates, althougha formidable challenge for many numerical methods in-
three-dimensional, can still be integrated exactly as in thecluding finite elements. The difficulty lies in the lack of
two-dimensional planar case. Finally, the departure pointsself-adjointness of the mathematical operator. One way to
for the Lagrange–Galerkin method need no special treat-avoid this problem is by using a Lagrangian reference
ment as all operations are executed in Cartesian spaceframe. This approach has many advantages, including side-
where numerical singularities associated with the poles dostepping the CFL condition as well as increasing the accu-
not exist.racy of the scheme. This paper presents Lagrange–

In Section 2, the model equation used in this study isGalerkin methods for the advection equation on the sphere
presented. An Euler–Galerkin formulation is used as ausing geodesic triangulations. Lagrange–Galerkin meth-
comparison to the proposed Lagrange–Galerkin method.ods have increased in popularity in the last 10 years because
Section 3 presents the discretization of the equation in
the Euler–Galerkin and Lagrange–Galerkin formulations.1 This research was conducted while the author was an ONR/ASEE
Section 4 introduces the generalized natural coordinatefellow at the Naval Research Laboratory. E-mail: giraldo@nrlmry.

navy.mil. developed and discusses how these coordinates can be used
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to obtain exact integrations of the finite element equations which when written semi-implicitly is equivalent to the
Crank–Nicholson finite element method.) Two types ofand their role in accelerating the searching process of the

departure points. In Section 5, the spherical geodesic grid Lagrange–Galerkin formulations are considered: the di-
rect and the weak methods. Both the Euler–Galerkin andis discussed and the tree data structure developed for

searching is introduced. Section 5 also describes the ad- Lagrange–Galerkin methods represent second-order accu-
rate schemes in both space and time.vancing front unstructured grids used to show the flexibility

of the Lagrange–Galerkin method. Section 6 presents a
3.1. Euler–Galerkinnumerical test case along with some error norms and con-

servation measures which illustrate the accuracy and con- In Eulerian schemes the evolution of the system is moni-
servation of the Lagrange–Galerkin method on both the tored from fixed positions in space; consequently, they are
spherical geodesic grids and the advancing front unstruc- the easiest methods to implement as all variable properties
tured grids. are computed at the grid points comprising the discretiza-

tion of the domain. Discretizing (3) by an Eulerian finite
2. GOVERNING EQUATION element method, we arrive at the elemental equations

The conservative differential form of the advection
equation is E

V
c

­w

­t
1 = ? (uwc) 2 wu ? =c dV 5 0 (4)

­w

­t
1 = ? (uw) 5 0, (1) which can be written in matrix form as

where w is some conserved variable, u is the velocity vector, Mẇ 2 Aw 5 R,
and = is the divergence operator. In spherical coordinates
the equation appears as where M is the mass matrix, A is the advection, and R is

the boundary terms which are given by
­w

­t
1 F ũ

a cos u

­w

­l
1

ṽ
a

­w

­u
G

(2) Mij 5 E
V

cicj dV,

1 Fw S 1
a cos u

­ũ
­l

1
1
a

­ṽ
­u

2
ṽ
a

tan uDG5 0, Aij 5 E
V
Ond

k51
[=ci ? (ukck)cj] dV,

andwhere a is the radius of the sphere, (ũ, ṽ) are the zonal
and meridional velocity components, and (l, u) are the
longitudinal and latitudinal coordinates. The first brack- Ri 5 2 E

G
N ? (uwci) dG,

eted term represents the operator u ? =w and the second
term represents w= ? u. Since the first terms in each of the

where c are the finite element basis functions, N is thebrackets become singular at the poles, it is preferable to
outward pointing normal vector of the boundaries, and i,use the Cartesian form
j, and k all vary from 1 to nd. For linear, quadratic, and
cubic triangles nd 5 3, 6, and 10, respectively. Discretizing
this relation in time gives the following family of algorithms­w

­t
1 Fu

­w

­x
1 v

­w

­y
1 w

­w

­zG1 Fw S­u
­x

1
­v
­y

1
­w
­zDG5 0

(3) [M 2 Dt u A]wn11 5 [M 1 Dt(1 2 u) A]wn

(5)
1 Dt[u Rn11 1 (1 2 u) Rn],which is the form used in this paper.

where u 5 0, As, and 1 give explicit, semi-implicit, and im-3. DISCRETIZATION
plicit schemes, respectively. However, this class of methods
is dispersive and limited to small time steps in order toThis section introduces the discretization of the conser-

vative form of the advection equation in Cartesian coordi- satisfy the CFL condition for stability. Lagrange methods,
on the other hand, suffer from neither of these ailments.nates by the Euler–Galerkin and Lagrange–Galerkin for-

mulations. (The term Euler–Galerkin is used to refer to Two types of Lagrange–Galerkin methods will now be
introduced: the direct and the weak methods.the conventional Bubnov–Galerkin finite element method,
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3.2. Direct Lagrange–Galerkin which defines a recursive relation for the departure points.
Since in general we do not know the midpoint trajectoryLagrangian methods belong to the general class of up-
x(t 1 Dt/2), we must approximate it. There are manywinding methods. These methods incorporate characteris-
choices but one option is to approximate the midpointtic information into the numerical scheme. The Lagrangian
trajectory via a second-order Taylor series expansion whichform of (1) is
then yields the trajectory relation

dw

dt
5 2w= ? u (6)

a 5 Dt u Sx 2
a

2
, t 1

Dt
2 D (10)

dx
dt

5 u(x, t), (7)

which is a recursive relation that typically requires between
three and five iterations for convergence. Note that thewhere
midpoint trajectories will not fall on grid points and so
they must be interpolated in some fashion. Linear interpo-d

dt
5

­

­t
1 u ? = lation is sufficient for this purpose but higher order interpo-

lations are required for the conserved variable w and at
least third-order accurate interpolation is required in orderdenotes the total (or Lagrangian) derivative. Discretizing
to obtain a second-order scheme [7].this equation by the direct Lagrange–Galerkin method

This method is called the direct Lagrange–Galerkinyields the elemental equations
method because the method of weighted residuals is ap-
plied directly onto the Lagrangian form of the equations.E

V
c

dw

dt
1 cw= ? u dV 5 0 (8) This method is also known as the semi-Lagrangian method

because the equations are solved in Lagrangian form but
the departure points are chosen such that they arrive at

which can be written in matrix form as grid points at the end of the time step.
Interpolation is required in this approach in order to

Mẇ 1 Dw 5 0, obtain the unknown values at the departure points. For
uniform grids it is possible to use cubic splines, Hermite,

where M is the mass matrix and D is the divergence and or Lagrange interpolation; for unstructured grids as in the
they are given by spherical geodesic grids, interpolation is rather difficult

and costly. In addition, the direct Lagrange–Galerkin
method is nonconservative which may cause problems forMij 5 E

V
cicj dV

long time integrations [7]. The weak Lagrange–Galerkin
method discussed in the following section is exactly conser-

and vative because integration rather than interpolation is used
to obtain the values at the departure points [14].

