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A b s t r a c t - - T h e  Lagrange-Galerkin spectral element method for the two-dimensional shallow water 
equations is presented. The equations are written in conservation form and the domains are discretized 
using quadrilateral elements. 

Lagrangian methods integrate the governing equations along the characteristic curves, thus being 
well suited for resolving the nonlinearities introduced by the advection operator of the fluid dynamics 
equations. 

Two types of Lagrange-Galerkin methods are presented: the strong and weak formulations. The 
strong form relies mainly on interpolation to achieve high accuracy while the weak form relies pri- 
marily on integration. Lagrange-Galerkin schemes offer an increased efficiency by virtue of their less 
stringent CFL condition. The use of quadrilateral elements permits the construction of spectral-type 
finite-element methods that exhibit exponential convergence as in the conventional spectral method, 
yet they are constructed locally as in the finite-element method; this is the spectral element method. 

In this paper, we show how to fuse the Lagrange-Galerkin methods with the spectral element 
method and present results for two standard test cases in order to compare and contrast these two 
hybrid schemes. (~) 2003 Published by Elsevier Science Ltd. 

K e y w o r d s - - F i n i t e  element, Lagrange-Galerkin, Shallow water equations, Semi-Lagrangian, Spec- 
tral element. 

1. I N T R O D U C T I O N  

T h e  advec t ion  t e r m s  in t h e  govern ing  equa t ions  of fluid mo t ion  present  fo rmidab le  chMlenges 

to m a n y  spa t ia l  d i sc re t i za t ion  me thods ,  inc luding  Ga le rk in  me thods .  These  t e r m s  prevent; t he  

o p e r a t o r  f rom be ing  se l f -~ l jo in t  and as a resul t ,  Ga le rk in  m e t h o d s  are  no longer  op t imM for t he  

spat ia l  d i scre t iza t ion .  Researchers  have t r ied  c i r cumven t ing  this  p rob l em by us ing h igh-order  

Eu le r i an  m e t h o d s  and  charac te r i s t i c -based  me thods .  In  this  sect ion,  a br ief  overv iew of some of 

t he  more  in te res t ing  m e t h o d s  is given. 

A l imi ted  n u m b e r  of  new Eu le r i an  m e t h o d s  has been  in t roduced  in recent  years  for solving 

hyperbo l i c  pa r t i a l  different ial  equa t ions ,  pe rhaps  t he  best  be ing  the  spec t ra l  e l emen t  m e t h o d  ]1,2]. 
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The spectral element method combines the benefits extracted from both the spectral method and 
the finite-element method. It combines the high-order accuracy of the spectral method with the 
geometric flexibility of the finite-element method. This method offers high accuracy solutions and 
spectral convergence (provided the solution is smooth) but at the price of having to use small 
time steps (due to the explicit solvers typically used) and structured grids (due to the restriction 
that the elements be quadrilaterals). Recently, Giraldo [3] showed how to increase the time step 
by combining the strong Lagrange-Galerkin method with the spectral element method. 

In contrast, there exists a multitude of characteristic-based methods. These methods combine 
standard spatial discretization methods (such as the finite-element method) with the method of 
characteristics. By integrating the equations in time along the characteristics, the resulting spatial 
operator becomes self-adjoint which then justifies the use of Gaterkin spatial discretizations. 
Below, we discuss the characteristic-based methods that are explored in this paper and those 
that are related to the methods that we shall use. 

In the strong Lagrange-Galerkin method the time derivative and the advection terms are 
combined into the Lagrangian derivative and the resulting operator is then discretized using 
the standard finite-element method. This is the approach used by Bercovier and Pironneau [4], 
Bermejo [5], Douglas and Russell [6], and Priestley [7], for example. In this method, the basis 
functions are the typical Lagrange polynomials used in the standard finite-element method which 
are only dependent on the spatial coordinates. The success of this method hinges on determining 
(interpolating) the values at the feet of the characteristics. 

Related to this method are the semi-Lagrangian [8], characteristic~Galerkin [9], and Taylor- 
Galerkin methods [10]. The semi-Lagrangian method is essentially the strong Lagrange-Galerkin 
method with the exception that the spatial discretization is achieved through finite differencing; 
this method is quite ubiquitous in the meteorology community. 

The characteristic-Galerkin method avoids interpolations by using Taylor series expansions to 
approximate the values at the feet of the characteristics. Therefore, the computations all take 
place in terms of the Eulerian grid which eliminates the difficulties of the Lagrangian grid but 
at the expense of having to use smaller time steps due to the stricter stability restrictions which 
govern all Eulerian methods. 

Taylor-Galerkin methods are essentially Lax-Wendroff schemes designed for finite element spa- 
tial discretizations and are quite similar to characteristic-Galerkin methods. In fact, they can be 
shown to be equivalent for scalar equations [11]. 

The weak Lagrange-Galerkin method, on the other hand, uses basis functions which are de- 
pendent on both space and time by forcing the basis functions to vanish along the adjoint of the 
transport operator (the transport operator referring to a homogeneous conservation law); this 
results in the basis functions vanishing along the characteristics. Using the conservation form 
of the governing equations simplifies the resulting discretization by introducing the Reynolds' 
transport theorem [121 which then eliminates the boundary terms arising from the integration 
by parts used to obtain the adjoint of the transport operator. This is the method introduced by 

Benque et al. [13,14]. 
Lagrange-Galerkin methods have increased in popularity in the last ten years because they offer 

increased accuracy and efficiency by virtue of their independence on the CFL condition; however, 
almost all research has involved the strong method as opposed to the weak method. Currently, the 
only applications (of which this author is aware of) using the weak method or variations thereof 
are the following: advection [!3,15], shallow water on the plane [15,16], Navier-Stokes [14], and 
shallow water on the sphere [17,18]. 

