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An investigation of the relation of acoustic phenomena to

dynamic thrust was made at the University of Minnesota Aeronau-

tical Engineering Department by a Naval Officer Postgraduate Stu-

dent. A preliminary survey of the scientific literature concern-

ing the acoustic Jet indicated that, with the exception of the

work done recently by the Cornell Aeronautical Laboratory, no

analysis of this problem had been made.

These phenomena, however, were knovm to Dvorak who per-

formed a number of descriptive experiments in Vienna in 1876, but

made only quantitative measurements. Lord Kayleigh completed a

mathematical analysis of the circulation of air in pipes sounding

in resonance to a ^iven source in 1883. Others have done v/ork

on the allied problems of acoustic circulation and streaming, but

have made no mention of acoustic repulsion or thrust.

A series of experiments were conducted in the Aeronautical

Engineering Laboratory at the University of Minnesota under the

guidance of Prof. N. A. Hall. First, small models of resonating

chambers of paper and glass were constructed to perform qualita-

tive experiments to determine the nature of thrust produced by

the chamber in resonance with sound made by an electrical oscil-

lator hnd radio speaker. Then, larger resonating chambers of

plexiglas tubing about three inches in diameter and of various

lengths were used in conjunction with the electrically produced





sound to accurately measure dynamic thrust. The circulation and

streaming of the air was also investigated with the aid of smoke.

For a given energy level, it was found that the thrust

varies approximately inversely as the acoustic frequency and

therefor that the more significant values of thrust are associ-

ated with the frequencies between 10 and 150 cycles per second.

In proportion to the small amount of energy supplied to

the acoustic jet, a relatively large magnitude of thrust is pro-

duced.





RBLATION BST//EEN ACOUSTIC PllSNOMEIIA AND UYKAI.!IC THRUST

OBJECTIVES OF THIS IIJVESTIGATIOII

Introduction . During the years spanned by the dates 1870

to 1885 there v/as a considerable amount of interest displayed in

r

scientific circles over acoustic phenomena apparent to the musi-

cian and to the physicist in his laboratory experiments. Vibra-

ting strings, vibrating reeds, vibrating membranes, and vibrating

columns of air in organ pipes were knovm to the artist, of course,

from an early age; but in the period betv^een 1870 and 1885 sci-

entific experimenters in Europe and America began to investigate

the well-known phenomena systematically in an effort to correlate

the various types of effects produced by vibrating bodies in

fluid mediums.

The production of sound in tubes and pipes was of con-

siderable interest because of the pipe organ and the various wind

instruments. While experimenting with various apparatus to per-

mit observations of sound in air in tubes and pipes, Dvorak /l/*

hit upon the effects of acoustic repulsion and attraction noticed

when sound was resonated in a vessel. He published his findings

in 1878 in the "Philosophical Magazine". His experiments were

all descriptive and accurate measurements were not made. However,

a fairly wide variety of configurations of vessels in the shapes

See reference number 1.
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of spheres, cylinders, and cones was experimented with and it

was found that a reaction from the ambient atmosphere acting in-

ward through the open mouth of tho resonating chamber vms experi-

enced when the vessel was actually in resonance with a given

sound. Not only did there appear to be a force of repulsion be-

tween the sound source and the resonator, but under certain con-

ditioijs there seemed to be a force of attraction present. In

addition to these unbalanced forces, which produced an accelera-

tion of the resonating chamber, the air (or fluid medium filling

the vessel) v/as observed to be in movement. Definite currents

of air interested Rayleigh when the results of the experiments

conducted by Lvorak and Mayer came to his attention.

In 1883 Lord Rayleigh published a paper in the "Philosoph-

ical Transactions" in which ho presented a mathematical explana-

tion of the circulation of fluid in a tube resonating to a con-

tinuous sound. Other allied acoustical problems were considered

in the same paper. The results were arrived at by beginning

with the fundamental flow equations and treating the fluid as

compressible and viscous. Flow involving two directions only

was considered, and the analysis was not extended beyond the con-

fines of the tube walls and stopped ends. Furthermore, no effort

was made to develop expressions for the unbalanced thrust pro-

duced at the open end of a resonating tube, which Dvorak and
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Mayer had discovered. It is this effect which is of special in-

terest in this particular research problem.

Current Interest in the Acoustic Jet . During more recent

years a great deal of attention has been centered on jet propul-

sion and the aerodynamics of compressible fluids. Much experi-

mental and mathematical work has been done on the flow of viscous

and compressible gases through tubes, channels, and chambers of

many different shapes and configurations. Very little of this

work to date has taken into oonsideration the secondary effects

caused by sound waves propagated by various disturbances in the

fluid flow, biscrepancies have been noted in the expected flow

of gases in the combustion chambers of turbojet engines and

ramjet engines as well as in the flavi in and around the tail

pipes and inlet ducts. These discrepancies have not been ex-

plained by the examination of the flow phenomena by merely con-

sidering the boundary conditions imposed by channel contours,

pressure conditions, mechanical work, addition or removal of

heat energy, and velocities. It has been suspected that the

propagation of sound (which is merely the production of small

pressure disturbances in the fluid) and allied acoustical prob-

lems might have an important bearing upon the questions arising

in this field.
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Keoently the Cornell Aeronautical Laboratory set up some

experiments in whioh the unbalanced thrust produced by a cylin-

drical tube, sounding in resonance with a continuous source, was

measured. Although this thrust is of very small magnitude it

might be arranged to help and not hinder the thrust developed by

the mass flow of the fluid in a jet engine produced by the vari-

ous other mechanical and thermodynamic characteristics of the

given engine. There is also the possibility that the related

acoustical phenomena of circulation and streaming will have an

interesting effect on the efficiency of the jet engine. The re-

ports of CAL embodying the above are not available.

Others, in the past few years, have considered the inter-

esting phenomena of circulation and streaming due to resonant

sound waves. Ingaard and Kckart, particularly, have made mathe-

matical studies of these effects and have endeavored to check

their results experimentally. Neither of these have given any

attention to dynamic thrust produced by a resonating chamber.

