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ABSTRACT: 

The  protection of perimeters in national, 
agricultural, airport, prison, and military sites, 
and residential areas against dangerous 
approaching human and vehicles when using 
human agents to provide  security is  expensive  or 
unsafe. Because  of this, acoustic/vibration 
signature identification of approaching human 
and vehicles threats has attracted increased 
attention. This paper addresses the  development 
and deployment of three  types of acoustic and 
vibration based smart sensors  to identify and 
report sequential approaching threats prior to 
the  intrusion. More specifically, we  have 
developed: a) acoustic based long range  sensor 
with which vehicles' engine  sound and type can 
be  identified, b) vibration based seismic analyzer 
which discriminates between human footsteps 
and other seismic events such as those  caused by 
animals, and c) fence  breaching vibration sensor 
which can detect intentional disturbances on the 
fence  and discriminate  between climb, kick, 
rattle, and lean. All of these  sensors were 
designed with several issues  in mind, namely, 
optimized low power usage, a low number of 
false positives, small size, secure  radio 
communication, and milspec. The  developed 
vibration based system was installed in an 
airport with unprotected shore  lines in the 
vicinity of taxi- and run-ways. The system 
reported an average of less than two false 
positives per week  and zero false  negative  for the 
duration of forty-five days. Six fence  sensors 
were  installed on the  terminal area and end-of-
runway chain-link fences where  there was 
possibility of intentional fence climbing. The 
fence sensors reported no false  positives for the 
duration of forty-five  days which included 
several days of seasonal storms.

INTRODUCTION 

The increasing  emphasis on perimeter 
protection  of national assets,  both  at  home 
and abroad, has spurred the development  of 
technologies that  can  detect  potential threats, 
such  as humans or  approaching vehicles. One 
area of interest is the combination  of several 
different sensors, each  with  their  own distinct 
modalities and detection ranges,  to create a 
versatile and robust system.  We propose a 
system  that  would be based on three security 
sensors which  have been  demonstrated to 
provide detection and classification of 
security  threats.  These sensor types are 
acoustic, seismic, and vibration sensors.  

The "Smart  Fence" system  based on  these 
sensors would be particularly  suited for the 
identification  and reporting  of sequential 
approaching events, such  as an  approaching 
vehicle  with  passengers desiring  to breach  a 
fenced facility.  One benefit  is that  the 
likelihood of detection  of intruders is 
increased because the sensors are designed 
for  detection  of different  characteristics of an 
intrusion attempt. For  example, if one sensor 
misses detection  due to some confounding 
event, other sensors may  not  be susceptible 
to such  an  event,  providing  another  chance 
for  detection.   Another  benefit  is that the 
sensors allow  the system  to deliver  threat-
level information  about incoming  threats.  For 
example,  vehicles detected at a  long  distance 
may  have a  lower  threat-level than  intruders 
approaching a  secure perimeter,  which  in 
turn  may  have a  lower threat  level than  the 
intruders attempting to scale a  fence 
surrounding the perimeter.

The acoustic signatures of interest 
generated by  approaching human  and 
running  vehicles are  complicated. In  the case 
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of running  vehicles, the acoustic patterns are 
affected by  multiple factors,  such  as gearing, 
number  of cylinders, muffler  choice, state of 
maintenance,  running  speed, distance from 
the microphone,  tires, the road on  which  the 
vehicle travels, and other  uncontrolled 
environmental interference emitted by  wind, 
bird chirp,  and human  voice.  We propose 
using  a  neurobiology-motivated algorithm  to 
detect  approaching vehicles and to identify 
the type of vehicles.  With  the exact  acoustic 
signature being  unknown,  Nonlinear 
Hebbian  learning  (NHL),  a  basic and 
appealing  neural learning  function  found in 
human  brain, is employed for  unsupervised 
learning. The developed system  is capable of 
discriminating  between  three types of 
vehicles,  namely  light  track,  heavy  track, and 
motor cycle. 