In this paper, we show how to combine the Lagrange-Galerkin methods with the spectral 
element method. This paper builds on our previous paper [3] in which we showed theoretically 
how to combine the strong Lagrange-Galerkin and the spectral element methods. In this paper, 
we combine both the strong and weak Lagrange-Galerkin methods with the spectral element 
method and apply these schemes to the two-dimensional shallow water equations. 
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2. SHALLOW WATER EQUATIONS 

The two-dimensional shallow water equations in conservation form are 

O O 0 ~uv 

o-~ + ~  ~°~+~ :2 +~ r ° ] = +fy)v , 

L - fqou  

but note tha t  if we move the pressure terms to the right-hand side, we get 

o 1 r 1 
- -  ~ + + ~ [ : v  2 0 :  
Ot ~x  q°u2 qouv = J - ~ x  + fqov . 

~ov l_~Ouvj [-:~-{y f : u J  

This system can now be written more compactly as 

0~o 
0-7 + v .  (~,u) = s(~,) ,  

where 

LqOVJ 

o ] 
-qo -~z + f ~ov . 

O~ 
-: -~y - f:u] 

(1) 

(2) 

(3) 

The equations are solved for the three conservation variables ~, ~u, and ~v. Before proceeding 
to the discretization of the weak Lagrange-Galerkin method, let us first look at the discretization 
obtained by an Eulerian method. This will serve both for contrast and also because we require 
one Eulerian time step before using the Lagrange-Galerkin methods. 

3. SP E CT RAL  ELEMENT M E T H O D  

3.1. Bas i s  F u n c t i o n s  

The conservation variables belong to the following spaces: 

e H i ( a ) ,  (~u ,~v)  e H i ( a ) ,  

and their basis functions, likewise, are defined as 

~2: E H i ( a ) ,  ",'i'd:~°u'~ov C n l ( f t ) ;  

in other words, they belong to the set of square integrable functions whose first derivatives are 
also square integrable. The Hilbert space H l(f~) is defined as 

H I ( a )  = {~ C Hl ( f t )  I ¢ ( r )  = 0} ,  

where F denotes the boundary  of the domain ft. Because we are only using quadrilateral elements, 
we can construct  the two-dimensional basis functions as a tensor product  of the one-dimensional 
Legendre cardinal functions such as 

~bi(~, rl) -- hj(~) hk(~)), (4) 

where i = 1 , . . . ,  p2 and j, k = 1 , . . . ,  P .  The integer P denotes the number of Legendre-Gauss- 
Lobat to  (LGL) points in each direction (( and rl), and is equal to P = p + 1, where p denotes 
the polynomial order of the Legendre cardinal functions. 
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The one-dimensional Legendre cardinal functions are defined as 

(1 - (2) L; ( ( )  
hi ( ( )  = p(p + 1)Lp((i)(( - ( i ) '  (5) 

where L p  is the pth-order Legendre polynomial and Lp is its derivative, and the mapping from 
physical space to computational space is achieved by the transformation 

2 
( - -  - -  (X - -  X l )  - -  1 ,  $ e [Xl,X2], (6) 

X2 - -  Xl 

where Xl and x2 are the physical coordinates defining the spectral element. But, in order to keep 
the algorithms as general as possible, it is best to construct the one-dimensional basis functions 
and their derivatives in the following form: 

h{(() : E \ ~ ] '  (7) 

j=l 
j#{ 

0((():EII 
k=l  j = l  
k#i  j # i  

where the ({, (j ,  (k are the permutations of the collocation points. The reason why it is best 
to write the cardinal functions in this form is that  we may not always write the functions as 
functions of the Gauss-Lobatto points. In Lagrange-Galerkin methods, we need to compute the 
values of the unknown variables at the feet of the characteristics and since we shall use the basis 
functions for these interpolations, it is best to define these Cardinal functions in a general form. 

The recurrence relation for Legendre polynomials is given by 

Lp( ( )  = 2 p -  1 ( L , - I ( ( )  - p - 1 L p - 2 ( ( ) ,  
P P 

where L0(() = 1 and LI(()  = (. The derivatives are given by 

Lp(() = 2 p -  1 [L , - I ( ( )  + ( L p _ l ( ( ) ]  - ; -  1 Lp_2(( ) 
P P 

and 
L p ( ( ) -  2 p - 1  [ p t~sr2L'-l'c ~+~, p t~jJCL"-l'c' 1 P - l L , ,  ,c~ 

- -  - -  p-2k%;'  p p 

where L~(() = L~(() = L~'(() = 0 and L~(() = 1. In order for the basis functions to be cardinal 
functions, the collocation points must satisfy the relation 

(1 - (2) Lp(()  = 0, (9) 

which means that  they will be the roots of the numerator in (5); these points are the Gauss- 
Lobatto points. The roots of (9) can be obtained by Newton's method. Taking a Taylor series 
expansion with respect to ( and rearranging, we get the following iterative relation: 

(1 - (2) L~(()  j = 0 , . . . , p ,  
(}n+l = ( ~  _ -2 (L~( ( )  + (1 - (2) L~(¢) ' 

which has the following corresponding Gauss-Lobatto quadrature weights: 

2 
wj  = p(p + 1 ) [Lp( ( j ) ]  2 • (10) 
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By using equations (5)-(10), we can automatically generate any order set of Legendre cardinal 
basis functions along with their associated collocation points and Gauss-Lobatto integration 
weights. The coordinates within an element are approximated by the basis functions as 

p2 p2 p p 

x = ~ x , ~ ( ~ , 7 ) ,  where E ~i(~,7) = E E h3(~)hk(7), 
i=1 i=1 j = l k = l  

and so its derivatives can be approximated by 

p2 . p2 
Ox O~i Oz Og,~ 
0--~ = E xi -~-~- (~, 7) and 0~ = E x ~ - ~  ({,7), 

i=1 i=1 

where P = p + 1 represents the number of grid points in the { and 7 directions. The remainder 
of the derivatives are obtained following the same procedure. 