Dij 5 E
V
Ond

k51
[cicj (uk ? =ck)] dV.

3.3. Weak Lagrange–Galerkin

In the weak Lagrange–Galerkin method we begin withDiscretizing this relation in time gives the family of algo-
the Eulerian form (1) and then apply the method ofrithms
weighted residuals in order to find the adjoint operator.
This leads to the integral equation

[M 2 Dt u D]wn11 5 [M 1 Dt(1 2 u) D]wn
d , (9)

where wn11 5 w(x, t 1 Dt) and wn
d 5 w(x 2 a, t) are the E

V

­(wc)
­t

1 = ? (uwc) 2 w F­c

­t
1 u ? =cG dV 5 0, (11)

solutions at the arrival and departure points, respectively,
and a 5 x(t 1 Dt) 2 x(t) denotes the trajectory vector.
Integrating (7) by the midpoint rule yields where the bracketed term represents the advection opera-

tor acting on the finite element basis functions. In this
approach, the basis functions must satisfy this operator;a 5 Dt u SxSt 1

Dt
2 D, t 1

Dt
2 D therefore, the basis functions are functions of both space



200 FRANCIS X. GIRALDO

and time. These conditions allow the bracketed term to third variable is restricted by the fact that the point must
remain on the surface of the sphere. Let x and y be indepen-vanish. The elemental equations can now be written in
dent; then we may write z asmatrix form as

z 5 f (x, y) 5 Ïa2 2 x2 2 y2.­(Mw)
­t

5 R,

Therefore, let us construct finite element basis functions
on the surface of the sphere using linear triangular ele-

where M is the mass matrix and R is the boundary terms ments but in three dimensions. Natural coordinates can be
which are defined as in the Eulerian case. Discretizing this derived for any simplex element by constructing them to
relation in time gives the family of algorithms be the linear interpolation functions within the element.

The conditions to be satisfied by these interpolants on a
triangle in three-dimensional space are[M]wn11 5 [Mn

d]wn
d 1 Dt [u Rn11 1 (1 2 u) Rn

d ], (12)

x 5 c1 x1 1 c2 x2 1 c3 x3where
y 5 c1 y1 1 c2 y2 1 c3 y3

z 5 c1 z1 1 c2 z2 1 c3 z3Mn
d,ij 5 E

Vn
d

ci cj dVn
d ,

which just says that the coordinates within the triangularRn
d,i 5 2 E

Gn
d

N ? (uwci ) dGn
d ,

element are linearly dependent on the vertices of that
element. When inverted, this system yields the general
relation for the natural coordinates,and Vn

d denotes the Lagrangian element formed by the
departure points of the finite element V. Once again, u 5
0, As, and 1 yield explicit, semi-implicit, and implicit schemes, ci 5

ai x 1 bi y 1 ci z
deter n

, (13)
respectively. On the surface of the sphere no formal bound-
ary conditions exist except those of periodicity. Since these

whereconditions are already accounted for by virtue of the finite
element connectivity matrix, the boundary vector R van-
ishes. ai 5 yj zk 2 yk zj, bi 5 xk zj 2 xj zk , ci 5 xj yk 2 xk yj ,

At this point, all of the Galerkin matrix equations have
been derived in very general terms—in other words, no

deter n 5 |x1 x2 x3

y1 y2 y3

z1 z2 z3
| ,assumptions have been made about the finite element basis

functions and so these equations are valid for any type of
element and basis function. In general, the resulting finite
element integrals need to be solved by numerical integra-

andtion methods but, by choosing the basis functions and finite
elements wisely, we can avoid numerical integration and

i, j, k 5 1, ..., 3.instead solve the integrals exactly. The following section
describes a set of basis functions for triangular finite ele-

By using the definition of the natural coordinates (13) andments in three dimensions which can be integrated exactly.
the fact that the three nodes on each triangle define a plane,

4. GENERALIZED NATURAL COORDINATES
N ? (x 2 x1 ) 5 0,

In two dimensions on the plane, we can obtain the exact
where N is the outward pointing normal to the trianglefinite element integrals for any of the terms in the elemental
and defined byequations presented thus far, provided that we use linear

triangular elements. On the sphere, although the surface
is actually three-dimensional we can still recover much of
the same properties as in the planar case. After all, the N 5 | î ĵ k̂

x2 2 x1 y2 2 y1 z2 2 z1

x3 2 x1 y3 2 y1 z3 2 z1
| , (14)

surface of the sphere is quasi two-dimensional because
there are only two independent space variables, while the
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it can be shown that the natural coordinates satisfy the con-
Av

ij 5
cross n

24 deter ndition

c1(x, y, z) 1 c2 (x, y, z) 1 c3 (x, y, z) 5 1. 3b1(2v1 1 v2 1 v3) b1(v1 1 2v2 1 v3)

b2(2v1 1 v2 1 v3) b2(v1 1 2v2 1 v3)

b3(2v1 1 v2 1 v3) b3(v1 1 2v2 1 v3)

b1(v1 1 v2 1 2v3)

b2(v1 1 v2 1 2v3)

b3(v1 1 v2 1 2v3)4,

This is a necessary condition for a consistent and mono-
tonic interpolation. These natural coordinates can now be
used as the finite element basis functions. By following the Aw

ij 5
cross n

24 deter nderivation of Sylvester’s formula [4] we can derive the
generalized formula extended to triangles in three-dimen-
sional space, 3c1(2w1 1w2 1w3) c1(w1 12w2 1w3)

c2(2w1 1w2 1w3) c2(w1 12w2 1w3)

c3(2w1 1w2 1w3) c3(w1 12w2 1w3)

c1(w1 1w2 12w3)

c2(w1 1w2 12w3)

c3(w1 1w2 12w3)4;

E c a
1 c b

2 c c
3 dV 5

cross n a! b! c!
(a 1 b 1 c 1 2)!