The goal of a  seismic-based human threat 
detector is to detect  approaching  humans and 
discriminate between  series of events caused 
by  animals or  passenger  vehicles vs. 
background and a  single vibration event,  e.g. 
the falling  of a  tree limb.  A  geophone-based 
seismometer  has been  employed which  is an 
inexpensive sensor  that  provides easy  and 
instant deployment  as well as long range 
detection capability.  Gaussian mixture 
models were formed to model statistical 
properties of the temporal gait  and frequency 
features extracted from  the seismic  signals. 
The system  was set  up to discriminate 
between human footsteps, vehic les , 
background ( including disconnected 
incidents, animals’ footsteps). 

For  the purpose of fence breach  detection 
and classification, a  3-axis accelerometer  has 
been  utilized.  The developed algorithm  which 
is based on  a  nonhomogeneous Markov 
model is capable of recognizing  the type of 
the breaches; whether  the breach  is due to 
the rattling  caused by  strong  wind or  a  person 
climbing  on  the fence. The proposed 
algorithm  and system  has been  tested on 
different fences and has demonstrated robust 
recognition  for  discriminating  between  climb, 
kick, rattle, and background.

METHOD

Seismic Event Recognizer: seismic 
discrimination between human 
footsteps, vehicle, and out-of-class 
signals.

The signal  measured from  a geophone has a 
0.1Hz~100Hz frequency  range due to the 
resonant  characteristics of the sensors. 
Although  the frequency  response of the 
seismic sensor  is in  a  narrow  frequency  band, 
s p e c t r a l a n a l y s i s c a n  b e u s e d f o r 
discriminating between  seismic  events 
caused by  human footsteps (or  four-legged 
animals) and vehicles.  However, due to the 
very  similar  walking  mechanism  of humans 
and animals, the generated rhythmic 
temporal seismic patterns of humans and 
animals are very  similar.  This renders the 
discrimination  between  a  human's and an 
animal's footstep using frequency  analysis a 
failure using  spectral analysis alone. 
Therefore we propose using  gait pattern 
analysis of seismic  events to discriminate 
between human and animal footsteps. 2
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Figure 1: Feature extraction algorithm and examples of 
the output of each block.
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The flow  diagram  of the method is 
depicted in  the Figure 1. After  applying  a 
three-second sliding  window  – with  two 
seconds overlap – on  the incoming  signal,  the 
signal  is passed through  a  band-pass filter  to 
enhance the Signal to Noise Ratio (SNR). 
Then  a Hilbert  transform  and low  pass 
filtering (smoothing  process)  is applied to 
extract  the envelope of the signal. In  the next 
step, we utilize this signal  to extract the mean 
temporal pattern  of the gait by  averaging  over 
each gait periods.

Accordingly  it  is necessary  to estimate the 
gait period within  the three-second window 
and partition  the three seconds signal based 
on  gait  period. This can  be achieved in  the 
following steps:

Gait  period is estimated by  using  the auto-
correlation  function. Because of the 
periodicity  in  the signal, the auto-correlation 
signal  has a  local  maximum  at  the time of gait 
period.  In  general, finding local  maxima is a 
challenge; however,  due to the resonant 
characteristics of the seismic  sensors and the 
periodicity  from  walking  mechanism,  there is 
a  detectable peak in  the auto-correlation 
function.  It also worth  mentioning that  the 
gait period (or  cadence frequency) will later 
be employed as one of the features.

Using  the estimated gait period in  A, the 
three second window  is equally  divided into k 
number  smaller windows each having gait 
period length. 

The partitioned signals from  B are 
averaged.

In  order  to make a  shift-invariant 
temporal gait pattern  representation,  the 
averaged gait pattern  from  C is circular-
shifted so that  the local maximum  of the 
pattern is on  the first  sample. The 
partitioning  of the three second signal into k 
frames will  have some remainder  which  is 
considered in  the circular  shift  of the next 
consecutive frame.

Lastly, twelve triangular  weighting 
functions are applied to the temporal pattern 
acquired from  the steps explained above so 
that  the gait  temporal pattern  can  be 
represented by twelve features.

