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The following special notatleoa will be uatd throughout

this paper with the swanings as defined below. Other speeiel

a ueed will be Load at the place where they are

Cue

ie a sumber of} I.e. belongs to*

'« the eat or ell ordered pairs (x»y)»

ts) for ^Meh C ^ x <^ / end

0<: y ^ / •

f £ f Is e se»b*r of the claes of functions con-

tinuous or, the set 8*

g e. c g ie a sasioer of the class of functions con*

tinuously differentiable on the set H #

(and sisilarly for higher decrees of

fferentiability.)

X»*

S> HU

x sfaart 2~ la a parajseter along a path*

* s t°»/i * "welon^e to the closed interval, O^x^/.

—^" lsplies.

<^—

>

~ implies and is implied byj i.e. if and

only If.

7 S kl
f ' p,<^ * **<5uance of Unctions ^,(At !,?,•••)

of ar^iaente (x.yj ej P«q)»

j | JX —> f or, the sequence ) g . r conve? gee pointwise on

the set I to the function f.





vi

U.I u
> f on B the eoq^ace >g v> eoavergea iriiforsely on

the aet B to the fa net Ion f«

r»+ y the rl£ht(4-) and left (-) hanc derivatives

of the function y at the point In

nation.
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CHAPTSR I

IWRODUCIIOM

The purpose of this paper le to present s nusber of exist*

enoe theorems pertaining to a class of non-linear second order

partial differential equations in two independent variables of

toe general fors

(1.1) *U#y# u* p,qj r # s,t) « 0,

enere

(1.2) p • u . q u , r • BjL- s • u,^. and t « u f
x v xx xy y7

in tne usual notation* *e restrict our attention to those pre-

scriptions of initial conditions for ehich integral surfaces

exist such that the equation is of hyperbolic type thereon. I.e.

the inequality

(1.3) F* - 4 F F. >
s r t

it be sauisried on the Integral surface in a neighborhood of

the Initial data.

E. PICARD [11,(7) i S. COOnSAT [8], i..E.LSYi[ d], B.LK*YllO],

>A*ORD[ll], a. CIIMllI-CIftRAKI0[12],[13] # and others have

The number in the bracket [ ] refers to the referenoe in the

bibliography.





developed existence theorems based on the wetnod of successive

approximations* iheir concern aas been to establish sufficient

conditions for the existence of a unique solution* Retaining

their restrictions on the Initial data, we shall obtain sufficient

condltlonefor the exists nee of at least one solution* The Inte-

grals of tite equations we consider will not* In general* be unique

The concept of characteristic curves in an Integral surface

plays an Important role In all work In this field* We &ive two

definitions of a characteristic curve, the first applicable when

the curve is expressed in non-, erase trie fora, the second when

expressed in paras* trie forte:

Definition 1

» i\ where geCMCa.bJ), or T: V

ly - gU) [c^y^d

where h€C*(Ce«d])* is a eharaeterletlc base curve (character-

istic projection or* by usage* characteristic) for a particular

Integral surface J: u«u(x, y) of F(x,yj uj p,q; r*s*t) » ^^
for each (x9 y)

(1.4) F dy2 - F dydx ^dx2 •

i)crinltlon la

Ti f** for ^[0*1] and where x*y e C»( [0*1]), is a
(.j-y(r)

characteristic base curve for a particular Integral surface

J* u u(x*y) of F(x,yj u* p,qi r,s*t) * <%^ for each ^£[0*1]

1) F f* - P ti P.i2 -





-3

Under either definition T is rectlfiable and poaeeaeea a

continuously turning tangent (see C« J>DAIi[6], p. 100). The

two definitions ere equivalent in the following eense: «'«e stay

convert T expressed in non- paraxae trie form into its parametric

expression by setting x »T. y « g( ^). or x h(^), y • 2" as

the case aey be* That the converae is possible follows directly

from condition 2) of Definition la and the Implicit Function

Theorem* For, suppose at a point (xC£»)» y{^)) of ^ that i ft 0*

Then in a vicinity of x • x(^) the inverse relation ^"» ^(x)

exists and we may write

(1.6) -T i y « y(tT(x)) - g(x).

Similarly* where * jf # we may write

(1.7) r t x « El?Ml - h(y).

By condition 2). one of the two representations (1*6) or

(1.7) la always possible in the vicinity of each point of T ,

Definition 2

fx - x( Z )

V : \ * y( Z ) for £ ^ (o# l] and where x9 j9 \i s C {[0,1]),
!_u • u(r )

a epaee curve lying in a particular integral surface Jt u*u(x,y)

of Y(x.,y, u; p,qj r*s4 t) » 0, Is called a characteristic carve In

the Integral surface J <#=> the projection of P onto the xy plane

Is a characteristic projection for the integral surfeoe J*





Under suitable hypotheses* by virtu* of the hyperbolic condi-

tion (1.3)* for any integral surface Ji u«u(x*y) of P(z# y|u;p# qi»

r*s*t) 0* equation* (1*4) or (1*5) determine two one parameter

families of characteristic curves lying in the integral surface J.

exactly one characteristic curve from each family passes through

any given point (* >7y*l* »yQ )) of the Integral surface Jj and*

moreover* the corresponding two characteristic base curves do not

have a common tangent at (> »7q)«

Along any curve* characteristic or otherwise* lying in the

Integral surface J* the following strip* or band* conditions

(1.8)

(1.0)

must be satisfied.

The modification of • eflnition 2 and conditions (1*8), (1*9)

when the curve P is expressed in non-parametric form is obvious*

Definition 3
, r x*x( r

)

8 J y«y( r ) for Z e [0*1) and where x,y*u*p*q e C f ([0*l]).
umu( r

)

p»p( r

)

q«q( v )

is called a first order strip <£==^~ for each zr e (0*1]

(1.6) a • pi qy

Suppose a particular integral surface J: u«u(x*y) of
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-'(*#}'» ut p.q; r, s»t) » hat a contact of first order with the

•trip S • Than If \ iiy»y(r) for re [0,1] is a charaeter-

istic carve in toe integral surface J, the atrip S ie called a

characteristic firet order strip for the Integral surfaoe J*

i^erinltion 4

AT

v_

x«x(r )

y»y( r ) for c a [0,1] and where *,7,u,p, q,r # s,t
u«*u( tr )

P-P(^) eC'((0,l])
q«q( r)
r-r( ^ )

•»•( n
t«t( 2r)

ie called a aeeond order atrip <=?> for each 7:^ [0,1]

(1.8)

If, Moreover, equation (1*1) and conditions (1.3) and (1*5)

are satisfied for each r e. [0,1], then 3 la called a character-

istic aeeond order strip*

lote in Definition 4 that since all the arguments of the

functions involved in conditions (1*6) are known upon preseription

of the strip S2 , we amy datec-sainc whether or not the projection
Cl

of corresponding spaoe curve V* i \ y*y( t ) for £" e [0,1] is a
u«u(T )

characteristic projection without reference to any particular

integral surface*



-,--
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Definition! 9 And 4 can be readily modified to deal with the

non-parametric ease. See, for example, M. CIW^UIHI-CIBRAHIOf 13].

In Chapter 2 ee consider the characteristic initial value

problem for the equation

(1.10) s - f(x,y; uf p,q)

and Ita extension to the system of equations

(eWlU s
t
• f^x.y; u1# -«*,uni p1#

***,p
n, V*^)

(i*l,2,"»,n).

Be modify the customary hypothesis tuat f be Lipschitsian,

i.e. elth respect to variables u, p and q, to require that f be

partially Llpschltrian, !••• faith respect to variables p and q

only. As obtain existence of an integral u over the same closed

domain as that obtained in the classical theory. >ur Integral,

however, cannot be shown to be unique. This faet Is demonstrated

by an example, ly farther example, we shoe that the bounds ob-

tained on the domain of existence are maximal bounds.

In Chapter 3 we apply the metno s of Chapter 2 to the Cauchy

problem for equation (1*10) and the extension to the system (1.11)«

The conclusions are similar to those obtained in Chapter t#

The arguments in Chapter 4 serve to establish the equivalence

(as defined t are In) between the characteristic initial value and

the Cauchy problems for the system (1.11) snd the corresponding

problems for a particular system of first order partial differ-

ential equations of the form
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(Ult) ( 5 A ,x - C (1 « l,2,"*,m<mj

^- A
ik tt k,y

• C
t

(1 • m+l,m«tf, •••,n)

wimre the A ,C are runctions of x, ,u ,u , ••• # u . The system

(1*12) la termed a canonical hyperbolic system*

Thla equivalence haa already been esiadlahed by M* Cla^UIVl*

CIBRARI0il2]. Under the restriction that the firat partial deriv-

ativee of the functions *, ^*C f
be Llpachitalan with respect to all

their arguments, she obtalna her theorems on the existence and

uniqueneas of the system of functions J. as the solution for the

canonical hyperbolic system («U1S)« *»e demonstrate that ner rea-

soning establishing the equivalence does not depend upon the

uniqueness of the solutions for either system (1*11) or system

(1,12). Consequently, from our reaults in Chapters c and 5, me

are aole to remove the above Lipschits condition entirely and

obtain existence, but not uniqueness, for the solutions of the

canonical hyperbolic system for both characteristic and Cauchy

initial value prescriptions*

Following the attack of H* LSWYE10], in Chapter 5 we reduce

the equation

U«l) **(x,y; uj p,qj r,s,t) »

to s system of so-called characteristic equations by mesne of a

tranaformation to the charaeteriatic base curves as coordinates.

Thla system is shown to contain a canonical hyperbolic system*





•8

fte treat the Cauchy problem* I*e* to rind an integral surface wolch

has a second order contact with a prescribed second order strip*

by virtue of a theorem by tt* Cle* -isI-ClbKAiilO, ststsd In Chapter

4, I*&lY fS work yields immediately the result that for F eC,H

in a suitable region* ttmre exists s unique solution u e C v,v in

a sufficiently small neighborhood of the initial carve* fte again

demonstrate that the equivalence of toe problems is not dependent

upon uniqueness of their respective solutions; and* hence* by re*

quiring simply that F e. C ,f we obtsln existence but not uniqueness*

In Chapter 6 we treat the characteristic Initial value problem

for equation (1*1)* *e follow a modification of a* LSWY*S sjsthod

introduced by a* ClaV Ha»I0[13). Here equation (1.1; Is

first transformed into the form

(1.15) s » f(x,y# uj p,qj r,t).

A Modified system of characteristic equations is obtained*

this system also contains a canonical nyperbollc system* The the-

orems of Chapter 2 a ply and ws obtain results similar to those ob-

tained in Chapter 5 for the Cauehy problem*

In Chapter 7 we t*+at the raiy randary valv.e problem Tor

tXalOj | avCbw » .)•

i.e* the problem wher* any inte *r*l surface of (1.10) is required to

pass through two apac* envoi ls-iincr from a point, with ore of the

<nrv*s being a characteristic on tills surface and the other





crrve having ourve hevi *h«r« a characteristic projection. *e

chow that for equation (1*10) there is no losa in £enar»llty if h
ass -M the initial Gate to be

<1.14) (y,0) • u(x,x) s 0.

:• f continuous, bgandwd and Lipschitrian, we prove thet there

exists one and only one integral surface oi (1.10) satisfying

(1.14) on a coaaln for rbich we prescribe explicit bounds, for f

cortirtjo ,8, bounded and partially Lipseritxian, we find, by argu-

ments analogous to thoae nB9A in Chapters 2 and 3, that there ex*

lete at least one lnt*?ral surface of (1.10) satisfying (1*14) on

main for which we e*ein preaoribe the seme type of explicit

?n chapter 8 we consider the characteristic initial value prob-

lesi for equation (1*10) frost a new point of view. Here, In order

to ext«nd the theorems of Chapter 2, we introduce the concept of

9T and lower blinding functions for the iwlnlif (or solutions)

of the problesu This idea was first used by 0. PFRhQK \\S\ to ob-

tain an existence proof for the problem

(1.15) y» a f(x,y) , y(x
Q ) - yQ

.

a proof is quite Lad' indent of the classical proofs.

II* W01,:SR X*] showe that s method has no direct analogue

a ays tern

(1.16) yf * t, (*>J^»"« yp ) » (i « l,-",n).

lie ie able, however, to extend the classical theorem for a

system (1.16) to obtain a theorem ehich reduces to the direct ana-

te to the Pn&08 theorem In the ease where the f. are monotoni-

cally Increasing functions of the arguments 7\»"*tJn •



*
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inslona to the sh«or*-e of Chapter 2 which wo obtain art

Har to TLIJ9t*a ooncl i Tor the system (1*16) • Moreover,

wa demonstrate by axaaplo that tha fMNUW Method has no direct

analogue for the characteristic Initial wale* problem for equation

(1,1. )• *fe also ^lve an example illustrating the theorems ob-

tained in this oh.-;- or. Dallx# we note that the Cauehy problea

for equation (1*10) and the Cauehy and characteristic Initial

value probless for the ays tea

a. 11) »
t

m f,(* # y; a
x>

-«*,u
n ; p^'-.p^ q^* ••*..)

(1 • lv,n),

nay also be treated by the methods of this chapter*
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CHAPTKB II

The Characteristic Initial Value Problem for u

f(x,yju;u ,u }.
* y

*y

For convenience of reference we first state the following

theorem, whose proof la based on the method of successive ap-

proximations. The proof of existence was given by JU PICAF.D 111,

while the proof of uniqueness may be found in E. XaJHCE t c1 P*

410.

Theorem !•

< * ^ fl

-a ^ u ^_ a

-b^-sk p <, b,

2) f is Llpschitslan on 9; i.e. there exists

x a positive constant K such that for

<x,yj u
1 jp lfq

!

)6B, (x,yju
g ;p2tQp )

e B
y

U(».yj«1 ip1 »q1
)-f(*ty«u

8 ipg.qfi
)| ^ i [l ui^2 l

+ lVp2l + l
qrq2^

3) * /,/.< a, J' / < b., a / ^b - where M - aax If I on B*12 1 PI
=^ 4) There exists one ant! only one fundi on u(x #y) e. C'(F),

f < x « /T
u^^(x ty)€ C(Fi), where I : # such that for each

(0 *j y ^/^
(x,y) e I the point <x,y; u(x,y); 'j»J(x,y), u (x f y)) & ft( and

^ <*,y) = f(x,yf u(x,y); u
y
<x,y) # u

y
(x,y)}, u(x,0) • 0,

u(0 #y) - for each (x,y) e ; .



'•
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rks» a) Suppose we preecrtte u(x,0) a 'O(x), u(0,y) • V(y)

where 0<«) e C«( £0,/^ ), V(y) ^ CM to,/ 1 ) And (0) » 7(0).

Cone!c5#r the function «(x,y) x (*) + V(y) - 5(0). Clearly,

* (x,y) s and w(x,0) - :(*}, w(o,y) * V(y) hence the function

t s » - * «^»t satisfy - f(x,yj + w; v + w , -t w .,
*y * * j y

(x,0) s t(0,y) s 0, a proble* of the type covered by Theorea !•

b) ^pose fee, bounded and Lipachltalan In the
< x ^ /x

domain •:« xJ

<:u < oo

< -^ 0©

<q < oo

Then hypothesis 3) Is Inwedlately

satisfied*

Following an approach used by 18* X3LLEP ]~3] p. 632, In

dealt nr *lth a systes of first order ordinary differential equa-

tions, we are led to this ls^roveme nt of the above theorem:

Theorea la* 1)

2)* f Is partially Llpsebltslan on §J I.e# there exists

a positive constant f, such that for (x.y; uj p,,q, ) e. ,

,

prp2l + Ivs 1^ •

3)

=^r 4)» There extote at least one function u(x,y) e C'(r),
To ^ x *nfr

xx
f y,y)e such that for each (x.y)^R

**
(.0 ^ y ^ /.





the point (x,y; u(x fy)j u (x,y), u (x,y)) & B, and u (*,j)

f(x f y; u(x ty); u (x #y) t « (x,y)) f u(x #0) » 0, u(0,y} * for
x 7

each (x,y) <s R.

Proof* According to WKIFRSTnASS* celebrated theorem £ef[ p. 1147,

on polynomial approximations to a continuous function, there exists

a sequence of polynomials, ^g . ~l (x,y;uip,q) 9 converging uniformly

to f(x,y; mj p,q) on P« *e designate this uniform convergence by

tha notation ^g^^^/f on 8,

*• axtand f and tha polynomials Z\ » (A« !»»*#•••")# °*9T

tha domain I to tha domain n», defined In tha remark b) above,

by the definition

f(*»yi ^i p#q) « n*,y* ~? p#q)

6 (*»y* «J p»<j) « s (**y; ~i F»?)# ( - l, ?,•••)#

(?.l) where

q if HkKl , p e p If -b^p^b. , J i q If -bg^q^b,.,.

u - t if a < u p s ^ If b^ < p q s b2 If b
g < q

u --a if u<-a P r-*^ It PO*^ <? -b
g

if °*<*b
2

Prom this extended definition we see that |f |£ M in §** 51 nee

^g? unirf ln Bt> th#r# exists a conatant L>0 such that \.%A^t

In B f and for all /\ • Tha furct ons g> , (/\m l,2,*-*) are uni-

formly continuoua io E', moreover they poaaeae bounded difference

quotients with respect to the arguments u, p and q everywhere in B'i

ce In B+$ for each function g. there exists a constant Z \ >
oh that



f
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(2.2) \gfx.yi u
x ; p

1
,q

1
) - g^(x,y; u

? j VS } 1^ K
X^V^^V^l

Thus, by ""heorew 1, to each g ^ there corresponds one and only

one function a v(x,y) e C«(K5, Ux (x,y) £ 0(H) satisfying
x A»*y

fn. • £ Y
(x,yj «x(x»y); u^ (x,y), oi _(x fy)) #

(x,0) «r 0, u J0,y) • for each (x,y) ^ R.

We aay express the characteristic Initial value problem for

each uv In the form of an equivalent Integral equation

By differentiation,

(2.6) «
A ,y

<*sT>-j 8
x
<$sTJ •><f**1« a

A.a ( ^*y) » tt
A,7

( ?^ }) ^ #

tfe now show that the sequences \U\Z » \ U
A xs # < u \ <

are each uniformly bounded and equicontin ..o o on r,. ?or the se-

quence ju^l this follows directly froa the integral expression

•4)« :or # given x, x^ x
g

e? [p,/^] and y, y^ y
g

<s [?»/2l •

(2.7) \u
x
(x #y)[ -jfji-jy^g Us l.a.— )



~N
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The uaifona boundedneaa of j u, 4 and of > u . I follow

directly froa (2.5) and (S*6), reapeetlvely, for, given (x,y) e B,

(2.9) u
A ^(1,7)1^ L/

g
, (\sl,V)

*e baaa the proof of the equ.icontirr.iity of the functlona of the

sequence !> u^ 7 upon the following two leseaaa, tha first of which

la due to ?. H. OROfflrALL ]jT\ •

JU 1} 7)e.C(lO,fl)

(2.11) S) ^ Hty4\ OttC^) 4- A) d)| 4 8 for y^n°»/j

where V# A and B are conetanta >0.

(felt) 3) ^ Ify) ^ (A/ 4- t) •*' for y e £0,/J .

lasaea C. Given U>G, g"> 0, there exiat £ , & positive conatant

depending upon pi alone, and 9, a positive Integer depending ipon 5

alone, aueh that whenever (x,,y) £ I* C*^#y) e R,
] **•*- I

^ S

and A> f
j

where K la the partial Lipaaoltfl conatant for f(x,y; u; p,q)»

Aaauiee, for the xoau^t, the validity of these two lecrsaa. ~aeh

of the functiona u. ia certainly uniformly continuoua on Rj hence,
A*X

if we let 2(y) a
|
u^ ,(« ,y)-*

A
j^a^y)) r°r any particular A> *,





we have immediately that for \x -x \<cg $

(ai4)
l
u

)kXV )
"u

Ji,x
(3t

i'
3r,K </*+£)•

Suppose (x, y) e R f (x .y ) 'e R, than certainly (x^-y, ) e R
1# l I 1

and

+
l

U
A.*

(VV-U
A.* (Vy

i
)

l '
(Xrl.f.— )•

By (2*5) we have that

(2.16) K^vV^x'VVl^ Mvy
il ' iA •*•*•••• )•

Inequalities (2.14), (P. 15) and (g.l€) yield immediately the

equicontinuity on R of the functions of the sequence J u . \ ;

for, given G. > 0, we first chooee U> q and £^> q such that

e

e 2

and let & and K be the corresponding constant s giwefl by Lemma 2«

By the uniform continuity on R of each of the functions u. ,

there exists a positive constant £> . depending on €. alone, such

that

\*1-*
21^H and

l
yi- y

2 I^^N ^
(2.13)

l

u
x x<VT

2
)
"11
A.X

(at
l
,y

i
>
l
< " fi

'
^• X»V' ^

Setting g r mln(g , S N » ^) we obtain
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(2.19)
\
uXx

(3r
P*y2

)-U
AtX

(jr

i
,7

l
)^e

'
f°r ^ r "A****%***•••

Proof of Lmm 1i Lot "(y) - a 7 • *(j), without lot* for wo aay

always ohooaa w(y) - a"^ • 2(y)» w(y) e C( £O fjf][ ) and banco at-

taint a siaxSwusi thereon* Lot w occur at y > y^, then

0^ a*7* w
nax^

Tl
< sl •^•(ty) -rAj d)| + B

* *, \ ** a*
1

! <*h fAy +B
awr j q C 1

* *aax (a
^Ul) ^ A Ti + B

ttwa O^w <Ay, + S ^ A/ -V- B and nance
tSAX 1

p

^ 2(7) ^ (A/ + B) ** for y e Lo,/] .

^r^of of lessa fit

(fcao >

-lo E8x (VV U
A

(VV ; Xx'VV'
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(CDntinued) I A £ I A,x 1 (.

"a.t'V^

" r*M» "A'
3*!''? 5

' "a^V^*

- *>CM* •a<M> ' 'a^M1*

Since i r i ^B^ff on !?•, given £>0, th«re exists & poaitiye

Integer S, depending upon £ *lone, such that for \>H,

t**> ij'lwv vM' 1vM ,(vM" -

By hypothesis 2)\
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(Continued) -f(x
g
,*|; u^(x

?,ty|
u
x,x

{VV' U
\,y

(xr'^^l dV

nee f ia uniformly continuous on ••
- the function* of the

sequence « u» I are equlcctlii'O' s on K, and (u. (x ,b) •

» (x„,hM< L Ix -x I , (1: 1, £,•••)» It follows that piven a. >
A,y l l l ' ? I 1 /

there exists a positive constant & , depending upon au alone, such

that for | x - x. \ <C £ ,

" fM f VW 1 V*<W» l

^ef
CM > d^'

Therefore, from (2.21), (2.22) and (2.23), by virtue of (8.20)

as obtain that for \>$ an3 ) x^ - . |<^£ ,

thus v^rlfrlng Lasana *>•

proof of the equicontlnulty of the functions of the se-

quence i u. 1 follows precisely the same steps as that for the

mmmmm £.^ .