, (15)

and the divergence matrices are
where

cross n 5 uNu Du
ij 5 (a1 u1 1 a2 u2 1 a3 u3 )

cross n

24 deter n 32 1 1

1 2 1

1 1 24,

which is valid only for the finite element basis functions
introduced in this section. This relation is almost identical
to Sylvester’s formula; the only exception is that 2V has

Dv
ij 5 (b1v1 1 b2v2 1 b3v3 )

cross n

24 deter n 32 1 1

1 2 1

1 1 24,been replaced by cross n, where V is the area of the
triangle. For the special case that the three-dimensional
domain lies entirely on a plane, the generalized formula
recovers Sylvester’s formula. This relation can now be used
to obtain exact integrals for all of the terms in the Euler–

Dw
ij 5 (c1 w1 1 c2 w2 1 c3 w3 )

cross n

24 deter n 32 1 1

1 2 1

1 1 24,Galerkin and Lagrange–Galerkin formulations.

4.1. Finite Element Matrices

Using the generalized natural coordinates (13) and the where Aij 5 Au
ij 1 Av

ij 1 Aw
ij and Dij 5 Du

ij 1 Dv
ij 1 Dw

ij .
Because the finite element basis functions and the exactgeneralized exact integral relation (15), we can now write

closed form solutions for all of the finite element integrals integral formula described in this section are general, we
can apply the same procedure to obtain exact integrals forpresented in Section 3. The mass matrix is
any finite element integral and not just those presented
here. These definitions simplify the finite element integrals
and eliminate the need for quadrature formulas which have
been known to diminish the efficiency and stability proper-Mij 5

cross n

24 32 1 1

1 2 1

1 1 24 ,
ties of Galerkin methods, theoretically speaking. In the
following section we describe how quadrature formulas
can be eliminated completely from the Lagrange–
Galerkin method.the advection matrices are

4.2. Quadrature vs Exact Integration
Au

ij 5
cross n

24 deter n The primary operation in the weak Lagrange–Galerkin
method is integration, in contrast to interpolation, which
is used in the direct method. However, the integrals on the
right-hand side of (12) contain terms that are not defined3a1(2u1 1 u2 1 u3) a1(u1 1 2u2 1 u3)

a2(2u1 1 u2 1 u3) a2(u1 1 2u2 1 u3)

a3(2u1 1 u2 1 u3) a3(u1 1 2u2 1 u3)

a1(u1 1 u2 1 2u3)

a2(u1 1 u2 1 2u3)

a3(u1 1 u2 1 2u3)4,
exclusively on a grid (Eulerian) element. Instead, the La-
grangian elements defined by the departure points in gen-
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This section illustrates that the same ideas used in two-
dimensional planar domains can be extended to three di-
mensions by using the finite element natural coordinates
(13) and the exact integral relation (15). In [17], the Lagran-
gian element is decomposed into triangular elements inside
the Eulerian elements. This involves finding the points
where the Lagrangian elements intersect other Eulerian
elements. Upon storing all of these intersection points, we
then proceed to triangulate the resulting subdomain. In
each of these subtriangles spanning the total Lagrangian
element, we can write the subtriangle Lagrangian basis
functions as Eulerian basis functions, where these basis
functions are the generalized natural coordinates. SinceFIG. 1. Depiction of the Eulerian element (E1, E2, E3) and its corre-
the interpolation of a given point belonging to both thesponding Lagrangian element (L1, L2, L3).
Eulerian and Lagrangian elements must have the same
value for consistency, we can construct the Lagrangian
finite element basis functions by using the equalities

eral will span across many grid elements as illustrated in
Fig. 1. In most implementations of the Lagrange–Galerkin

x 5 cL
1 xL

1 1 cL
2 xL

2 1 cL
3 xL

3 5 cE
1 xE

1 1 cE
2 xE

2 1 cE
3 xE

3method, these integrals are computed by quadrature for-
mulas. In [17], Priestley introduced a means of eliminating y 5 cL

1 yL
1 1 cL

2 yL
2 1 cL

3 yL
3 5 cE

1 yE
1 1 cE

2 yE
2 1 cE

3 yE
3

quadrature integration from the Lagrange–Galerkin
z 5 cL

1 zL
1 1 cL

2 zL
2 1 cL

3 zL
3 5 cE

1 zE
1 1 cE

2 zE
2 1 cE

3 zE
3method for planar two-dimensional problems. This was

achieved by writing the finite element basis functions of
the Lagrangian element in terms of the Eulerian (or grid) which can be written in matrix form as
element basis functions. The Eulerian elements are the
elements formed by the three nodes of the triangles com-
prising the grid. When we speak of a grid discretizing a
domain, we are referring to the Eulerian elements. These 3

xL
1 xL

2 xL
3

yL
1 yL

2 yL
3

zL
1 zL

2 zL
3
4 5

cL
1

cL
2

cL
3
65 5

cE
1 xE

1 1 cE
2 xE

2 1 cE
3 xE

3

cE
1 yE

1 1 cE
2 yE

2 1 cE
3 yE

3

cE
1 zE

1 1 cE
2 zE

2 1 cE
3 zE

3
6,elements remain fixed for all time, assuming adaptive grids

are not used. In contrast, the Lagrangian elements are the
triangular elements formed by the departure points of the
vertices of the Eulerian elements. Since the departure point

where (cE
i , xE

i ) and (cL
i , xL

i ) are the Eulerian and Lagran-corresponding to a given grid point varies with time, the
gian finite element basis functions and node points, respec-Lagrangian element consequently also varies with time.
tively. Upon inverting this system, we obtain the expression