3.2. I n t e g r a l s  

To keep the algorithm as general and as automatic as possible, we evaluate the integrals 
numerically. Therefore, as you will see, the mass matrix can be evaluated as 

Q2 

q = l  

where Q represents the number of Legendre-Gauss-Lobatto quadrature points in the ~ and .r~ 
directions and J is the Jacobian of the mapping from physical to computational space and is 
given by 

Ox Oy Ox Oy 
I JL-o~o7 o7o~ 

You will note that  the mass matrix only contains polynomials of the order 2p in each direction. 
However, this is not the maximum polynomial order contained in the equations. The Coriolis 
matrix Fij contains polynomials of the order 3p and so we require at least Q = 3(19 + l) /2 
quadrature points. These quadrature rules guarantee the exact integration of all of the matrices 
in the equations. 

4.  E U L E R - G A L E R K I N  M E T H O D  

Beginning with (2), we can define an Eulerian finite-element method by taking the weak tbrm 

-N- + v .  (~u)  - s @ )  da  = 0 

and integrating by parts (Green's theorem) such as 

v .  (¢~ou) = V;v @ u )  + (~ou). vW 

to arrive at 

/ ~b~-~t d~ + fpn'U~cpdF-/ V~b'(~°u)d~-/ S(~°)d~=O 

In the case of no-flux boundary conditions, the second integral vanishes, in other words 

n • u~b~p dF = O, 
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and we are left with 

/o /o @ -~- dO = V%b.  (qou) dO + S(qo) dO. 

The resulting system of ordinary differential equations can now be written as 

cO~ 
cO-7 = H(qo), 

where 
H(qo) = M~I[(A~jk • uk) ~ j  + Si(qo)] 

and 
/ *  

A~jk = j~ V¢~¢jCk dO. 

Integrating in time by a general family of Runge-Kutta schemes yields 

~o k + l  = ~o '~ + A t ~  H ( ~ k - 1 )  , 

where 
1 

/ 3 -  M - k + l ' k = l ,  . . . , M and ~po = cpn.  

This scheme is required for the first time step because, as you will see, Lagrange-Galerkin methods 
require the variables to be known at two time levels before they can be used. Alternatively, we 
can also derive a second-order leapfrog scheme as follows: 

qon+l ~. ~ n - 1  _~_ 2At  H (~on). (11) 

This scheme is used to obtain the time step used for comparison in the time step ratio a in (22) 
in the results section. 

5.  S T R O N G  L A G R A N G E - G A L E R K I N  M E T H O D  

5.1.  S p a t i a l  D i s c r e t i z a t i o n  

In order to arrive at the strong form of (2) we first need to expand the divergence term 

~' • (~ou) = ~oV.  u + u .  V ~ ,  

thereby obtaining 

where 

¢ - b T + u . V ~ + ~ V . u - S ( ~ )  dO=0, 

dqo _ 0~  
+ u -  V~o 

d t  cOt 

denotes the Lagrangian derivative. Substituting this relation results in the following final form: 

¢ ~ dO = %b(S(qo)- ~ V . u )  df~, (12) 

where 
dx 

- -  = u (13) 
d t  

is used to obtain the particle trajectories. Equation (13) is solved using the Runge-Kutta method 
presented in [15]. 
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5.2. T i m e  D i s c r e t i z a t i o n  

A strong Lagrange-Galerkin spectral element method was introduced in our previous paper i3]. 
This method proved to be extremely accurate and stable. The time discretization implemented 
in that  scheme was the 0 algorithm. Let us apply this time discretization method to the shallow 
water equations. Integrating (12) in time by the 0 algorithm yields 

Sa,,,+l (~q°~+l) dfl"+l = ~,,+, (~q°~) driP+' 

-1- At ffl-+l ¢ [0 (S (qO n+l) -- t~n+lv" U n-p'l) 

+ (1 - 0) (s  (~") - ~ " v  u")] da m+', 

(,14) 

which represents a two-time level scheme and gives the forward Euler, trapezoid rule, and back- 
ward Euler for 0 = 0, 1/2, 1, respectively. The scheme 0 = 1/2 yields a second-order accurate 
scheme and is unconditionally stable with respect to pure advection. The other two schemes are 
both first order and the 0 = 0 is only conditionally stable while the 0 = 1 is too diffusive. Let us 
now see what the element equations would look like using this formulation. 

5.3. E l e m e n t  E q u a t i o n s  

Returning to (14) and substituting the conservation variables from (3) gives 

ia-+l ~9 dfln+l .+1 d[~n+l ~u = 

~v (pv .1 
r /Ou  Ov'~ 7 ,~+1 

J I O~ / Ou Ov 

I o~ . (Ou 

I ouo: Sa 0~o Ou Ov 
+ At(1 - 0) ,<+, ~b - ~  Ozz + f¢pv - qou -~x + ~y 

0~ (0u 0v) 

dfy~ + a 

df~ n + l  , 

which are the equations to be solved within each element. Approximating the conservation 
variables within each element ft by the following expansion: 

p2 

~°(~) = E ~bj~3 
j=l 

and letting 

M~j = / a  ¢i~bj dft, 

p2 

k=l ~ Oz uk +-~y  Vk dft, 
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gives the following matrix form: 

Mij + At9Dij 0 

step; IMij + AteD,? (15) 
step; +AteF,, 

where 

[MQ - At(l - e)Dij](cp)j 

1 
n [Mij - At(l - e)Dij](cpu)j - At(1 - 0) [PG(p)j - Fzj(cpv)j] , 

[Kj - At(l - WAj] (qv)j - At(l - 0) [P$(q)j + Fij(pU)j] 

which represents not only a strongly coupled system but also a nonlinear system. We can also 

see that for divergence free flow (DQ = 0) the mass equation becomes linear. Case 1 represents 

this type of flow and so we will not encounter any nonlinearities in Case 1 and we could then 

use the 8 algorithm. However, for divergent flow we have nonlinearities and in order to avoid 

them we replace the 6’ algorithm with the leap frog scheme given in (ll), except that now the 

integration in time is done along the characteristics. This completely avoids having to invert 

a nonlinear matrix; however, there is a price to be paid for simplicity and this price comes in 

the form of inefficiency due to the smaller time step required to maintain stability. In the next 

section, we explore another type of Lagrange-Galerkin method that circumvents this problem. 