We now invoke the well-known theorem of C. AFZvELa \z\ p. 1144

1

"Civen a set P oT functions f defined and continuous

on the closed bounded set A, then the necessary and sufficient

eonr"lt:ons that eaoh sequence of functions contained in 9 possesses



.
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a subsequence uni Torsiy convergent on A ere that F be uniformly

bounded and equieontimoue. *

By Theorem 1, there exists a unique triple (u. ; u
v % u v _}

A A,X A»y

corresponding to g. for each X Since *ny subsequence or a

uniforaly convergent sequence is likewise uniformly convergent;

as*, since any subsequence of a uniroraly bounded and squ I continuous

sequence is likewise uniformly bounded and equicontinuous; there

exists a subatqptnc* £ g *1 of the sequence £ g, 1 such that the

correspending sequences

where i, v, w e C(H). This results frost the following successive

extractions of subsequences

s

Cu.7 is eqjicontinuous and unlforsily bounded on F, hence

there exists a subsequence ju\l of £»w ttBlforaly convergent

iu 7 is equieontinuous and uniformly bounded on R, hence
1 A '*-> r ? 1 CI?

there exists a subsWpance ju' i of }uf ^V unlforsily converg-

ent on
?
uXt< ~* equi continuous and uniformly bounded on H,

hence there exists a subs- se <u* _ t of yu, _< unlforaly
L A,y^> C All)

convergent on H» But, by the one-to-one correspondence mentioned

above, > u* i la a subsequence of j
«* / while | u^ | it a

^sequence of W\( * Stows j u^ i and £*X{ aLj*c eaon unl-

foraly convergent on .

e »
Writing, with the notation u * u zm u « 0,

0»* 0#7



-
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A ee A * • * ^ *

X k«l * * * A#* k»l *t* £-l>x

11* s ^(u* -<i* ), ( A r 1, ?,••.),
Aet k«X *.7 k-l,y

we set that the condition* for differentiation urder the summation

sign for Infinite series are satisfied by (?.24) and the fact that

u'
x
6C«(n), (X« 1,2» ,## ). Hence

365 v(*,y) »u
x
(x # y), w(r#y) * uJ*$y) for (*#y) ^R

"*e shoe that the function u so determined satisfies the

integral equation equivalent to the original characteristic Initial

emluo problem* i*e*

<3*?7) u(x.y) »^* d5^
7
f(£s^I «<g»ty>!

«
x
^^)t * (S^ ))d)

Z

for (x,y) e E.

?or any X » by (2.4),

(:.?S) |u(x,y) »£*«£ ^tli*^ »«$o*t>l «»($ e^e »J5 #£M d^l

* \j(x.y) - •t
Cm#y, l +^S

Sii
^
f(§ '^ J U( ^ 'V 1 V$ *£ )#

^S^^<fS^»^*^ mSsf«6^"

Sinoe ^g*^ ^£ f on :-', ^u*"^ ™!§£ -a on I, given £>0 end

(*,y) e r, there exists a positive integer S., depending upon £

alono, sjeh that for \ >» If,

,



<
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.so e*d S r* ires .^

«

#
x
(^n *,cm>. <,Tt£ 4u

Moreover, sinoe f Is uniforaly contlauoua in ?.» whilo ^u^( #

[u? 1 , \ * I converge I axsaly on E to u, u , u respee-

t'vely, there exists a positive integer H . tsepeoGlng on 6 alone,

3 <?h that for X > »
2 ,

Intromiting
( t (2«30) and (?«5l) into (S?«38), w* obtain

that for )^> wmx (F - I?)

-32) \u(x,y) -^*d$
J

*f(£ fy •{£*£>! u
r
(£ P\U ti (i^))

9tit £ li arbitrary, hence (2, 27) is verified for each (x,y)^R

fe oust verify the one additional fact that for aaoh (x,y)eR,

(x,y; "a(*,y)j n (x,y), u (x,y))e~, instead of Just belonging to B f «
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By differentiation fro??, i"'.*"?),

r I
3) « (x.y) .\ f(x,^; iU^)* u^Cx,^), u <x,\^)) d^

(2.34) u (x # y) 8 f*f( £ ,y; >(£.y); u (£ ,y), u (£ ,y)) d? .
7 JO x T b

Ranee, from the axteiided definition of f f (tWl)t «n£ hypcth-

eeli 9) 9

35) \u{j #y)l^^d|^
y
|f(^^f u(£^)l u

x(| ^), n
y
(£^))|d^

(?.3f) \a
x
(x,7)^r y l«W|l »<a»^)j tt^x.ty), u

y
<x^))|dlj

*2 1

UBS completing the proo:* of Theores la*

Peaarks a) and b) to Theorers 1 apply at veil to Theorea la*

By the following example »« enow that the integral rirfaeee

for Theorem la are not neoessarily unique

i

gyaarplc 1 slder the characteristic initial value probleai

x
u « Ul ; u(* f0) • -i(O.y) • 0.
xy i i

Here f(r.y; ; p9q) | u l *a continuous for all u bat falls to

satisfy & l.ipachltE conation on u at u s 0. Theorem la ap lies



c

.
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to insure existence of a solution in a sufficiently small neighbor-

hood of the origin. However, at least two solutions, valid for all

(x,y) in the finite olane, are directly available. First, u »

obviously satisfies. Second, if we seek a solution u satisfying

1) u > 0,

11) there exist functions X, Y such that
u(x,y) X(x) • Y(y)|

that is, by the method of separation of variables, we obtain imme-

diately the solution u(x,y) > i_ x? y8 .

16

For purposes of Illustrating the various situations that mlpht

occur, : Ive the following!

Example 2 . Consider the characteristic Initial value problem*

(P.39) U3ty = |u»|* 5 u(x,0) s u(0,y) s 0.

Here f(x,y; ui p,q) m \p\' Is continuous for all p but falls to

satisfy a Llpschlts condition on p at p • 0. Since p(x,0) r ux (x,0)

s neither Theorem 1 nor Theorem la will insure existence of a

solution over any domain including a portion of the x axis. Such

solutions do exist, however. One is u » 0. Under the assumption

p r u > we obtain another, for now

P r P or
y

-| = 2p* s y + c,.
V

Since p(x,0) • 0, c. 3 and



*



P : ux « L. or, Integrating,

2 sd +

Inee u(Q,y) - 0, c c s 0; and hence

»»sd

is a aeconi tola tIon vail 3 throughout the finite plane*

In Kxaspla I consider the function

for x 4,

uA (x,y) r J e

2J- for x > •

u Is cor* .* for all (x,y) and satisfies the Initial vsl ie
o

probles (S« everywhere exempt along the y axis, where for y ^ 0,

u _(0,y) does not exist* Roughly speaking, u ie a continuous

integral surface of problem (?*39) having a Juep In the normal

first derivative across a characteristic*

For equations meeting the continuity, boundednets and oartial

*:r requ Presents of Theorem la w* cannot raatch Integral &-\r~

faeei la Is* fttov* fashion to obtain first derivative Jumps across

characteristics. This follows froa the feet that if we prescribe

ufa,y) s V(y) e C'( 10,/ ~\
) along the characteristic x*a,

a g \_0 $f^ , then

• 40) f py
(a,y) = f(a,y; v(y)j p(a,y), V»(y))

p(a,0) -

represents a first orde: '.nary differential equation for the



1



known function p z u under * one point boundary condition. lt*e

conditions that f be co tlm^i, bounded and partially Lip&ehitr-

lan art sufficient to insure the existence of a unique deteraine-

tlon of u^fa^y) for y e. ]j) t *^\ • Hote that In Example ? the func-

tion f was continuous only and hence the determination of u froa

the above ordinary differential equation was not unique, tbua

admitting the possibility of a Jump In u . The conditions for

the die teralnation of u &lon£ a characteristic y * const* are
7

similar.

The above reaar'rs serve to pert-it the extension o * the dooain

of existence of the interral surfaces of Theoreas 1 and la frost

• f
m*\ < * *MR to Hi * • The arguments for the existence may

be rjade applicable to other quadrants than the first by sere co-

ordinate reflections. Moreover the integrals obtained In the

separate quadrants oust hav~ first order contacts with each other

along the coordinate axes by the above reasoning f»0ai ordinary

differential equation theory. Hence we »ay obtain existence and
replacing r -/ ^ , ^ /

uniqueness av9T the doa.iln F. by/3 by B i 1 •

-a ^ u < a

-\^ p ^ b
x

In "lieoren 1; and we obtain simply existence over R* by replacing

B by B* In Theorem la.

!n the classical existence theorea for the ordinary differen-

tial equation £f - f(x.y). %lth y(0) r 0. the conditions that f
dx





27

^ x ^ a x
be continuous on C:^ , with M - f\t\ on C, were shown to

•b^y^ b
be sufficient to Insure existence of at least one Integral curve

7 r y(x) Tor x e\_0 9°C\ with ^ ^ min(a,£)* This bound,

ol^. nin(a,r-)» was shown by A* wTBTWSfc El^l to be a maximal bound

In a certain a*n*9* We apply his method to Theorem la In the

pro" or the following

i

Theorcsi % ^-

fo^x^/«
If, In Theorem la, we replace B by i"ty x

•ac^u^ CD

-bj^p^b!

L-b2
^q^b2

and require that f be bounded thereon, then hypothesis 3) In that

theorem reduces to

M r max |f| on I". Moreover, the bounds established by 5)'

are staxlsal bounds In a sense to be explained below*

Proof*

The condition E /. / ^ a of hypothesis 3) Is Israeli ately

satisfied since a approaches + oo • The conditions 8 /^ ^r ©2*

BT / ^ b. may be rewritten as In 3) and ar? row the only restrlc-

tlons on /^ and f r .





# l b , b
If /•» ^ -£ »(/ ^ Jj, then the conclusion is isaetdlate.

For, we aay taka f(x #yj •! ?»Q) a h(*), (g{y))# which function la

not even defined for x > /l s /1# (y > /^ « /£
).

Suppose / > *1 » Tfian we consider the aequonc* of problem* t

(2.4X) Uxy s (2
l/* - u^)

1'"3 *1
, " Uf0) * u( °' 3r) B °» !*•*•••>•

Setting p s u
x#

(S.'l) beoonea

p
y
(*,y) s (s

1^8
- P<».y)

1/^+1
» P(«»0) r 0.

Integrating tbia ordinary differential equation for p aa a

function of y, we obtain

p(x.7> « e
i/m

- [**** - Jj. y]
s+1^ .

!But # alnce p « ux and u(0,y) s wo siay Integrate again

to obta

><*,y) , * £ S»* - [Jfc< Cb
- y)]

"n> I

where

1

91

The line y * C Is a branch line of the solution cu -Jnder

/i > "1
, the desired atate«*r,t la that ,1 ia i

waxinal bound on / , i.e., for each £^0* there exists a function
I

f(x,y; a| p#q)# il lag on S. and satisfying hypotheses 1), 2)

and 3) on r> "
# such that an Integral u(x,y) of the problem corre-

apondin? to f has a singularity for some y e \L , 1 +6 )•



t
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Defining

f (XfTJ o| P»<i) a <2 ' - P) for -2 ' ^ p ^ 2 f

( « !*§*•••), we obtain

ha fil/K+1
* *« = (2^ + ^A»+1)1A+1, and, since

(2
1/fa

+ s*/»+1 ) >t§ (a a 1, '»•••),

lis 3A r 1 - •

a-xal^

Moreover* by (?.43),

111 C - 1

, given e>0 t there exists a positive interer

on <s alone, such that a > • =^-

JjS + * > ^S^ •

b
Conaequently .i Is a ratalaal bound on A..

To determine that the condition /. <c aln (A, 2 ) i» also

a aazSral bound we consider the sequence of problems*

(••44) u s (2
l/a

- M )

1^1
, u(* #0) • u(0,y), (a . I.t.*- ),

<j »

and follow the same line of reasoning as before* Thus Theorem 2

is verified.

I close parallellsa between our conclusions and the class-

ical theorems for first or-ler ordinary differential equations
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(See !• ?a*FC* \j~\ ) leadt one to suspeot that an existence theorem

might be proved wherein mere continuity of the function f was de-

manded* The analogue to the Cauchy polygon sethod ie the attack

suggested by the parallelism, and It leads t o en existence theor

for the characteristic initial value problems

(2.46) uw z f^.yi ,J ) f u(x,0) m a(0,y) * 0.

We do not give the proof here; first, because the theorem

ie a special case of Theorem la; and. second, because the steps

in the proof are practically Identical vith those of the Cauchy

polygon method for ordinary differential equations*

when f s f(x.y; mj p,q) and f is nerely continuous this

attack involves difficulties which we have not been abl* to re-

solve* we sketch the method to indicate the source of trouble

i

In a neighborhood of the origin a partition TT by

characteristics is specified where the

Aqi

r\oo

A,

A 10

subrerion* k
A , in the first quadrant

are defined as

V i* x -=i x
i 1 (1,3-0, !,£•••)

7.^k^
We formulate the appro*! .rate integral surface u

sponding to the partition TT as follows}

corre-

(P.46)
Jo



(
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(2.47) P^ (x,y) z ?(*!* ,* Utt (^fT.)! ^tt^ (*j»yj>>

for (x,y) e A^,.

The principal difficulty lies in the fact that the derivative*

f y
(2.40) U ITX z

\ V x,V
l)

dt
J

and

% =(
X

V*'y) *S
Jo

are discontinuous across the partition lines x oonstant and

y m constant, respectively, thai preventing the dlreot application

of "A»8 theorem on equicontinuous functions when we consider

the sequence of approximate integral surfaces formed by partition

refinement.

The equation of (P. 45) appears to be more amenable than the

more -en* rail equation involving the first derivatives p and q.

[jl6~| p. 62?, by demanding only that f(x,y;u) be continu-

ous and Tipschitii&n with respect to u, has proved the existence

of a unique Integral of u 3 f(x,y;u) satisfying Dirlchlet eor*-
xy

dltlons, i.e. the value of u prescribed on a closed contour* This

resrlt, -vhile remarkable, Is not contradictory since is shown to

have a discontinuity of the second type at one point of the

indary.

We conclude this chapter with the statement of the extension

of Theorems 1 and la to a system of equations



c

^^b a

t



M
(2#30) «

x
f^x.yj u

i»
# '*»u

a* Pi»
## *Pn»%'

, * # ^n ) » (l«1 » ??»" #
' ri

satisfying the Initial conditions

1) u
t
(x #0) 3 u

t
(0,y) m Q , (1-1,?, •••»n).

Theores 3 # helov, is & natural extension of Theoresi 1. In

principle, it ems first obtained by ft* HCCOISTTI His] ?•?• His

statement 9 hoeever, is not explicit I the bounds on the domain

of existence Horeoxer, to prove uniqueness hs requires the fj to

be of elass r,
« <e obtain the improved statement, TheoreK 3, by

odSfyinr the ArgroBeats of E. SAKE £•] p» 402 and p. 403 to apply

then to the system (2*50)*

Thaoraw 3) r
\ t£ X. -£. /,

1} f.djj u,j p,,q. J* e :< '), -i\ *

^y^ /

•4, u.^. a

ft] The |L are tipsohitxian em B*J i.e* there exists a positive

constant % s,©fa that for (x,yj a1 ,! p j, q*.) «=. B\

(sf,7; t*^,J P
f
.#i ,) e , end i « !,?,•••, n,

\f
1
(x,yj u\; P

l

j
»<l

I

3
) - ^(s.yj *ijl P' ..-: j)|

^ I ji^-m^ -Op
1
,

- P^|l^l^j - *jl] •

sisjax^
(
f
xU-*% |fn |? * .

b shore2^1

8 fetation: (x, ; p,.q,J « (x,yj u1# --. , 1

n;P1
»' ## »Pn »





zz

- "> • 4) Thsro ox! a la one and only one set of function*

where Rifo^ * ^ /i • 83cfa ta» fc **•* «*eh (x,y) e 8 the point

(o * y ^ /^

(x,yjUj(*#7)l Uj jUty)* a
5 t^#T)) ^ £", *»*

u
l xy*

T ' r) * f
i

( ** y|u
J***

7); u
i,x

(x * 7)# u
!,y

( * #y) **

Ujfx^O) • ev(0»yj • # (i * l, # *%n), for each (x,y) e R.

8y relaxing hypothesis 2) we obtain the improved theorem

below; vrhloh stands in the ease relation to Theore* 2 that

Theoresi la does to Theorem 1.

TheorgtB 3ft

1)

£)' ?h* f are partially Lipschitsian on B*j i.e. there

exists a positive constant K such that for (x,yj u.; p-L q]) c B" #

(*»yra,;p2j#Q
2
j)<£ % «n<3 i - 1 # ?,•*•, n,

\fi(x,y; u
3

; p*
j# q^) - r

x
(x #yj n,* p*,, q

?
) |

3)

—^^ 4) There exists at least one set of functions £ *!,,•••, u l 9

tt,(x,y) *= €*{?.), »j (Epf) ^C(B)« (5»l,*' # ,n) t where
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Rt -S
L

» such that for each (x,y) e R the nolnt

#x #7

«, (x#y) « f.U^y; u (x f y); u (*,y), n, T (*,y)),
. *7 *

J J»* » J

n,(x,0) 5^(0,7) s O f (is lvn), for each (x,y) <=: JU

The proof of Thaoraa 3a is essentially a at»p by step repe-

tlor o^ Mni for Thenrwis la. *BX*£S?KaS5* theorem t*lls us

that for each ^oaitl^ lnt» er 1 thera exists a sequence of

->oRlftla ^rt x^ l*t7t •»! P.»<l
t
)» (X * l»-# - **)» converg-

ing uniformly on B" to f, (*,yi m.5 P,fQ*)* *• extend tha g. v

•ad the f, at before and obtain that there exist positive con-

stants L^ auch that for each 1
\
g. v\ ^ t,. on **% extended, and

for all X . f« 1st L i saax \ !,.,•••, t J and proceed as be-

fore, -jainr Theorem 3 In place of Thsorea* I to obtain the Integral

u. v associated with each g.v •

te note only one point aj sl£r*lfleant difference in tha

argusients* In place or inequality (2*12} of Leaaaa ft we now have

the inequalities

•*» ia«M om<4 i«*4Im [i-l»«««»nJ
these, and letting

2i7) t&^x****** -"ix.x'V"

ww obtain



<

K



M

O^Z(y)^Kn^ Ztty)*^ + n{ ja+S)

to which Leoaa 1 applied. Thus the ec licontlnui ty of each of the

••ouer.ces f «. . 7 » ( l • lt** # »») 1» a*eure<5«
i I X , I 5

I a) area* 1 and la apply, with obvious

atodi.fltations, to Theorems 3 *n4 8a* '"ore over, as oafore, we say

extend the !owain of ixlster.ee of the Integral surfaces of

* S -A < * <A
2neora?.s 2 and 2a fro* H to K : \ •

the s«?t of I one 5 *%*••% * < representing the solntlaa

to >roble» of Tfceorea 3a ear.no t ba shown to be unique* This

Is made evident by extending ^xa-aple 1 to the system

U
l xy *

l
U
li *

u
x**»°) 5 «i<°#l) *

U
2,xy

s ° » *«/**?' s u
<?
{C » y) « °

V«y * °
• * 0) 2W> * °

for which u, = o (ls^ »••*#»)

while u. = or u, : i. x y . Thus at least two seta of solu-

tlona are possible for this 07stea which satisfies the hr?oth*ses

of Theorea 3a.
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CJUPTSR III

The Cauchy Problem for u f(x,yi a; u ,u )•

The development of this chapter closely parallel* that of

Chapter II* Consequently, the notation will be abridged* In

articular with respect to the arguments of functional and the

proofs will be merely outlined to show minor variations from the

statements in Chapter 2.

For reference, we state the following theorem proved first

for systems of equations by 0* MICCGLaTTI [14] p. 7. Our state-

ment may be easily Inferred from that of £• KAMKE [2] p. 405 and

p. 410, by a alight oodi float ion of his proof.

1) f<x#y#tt*P#Q) e C(k)

f
o *S x < /

o<y< td
-a < u <c a

-b^^ p ^ b^

(j-b2
^q^b

2

2) f is Lipachitslan on b, (as

defined in Theorem 1).

3) « /x /2 < a. M /
x
< b^. M /

2
< w # where * - max | f \ on a

_ f ^ x ^ /, ,

4)T;<J l
where (? (x) e C»( [0,/. 1). <p i«) j*

r - <?(*> x
,„

for x e £0# /_ ] and ^(0) - /a ,
1 V(/x ) - 8.



.

.-; MT

iim ttmum woe* •<

»*« %t

-

I 5

&J +X*«

fcJttttflB

5\

la M » ft

ritw
\ ^ *
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=^5) There exists on* end or.l • on* function u(x,y) e ),

u_ (*,y) e C(R) f where B$ -< , such that for each

(x,y) £ :, tin point (x,y; '-*(**); u
x <*#y)>

u (x,y)) e §, and

« '*#y) r f(*»y; u(*»y)i u (x f y), u (*#y))#
xy x y

-

for each (x,y) & R.

Beaarke c) Suppose we prescribe tsfx, ((* (at) ) aU(x),

«,<*.(? 00) = P(x), u
y
(x, (f>(x)) r *(s) where ti{x) e DM [o,/^ )

while ?(?), Q(x) e: C( \0 9/^\ )• Our prescription must satisfy

the strip condition rJ * e + ; • ty* for each x ^L°»A1 •

Consider the function w(r #y) - U(x) 4- (y - Q?{x)) Q(x). Clearly,

*— - 3f<«) mhlU * C^tfM) s ?(*)» * (x*iP(*)) « Half "id

« (x, ^(x)) s ^(x)* Henee the function w m m • V aust satisfy

r -.'(x) + f(x,yj T+»nx
+ w

x , v
y
+ w ), with v(x, (f(x))

r **(*» ¥(*)) r vv (x, (?(*") ) a # a problem of the type covered

by Theereti 4.

d) Hypothesis 4} of Theorea 4 is sore restrictive than

it n**6 be# At isolated T ve aay have a horisontal or

vertical tangent, provided that T* does not cros© the saae char-

acteristic nore than once. ?or, under these conditions the in-

verse ;lon If to Cf will ex tat and be contin;o?s Tor all

Our lTsprov^Taent of this theorea is as follows

i
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Theorem 4a

X)

9)
:

f it partially Llpeehltjcian on ?, (at defined In

la).