Exact integration is only possible by using the natural (or
for the Lagrangian finite element basis functions

area) coordinates as the basis functions for the Eulerian
and Lagrangian elements. It is then straightforward to ob-
tain the integrals using Sylvester’s formula. Note that as

cL
i 5

aL
i cE

1 1 bL
i cE

2 1 cL
i cE

3

deter nL , (16)long as we use linear triangular elements we assume noth-
ing. In other words, the Eulerian and Lagrangian elements
are both triangles, albeit, in general not of the same size

where
or shape (see Fig. 1). However, if we were to use quadratic
or cubic elements, then we could not guarantee the Lagran-

aL
i 5 xE

1 jL
i 2 yE

1 hL
i 1 zE

1 zL
i , bL

i 5 xE
2 jL

i 2 yE
2 hL

i 1 zE
2 zL

i ,gian element to be a triangle but we could decompose this
polygon into its corresponding set of smaller triangles [18].

cL
i 5 xE

3 jL
i 2 yE

3 hL
i 1 zE

3 zL
i , jL

i 5 yL
j zL

k 2 yL
k zL

j ,
Once this has been accomplished, the exact integration
method could then be applied. It is uncertain what affects hL

i 5 xL
j zL

k 2 xL
k zL

j , zL
i 5 xL

j yL
k 2 xL

k yL
j

this strategy would have on the solution because the Eu-
lerian elements would be integrated as higher order ele-

andments (p refinement) while the Lagrangian elements would
be decomposed into many smaller linear elements (h re-
finement). i, j, k 5 1, ..., 3.
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Note that we can now use (15) to obtain exact integrals five in the northern hemisphere,
for the Lagrangian elements. For example, the mass vector
on the right-hand side of (12) can be written as

[li , ui ] 5 3Si 2
3
2D 2f

5
, 2 arcsin 1 1

2 cos
3f
10
22

f
24

M n
d,ij w

n
d, j

for i 5 2, ..., 6;

and five more in the southern hemisphere

5 Onel

E51
C 5

aL
1 (2wE

1 1 wE
2 1 wE

3 ) 1 bL
1 (wE

1 1 2wE
2 1 wE

3 )

1 cL
1 (wE

1 1 wE
2 1 2wE

3 )

aL
2 (2wE

1 1 wE
2 1 wE

3 ) 1 bL
2 (wE

1 1 2wE
2 1 wE

3 )

1 cL
2 (wE

1 1 wE
2 1 2wE

3 )

aL
3 (2wE

1 1 wE
2 1 wE

3 ) 1 bL
3 (wE

1 1 2wE
2 1 wE

3 )

1 cL
3 (wE

1 1 wE
2 1 2wE

3 )

6,

[li , ui ] 5 3(i 2 7)
2f
5

, 22 arcsin 1 1

2 cos
3f
10
22

f
24

for i 5 7, ..., 11.

where
These 12 initial grid points are used to form 20 equilateral
triangles which completely encompass the sphere. Each
triangle may now be subdivided into four smaller trianglesC 5

cross nE

24 deter nL
by bisecting each of the three edges of the current triangle.
Let x1 and x2 be the coordinates defining an edge. Then
the midpoint node is x4 5 (x1 1 x2)/2. This new node mustand nel represents the number of grid elements contained
then be projected onto the surface of the sphere, and sowithin the Lagrangian element (see Fig. 1). However, an
it becomesefficient grid generator is required in order to write the

Lagrangian element in terms of its Eulerian components.
For efficiency reasons, it is often simpler to use quadrature

x4 5 a
x4

ux4u
,rules. This is not to say that the exact integration method

is inefficient or unworthy of note. In fact, this approach
is quite promising and should be further explored. For where again a is the radius of the sphere. This process is
convenience we use a quintic quadrature rule in this study. repeated for each edge. Figure 2 depicts the subdivision
The weak Lagrange–Galerkin method is exactly conserva- (or refinement) process. The process of subdividing each
tive but this is only theoretically true for the exact integra- triangle into four smaller triangles can be made efficient
tion method. However, the results in [17] show that the by creating an array containing all of the edge data, since
numerical implementations of the exact and quadrature each edge is shared by two elements. Call this integer array
methods yield very similar results. In addition, the results iedge[1:nedge,1:4], where nedge are the number of
in [8] also show this to be true for 2D advection on the edges in the grid. Locations 1 and 2 store the identification
plane. The only problem with the quadrature method is numbers of the two nodes defining the edge, and locations
that it may suffer from instabilities for certain Courant 3 and 4 store the identification numbers of the elements
numbers, theoretically speaking [12]. In practice, however, that share this edge. Then for each edge, we store its mid-
the method has not been known to fail [17]. In the next point. Once this has been achieved, we can loop through
section, the spherical geodesic grid used in this paper is
presented and the tree data structure developed for rapid
searching is introduced.

5. SPHERICAL GEODESIC GRID

A spherical geodesic grid can be constructed by first
defining a background icosahedron. This icosahedron is
defined by the following 12 points [10]: one at each pole,

[l1 , u1 ] 5 F0,
f
2G, [l12 , u12 ] 5 F0, 2

f
2G;

FIG. 2. Refinement of an element for the spherical geodesic grid.
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which child owns the point. This process is continued untilTABLE I
the tree element that claims the node has a location 9 that

The Spherical Geodesic Grid Parameters as Functions of
is nonzero.Refinement Loop n

Testing whether a point lies inside a triangular element
on the sphere is not all that obvious. On the plane we cann npoin nelem nedge ntree Time (s)
use the natural coordinates to determine the inclusion of

0 12 20 30 20 0.4 a point with respect to an element. This is done by building
1 42 80 120 100 1.4 the natural (area) coordinates and then if any of the areas
2 162 320 480 420 2.3

are less than zero, then the point is outside the element.3 642 1280 1920 1700 3.5
This means that the direction of the surface normal of this4 2562 5120 7680 6820 5.3

5 10242 20480 30720 27300 10.0 point with respect to two of the vertices of the triangular
element points in an opposite direction to the normal of

Note. The parameters are given for up to five refinement loops along the triangle. We can use this same approach using the
with cpu time.