For  modeling  statistical variation of the 
extracted features, Gaussian Mixture Models 
(GMM)  were utilized.  GMM is one of the 
most well-known  and useful  classifiers, 
h a v i n g  b e e n  w i d e l y  u s e d i n  m a n y 

applications. For  a  multimodal  random 
variable,  whose values are generated by  one 
of several independent  sources,  a  finite 
mixture model can  be used to approximate 
the true probability  density  function. 
Moreover, GMM is a  good candidate as a 
classifier  when  there exists no prior 
knowledge of a  probability  density  function. 
Therefore,  estimating  the distribution  with 
GMM not  only  provides a  chance to have a 
general  model but also helps to understand 
the phenomena  for  a  better  use of the 
information of the distribution. 

A  non-singular  multivariate  normal 
distribution  of a D dimensional random 
variable X↔x can be defined as:

where μ is the mean vector  and Σ the 
covariance matrix  of the normally  distributed 
random variable Χ.

The GMM can  be defined as a  weighted 
sum of Gaussians function:

where αc is the weight  of cth mixture and θ is 
defined as following.

To estimate or  train the model parameter 
θ,  the Figueiredo-Jain  (FJ)  algorithm  was 
used,3  which  automatically  chooses the 
optimum  number  of mixtures during  the 
training. The objective function of this 
algorithm  utilizes the minimum  message 
length  criterion  for  finding optimum  number 
of mixtures as defined in  the equation (4) so 
that  it  can select  the best model directly  from 
data rather than the hierarchy of model-class.

where N is the number  of training  points, V is 
the number  of free parameters specifying  a 
component,  and Cnz is the number of 
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mixture (αc> 0).  The last term, , is 
the log-likelihood of the training  data  given 
the distribution parameters θ.

Nonhomogeneous Markov Model for 
fence intrusion detection and 
discrimination between fence 
climbing, rattle, kick, and background

The sensing module in  the fence sensor  is a  3-
axis digital accelerometer  (X, Y  and Z axes) 
measuring  the vibration  signal acceleration 
range. The source of kick  and lean  intrusions 
are short-time forces imposed on  the fence. 
As a  result,  the event starts with  a  high-level 
acceleration and high-frequency  vibrations. 
As time progresses,  the acceleration  decays 
exponentially  and vibration  gets a  harmonic 
structure. In  climbing, rattling, and scratch 
intrusions,  the vibration  source has longer 
time periods.  The decay  pattern  and the 
transition from  high-frequency  to harmonic 
vibration  are less prominent. The intrusion 
signal analysis demonstrates the rattling 
signal  to be more or  less periodic, while the 
climb and scratch signals are chaotic.

The signal time-domain  envelope plus its 
time-frequency  features are used in  intrusion 
classification. The time-domain  envelope is 
represented by  Z-axis energy  plus relative 
energy  in X  and Y-axis to Z-axis.  The time-
frequency  features are extracted by 
measuring  Z and X axis signal  energy  in  a  set 
of filter-banks. Features are  extracted in 256-
point  (400 ms) windows of signal with  50 
percent (200 ms) overlap.

Figure 2: Z axis signal for different intrusion classes.

Intrusion  signals recorded by  sensors 
demonstrate temporal and dynamic  patterns, 
implying the use of HMM as a standard 
dynamic  classifier.  A  trivial  technique for 
intrusion classification deals with  defining 
and applying one HMM for  each  intrusion 
class. This method is practically  inadequate, 
because the sensor’s computational resource, 
a  16  MIPS RICS processor, is not sufficient 
for  implementing  five  HMM models plus 
their  post-processing  task within  the 
classifier’s time resolution  (200  ms, the 
signal  update period). To go beyond this 
limitation, we utilized a  NHMM model for 
intrusion localization  along  with  a  static 
classifier.  The new  classifier not only  has 
lower  computational  complexity, but  also 
presents a  higher  classification  performance 
comparing  to the trivial method. The chief 
reason  for  the complexity  reduction plus 
performance improvement  is the precise 
intrusion localization  provided by  NHMM. 
The sequence analyzer,  a  dynamic classifier, 
is designed as a  3-state HMM with a  time-
dependent  transition probability  matrix.  It 
identifies the most probable time-window  of 
the signal for different  intrusions. Then the 
static classifier,  a  Bayesian  classifier, 
examines the likelihood of different 
intrusions to find the most probable intrusion 
class.  Data  analysis shows that the 
performance of NHMM in  intrusion 
localization surpasses that  of homogenous 
HMM. Moreover,  the NHMM generates 
higher  likelihood values than  HMM in signal 
sequences, with  an  equal state definition  for 
both  models.  The dynamicity  of transition 
probability  matrix  brings more flexibility  in 
the model,  allowing  it to follow  unusual  and 
abrupt behaviors in the intrusion signal. 