3)

4)

=^5) There exists at least one function u(x ty) e ( {l)t
? 0^ it <= /.

u (x fy) e C(E), where R: -{ » such that for each

,y) e : , the point (x,y; u(x,y)j u (x t y), u (x,y)) ^ t| and
* y

u <*#T) s f(x,y| u(x,y)j u (x,y), u (x # y)),xy x y

uCx # (^(x)) = u (x,lf(x)) = u (x, l^(x)) «0

for each (x ty) e

Outline of proof. .

ii~
„. r * * <|>Cy)

* path • *ay also be expressed aa • j J

l**W*tn where

Y (7) 6 CM L0 #/gl ), Ij/My) rf re* y e [o,/^ . ^ 1* the

Inverse ' or. to tf .

»• nay express the problem as the integral equation

(3.1)

(3. u <x,y) s C
y

f(x,lop;V ^};b

(3.3) u
y
(x ty) s C* f(£ f y; »| u

x
.u
y
)d£ •
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By STI^RSTRaSS 1 theorem, there exists ft sequence of poly-

nomials |g,| ttnl
;£*f on B. ae extend the doaaln of definition

of f end the polynomials g, ov*r I to !• by definition (2.1)

.

We obtain again the constant L > such that
[ g . \ < L in B*

for all X m Moreover, for each gv the Lipschlta condition

(2.2) is satisfied. Thus, by Theoreo 4, for each A there exists

a unique solution u ^ to the problem

. r u
\ w * g x ***** u

x *
u

^ *» u
v j»

(3.4) J A »«y A A A ,x A fy

| u
x
(x. (^ (x) ) * u ^(x, (^ (x) ) « u

A 9j
{x, 10 (x) ) 8 0.

That the sequences
J

u \ c » ) • x x\» ) u A 7 \
ap#

iforssly bounded on If and that the sequence Su J Is equi-

contlimor-s on R Is limedlately evident from the equivalent inte-

al expressions

(3.5) •
X
C.^).^

(y)
«5^

(?)
«x

<^t
2
l. x l.x ^.. Xt,)^

(3.6) .
x >x

(x.y) ^ x
t«. Ij ;u

x
N

x >x
,u

A ^)« ^ .

(3.7) .
x >y

( ,y) ,r * ( ^ *| .
x

; *
Xtafm x>y

) «$ •

le now establish the equlcontinulty of J n . ? and of }Ux 2

This done, the sane arguments as those for the proof of Theorea

la will B^rre to obtain a subsequence \u * i of j« \ i which

converges uniformly to the solution u.
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There it no loss in gen#r&lity in restricting ourselves at this

point to the consideration of those points (x f y) e. R is L
•

r we shell see that the arguments developed below will ap ly

at well for (x,y) e. R t < after a siaple coordinate
1 Lo^y^y{x)

translation and rotation. Thus if we insure existence of a solu-

tion on I . existence on R. Is simultaneously verified* Moreover

,

2 1

the Cauchy initial data Insure that such integral surfaoes have

a first order contact along T and hence define an Integral sur-

face throughout all of R s P. -t- H •

aiven points (i
, y ) e I , (x1#y.) e , it Is always possible

to label these points in such a way that (x, ,y ) e I • This being
\ 9. 2 ^

done, we have that

(3.3) \* XtMi»ftJ
••

x#at\»»i>l * * l»8 - »l| •

(3.9)
j

u
x,y(VT2

5 "
'J
A.r (VV| * L

l*s - x
il

•

A»»-nin?, without loan, that 7 >^(>,)^(/(x.), we hav« that

(3.10) m
x (X(v^-A ,*

(x
i' ?) "$' <J>> (V?*A !1:

A ,x-
J
A.y>

+
V-Jr*

(M'V ***•> •r**

We operate on the first integral on the right hand side of

(5.10) in the manner demonstrated in equation (2.20). We obtain a

formula identical with (2»?0) except that here the lower li«ait

of integration is y s if (x2 ) instead of y • 0. Pot brevity, we,

omit the formila.
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Since -

x

and since (^ (x) Is uniformly continuo.ii on To,/,] , by ths saze

reasoning as before we arrive at the slight -notification to

(3.iD h x ^cv^» -^,, (
*i'y>

8

from which, by Lemma 1,

,
» , >- % k(y- ^(x«))

<*-w > K,* (v*>-n.* (

*i''>l
^ (/^ )#

The equicontinuity of U\ 7 is thus assured.

Hie argument for the equi continuity of \u v I is similar,

hence Theorem 4a obtains*

remarks c) and d) to Theorem 4 apply as veil to Theorem 4a*

ite obviously* if f Is continuous, bounded and Lipsohitzlan

{or partially Llpschltsian) on the infinite cylinder with cross

section R, then hypothesis 3) of Theorem 4 (or 4a) is immediately

satisfied* In fact, this was the form of Theorem 4 which was

i till red in the proof of Theorem 4a.

As previously mentioned, the extension of Theorem 4 to systems

of equations was first obtained, in principle, by 0* KI

L.14J . He was not, however, explicit about the domain of exist-

ence of the solution. '» following statement may be derived
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from the sasje arguments of F. KAXXE JjpQ p* 405 and p. 410 used

as the basis for Theorem 4«

ftieorea S »

1) ^(x.y; ulf
•••, U

r ; p1#
••% pn> qlf •••, o^) 'e C(B")

< x ^ /x|

(I 8 1, •••! n)
o^y^/

g

8) The f
t

are Lipsebitsien on B% (as defined in Theorem 3).

3) /x / ^ a, M fx < b£f H /2 ^ b1# where

S 1^1 »
*••»

l'.
on B*#

4) T %\

{

l whtv (fix) e CHlpJ.I), (#'<x) J C
Ll *(?(*) x

for xeCc/j] and (p(0) • /2 , ^(/
x

) s 0.

^^ 5) There exists one and only ooa set of functions 5 u,, # * # ,u ?
(

u
1

(ir fy) a ) f u
t
j^C*.*) e C(K), (1 - l,«»%n), where

^ x <, A
Ri < , such that for each (x,y) e. I the point

^7< /
a

-,~; u.(x,7); «< #x (*#y)f ^y
(x,y))<£ b#

u1#xy '^,r) = flC*#yi »|(sar)s *jta(*»*
t)* *<r fy

(*»T>)»

u^x.^Cx)) - u
t x

(x,(/(x)) « u
ify

(x,^(3c)) r f

(i r l, ,##
f n), for eaeh (*,y) e R.
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*c may extend the arguments in the proof of Theorem 4a to apply

to systems of aquations* The extension is practically Identical

with the previous extension of Theorem la to Theorem 3a t except

that now Theorem 5 Is used to establish existence s»nd uniqueness

of the solutions of the system

ulX,xy " •»><*** UJX J U
JX >*> UU,7h »**•*•• n) »

(A= i**»w >s

ier the Cawohy Initial conditions* 8c obtain the following

theorem

:

Theorem Sa

1)

£)' the f^ are partially TApsehltslsn on B B
f (as defined In

Theorem 3a)*

3)

4)

5)
1

-are exists at least one set of (tarnations ftt,,* # «,u 7 ,-?*

^(x.y) e C«(K). n^ ,y'**y) & C(R) f (1 « I*•+*•*)« where

r o ^ x ^ /,
lis * such that for each (*.y) <£ R the point

<*,71 u^x.y)! u, .(a»y)i u
j T **»y)) ^ ••

ul,xy ( *»*) • »iC«eTJ u,(x,t)j «^x (^#y)f u«, (x,y)) #

fx,^(x)5 • u^fxiif (x)) lu^yd,^?)) * 0,

(1 3 !#•••# n), f^r each (x fy)g
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ark c), with obvious rodifi cation* and Remark d) to Theorem

4 apply as well as to Theorems S and 6&» Moreover, in Theorer 5

(or 5a) we nuty eliminate hypothesis 3) by dewandinir that the t

bo continuous, bounded and Llpschitxian (or partially Upsehitsian)

on the infinite cylinder with cross section R»
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CHAPTER I?

Existence Theorem* for Canonical
Hyperbolic ?lrst Order Systems

In thla chapter, and In Chapters & and 6 as veil, we shall not

gl«t explicit domains of definition for the functions involved in

the diffsrentlal equations. As a consequence, existence will be

shown "in the small only* *e do this oecause our method of attack

eill not yield any improvement upon the domains of existence, no

matter hoe large the domains of definition are taken, provided the

other hypotheses are not weakened* we shall elaborate on this

peculiarity in the course of the exposition*

Theorems 6 and 7 below w*re given by M. CIMVJlHl-CIfcaxRIO (12)

p* 180 in the form stated* A statement under somewhat weaker

hypotheses, but bassd on the same proof, may be found in R*

COURAJTT-D* H1LB&HT (17 J p. 324* «vc examine the proof to show thst

the arguments therein are Independent of the uniqueness of the

solutions to the problems involved* As a consequence, our re-

sults in Chapters £ snd 3 apply and we arrive at the improved

statements ^iven by Theorems 6a and 7a, where hypothesis 2) of

Theorems 6 and 7 is dropped altogether and the corresponding con*

elusions are altered to read "at least one".

Common hypothesis *) '*• *«*H suppose the functions a
lk, o^

(l,k*l, ***,n}, of arguments x,y,u
1
,*»»

#u , to be continuously dif-

ferent laDie with bounded derivatives in a certain domain D. Fur-
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thcr, ee suppose the determinant

(4.1)
l
alkl *° ^^

Under these assumptions, the system

n
(4.2) f A

t
(x,y) • S a^ «*,<*• J ^a^ * 0, (l«l,--«,m<:n)

B^y) « ^ i^ Ufc^yt^y) -c
t
- O, (i«ej+l,"%n)

la called a canonical hyperbolic first order system.

Theorem 6. (Characteristic Initial value problem.)

1)

2) All first derivatives of the functions *, k
«o«» (l»k*l, •••,!$

aatlsfy a Llpschl^s condition with respect to arguments ui#' ,#
» un

In 0.

3) d^u) e e«C{Q»/xl)

V
t
(y) e C«((0,/

2
]>

V° } " V
l
(0)

"^

(l*l,»*«,n)

Moreover, for each x g, [0,/^], the point (*,0;U.(jO) e D

(4.3) ^ a
k-1 lk

(x,0| 0jU))U' k(x) - c
1
(x,0;g

j
(x)) » 0,

and* for each y & (0,/' ], the point (0,yj V.{y)) 6 D and

(4.4) ^ *
lk

(0,y|V (y))V«
k(y)

- c^O.yi V,(y)) , 0,
k»l J

3. Heoall the notation J (x,yjU.(x)) (x# y|U 1(x),«*«,On(x)

)



M

AS Mflti4 <?«6oG

*0

^•'j * ..».«* -re . .

* jl
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-^ 4 ) "h*re exists one and only ona s*t of function*

vfcavt r u i( -* ^tyA , with </ lo_ ^. 1 and b sufficiently

11, such that the est of function* satisfies the systeta (4.2)

r tech (x,t) e T y, ttru! satisfies the conditions

u«(x,C) -v,(x) for i 6 [o, A3
u^G.y) s V^y) for y e [o, f^J )

Th*orew 6a »

1)

3)

=^4) f ?h*re exists at least one set of functions, etc. (as in

Theorem 6).

oraw* 7. (Cauchy problem.)

1)

(as in Theorem e.

)

r x s x( tr) _.

5) Tj for ^L0,1J, *< r) and y(r ) e C»([p#ll)
It » y(^)

and strictly monotone, i.e., 5/0, J *? on L #O
tl
1
(r)^ 3f([Of*J)s (i = l," - »n). w each ZeL0,l\, the point

(x(^r), y(r); ».(r)) e I ,

==^ 6) There exists one an - one sot of functions S u,,'**,u ?,

*»7) e C*(1T ) # u, „(*»?*) e 0(I T )| (i s l, #,, ,n), where Er
is a Iciently stsall neighborhood of the ?urve T, ssjeJi that
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the set of functions satisfies the system (4*?) for each

(x,y) £ ^ and satisfies the conditions

u
1
(x(zr) # y(r )) • ft^Cr J for Xe\_Q 9i\ 9 (i = i#

-••,•),

Theorem 7a

1)

•)

6)' There exists at ieast one set of functions etc. (as in

Theores 7«)

It* proofs of these theorems are contained in ths follow*

ing argument:

~>ose we have a set of functions Tu , •••,xi I
9 wither

as a solution to the characteristic initial val ie problem above on

a domain Ru p or as a solution to the Ca jchy problaw above on a

desmlT) * y • Th*n to* cither eas*,

n n

i.y kgl ik k,*y k2i[i^y r»~i 9
~ r»?j *•-

- e
« T - ^ —

-

t » 0# (Is l*" # *w<nh
n

k» 1

2

n n
(4.6) . s Z a,, u, + ^ a.. + ^ ^Jlk u l u,x klgl ik k,xy k*l L : ^'x rrl J~T r

»*J k »7

9°i
• k=l 3uk

*»x

s (4*5) and (4*6) are n linear algebraic equations in the





•f

owns u. . ince the determinant of this ijitm It,, \ ,
i xy J 1 ikl '

does not vanish over the domain In que- tlon, we may solv* the

system to obtain explicitly

(4.7) u f.U,** u ; u, , u }, (i - l,»*»,n).

*er hypothesis 1) alone, the f are continuous and partially

schitilan over any bounded domain In the 3n + 2 dimensional

yj u,; u, „, u. )-space where (x,y; u t ) <s D. If hypothesis
J 3#* »y i

£) also applies, the f^ are "fully* Llpscbltsian over any such

domain.

Consider Theorems 6 and 6a* The character! stio initial condi-

tions loosed therein, coupled with the system (4.7), form a

problem of the type considered in Theorem* 3 and 5a, respectively.

:apter £•)• We have shown above that any solution of a canoni-

cal hyperbolic system is also a solution of a particular system

of type (4.7). If we now demonstrate the converse for character-

istic initial conditions, i.e. that any solution of the derived

system (4.7) is also a solution of the original system (4.2), then

Theorems 6 and 6a follow directly from Theorems 3 and 5a respec-

tively.

•appose we have a set of functions |u . ••••»u ? as a solution

of (4.7) over a certain domain inciting the initial character-

istics. (4.5) and (4.*), which are merely alternative forma

of (4.7), we hav«





It

over this domain. ~M%9 by (4.3) and (4.4) of hypothesis 3) to

Boreas 6 and 6a , we have that

(4.9)

whence

A^ZjO) * , (1 a !*•••• a < n)

2^(0,7) x , (I a »+!,••• n),

(x,y) = , (i t l/**, ^n),

^C**?)^ , (i * »+!,*••, n),

thi »it the domain. Hence the converse Is shown*

For the Cauchy problem considered In theorems 7 and 7a, we

observe first that we can determine u
t x (*(zr) f y(T)) and

u, (x(t), y(T )), (i a l**'*»r,) t as functions continuous for

eaeh T 6 [0,l] , solely fro« the prescription of u <x(zr} # y(^r))

r •§('£')§ (1 • *•••••*)* and the requirement that the canonical

hyperbolic system (4.2) aiust he eatisfied at each point of T* •

?or, since £ -+- t^ / along T, we may write the etrip condittone

(4.10) *
t

- p1i +
Qi^,

(i « l» ### t«)•

as one of

(4.11) q
t

a i (^ - pt*)
or pt a i gig - q,?). (i S 1,"V

y *

Consider a particular point ? e ^T where y ^ 0. Here we substlt

*i S Bj.* (^i
- P<*> Xnto aquations B (~) a 0, (i«m+l, ## *

f n).

Theee, together with the equations A^C?) » 0, (1 » !#•••» »^n)»
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form a linear algebraic system In the p. s u, (P) with deter-
1 i,x

nant [a \ £ hue the p. are a^Squalj determined at P, and,

by (4.11), the q. ae well tre uniquely determined at ?. If f •

at hen * ^ there and a similar argument applies utilising

Thus we have, In effect, prescribed all three eats u,, u. -

u. (i s l,****n), along V once the u are prescribed along ^
1, X

and the u, aa3 the u are merely required to satisfy the
-#x i,y

•tr* Itlona (4.10) and the canonical hyperbolio system at

(4»?) at each point of ^ .

appose we have a set of functions \ u ,*•*, u 2 as a solu-

tion of

neighborhood of the Initial curve T and taking, with their first

derivatives, precisely the above determined values at each point

of ^ . Then by (4-5) and (4»6), the fact that these functions

and their first derivatives satisfy the canonical hyperbolic

system (4*2) at each point of T* implies further that the system

(4*P) corresponding to (4*7) Is satisfied everywhere in the

neighborhood in question*

With hypothesis 2) Imposed, system (4.7) and the initial data

on « satisfy the hypotheses of Theorem 5, while without hypothe-

I .?), system (4.7) and the initial data on T" satisfy the

hypotheses of Theorem 5a • Hot since we have shown above that each

solution of (4*7) is a so' of the corresponding canonical





5?

hyperbolic ayetea (4.2} , w« have that Theorem 7 li I conaoq ;*nce

of Thcorea ig while Theoreta 7a la a coneequenee of Theorem 5a.

In these four theorema we ara unable to praacrlba tha domain

of definition of tha functione

r
&
(s,jri ».i p

?
»q,)» C» r !#•••» »>•

In aueh a way aa to Insure existence of a aolutlon throughout

K: 1
A

. ?hla la becauae tha f
4

ara continuous for

all p. and q,, (J s lf•••#»} f tut may turn out to ba bounded only

when thaaa variables ara restricted to finite domains. The fol-

lowing example demonstrates why the existence of aolutlona can ba

found only "In the assail".

".a 3. ;sider tha character! otic Itial ml i

for the ayatom

x. ,xy i. fx
i U (x,-l) s X, ^(O^y) r

*2,*7 = ° i Og(X,-l) S 0, s

! I

u sn.xy " » u(x,-l) s 0,n
u
n(0,y)

3 0.

?*y quadratures, era obtain the solution u (x,y) s -L , while
1 y

u ft t ••• a « 0, quite obviously* ?be f 4 corresponding to thla
- n *

problem poaseas derivatives of all order© for all values of all

2
variables* However, f^ s •* %

beeemms unbounded as tha argument

u, . Increases Indefinitely In absolute value* «e note that,

deaplte the specification of Initial data everywhere along the
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Interacting character! stica x s ar.d y x -l f the firat function

the eolation, namely u,, has a liacontinui ty aoroea the line

y • » "^enee thle exaeipl* trnlflea th ?ae ease* for which ao 1

tione exlat nln the a»all* ^ly«

*e note that Remark d) of Chapter I I appllea aa well to

hypotheaia 5} of Theoreaa 7 and 7a* The atateawnt la that
Cjc m Jt(tr)

Ti l for 7re|_0,lJ need only hay* x( z. ) and

7'tr) £ B^CGPtKDa monotone, and with k2 + f
2
i at each point

of T • In fact, the arr-usent in the proof above appllea directly

to thia statement.
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CRAFTER Y*

The Cauchy Problem for ?(x t y; u; p.qj r.s.t) * 0*

In this chapter we concern ourselves with the Cauchy problem for

the general non-linear second order partial differential equation

in the hyperbolic domain* Spec! ically. the problem is to deter-

mine an integral surface of the equation

(1.1) F(*,7| u; p,qj r.s.t) s

such that the hyperbolic condition

(1*3) ?
r - 4 9 F,. >0

e r t -^

is satisfied thereon; moreover, the Integral surface must have a

second order contact with a given second order strip which is no-

where a charaeterietic atrip*

his celebrated paper QcT] , H. Z.V&Y successfully attacks this

problea by reducing equation (1*1) to a system of first order par-

tial differential equations for the unknowns x.y; s\J p.q; r.s.t

as functions of the parameters X and L^ of the two families of

characteristics on the integral surface in question* LE*Y»s

existence proof for the system is baaed on a finite difference

argument. However, the system la of canonical hyperbolic form and

the theorem of s% ClUair , Theorem 7 of Chapter IV. le

Immediately applicable and insures existence and uniquenees of the

solution in a sufficiently small nei h orhood of the initial strip*

"or?ov«r, ae demons tra ted below. Theorem 7a may be used to effeot

am Improvement on LTWT's work*

W present simultar^ously UNfY'l original theorem and cur



(
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i^provewer t on It* LXWT't theorem is obtained by omitting the

parentheses* Our theorem is obtained by replacing the under-

•cored statements by the correspo oes in the parentheses.

Theorem 3 (8a)

1) s
2

: Sx x x( v )

£ e Lo # lJ is a nowhflre character-

istic second order atrip,

J * 7(?)

U s ( V )

r p( T)

Q s q(r)

r s r(-zr)

s • sCZr)

t r tCT)
Mi

I.e. *,j; «J p t q; r,s ftC2r) e CMdlO.il), and for each T<e Eo#il»

it) pp ** -
' * + % ** rf • •

>©•iii)

iT)

- 4
s r * t

(x(r), y(T); u(r)j p(r),q(2T)j r(r) # s(^r),t(z-))

s 0.

2 ) ^ g C '
f

( g C^ ) Irs a certain viborho^ of S
2

.

3} sre exists one ~.ly one ( at least one ) integral sur-

face J: u a u of the equation 7(x,y; i; p,qj r,a.t) « such

that ^(r,y) £ C" lna » 1 ently small neighborhood" of the
f* r x(r ).

base c-.irre T .A fop r ^ j- q and auch thafc
[T s T(zr)

J i u r i(x.y) has a second order contact with the atrip S
2

.
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Proof

Wo first demonstrate that any solution of the above problem,

together with its derivatives of the first and second orders,

represents a solution of a particular canonical hyperbolic system

under the same boundary conditions*

e assise that ? r £ and :r\ <£ In the domains considered in

the fol lowing ar^usent. '^U may bo done without less of goner*

allty. ^r, by Ion la, a characteristic base curve must

satisfy

1) ^F-?,}^ \ i
?

« 0,

2) *2 + t* ^ .