6. WEAK LAGRANGE-GALERKIN METHOD 

6.1. Spatial Discretization 

The weak form of (2) is 

J [ cl 
liig- 

and using the calculus identities 

and v. (+Pu) = $0. (CPU) + (CPU) . VdJ 

yields 

J[ R $ (IlP) + v ($vu) - P g + u. w] - wv-21 do= 0. 3 [ 

+ V. (cpu) - S(p) 
1 

dR = 0 

The first bracketed term of (16), using Reynold’s transport theorem, can be written as 

and the second bracketed term is actually the characteristic equation 

(16) 

(17) 

dlC, --_ 
dt 

g+u-v+o, (18) 
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where 
dx 

dt 

is used to predict the particle trajectories along which the basis functions vanish. The charac- 
teristic equation is equal to zero because we are constraining the basis functions to be constant 
along the particle trajectories. Therefore, in essence, the basis functions '~b are functions of }~oth 
space and time (see [15] for a more detailed discussion). 

Substituting (17) and (18) into (16) yields the system 

'£ £ d-7 (W~) dfi = CS(~) da. (19) 

Note that  the advection operator has disappeared from the equations; however, the correct imr - 
ticle trajectories are accounted for by the trajectory equation (13). In addition, consider that 
the divergence of the velocity has also disappeared or rather has been absorbed by virtue of the 
Reynold's transport  theorem. 

6.2. T i m e  D i s c r e t i z a t i o n  

Integrating (19) in time by the 0 algorithm yields 

' = 0 + O) ,£, ,  "~'S(~) i~,,+l(@q~)d~"~n+l J a , ( ~ ) d f l n + A t [ £ , + l ~ S ( ~ o ) d f i n + l  ( 1 -  d~Yl],(20) 

which represents a two-time level scheme. In this paper, 0 = 1/2 is used because it yieh:ts a 
second-order accurate scheme and is unconditionally stable with respect to pure advection. The 
trajectory equation (13) is required for closure. The accurate solution of the trajectory equation 
is perhaps the most important part of Lagrangian methods. Once again, we solve this equation 
using the Runge-Kutta trajectory calculation scheme described in one of our previous papers [15]. 

6.3. E l e m e n t  E q u a t i o n s  

Returning to (20) and substituting in the conservation variables from (3) gives 

ift,,+l ~b dft '~+t *) d~ '~ = ~ou 
k ~ov J g~'V 

+Ate [_ da 

,st>+, L_~o ~ f~ouJ 

+ ~xt(1 - o) £,~ Va 01 
O~ 

-~o  -g-gy - fqouJ 

which are the equations to be solved within each element. Once again approximating the conser- 
vation variables within each element ft by the relation 

p2 

j = l  
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and using the following notations for the different matrices: 

M~3=~p~¢¢d~= f+l f +1 
J -1 g--1 

IJl¢,(~,~)¢s(~,~)dCdn, 
p2 +i 

k = l  1 

k = l  

/),/_+1 I,,i +, ¢,, ,,/ +, ¢,, 
Lt, ~ o~ 1 1 k = l  

k = l  

L..I_I S__..l_ 1 'J i~2i( ' ,~)~2J(' ,~7) ~Pl [((9'lh~(''') i~, 
LL '~ 0y 1 1 k = l  

p2 

IJI ¢~(~, n) ¢~(~, n) ~ [¢k(5, n) fk] d~ dT], 
k=l 

+ ock(¢,n) ov) ] 
o ~  Ox %ok d( d~?, 

+ c%7 -~y ~k d~dT?, 

yields the following matrix form: 

where 

o 
AtoP~ M,j -AtOF, j (~u)~ | = br | ,  
AtOP~ +~tOF,~ M,j (~v)j J b~ J 

(21) 

b~ I = M,;(fub - st(1 - e) [P~(~)j - F~;(~v);] , 

which appears to he nonlinear. However, note that the mass equation (the first row) is completely 

decoupled from the momentum equations (second and third rows). Therefore, we can solve for 

the mass and then use the now known values of ~n+l in the momentum equations. Therefore, 

the terms P/~ and P/~ can now he moved to the right-hand side which then yields a linear but 
skewed symmetric matrix. The difference between the strong (15) and weak (21) methods is that 

the weak method does not contain the velocity divergence term. Note also that in the strong 

method all of the integrals occur within the domain (elements) at the time n + i. However, in 

the weak method the left-hand matrices occur at this new time but the right-hand side matrices 

are all integrated at the feet of the characteristics, namely at n. Because in the weak method, we 

are actually integrating the control volumes at the feet of the characteristics, this operation then 

takes the place of the velocity divergence; in other words, the integrals account for the dilation 

(expansion or contraction) of the fluid volume. This process is depicted in Figure I. In the 
strong method, as in any Eulerian scheme this has to be accomplished explicitly by including the 

divergence term. Therefore, it can be said that the weak method relies heavily on integration as 

opposed to the strong method, which relies more on interpolation of the values at the feet of the 
characteristics. 

The news is not all good for the weak method, however. Because the resulting system is 

not symmetric we cannot utilize many of the best known solvers such as the conjugate gradient 

method. There are, however, variants of these methods that can be used such as the biconjugate 

gradient method. Because the system is quite sparse, direct methods are inefficient. For the 

moment, we are employing a simple Jacobi iteration method, although we are also currently 
exploring more sophisticated methods. 
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E3 E4 

E2 

Figure 1. The dilation of the Eulerian element (E) area to the Lagrangian element (L) 
area traced by the particle trajectories. 

