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ABSTRACT

Beginning with linearized forms of the vorticity

equation and the first law of thermodynamics applied to a

simple baroclinic model including friction, an analytic

solution is obtained which describes the time variation

of the relative phase angle between the temperature and

pressure waves in the atmosphere. It is found that for

unstable waves the atmosphere tends toward a state where

the temperature wave lags the pressure wave. The time

variation of the amplitude and relative phase depends on

the initial value of the phase difference, but the ultimate

angle by which the temperature field lags the pressure

field depends only on the drag coefficient, certain atmos-

pheric parameters, and the wavelength of the waves. Figures

are included to show the variation with time and initial

phase difference of the amplitude and the relative phase

.

Also shown are the effects on the amplitude and terminal

value of the phase difference due to variations in the drag

coefficient and other parameters.

The writer wishes to express his appreciation to

Professor George J. Haltiner of the U. S. Naval Postgraduate

School for his guidance, contributions and encouragement

in this work.
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1. Introduction

In I960 Wiin-Nielsen [5] published the results of

an investigation of the mechanisms in the atmosphere

whereby the conversion of potential to kinetic energy-

is possible. He stated that for this conversion to occur

it was necessary that the temperature wave lag behind the

pressure wave. Using a simple baroclinic model with no

friction he obtained an analytic solution for the relative

phase between the temperature and pressure fields. Based

on this solution he indicated how the relative phase angle

changed with time for various initial values and how the

early tendency of the pressure wave to amplify was affected

by the initial value of the relative phase angle.

The purpose of this work is to include friction in the

simple baroclinic model and compare the results to the

non-friction case. Also the values of the initial relative

phase angle, wavelength, drag coefficient, Coriolis para-

meter, thermal wind, and static stability were varied to

investigate their effects on the amplification of the

pressure wave, and the time variations including the limit-

ing value of the relative phase between the temperature

and pressure waves.





2. Development.

The atmosphere is represented by a simple baroclinic

model. The 750- and 250-mb levels are used as data levels,

and the 500-mb level is taken as the level of interest.

This gives a 4-layer model where 0=0 at the upper boundary,

P=0, (level zero); and 0^(J , the frictionally induced value

at level four, the lower boundary of the atmosphere. It is

also assumed that the atmospheric motions are adiabatic. A

zonal basic wind field which is independent of latitude and

a linear function of pressure is utilized.

The equations used are the vorticity equation in the

form

and an expanded form of the first law of thermodynamics for

adiabatic motion given by Haltiner C2J

it& + V'Vk-AP*-co=o.it . v yrv v, ~ ~ --.
(2)

Here cT is a measure of the static stability,

e' zp zp ?

and
Jjj-

has been replaced by —jri/AP. It will be assumed

that the basic flow pattern remains constant and that the

perturbations grow, but no attempt will be made to account

for the form of the necessary energy input for this to occur

notwithstanding the dissipating effect of the friction. The





vorticity equation will be applied at 25C mb, level one,

and at 750 mb, level three. The thermal equation is applied

at 500 mb, level two. The wind at level i is denoted ^//

except that at level two the wind is taken to be y= -i-(M +%)>

The thermal wind for the layer of thickness AP centered

about level two is given by Vr
=
'£(fy~V3) t

For simplicity in the equations it was assumed that

the frictional stress is directly proportional to the

surface wind. The geostrophic wind approximation leads to

the result £Jx=-xC>2* Here CD is a drag coefficient,

^ is geostrophic relative vorticity, g is gravity, and f

is the Coriolis parameter.

Applying the vorticity equation at levels one and

three yields:

and expressing ]/, and 04 ^n "terms of ^ and V. yields

for level one the result

jtfT+D +(V-*t)-m*l *) ***&, (3)

and for level three

Here, the thermal equation is applied at level two to obtai





and the linear extrapolation j)/ -0/^/^1) £p is used to obtain

CO, . Adding equations (3) and (4) gives

Subtracting equation (4) from equation (3) produces

+ %&(?-2Jr). (6,

To linearize these last two equations assume that D^- and

(/ are given by

V- (U+ u)t +V? a»J Vt -(UT +Ut)Z + Iff
j

where the U and U represent the basic zonal flow which is

a function of the pressure only, and the small u's and v's

represent the perturbation quantities which are independent

of latitude, the y-axis. Also take h to be a basic part

plus a perturbation, i.e., W^nOO+htyt)* Now bY neglecting

terms involving products of perturbation quantities and

replacing v by V=fy , where ^is a stream function given

by ^--J^2> an(* ^r by 1£-^3fc£, where yj- is a stream function

given by nu-JL/i,, we obtain two third order linear partial

differential equations in *y and Vf-

:





Assume solutions of equations (7) and (&) of the form

where "^ and /*^ are complex amplitudes ?//£/:=2^is the wave

number for wavelength equal to L , and C is the phase

speed. Substituting these two solutions into the differ-

ential equations yields two homegeneous linear equations

in -yg and %
(c-u+$-&)K-(uT-/j&)n- *o (9)

fc(&-i)+Lfr>o+(c-u+g+j£-$-;j£)vt*o < io >

In order to have non-trivial solutions to this system of

equations it is required that the determinant of the

coefficients of ~f and y/ be equal to zero. Setting the

determinant equal to zero and defining C*-U- -^%> the

Rossby wave speed, yields a quadratic equation in (C~Ci\)

Solving this equation for (c-Cr) gives

By comparing equation (11) to the result given by

Wiin-Nielsen £53 it can be seen that the effect of including
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friction in the model has been the addition of those terms

involving 7V- as a factor to the frequency equation,, If

the drag coefficient, C D , is set equal to zero, A vanishes

in equation (11) and the result is identical to Wiin-

Nielsen's equation.

Equation (11) gives C as a complex number where the real

part determines the speed of propogation of the perturba-

tions, and the imaginary part when multiplied by the wave

number gives the amplification for the wave. Taking first

the plus sign and then the minus sign with the radical gives

two solutions which are designated as C+ and C„ respectively.

The complete solutions for ^ and T^are then given by:

Next take as initial conditions at time t=0

where A and A™ are real numbers and o^ is a relative

phase angle which is positive when the temperature field

lags the pressure field. Then by considering equations (12)

and (13) at time zero it follows immediately that

By utilizing equation (9) for C+ and C_ we obtain two more

equations for Vo+j%^%)t anj **/£,_ giving a system of four

equations and four unknowns. Solving the system gives





where /Cr^T -^2A^t.

Then by substituting the expressions for y£f ^_ ^ro+>

and yh- into equations (12) and (13) the complete solutions

for yand ^ are obtained.

In order to study unstable baroclinic waves in some

detail, it is desirable to have the expressions for */t and

'Yr in slightly different forms. Since C+ and C_ are complex

they can be expressed as C+=Y+iW and C_=M-fiN. Then the

expression for ^becomes

Now define B+, B-,4>+, and <p- by

U^fte^ w UeM"*=£-^- (16)

Then

which after some manipulation can be written as

Here 3 i s given by

Z3^=& +£_
l
* 2&&c«L[c<p,-4>j-r] (i7)





<£> is given by

&» d> =-& s^fr-ty * a *~ r<^?j
. (18)

Yis defined as ^^^\fpc^^t where T = tf^f+JF
1 and

0=arctan (G/H); F, G, H, and A are defined immediately-

following equation (11). The treatment for OAfis similar

to the above procedure for ^i Define Stv Cr- <& a^^^hv

%+e""*=Br^ «J yi-e^Bce'*;
, l9 ,

and then obtain

with /^given by

£r=/& +#! ^Z?„ /?r- 0*/f#y -fU-^ ( 20

)

and c^y given by

yt- ^ - &y Sf~&*Z?Q±&± S^-fo- + %) (21)

We now have obtained expressions which give the variations

of ^and *y£as simple sinusoidal waves having amplitudes and

phase angles which are functions of time,,

We now want to determine how the relative phase angle

between the thermal and pressure waves, ( ^.— <fi ) changes

with time. Considering the exponential nature of B+
f
B-,(3r+>

and J3j^ y
it can be shown from equations (l£) and (21) that

as time approaches infinity, ^approaches (^--J) and <py





approaches (9^-+— 3f ) . Therefore, in the limiting case

(^- — <&) =
(5rv- — 9^. ) • Now by suitable combining equations

(14), (15), (16), and (19), it can be shown that

Equation (22) was obtained by considering only the

amplifying part of the wave. Unstable baroclinic waves

tend toward a state such that the limiting phase angle

between the thermal and pressure waves, (^-y.— ^ ) , is given

by ^l^fc-^FM/CT/OA/fl/r/^tZCo, %)

where the function is given by the right side of equation

(22). It is to be noted that the initial value of the

relative phase difference, od» does not appear in the

expression for the limiting value of (c^-— <fi )





3. Discussion of Results.

Equation (22) was solved numerically and the results

are plotted in figure 1, which gives ( ^y+ — <^. ) as a

function of wavelength and drag coefficient „ Using a

surface geostrophic wind of 10 m/sec, the values of C.-, in

figure 1 correspond to frictional stresses of from zero to

20 dynes/cm2 . C^=0.004 dyne sec/cnr corresponds to the

value given by Sutton [h-1 for grass about 15 centimeters in

height. The value of the static stability parameter ,
&-

,

of 2.90x10 cmVdyne corresponds to the value given by

Gates ClD as tne mean value over the United States in

January. Those curves in figure 1 for which (^>- ^J is

zero when the drag coefficient is zero, are the curves for

which term H in equation (11) is positive, i.e. these

wavelengths are the stable waves since the requirement for

instability in the frictionless case is that H be negative

.