Areas Encompassed by This Investigation . It is proposed

to set up various configurations of air-filled chambers and tubes

so that the unbalanced thrust, produced by the vessel when

resonating to a controlled sound source, can be measured to a

high degree of accuracy. Lleasurements will be made of the in-

I

V
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tensity and frequency of the sound in conjunction with the cor-

responding thrust.

Secondarily, the phenomena of circulation and streaming

produced in the air within the resonator and in the ambient at-

mosphere will be examined.





FUNDAMENTiiL PRINCIPLES

Vibrating Air Columna . It Is assumed that the diameter of

the pipe in whioh the vibration of the air column takes place is

email compared with the length of the pipe and the wave length of

sound. Moreover, it can be assumed that the pressure waves are

propagated in a direction parallel to the axis of the pipe or

tube, and that the sound waves are very close to being plane sur-

faces. The walls of the pipe are rigid j and the diameter of the

pipe in which the vibrations take place is sufficiently great to

justify neglect of viscosity effects when dealing with the long-

itudinal motion of the sound waves.

There are two types of pipe which are of practical impor-

tance: the pipe open at both ends, known as the "open pipe", and

the pip© closed at one end, known as the "closed pipe". The ele-

mentary facts about the possible modes of vibration in these cases

have been arrived at.

In the open pipe there must be a displacement antinode at

each end and therefor, in the fundamental mode of vibration, a

node in the middle. The wave length of the corresponding sound,

which is four times the distance between a node and the adjacent

antlnodo, must be 2L, where L is the length of the pipe. The

frequency of the fundamental, a/j^, is therefor a/2L. In the

next possible mode of vibration there must be two nodes in the

pipe and an antinode at the center. The wave length is now L
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and the frequency a/L, In the next possible mode there are three

nodes in the pipe; the wave length is 2L/3 and the frequency

3a/2L. The first three possible modes of vibration are shown in

the figure; not© the arrows show the direction of the movement

of the air. Figure 17 shov;s the distribution for each mode at

the two instants of maximum velocity in each vibration. It will

be seen that the fundamental mode of vibration has a frequency

a/2L and the other modes frequencies which bear to this the ratios

2 : 1 and 3:1.

The closed pipe must always have a node at the closed end

and an antinode at the open end. In the fundamental mode of

vibration the wave length is therefor 4L and the frequency a/4L.

When there is a second node in the pipe the v/ave length is 41/3

and the frequency 3a/4L, >ihen there is a third node in the pipe

the wave length is 41/5 and the frequency 5a/4L. The possible

modes are shown in Figure 17.

Another point of view from which the frequency of a vibra-

ting air column may be deduced is that of a travelling pulse of

air. The time of vibration of the column of air is the same as

the time in v/hich a pulse of air within the pipe completes its

cycle of changes. Considering first of all a pipe open at both

ends, we start a compression from one end and follow its course.

From the farther end it is reflected as a rarefaction, and re-
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turning to its point of initiation it is reflected as a conpres-

sion, and its cycle is complete. The time occupied is 2L/a, so

that the frequency is a/2L. In the case of a pipe closed at one

end vfe start a compression from the open end. It is reflected

as a compression from the closed end, as a rarefaction from the

open end, as a rarefaction a^-ain from the closed end and as a

compression from the open end, completin^^ its cycle. Thus the

time occupied is 4L/a and the frequency a/4L,

See Alexander V/ood: Acoustics, 1943, Interscience Pub-

lishers, Inc., 1J,Y,, paces 396 to 401 for mathematical expressions

for vibration of air in pipes, open and closed, as well as cones.

End Correction . Even in the case of a cylindrical pipe

with a clean-cut end the antinode does not coincide with the end

of the pipe, and the effective lenfTth of the pipe is always

greater than its {geometrical len^^th. For a cylindrical pipe the

"end correction" is about 0,6 R, v/here R is the radius of the

cross section of the pipe, so that of two pipes of the same geo-

metrical length but different diameters the wider pipe gives the

lower note.

The correction for a tube ending in an infinite flange,

however, has been calculated by Rayleigh, who found it to be

0.824 R. The effect of removing the flange is found by exporimant
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to be 0,22 R (Rayleigh obtained 0.25 and Bosanquet 0.20) so that

for an ordinary open end it is usual to take the correction as

0.6 R.

The magnitude of the correction for other than cylindrical

ends depends on the degree of openness of "conductivity" of the

end. Thus an uncovered hole in a flute is an open end, but the

correction will be greater than for the case previously discussed.

The correction is approximately independent of the wave

length of the sound.

Kundt ' Tube . A convenient device was developed by Kundt

/20/ in about 186G to measure the velocity of sound in gases.

The movement of the fluid in the tube as it is sounding in reso-

nance to a sound of a given frequency is of interest because of

its possible bearing on the problem of thrust produced by the

resonator. The Kundt 's tube, or dust tube, however, produces no

unbalanced thrust because both ends are stopped.

The principle of the device is very simple as far as vel-

ocity of sound measurement is concerned, A wide tube is closed

at one end by an adjustable piston and at the other end by a

diaphram fixed to a rod clamped at the center. The diaphram

nearly fills the cross section of the tube. The tube between





- 10 -

The diaphratn and the adjustable piston contains a dry powder

dusted alone the inner walls. "iYhen the rod is stroked with a wet

cloth or resined rubber, or struck by a hammer, longitudinal vi-

brations are set up in it, which are connunicated by the diaphram

to the gas in the tube. If the piston is now adjusted so that

the length of the gas column gives an exact number of stationary

waves, the dust will be vldently disturbed at the antinodes and

will form an unmistakable series of striations marking these

positions. The frequency of the note given by the rod is deter-

mined and the wave length of the sound in the tube is calculated

by measuring the distance from the diaphram to the piston and

dividing by the number of vibrating segments. This gives the

half v/ave length of the sound in the gas, and therefor the vel-

ocity.