Suppose at a point of 5 that |L - 0. Then x - represents the

ve tical tangent taken by one of the characteristic base curves

through the projection of this potass onto the xy piano. Con-

versely, if one of the characteristic base curves through a point

In the projection of ss has a vertical tangent, then x * there

and, consequently, f s C at the corresponding point on o • Like-

wise, ? s if and only If y - 0, in the sense above. Thus, by a

suitable coordinate rotation in the xy piano, we stay Insure that

x? and ?
t 4 in a neighborhood of the point in question on

8 • -ranting that this Is a local ^rty only arid that the

particular rotation performed may introduce values of » - or

?. : it some other sly distant points o , we ob-

serve that this local property is sufficient because our proof is

ultimately base heorews 4 and 4a of Chapter . In those
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theoreaa the Integral equation statement of the problem wade It

plainly evident that the value of the integral at any point P

depended only upon the portion of the initial curve cut off by

the two character! atlce intareecting at P. Consequently, we aay

consider the arin^sentB belov as a ug la succession to saall

g
overlapping segjaent* of S , with coordinate axes rotated suitably

for each segment considered* (See also R. CTrHAOT - D. WllMKt

[if} p. 323 and p. 33?.)

Let us assume that we have an integral surface J: usu(x,y)

satisfying the conditions of either Theoreaa S W rheorea Sa. Then

by (1.5) we conelx-de that the related characteristic base curves

ar« the two one-para»e ter families of curves determined by the

equations

(5.1) yA
s fl *>

(5.2) r^ »
f>%

*/- •

where

' S(5.3)
+ \A« • 4 r

r t

a
"

*£r___
(5.4)

" \/\
2

" * T

zrr

P^ and P are factions of the variablea x # yj a| p # q; r,s t t

and Pii Pq *D * neighborhood of S by the hyperbolic condition

(1.3).

ns!der the coordinate transformation

x s x( X 9 u)
(5.5)

r
y s y( A 9 ll) •



(



M

• Jacobian of thl» tramformation,

.2
I vanish In a vicinity or the projection or la fol-

lowa since P
x 4 P2 '> ^^ x \ r ° '<rvl3Ld » by !••*)• X*PX*

y v S 0, Iftl«i1 lllni the requirement *2 •+ T2 ^ 0, (alailarly for

x ). Bmm the Inverse transformation,

f X * X C*,y)
• 7) •{

u. z /c(x,y) ,

I
exists In a vicinity of the projection of S •

M|| the character! at lea on J: u*u(x,y) certain additional

equations must "fee satlafied* These are determined as follows:

e ' • ( €. c *
« 5 and £ '", wt obtain by

41 ffarentlatlesi

riwi

w 1>1 / + y + v +

Larly,

.103

*

+ ; ". V+tS'- t»l T

wher*





b&

(5.11) M y • v +?
q
* + *v* + ?

y
•

!

. nee A is the parameter for one family of characteristic

curves and, consequently, is the path parameter along each of the

curves of (he other family, the determinant

(5.1
X A *A

x A

t

*A

« V A *a
2

x 0.

Hence the quantities on the ri -ht-hand side In each of the systems

(5*6) and (5.10) must be linearly dependent, i.e. in eaoh system

the augmented matrix of coefficients must be of rank less than

three, consequently.

13)
?r ?

t W r

'X °
-r

x

*X -x
= Vx»A

+ Vx*a + i>3 x*A
r
A"

a

-•calling the assumption made without loss,

X\ » iy, and y. *• 0, equation (5.13) reduces to
A

p, A A

(5.14) J-Tx + V X
-*- t J, x

A
=0.

><»wiae f frors (S.10) we obtain the linear dependence of the

right-hand terms in the form

f,Vx + VA + W|»A
0.

Alonr the curves of the other family of charactertitles the

following relations must he satisfied. These are obtained in a



<
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fashion completely analogous to that jaod in obtaining (5.14) and

(5.16)

(5.3")

J?
r

r
/> + % rt> + Wi V

pP ?rV + :\V^ L^t^
r n-!i , the strip I \ion»

0.

(1.

(1.9)

suat be satisfied along any eurve lying on Ji u»*i(jt,y). In

particular, they sust be satisfied along any characteristic on J.

Frosi equation* (5.1) # | >(5.14) through (5.17) f (1.3) and

(1.9) wo obtain t-he following system of "charactori s tic equations

i.e. eq .a which must be satisfied along the characteristics

on any integral surface J:

«f 1 • •> - f\ *
x • •

n

4> p-

e, * >>

x + t'\

x *X »°

A
:

(5.1S) lfj'% "»«* * ^ 7X
*°

^5 - r xA - 8 ^
" a T

A *
f
- TA

s

9 Q

J> fcys!

A

— 'V» A



f



(5.19)
*d)

HW« Va + riVfW i 7-

v • p V " q v
V " r v • V

- t 7

m

*

•
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^4

if «

Ye V " ' V " V
Ve observe that System A of (5*18) Is of canonical hyperbolic

form in x,y; ,qj r,a,t as ions of A and m. . wince for

Theorem 8, ? e C lf % while for Theorem 8a, ? e r**», the coeffici-

ents of all equations In (5.18) are functors of class r «« for

<sjsj 8, and of class ' r flWP Theorem Ha* Moreover, the deter-

minant of the matrix of coefficients for System A, is, after

Interchange of ro*s and columns,

(5.19)

- ?

*

I

t

e

1

1

*

e

*

ft

o
f>x

?T Fl

1

1

1

wher* the coefficients J—lglHltJ only by asterisks, *, 4o not

5c to the al e of the detersinant. r.ince > p i 0, •• i

Pi d P © i« * neighborhood of S ', the determinant (5*19) does

not vanish therein. Ranee any solution J: u»u(x ty) of the problem

of Theorem 8, together with ite first and second derivative*.
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At1 »• the hypotheses for Theore* 7; biotust the Mq-.-.lrwtnt

ths 1 ^ "» «s certainly sufficient to • first

derivatives of the coif'l^?^* of Systea A be Linschl trlan with

res I variables x,y; a) ^
# qj r,a,t. "oreover, the require-

Fwa 8a that e Cfl Int that the coefficients of

& are of clasa C* f as '5*marded by Theorea 7a«

the Atu i or characteristic, plana , tha Initial base curve

haa tha paraaatrie form

Ting\(i(r),|<t)J for ^Co,i],

and la nowhere parallel to at,fat the X or ^ area. Oonaequently,

\ rsay be expressed in the non-paras© trie fora

X * W (/a- )

where (^(k)e C and (('(j*.) ** 0. If we introduce ;\ « a X •**

IX » a - W (ll) as new character! a tic parameters, we observe that

r.a (5. IS) remain antiwar*! in forau Senra we may assuse,

without loss, that the initial base curve HP haa the r&pr*a#nta-

ti

(5.20) \ -h^ zO

in the Airplane*

Be now dwaonatrate that any solution of ;yatea A satisfying

I given Oauchy initial conditions la also a solution of the

oblec* of Theoreaa 3 ^ i. This lone, Theoreaa 3 and da are

.sequences of Theorem* 7 and 7a, respectively.

1lowing J. HAEastAfcD \jll\ P» 504, we show that for each set of

functions satisfying Systea A and the initial conditions on
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\ * U- 0, the System B Is likewise satisfied* Note t.*iat in tills

part of tue argument we cannot adalt that p«q,r*s and t are da*

rlvatlrea of u. s la noe a matter of pr?of*

Differentiating ?(x*y» uj p.qj r, s.t) oy X and observing

eouatlone (5.13), ae obtain

Hence ~ • for each aet of functl-ins satisfying Systesi A. Bow-
A

ever, by hypotheaie, F • along X P^ m 0« Thus P = throughout

that region where the aet of functions satisfying System A la da-

fined* This In turn lapllee that

suae region* by hypothesis, l^ .
. In this rt? Ion* hence

.«> i|/
8
- - p

tt
ij>

4
- ?

p
i|/ 6 - r, ij/

6

therein*

ace P \ P
m '''— m ** obtain fron (o*18) by aiaple algebraic

operations

($^, r
|^

\ l|/
§

- r^ X> s^ yA
H.

(0.86) H - ^ V. I*!, - ^^T^"
[l ]* •

t

*) j£L If . , x. t y a.
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(6.88) !i
(f 3

- ^x^ * r> K.

(6.83) X - I*-k- (?!, - £AF7
Bi

l? l, '

By iheoreot 7 or Theorem 7a, the functions of the sot satisfy*

log System A and the Ceuchy initial data are continuously differ*

entiable and possess continuous mixed second derivatives* Thus

se may perform the differentiations in t** following relatlonsi

(6.»> ^ - if - P
A V «

A *> * % »A " V 7>

(5.31) \L/ _ v •/„- » r x
x •\3T - * *\ - • J,

?
t t

by (6.24) and (6.25) above;

Ft Ft

by (5.27) and (5.28) above. But System A is satisfied, he

(5.30), (6.31) and (b.32) # by virtue of (5.23), reduce to

(6.56>( ^A "'^ _ fe



.

»



In (5*53) all functions are known except y , Y &» y- *nd

their derl vet lvee with respect to A . Moreover, along, A * - M-

System B Is satisfied, i.e. ^ » ^
fi

« lp - for X - -y>c .

For fixed tx, «e stay consider (5.53) as a homogeneous system of

linear first order ordinary differential equations under homo-

geneous on©point boundary conditions* This system has the unique

solution

throughout the region of definition of the eet of functions satis*

fylng System A* By (o*23), lp » also, and the System B is

shorn to he dependent upon the System A In the sense above*

Proa the functions x x( X »J*-)» 7 * y( X 9Jk) of the eet

satisfying System A, we may form the Inverse functions \« A(x,y) #

y- •
y
K(x,y), since the Jaooblan

(&.6) ^VV^'^i'^'^V
does not vanish* Hence ee may express the function u » u(X 9 a. )

ae a function of the Independent variables x and y.

We now need to show only that

(5*34) p » u , q » u_, r • u* s * u, and t • u
X J XX* |9 ,-y

throughout the above region to complete the proof*

How cp4
• u

x
- px ^ - qy^ -

while the determinant of thla linear eyetem Is the Jaooblan (5*6)

and hence does not vanish* Thus there exists a unique solution*





* *S. WHYDCJPS, n-)var ;d«r function* *s related to

dlff#r«ntit) -»qiation»," African 2ath»jnatical

, vol. 47 (1940), . 1-10.
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but p - u * q • u obviously satisfies and bancs represents the

unique solution*

Similarly,

,A -> -y*

hence r » u end s u j
30i xy
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CHAPTER VI

The Characteristic Initial Value Problem for

?(x#y;u*p»qj r,s,t) « o.

The whole idea of a characteristic initial value problem for

the equation

(1.1) F(x,yj uj p,qj r,s,t) *

a ppears paradoxical at first glance. In the Cauohy problem the

prescribed initial data was sufficient to determine whether or not

the projection of the initial curve was characteristic. In this

problem, however, we merely prescribe two intersecting space

curves through which an integral surface of the equation (1*1)

must pass. Since the characteristics are, in general, dependent

on the integral surface in question, it would appear impossible to

determine, a priori, whether or not the prescribed initial curves

have characteristic projections.

That such is not the oase is demonstrated by M. CIJR-INI-

CIBRARIO ElS^. In this paper she treats the characteristic

initial value problem as a special case of the more general "our-

aat problem, i.e. where two arbitrary intersecting apace curves

are prescribed through which an Integral surface of (1.1) must

pass. Commencing on p. P20, she gives the necessary and suffi-

cient conditions that these curves be characteristic to any in-

tegral surface passing through them. We oall curves satisfying

these conditions "intrinsically characteristic" curves.





n this chapter we examine her development , for the particular

eaae of the characteristic 'nitial value problem, ma to the point

where a modified forts of the system of characteristic equations

(5*13) and the above necessary and sufficient conditions are ob-

tained. There are two important differences between her develop-

ment and that of H* L5WY giver, in the preceding chapter* ?lrat,

she transforms the initial carves into the coordinate axes* Sinoe

these Nrw ere characteristic, this implies Immediately that

? - and F* - at the origin* Thus many of the divisions per-

formed In Chapter 7 are now invalidated* Second, she is able to

solve (1*1} explicitly for a, obtaining

s • f(x,yj m| p,qj r.t)

and thus to reduce the number of equations in the system of char-

acteristic equations by two*

£e do not follow the remainder of her existence proof, in which

she reduces the system of characteristic equations to an Integral

equation form and then applies successive approximations to obtain

the existence of a unique solution to the general Oo^rsat problem*

Instead we deal directly with the special case of the character-

istic initial value problem by a method analogous to that of

apter V* Such an approach is indicated by K* CISSUI MI-CIBRARIO.

herself. [l£\ p*130, footnote 8* She states* in effect, that the

following Theorem 9 can be shown to be a consequence of Theorem 6,

Chapter IV* xe present this proof in detail and, in addition, we

extend it to apply to the derivation of Theorem 9a as a consequence

of Theorem 6m« The improvement obtained corresponds to that of





Chapter V for the Cauchy problem. Basely, the req ireaent that

e. C» ,f it reduced to require sierely that F e C»» while the con-

clusion is altered to read "at least one solution" Instead of "one

and one solution".

Hmapw o

?
l
(3l)

* V 7)
• yy> eC,,

<[yi-Y'yi
+v^ }

u * ?
2 * 7 *

The point (x.,y ) is the only point of intersection of ^«

HT_ and it Is interior to loth curves. Moreover # *t(*i) • ?q^1^

and f '(x-Jf^'fy.) 4 !• (l»e« HT ^ and ^^ do not have a eosmon

tangent at the point (x,,?.).)

2) \ 1 and p are "intrinsically characteristic" in a neigh-

borhood of their point of intersection, I.e. they oeot the neces-

sary and sufficient conditions, given below, that they be character-

istic to any integral nr?ace of

(1.1) • 3*' « J P»<*J r,s,t) -

passing through them. As we shall see below, this hypothesis,

9thsr with hypothesis 1), tacitly implies that at the intersec-

tion point (x1# 7i, a.) of V
i

and P g
the values p., , q^ » r, , s 1(





to

t.) # the hyperbolic condition

2
a
X

4
1 -1

- 4 Vi :
t, > °»

Is satisfied, (notation: ?
B

s -'jfx^y^l *i» P^**, Jr^e^^) ,etc«)

3) e »»* in a neighborhood of the point

—^ 4) There exists one and only one integral surface Jtu«i(x,y)

of ?(x,y; *IP»4l r,s,t) m P defined end of class C 1 * 1 in a suf-

ficiently assail neighborhood of the point (xj^y^) and passing

through suberca of I ^ ***& * m intersecting at the point (Sj»fts*J»

Thsoroa 9a

1)

•>

3)* eC" in neighborhood of the point

t*i»?il »^l P1 ,q1
Jr

1
,a

1
,t

1
).

~^>4) » There exists at least one integral surface etc.

(as In Theorem &)•

Proof of Theorems 9 and 9a

•e first perform the coordinate transformation

(e.l) |x 8 i- f
g
(y)

If my - *\W
taking Tj ir.to the x axis, T into the y axis and the point

(x«,y. ) into the orlgir. This transformation is univalent in a
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neighborhood of (x. ty ) since the Jaoobian

(6.2) 1 - v (W (V ' °

by hypothesis 1). Ceoaetrleally, this rwana that ^ and T1

do

not have a eoraaon tangent at thair point of Intersection*

without loss, we may aasurae homogeneous Initial conditions*

r$ suppose we have an Integral surfeee Jt u*u(y f y) of equation

(1.1) passing through the curves I . and I • ifean by the above

transformation, considering (6.P),

(6.3) u(x,y) • u(x(x,y), y(x,y)),

and hence fcr Any such lni-«gr«l surface

(6.4) X"?
1
(») * -U.f^x}) = •(Rt»f

l
(B))i 0),

L''2
(y) = »(ft(y)#r) « ~< 0,y(f

2(y),y)).

Letting .

(". w(x,y) u(x,y) - u(x,0) - u(C,y)-i- u(0,0),

and since, by hypothesis 1), f , f , P and ? € Cft« we obtain18 12
(6.6) fi(i,0) - wy(x,0) WjyCx.O) 0,

\w(0,y) = w.(0,y) w^i O = 0.

Thus we aay reduce the problem to that of finding a function

w » w(x,y) which vanishes on the coordinate axes in a vicinity of

the origin and satisfies there the tranafonaed for» of equation

(1.1),
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wber*

(6.8) «(»,?) » u(x,0) -v- u(0,y) - u(0,0).

The function g la known from the proscribed Initial data*

-•r simplicity, wo return to our original notation and state

the problea in thla «ayi

*!*> determine the function 1 s u(x,y) satisfying equation (1.1)

an<1 the initial conditions

u(x,0) - u(0,y) « C>

where, in the station above,

*o * *>o
s % ' To * *o r °

/jk.:.d

[eVt) F(0,0; 0; 0,0; 0,s 0} • 0.
o

By hypothesis 2), there exists a unique value a satisfying

(6.9).

I characteristic base e- rves and, a fortiori, the hyperbolic

condit!on are invariant under the transformation <6.1).

Hi 7] p. 194 Moreover, the substitution

w * u - g also preserves the inverianee of the equation for the

characteristic base curves and the hyperbolic condition as Is

easily seen by differentiation of (6.7). Hence, by hypothesis 2),

we have the hyperbolic condition
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(6.10) ?,
2 - 4 *-' ?

t > 0,
o O ©

while the equation for the characteristic tai« e-'rve directions at

the origin le

2
(6.11) F, ay* - ». <*xdy -t-

?

t dx a 0.
o o *o

Hypothss's 2} implies that the coordinate axes &uct be char-

acteristic base curves* By (6.11) and (6.10) this in turn Implies

that ? a ?t a 0, and hence that ?
§ / 0. Sut now the Implicit

o o
Functio; Theorem tells -is that in the neighborhood of the point

(0,0; 0; 0,0; 0, sQ , 0) equation (1.1) can be solved explicitly

In the form

(6.12) s • f(x,y; BJ p,q| r,t).

nder hypothesis 3) or 3)», the function f e 0»M or c»«, respec-

tively, in a neighborhood of this point. Moreover,

(6.13) t9 a ft r and s - fT
o o oo

while the hyperbolic condition becomes at the origin

I
.14) l-4fp f «1^0

o co

and the equation for the characteristic base curves becor.es

(6.15) fr dy2 + dxdy + f
t
dx

2
- 0.

t :a assume that we have a particular Integral surface

J: -j * u(x,y) passing through the coordinate axes la a neighbor-

>d of the origin, with u(y,y)e C ,M in this neighborhood.*

*e define
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-_ -2f
(6.16) it U'< Vt< P" — •

0" a

S , /p and (T being of class ff*' by hypothesis 3), or of class

B« by hypothesis 3) *
# In the variable* x,yj «| p,qj r,t In a

neighborhood of the point (0,C; 0; 0,0; 0,0). The two one-param-

eter families of character! e tie base corves corresponding to J

are thus represented by the equations

(6-27) 7X -(> % \

(6.18) r^A. tt^lj^*

Kote that & * 1 9 hence &> In t neighborhood of the origin,

while p s cr\> - 0.

Ae in Chapter V, to obtain the system of characteristic equa-

tions, we transform to the characteristic base curves as co-

ordinates and consider what relatione must be satisfied along

these coordinates for any riven integral surface J. In parti

-

"*r # we specialise the) transforation

(6.19)
X S X( X 9^ )

by stipulating that a line X s constant shall have x-Interc*pt

(\ ,0) and a line u, • constant shall have y-intczcept (0 t //O,

with \r^ca0at the origin* The Jacobian of this tranaforoia-

Nef evaluated at the ori In, has the value

(6.80) x y -y x 8 i y (1- p (T ) • x y ^ 0,

?e If x - 0, then y x
« by (6»17), contradicting the re-

Ao
qnlrervent that x2 + y t? along any character! etlc curve.
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Marly, If f g C, then x * by (5»1S) and the contradic-

tlon Is again obtained*

Paralleling NT developoent In Chapter V, we eee that certain

determinants nast vanish at each point of the Integral surface ,

Tie 13 in.-" cqjaSions which awet be satisfied along the character-

istic* on J. »e teff

*v X t

(i.tl

r

*>

> >
•fears

Tt p q u' x

also

(6.23)

sfesjpe

y t

t V r

>

•V^^ViVW^V

(6«24) £f] -ff+ft+fq+f.-1
7 - P q

*" 7

'.rating s^ between (6.?1) and (6. £3), we obtain

(e.») f>> 7>
* - t

k\ «/+ [r] /r^ 7x
• -

By virtue of definitions (6.16) and equation (5.17) , we may

write (6.25) as
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wh*»re

•;, as shown above, X\ /0 alonr an? of the characteristic

be.ee curves of J of the corresponding fsally, hence (6*26) rwduces

to

-.89) f • • H( \^) n 0.

flhere f
(
i •« have immediately that H(A » ik) s 0* ppoee

at a particular point of J that f « 0. Then by (6*16) and (6.17),

we have there that

(6#29) C, £ « 1, <r « -fr and y^ z <>•

Thus, *t this point, by (G»£4),

while by (S.E2),

Bubstltuting (6.30) and (6»31) Into (6.27,, we obtain that

wher* f
t

s on J, !T( A , lu) • 3. Hence by (tetM^W A #/*-) •

everywhere on J and represents « relation which oust be satisfied

along each characteristic of he corresponding faally on T.

or the other family of characteristics on J, we have 3eter-

inants corresponding to (5.°l) and (S.r-r) which vanish at eaeh

:it of "• gltertaiitifj s^ between these and arguing In a

fashion analogous to that above, we arrive at the following rela-
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~n which rsnat be eatlefled along eaeh character I atle of thie

faally on Jj

3w are now In a position to prescribe the neceasary and eaf-

-:t conditions that the coordinate axes be character! atlca

- Integral aurfaco ef

(6. IS) a s f(*,vf nj p,q; r,t)

paaslnr through then*

Suppoae that, In a nel od of the origin, the coordinate

axea are character I at 1c to ao»e tnterral aarface J: u»u(x ty) of

(6.1?) paaelnr through t*K ?her in tenaa of the characteriatlo

baa^ r-rves to X aa coordinates, defined by the coordinate trana-

^n (6.19), we have for J^m Ot

g e A i y a Og u » p • r r 0, q • Q(A )» t • ?( A)»

where, from (6. IS),

(6.33) *MXJ - f(A.O; 0| 0, Q(A>* 0, 7(A)),

while, fro?a H( A» //-) • 0, slnoe /? « f
t s C, £ » 1 and

(6.34) ?»(A) .j"[f]
y
+ tf Wj(AiOJ 0; 0, C( A) J o,?( A)).