generalized natural coordinates (13). On a sphere, only
the vertices of the triangle lie on the surface, but the rest
of the plane does not. Conversely, the departure point will
lie on the sphere and thus not on the plane of any of theeach element and subdivide the element using the pre-
triangles. Therefore, we must obtain the projection of theviously calculated midpoints corresponding to its three
departure point onto the plane defined by the three verticesedges. The grids for refinement loops zero through five
of the triangle. Recall that the equation of the plane isare illustrated in Figs. 5 through 10 and Table I shows the
given by N ? (x 2 x1) 5 0, where N is defined in (14). Thegrid parameters for the five refinement loops along with
equation of the vector passing through the origin and thethe cpu time required to generate the grids.
departure point may be written parametrically as

5.1. Tree Data Structure
x 5 t xd,Since for each refinement of the spherical geodesic grid

each triangle is subdivided into four triangles, this process
where xd is the departure point and t is the parametricforms a quadtree-like data structure. Therefore, we can
variable which for t 5 0 yields the origin and for t 5 1define an integer array itree[1:ntree,1:9], where ntree are
recovers the departure point. Substituting the parametricthe number of tree elements. Initially, the tree has 20
equation into the plane equation and simplifying yieldselements which coincide with the 20 triangular faces that

define the background icosahedron. Locations 1–3 are re-
served for the node identification numbers defining the

tp 5
N ? xd

N ? x1
,elements. Location 4 contains the parent of the current

element and locations 5–8 store the four children of the
current element. Finally, location 9 stores the element where tp is the parametric value that defines the projection
identification number of the current triangle. This location xp of the departure point xd onto the plane. Once this
is zero if this tree element is not an active element in the projection is obtained, we can then proceed with the natu-
grid. This occurs, for example, after one refinement for ral coordinates. As in the planar case, an inclusion is guar-
the initial 20 elements. These initial triangular elements anteed if all the normals point in the same direction. Figure
are no longer active elements in the grid but rather parents 3 illustrates the case when a point lies inside a given ele-
of four smaller triangles and so their location 9 is zero.
The children, however, will have nonzero identification
numbers because they are active elements of the grid. This
data structure can now be used to accelerate the searching
process which is required in order to determine the depar-
ture points for the Lagrange–Galerkin method.

5.2. Searching

The first step in the searching process involves finding
in which of the initial 20 elements of the background icosa-
hedron the departure point lies. These constitute the first
20 elements in the tree. Once this tree element has been

FIG. 3. Inclusion of a departure point.isolated, we can branch through its children to determine
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FIG. 4. Exclusion of a departure point.
FIG. 6. The spherical geodesic grid after one refinement loop.

ment. Figure 4 shows that a projection of a point can be
times include writing the output files. These grids not onlyfound on any given plane, but this point need not lie inside
have inherent data structures associated with them but arethe triangle. The dotted lines in these figures represent the
also extremely efficient for generating large grids. Delau-extension of the plane and the numbers 1, 2, 3 are the three
nay [1] and advancing front methods for discretizing anodes of the element, o is the origin, p is the projection, and
sphere require much more computing time.d is the departure point. In the exclusion case, the normal

defined by (x1 , x2 , xp) points in the direction opposite to
5.3. Advancing Front Unstructured Grids

the normal of the triangle (x1 , x2 , x3). Once the initial
element is found among the first 20 tree elements, the Much work has been done on advancing front methods,

specifically in the areas of computational fluid dynamicssearch becomes a log4 ntree search, where the general ex-
pressions (and aerodynamics), where irregular geometries need to

be discretized, say, over an airfoil or an entire aircraft.
These methods were developed specifically for these rea-

npoin(n) 5 4n(12) 2 6 On21

i50
4i, nelem 5 2(npoin 2 2), sons and, as a consequence, are very general (see [5, 6,

8]). However, these methods require an initial front or
boundary as a starting point for the triangulation. In thenedge 5 3(npoin 2 2), ntree 5 2 On

i50
(npoini 2 2)

case of the sphere, there are no physical boundaries as
such. We can introduce a virtual boundary, say at the

hold, where n are the number of refinement loops, npoin equator, and triangulate the northern and southern hemi-
is the number of nodes, nelem is the number of triangular spheres independently and later unite the two hemi-
elements, nedge is the number of element edges, and spheres. In this study we use the equator as the virtual
ntree are the number of elements in the tree. The above boundary but we can choose any great circle. Although
expression for npoin is only defined for n $ 1, where for the triangulations obtained with this approach are not as
n 5 0 we set npoin 5 12 in order to recover the initial regular or as efficient as those obtained with the geodesic
icosahedron. Table I illustrates these values for different grids it must be pointed out that the advancing front
values of n for up to five refinement loops. Also given are method is not only a grid generator but an adaptive re-
the cpu times required to generate each of the grids; these finement method as well. In other words, it has the capabil-

FIG. 7. The spherical geodesic grid after two refinement loops.FIG. 5. The initial icosahedron (zero refinement loops).
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example a 5 0 yields flow along the equator, whereas
a 5 f /2 defines flow along a great circle passing through
both poles. By using the mapping from spherical to
Cartesian space

x 5 a cos u cos l

y 5 a cos u sin l

z 5 a sin u,

FIG. 8. The spherical geodesic grid after three refinement loops. where

l 5 arctan Sy
xDity to dynamically alter the grid if the gradients change

dramatically in regions of the sphere. For the purposes of
this study, the advancing front method is used only to
generate fixed unstructured grids. Obtaining accurate solu- and
tions on quasi-structured grids (spherical geodesic) and
randomly generated unstructured grids (advancing front)
would suggest that the Lagrange–Galerkin method can be u 5 arcsin Sz

aD,
used on any kind of grid, including adaptive grids.