However, the phenomena occurring in Kundt's tube are much

more complex than early observers supposed. Between the nodes

the powder arranges itself in striae, of which no accurate

measurements were made and about the formation of which no

theory was suggested, hxperimenters were handicapped by the

fact that the stroked rod is an intermittent source of sound

and measurements on the striae and the nodal heaps can only be

made after the sound has ceased.
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A detailed study of the phenomena Jias been made by Irons

/21/, Cook /22/, Henry /23/, Andrade /24/, and Hutchisson and

Morgan /Zb/ , Using a valve-maintained diaphram as the source of

sound and fine smoke particles observed in scattered li,~ht as

tracing points, Andrade was able to measure the amplitude of the

vibrations in the tube and establish the existence of the circu-

lation that was predicted by Rayleigh. This circulation takes

place from antinode to node in the neighborhood of the walls and

from node to antinode alon^ the center, as shown in Figure 18.

The form of the circulation was given by Rayleigh in the formula

4* ~ C{t^ - r2R2)sin 2n'x/^, where 4^ is the velocity potential, r

the radial distance, x the axial distance, and R the radius of

tube, and the observed circulation gave good agreement with Ray-

leigh 's formula.

Very light objects like fine smoke particles follow al-

most exactly the motion of the airj around larger particles vor-

tex systems are formed, and from observations of these consider-

able light is thrown on hydrodynamical problems. All the

phenomena of Kundt's tube are explicable in terms of the vortex

motion and the circulation. When two particles come close enough

together to coalesce they arrange themselves side by side across

the tube. \«hen a number do this they range themselves in striae

whose longitudinal spacing varies from node to antinode, the
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edges of the corresponding vortex systems being contiguous. The

spacing depends on sound intensity, size of particles, gas pres-

sure and density of particles. YOien the sound is very intense

the center stria coincides in position with a disc of particles

extending right across the tube. These discs are very convenient

for measurement. The particles rise up the walls of the tube and

fall back across its whole section.

Rayleigh on the Circulation of Air Observed in Kundt's

Tubes . In 1883 Lord Raylei^h fz,/ published a paper on this sub-

ject in "Philosophical Transactions". Quoting from parts of this

paper

:

"In the present paper three problems of this kind are con-

sidered, two of which are illustrative of phenomena observed by

Faraday /zs/. In these problems the fluid may be treated as in-

compressible. The more important of them relates to the currents

generated over a vibrating plate, arranged as in Chladni's ex-

periments. It was discovered by Savart that very fine powder

does not collect itself at the nodal lines, as does sand in the

production of Chladni's figures, but gathers itself into a cloud

which, after hovering for a time, settles itself over the places

of maximum vibration. This was traced by Faraday to the action

of currents of air, rising from, the plate at the places of maximum

vibration, and falling back to it at the nodes. In a vacuum the
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phenomena observed by bavart do not take place, all kinds of pow-

der collecting at the nodes. In the investigation of this, as

of the other problems, the motion is supposed to take place in

two dimensions.

"The third problem relates to the air currents observed

by Dvorak /l/ in a Kundt's tube, to which is apparently due the

formation of the dust figures. In this case we are obliged to

take into account the compressibility of the fluid.

"In the third problem, relating to Kundt's tubes, the

fluid must be treated as compressible, as the motion is supposed

to be approximately in one dimension, parallel (say) to x. The

solution to a first approximation is merely an adaptation to two

dimensions of the corresponding solution for a tube of revolution

by Kirchhoff /s?/, simplified by t>ie neglect of the terms rela-

ting to the development and conduction of heat. It is probable

that the solution to the second order would be practicable also

for a tube of revolution, but for the sake of simplicity I have

adheredto the case of two dimensions. The most important point

in which the two problems are likely to differ can be investigated

•very simply, without a complete solution.

"If we suppose p = a^p, and write <r for log^- log A,, the

fundamental equations are.
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6^ dir 6,% ^-3 <** '^'^^ <*!>

with a corresponding equation for v, and the equation of con-

tinuity,

«*>. ^^ d* <1> <i»l

o
•5

and ^ <*> ' ^ ^ r: ^ «in ^-J^

Then,

continuinj^,

after a ^ood deal of manipulation, we have

3

3v<
ir - - —

From the equation above we see that u chan,^;es si^^n as we

pass from the boundary y » to the plane of symnetry y » yi,

the critical value of y bein-- y^Cl -|fl/3) or 0.423 y^^. Lee

Figure 19.

The principal notion beinf, u " u cos kxcosnt, the loops

correspond to kx * 0, TT^ xTT. . ., and the nodes correspond to IT ^JT
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* ••• Thus V is positive at the nodes and negative at

the loops (or anti-nodes), vanishing of course in either case

both at the wall, y = 0, and at the plan of symmetry y =
y^^.

To obtain the mean velocities of the particles parallel

to X, we must make an addition to u.

- Uq^ sin 2kx (-2f^^...)

"Wo have seen that the width of the direct current along

the v/all is 0.423 yi, and that of the return current (measured

up to the plane of symmetry) is 0,577 y-^, so that the direct cur-

rent is distinctly narrower than the return current. This will

be still more the case in a tube of circular section. The point

under consideration depends only upon a complenentary function

analoj;ous to one previously considered. The equation for ^f' is,

but if we suppose the radius of the tube is small in comparison

with A. , k^ may be omitted. The j'-eneral solution is

so that,

whence

-i<H:. . r:x»-v"^7v^r-i.i)-^ ^ C^-^ji^xKoc

Acain ^ = "
"f^ = ^ Xic f A f "' 4Br + C r^

j
C^-^<%
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whence A ^ o

and ^ "* ( "^^ -»- 4 C r*V Su^ :».K.a

If

Thus u vanishes when

"The direct current is thus limited to an annulus of

thickness 0,293 H, the return current occupying the whole in-

terior, and having therefor a diameter of 2 x .707 H = 1.414 R."

No consideration was given in this paper to the fluid

flow outside the tube (in the case of an open-ended tube) or to

the unbalanced thrust which might be produced by any of the var-

ious characteristics of pressure or motion of the fluid when com-

pared with the properties of the ambient atmosphere, or a suit-

able frameof reference.