The logarithm  of Z-axis energy  in 
successive frames is passed to the transition 
probability  matrix  of the sequence analyzer. 
The energy  plus time-frequency  features 
determine the sequence observation  of the 
analyzer. Non-intrusion  (called S1 state), 
harmonic  (called S2 state), and high-
frequency  (called S3 state)  periods determine 
three states of the model.  In  the next  part,  we 
introduce the dynamic  transition  probability 
and its training procedure.4

A s s u m e 0 = { , i = 1 , 2 , . . . , N }  i s t h e 
observation  generated by  a  HMM model and 
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its hidden states are C = {ci,,  i = 1,2,  ..., N} . 
The joint distribution of observation is,
 

The emission process p( i|ci,  θ)  is considered 
equal for  the sequence and the transition 
probability  matrix  p(ci|ci-1) is a function of 

observation  index, i.  
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is the feature set 
representing  ith data frame,  and θ determines 
the state parameter.  The transition  matrix 
dependency  to sequence index  means that 
the hidden states follow  a  NHMM chain. To 
estimate parameters of the local transition 
probability  matrix, the matrix  entries are 
defined as a  function dependent to a  set  of 
observed features.

The transition  probability  matrix is 
modeled by  a  function  of energy  in adjacent 
frames. Based on  the state definition, the 
transition probability  matrix, A,  is a  3-by-3 
matrix  with  the following  definition  for  its 
pqth entry.

em and em-1 are energy  logarithms in  m  and 
m-1 observation  frames. The Apq entry,  the 

probability  of transition from  state p  to state 
q,  is a  soft-max  function of tpq,  for p = {1, 2, 
3}  and q = {1, 2,  3}.  {Qp,p=1,2,3} is the set  of 
parameters defining  the A matrix,  in  which  

Qp = { , , ,q=. The tpq is defined as 
quadratic  function of energy  logarithm’s 
difference, representing  a  quadratic 
approximation  of relative energy  (em/ em-1) in 
matrix  A. In  fact,  the energy  trend in 
successive frames has been  modeled with  a 
second order  polynomial approximation. 

Intuitively  the   coefficient  carries the 

homogenous part of A  entries,  while the  

and mutually  determine the  energy 

dependent  part  of A.  The  magnifies 

energy  difference in  the model, while  
intensifies energy  trend.  For  example for  a33, 

we expect  to be a  positive number 

reasonably  bigger  than . This is because in 
successive S3  states,  energy  amplitude decays 
by index.

The training  process estimates optimized 
values for  Qp and Ө with  maximum  likelihood 
(ML) criteria. Each  state is modeled with  a 
multivariate Gaussian  function; Ms,s={1,2,3}. 
The training procedure,  the Baum-Welch 
algorithm,  maximizes likelihood of the 
observed data  by  adjusting  Qp and Ms 
parameters. By  using the logarithm  of 
equation  (2), the state and transition 
probability  equations are  factorized to 
additive components,  making  training 
procedure simple.