Moreover,

(6. v Q(C) « ?(0) s 0.





legations (6*33) and (5.34) represent a lyiMsl of first order

ordinary differential equation* under one point boundary condi-

tions (6.3$). Tha right hand aMas of tha equations of thla sys-

tem are of class C 1 ' wnfor hypothesis 3), or of class C 1 under

hypothesis 3^», In tha variables \ , C and ?• Hence, 1c slthar

case, tha functions Q and T ara uniquely determined In a neigh-

borhood of X « 0. :f tha x axle is characteristic, thass fur.c-

v
. al&o satisfy

(6.36) f <A,0; 0; 0, Q{ X ); 0, ff)JJ a 0.

SlariHarly, for \ n Qt

x : Oi 7 • k i
,; : q t t C, p s H>)s *0«-}s

wher<? # from (o.l£),

,S?] p'<^) * f(**M.J Oj ?fyx) t0l B(/^),0),

whlla, frost £( X t /^) s t since (f.f
f

i c, £ • 1 and P « - f ,

(6.33) MC^l) *j [>3 m + ftM y7 (*#/- ftf H u. )»#J M*J,0).

Moreover,

I • r(0) - f.Q « o.

MOO* if the f axis is chartu -tic, the -oris P and ,

uniquely deterfs'neu* by (S.37), (6.33), and (C.39), wust also aat-

(6.40) fr (O f/^j 0; Pt/Ojftj r(^),0) a 0.





I recapitulate, fch- necessary condition chat Mat x axis be a

characteristic of eosae Integral s-irface Is that the functions

and f <w%S)Hai MA from the system (6.35) and (6.Z.,, .nder boundary

condition* (6*35) , shall satisfy (§*M) for each /, n a nei-jh

hood of A : .,. The neceeaary condition that the y axis be a

character! a tio of sowe integral surface Is that the functions P

and V detera'.n*d from the syetea (6«27) and ( r boundary

co ins (6«2£), shall aatU - 0) for each u, in 4 nei^rh-

borho?v< of /^ : 0.

We now ahow that thes* s are also sufficient, i.e.

ran in the vicinity of the origin, an integral air face

Jiu : u(x,y) of (C.l?) passing through the coordinate axes, with

(6.41) P
x
?y) a u^Cojy), Px (y) « u^(0,y), ^(x) • u , ),

and T.(x) * u (*,0),

we ahow that the requirement

(6.40) fr (0,yx Of ?
1
(y),0; ^(y^O) =

Is I that the y ax 5 a be a characteristic on J.

The erguzient needed to ahow that the reqiiretaent

la sufficient in order that the x axia be a characteristic on J

is —Itt— to the following, and will net be given here*

*e need ahow only that nnder requirement (6.40) •, P. (y) « V(j)

Rj(y) « lCy>0 where ?(y) and F(y) are thoae functions obtained
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ppevls^sly v;»3tr the sssu^tlon that the y«axi* «as "Intrinsically

character! e tic".

6a P (0) F.O) • nine© ^(*,C) • 0. Bloreover, since uu

satisfies

(f.l » * f(x,yj *l P#<t; r,t),

« 0,

Bow, recalling that u e ~** f
,

r r t x *- "* x

(6.43) *
y

- f
r

P
y
+ f

t
t + [fly.

Bit -i{C,y) • 0, *e obtain t <C,y) » 0. Writing r_.(0,y) e(y)
y *

and subs tl Siting (6*43) Into (6.4?) with x s 0, we obtain

(C.44) a (0,y) . r i%&\

r/»(y) +f
t ^»? -i-M m

+ rj«
y

, j{0,y) s u (0 # y) * *-_(0#y) * 0, hence by (6.44),

equation (6.37)* is precisely the aat?e as (6«37), while

pec*!ire»ent (6.40) • 1c Nffletaat to re<ftece (e.33)' to

Bat this i*pXles that F (y) * ?(y) and MJlf) - *(y) since the

sol I of the systea of ordinary differential equations In

question Is unique.





the fore$oing arguments me have Javelop&d & procs;* re for

»;er^3r.<ng whether or not the initial curve* are "intrinsically

character* etic" • Sy transformation (6.1) and substitution (fi.fi),

we red-ee the initial curves I and 1 to the coordinate axes*

M sQ can be uniquely ieteralneu from (6.9) we amy verify the

hyperbolic condition and obtain the characteristic directions at

the ori i:.. If these directions oolncide with the coordinate

axes, then equation (1.1) can he solved expllci* ->r (6.12).

>n this, the ayaters | sr boundary condition

(6.39) can, in principle at least, be solved for functions P and

. Inally if V and R satisfy (6.40) then the y axis Is char-

acteristic to &ny Integral surface of the problem, i.e. "intrinsi-

cally characteristic". kewise, froa the system (6.25) and

.34) under boundary condition (6*35

)

9 the functions Q and T can

be determine If these satisfy (6.36) then the x axis Is

-.rinsicallv churacte ••« £ote that , , and 1 are

^vl "er.tly of class C».

Having Iven hypothesis 2) a precise meaning along with a pro-

• for determining whether or not St is verified for a given

prtblea, we I nue with the proof under the aeruEtption that

hypothesis f>) is verified.

Proa ec m (6.1?), (••18), (6.??), (I | and the strip

condition* we obtain the irlng systea of characteristic equa-

tions, which rmst be satisfied alonf the characteristics on any

•erral surface Jj



'it ?r BJ



* i y
x

' P " a = °

VAiHV-'M.] > '

B> -px
x

- qyA
.

(6.46)

<^ SP
X

^5*<»X

> - 0"^.

X " f
*A

X

o

- rx

-r*
x

-

• >
s u

-r
- px

y* ~m

s

r

K vstea
A

«. /«»"! TA »0

- Vfj*. s C

- «^ = o

* » u. - ^u. - *7^

> rttesi

B

We observe that System A of (6*45) la of canonical hyperbolic

fons in x,y; \; p 9q; r,t as function* of A and
J/-

. ;.lnee for

Theorem 9, ? e c»»t
f while for Theorem 9a # F e ; «», the coeffici-

ents of all equations In (S.4IS) are functions of class C 11 for

Theorem 9 f and of class C* for Theorem 9a* Moreover, the matrix

of coefficients for Systess A is, after Interchange of ro*s and

col i*??r_s t

(e.4*)

-c x

i -cr V Q

» cr» -1

C 1 i -f
N 1

v • 1

* 1

(T) ( cr 2
^
2«•1) a





:e co i.'.enta deairnated only by asterisks, *, do not

contribute oa the ral^e of the determinant* ©lit S > everywhere

on a neirjnkorhaoJ of lbs orirln, fe^rcc the deterr»*nant

->os not vanish thereon*

I to the initial con e< we have, by hypothesis 1) I

*

MNM 9 and 9a for ^x- = 0,

* « X » y * » p « r • o, qs : ( X ) . t » ?( X )

,

an* for \ : C,

I « 0* y s j&l i t e t t I e 0g p « Ny*-li r « R( tu)

where ~, f sjafl ,; are de^e.-s* ne g their respective systems

and are of class C f * f«or*o-' : , ""or JA * $ by (C.56), f*. * G*

Bene© z? s 0, £> « 1* sVsl <T » - f
r« la together with

7v * r \ =u \ *^\ *^ an<3 * f*«*** ft» (6.54) prove that

all X lfc a nelghhort iff X « G. §] ilarly, for A « 0,

hy }, fr s 0* Hence CT * 0, & a 1 and ^ » - ***• ?ni* to-

gether -with a*^ r t ^ ~ u„ %„ * and ec sj (6*99) prove

it

for :vll a. In a neighborhood of jx* 0* Thus the initial condition

requirements of hyr°$h*ais 3) or Tbeoreaa *3 and 6a are oat* s'ied*

.ce the co- ients Ln { »4§] are of class C* heorem

hypotheses 1) and 2) of Theoren 6 are satisfied. Also* since

the eoaffloifH t. | .

'

si class C* for theorem ©a. the





hypothesis 1) of Theorems 6 and 6a ia satisfied, but

hypc.h«*i* 2) of ?heor«* G, a hypothesis *hlcn io-i not appear in

Theorsti 6a, ia not aatiafif Thua If we now show that any solu-

tion of the canonical hyperbolic eyateat, 3ys*.ca a of (£*<3) 9 with

the given characteristic initial conditions ia also a eolation of

the corresponding proxies Tor the equation

(e.12) a m f(x,yj »| p*qj r,t)

with the sasw initial coz 'is, tfjej) fheorea © ia an i-<ensdiate

consequence of Theores 6" art** ~h*ore*3 9a is an 1 ate consequence

of Theorem 6a«

As in the ;a chy problea of Chapter 5, we show that for eaob

aol He* of System k m&mr the ^iven charaeterletie initial coodi»

tionc that LSyatew I la likewise satisfied* Uete that hero we can*

not assise that p,%9t ant? t are 3erivati?a* of »J this ia a aatter

of proof. calling fron :?"heore»a and dm that the -."unctions of

the solution of Syetasi a, x,y, i,p,q,r,t are of class C* and that

f & •«» under hypothe&is Z) of Theores 9# or f e C M under

hy^oth-sis S}» of Theores £a, we obtain by differentiation and

consideration of {6.

I

%t

= ^4X
A + Wa - ^4> _ tty '

Boreover, sine* f 3
- (|. 5 (|, : C,

{M»' r
A Va + Vx+ Va +W Va + Va + Va

• V> + -Va + l -^ x
x

+ tfV> •

till*





+ * a; 4 r iu t f ^ •pt*q~5u 1 3

Thus by (6.45), (6.50) and (6.51),

1W - (V»5*»x + V'a -*xVV^

Talcing; Into account the fact that gyatam A Is aatiafla6, aa 2«a-

duoa (6.49), (0.52) an" >3) So tha ystwi

^X ' ^> + ^T
A

Kx ** &**+-* *« + *«¥.$

'y.eG Us, (5*54) r*r5*««02**« a ayatam of llna&r, hoao-

^•s, first or£er ordinary differential aquation* for the fosa-

m* \jJ , l|/ and (!/ of the varledl* A • Eorsover, ay C$.43),





M

ths issiogeasous oijs point boundary conditions

ajik Us satisfied* Bence, the unique solution for the system

(6*54) is

sfesrevsr th* sol I of ays tea A is defined*

-alder the linear jlfefcpilt system,

The 4etersiinant of .t*ef by (C.SQ), does not vanish In

& neighborhood of the ori 1 , bene* Ml **! neighborhood there

exists a jnlque solution sad q, Since p » u^ and q - u„.* 7
satisfy (6»55) they are the solution of (0«55)

ilar2y # frow

(6.56) f «>
4

= P> - • x
x

- fy>

**e obtain r s uxx tad f « u ,

(e.S7j rv 5 »^ -r*
x

- t>>

we I additional irforaa* hat t * Uy-« Consequently,

any «r~ j>tesi A under ths dlvpn characteristic initial

son -is satisfies ths c on
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u - r(*,y; uj u , u ; u , u )

X7 X y Wt yy

in si nelfisborhood of tho point (0,0; 0$ 0,0; 0,0) and the proof

oT Th^or^aa 2 and 9a Is no* complete*

it a teslfna % praties considered uresis anr 9a

aa i ~y virtue of the exposition of Chapter If and this

rrftssnt chapter, we aay associate to thia problem a pa: ar

, of *ihe tTto cor.rtdered in ±W*orews 3 ejel 3a of Chap-

ter II. Aa we have aho*n, any solution of I is a solution of II f

and, MSN ', any sol s a solution of !• ^here

for , e. C lf,
# Theorem I ^elis si that the solution of the re-

lated froblra II is ttJJ&q•-.?• Hence, aa is stated in Theorea 9,

(fee uol-tion for I U likewise mrtfa»« J p, be«lfef| for rrotlew I,

e M o ly« t%0B Theorem 3a tells u* sorely that the related

IToVlee* II has at least one so! . Kerecvcr, Hxaraple l. Chap-

ter , telle as that this solution cannot be snorn to be unique*

It met net eor | merely fro» the above that fo g '
•

th* solution to Frobt* I be shown to be unique. We can

say, thon^b, th&fc any pro' ror rdc -en*ss, If s ch car be made

at all, will apparently have to be baaed upon arguments independent

Of those of this paper.
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Chapter VII

TIm Hixed Boundary Value Problem

for u a f (x,yj # t )•

In the terelnolosy of J. HADA-A' : [ll], apr endi* II, p# 456,

the mixed hyperbolic boundary value probles it one In which wo

proterlbo the values or the Integral surface along two linos

iaft inc from a point 9 one of which is characteristic to the sur-

face in question, while the other it nowhere characteristic*

7* BAT>AMA£D, in the r#fer«nce above , and £• PXCAKD\7], p. 130,

prove the exit tenet of a unique solution to tht linear equation

(7.1) tt^ • a u^ 4- b u„ + e u ,

a, b and c continuous fara-V.ont of x and 7 alone, satisfying tht

initial conditions

(7.2) u{x,0) s u(x,x) • 0*

In 'Jheorea 10, below, we extend their conclusions to the

ition

maintaining initial conditions (7»2). Tht result Is **ill known,

bat does not appear in tht literature in the precise forn stated*

*# require this precise statement because we wish to proceed from

Theorem 10 by the methods of Chapters II and III In which we re-

lax the rlpschitt ttndl on the ion f to require nerely



<



thfit f be partially Mpsehltslan. Itma we obtain the l«prove<2

atatesent of Th«tor«« 10a.

^ y ^ /

-a < u ^ a

-b ^ p ^ b

(_-b ^ q ^ b

2) f la Llpaehltilan on B (aa 3eflne<5 in

Theorem X.)

3) * /^ a, R /^ b # ahere

3 ®ax 1 f i
on ?

4} There exists one a It one function u(xty) e Cf (

u (x f y) e C(£)# where Kt\ # such that for each
(o ^ y ^ /

(*»y) & , tha point (x,yj i(x,y}j <x,y), \j (x,y)) e -, and
* »

11 <**j) a f(x,yj u(s,y)i u U,y), u (*,y)) txy * y
:'*,0) « i(x#x) « for aach (x,y) e ?»•

Proof

This proof la baaed upon PXCArT'a variation of th# eiathod of

successive approxissatlsna, [_l] p. 259 or [73 p. 117. Here tha

uniform convergence of the approximating functions to tha solution

Is verified by seana of a sajorant aeries. Tha raajorant series

used Is that obtained" fro*s tha approxlemtlng fane ti one converging

unlforwly to the solution for tha particular linear equation
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(7.4) * * K (W + W 4- W )
*7 *

with *;hf> -*a«* Initial eorr3itlone. Hi the r,ipechiti constant

for the function f of (7*3 }• FXGMflD applied thl» technique to tho

characteristic Initial val ;e problem, obtaining Theorem 1 of Chap-

ter II* 3a thus obtained the theorem for the characteristic inltlel

value problem for the rjon-llnear equation (7*3) fro* the theorem

for the characteristic initial value problem for the linear equa-

tion (7.1).

For the mixod boundary value problem u?«3er consideration, a

curious situation arises* £e do not obtain a aajorant aeries from

equation (7*4) under mixed Initial conditions* However, we do

find the-t IfCtfHP** m*Jor*nt aeries for the characteristic initial

value problem b^t^99 as well for this problem. Thus theorem 10

follows not from the theorem for the mixe«3 boundary value problesi

F the linear eqnatior; (7.1) but froa the theorem for the char-

acter! stie initial value problem for equation (7»1}«

It le sufficient, as we shall demonstrate later, to show
ro^ % + t

existence of a unique solution in re Ion ^ t\ •

assuming (x,y) a £ , we may exprees the problem as the Integral
2

cquat'

y
(7.5) u(s,y) • \ *£ \ f( J .\ % ftj u^.u )«V£

By differentiation*

(7*8) «x
(x,y) m \ f(**^l »l tfcfOi^s



(

4



.'1

(7.7) u (x.; ) m\ f<£,y| '^t *,. « )*$ -\ * (7p ^ M^jjOft^

99 foras the a :cc«*salve * prorlasaSIm;*

»
$
<x,y)

-J^J^g >*l
I V »!.,' \J*k

(7.8)

i :

v.

wh«r#, by ?r«Rti*tlon f

n,x L -1 n-l,x s~l#y L

(n * l,rv).

L n-X -l,x n-l,y ^

(n a !,?,•••,)•

ce th» point (x,y| Of #0) e S for (x,y) e V.2 » by hypotbotlt

3),

l^fSfcf)) ^ * tx-yl •
|
y|^« /*< ft,

|t*
lfXU.y)l £ tf ly\ ^ * /<%•

= «|x| ^S /^ b

Tfeu§» by infraction, for all n and for any (x f y)

(7.11) -{ \u
n#x(^..y)U "/ ^ b *





©2

Oar p^rpos* Is to show that on 8

(7.12) ju —=>- u- i Q V =^ u and <> u £ -1 u

rich that the runctlon u and its derivatives satisfy conclusion

4} for (x,y) e E • ?s »c Llsh this v« cor.ai der ths suecasalve

epproxlaetlone

t :

*hers # by differentiation

(7.14) *
ny*.y) ,

J J [.„_x + .^ + ,
n_1>y]

(,.!£)«
I ,

(a 1, ;',"•)#

(7.16) .^Cy] , ^ % [va + ^^ + Vl >y] ( J ,7)d£ .

(n • i, ?,•••)•

Her* X s sax |f
j
on I *hile K Is ths Upsthits constant of

hypothesis £}•

Sow w,(* #y) m Sxy, hence w-(x # y) • W}(y#x)» Moreover,

w
1 ^x

(x f y) * !*y, *i f
y^r *3r ^ » ^» hence ^ -.(*»*) « w

lf ,.(yf*)«

*et us nake the inductive hypothesis that for aosse fixed

positive integer n,

(?.1«) w (x»v) a » (y»»)i w
r

_(x,y} s *M {?»x}.
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Bat this isspUes that

(7.17, |>n +. .^ + ,
n#y]

<x,y) s C%+^ +^J (y„)

and thsie, by (7*15) f

Vi<**r> s Vi {y»x) -

AlBO, by (7.14) »ra5 (7.15), (7.17) inpll«« that

Vl,^"*' •
5 c

K t*» + V« + %y3 <*•
£ >

d
\

s % +l,y
{y'x) -

Hence, by latestta** (7»16) holds for n * 1,£#
# * #

»

PICA! ::, la the references quoted above, shove that

(7.13) S « = w, S. w e * , w • w ,

asl B »sl
n#* * i*l **** T

each uniformly convergent on r-, where the Sanction w ana its

derivatives satisfy

fir a K{« + w +w-)t
CM*)} * XT

(_wU,0) - *(0,y) s 0.

fe now shoe that these series are stajorant to the series

n-1 ° °*1 n«l n,x "-!»* aal **» a-l»T

respectively, for each {x,y} e R
2 , (with u

Q s 0)»

low, for (x,y) e K^

^(•sT)!^ *% C Iflgs^J Oj 0,0)| d^*d£^
T
lc!^« w

1
(x,y)



i
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'so, abbraviating o*sr notation aomswhat,

.\
- JO

^Mo^+v^-i.^.^
* % *

"7

5 W
2.7

#

<?•!«•, by indaotlon, we obtain for n » !.»•,•"•

IS "S*l = V >r.,?1
r.-l,»l £ W

h.« •



f

<2



Ana the teri >a of <7»13) aro Bajorant to tho eorreaporsfilrv oeriea

or (7»gC). moreover, the reqairoaente for tens?ioo differentia-

tion of or Infinite aua ore aatltfle£ aiooo oaoh of tho aerie* of

ft«0O) it now knows to to uniformly convergent on B • Hence, for

/- «o

(7.2?) ^- **_ »*c * ) a «

<.

r*

nml
(xx «U ) 9 tt S

or, in oth*r terse* since each of theee aeries telescopes*

mm j*^^. [v -v [%*y^\
Wo r*ow verify that tho function a asd Its -terivati'sros u and

l satisfy tho integral e qua ti cm statement of tho oroblca (7.£)i

u<*,y> - ^^^S 'l*** W*^'
^|«fxpjr] - a (x,r) 1

+ \ a£\ If (J" # <7_|tt|tt #u )OyJO ^ * y

^ l=(*.y) - an ( *»7)l

V»,*0 <*•***



^
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Thus* by (7*a*)*, given a > 0, there exist a a positive integer If*

depending on ^ alone * such that n > N =^

\u(x,y) - C*d$ C
T
r( g # ^ # uj *,« JdV^^U+SK/8 ),

for (x,y) ^ R • But €. Is arbitrary* hence the Integral equation

is satisfied*

By (7.11) and (7*22) « ve see that for any (x*y) £ R
g, the

point {x.yj u(x*y)| u (x, y), u (x*y)) 6 &• ip.us existence of a

solution on K is now proved*

To prove uniqueness, let us suppose that u- and u are two

solutions on R 9 then

r j

<?."> -«C£.i£* v%*» Vy*'*^

\
ttl,y<x»y>-tt8,,t»«y)Uy ftf»J" V ul.x»ul,y )

(7.26) -'</ »« "a* "a..'"*,,) 1 «i

-ttj.tyi u
2
, -a,,.*. )|«|J

o



•;

^&
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»lth K»l , jf* - »in (1, /• SIT )• •• &•*•
0^ y ^ x

y (x,y) *s C(K*). Moreover, there exists a point (x*,y*) c R*sueh

that ^ (x»,ye) »y*. where u= s*x If (x,y) on R». but, adding

(7.24), (7.25) sad (7.36) we obtain

y (x.y)^ * ^(x-y)y y (x-y) y]

^ & ja. (xy x y)

/ y2

hence ^ (x*,y*) • u, ^
J~-$

which lapllea /x, end thus

(7.27)

for (x,y) €. K*

ttjU^y) n
g
(x,y)

to extend this uniqueness proof to

the aor*In R^, we subdivide fL, as

shown In the diagram. *e know that

the solution u Is unique on R» end

hence determines u(/%y) for

0^. y ^ /*.

u(x,0) by hypothesis, consequently, by Theoren 1, Chapter

II, ee have a unique solution u to the characteristic Initial

value problew on sub-re&ion 1. Since u (/*,0) • u^ x (/*,0),
ee

have fro* the differential equation that u (/%y) • u^ x(/*,y)

for 4 y ^JT*« l«e. u and u» have a first order contact across

the line x * f* end hence together rmprmmnt a unique solution

for the re. Ion R» 1. Analogously, by the preceding "in the



(

2:.
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•all" uniqueness proof for the nixed boundary value problem, the

aolutlon u la unique In sub-region 2 and nae a firat order eontact

with u aeroaa the line y ( . «e continue obtaining unique solu-

tlona for characterlet lo Initial value and nixed initial value

problems, alternatively aa indicated by the numerical sequence In

the die. roc. Thaae solutions have first order contacts with each

other aeroaa the character1st Ice forming the boundaries of the sub-

regions, nonce «e nave extended our uniqueness proof from the

region R* to the region R •

Having thus determined the existence of a unique solution

satisfying conclusion 4) throughout H , we no* consider the Cauehy

problem for region I *ith the aejse equation and hypotheses thereon

and with the Initial conditions

\ u°<x#x) » 0, tt*<*,x) • u^U.x), and

(_
tt£U,x) » tty_<x#x) for x e [0,/J.

la (7.28) u and u are the rlr ht-hand x and lover j do*
x+ y- #

rlvatlvae, respectively* determined at each poi.t of the line

y » x by the known solution u on ft • By Theorem 4, Chapter III,

there exlste a unique aolutlon u° to this Gauchy problesi for each

(x,y) ^ R,, hence

^Usj) • r«QU»y) for (x,y)e Hj

C *(x,y) for (x,yj e R
ft

la the unique aolutlon valid for each (x#y}£ R » R. R
r.,

since

uQ and u have, by proscription, a firat order contact across the

line y • x. rhia completes the proof of Theoreo 10,
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Relaxing only hypothesis 2} of Tbtort.* 10, ee obtain the

following Improves* at

i

Thearea 10a

1)

2) 9 f Is partially Llpschltxlen oo B (as defined In Theorea

la.)