The advancing front method used in this study is the
spherical version of the method presented in [5, 6, 8]. In we can write the initial conditions in terms of Cartesian
[6, 8] a two-dimensional planar advancing front method is coordinates. This results in the velocity field
described. In [5] a three-dimensional surface triangulator
and fully three-dimensional method is described in detail.

u 5 2ũ sin l 2 ṽ sin u cos lThe advancing front method used in the current study is
an ad hoc version of the surface triangulator which has v 5 1ũ cos l 2 ṽ sin u sin l
been tailored for spherical geometries.

w 5 1ṽ cos u,
6. NUMERICAL EXPERIMENTS

along with the analytic solutionNumerical experiments are performed on the advection
equation on the sphere which is defined by (3). The initial
condition is given as in [21] by the cosine wave wexact (x, y, z, t) 5 wo(x 2 ut, y 2 vt, z 2 wt, t)

which is the solid body rotation of the cosine wave about
wo 5 5

h
2 S1 1 cos

fr
RD if r , R

0 if r $ R

the axis defined by a. The mapping from spherical to

where h 5 100, r 5 a arccos [sin uc sin u 1 cos uc cos u
cos(l 2 lc)], R 5 a, and (lc, uc) is the initial location of
the center of the cosine wave . In this study (lc, uc) is set
to (3f/2, 0) and the velocity field is assumed to be constant
and given by

ũ 5 1g(cos u cos a 1 sin u cos l sin a)

ṽ 5 2g sin l sin a,

where g 5 2fa/12 days and a determines the axis of rota-
FIG. 9. The spherical geodesic grid after four refinement loops.tion of the flow with respect to the north pole. As an
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method has no such stability limitation, assuming there are
no source terms, and so we can theoretically increase the
Courant number without limit; in this study we only use
Courant numbers in the neighborhood of two. A few cave-
ats are in order concerning the stability and accuracy of
Lagrange–Galerkin methods: while for pure advection
there are no stability limitations on the time step, exces-
sively large time steps will introduce errors into the trajec-
tory computations, thereby diminishing the overall accu-
racy of the method. In addition, for equations containing
source terms we are restricted by the time step due to

FIG. 10. The spherical geodesic grid after five refinement loops.
ODE stability conditions which, while less stringent than
PDE stability conditions, nonetheless must be obeyed. The
results illustrated are obtained on the spherical geodesic

Cartesian is only done once at the beginning in order to grid with three refinement loops (n 5 3). The correspond-
define the problem. From then on, the problem is solved ing number of grid points, triangular elements, edges, and
in Cartesian space. The L2 error norm is defined in the tree elements are given in Table I.
standard way Tables II and III demonstrate two important points: that

the generalized natural coordinates provide good solutions
for both the Euler–Galerkin and weak Lagrange–Galerkin
formulations and that the Lagrange–Galerkin method

ieiL2
5!E

V
[w(x, y, z, t) 2 wexact(x, y, z, t)]2 dV

E
V

[wexact(x, y, z, t)]2 dV
, yields a solution that is one order of magnitude more accu-

rate than its Eulerian counterpart. We can see from these
tables that it hardly matters which axis we use as the center

where V represents the surface of the sphere. In addition of our rotation because the end result is the same, as it
to the L2 norm, we also use two more measures, namely, should be. Not only is the Lagrange–Galerkin solution far
the first and second moments of the conservation variable more accurate but it achieves this higher level of accuracy
which are defined as without sacrificing efficiency.

By comparing the Lagrange–Galerkin method with s 5
1.13 to the Euler–Galerkin method with s 5 0.56 we see
that the computing times are a bit higher for the former.M1 5

E
V

w(x, y, z, t) dV

E
V

wexact(x, y, z, t) dV However, when we increase the Courant number for the
Lagrange–Galerkin method to s 5 2.27 we observe two
things: the accuracy of the Lagrange–Galerkin method hasand
increased and the computing time has decreased. In fact,
the computing time is now less than the time required for
the Euler–Galerkin method. The efficiency of the La-

M2 5
E

V
w(x, y, z, t)2 dV

E
V

wexact(x, y, z, t)2 dV
. grange–Galerkin method is achieved because the inherent

tree data structure of the geodesic grid has been exploited.
Without such a data structure, this algorithm would be

These values measure the conservation properties and dis- prohibitively expensive. In addition to being highly accu-
persion-diffusion of the numerical methods, respectively. rate and efficient, the weak Lagrange–Galerkin method
In the following sections, the results for the spherical geo- is shown here to be conservative which is an important
desic and advancing front grids are presented. improvement over the direct Lagrange–Galerkin method.

Figures 11 and 12 show the grid and contour plots after
6.1. Spherical Geodesic Grids five revolutions from the viewpoint (0, 21, 0) which is the

location (3f/2, 0) in spherical coordinates. In order toTables II and III show the results obtained using the
better understand the results we have taken slices of theEuler–Galerkin and Lagrange–Galerkin methods on the
contour plot along the latitudinal (keeping the longitudespherical geodesic grid. The tables show accuracy and effi-
constant at l 5 3f/2) and longitudinal directions (keepingciency measures for different values of a. For the Eulerian
the latitude constant at u 5 0). These curves pass throughmethod, the time step must be restricted such that the
the center of the cosine hill. The results at these slices areCourant number s is less than one in order for the scheme

to remain stable. On the other hand, the Lagrangian given in Figs. 13 and 14.
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TABLE II

The Results for the Spherical Geodesic Grid with npoin 5 642 and Different a for the
Euler–Galerkin Method for Up to Five Revolutions

Method s a Revs L2 Norm wmax wmin M1 M2 Time (s)

Euler–Galerkin 0.56 0 1 0.0842 99.01 24.87 1.0000 0.9998 86.0
2 0.1506 99.40 28.89 1.0000 0.9997 109.0
3 0.2125 98.78 210.61 1.0000 0.9998 124.1
4 0.2717 97.77 214.40 1.0000 0.9998 142.9
5 0.3279 95.47 218.20 1.0000 0.9998 162.1

Euler–Galerkin 0.56 f/2 1 0.0842 99.01 24.87 1.0000 0.9998 86.0
2 0.1506 99.40 28.89 1.0000 0.9997 109.0
3 0.2125 98.78 210.61 1.0000 0.9998 124.1
4 0.2717 97.77 214.40 1.0000 0.9998 142.9
5 0.3279 95.47 218.20 1.0000 0.9998 162.1

Although the grids used for both methods are identical, symmetry, the Lagrange–Galerkin solution not only re-
tains its symmetry but is also free from the oscillations thatthe Euler–Galerkin method shows asymmetries in the con-

tour plot, whereas the Lagrange–Galerkin method pro- commonly plague higher order Eulerian methods. In order
to suppress these oscillations, higher order Eulerian meth-duces a symmetric solution (see Figs. 11 and 12). These

differences are even more pronounced when viewed from ods must use ad hoc methods such as TVD, MUSCL, or
ENO schemes in conjunction with flux-limiting [5, 6]. Thesethe longitudinal and latitudinal slices. Figures 13 and 14

show that while the Euler–Galerkin solution has lost its schemes automatically switch from higher order to first