7. S E A R C H I N G  A L G O R I T H M S  

The crux of any Lagrangian scheme is the accurate calculation of the particle trajectories, in 
other words, the correct solution of the trajectory equation (13). Once the correct trajectories are 
computed, it then remains to interpolate either the departure points (in the strong method) or the 
quadrature points (in the weak method). For structured or quasi-structured grids, ad hoc seacch- 
ing algorithms can be constructed, but for unstructured or general grids quadtree algorithms are 
the best choice. 

Note that the trajectory equation only gives us the departure point Xd and tells us nothing of 
where this point is located. Therefore, we need to devise some means of searching the elements 
of the grid to determine which element contains the departure point in order to then interpolate 
the variables (in this case ~o and u) at this point by virtue of that  element's basis functions. Once 
we isolate the element claiming the departure point, we still need to determine its coordinates 
in terms of the computational space; this is essential because all of the spectral element basis 
functions are written in terms of the computational coordinates ({, rl) and not the physical co- 
ordinates (x, y). Equation (13) will only give the coordinates of the departure point in temps of 
the physical space. We can write the coordinates in physical space of the departure point using 
the basis functions in the form 

p2 

x d  = xi~2i(~d~ Vd) 
i=1 

and by virtue of  Newton's method, we can write the iterative scheme for the roots ({d, rid) ~s 

~O k + l  ~- ~O k -}- V F  k (~d k, ?Tdk) " (dE, dr/) = 0, 

where 
p2 

i=1 
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This leads to the solutions 

I ] - ~  07 

d~ = 0~/ j, d7 = [ oFt oft 
o~ 077 

OFt 
L -~ a7 

a~ F~ 

OFt 
o~ 

oft OFt 
a~ 07 

OFt OFt 
o~ 07 

where 

~k+l = ~ + d~, ~k+1 = 7~ + 47, d 'ld 

which only requires five iterations at most for convergence. Thus, if k+l _k+l~ (¢d ,"d j E [--1,1], 
then we can be sure that  the departure point is contained within this element. Clearly, as p 
increases, the cost of our searches will increase by an order of p2. So instead of using the full 
polynomial of degree p, we use the vertices of the quadrilateral element(l inear polynomial) to 
find the associated (~d, 774) for a given (Xd, Yd). Upon obtaining the departure point in terms 
of the computationM space coordinates, the interpolation can then be obtained using the full 
pth-order basis functions of the element. The use of the linear basis functions to check whether 
(~d, ~d) is contained within an element has absolutely no impact on the accuracy of the scheme, 
while costing far less than using the full pth-order basis functions. 

Because the Lagrange-Galerkin method requires the calculation of the departure points, the 
success of the method hinges on the rapidity of the searching algorithms. In this search, we need 
to determine in which elements the departure points lie. For general grids, the best strategy is 
to find the closest grid point to the departure point in question by virtue of a quadtree data 
structure. Let quad_tree[1 : ntree, 1 : 7] be an integer array which stores this quadtree. This 
array stores the following information: 

• quad_tree[i, 1 - 4] stores the four children of this quad, 
• quad_tree[i, 5] stores the position of this quad with respect to its parent, 
• quad_tree[i, 6] stores the location of its parent, and 
• quad_tree[i, 7] stores the number of points contained within this quad. 

This defines a standard quadtree data structure; however, it is important to note that  there is 
no need to use all of the points comprising the spectral element grid. In fact, we only need to 
use the vertices of each quadrilateral element (i.e., the four corner points) and we can omit the 
rest of the collocation points. This saves a lot of effort in the searching process. Upon finding 
this nearest neighbor (closest point), we then search through the list of elements which claim this 
point and check for inclusion using the iterative approach outlined in the previous section. There 
are usually no more than six elements claiming each point even for distorted unstructured grids, 
meaning that  the iterative approach does not dominate the computational cost of the scheme. 
For highly distorted grids, however, the departure point may not necessarily lie within one of 
the elements claiming the nearest neighbor. In this case, during the sweep through the element 
list claiming the nearest neighbor, the minimum distance between the departure point and the 
element points is stored. If no inclusion is found, then the new nearest neighbor is used and the 
process is continued. Therefore, in the worst case scenario, only two nearest neighbor loops of 
the iterative approach are required. This can have adverse affects on the efficiency of the scheme 
if this case were to arise for many of the points being searched; for the grids used in this paper, 
this case did not arise at all. 
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8.  N U M E R I C A L  E X P E R I M E N T S  

For the  numerical  exper iments ,  the  following terms are used in order to compare the perfbr- 

mance of the  schemes: the  L2 error norm, 

/fgt(99 . . . .  t - -  99) 2 d~r~ 
II99HL, 

V f. 99 .... 

where 99 represents  any of the  conservation variables, and the following two moments:  

_ f~ 99d~ U = f~ [~ (u2 + 'v2) + 992] d a  

(1/, . . . .  t _t_ U . . . .  t )  -~ ~ . . . . .  t] d~~ 

The L2 error norm compares the root  mean square percent  error of the numerical  and exact  

solutions, M measm'es the  conservation proper ty  of the mass, and E measures the  conservation 

of the to ta l  available energy. The  ideal scheme should yield an L9 error norm of zero, and mass 

and energy moments  of one. 

In addit ion,  the  following t ime-s tep  rat io is used: 

At  • '99) 
(7 = AtLF ' -~  

This variable represents the  t ime step rat io between the Lagrange-Galerkin  spectral  element 

methods  and the maximum allowable t ime step for the  Eulerian spectral  element method with 

the leapfrog scheme given in (11). 

8,1. P r o b l e m  S t a t e m e n t  

In the following sections, the two test  cases used to measure the  performance of the Lagrange- 

Galerkin spectra l  element methods  are introduced.  They are a solid body  rota t ion with time- 

independent  velocity field and a westward traveling soliton wave. 