3)

=>- «)' There exists at least one function, etc. (ss In Theorea

10.)

Outline of the proof s

As In the proof of Theoresi 10, we aay* without loss, prove

existence on K only. For, preserlting Caachy conditions on y » x

as before, we may extend the solution froa R to bL« by use of
c 1

Theorea 4a, Chapter III.

In this proof we follow very closely the derivation of Vheorei

la. Chapter II* hence -nly the differences between the two proofs

elll be noted.

t&lg&3T!US& f theorea tells us that there exists a sequence of

polynomials, > » 7 , converging ualforaly to f on B. »»e extend

the gA , {X - l,k:, • •• ), and f froa b to

-O0<^p<i cc by deflAltlons anslo oas to (2.1), j here

-co<< q^ o>

/ a
X
sons tent L > such that |g j^Llac' and for all ,\ . Hore-
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over, the gv are "fully" Lipechltzi&n la b'« aence by Theorem

10, (with wl-^qd, b-^-co), for each g\ there exists a unlqus

function u v such that for (x, j) e. R

and thus

(7.30) u

(7.3!) X^"i/X <^**| U X' UA.x' "A.y^l

-Io
6
X

<Jr'^' "* J u
X.x'

u
A.y

)dl
Z

for (x,y) e R , by (7.2* (7.30) and (7.31),

(7.3*)

lu x (x.y)l<L /*

lu x#x(x,y))^L/

|
u x#yU f y)|^L £(x-y) y

^1/

( X* !#*••••)

i.e. the sequences *U\V,
)
u \ x\ and

7
U X t\ are uniformly

oounded on h •

Given two points, (x^, ;^) e h,^, (x^y^,) e K , we aay assume,

without loss, that x. ^ x * Then, If y. ^ y_, let us assume that

y <c x. • Then by integrating over the regions a, b and c In
* 1

diagram (A) we obtain

(A)



A

i

I

c
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< 7 -53 >

Mi l«x<V*t>Hi X <VFi,l^
L

l
/(W + ^vV

(»)

If y, ^ * w© may always chooee

)Int (*
5#ys

) ith y^ x < x^

•"* V y3^ X
l

ben, aa aLova,

1 o l

1 »• X

Adding we obtain (7.b3). runner if y ^ y , wa have the case

9ix0« In dia^xaii (C)« Hare by

lnte vrating over ti*e regions

d, e and f we a uln obtain

(7«M)« Hence the sequence

|u^> la equicontinuous on

(C)

Mow, for U*!^) e Kg, U^) e R^a ty (7.30)

(7.34) [•x^VXa.^VW^t^ll *

Likewise, for (« -j) ^ Iga Uj.y) s R^* by (7.31)

(7 *55) WXaj^V*1 "
a
\,y ( *l'

y)
I
- ^H " x

ll
*

Moreover, oy precisely tbe saae argument aa that used to prove

Lemma 2 of Chapter II, £iven M>0, 5">0, the e exist £> > 0,

X > 0, depending only on R and JT , respectively, such that for

(x^#y) <s *
2 # (**s7) ^ Bgi

X > M and
|
x
c

- xjz^



A !

'
I

'

"
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(7.36) \«^ #x<*2»y) - a
x x

(x
l*

y)
l

m "oy (.734), (7*36) and Lean* 1, Chapter II, the sequence

)Uv £ is equicontinuous on 3U*

la need the following re finesent of tha argument In order to

show that tha sequence ju \ I is e quicontinuous on K I

Let us suppose (x, j ) e R , (x,y ) e R
g

. Without loss,

we say atsuae that x ^ ju ^ y^. Then

u
A.ju'ya ) u

>.y
(x
*»i )

(7.57) f y„

-^
y

8X^»yl' U A* »Arf»*A.f>*i

«e have Just proved that the sequences }**\^ and )'* \ x r

are equicontinuous on R • The sequence Jg\( *« certainly e<$il-

continuous on fe
f • lence, considering (7«3o), given /*>0, there

exists 5>0, depending upon ik alone, such that j Jo-y 1 1
^ &

(7.58)|^
1
[g

)v
(y2,^ u

x
, uA#x,uA#y

). S> ( yi,^ V^,*'^J )ldVl^/'

(7.39)U [6 x(^y2' u X (^ y2 ) ^UA,x (^^ ) ' ^y^'V*
'*

-«
x
{f»ii^ A(f»yi)i^,x(^yi)#^y^r»7^)))<Ji |<^.
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for X « !#*,*•*«

Alio, since ^g^*
11
^. f on fc», given 5^°# there exists K > 0,

depending upon j> alone, such that X> a

(7.40)\\ (g
x
- f)(^y

1
^ A(^y1)mA>3t(^y1

)*u A# y(r>ya
))dg |

^ £
i

X

C^Hg>y
1
iu

x
(j-

< y1
)|u

x^(r>y1 ).«^ y (g>y1
) )dS \*$ .

j2

By hypothesis 2)»,

(7.41)^ if(l,y
1
ja

x(|,y1
)iu^x(g,y1 ), ux>y (^ > yH

3)

-f(^,y
1
iu

x(^y1 )|uA#x ( >r,y1 ), a^y^^l^ ^
1

1 Wsj^'V - u^cr.y^ld^.

Moreover, since |gv\^I» (X»l»2, ###
),

Jy^ A

Thus by equation* (7,37) through (7*41), ; iven /*^0, $" > 0,

there exists &>0, !* >0, depending only upo&^c end JT , re-

spectively, such that | yg -y. \<C £ end X>M



I



104

(7.45) !»>,y tx,y2 ) - u
A>y

;x.
yi )l

By Lemma 1, Chapter II, inequalities (7*35) mnd (7.43) imply

that the sequ&nce
j \Xs I is equicontinuoaa on R •

Prom this point on the proof is practically identical with

that for 'ihearem la* Since the sequences
j
U\f, ) u \ \

and

) Un £ are uniforaly bonded and equlcontlnuous on K , we may

apply AHZSLA's theorem to obtain a subsequence of each, uniformly

convergent on R, % * Hence, as for Theorem la, by successive extrac-

tions of subsequences we obtain a subsequence < u'^ V of ) u \ \

converging uniformly on lei,, to a solution u of the integral
•C

equati on

u (x,y) -Pdl
_f

7f^»^ u* VV*^ "

and such that for (x,y) e R

(x,yj u(x,y); u (x,y), u x, y)) e B« The pr>of f*or Theorem 10a
x

J
is now complete*

Following K« PICAhD [7] p» 155 and p« 129, we show that the

general statement of the mixed boundary conditions, (i.e. where u

is prescribed along two intersecting curves, one characteristic

and the other nowhere characteristic), can be reduced to the

statement found in Theorems 10 and 10a, (i.e. where u{x,0) *

u(x,x) « for x e[0,/]).

Plrst, let us suppose that we prescribe



•

*
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u(x,0) - I? (x)

(7.44) \ .,

u(x,x) - iy (x)

forxe[0,/1, q?(x) and ^ (x) 6C'[0,/]) mud (^(0) « lJ/(0).'

Consider

(7.45) w(x,y) • V(x) ^(y) - t?(y).

We have w « on :
; while

*y
f w(i,0) « 14 (x)

(7.46)
j

.

t w(x,x) - ^ (x)

for x e. [0,/]. Hence, instead of the problem with non-homogeneous

boundary conditions (7.44)* by setting

(7.47) v » u - w

we nay consider the problem

vw " f ( x»?* *** w . * w )xy x x y y

v (x,0) «

v(x,x) « 0,

a problem of the type covered cy Theorems 10 and 10a.

ond, suppose we prescribe u along the characteristic

y » and the nowhere characteristic curve y » F(x), where

F(x) e CMfO,^]), P»(x) / for 16 10,/j] and ?(0) • 0.

e coordinate transformation

fS* ?(x)
(7.40) A _

[y •*

reduces the curve y * F(x) to the wlwjjenwl y * x since the in-

verse F~* exists and is of class C 1 on [0, ?(/-)]• Moreover,

(7.50) u m F»(x) u^



*
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Since F 9 (x) ¥ # tne form of trie dltrerentl*! equation re-

amine unchanged and we reduce the problem to one elth initial con-

ditions in the form (7*44)

•

Thue the general e tatevent of the mixed boundary value problem

for

(7.3) u f(x,yj uj u^.u

)

can be reduced to the form treated in Theorems 10 and 10m* .?•

note that niiatever continuity and Llpsc.il ts conditions are aat la-

fled by (7*3) before transformation (7*49) and substitution (7*47)

are satisfied as veil after these operations are performed*





1*7

VIII

503 K:

the or-Jlnsry different!*! equation y» = f(x,y) with

y(x ) s • - ,
^' [l&]» assuasiag f jssrely continuous, gives

an existence proof ~hat is entirely Independent cf the classical

proofs an<5 contains the» aa asocial oases* Be bases his proof

on the concept of under and over functions, defining (f (x) to

be an :nd«r I on if (^(x^) a yQ and

(9.1) D± ^ (s) < f(* 9 i?(x))

and defining (M (?) to be an over function If (]/ (x ) « y and

-?) S>£ ^(*3 >f(x f (|/(x)).

The solutions are ftosad to lie between the wpp%r li^it function g

of the set of undarfunctions and the lower Unit function G of the

set of overfunctlona, g and themselves belnr solutions.

*• E*1 shows that raUiOB'a proof will not carry over

directly to to a eystwsfo

• 2) T, s f. <*,7<,," m ,7 ) , * *#•••• n).
i in

•, he is able to extend the classical theorem, obtaining

a stat*nent which la similar to that of ?~KBOK and which reduces

to th* direct analogue of f s theorem in the particular case

where the 'one f; are monotonicatly increasing in the arp



e
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thl» c* aptar *« r«t^rr to tha ehar&ctariatlo Initial valua

probla« for

(S.4)

fa obtain re ail 1 3 a5.**Ilar to thoaa of 3K7LUBI above* In tha fol-

lowing Thaorasa 11 MM 11a wa lsprove the atateaenta of Tbaoreaa

I an£ la, Chaptei Tt$ -^y the lntrotfuct ar and lower

bounding funetlona Q and a? •

Thaoroa 11 (11a)

1) t(x*7l ,Q}sC(?) #

*
< x ^

o)x f3c,y) ^ p^ -axO»r)
o^Cx^y) <. q ^ ^ir (x,y)

• ( ^? f
) ** i » UpachUslan (partially Upachlt»lan ) on T (as

defined In Theorema 1 and la).

8) ~he MM oj(t,?) and I2(x,y) e C>(t)i I

w!th 6tf _(*,y) an4 I2. TTf7,?)6 ( }. Moreover,

co (x,0) s -&(x,0) « for x^[0,/J,

^(O.y) -&(09r) m for yeLC,/J,

and, for each (x,y) e r,

0< x< f

(8.5) ^>
1rT

(x»y) <j*a Xf ^ x »y* u * *»*)~1 i'

** s{--,y)

where



(



1^9

7) <x»y)«
ui{r

X S X

T r y
#yH ^ £M*,y)

»y)^ q-^jQ,(*#y)j

4) ( 4) f
) There exists one and or.ly one (at least one ) function

i(y,y) e. C f (H), u <s c(R) s^en that for each (x,y) e. t the point

(x,y; -(x,y); u (x,y) u Cx,y}) e ? # And
X 3

%»**•*) « f(*r J (*,y); ^y U>y)» u
y
(x #y)),

u(x tO) r u{Q,y) 9 :or eaefa (x,y) e g«

Proof

9* extend the aoaain of At I. fcion of the fu-ctton f over T
9 ^ x ^/

to B * i-{

^ y^ / by defining f{x»y; «| p #q)

-j» <: <: »
•OB < p < CO

«<JO<q < CO

» f(x*TS ~J P#q")# *Here

~s If o;(r,y)<u ^ -0/ , pWp if £0
x(*,y)^

p<-Q x (x,y),

( !••] f = C0(*,j) if i <: a)(x,y) ps6;
x
(x,y) If p< ^(x,y)

7»JZ(x#?) if -G < 'J p«-^x (*»y) if -#,(x»y)< p

and q e q if CO (r 9 y) ^ q ^ J2(x,y)
y

q s o) v '>,r)
** c. < a; (x,y)

q»-Q
y
(x,y) if_Q

y
(x,y) < q.

;- def »4) 9 f is :n!ror*ly continaoue and If

'. '
.

>* hypothesle •)(»') aa~ (8*8) f »atie«

flea a T.lpechits (partial Ltpwfto&to) condition ir. T
.
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, by Tfae^reo 1 (1a) Chapter II , there ex'sts one ano" only

on* (at lsast one) function satisfying conclusion 4}(4) f

) sxcipt

that for (x,y) <s I a* ar« as?> red only that the point (x,yrj(x 9 y);

ti (*,y) #u (x,y)) e. ? f . To couplet* the proof aa ssust shoe that

tMs ?sotnt actually lies 'r T; i.e. we mist enow that for each

t*9f) 6 ,

f w(x,"; ^ «(*»y) ^ -& <*»y)

.9) -< Gl> x {-*,7) ^ ux(7,y)< -Q x (x # y)

[_
^>

T
(7f»y) < «yt*ty)<i2y(**y) •

To accomplish this, we first prove the following lasssas

=^>- cJ(x,y) ^ ^(x,y

cj-.<x,y) ^ (x,y
y y

il) _£2 xyU,y) ^uxy (-,7

_cz y
(x,y) & • (»fy

v

oof i Por i) f

co (>»y;

^x^ r »yJ «

^
y
(*»y) »

for stli (3t»y) c R

*

for all (x,y) s X

S

M-jZj «4 dx»

•' ^->0

The proof Tst ii) is analo ous»

y
dx

^^y^l^dyra^x.y)
x r

-*7





m
To prove U9) it only re»aiua to verity that hypothesis i) and

of lesna 3 are sat*afied by u. By hypothesis 3) ai*3 defini-

.1), for e*ch (x fy; <s

00 __(*,y)^ =tn r f(x,yj nf p,q)l

**
C**y>

^ f(x,yj u(x,y)j u (*,y), u (x,y))
y

a -^(x.y).

th\*s, by Tjmssmi 2, ftq fte*t (3«9) is satisfied Xor e&ch (x,y}<= *

PMf of *"1±eor*^3 11 &Jid 11a Is complete.

U ii evider Inspection of Theorems 11 and 11a that If,

^aad of hoaoffneoos initial conditions, sc prescribe

(x.O) « TJ(x) vlthS(x) <= C«(L0 f/J),

,?) « V'(y) eith V{y) £ C( LO./J).

vhere V(0) m 7(0), thee »e «s:»at require

co(x 90) u fl(*,0) - 3<x),

£J(G,y) «il(0#y) (y).

?ns proof than goes through as before*

folio*!.v exasiple Is an Illustration of Theorea 11:

Magpie A

* proclem



*
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(8.10) u 5 <2
ly*" - 0*^*S »U.O) • u(0,y) « 0,

xy *

we :aay readily verify that

... w \ / n lA+1 l/a(m+l)
(3.11) co (x,y) a (-1-) ' • 2 xy+1

and

[••J | -a(T,y) « :

l/ *> xy

satisfy the hypotheses of rheorer* 11 for all x ^ and

< t ^ C* s JL gV»+*
HJ «+l

"ihiipter II we obtained the exact solution

_. .._„. _ -.^ -FJL In .sal*13

-43) a

! s a branch point of the solution. \« observe that aa « In-

cr s»«a indefinitely cj and -O. approach u from belcir and abo e,

respectively, while C^ approaches C froa below.

Ve aee fron tMs exaisDle that It I * feasible to obtain approxi«

~sate iolut-0!H , u>wn liaise of error, and to locate singu-

larities In the actual aolitio* ;ae of Theorem 11, provided

that suitable functions CO and _Q_ can be obtained. problesss

where explicit solution* cannot be obtained in "closed foras", the

pr-^ ^e is to alter the rirht-hand aide of the equation

ttyy a f(x,y; uj ux , u
y

)

ao that an explicit sol of the altered equation can be ob-



^
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t&lned eat rig the ; vry conditions, ^ls siay leed to func-

tiona 6c> and -Ci aatisfrinc the hj^^Hecot of Theorewi 11« (See

W. V« HHT30HI [IwQ and QkQO The motivation Tor aquations (3*11)

and (3.1°) of ^xaaplo 4 la now evident.

Whan we consider the possibility of applying, as explained

, the RssTRQ! aethod aelag under and over Unctions to the

charae "eristic ini lal value problem under consideration, we find

the situation nuch the ease as that he case of a system of

Pits? ordinary differential equations. Se arrive at the

unsatisfactory state of affairs wherein there is no assurance that

the under factions re?mir. b*lov the ovsr ftinrti—I througho

^e region on whieh a solution la known to exist. In fact,

we shall presently give an example swatve an under fti—llt-s) exeeede

an over function ssMsti tssf Mswaisl of existence of a eolation.

iflitm inequalities (sUl) and {&•?), we say express the

It cation of the ^SKROW Method as follows: *• require both the

er and over fsMtttssl to satisfy the given character! atle

initial conditions and to he continuously differentlahle and to

*seea a aixed second derivative at each ooint of the dentin
f o ^ x ^ /

Ri-1 • *e further stimulate that each under function, ,

shall eatiefy

U) C(? •'*,-} < f(x,yj
(f

(x,y)j (P (x,y), ^_<x,y}},

and that each over f , ip , shall satisfy

r each (x,y) e. •«





A *4

Analocouc exgunents to those used by POTKOV for the ordinary

differential equation y< « f'x,y> lead to the inequalitlea

Lfmt**l < ^<0,y) for ^ y ^ / ,

C(M*,C) ^lp U,0) >r 0<x^/,

for any under I (p end aay over function l)/ • These

inequalities, e« MP with the requirement that (f and y satisfy

*- u e characteristic initial data on toe positive x and y axes,

sure that ^ > V in a I ciently saall *t" ahaped strip in

^ firat quadrant adjeeent to the initial character! stlei»

Unfortunately, this is inade^ets as the following example dea

etrates*

Fxa^ple 5

Conafder the proMea

— °* *(**<» * »COt|1 e 0*
xy

a proMesi has the unique solution u * throughout the finite

plane. Let

[*»•*. a^*«

Ky • " r
•

NPt a, §» C and d ere poaitUve constants* By integration in

16) we nay obtain funeiiona ^ and If satisfying the initial

conditions of (3.15). I , (|7 is an under function for all

(*,y). Moreover, (1/ > Tor all (x,y) lying in the portion of

s first quadrant below the paracolic arc

k • J. Iy «-k/ J x + fc |





5

and hence y =*••*• the requirement! for an over fane . on a

domain R^i < r— where / t« arbitrarily large out finite.

-fining ha ^ - ^ we have

h (*»y) s Mm • 3y
2 + C +D«

*y
ice h(T,0) * h(C,y} a 0, we obtain by integration

h(i?,y} a fc x*y - £ x2*2 +(C + t>) xy .

that b >0 In that portion of the first quadrant below

the hyperbola branch

;X

while h <^ above th«» branch* i-ros* the diagram it la evident

at U a* r*Q-ilra

<

then there exists a positive cob*

eta r-.t / such that within the cor-

«-:T on which C^>\|/ • Hence tha 11B0H »etho<5 la not

r-eetly applicable to Lass of 'yam*

core** 11 arx! 11a, we observe that lf # for fixed

(*,'.-), f 1e a '^ WPMwiiMg . ->n for the arpusents

, and q f then

f(**7J a)(* fy): &Js<*#*) t £j (x.y))

a «ln r*(«eFJ ft| ?><3)3 •

ft^^x; -£(«#*)* -&,(* ,y)# 12 v (*.y))« sa* Iff*,yi ifPt^fl •

5{x,y)



to'



In thla ca«a va nay altar hypothesis 3) to r«q.ir« rrer«lT that

a;w*x#y) ^ *"(*»y* o)!*,y); ^_<*,y}, oMx,y))
•*,v * y

-a xy
fx '7> > ri«#fi-ac»ty)i_amc^r)# .ayc«#ir»

r aaeh (3f,yj e R« Kit 5 s tha direct inlt|< to '»

^r«» (aa<* \XSJ ) and corr«sr*onds to tha previously mentlonad

rerilt of sni.:.Xfi f r a ays tow (3.3 )•

- "loao this abactor with tho ressarfc that Theorems 11 and 11a

oan be extended lr-*edts so aays. First, ibe ae hod la

Lteable to the e .v problem. 3e require tha fane*

tiona O) and iX to satlafy tha Catchy Initial data and obaerwe

that tha proof of Lomssa 3 la essentially lanchangad. S«*ond f tha

I extends to sooly to a systesa

."or both eharaeteristic and Cauohy Initial val^a prescriptions.

Tha **odifieationa lr. tha hypothasaa and proof for Theoreas 11 and

11 a ara obvloae«
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B2

r lei mt •« d'app^oxlcatlona ajccaa&ivos

6ana la Sheorie <*.«8 a
1 m rtlfferentleliea,"

Lecona iur la theoria I
"

t^r^acea, 0.r*AH»

, brig l&frtf).

2. . KaJfJC-J, :
"- ff«r<-ntialrl8lch^nfr*iri reeller *mkt!on«n

(Lftipair 1930).