Acoustic Kepulsion . The phenomenon of acoustic repulsion,

accompanied by circulation of the air in a chamber resonating to

a given sound source, together with evidence of the air stream-

ing from the opon end of the chamber, was demonstrated by Dvorak

/l/ as early as 1878. lie carried out several interesting ex-

periments in which a glass resonator tuned to the note of a tuning
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fork is fastened by sealing wax to the end of a licht wooden rod,

the other end of v/hich carries a small lead counterpoise. To the

center of the rod is fixed a r;lass cap which rests on a vertical

needle point. '.7hen the fork is strongly bowed and the open end

of the resonance box (upon whicli the fork is mounted) is presented

to the open end of the resonator the wooden arm rotates on the

needle point.

Y/hen the resonator is filled with tobacco smoke, and the

fork is sounded, currents of air are seen to enter and leave the

chamber, as the resonator is accelerated by the unbalanced thrust

acting inward on the open mouth of the resonating chamber. A

current of air which is nearly as large in diameter as the cross

section of the tube or chamber is noted to proceed out of the

tube, whilo a very narrow ring of air is noticed to flo;v into the

tube adjacent to the walls of the resonator or tube.

There is also an unbalanced pressure on the interior wall

of the resonator opposite to its open end. Lvorak noted by care-

ful measurements with a manometer that the pressure at the node at

the interior wall of the resonator* opposite to the open end is

greater than the ambient pressure outside the tube. Also the

pressure at the open end of the tube is greater than the outside

*oee also, Morse A/, p. 258, "Vibration and Sound" 1948, for

cavity resonance and formula for ratio of pressure at closed
end to pressure at open end of tube.
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pressure, although the pressure at the open end of the tube

(at the antinode) is less than the pressure at the closed end.





DESCKIPTiai OF APPARATUS

The principal apparatus in this investigation consisted of

resonators of various sizes and shapes, a controlled sound source

which oould be adjusted in frequency and amplitude, and a thrust

measuring device.

The resonators were constructed of glass, stiff paper, and

plexiglas to the dimensions shown in Figure 1,

The sound source was a Strotnborg-Carlson eight inch cone

type radio loudspeaker. Model RC-25, with good reproduction qual-

ities from 60 to 7000 cycles per second. This speaker was driven

by an amplifier generally used in public address systems, RCA

L'odel MI-12222i and an audio oscillator, Hewlett Packard, Model

200C, frequency range 18 cps to 200,000 cps. The shape of the

wave form produced was sinusoidal. This was checked on a cathode

ray oscilloscope screen. Gee Figure 2 for diagrammatic sketch of

loudspeaker arrangement.

Thrust measurement was made by supporting the resonator by

means of a cantilever strip of metal (a strip of Alcoa 24ST one

inch wide, 0.125 inches thick, and 30 inches in length) mounted

vertically. Standard Baldwin and Southwark v/ire strain gages,

with a factor of 2.04, were cemented on either side of the strip

in order to measure the bending moment in the strip produced by

the unbalanced thrust acting on the resonator. The wire strain
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gages and bridge measurement equipnent, SR4 type L box, v/ere

calibrated by means of a force triangle arrangement shown in

Figure 3. It was found that the relationship between thrust and

strain was linear and in the proportions: 10 micro-inches strain

equal 0.00570 pounds thrust.





EXPERIMENTAL PROCEDURE

Descriptive Tests Ani Experiments . V/ork was begun by con-

structing several small models of resonators shown in Figure 1

as numbers five, six, and seven. These were taken from the de-

signs by Dvorak /l/. The controlled sound source was the radio

loudspeaker driven by the oscillator and amplifier circuit.

Variation of frequency as well as amplitude of the sound source

was easily obtainable. Vifhen the resonators were mounted so that

rotational freedon v;as achieved and the resonant frequency was

produced by the loudspeaker, the vessels revolved and a jet of air

issued from the openings. The sense of the rotation was such that

the resonators moved away from the direction in which their open

ends were pointing. V/hen the resonators were filled with smoke,

and the resonant frequency sounded, the smoke was seen to be ex-

pelled from the openings.

Although these experiments were interesting and showed that

the phenomena of thrust could be produced by the secondary effects

of acoustic energy, the amount of thrust vras too small to measure,

and the resonators were extremely critical to frequency adjustment.

Quantitative and Qualitative Experiments . The investiga-

tion was continued on a larger scale to permit the measurement of

thrust precisely as well as to study the flow of fluid during

resonance. Figure 4 shows the experimental setup used. The first
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step was to mount the cantilever strip and install and calibrate

the strain c&ges , The strain gages were cemented to the strip of

24ST aluminum alloy approximately one inch from the clamped end

of the strip. A small weight, weighing 0.1102 pounds (or 49.988

grans) v/as suspended by a silk thread as shown in Figure 3, An-

other thread was attached to the end of the resonator tube by a

drop of cement and the other end of the thread was secured by a

knot to the thread of the weight. The thrust, R, on the resonator

was then determined by measuring x and y and using the relation:

x/y * R/w, v/here w equals 0.1102 pounds.

See Table 1 and Figure 5 for the results of the strain

gage calibration. It should be noted that, although the variation

in the weight of the resonator displaces the calibration curve up-

ward or downw^ard, the curve remains a straight line and the slope

is identical within the accuracy of the setup. L'.easurements could

be made to an accuracy of 0.0001 pounds.

Suitable instruments calibrated to measure the absolute in-

tensity of the sound produced by the loudspeaker wero not avail-

able. However, a V/estinghouse sound level meter and condenser

microphone v/ere used to compare the intensities of sounds at var-

ious frequencies. This device had a constant response to fre-

quency. The sound level meter microphone was placed 0.40 inches

in front of the loudspeaker aperature. The loudspeaker was then
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made to sound at the lowest frequency of resonance for the reso-

nating tubes used in the experiment. The amplitude of the oscil-

lator and amplifier combination was adjusted to produce a sound

of arbitrary intensity. Then, all the other frequencies v/ere

set up, successively, and the amplitude of the oscillator v/as ad-

justed to produce the same arbitrary sound intensity as indicated

by the sound level meter. The amplitude calibration for the var-

ious frequencies at constant sound intensity 0,40 inches in front

of the speaker aperature is shown in figure 6.