TABLE III

The Results for the Spherical Geodesic Grid with npoin 5 642 and Different a for the
Lagrange–Galerkin Method for Up to Five Revolutions

Method s a Revs L2 Norm wmax wmin M1 M2 Time (s)

Weak Lagrange–Galerkin 1.13 0 1 0.0078 99.81 20.52 0.9994 1.0019 93.5
2 0.0123 99.66 20.72 0.9989 1.0039 119.4
3 0.0164 99.53 20.86 0.9984 1.0060 144.9
4 0.0203 99.42 20.98 0.9980 1.0082 170.6
5 0.0240 99.33 21.14 0.9976 1.0104 196.3

Weak Lagrange–Galerkin 1.13 f/2 1 0.0078 99.81 20.52 0.9994 1.0019 93.5
2 0.0123 99.66 20.72 0.9989 1.0039 119.4
3 0.0164 99.53 20.86 0.9984 1.0060 144.9
4 0.0203 99.42 20.98 0.9980 1.0082 170.6
5 0.0240 99.33 21.14 0.9976 1.0104 196.3

Weak Lagrange–Galerkin 2.27 0 1 0.0070 99.84 20.38 0.9997 1.0002 80.8
2 0.0103 99.70 20.46 0.9995 1.0006 93.6
3 0.0130 99.55 20.55 0.9993 1.0011 106.8
4 0.0155 99.40 20.69 0.9991 1.0016 119.5
5 0.0179 99.25 20.82 0.9989 1.0021 132.5

Weak Lagrange–Galerkin 2.27 f/2 1 0.0070 99.84 20.38 0.9997 1.0002 80.8
2 0.0103 99.70 20.46 0.9995 1.0006 93.6
3 0.0130 99.55 20.55 0.9993 1.0011 106.8
4 0.0155 99.40 20.69 0.9991 1.0016 119.5
5 0.0179 99.25 20.82 0.9989 1.0021 132.5
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FIG. 12. The grid and contours for the Lagrange–Galerkin solutionFIG. 11. The grid and contours for the Euler–Galerkin solution after
five revolutions using the spherical geodesic grid. The Courant number after five revolutions using the spherical geodesic grid. The Courant

number is s 5 1.13, npoin 5 642, and a 5 0.is s 5 0.56, npoin 5 642, and a 5 0.

order near strong gradients in order to avoid dispersion decomposition of this particular solver. Although we have
developed an incomplete Choleski conjugate gradienterrors and remain monotonic. While neither the Euler–

Galerkin nor the Lagrange–Galerkin methods are natu- method (ICCG) with zero fill-in for the Lagrange–
Galerkin method, we have used an LU decomposition forrally monotonic, the Lagrange–Galerkin method exhibits

far less dispersion than its Eulerian counterpart. In fact, this study in order to use the same solver for both the
Euler–Galerkin and Lagrange–Galerkin method. Thisthis dispersion is almost negligible. For applications where

preserving monotonicity is imperative, such as in the allows for fair timing comparisons between the two meth-
ods. (The ICCG method cannot be used with the Euler–conservation of mass equation for Navier-Stokes and

the precipitation in meteorological applications, the Galerkin method because the advection terms prevent the
coefficient matrix from being symmetric positive-definite.)Lagrange–Galerkin method can be made monotonic by

using principles similar to those used in TVD and FCT The results in Table IV show that the Lagrange–
Galerkin method is competitive in terms of efficiency withschemes [16].

Table IV shows the solutions for the spherical geodesic the Euler–Galerkin method. However, the differences in
accuracy are astounding. As the grid becomes finer, thegrid with one, two, and three refinement loops. The presen-

tation of these results must be prefaced by noting that the Lagrange–Galerkin method achieves even higher levels of
accuracy than the Euler–Galerkin method. For npoin 5matrix solver used to obtain these results does in no way

represent the most efficient solver. In fact, the major por- 162, the Lagrange–Galerkin method is 10 times more accu-
rate, but for the fine resolution grid with npoin 5 2562,tion of the cpu times reported are spent on the matrix

FIG. 13. Views of the cosine hill for the Euler–Galerkin solution after five revolutions using the spherical geodesic grid. The plot on the left
shows the cosine hill slice taken at l 5 3f/2. The plot on the right shows the cosine hill slice taken at u 5 0. The Courant number is s 5 0.56,
npoin 5 642, and a 5 0.
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FIG. 14. Views of the cosine hill for the Lagrange–Galerkin solution after five revolutions using the spherical geodesic grid. The plot on the
left shows the cosine hill slice taken at l 5 3f/2. The plot on the right shows the cosine hill slice taken at u 5 0. The Courant number is s 5 1.13,
npoin 5 642, and a 5 0.

the Lagrange–Galerkin method is almost 20 times more grids on the sphere. This is important because it suggests
accurate. In addition, the results show that the weak La- that this method can be used in conjunction with adaptive
grange–Galerkin method is also conservative. By using the grids. We have chosen to work primarily with the spherical
inherent tree data structure and optimal matrix solvers, geodesic grid because it offers inherent fast searching tools
the Lagrange–Galerkin method can be used for solving which the advancing front method does not. However, it
practical problems on spherical geodesic grids accurately, is possible to construct a quadtree-like data structure for
conservatively, quasi-monotonically, and efficiently. searching, but it is not inherent to the grid and must be

generated independently.
6.2. Advancing Front Unstructured Grids For brevity, we only illustrate results for a 5 0. This

table clearly shows that the Euler–Galerkin and La-Table V shows the results obtained using the Euler–
grange–Galerkin methods work well even for such randomGalerkin and Lagrange–Galerkin methods on the advanc-
and disproportioned grids as those produced by the ad-ing front unstructured grids. Since advancing front grid
vancing front method. The aspect ratio of maximum togenerators cannot be constrained to produce a given num-
minimum lengths for the advancing front grid is 3.1, whileber of grid points, a grid was selected that most closely
for the geodesic grid it is 1.4. Large aspect ratios couldresembled the spherical geodesic grid in number of grid
conceivably cause problems for Eulerian methods becausepoints (npoin 5 645 for the advancing front grid and
the Courant number is determined by the smallest edge.npoin 5 642 for the geodesic grid). We illustrate the results
This edge can be considerably smaller than the majorityon this grid in order to show that the Lagrange–Galerkin

method can be used on randomly generated unstructured of the edges in the grid, thereby restricting the time step