: - . , ~neyfelopftdie der «*at&e»ati-

ttcben Sleacnaehftften, vol. IX, Z* 3c. pp. 1137*1 137.

• •

4. X. , ;«r das /-lrrdftsient&l'hsor*© In £er Theorie

der gewohnlicb^ fsr*atIal?lelcb*ingftn t
H

Iftthesmtlaeh- tacbrtft, vol. 2€ (1S27), pp. 61--

f. f. T -t* on the derivatives *ith respect to

a. peraaeter of Hal *»o3 .s of a svatssi of differ-

ential equations," A rails of Kftt&aesfttlftftj aer.

voi« m i\ , p. 233.

c. .J , Go rs d'AftftlTae, vol. I (^arls }•

7. , Leooaa ear laa s &ir derive*

a

partl^llea (Parle 1927).
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7, *Sur in nrobleiia ralatlf a la theorle 6aa

ac ne # ate. acond Ma»olra), Annalea dt la

sa, aer. T, vol. I (1904), pp. 117-

144.

:. • • opra aa taorama dl eeiatenaa par la equa-
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The follotvinf special notation* will be used throughout

this paper with the meanings ae defined below. Other special

notations use<i will be de* at the place shere they are

-!d.

<s a member ofj i.e. belongs to.

Li the set of all ordered pairs (x,y),

(points) for vhich ^ x ^ / and

0^ y^/ .

f e 0(B) f is a member of the class of functions con-

tinuous on the set B*

ff <=. C*(H) g is a member of the class of functions con-

tinuously differentiable on the set H,

(and similarly for higher degrees of

differentiability.)

u
X

x
: where ris a parameter alone a path.

fe tP»/l x be lon; s to the closed interval, O-^x^/.

^ Implies.

^_^-^ implies and is implied by; i.e. if and

only if.

\ (*>yj ^J r#^) * sequence of functions g. ,(A» l,^,--»)»

of arrntnents (x,y; >j p,c).

.1 -» f on B the sequence \bJ( converges pointwise on

the set I to the function f.

9 U

a7 '

^ u >

a x





Ti

\? v I * ^ f on B the sequence )g v I converges raif on

the cet I to the function f«

+ y the rlftht(-V) and left f-) hand derivatives

of the function y at the point In

question*
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CHAPTER I

IHTROUqCTIOM

The purpose of this paper la to present a number of exist-

enoe theorems pertaining to a class of non-linear second order

partial differential equations in two independent variables of

the general form

(1.1) FU.y; uj p,q, r # s,t) « 0,

where

(1.2) p " u
x» * " tt • r " tt

xx*
B * u

xy
*nd fc * tt

yy

in the usual notation* *e restrict our attention to those pre-

scriptions of initial conditions for which integral surfaces

exist such that the equation is of hyperbolic type thereon, i.e.

the inequality

(1.3) F* - 4 Fm P. >
s r *

must be satisfied on the integral surface in a neighborhood of

the initial data.

E. PICAKD [1],[7]
X
, a. GQtfR&AT [6], S.E.LeviUJ, H.LfiaT[10],

J. HA^AMAKD[11] # *• CHMI«I-CIbRARI0[12], [13], and others nave

The number In the bracket [ ] refers to the reference in the

bibliography.





-2

developed existence theorems based on the metnod of successive

approximations, Their concern nas been to establish sufficient

condition! for the existence of a unique solution* Retaining

their restrictions on the initial data* we shall obtain sufficient

conditions lor the existence of at least one eolation* The inte-

grals of tue equations we consider will not* In general* be unique

The concept of characteristic curvee in an integral surface

plays an important role in all worn, in this field* We give two

definitions of a characteristic curve, the first applicable when

the curve is expressed in non-, ax-ametric form* the second when

expressed in parametric fone:

Definition 1

^ fa^x^b - mg§ ... _ f x » h(y)
« i\ where g^C , ([a,bj)* or T: <

[j - g(x) (_c^y ^d

where h£CM(c*d])* is a characteristic base curve (character-

istic projection or* by usage* characteristic) for a particular

integral surfaoe J: u«u(x,y) of F(x,yj uj p,q, r*s*t) « <^b=^

for each (x*y)

(1.4) P dy2 -F dydx P^dx2 »r^ e t

munition la

T Cxmr.{z)
for Ze[o,l) end wi»re x*y e C»( [0,1] ), is a

lyyCr)

characteristic base curve for a particular Integral surfaoe

J: u = u(jt*y) of ?(x*yj u* p*q; r*s,t) • -£==?* for each ^ e [0*1]

1) F,. f* - Ft* F*.*
2 -

a) & + V f o.



%
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Under citoer definition T is rectlflable and possesses a

continuously turning tangent (see C* * oj, p. 100). ihe

t«o definitions are equivalent in the following eenee: fie may

convert ^ expressed in non-parame trie i'opb into its parametric

expression by setting x »^, y * g(^")# or x « h(^), y * *2T as

the case may be* That the converse is possible follows directly

from condition t) of Definition la and the Implicit -unction

Theorem. Ptt># suppose at a point (x(zro ), y(^)) of "^ that i^O.

Then In a vicinity of x^ • x(Z ) the inverse relation T» 2^(x)
Q °

exists and we may write

(1.6) T I y » y(T(x)) - g(x).

Similarly, where f f O we may write

U. 7) T z x « x<r(y)) « h(y).

by condition 2), one of the two representations (1*6) or

(1*7) Is always possible In the vicinity of each point of HT •

Definition 2
x - x( Z )

P : y » y(r ) for r £ [0,1] and where x #y,u e CMC0,1]),
* u-u(r)

a space curve lying in a particular integral surface Ji u»u(x,y)

of P(x,yj u; p,qf r f s, t) 0, is called a characteristic curve in

the integral surface J <=?* the projection of P onto the xy plane

is a characteristic projection for the Integral surfsee J*
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Under suitable hypotheses, by virtue of the hyperbolic condi-

tion (1*3), for any integral surfaoe Ji u»u(x, y) of V(x, yjujp,qj,

r,s,t) 0, equations (1*4) or (1*5) determine two one parameter

families of characteristic curves lying in the Integral surface J.

exactly one characteristic curve from eaoh family passes through

any given point (x~,

J

J» u (xQ»yQ )) °* tn# integral surface Ji and,

moreover, the corresponding two characteristic base curves do not

have a common tangent at (* #y ).

Along any curve, characteristic or otherwise, lying in the

Integral surfaoe J, the following strip, or band, conditions

(1.8)

(let)

must be satisfied.

The modification of Definition 2 and conditions (1.8),(1.J)

when the curve \ is expressed in non*parametric form is obvious*

Definition 3
,

f
x«x( Z )

S t-{ y*y(^) for V& [0,1] and whsre x,y,u,p,q e C»((0,1]).
u»uC r )

p"p( r )

q«q(r )

is called a first order strip <^=^ for each ZT & (0,1]

(1.8) u » pi qy

Suppose a particular integral surface J: u«u(a, y) of



•



FU#y* uj p,q; r,s,t)

trip S
1
. ihen if P :

hat a contact of first order with the
*«( t: )

y»y(^) for ZT^ [0,1] it a character-
u«u( Z )

istic curve in toe integral surfaee J, the atrip S le called a

characteristic first order strip for u* Integral eurfaoe J.

definition 4

s
2

,

L

x«x( r )

y*y(r)
u«u( r )

p»p(r )

q«q(er )

r«r(r )

s«s(r)
t«t(r )

for Zr & [0,1] and wuere x, y,u,p,q,r,s,t

*c»([o,i])

is called a second order strip <^=^ for each ^[0,1]

(1.8)

(I**)

If, moreover, equation (1*1) and conditions (1*3) end (1*5)

are satisfied for each "V e. [0,1], then S is called a character-

istic second order strip*

lote in Definition 4 that since all the arguments of the

functions involved in conditions (l.o) are known upon prescription

of the strip S2 , we may determine whether or not the projection

n f
x"x(T:)

of corresponding space curve \

l i\ y»y( Z ) for 6 £ [0,1] is a

Lu«u(-2r )

characteristic projection without reference to any particular

integral surface*
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Definitions 3 and 4 can be readily modified to deal with the

non-parametrie case* See, for example, :*. CIN^UINI-CIBRARIOf 13 1.

In Chapter 2 we consider the characteristic initial value

protlerr. for the equation

(1.10) s « f(x,yj uj p.q)

and its extension to the system of equations

(l.il) e^, • t^ixiji l|f**StJ Pi*
,##

»Pn' q
l'

, "** qn
)

(i*l,ks,*-»,n).

.'»e modify the customary hypothesis that f be Llpachitxian,

i.e. with respect to variables u* p and q, to require that f be

partially Lipcchitsian, I.e. with respect to variables p and q

only* i'.e obtain exietence of an Integral u over the same closed

domain as that obtained in the classical theory* 3ur Integral.

however, cannot be shown to be unique* This fset is demonstrated

by an example* By furtner example, we show that the bounds ob-

tained on the domain of existence are maximal bounds*

In Chapter 3 we apply the metho s of Chapter tt to tne Cauchy

problem for equation (1*10) and the extension to the system (1.11>*

The conclusions are similar to tnose obtained in Chapter I •

The arguments in Chapter 4 bwy% to establish the equivalence

(as defined t .erein) between the characteristic Initial value and

the Cauchy problems for the system (1*11) and the corresponding

problems for a particular system of first order partial differ-

ential equations of the form
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(Life) ^A ,x - C (1 « l,«s,"%B<n)
W=i ** * *

where the A ,C, are functions of x, f u , u »••••« • The system
Ik i 1 a n

(1*12) la termed a canonical hyperbolic system*

This equivalence has already been established by M. C1IKUIM1-

CIBRARI0{12]. Under the restriction that the first partial deriv-

atives of the functions A ,C be Llpschltslan with respect to all

their arguments, she obtains mr theorems on the existence and

uniqueness of the system of functions J. as the solution for the

canonical hyperbolic system (1«1S)« «e demonstrate that her rea-

soning establishing the equivalence does not depend upon the

uniqueness of the solutions for el titer system (1*11) or system

(1«1£)» Consequently , from our results In Chapters u and 3, we

are aole to remove the above Llpsohlts condition entirely and

obtain existence, but not uniqueness, for the solutions of the

canonical hyperbolic system for both characteristic and Cauchy

Initial value prescriptions*

Following the attack of ri. L^AYflO], In Chapter 5 we reduce

the equation

(1.1) F(x,y; u; p,qj r,s,t) »

to a s>st3Kj of so-called characteristic equations by means of a

transformation to the cnaraeteristic base curves as coordinates*

This a: stem is shown to contain a canonical hyperbolic system*





Ae treat the Cauchy problem. I.e. to find an integral surface wnioh

has a second order oontaot with a prescribed second order strip*

by virtue of a theorem by «• CI*\ -1 MI -CI HiAh10, stated In Chapter

4, Lfc.#Y»S work yields immediately the result that for P 6|*H

in a suitable region, there exists a unique solution u g c ,m in

a sufficiently email neighborhood of the initial curve* *e again

demonstrate that tae equivalence of trie problems is not dependent

upon uniqueness of their respective solutions; and, nence, by re-

quiring simply that F e. C* we obtain existence but not uniqueness*

In Chapter 6 we treat the characteristic initial value problem

for equation (1*1)* «e follow a modification of a* LcJtf'S method

introduced by «• CINh- IbHAR10[13]* Here equation (1.1; is

first transform d into the form

(1.13) s • f(x,yj uj p.q; r,t)*

A modified system of characteristic equations is obtained*

This system also contains a canonical hyperbolic system* The the-

orems of Chapter 2 appij and we obtain results similar to those ob-

tained in Chapter 5 for the Cauchy problem*

In chapter 7 we treat th^ -ily-rd boundary value problem for

the e ( on

(1«10) s - f(7, ; , ),

l*e* the problem wher* any integral mirf^o^ of (1*10) Is required to

pass through two epac* onrves Lmtralaf fro-n a point, with one of the

cnrvea being a characterise this surface and the other
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. ve having 11m havi -where a characteristic projection, W«

ahow that for equation (1*10) thai a la no lots in generality if we

mmmamm tha initial oata to be

(1.14) *,0) u(x,x) * 0.

p f continuous, bounded and Lipechitclan, we prove that tha ra

exists one an*: oil? one integral aurface oi (1.10) eatls: ying

(1.14) on a domain for *-hieh wa praacriba explicit bounds. Por f

contir , bounded and partialis Lipaoritxian, wa find, by argu-

ments analogous to thoaa used In Chapters 2 and 1* that there ex-

ists at leaat one laftagrml surface of (1.10) satisfying (1.14) on

a donain for which we again preaoribe the ease type of explicit

bounds.

Jn chapter 8 we conalder the characteristic initial val-;e prob-

lem for equation (1.10) from a now point of view. Here, in order

to extend the theorems of Chapter P, we introduce the concept of

upper and lower bounding functions for the solution (or solutions)

of the problr . Is idea was first used by 0. FE&ROM £l J\ to ob-

tain an existence proof for the problesi

(l.is) y* = f(*»y) , 7(\ ) - y

is quite inde indent of the classical proofs.

M. WU.VR
\_4~J

shows that j method has no direct analogs*

for a system

(1.16) ?[ m /.ix^r** Tn ) , JS * l,"*,n).

He is able, however, to «xt*nd the classical theorem for a

system (1.16) to obtain a tfaftONi which reduces to the direct ana-

oraw te caae whe s f. are aonotoni-

cally increasing functions of the arguments yi,
,,# »y •
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e*t -b to the theorems of Cha/ter 8 t are

similar to K » I Tor the system (1.16). Moreover,

we demonstrate by example that the PEBhON method has no direct

analogue for the characteristic initial value problem for equation

(1#K). ^e also £ive an example illustrating the theorem ob-

tained in thif charter* rlnally, we note that the Cauehy problem

for equation (1*10; and the Cauehy and characteristic initial

value problems for the system

(i-ii) »j « t±(*,yi ?1

i»**
#

»un J P
l
r*"*pn , ^r**^)
(i • l, •••,!!),

may also be treated by the rethods of this chapter*
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CHAFTSR II

The Characteristic Initial Val-ie Profclew for J
*y

f(x,y*uM ,u ).
7

For convenience of reference «t first stats the following

eorea, whose proof is based on the aethod of successive ap-

proxlstations. The proof of existence was given by s% ^ICARD [l],

while the proof of uniqueness aiy be found In 5. KaKCT Id p.

410.

Theorea !• 1) f(*,yiujp fq) « " -.V I

^

•a ^ ^ a

-b^p-i l^

-b
?
.q^b

g

2} f is Tlpeehitslan on if i.e. there exists

a positive constant I such that for

(x,y; ^f^^li (x,yM
g ;pgf

Q^e B,

r(x,y;u
1 ;p1 ,q 1

)-fCx,y;u
2 ;p £.,qg

)| ^ S ^-u^ + |P1-Pg l 4-^-q^

3) I /j/ « a, » /^ bgf 2 t^\* »b«« * • »* |f \ on D.

rhere exists one and only^one fune -Ion u(x,y) a C'Cr)

,

s >ch that for each^-.''•y) 6
I » where

I* « r* /-
[**?)& I the point (x,y; ;(*,y); uj(x t y), u

y
(x,y)) e P, and

*j—(*#yJ r ?(*»?! *i(*»y); «,(*»y)» u
y
(x f y)}, .>(x fo))» o,

u(0,y) r r each 'x,y) e *
e
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Hemarks. a) Suppose we prescribe u(x,0) r ;(x) f u(0,y) • V(y)

where U(x)eC»( £0,/^ }, V(y) £ CM TO,/ 7 ) and (0) r V(0).

Consider the function w(x,y) x : (*) + V(y) - (0). "learly,

w (x»y) s and w(x #0) - (*), w(o #y) * V(y) hence the function

- - w Bust satisfy v - f(x,yj v 4- w; v + w . %+•-)•
v(x f0) s v(0 fy) « 0, a problem of the type covered by Theorem 1.

b) Suppose f e. C, bounded and Lipschitsian In the
^ x ^ /r

domain 1

4

^ u < oo

-co < r ^ ©
-oo <c q <: oo

Then hypothesis 3) is immediately

satisfied.

1 lowing an approach used by !• MULLfSB ^3^ P* ^2, in

dealing with a system of first order ordinary differential equa-

tions , we are lad to this improvement of the above theorem:

Theorem la* 1)

2) • f is partially Lipschitsian on 2; i.e. there exists

a positive constant K such that for (x,y; a; Pi*^) e B»

3)

=^> There exists at least ona function u(x # y) ^ ),

u (*,y)e. ' ;, wh*»ra Rl-j
x such that for each (x,y)eR

ry (0^ y*c /„
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the point (x,y; u(x,r); u (x,y), u (x,y)) e. r f and u (x,y) *
^ eT ^

f(x,yj u(x,y); u (x,y) f u (x f y)), u(x,0) » 0, u(0,y) for
x 7

each (x,y) e -

Proof* According to WEIFF5TRASS • celebrated theorem U*3 P» 1147,

on polynomial approximation! to a continuous function, there exists

a sequence of polynomials, jg v7 (x,y;ujp,q), converging uniformly

to f(x,y; u; p,q) on ?• "*e designate this uniform convergence by

the notation f g x
7 ^5*£f on B.

We extend f and the polynomials g. , {\* »*£»*"*)* over

the domain 8 to the domain ' , defined in the remark b) above,

by the definition

f(x»yj J? P#q) « f(x,yj s?| p,q)

g (x,y; u| p,q) s g (x,y; uj p,q), (A- 1»*V)»
{".l) where

• a If •ai'j^i , p • - -b,^;*^.b. , q : q if -b^^ q <^b„.

~: i If a <c p • b. If b < p q r bg if b < q

u :«t If <«• p :•*. If P<^-b, q -b if !<«•*_.

cm this extended definition we see that \f j-^ M in £'• Since

S g yi ^?|Jr in B«, there exists a constant L>0 such that l£\|<I»

in 5 f and for all )\ » The funct one g, , (X • 1,P,***) are uni-

formly continuous in ir», moreover they possess bounded difference

quotients with re a pec t to the arguments u, p and q everywhere in B'<

Hence la b«, for each function g . there exists a constant Z v >

such that
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(2.2) [g^x.yi u
x

; P
1
#Q

1
) - g^U.yi u

p j Pgs\)[< Kx^al""
u
2WVP

!

Thus, by Theorem 1, to each g\ there corresponds one and only

one function u
x
(x,y) e. C*(*)s u, (*»y) e C(a) satisfying

a A#xy

fn w « SvU,yi Uv(x,y); u* „(*,y), uA _(x,y)),
1*3)1 A,xy A A A»* A,y

\iv (x,0) « 0, u.(0 #y) - for each (x,y) «f

We say express the characteristic initial value problem for

each u , in the form of an equivalent Integral equation

By differentiation,

(?.5) a (s»y) »\ fvC** h J u .(x,
fy

); *^ (m* 1| ), u^
y
(s, b )) db

.6) u
A>y

(x,y)
-J^8 X

( JsTI *x<£.7>l -\\,x<5 '?>' ^.y*/'*" dI

We now show that the sequences W \ C , ^u. £ , Su, I

are each uniforaly bounded and equicontinuous on F. ?or the se-

quence <^\V this r r»llov. ^ctly fMI the integral expression

(2.4), or, Ivan x, x^ x
g
e [0,/J and y, y^ T^L ^! #

+ L
'l i

7i"y2l ( A *e»s* #" )



<,
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The uniform bound«dness of fu, I and of Ju, I follow

directly from (2.5) and (8.6), respectively, for, given (x,y) e R,

(2.0) \u
x
<*»y>)< L /

2
» (As 1. £,•••>

We- beee the proof of the eo^jilcontimity of the function* of the

sequence \uv i upon the following two lestaas, the first of which

is due to T. H« 0R0H3ALL ]j&\ •

u l) r) e c(Co #/n)

(*.ll) 2) ^ Hyl^C (i«2(^) + a) «l| -»- B for y 6 [p#/J

where M, A end B are constants >0.

(••It) 3) ^ Z(y) -£ (A/ -r D e
M^ for y e E0 #/3 •

aV Given R^G, 3T> 0, there exist o , & poiltive constant

depending, upon jjl alone, and B, a positive Integer depending upon S

alone, s ich that whenever (x1# y) ^ ft* (x^,y) es E, |
r •» 1 ^ £

and X >•*
j

where K is the partial Linachit* constant for f(x,y| a| p,q).

Assune, for the moment, the validity of these two 1annas. ~ach

of the functions u, is certainly uniformly continuous on R| henee,
A»X

If we let Z(y) s |u^ x (x
?
,y)-u^

x ^*l ,7M
for any P*rtlcular X>H,
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we have iwseediately that for \x -* \<<b $

Suppose (x 7) e * (*„»T ) e F. # then certairly (*
r
»y ) e E

.15) l*,^^,^^ ^VV^.x'W^
+ l%«*Vl^A^^^l ' <Ari.r.— ).

By (P.fj) we have that

(2.16) l^yvV^i/VVl * L
lVT

l
l '

(A: l»VM )•

Inequalltiea (2.14)

,

} And (£»16) yi»13 fco»ediately the

equ! continuity on R of the function* of the sequence f u \ \ J

for, riven G. > 0, wo first choose M> and £>o ouch that

(P.17) /l + S <-jrr
and l*t & and V bo the corresponding constants given by Lema 2«

By the ora continuity on R of oaoh of the ion* u. ,

thoro ev<*t* a positive constant & ,_> depending on 6 alone, such

that

|^-«
fl<£ej

and lF1 -Ft|<T^ i
=^

Setting £> Q r ain(£>, £ Rf
^ ) wo obtain



('<
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(2.19) |u
A ^VV^A.x^l'Vl^^ , for ^ s 1,2,--.,K,S+1,-"

>of of Lemma li Let Z(y) r •' * w(y) # without loBs^ior wo may

always ohooee w(y) r o"'
iy

• Z(y). w(y) e C( tO,/J ) and hence at-

tain* a maximum thereon. Let w occur at y * y,

,

max * *1* then

^ o*7! w -cT
yi

(*I o
MV

l w(\|)+A)dh4 B
max ^ L C

Thua O^w ^Ay, + B^A/+B and hence
max 1

^ Z(y) ^ (A/ + B) •*' for y €. [<),/] .