8 .1 .1 .  C a s e  1: S o l i d  b o d y  r o t a t i o n  

The init ial  condit ion for this test  case is given by the Gaussian wave 

99(x, y, 0) = e-I( . . . . .  )~+{~->?]/2~i 

having the far bounda ry  condit ions 

99(~,y,t) = 0, v ( ~ , y )  e r, 

where (-1,0) 
The velocity field is constant  for all t ime and is given by 

u = + y  and v = - x ,  

(.~, y) ~ [-1,1] .  

which defines a clockwise ro ta t ion about  the  center of the  domain• There  are no Coriolis effects 

and since only the  mass is allowed to vary, this  problem simplifies to the passive advection of 

the quan t i ty  99. The  Gauss ian  wave rotates  along this circular pa th  with neither dis tor t ion nor 

dissipation.  The  exact  solution is given by 

~(~:, > t) = ~-[ (~) '+(~) ' ] /2< 
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where 

5: = x - xo cos t - Yo sin t and ~) = y + xo sin t - Yo cos t. 

Results are given for one full revolution of the initial wave. The period for one revolution of 
the wave is 2~r which means that  one revolution corresponds to t = 2r. For the p-type grid 
with N p  = 60, the maximum allowable time step for the Eulerian spectral element leapfrog 
scheme is AtLF ---- 2r/1000. The p-type N p  = 60 grid is comprised of a 10 by 10 element grid 
with each element having sixth-order polynomials. (See the results for a discussion on the h- and 
p-type spectral element methods.) 

8.1.2. Case  2: R o s s b y  so l i ton  waves  

This problem describes a pair of equatorially trapped Rossby soliton waves [19,20]. The pair of 
soliton waves start  off in the center of the domain. They then begin to move westward together 
along the equator and should continue to move in this direction without changing shape and 
without moving either closer together or farther apart. The exact solution is given by 

~(x, y, t) = ~(0) + ~p(1), 

U(X, y ,  t )  = U (°) + U (1), 

V(X, y, t) = V (°) + v (1), 

where the superscripts (0) and (1) denote the zeroth- and first-order asymptotic solutions of the 
shallow water equations, respectively. They are given by 

~(o) = 7} ( - 9  ~ 6 y 2 )  e - y : / 2  ' 

OV u (°) = ~-~ (2y) e - y2 /2 ,  

( 3 + 6 y 2 ) e - y 2 / 2  ' 
v(°) = ~ 4 

and 

~(1) = ~('>,7 ~ (-5 + 2y ') e-,'/~ + ~'¢(')(y), 

u<') = c(% ~ (3 + 2y ~) ~-¢/~ + ,72u(~)(y), 

V (1) = ~ ~TV(1)(Y)' 

where ~(~,t) = Asech2B~, ~ = x - c t ,  A = 0.771B 2, B = 0.394, and c = c (°) + c (1) where 
c (°) = - 1 / 3  and c (1) = -0 .395B 2. The variable 77 is the solution to the equation 

o-V + ~  +Z~ b-~ =0, 

which is the famous Korteweg-de Vries equation that  yields soliton solutions. The shallow water 
equations can be simplified into this equation using the method of multiple scales [19]. Finally, 

the remaining terms are given by 

u(1)(y) = e - ¢ / 2 ~  us g~(y), 
VO) (y) ,~--0 v,~ 
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where Hn(y) are the Hermite polynomials and Pn, un, v~ are the Hermite series coefficients giver, 
in [20]. The boundary conditions used are 

(u, v) = 0, V (z, y) ~ r.  

The equations are integrated up to a nondimensional time of t = 10. For the p-~ype grid with 
Nr, = 64 the maximum allowable time step for the Eulerian spectral element method with the 
leapfrog scheme is AtLF = 1/20. The p-type Np = 64 grid is comprised of a 16 by 8 element grid 
with each element having fourth-order polynomials. 

8.2. Resu l t s  

Figures 2 and 3 show the grid and ~ contours for h- and p-type Lagrange-Galerkin spectral 
element methods for Case 2. The thicker lines of the grids denote the elements while the f~tint('~ 
lines denote the high-order collocation points. In the h-type method, the order of the b~tsis 
functions is kept low such as p = 1 while the number of spectral elements is increased in ¢)rdet 
to refine the grid. In the p-type method, on the other hand, the number of spectral elements is 
held constant while the order of the basis functions is increased. It has been shown previously 
that Ibr smooth solutions the p-type method exhibits better convergence over the h-type method. 
In fact, the order of convergence for the p-type method is exponential while that for the h-type 
method is only algebraic. However, since we cannot always guarantee that the solution wil!. b(~ 
smooth, using a combination of both the h- and p-type methods is optimal. 

Figure 2. Case 2. The grid and ~ contours for the h-type form of the Lagrange- 
Galerkin spectral element method with Np = 64. 

Figure 3. Case 2. The grid and ~ contours for the p-type form of the Lagrange- 
Galerkin spectral element method with .]Vp = 64. 

8.2.1. Case 1: Solid b o d y  ro t a t i on  

Figure 4 shows the results for both the strong and weak methods using the h-type method. In 
this figure, Np denotes the total number of grid points in each direction (horizontal and vertical) 
while c~ = 1 unless otherwise stated. Figure 4 shows that the weak method performs better as Nt) 
increases. Figure 5 plots the results for both methods but now using the p-type method. In this 
case, the weak method performs better until about Np = 70 corresponding to p = 7. A~er this 
point, the strong method performs better than the weak method. 

Figures 6 and 7 compare the h- and p-type methods for the strong and weak methods, respec- 
tively. Figure 6 shows that there is a much larger gap in the accuracy between the h- and p-~;ype 
methods for the strong method than for the weak method. 

In summary, both methods perform far better when using the p-type method over the h-l:ype 
method, the reason being that this case represents a smooth flow and for this type of flow the 
p-type method converges exponentially. This would also be the case for an Eulerian spectral 
element method; however, the Lagrange-Galerkin methods converge faster than the Eulerian 
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methods (see [3]). While the weak method can obtain fair results with the h-type method, the 
strong method cannot. Since the strong method relies on interpolation, it cannot give good results 
with the h-type method, because this implies using linear interpolation functions. Therefore, the 
strong method is much more sensitive to the order of the interpolation functions than the weak 
method. 