The three-voltmeter method was used to determine the power

input to the loudspeaker, A cathode ray oscilloscope was employed

to determine the phase angel of the sinusoidal signal. A diagram-

matic sketch of the electrical circuit for this purpose is shown

in Figure 7. It was desired to obtain the power input to the

speaker at various frequencies with constant energy output from

the speaker. Hence, the sound level meter was used to adjust the

amplitude of the oscillator and amplifier units. The power input

to the speaker was then measured.

The power input to the speaker, P, is given by

P = E I cos ^
s

where is the phase angel between the speaker voltage, Es* ^^^

the current, I. The current, I, is obtained from the voltage drop,

Ej., across the known resistance, r. The voltage. El, supplied by
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the power amplifier exceeds Eg ^^^ "the vector diagram is indicated

in Figure 7. From this diagram

Eg * I^El^ + Er^ - 2ELErC0S 9

sin ^ = (EL/E8)sin ©

9 was determined by the oscilloscope, see Figure 7.

X = k^ ELsincJt

Y kgl sin (ut-9)

where

t*> « circular frequency

t time

k]L firid k2 - constants for oscilloscope.

Since sin 9 X^/Xg, the phase angle may be determined,

and the power, P, is then computed.

See Figure 8 for the plot of power input at various fre-

quencies for constant power output from the speaker.

The measurement of the thrust produced by the vessel under

investigation when resonating to the loudspeaker sound source was

made by obtaining the deflection in micro-inches of the strain

gage attached to the cantilever strip supporting the resonator.

The setup is shown in Figure 4. The eight inch cone of the loud-

speaker was masked with a sound-absorbent insulation board to a

diameter of approximately 3.5 inches to prevent undue dissipation

of the sound energy to the atmosphere. The speaker was then
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placed so that the aperature was 0,40 inches from the open end of

the resonating tube. This was an arbitrary arrangement found by-

experimentation to provide just about a maximum amount of sound

concentration without interference with the flow of air in and

out of the tube. To prevent disturbance from stray air currents,

the setup was made in a small compartment with an open side. The

walls of the compartment were covered with quilting to decrease

echoing and chamber resonance.

From the thrust calibration it was determined that the de-

flection of the strain gage in the amount of 10 micro-inches was

equivalent to 0.00570 pounds of thrust acting on the resonator.

It was also found that this relationship was linear, so that it

was only necessary to measure the deflection for a given test, mul-

tiply the deflection by 0.00570, and thus obtain the value of the

thrust in pounds.

Resonators of various dimensions and configurations were

constructed and tested for thrust in the manner mentioned above.

The peculiarities of the air flow in and out of the resonators was

determined by soaking a small wick placed on a probe with titanium

tetrachloride. This is a yellowish liquid which produces dense

smoke when it comes in contact with air. Tobacco smoke was found

to be entirely inadequate because of the rapid movement of air

and the immediate dispersal of the smoke.





RESULTS AND DISCUSSION

One of the interestin^-^^ factors noted in the experimentation

was the precise reproducability of all the data taken. Each point

on the thrust -frequency curves was reproduced on different days

with varying ambient temperatures and humidity conditions. Further-

more, all thrust values were very steady conditions which would be

found to obtain as long as the sound frequency and intensity con-

ditions ware maintained. None of the thrust or jet flow was found

to be unstable when the sound source was constant.

Thrust versus Frequency . The variation of dynamic thrust

with constant sound energy but varying frequency is plotted in

Figure 9. This thrust was produced by the unbalanced forces act-

ing on the resonating vessel sounding in response to the loud-

speaker sound source placed 0.40 inches in front of the open end

of the resonator and directed toward it. From the plot it may be

seen that the thrust drops off very rapidly as the frequency is

increased. It appears that the thrust is a function of frequency,

therefor, as well as of the energy output of the sound source.

Furthermore, the thrust seems to be dependent on frequency and

not the length of the tube, because the first harmonic of the

longer tubes produced a thrust which agreed with its proper place

on the thrust -frequency curve.

A curve of similar shape to that exhibited in Figure 9 was
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obtained when the thrust was plotted versus frequency with con-

stant volume setting (not exactly constant energy output, however,

due to the response of the speaker) of the loudspeaker-amplifier-

oecillator system. This curve is plotted in Figure 10,

Thrust versus Power * The amount of dynamic thrust de-

veloped by the acoustic jet is directly dependent on the sound

energy supplied to the resonating system. This could be readily

observed by the rapid decrease in thrust when the volume control

of the loud speaker was turned down as well as when the loudspeaker

was moved away from the resonator. Moving the source of sound

about 12 inches away from the open end of the resonator caused

the thrust to drop off to a very small quantity, even at the low

frequencies.

In Figure 13, the thrust/input power was plotted versus

frequency. It was found that the former dropped off rapidly as

the frequency was increased. From the standpoint of both actual

tl^rust, measured in pounds, and thrust/power input, measured in

pounds per watt, the most promising region is the acoustic fre-

quency band between about 10 and 150 cycles per second.

Ventilated Resonators . One resonator was selected for

tests to determine the effect of openings of various sizes and
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positions on the thrust produced by the resonator sounding at its

fundamental frequoncy. In all cases the energy output of the

loudspeaker was maintained at the same constant value used in

previous experiments.

Kesonator No. 10, 12.08 inches long and 2.73 inches inside

diameter, was used for this experiment. A series of holes, each

9/64 inches in diameter were drilled through the sides of the

tube in radial directions. Pairs of holes were drilled diametri-

cally opposite each other and spaced one inch apart from the open

end to the closed end of the tube. Thrust measurements were then

made v/ith the tube sounding at it fundamental frequency and v;ith

one pair of holes open at a time. The other holes v/ere covered

v/ith scotch tape to prevent the passage of air. The variation of

thrust with axial position of these pairs of holes along the

length of the tube may be noted in the plot in Figure 11. The

total area of two holes open at one time was 0.031 square inches.