In  (3),  p(ci|ci-1)  was replaced by  matrix A 
entries and p(c1) was set to a constant 
number.  The optimum  values for  θ = {M1, M2, 
M3} , state parameters, are mean and 
covariance matrix of corresponding observed 
states.  To find Qp parameters,  the second 
term of equation (3) can be factorized,

According  to (4),  parameters of Q1, Q2, Q3 can 
be optimized separately. By  expanding  each 
term  of (4) using Apq definition, ML estimate 
of the model turns to be an  unconstrained 
o p t i m i z a t i o n f o r  c o r r e s p o n d i n g Q p 
parameters. The optimum  parameters of Qp 

can be found by gradient ascent method.
Training procedure starts with  a  Viterbi 

algorithm, 5  extracting  the most  probable 
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parameters are estimated from  the decoded 
states.  The training  process repeats until  the 
likelihood improvement  of observation  drops 
to a  certain level or  the decoded observation 
has no significant  state changes.  In  the model 
definition,  we assigned a  specific  state (S1,  S2 
and S3) to each  part of the signal.  Training 
signals are roughly  labeled with  their 
matching  states; as a  result the training 
initialization step starts with  desired state 
definitions (a semi-supervised learning).

After  training,  the intrusion  signals can  be 
decoded with  the Viterbi  algorithm  to localize 
intrusions.  Figure 2  displays the extracted 
transition in  a  test signal.  The recorded signal 
contains forty  seconds of vibration  in  a  slack 
fence.  It  contains a combination  of intrusion 
attempts starting  with  two kicks and 
following  by  two leans, climbing, two scratch 
periods. In  Figure 2, intrusion  events have 
been  localized precisely  (within  200 msec  of 
the actual event). 

The localization  result  is passed to a state 
machine,  a part of the sequence analyzer.  The 
state machine determines different  feature 
sets which  are passed to the different 
intrusion classes of the classifier. The static 
classifier  identifies intrusions by  averaging 
likelihood values of two Bayesian  classifiers. 
The first  classifier’s input includes time-
frequency  features of the signal and the 
second classifier  processes envelope features. 
The classifier  output  is the intrusion class 
with maximum likelihood.

Figure 3: Top is a test signal and bottom is the output 
of sequence analyzer

Acoustic signature recognition of 
approaching vehicle using Nonlinear 
Hebbian Learning

The proposed approach for  this research  is 
noise-independent acoustic  signature 
identification  and recognition  using  spectro-
temporal dynamic  neural  representation  and 
Nonlinear  Hebbian  Learning (NHL).6  As 
stated in  the introduction, the acoustic sound 
of interest  from  a  running  vehicle is affected 
by  multiple factors, such  as gearing,  number 
of cylinders,  muffler  choice,  state of 
maintenance,  running  speed, distance from 
the microphone,  tires, and the road on which 
the vehicle  travels.   As the sounds of interest 
from  various types of vehicles may  be defined 
by  some common factors, and highly 
correlated between different types,  vehicle 
type identification is also complicated 
because of the presence of uncontrolled 
interference emitted by  surrounding 
background,  such  as human  voice, gunshots, 
and wind. 

The preprocessing  of the proposed method 
mimics functions of the biological ear  to 
correctly  recognize signals of interest,  even  if 
they  are noise-corrupted. The signals of 
interest are acoustic sounds of approaching 
vehicles – light track, heavy  track, diesel 
truck,  and motorcycle – which are often 
overlapped with  environmental noises.  In 
general  these noises are highly  time-varying 
and unknown  to the recognizer.  State-of-the-
art  feature extraction  algorithms,  such  as Mel 
Frequency  Cepstral Coefficients (MFCC) fail 
in  this case,  because MFCC work only  in 
short-term spectral analysis.
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Figure 4: Flow diagram of  the proposed vehicle’s 
engine sound recognizer

As illustrated in  Figure 5,  the left module 
represents the spectro-temporal dynamic 
neural structure with  Q frequency  bins and M 
temporal frames. Selecting Q=30, M=20, the 
dimension  of spectro-temporal features is 
600, which  may  cause very  complex 
computation  at the testing  stage if they  are 
used as patterns.  Besides, high-dimensional 
features may  be less useful than real 
representative features as high-dimensional 
ones may  be easily  mixed with  unrelated 
noises.