8.2.2.  Case  2: R o s s b y  s o l i t on  w a v e s  

Figure 8 shows the results for both the strong and weak methods using an h-type method. In 
this figure, Np denotes the total number of horizontal grid points in the grid. In all cases, the 
number of vertical grid points is Np/2 and a = 1 unless otherwise stated. Figure 8 shows that 
the weak method performs better than the strong method as Np increases. Figure 9 plots the 
results for both methods, but now using the p-type method. This figure shows that the strong and 
weak methods give very similar results. It is in fact not surprising since the strong method relies 
heavily on interpolation and so as the interpolation functions (basis functions) increase in order, 
then so will the accuracy of the method, whereas the weak method does not benefit as much 
from an increase in p. To further stress the point, let us look at Figures 10 and 11. These figures 
compare the h- versus p-type methods for the strong and weak methods, respectively. Figure 10 
shows that there is a much larger gap in the accuracy between the h- and p-type methods for the 
strong method. Clearly, this gap is not as large for the weak method as is illustrated in Figure 11. 

From these figures we can surmise that when using the h-type form, the weak method is superior 
to the strong method and when using the p-type form both methods are more or less equivalent. 
This parity in accuracy is not only true for the L2 norm but also for the two conservation 
measures M and E. In fact, these two measures were conserved exactly. So the question remains: 
are there any advantages of one scheme over the other? Recall that the strong method had to 
be solved by an explicit time integration scheme (the leapfrog method) in order to avoid having 
to invert a nonsymmetric nonlinear matr ix.  Although explicit schemes are simpler than implicit 
ones, there is always a price associated with explicit schemes and it usually comes in the form of 
inefficiency and/or inaccuracies. The inefficiency in this case arises due to the more stringent CFL 
condition governing explicit schemes, meaning that smaller time steps must be used with these 
methods. For example, consider that all of the numerical experiments shown above were run with 
the time step ratio a -- 1. While this is not the maximum time step for the weak method, it is the 
maximum for the strong method. However, the time step for the strong method can be increased 
if we used the ~ algorithm instead of the leapfrog scheme. The point of this study was to compare 
the strong and weak methods and then discuss their strengths and weaknesses without necessarily 
determining which one is better. Both methods are impressive in their own right, but if simplicity 
of coding is the primary concern then the strong method should be used. This method, however, 
will not be as efficient as the weak method because the strong method requires the solution of a 
nonlinear coupled system. This apparent disadvantage can be turned into an advantage by using 
a semi-implicit scheme [8], thereby substituting the u and v momentum equations into the mass 

equation. In essence, we then only need to solve one equation (a Helmholtz equation), albeit 
a nonlinear one. Clearly, this strategy will not work with the weak method because the mass 
completely decouples from the momentum. These are issues that need to be further explored. 
We are currently exploring these issues for the shallow water equations on the sphere. These 
new schemes are being built directly onto our current Eulerian spectral element model on the 
sphere [21] with our final goal being the development of a new atmospheric model for numerical 
weather prediction. 

8.2.3. T i m e  s tep  s t u d y  

Many in the meteorology community have argued that the semi-Lagrangian (i.e., strong La- 
grange-Galerkin) method can only be run using time steps a few times higher than Eulerian 
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methods  [8,22,23]; these t ime steps are usual ly three  to six t imes larger than  those permi t ted  

by Euler ian schemes. However, this  result  was based on the  low-order in terpolat ions  and part i -  

cle t r a j ec to ry  approximat ions  used. Typica l ly  th i rd-order  in terpolat ions  and only second-order 

t r a j ec to ry  approximat ions  have been used for these methods.  A recent paper  by Falcone and 

Ferre t t i  [24] has shown tha t  the  error for the  semi-Lagrangian method  is of the  order  

AxP+ 1 "~ 
0 At  k + ~ ] ,  t23) 

where k and p represent  the  order  of the  t r a jec to ry  approximat ion  and the order of the inter- 

pola t ion functions, respectively. In other  words, for the  t r a j ec to ry  equat ion (13), k represents 

the order  of accuracy of the  numerical  scheme used to solve this equat ion while p represents the 

order  of the  in terpola t ion  functions used to  compute  the  variables at  the  feet of the  characteris t ics  

(i.e., depar tu re  points).  Researchers had previously invest igated high k but  with low p, thereby 

allowing the second te rm in (23) to dominate .  Thus, many erroneously assumed tha t  low order k 

was sufficient; specifically k = 2 has been used by almost all semi-Lagrangian algorithms, in 

this section, we present  a t ime step s tudy for the s trong and weak Lagrange-Galerkin  spectral  

e lement  methods  to see how they  behave when we increase k, p, and At .  

Figures 12-15 i l lus t ra te  the  results for the  h- and p- type  forms of the  s trong and weak meth- 

ods for the  grid N p  = 60 for various t ime step rat ios a for Case 1. For all of the  methods  

presented herein, the  order k represents a kth-order Runge -Ku t t a  method  for the  t r a j ec to ry  

equation (see [15] for details  on this scheme). In Figure 12, we see tha t  the  h- type strong 

Lagrange-Galerkin  method  does not benefit very much from an increase in k; note tha t  the k = ,1 

and k = 8 curves are direct ly  on top of each other,  thus, i l lustrat ing tha t  increasing k beyond ,1 

has no effect on the  accuracy. Since in the  h- type  method  p = 1, then obviously the  second term 

in (23) will domina te  regardless of the  order of k. In contras t  we see in Figure 13 tha t  the  p- type  

method  clearly benefits from using a high-order k. At  about  a = 2 the  k = 4 and k = 8 schemes 

diverge from the k = 2 scheme which begins to lose accuracy. The  k = 4 and k = 8 schemes give 

equivalent results until  about  a = 11 at  which point  the  k = 4 error begins to increase while the 

k = 8 error remains  level. Because the  order of p is sufficiently high, all of the  error is dominated  

by the first t e rm in (23). Since p = 6 is greater  than  k = 4, at  some t ime step the  At  k te rm will 

dominate .  Thus,  by using the k = 8 scheme we can delay the  onset of this  error increase. In tact. 

for the k = 8 scheme the error will eventual ly arise through the second te rm (because k > p). 