From the curve it can be seen that the effect of openings in the

tube is much greater at the closed end of the tube than at the

open end. This follows from the fact that the static pressure in

a closed tube of this kind is greater at the closed end than at

the open end; and an opening at the closed end will have greater

effect in reducing the pressure acting on the end plate (which is

largely responsible for the thrust produced by the resonator).

See, also, the diagrams in Figure 14.
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The departure from a smooth curve, indicated by the varia-

tion in thrust found when the pairs of holes from three to six

inches fron tlie open end of the tube were uncovered, is indicative

of the rather turbulent flow conditions noted in this section of

the tube by smoke. Apparently the inflow of air, which enters

the tube at the open end in a thin annulus, moves along the inner

wall of the tube until about one-third to one-half the length of

trie tube, at which point the flow becomes turbulent and the out-

flow of air begins to develop there. The oOtflov; of air picks up

velocity and becomes more smooth and laminar, as it proceeds toward

the mouth of the tube, until at the open end of the resonator it

issues forth in a rapidly flowing jet much larger in diameter than

the thickness of the inflowing annulus.

All the holes had air flowing out of them when the tube was

sounding at the resonant frequency. The intensity of the jets of

air issuing from the holes varied as the position of the holes

from the open end of the tube. Holes close to the open end

showed air coming out in the form of a jet, but the intensity of

the jets increased very markedly as the location of the hole moved

toward the closed end. This, of course, is in agreement with the

fact that the static pressure is greater at the closed end of the

tube.
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A diagram showing the pressure and velocity distribution

in a closed tube is given in Figure 14.

The general circulation of the air in the tube and the in-

flowing and outflowing streams were unchanged by the presence of

the holes mentioned above. The fundamental frequency showed no

appreciable change.

The resonator listed in Figure 1 as No. 9 was used to de-

termine the effect an orifice in the center of the end plate of

the closed tube resonator has on the thrust. The orifices were

drilled through the l/l6 inch plexiglas plate at right angles to

the surface of the plate. Holes were not bevelled. The variation

of thrust with the ratio of orifice area to cross-c eotional area

of the tube can be seen in the plot in Figure 12. As the orifioe

area ratio increased the thrust decreased very rapidly. Evidently,

as the size of the orifice is enlarged, the resonant properties of

the tube begin to approach those of an open tube; i.e., open at

both ends, however, in this case the resonant frequency of the

open tube of length 12.08 inches was so high that no appreciable

thrust was developed.

An experiment was also made with the 2.73 inch diameter

resonator 12.08 inches long in which the end plate was closed and

two 9/64 inch diameter holes were drilled in opposite sides of the
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wall about 0,08 inches from the closed end. The momentum of the

jets of air issuing from the two holes thus balances each other

and did not disturb the equilibrium of the tube. The thrust

measured on the tube in this case v/as found to be 0.00513 pounds,

which was slightly higher than tliat observed when an orifice of

equal area was drilled in the end plate so that its jot of air

was along the axis of the tube. See Figure 12. The difference

in the two thrust values would be the measure of the momentum de-

veloped by the jet from the orifice opposing the momentum of the

larger jet of air flowing from the open end of the resonator.

Thrust Y/ith Resonator Reversed . In order to compare the

thrust developed by a resonator when sounding in sympathy to the

sound source viith the apparent thrust produced by a single flat

plate placed in front of the same sound source, the closed end of

a tube was presented to the aperature of the loudspeaker. In this

case the thrust on the closed end of the tube was only 1/20 of

that developed by the resonator witli open end toward the sound

source. Also, tlie thrust in the first case was tovvard the sound

source, while the thrust produced by the resonator was always

away from the sound source. This negative thrust ^vas caused by

the low static pressure produced over the face of the end plate by

the rapid flow of air across it. Smoke tests showed no movement
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of the air within the tube and no jet flow at its open end away

from the speaker.

Thrust on Open Tube . V/hen a straight tube, shown as

resonator No. 8 in Figure 1, with both ends open, was made to

sound in resonance to its fundamental frequency, a thrust was pro-

duced. This thrust was very small ~ only 0.00228 pounds at a

frequency of 231 cycles per second — but it was in the same

direction as that of the closed tube (away from the sound source).

This compares with a thrust of about 0.0190 pounds to be expected

of a closed tube resonator at 231 cycles per second.

Vfhen the flow was examined with the aid of titantium tetra-

chloride smoke, it was found that there was no outflow whatsoever

from the open end of the resonator adjacent to the sound source*

The air flowed in at this end and continued straight through the

tube in what appeared to be smooth, laminar flow. It issued from

the far end of the tube in a jet, which was of the same diameter

as the tube. Hence, the thrust of the tube was probably due to

the drag associated with the friction along the tube walls.

Air Circulation and Streaming . When the experiments were

first begun, a great deal of difficulty was encountered in obtain-

ing air flow in the manner to be expected from the observations
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of Dvorak /l/ and Lord Kayleigh /s/. At first, the closed tube

resonator, constructed of plexiglas tubing; 2.88 inches in diameter

with a 1/8 inch wall thickness and closed at one end with a plate

of l/l6 inch plexiglas, was placed about 0.40 inches in front of

the aperature (which measured about 3.50 inches in diameter) of the

loudspeaker. The tube was found to resonate strongly when the

proper frequency was set up, but the thrust obtained was such that

the tube was drawn toward the sound source. And when the flow of

air was investigated by means of smoke, it was discovered that

there was a good deal of turbulent flow in and around the mouth of

the resonatorj none of which could be identified as having any

properties of a jet.

The edge of the open end of the tube had been left square

and smooth, and although it was only 1/8 inch in thickness, it was

found to present enough of a surface to ruin the desired circula-

tion and streaming of the air in and out of the resonator. In-

stead, the rapid movement of turbulent air produced a low static

pressure over the edge of the lip such that the atmospheric pres-

sure of the air, acting at the other end of the tube, pushed the

tube toward the sound source.