The apparent amplification depicted in figure 2 for what

should be stable waves with C& =0 can be explained by

reference to equations (16) and (17) from which it can

be seen that when C+ and C_ are real numbers, the maximum

possible value of B is given by B2=B 2 + B
2

+ 2B+B^ C The

time variation of B for two stable waves, 3,000 km and

12,000 km, with CD=0 is shown in figure 3o As is apparent

from equation (17), B is a sinusoidal function of time,

oscillating about the initial value . Figure 2 shows the

effects of variations in the drag coefficient on the value
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of the amplitude for the wavelength band from 2,000 km to

14,000 km. The values of B used to construct the figures

are the values attained at the end of the first 36 hours

for those wavelengths having ( <PT+ — <p+ )>0, for C^=0, in

figure 1. For the stable waves, due to the oscillatory-

nature of B mentioned above, the maximum value of B

attained during the 36-hour period was used. For each wave-

length the value of the initial phase difference between

the temperature and pressure fields, ai, was such as to

maximize the amplification in 36 hours (©c given to the

nearest 45 degrees). As is obvious from figure 2, the

effect of increasing the drag coefficient is to reduce the

amplification for all wavelengths considered. This effect

of friction is in agreement with the results presented by

Holopainen £3} In comparing the results it should be

noted that the ordinate in figure 2 is wavelength, whereas

the ordinate in Holopainen 1 s figure is a function of wave-

length, static stability, and latitude. In figure 2 it

can be seen that the wavelength for which the amplifi-

cation is maximum decreases as the drag coefficient

increases.

Figures 4, 5, and 6 depict the effects of variations

in thermal wind, static stability, and latitude on the

maximum value of the amplitude for the same wavelengths as

were used in figures 1 and 2, with C D=0.004 dyne sec/cm3.

The central curves in figures 4, 5, and 6 are identical and

11





are the same as the middle curve in figure 2 From figure 4

it is apparent that as the thermal wind increases the

amplitude increases for all wavelengths , and that the wave-

length for which the amplitude is a maximum also increases

.

Figure 5 shows that the effect of increasing the static

stability is to decrease the amount of amplification for all

wavelengths, except that for wavelengths greater than

about 13,000 km the amplitude increases slightly Also as <sr

increases the wavelength of maximum amplification increases

.

The effects of moving the latitude northward are s
as

depicted in figure 6, to increase the amplification of the

entire waveband, and to shift the wavelength of maximum

amplitude toward lower values. It appears from the figures

that increasing the static stability and decreasing the

latitude have essentially the same effects on the amplifi-

cation, and that decreasing the thermal wind corresponds

to increasing the drag coefficient in the resulting effect

on the wave amplitude. One might conclude from the

information presented in the figures that at low latitudes

with a high value of the static stability parameter and a

low thermal wind the pressure waves would not tend to

develop, and that at high latitudes with low static

stability and high thermal wind the tendency would be toward

amplification of the pressure waves

.

Wiin-Nielsen £5J discusses the validity of applying the

results of a linearized treatment of the dynamical equations

12





to obtain a limiting case for very long times. He justified

the application on the basis that the initial trends were

toward the situation given as the limiting case. With

similar logic in mind, equations (17) 5 (1#) 5 (20), and (21)

were used to numerically investigate the values of the

amplitude factors B and Br , and the relative phase difference

(4>T - <j> ) for periods of time of less than 72 hours. It

should be noted that while the limiting value of {*fy- *P) is

independent of the initial phase difference , c< 5
the short

period variations of B, BT, and ("t^- -<£>) are very much

dependent on the value of oc. Figures 7 and 3 were

constructed for a 5,000 km wavelength wave to depict the time

variation of (^--<£) and B, to show the dependence on o£ of

the time variation, and to show the fact that the terminal

value of (<^--<^) is independent of the value of ex. .

Because of the very similar behavior in the variations

of B and BT with time, only B is shown in the figures.

Figures 7 and # may be compared with similar figures

presented by Wiin-Nielsen [53 , using the same wavelength

,

for the frictionless case. In comparing the two sets of

curves consideration should be given to the differences

in the values of the atmospheric parameters used in the

calculations performed to construct the curves in figures

7 and £, and the values used by Wiin-Nielsen. One

conclusion that can be drawn from the figures is that

increasing the drag coefficient decreases the time required

for (qbr -^) to approach its limiting value.
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