Clearly, our results  show tha t  the  s trong Lagrange-Galerkin  method  is governed by the the- 

ory presented in [24]. A recent paper  by Xiu and Karniadakis  [25] shows very detai led results 

i l lus t ra t ing this phenomenon of the  s trong method  for the  advection-diffusion and Navier-Stokes 

equations.  However, the  question tha t  we would like to address in our paper  is whether  the weak 

method  behaves s imilar ly to the s trong method.  Figure 14 shows tha t  the  k = 4 scheme for the 

weak method  is sufficient to yield the  max imum accuracy; the  k = 8 scheme offers no addi t ional  

accuracy which we can see from the  figure where the  k = 4 and k = 8 curves are direct ly  on top 

of each other. The  k = 4 and k = 8 schemes diverge from the k = 2 scheme at  around a -= 5. 

However, the  general  t rend  of all three k schemes is an increasing error with t ime step. Figure  15 

again shows the same kind of behavior  for the  p- type  method  al though the method  yields much 

more accurate  results  than  the  h- type  method; the  difference is a lmost  two orders  of magnitude.  
However, as we increase the  t ime step bo th  the  h- and p- type  methods  lose their  accuracy ra,~her 

quickly. As in the  s t rong method,  the  weak method  benefits great ly  from having a scheme greater  

than  second order  (k = 2). Therefore, it  can be concluded tha t  if a second-order  scheme is used 

for the  t r a j ec to ry  equat ion of ei ther the  Lagrange-Galerkin  or semi-Lagrangian methods,  then 

we will not, ex t rac t  the  max imum level of accuracy from these schemes. The  max imum accuracy 

can only be ob ta ined  with k >_ 4. In  fact, we can obta in  the op t imal  t ime step for a given A x  in 
closed form. From (23), we can show [26] tha t  the opt imal  t ime step occurs when the t r a jec to ry  
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and interpolation errors are equivalent. Letting 

At = Ax ~, 

we can equate the first and second terms in (23) to obtain 

At = Ax (p+l)/(k+l). (24) 

From this equation we can see that for a given Ax we can only use a very large time step if and 
only if k > p. The h-type form of the weak Lagrange-Galerkin method can actually be shown to 
be equivalent to the strong form with p = 3 [13] so that it makes sense to use k = 4 when using 
this scheme. 

This time step study has shown that the weak method in either the h- or p-type forms does 
not benefit from using a high-order k (greater than 4) trajectory integration scheme. Clearly, it 

is better to use k > 2 (at least 4) but the error does not remain level for increasing time step as 
in the strong method. Based on this result alone it can be concluded that the strong method is 
the better candidate for use with the spectral element method. 

9. C O N C L U S I O N S  

Two Lagrange-Galerkin spectral element methods for the two-dimensional shallow water equa- 
tions are compared. These methods are the strong and weak forms of the Lagrange-Galerkin 
method. The spectral element method presented is a high-order finite-element method that uses 
Legendre cardinal functions as its basis functions. The strong Lagrange-Galerkin spectral ele- 
ment method has been shown by the author [3] to achieve spectral (exponential) convergence as 
the order of the Legendre cardinal functions p is increased. In addition, the papers [24,25] have 
shown that this method with high-order p can use extremely large time steps (Courant numbers 
greater than 20) without losing accuracy as long as a sufficiently large k is used for the trajectory 
equation. Our results have confirmed this; in fact, we were able to use time steps 40 times larger 
than the explicit Eulerian scheme without any loss in accuracy (see Figure 13 for k = 8). The 
strong Lagrange-Galerkin method achieves its order of accuracy from the order of interpolation 
and so its accuracy increases with p, whereas, since the weak method achieves its accuracy from 
the order of integration, this method does not benefit as much from a high-order p. Both methods 
gave very good results, so it is very difficult to ascertain which of these two methods will work 
best with the spectral element method. For pure advection, the weak method performed better 
than the strong method for p _< 7; for p > 7, the strong method prevailed. For the soliton test 
case, both methods yielded more.or less similar results. However, because efficiency is one of the 
major goals of all numerical models, it appears that the strong method is the better candidate for 
use with the spectral element method since the error does not increase with increasing time step 
provided that a sufficiently large k is used for the trajectory equation. However, for problems 
that have a physical limitation on the maximum allowable time step, the choice of methods is 
then governed by what order p one can use. For lower-order p the weak method seems to be 
superior but for high-order p (greater than or equal to 8) the strong method is superior. Numer- 
ical weather prediction models are a good example of problems that contain physical limitations. 
Ideally, one would like to use a larger time step than allowed by Eulerian schemes, but the time 
step cannot be so large that it exceeds the time scales of some physically limiting processes such 
as cloud and thunderstorm formations. These phenomena are confined to time scales on the order 
of minutes to an hour [27]. Thus, one cannot use time steps in the scale of days when considering 
these processes unless of course we are only interested in performing climate studies in the time 
frame of thousands of years. 

Currently, we are testing both the strong and weak Lagrange-Galerkin spectral element meth- 
ods for the shallow water equations on the sphere. The true test of the strong and weak Lagrange- 
Galerkin spectral element methods is how they will perform for the shallow water equations on 
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the  sphere .  We h o p e  to  dec ide  a t  th i s  po in t  which  m e t h o d  will be  se lec ted  for t h e  d e v e l o p m e n t  

of a 3D a t m o s p h e r i c  m o d e l  for numer ica l  w e a t h e r  pred ic t ion .  
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