Figure 5: Nonlinear Hebbian illustration

Linear  Hebbian  Learning  (LHL)  which  is 
equivalent  to linear  principal component 
analysis can  be used for  dimensionality 
reduction; but  in  an  information-theoretic 

context,  the second-order  moment of LHL is 
inadequate to reduce data redundancy, as 
generally  the mutual information  between 
important components of data  involves 
statistics of all orders.  Thus, to tackle the 
curse of dimensionality,  a  NHL,  an 
enhancement of LHL, is proposed to be 
capable of efficiently  projecting this messy 
high-dimensional  representation  to a  low-
dimensional subspace.  As a  result,  the NHL 
captures important  features while removing 
unimportant ones. 

NHL iteratively  updates neuron  outputs 
and synaptic weights via the following two 
steps.   Upon  convergence, representative 
independent  features (signatures) are 
extracted and the projecting  subspace is 
spanned by synaptic weight vectors.

S t e p I : N e u r o n o u t p u t  ( s i g n a t u r e ) 
computation

Step II: Synaptic weight update

where Q  and M  are the number  of spectral 
bins and temporal frames, respectively.  L is 
the number of extracted representative 
patterns.  wqml represents the connecting 
spectro-temporal  synaptic weight from  the 
input neuron xqm to the output neuron y1 .

The nonlinear  activation function  g(.) is 
the critical  part  in  Nonlinear  Hebbian 
Learning.  If it is Taylor expanded,  it  can 
explore all  order  statistics of input  signals 
and satisfy  statistical  optimization  criterion. 
Moreover, this special  function  is derived 
from  neurobiology  studies,  which  supports 
multiple independent  signal  communications 
in response to pre-synaptic inputs.

RESULTS

The mathematical models in  each technology 
were trained with  the data  recorded in  a 
controlled environment.  The recording 
samples for  each  class of intrusion  were 
mutually  exclusive from  the other  classes. All 
of the recording  samples for the purpose of 
this study  were collected in  Joshua  Tree,  CA 
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for  which  more details can  be found in the 
referred papers.

Two types of test  were planned.  The first 
plan  was to evaluate the smart  fence sensors 
in  the Joshua Tree recording  site where the 
training samples were collected. The second 
plan  was to install  the sensor in a  completely 
realistic  condition  where the impact of 
environmental factors such  as storm, 
moisture,  wind, heat, and etc can also be 
measured.  The later  provides potential to 
observe the behavior  of the sensors for 
unexpected incidents – such  as those training 
s a m p l e s n o t  a v a i l a b l e d u r i n g  t h e 
development – and also monitor  physical 
parameters of the sensors e.g.,  battery  life 
and wireless communication issues.

Test Results in Controlled 
Environment

Seismic sensor 

For  testing seismic sensor’s performance,  the 
sensor  was placed in  the same site in which 
the training  samples were recorded. During 
t h e t e s t ,  t h e a v e r a g e o f p o s t e r i o r i 
probabilities of each  class on ten  consecutive 
window  frames was calculated (it  has been 
assumed that  there is no abrupt changes 
within  the intrusion  class).  We found that  the 
average posteriori is a  powerful  technique in 
this application which  enhances the low-SNR 
observations results and reduces false 
positives.

A  horse was chosen  for  a  quadruped class 
because the gait  can  be easily  controlled by  a 
rider  and also data  can  be easily  acquired 
with  the rider's control.  The seismic  sensor 
was tested with  different  types of the horse 
gaits,  namely  walk as a  4-beat gait, trot  as a 
2-beat gait, canter  as a  3-beat  gait, and gallop 
as a  fastest  4-beat gait.  In addition, the 
seismic sensor was also evaluated with  a 
single person  walking/running  and five 
people walking  in  a group at  synchronized/
unsynchronized,  random  speed,  and random 
phase. Moreover, multiple vehicles with a 
different number  of cylinders and frame size 
were employed to evaluate the sensor. The 
results of the tests are summarized in the 
Table 1.

Figure 6: Bottom graph is seismic recognition of 
background (no bar), human footstep (red bars), dog’s 
footstep (black bar), vehicle (blue bar), and horse (cyan 
bar). Top is the spectrum of the signal.