Vflien the edge of the tube was sanded off to a knife edge

(without changing the inside dimensions of the tube) the flow was

smoothed out so tJiat a thin annulus of air flowed rapidly around
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th« end of the tube and along the inner vreill to a point about one

third to one half the length of the tube and then turned around

and flowed out through the center portion of the tube in the form

of a jet of circular cross-section.

A sketch of the air circulation and streaming during reso-

nance may be seen in Figure 15. Photographs of smoke plumes to

trace the flow are presented in Fif^ure 16.

It was found in all cases that the phenomena of dynamic

thrust, air circulation and streamin,^, together with jet formation

were only associated with resonance. '.Vhen frequencies other than

resonant ones (either fundamental or harmonic) were produced by

the sound source, there were none of the phenomena mentioned above.

Moreover, tuning was quite critical. A few cycles per second var-

iation from the resonant frequency one way or the other were

enough to eliminate the effects. See Figure 9 for an illustration

of this.

The thickness of the ring of air moving along the inner

wall of the resonator was found to be approximately 1/4 of the

diameter of the resonator, vrhile the diameter of the jet of air

flowing out through the mouth of the tube was l/2 of the diameter

of the tube. This is roughly in agreement v/ith the mathematical

analysis presented by Lord Hayleigh /z/ for the circulation of air
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in a Kundt's tube. See page 16 of this thesis. At the thinnest

point, the thickness of the annulus of air moving inward along

the v;all of the tube v/as given by Rayleigh as about 1/6 of the

diameter of the tube. The diameter of the outflowing jet then,

of course, occupies 2/3 of the diameter of the tube. The differ-

ence nay be attributed to conditions imposed by the open end of

the tube.





COMCLUSIOIIS

Acoustic resonance of a vessel with a single opening,

filled with air, sounding in response to an external sound source,

is accompanied by the following interesting phenomena:

(1) An unbalanced thrust is produced on the vessel act-

ing in a direction inward through the opening of the vessel.

(2) Two distinct streams of air are recognizable flow-

ing in and out of the open mouth of the vessel. The inflowing

air current is a thin ring moving rapidly along the inner wall of

the resonator. The outflowing current, which is circular in cross-

section is approximately 1/2 to 2/3 the diameter of the tube.

(3) The static pressure in the vessel is everywhere

greater than atmospheric pressure. It is largest at the nodal

positions in the tube and lowest at the anti-nodal points.

The jet action (with air as the fluid medium), and hence

the thrust, is many times greater at lower frequencies between 10

to 150 cycles per second than at higher frequencies with the same

power input.

The formation of the acoustic jet is extremely sensitive

to lip conditions at the opening of the resonator.

The effect of small openings in the wall of the resonator,

while not making an appreciable difference in the resonant fre-

quency of the vessel, is to permit a loss in pressure within the
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tube and therefor a reduction in jet action and unbalanced thrust,

The loss in pressure and accompanying reduction in thrust is more

significant at the hi^h pressure ref;ion8 in the vicinity of the

nodal points of the resonator than in the anti-nodal regions.

Openings large enough to rTeatly change the resonant frequency of

the vessel reduce the thrust to a negligible quantity.





REFERENCES AND BIBLIOGRAPHY

1. Philosophical llagazine . Vol. 6, p. 225 (1878).

2. Acoustics , 1943, Alexander Wood, Interscience Publishers,

Inc., N.Y.

3. Scientific Papers , Vol. 2, 1801-1887, Lord Kayleigh, Cambridge

University Press, 1900. (New York, the I/acUillan Co.)

4. Vibration and Sound , Morse, 2nd Edition, McGraw-Hill Book Co.,

1948, N.Y.

5. Textbook of Sound , A. B. Wood, states that R. V/, Wood and A.

L. Loomis (Philosophical iJagazine, 4, p. 417-436, Sep. 1927)

using a piezo-electric quartz oscillator vibrating with large

amplitudes at frequencies of the order of 5 x 10° c.p.s. have

obtained striking results. Crystal vibrating under oil, es-

timated pressure of sound radiation to be equal to 150 grama

weight — capable of raising the free surface of the oil into

a mound 7 cm. high. Maximum effects were observed when the

distance from the quartz to the radiometer disc was a whole

number of half wave lengths (m /z)

,

6. Acoustic Circulation Effects and the Non Linear Impedance of

Orifices , U. Ingard and S. Labate, Paper obtained from Prof.

Tate, Physics Dept., 1949. Used smoke particles in a three

inch diameter tube. Range of orifices from thiokness of 0.5 mm





- 39 -

to 19 mm and diameters of 3.5 mm to 20 mm. Frequency between

150 to 1000 ops. Velocities in orifice cover range of to

700 cm/sec. Eckart, in his theory of streaming caused by

sound waves, shows that time independent streams necessarily

follow as part of the solution of the complete wave equation,

taking into account viscosity and second order terms. He

proves driving force of streams is proportional to frequency

squared. Suggests that slow streams might also be carried in

air at audio frequencies.

C. Eckart: Physical Heview, 73_, 68, 1948.

A, Gigli: Journal of Acoustical Soc. of An., 20, 839, 1948.

L. L. Beranek: Journal Acoustical Soc. Am., 12, 3, 1940.

7. On the Radiation of Sound into a Circular Tube, V/ith an Appli-

cation to Resonators , U. Ingard, in Acta Polytech. 23 (Elect.

Eng. Ser. 1 No. 5) Trans. Chalmers Univ. Tech., Gothenburg,

70, 5-48 (1948). In English. The case of plane piston source

and rigid tube is treated theoretically, with reference to the

propagation of higher order sound waves. The equivalent im-

pedance circuits are given together with curves of radiation

impedance and pressure distribution, for the case of the in-

finite tube and the tube terminated by a rigid wall or im-

pedance. Measurements made of pressure distribution and im-

pedance for the case of the tube terminated by a rigid wall.