TABLE IV

The Results for the Spherical Geodesic Grid for Various npoin for the Euler–Galerkin and
Lagrange–Galerkin Methods for Five Revolutions

Method s npoin L2 Norm wmax wmin M1 M2 Time (s)

Euler–Galerkin 0.56 162 0.7559 68.04 232.18 1.0000 0.9982 3.2
642 0.3279 95.47 218.20 1.0000 0.9998 162.1

2562 0.0949 98.88 26.22 1.0000 0.9999 10651.3

Weak Lagrange–Galerkin 2.27 162 0.0690 98.02 21.89 0.9950 1.0025 16.9
642 0.0179 99.25 20.82 0.9989 1.0021 132.5

2562 0.0052 99.88 20.36 0.9995 1.0014 8282.6
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TABLE V

The Results for the Advancing Front Unstructured Grid with npoin 5 645 for the Euler–Galerkin and
Lagrange–Galerkin Methods for Up to Five Revolutions

Method s a Revs L2 Norm wmax wmin M1 M2 Time (s)

Euler–Galerkin 0.74 0 1 0.0978 97.18 25.27 1.0000 0.9995 87.1
2 0.1643 95.22 211.55 0.9999 0.9992 106.3
3 0.2261 98.45 212.15 0.9999 0.9989 127.9
4 0.2850 99.70 216.61 0.9999 0.9986 146.7
5 0.3420 99.68 219.37 0.9998 0.9983 166.2

Weak Lagrange–Galerkin 1.48 0 1 0.0175 98.16 20.73 1.0002 0.9991 308.8
2 0.0235 97.19 21.02 1.0005 0.9987 547.4
3 0.0283 96.47 21.24 1.0008 0.9984 783.4
4 0.0327 95.86 21.40 1.0012 0.9982 1012.3
5 0.0368 95.31 21.54 1.0016 0.9981 1248.0

to prohibitively small values. This disadvantage becomes At this point, however, the advancing front approach is
not yet practical because a data structure has not beenmore pronounced with adaptive grids.

Figures 15 and 16 show the grid and contour plots for developed for the searching operations. This is evident
from the large cpu times reported in Table V for thethe two methods after five revolutions. Once again, the

Euler–Galerkin method exhibits asymmetries in the solu- Lagrange–Galerkin method. Once this data structure is
constructed, the Lagrange–Galerkin method can be usedtion produced by the dispersive nature of the method,

whereas the Lagrange–Galerkin method yields a symmet- in conjunction with adaptive unstructured grids on the
sphere. This promises to be a potent combination as theric result.

Figures 17 and 18 show the results for longitudinal and adaptive grids increase the accuracy further, while the le-
niency of the CFL restriction for the Lagrange–Galerkinlatitudinal slices after five revolutions. The Euler–Galerkin

solution suffers severe dispersion errors while the La- method allows a large fixed time step to be used throughout
the grid adaptation. This differs from using adaptive gridsgrange–Galerkin method does not. This result confirms

that the weak Lagrange–Galerkin method can be used with Eulerian methods because with these methods once
the minimum grid size is decreased, the time step mustsuccessfully to obtain smooth (nondispersive) yet highly

accurate solutions on the sphere. Furthermore, these high also be decreased proportionally in order to satisfy the
CFL condition. Since Lagrangian methods do not haveorder accuracy solutions are independent of the grid types;

they can be obtained on spherical geodesic or advancing this restriction they can be used quite efficiently with adap-
tive grid strategies.front grids.

FIG. 15. The grid and contours for the Euler–Galerkin solution after FIG. 16. The grid and contours for the Lagrange–Galerkin solution
after five revolutions using the advancing front grid. The Courant numberfive revolutions using the advancing front grid. The Courant number is

s 5 0.74, npoin 5 645, and a 5 0. is s 5 1.48, npoin 5 645, and a 5 0.
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FIG. 17. Views of the cosine hill for the Euler–Galerkin solution after five revolutions using the advancing front grid. The plot on the left shows
the cosine hill slice taken at l 5 3f/2. The plot on the right shows the cosine hill slice taken at u 5 0. The Courant number is s 5 0.74, npoin 5

645, and a 5 0.

7. CONCLUSIONS search operations required by the Lagrange–Galerkin
method would be prohibitively expensive. The numerical

Generalized natural Cartesian coordinates for triangular experiments show that the Lagrange–Galerkin method can
elements in three-dimensional space are presented. When be used not just with the quasi-structured grids resulting
these natural coordinates are used as the basis functions, from the spherical geodesic approach, but also with ran-
exact integrals for all of the finite element terms can be dom and disproportionate unstructured grids such as those
obtained. This has significant implications not just for Eu- created by the advancing front method. This last finding is
lerian methods but for Lagrangian methods as well, espe- important because it suggests that the Lagrange–Galerkin
cially if exactly integrating Lagrange–Galerkin methods method can be used in conjunction with adaptive grids;
are to be explored. This paper describes how these ideas this combination should provide an even more accurate
can be used to apply the exactly integrating Lagrange– solution. Efficient advancing front grids on the sphere need
Galerkin method on the sphere. The spherical geodesic to be explored. These grids can be used not just for adaptive
grids are beginning to gain popularity and the tree data grid refinement but in conjunction with the exactly inte-
structure developed in this paper permits the extension of grating Lagrange–Galerkin method as well, since this
these grids from Eulerian numerical methods to Lagrange– method requires a grid generation step in order to integrate

the elemental equations exactly.Galerkin methods. Without such a data structure, the

FIG. 18. Views of the cosine hill for the Lagrange–Galerkin solution after five revolutions using the advancing front grid. The plot on the left
shows the cosine hill slice taken at l 5 3f/2. The plot on the right shows the cosine hill slice taken at u 5 0. The Courant number is s 5 1.48,
npoin 5 645, and a 5 0.
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