Table 1: Performance of  seismic recognizer in the 
Joshua Tree, CA recording site; one frame is 400msec

Background Vehicle Human Quadruped

False Recog. 
% 0.1 0.2 3.8 1.9

Total Frames 19470 61110 26440 30380

Fence Sensor

One fence sensor was placed on a variety of 
fences to evaluate the performance. Fence 
heights ranged from 4’ to 12’, widths from 6’ 
to 12’, with variable tightness and looseness, 
variable degrees of sagging, with and without 
top and bottom rails, and variable diameters/
strength of holding posts.

Five male intruders were asked to disturb 
the fence – one at a time – and generate 
desired classes of intrusions. The intruders 
weighed from 125 to 210 pounds and 
demonstrated various patterns of climb and 
other intrusion classes. The results of the test 
have been summarized in the Table 2.

Figure 7: Recognized fence events; background (red 
bars), rattle (green bar), Kick (black bars), climb (cyan)
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Table 2:  Performance of  the fence sensor evaluated on 
variety  of  fences; duration of  an event can be 3 to 10 
seconds depending on the type of  fence and class of 
intrusion

Background Rattle Climb Kick
False Recog. 

% 0.2 0.9 1.8 2.1

Total Events 3238 2210 1045 1051

Vehicle’s Engine Sound Recognizer
The proposed NHL approach  was utilized to 
(a)  recognize vehicle’s engine sound and (b) 
detect  type of engine.  For  the purpose of the 
test,  light/heavy  track vehicles fueled with 
gasoline were employed in  addition  to an 
eight  cylinder  diesel truck  and 250cc 
motorcycle. 

The summarized report  of vehicle 
identification  has been  illustrated in  the 
Table 3.  A  noise  source of human  speech, 
bird chirp,  or  pink  noise was located next  to 
the recording microphone in  order  to 
generate the desired signal to noise ratio.

 

Figure 8: Top is the microphone output of  a passing 
vehicle, and bottom is the output of the recognizer.

Table 3: Performance of  vehicle identification in the 
Joshua Tree, CA recording site.

GasolineGasoline DieselDiesel
SNR Light Track Heavy Track Diesel TruckDiesel Truck Motorcycle

10 db 90% 95% 95%95% 100%
5 db 80% 90% 95%95% 95%

Test Results: Naval Surface 
Warfare Center’s Airport 
Installation

The developed smart sensors were installed 
in  an  airport  where some of its land is 
surrounded by  water  and there is no fence 
line to prevent  intruders who park their  boats 
along  the shore and walk to the runway. 
Several footstep sensors and one vehicle 
engine sound recognizer  were installed in 
front  and on  the roof of the boathouse 
respectively  (see Figure 9).  Moreover, several 
fence and footstep sensors were installed at 
the south  end of runway  where,  due to its 
proximity  to a  freeway, the sensors would 
have the highest  chance of detecting 
intrusions of either  cars crashing  into the 
fence and then driving into the airport  or  the 
climbing  of the fence by  pedestrians who 
could then  walk into the airport.  Several 
more fence sensors were also installed in  a 
rental  car  area. A  graphical  user  interface was 
developed and installed in  the command 
center  to aggregate the sensors’ output and 
generate log and time stamp for  each  entry. 
An event-driven  video recording  capability 
was added to the smart fence functionality  in 
order  to confirm  the registered alarm  with 
the camera recordings.

Figure 9: Blue print of  the installed sensors at the 
airport

The efficacy  of the smart  fence was 
demonstrated in  several  scenarios.  In  the 
first,  the approaching threat  was an  incoming 
motorboat, whose passengers disembarked 
on  a  dock located at the boundary  of an 
airport.  In  the second, the threat  was an 
incoming  vehicle that  drove through  a  rental 
car  facility  with  the intention of allowing the 
passengers to scale a  fence separating  the 
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rental  car  facility  from  the airport  tower.   In 
the final scenario, the threats were an 
incoming  vehicle that drove off of a  major 
thoroughfare,  with  the intention  of allowing 
the passengers to scale a  fence that  surrounds 
the end of the airport runway. Each scenario 
provided different conditions and threat 
levels. In  the first,  the vehicle engine sound 
detector  detected a  motorboat  and the 
seismic  analyzer  detected the intruders' 
footsteps. In  both  the second and final 
scenarios,  vehicle engine sound detection  was 
common,  but  the seismic  analyzer  detected 
the intruders as they  approached the fence, 
and the fence breaching  sensor  detected 
s c a l i n g  a t t e m p t s .  T h e s m a r t f e n c e 
successfully  identified the threats and 
generated alarms before the threats 
approached the secured zone.