J



- 40 -

verify the theoretical results. The resonant frequency of

resonators is also calculated and agreement with measured

values obtained.

8. Acoustic Wave Fronts from a Piston Source , A. 0. Y/illiams,

Jr., Journal of the Acoustical Society of America, 19, 156-61.

Jan. 1947. Some properties are deduced from an approximate ex-

pression for velocity potential. Calculations are limited to

frequencies and dimensions of interest in supersonics. Results

(a) determination of place where fronts reverse curvature,

(b) calculation of radius of curvature, (c) theoretical equa-

tions for their shape.

9. On the Acoustic Boundary Layer at Rigid Walls , L. Cremer,

Arch. Elekt. Ubertragung. 2, 136-9, Apr, Llay 1948. In German.

10. Properties of Sound Waves in A Circular Tube , Ingard, U.,

Tekn. Tidskr. 79, 269-74, Apr. 9, 1949. In Swedish. Uses

vibrating circular diaphram sound source at end.

11. Vibrations in Open Cones . E. H. Barton, A Textbook of Sound,

MacMillan Co., Ltd., London, 1926, page 254-262. We have the

strange phenomena of a tube open at one end and stopped at

other, in form of complete cone, giving practically same

fundamental and same full harmonic series of the other natural

tones as are obtainable from parallel pipe of same length open

at both ends

.





- 41 -

12. Vortices and Streams Caused by Sound Waves , Carl Eckart, U,

of Cal. Marine Physical Lab., San Diego; Physical Reviefw,

Vol. 73, No. 1, p. 68, 1 Jan. 1948.

13. Design of Hesonating Tube , Prof. Otto Schmitt. To avoid bad

effects of conplex wave formations inside the tube of circular

cross-section, the diameter of the tube should be not greater

than /lO. V/ith this ratio the propagation of energy more

nearly tends to approach the plane wave travelling longitudi-

nally only in the pipe or tube.

14. Hesonance v'ibrations in Intake and Lxhaust Pipes of In-Line

Engines , NACA TECH liEM 957, Oct. 40, by 0. Lutz.

15. Exploration of Pressure Field Around Human Head During Speech ,

Jour, of Acoustical Soc. of America, Vol. 10, p. 184, This

gives a 6-8 page discussion of subject with pictures of set-

up. Also sets forth sound interference from wall oxhoes.

Used michrophones 1.8 cm. in diameter; diaphram and condenser

type. Used r, , h to describe field.

16. A Moving Coil Pistonphone for Ileasurement of Sound Field Pres-

sure , Journal of Acoustical Soc. of Am., Vol. 10, p. 200.

Notes that limitations are about 200 to 300 cps due to mechan-

ical difficulties inherent in oscillating masses.





- 42 -

17. Project Squid , CAL 13, Investigation of Acoustic Jets, Part 1,

Rudinger, Logan, Dashifsky» Also CAL 18, Part 2, Rudinger,

Logan, Finamore. And CAL 23, The Construction of Wave Dia-

grams to otudy the Propagation of Flame Fronts in Ducts.

Rudinger, Rinaldi. —— None of these are available.

18. Propagation of ^ound from Fast Lloving Bodies , L. Prandtl, 1942,

From Summaries of Foreign and Dor.estic Reports on Compressible

Flow, Vol. I, '.Vright Field Tech. Report, Ko. F-TR-1168A-ND.

(Kot apropos.)

19. Desk Catalog of ^^erman and Japanese Air Technical Documents .

(No results.)

20. Pogg. Ann ., Vol. 127, P. 497, (1866).

21. Philosophical Magazine , Vol. 7, p. 523 (1929).

22» Phys. Review ., Vol. 36, p. 1099 (1930).

23. Proc. Phys. Soc , Vol. 43, p. 340 (1931).

24. Nature , Vol. 127, p. 438 (1931).

Proc. Royal Soc. Ac , Vol. 134, p. 445 (1932).

Phil. Trans ., A. Vol. 230, p. 413 (1932).

25. Phys. Rev ., Vol. 37, p. 1155 (I93l).



i



- 43 -

26' ^hil» Trans ., P. 299 (1831).

27. Pogc* Ann , t. cxxxiv (1868).



1!



NO.

NO. 1

NO. 2

NO. 3

NO. 4

NO. 5 1

NO 6

NO. 7

NO. 8

NO. 9

NO. 10

FIG. 1. DIMENSIONS OF RESONATORS.

—r- PLEXIGLAS TUBING

2.73" 0.14" WALL

^ 1/16" PLATE ON END

OPEN EDGE SHARPENED.

SAME AS ABOVE BUT

0.12" WALL

SAME AS RES. NO.

SAME

SAME

GLASS SPHERE

0.02" WALL

STIFF PAPER CVLINDER

WITH ORIFICE

STIFF PAPER CYLINDER

WITH NECK

„ 1

r 2920 'I

T

2.88"

p 18.00 n

T

2.73"
i

12.14 1

T

2 7 3"

h- 6.42" -H
T

2.73"

1

h 4.72"-^

3 34. MM.

1^ t

9 34. MM.
1^

1

h— 50 —

^

9 34. M M.

K 5tf —

1

' SAME AS NO. BUT
2.73" OPEN AT BOTH ENDS

i

SAME AS NO. 2 WITH

0.0625" ORIFICE

SAME AS NO. 2 WITH

12 9/64 " HOLE S IN SIDE

TOTAL OF 24

l_ o^ ^n" ,1

p 2 9.03 'I

2.73"

h 12.14" —

H

2.73"
, ,

I

k /v .." >J

r 12.14 1





FIG. 2. DIAGRAM OF LOUDSPEAKER SETUP.
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FIG. 7. MEASUREMENT OF POWER INPUT TO SPEAKER.
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FIG. 14. DIAGRAM OF VELOCITY AND PRESSURE AMPLITUDES IN

CLOSED TUBE RESONATOR.
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FIG. 17 AIR VIBRATIONS IN PIPES.
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