To statistically  analyze false positives, 
b a t t e r y  l i f e , w i r e l e s s i s s u e s , a n d 
environmental factors,  the smart  fence 
technology  at  the naval facility  was 
monitored for  a  period of forty-five days.  For 
the purpose of vehicle engine sound 
recognition,  due to the request  of authorities 
no test  was performed therefore the forty-five 
days test  doesn’t consider  the acoustic  sensor. 
The weekly  average of false positives 
generated by  other  sensors has been 
demonstrated in the Table 4.

Figure 10: Daily  report for one of  the footstep sensors 
installed in front of  the boathouse. Blue bars show 
vehicle recognition (in this care airplane either taxing or 
taking off), red is human footsteps; x axis is the time 
and y axis is the duration of an event.

Table 4: Average weekly  report for the smart fence 
sensors 

No. of 
Incidents

Awake Time 
(min)

No. of False 
Positives

Fence Sensors 25 9 1.09

Footstep Sensors 1227 409 1.89

Figure 11: Snapshot of  a lawn mower colliding with 
chain-link-fence at car rental area; the sensor has 
generated the letter “K” as an induction of kick.

CONCLUSIONS AND 
FUTURE WORK

In  this paper  we described development  of 
“smart  fence”  technology  for  intelligent 
acoustic/vibration  security  breach  detection 
and recognition. The “smart  fence”  sensors  
included: (1)  seismic event  recognizer for 
human  footsteps and vehicle-caused ground 
vibrations, (2) vibration sensor to detect 
intentional fence breaches and discriminate 
between  rattle,  kick,  and climb, and (3) 
acoustic  vehicle sound recognizer  for 
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detecting  an  approaching  vehicle and 
identifying type of vehicle.

The smart  fence was tested in  controlled 
and uncontrolled environments. In  the 
controlled environment  the threat seismic 
event  recognizer  showed above 98% 
performance and the average performance 
was more than  98% and 97% for  the fence 
and vehicle’s engine sound recognizers. The 
uncontrolled and forty-five days test  of the 
sensors proved that  all sensors have 
extremely  low  false positives. Also,  the test 
coinciding  with  the local storm  season 
provided opportunities to measure the 
performance of the recognizers in  the 
presence of extreme weather  conditions such 
as heavy  rain  and wind.  Indubitably, wind 
and rain  can  have significant  impact on 
sound and vibrations.  However,  as the 
average weekly  report summarized in  the 
Table 4  demonstrates,  the extreme weather 
conditions have not  generated a challenge to 
the sensors’ performance.

During  both controlled and uncontrolled 
tests we observed that  the seismic sensors 
perform  close to ideal  when  the threat  is in 
the radius of sixty  feet.  We also found that  for 
each  panel of chain-link fence there is a  need 
for  one sensor regardless of width  and height 
of the fence. The reliable detection  range for 
the vehicle engine sound recognizer  was 120 
feet direct  line-of-sight. These findings 
suggest that  the manufacturing  cost of each 
technology  should be very  cheap – and easy 
to install and maintain  – for the purpose of 
protecting a  several-mile-long  perimeter  of 
an  airport.  All  of the designed technologies 
have satisfied the low cost condition.

Security  breaches often  follow  certain 
sequences. As an example,  an intruder  must 
take a  few  steps before disturbing  the fence. A 
false fence disturbance detection  by  a  fence 
sensor  due to the wind can  be eliminated if 
the output  of the seismic  sensor is combined 
with  the fence recognizer.  High-level data 
fusing of the  sensors of this study  not  only 
could enhance the false positives and true 
negatives,  it  could also provide management 
of the threats by  airport authorities. 
Sequential modeling  and analysis of detected 
threat  by  smart fence sensors is the plan  for 
the future work.
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