Proof of Lemwa Ei

U
A,z

(Vy)-U
A.x

(x
l'

7) = I WVV •a(W>

•A.y'Vt'U**

(8.80) "iJt^V^ W^' 'a
A,x (V^

•A,r
(Vln

U
A,y<*2^>)$#



'<



Id

. 20)
(Continued)

- f(vV •\<«i
u
A.y

(VV

wvp

U
A.y

(V*l 5

V 5

•x+<
arV*

in

VV SuA.*M }

J *\

HMtfgfl \^St on *, gl?en £>0 , there exUts a poait'Te

integer U, spending upon £ alone, s;c'u that for A>S#

(!,- ?1) ^DVvV tt
>
(v^ 1 °>,x (v^» •a.t^VVJ

"

3y hypothesis 2)',
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<ConMiu«d> -f(x
E.V

v
X

l*AU U
X.x

(xl»^' u
A.y

(VV^ *V

I nee f la uniformly continuous on l>g the function* of the

sequence n u \c *** ©qui continuous on R, and [uv Yf*o*V "

u (x1#V|)|^ L \x -x I , {\- !,??,•••)» It follows that riven jx>

there exists a poaltlve conatant £> , depending upon UL alone, auoh

that for |x
g

- x^\ < £ ,

(Mi) \gJYtVfc1 •j^1 '
tt

>.*
(VV' u

X,y
(V i

l

))

- r{ \'\'> WV' •MM ,i Wl'V^ a1^'

Therefore, from (2.21), (J?.°£) and (?»23), by virtue of (2.20)

we obtain that for \>H an 5
, lx - x\<^c> ,

thua verifying !>raraa S.

Tho proof of the equicontinuity of the funcfclona of the ee-

quenee lu, I follows preclaely the aame atepa aa that for the

••que noe i u. ")

I *•*<,

We now Invoke the well-known theorem of C. AP7.*!LA Jj5J p. 1144:

K^lven a set P of function* f defined and continuous

on the closed bounded set A, then the necessary and sufficient

conditiona that each sequence of functions contained In f possesses



c
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a subsequence uniformly convergent on A are that V be uniformly

bounded and equicontinuous*

By Theorem 1, there exists a unique triple (u. j u. j u v )

a A»x A,y

corresponding to g v for each \ • :>ince any subsequence of a

uniformly eonver£cnt aequer.ee is likewise uniformly conv*r^i t;

and, since any subsequence of a unlforaly bounded and e qui continuous

sequence is likewise uniformly bounded and equioontinuousf there

exists a subsequence £g *1 of the sequence fgvl «uch that the

corresponding sequences

where u, v, w fcC(H). This results from the following successive

extractions of subsequences

t

fuv7 is equicontinuous and uniformly bounded on F, hence

th*re exists a subsequence j u v s of > u \ s uniformly convergent

on R. 5u i is equicontinuous and uniformly bounded on R, hence
L \§xj

c © ~) f i "7

there exists a subsequence
j u, \ °^ } u i x \ unlforaly converg-

ent on • a \ Uv i is equicontinuous and unitorsly bounded on

hence there exists a subsequence j vl i of < u? I uniformly

convergent on R. But, by the one-to-one correspondence mentioned

above, 5 u* I is a subsequence of \ vr L while Uv ( is a

subsequence of jttvi Thus >u* v and £ u*. I are each uni-

formly convergent on Ht

Writing, with the notation u - u =- u z 0,
0,x 0,y
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(2.85) u v
- 2: (u. - u, ,),u »IE(u, -u* _ ) #

> k«l * k*x A** k«l k»* *•*•*

we see that the conditions for differentiation urrftr the suwsation

si^n for Infinite eeriee are satisfied by (P. 24) end the fast that

u*£ 9*W$ (X« !,£,•••)• Hence

(2.26) v(x,y) »u
x
(x,y), w(x,r) « u (x f y) for (x,y) ^ R

*e show that the function u so determined satisfies the

integral equation equivalent to the original characteristic initial

al'ie problem, i.e.

(ft.17) n{x r)
«(J*

dfcC* f<g ,tjj •{£ . lo_), n^^), u (g •^))dV^

for (x,y) e R.

For any X , by (2.4),

(P.2S) \u(x,y) -^*«£
^

7
f(g fy u(g #^)t V^'V' V 5 ^ }) ^

^\j(x,y) - u*(x,y)|4^
Xdg^ y

[ f ( £ ,^j u(g^)j u^{£ # )j).

Since £g^2 ^£ f on i% [u\? ^|£ a on i. - 1 /en e >0 and

(t,t) ^ : , there exists a positive Integer K- t depending upon ^

alone, such that for A > R. ,
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| .29) |u(x,r) -u*(x,y)\«££ ,

Moreover, sinoe f la uniformly continuous In B» while < u* I 9

<U* < * 7 u \ yi oonvei .dformly on R to u, u * u respec-

tively, there exist* a positive integer N , depending on G alone,

such that for X > N
2 ,

Introducing (2.^) ; (MO) ana (P.31) into (T,S>8), we obtain

that for X > max (K , N )
1 P

(Mi) luU,y) -f*d£ P Tf(g ^; u( £ ,^) ; u^( g ,£), U
y
(?,^))

But £ la arbitrary, hence (2.T7) is verified for each (x,y)eR

We Bust verify the one additional fact that for each (x,y)€R,

(x,y; u(y,y); u (x,y), u (x,y))e B, instead of Just belon-lng to B»«





By differentiation :*ror* (". r,?) >

fr
. 3) a (x,y) «C r<x # V|j u(x f Vp; ^(x,^), ujx.lj)) dl^

(2.34) u (x,y) «t*f<£ ,yi v.(g ,y)j u ( £ ,y), u (f.y)) d£ .

Jo * y

, fror. the extended definition of f f (?•!), end hypoth-

esis 2),

(**•) \u(*,y)\ ^ S*4% ^ \ff| ,\l *t| ^), ^(g ,^), u
y

( £.^)>ld^

* ^/^ *

(?.36) \u
3f

(x,y)\<
r
C y |f(x^| »{S#lj)j u (ftft^g u

y
(x,lj))|dfy

(2.37} |u
y
(x fy)|^f

X
IrC^.TI »C£#r)J *

x <5 p?)* «
y

( g^T))^!

thus completing the proof of Theoren la.

Ferneries a) and b) to Theorem 1 apply ae well to theorem la*

By the following example we *how that the integral surface*

for Theorem la are not necessarily unique

t

• 1 aider the characteristic Initial value problem

j

r,0) « u(O.y) • 0*(2.39) u »
|
u |* |

SJW ' '

*(*»yj «1 P»q) »
[
u |* i» continuous for all u bat fails to

satisfy a Mpschits condition on u at s 0. Theorem la ap^Usa





P4

to insure existence of a solution In a sufficiently small neifrhbor-

hood of the origin. However, at least two solutions, valid for all

(x,y) In the finite r>iane, are directly available. ?lrat, u •

obviously satisfies. Secorvi, if we seek a solution u satisfying

1) u ^0,

11) there exist functions X. T such that
u(x,y) - X(x) • Y(y);

that is, by the method of separation of variables, we obtain Imme-

diately the solution u(*,y) »Li2 y8 .

16

For p\:rpoB*a o* Illustrating the various situations that mlfht

occur, we rive the following*

le 2* consider the characteristic Initial value problem.

xy

Here f(x,y; a| p.q) t
| t

is continuous for all p but falls to

aatirfy a Lipschitx condition on p at p • U. Since p(x,0) r ux (x,Q)

s neither Theorem 1 nor Theorem la will insure existence of a

solution over any domain including a portion of the x axis* Such

solutions do exist, however* One is u • 0. Under the assumption

p r u > we obtain another, for now

p - p* or

-| :2p« s y +or

Since p(x,0) s 0, c. z and





for
u (x,y) - -

2o

I
2*- for

?5

p
P s ux * 2-1 or. Integrating,

4

u s ^ + V
Since u(0,y) - 0, c

g
: 0; and hence

u s ^X-

is a aeoond solution valid throughout the finite plane*

In Example 2 consider the function

x ^

x ^ .

u is continuous for all (x,y) and satisfies the Initial value
o

problem (2.29) everywhere except along the y axis, where for y fi 0,

u x (°#y) does not exist. Roughly speaking, u is a continuous

integral surface of problem (P.39) having a Jump in the normal

first derivative across a characteristic.

For equations meeting the continuity, boundedness and partial

Llpsehltr requirements of Theorem la we oannot match integral sur-

faces in the above fashion to obtain first derivative Jumps across

characteristics. This follows from the fact that if we prescribe

u(a,y) s V(y) €. C f
( t0»/o3 ) along the characteristic x*a,

a e 110,/jl i then

(2.40) f

p

y
(a,y) = f(a,y; v(y)j p(a,y), v»(y))

p(a,0) =

represents a first order ordinary differential equation for the
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Known function p r u under a one point boundary condition. The

condit* ons that f bo co timom, bounded end partially Lipochltr-

lan ar* sufficient to Insure the existence of a unique determina-

tion of ux (a,y) for y e. Ho»/g3 • tote that In Example 2 the func-

tion f was continuous only and hence the determination of u from

the above ordinary differential equation was not unique, thus

admitting the possibility of a jump in u • The conditions for

the determination of u along a characteristic y • const* are

similar.

e above rersarks serve to permit the extension of the domain

of existence of the integral surfaces of Theorems 1 and la from

f ~A ~ * ^ A
R to F*tl • The arguments for the existence may

be ^ade applicable to other quadrants than the first by mere co-

ordinate reflections* Moreover the integrals obtained in the

separate quadrants oust hav- first order contacts with each other

along the coordinate axes by the above reasoning fro 1 ordinary

differential equation theory* Hence we may obtain existence and
replacing (' -/ ^ x ^ /

uniqueness oyer the domain R by/B by B i v 1

-a ^ u ^ a

-b^ p^b
x

-bg +. q ^ b

in Theorem If and we obtain s'.aply existenee over H* by replacing

B by B* In Theorem la*

H the classical existence theorem for the ordinary differen-

tial equation £l - f(x,y), .1th y(0) = 0, the conditions that f
dr
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^ x ^. a max
9 with K r/lfl o&C, were shown to

-b ^ y ^ b
be sufficient to insure existence of st least one integral curve

T r y(*) for * €= L *- *! with ^ ^ min(aJi). 11x1 s bound,

^4 mln(a #~) # was shown by A* WIOTHEfc \\$\ to be a maximal bound

in a certain sense* We apply his method to Theorem la in the

proof of the following

t

Theorem ?
If, in Theorem la. we replace B by %*%\ l

-oo^n ^ cd

-b^p^bj

and require that f be bounded thereon, then hypothesis 3) in that

theorem reduces to

3). tX 4 »!»</{. Je,, g9 4 Bin (/;, £ ),

where U s max |f| on §•« Moreover, the bounds estatlished by 3) #

are maximal ssj nda in a sense to be explained below*

Proof*

The condition U /_ fo 4. a of hypothesis 3) is immediately

satisfied since a approaches + 00 • The conditions 8 /j ^ b8 »

M / ^ b. may be rewritten as in 3) and ar<? now the only restric-

tions on fy and /„•





If /» ^ ^E. »(/ ^.JL)» then the conclusion is Immediate.
* M 2 M

Por, we may take f(*,yj uj p,q) x h(x), (g(y)), which function la

not even defined for * > /, s /, , (7 > /,. « /).
1 "

Suppose / > 1 • Jtien we consider the sequence of problems

t

(2.41) uw g (2^ - u )

l/a+1
, u(*,0) s u(o,y) . t (m«l, §,• •• ).

Setting p s n , (ft»4l) beeoaes
I

*w (*,y)
- (S

1^ - pf*,*)
1'*"*1

. p(*»0) r O.

Integrating this ordinary differential equation for p aa a

Amotion of j, we obtain

But, since p a u^ and u(0 #y) » we may Integrate again

to obtain

.<«.,1 . « {
•* :[J^ - „]

«Va"j

where

1

IS) c . !il 2^ „
a

The line y » C is a branch line of the solution 1. Under

the ev ->n /' > 1 , the desired statement is that 1 Is a
2 T*

maximal uound on / . i.e., for each £>Q, there exists a function

f(XtT; ; * J# depending on e and satisfying hypotheses 1), ?)

and 5) on !|% such that an integral u(x f y) of the problem corre-

sponding to f has a singularity for some y g. Q , +€. )•





Defining

f (x.y; «l p#q) s (2 ' - p) for -s ^ p ^ ? ,

(m « l#tf### )i we obtain

b^ . 2
1/R+1

f U z (2
1/* 4- 21/m+1 )

1/«+l, and, since

(2
1/a + pVa+l) > ?, (a a x,?,...},

11» 2l» r 1 - .

Itoreover, by (P. 43),

11» C r 1
»-»co

Hence, given <=>0 f there exists a positive integer If, depending

on e alone, snch that n > H =^-

b
Conar ly _i is a maximal bound on / •

To determine that the ,ion /, ^ Bin {/, > 2 ) i» also
1 l r

a s»xi~al bound we consider the sequence of problems.

(r.44) u z (2
1/C

- ^)
l/m+1

» u(x.O) . •<©,*), (a . 1,:V).

and follow the ease line of reasoning as before. Thus Theorem 2

is verified.

- close parallelism Rtween o*:r con ins and the class-

ical theorems "or firs er ordinary differential equations
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(See c
. ^AMKF [jQ ) leads one to smpeet that an existence theorem

might be proved wherein mere continuity of the function f was de-

manded. The analogue to the Caucby polygon method le the attack

suggested by the parallelism, and It leads to an exlstenoe theoi

for the characteristics Initial value problem;

(2.45) u z f(x,yf u) , u(jc,0) • u(0,y) sj 0.

We do not give the proof here; first, beoause the theorem

is a special c&se of Theorem la; and, second, beeav.se the steps

in the proof are practically identical vrith those of the Cauchr

polygon method for ordinary differential equations.

When f • f(x,y; a] p,q) and f is merely continuous this

attack involves difficulties which we have not been able to re-

solve. We sketch the method to indloate the source of trouble

i

In a neighborhood of the oririn a partition "TT by

characterietics is specified where the

subrecions A in the first quadrant

are defined as

y, k

H
\ A„

r\oo riio
ts

o p A
ij' f*i^

x< x
l 1

y^ 7 < y
J 1

(i, 3-0,1, «•••)

We formulate the approximate Integral surface u

sponding to the partition IT as follows;

corre-

,*6)

bfl re

ryu
ti^

x^) z
\ Ag,^) dh
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(•^.47) p^ (x.y) z tim^t y^i u^ (%
i
,j )i u ^ (x^y^),

for (x,y) € Aj..

The principal 11: 5y lies in the feet that the derivatives

( *« 48) u
TTx ^ V*'^ d

^
and

(2.40) Uiry =^^(1,7) df
Jo

are 0' scontlmom across the partition lines x constant and

y * constant, respectively, thus preventing the direet application

of ATrCLA'a theorem on eq^i continuous functions when we consider

the sequence of approximate integral surfaces formed by partition

refinement.

ation of (2.45) appears to be mora amenable than the

sore fen-ral equation involving, the first derivatives p and q.

£ic] p» 61??, by demanding only that f(x,y;u) be continu-

o-^s and TApschitsian with r^apeet to u, has proved the existence

of a unique integral of u « f(x,yju) satisfying Dlrichlet cor.-
xy

ditions, i.e. the value of u prescribed on a closed contour* This

res It, »hile reaarkable, is not contradictory since a it shown to

have a discontinuity of the second type at one point of the

boundary.

Vc As this chapter with the statement of the extension

of Theorems 1 and la to a systesi of equations
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(2.50) •
1

s fjU.yi *V'^n J P1 »
#-# Pn»q1 #

,, *^
n )t(i«lf^.

#,# #^

satisfylnr the Initial conditions

(2.51) UjU.O) a u
1
(0,y) • , (1«1,?,« • *»n).

Theorem 3» below, is a natural extension of Theorem 1. In

principle, it was first obtained by 0» KICCOt-TTI \_1\\ p«7« Hia

statement, however , is not explicit ato-.it the bounds on the domain

of existence. Moreover, to prove :niq-.enesa he requires the f^ to

be of class ( ' • It obtain the improved statement, Theorem 5, by

mods fTin; the arguments of • -AUK.T, \_Z\l p» 40? and p. 403 to apply

them to the system (?»50).

Theorem 3) _
2 f

^ x ^ /,

1 3 5 J \ ^ y <- /,,

-a ^= u, ^ a

"^1^ Pi^^l

t) The f are tipsohltBian on B"j i.e. there exists a posit

i

constant K s- ch that for (x,yj « <J pi, <| .) <s

(x,yj u^j p* ,,q' J - ", and 1 « 1,2V,

3) /x ff< a, M fx 4* b
2 , s^ /? ^ b

x
where

[l*|V' |fn l"^ on »«- m tax

lotation: (x, | *; Pj.Qj) « (x,y| i^,--. , >

n Jplf
"» ,pn ,

^•"•••«n>-
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^ 4) There exlata one anci only one sat of functlona

[^••%» 1 , u^U.y) & C»' ) f u%xy (x,y) e C(K), (J»l,-",n),

where Hi^O ^ x ^/j auch that for each (x t y) <£. H tha point

(s#7f*f(*»7)l u^
x
(x # y), •*_(*•?)) ^ B", and

«
f xJ^y) m f

1
?3t »yj«j( x #y>) *jtBf«»y)a

u
j, y

(y »y^»

u
1
(x #0) - UjCC^y) . 0, (is lv,n), Tor aach (x,y) e R.

By relaxing hypothesis £) we obtain tha improved theorem

below; which etanda In the same relation to Theorem 3 that

Theorem la doea to ?hcorea 1*

Theorem lai

1)

2)' The £ are partially Lipschltslaji on B M
; I.e. there

exista a poaltive eonatant E auch that for (x,y; u.; pl
f
ql) e-

J 3 j

(*,y;u,;p2 .,q
2

.) e ?•% and 1 « 1, ;v, n,

ffUttTf uj; pi
,
qi,) - f^^yj » | p^, q

3)

There amieta at leaat one aet of functions $*!.,••• ,u ?

u,(x,y) & • ), u, vv (x,y) e , (J«l,* # * ,n), where
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1
0<x< f

Ri -j
L

9 such that tor each (x,y) e. B the point

(x,y: a.(s#v)l «j #J
^»7)# u

!f y
(x»y^ e •"• ana

u
.* < x »y) * M*»y* *,(*»y)j <*, <*>y)» * 5 T (*#y>)#i,xy » J »* »J

u (x,0) - ^(0,7) 8 0, {i r 1, •••**), for each (x,y) e

The proof of ^heorere 5* is essentially a atep by st*p repe-

t5or 'or Thr la. _T theorem telle u»

that for each positive Inter er i there exists a sequeroe of

lynomlala [ £lX $ J P***^* < A * **••***)• converg-

ing uniformly on B" to f (x # yj *,l P. #<**)* le extend the g. ,

•ad the f^ as before and obtain that there exist positive con-

stants Lj, such that for each i ls«xl ^ T
*i

on **• extended, and

for all X • We let L s wax 5 !*****• L ? and proceed ae be-

fore, aalnj Theorem 3 in place of Theorem 1 to obtain the Integral

u,\ associated with each g, \

«e note only one aj significant difference in

argument s. In place of Inequality (2*13) of Learn* £ we now have

the inequalities

l

uiX,x( x2»y) - uiX,x(xi,y)|

-C^^^^^^x.xC-i,!!)!]^
(

i

= 1, •••,:) .

Summing thnse, and letting

1 R1 ^ « A #- l

we obtain





^7.(y) ^ rjaC
7
Z(^) dVj + n<yA+5)

to which Lemma 1 applies* Thus the equicontinui ty of each of the

sequences \u . i , (1 - l, ,,#
t 4i) is assured.

Lanark* a) and b) to Theorems 1 and la apply , with obvious

modifications, to Theorems 3 and Moreover, as before, we may

extend the Romaic of existence of the integral surfaces of

Theorems 3 and 3a from R to R'

-t9 *« l
t

Tne set of functions ?«.,•••, -x ? representing the solution

to the problea of Theorem 3a cannot be shown to be unique. This

Is nade evident by extending Example 1 to the system

U
l xy *W u

l
{ **0} r v°* y) * °

U
2 xv

5 ° * % ( **0) ~ •e/ **! * °

1 I

m_ __ r , : ,0) s u„(0,y) zn,xy n

for *hlch 1^=0 (1 r ,***.n)

while a, = or u. • 1. r as at least two sets of solu-

tions are possible for this system which satisfies the hypotheses

of Theorem 3a

•
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CHAPTER III

The Cauchy Problem for u « f(xj; uj a ,u j,
xy x y

The development of this chapter closely parallels that of

Chapter II. Consequently, the notation will be abridged, in

articular with respect to the arguments of functions; and the

proofs will be merely outlined to show minor variations from the

statement* in Chapter 2.

For reference, we state the following theorem proved first

for systems of equations by 0: NICCOLETTI [14] p. 7. Our state-

sent may be easily Inferred from that of £• KAIKE [2] p. 403 and

p. 410, by a slight modi floatIon of hie proof*

Theorem 4

•"X

l) f(*»y***p#q) e c(b),
^ x ^ /,

il

y^ /.,

-a ^ u ^ a

-bj^p ^ »i

U-b8^^^ b
2

2) f is Lipschitsian on b, (as

defined in Theorem !)•

5) M /x /g ^ a, ft tx < \» * /2 < »
x
# where M •

- x -. fx

if| onl

4) T: where ^ (x) e. CMIO./J), C(? (x) j*

for x e [0,/^J and tf (0) - /2 ,
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^ I) There exists one and only one function u(x,y) e |

u_ (x fy) e. C(R), where ht -<
# such that for each

7
I • * T^ /g

(**y) & R f the point (x,yj tt(x,y)j u
x
(x,y), u (x,y)) e ft, and

u < x »y) s *(*»yi u(*#y)i « (*»y)» * (*»y))#
xy x y

»(x, l#(x)) s , (?(»)) z u (x,(f<x)) -
y

fop each (x,y) & R»

IWlriB c) Suppose we prescribe u(x,(^(x)) »U(x),

i^U^d)) r P(x), u
y
(x, (^(x)) = Q(x) where 'J(x) e ZHl*.t{i >

while P(r), Q(x) e c( L0»/v3 )• 0°' prescription must satisfy

the strip condition 8 • « P -t- • ip* for each x <s L°»A~[ •

Consider the function w(y,y) - -J(y) + (y - ^(x)) ^(x). Clearly,

ww - Q»(x) while w (x f
^(r)) = a(x), v(x, <?(*)) m P(x), and

^ x

w (x f C(?(x)) * ^(x)» Henoe the function v s u - w oust satisfy
sT

v s *•(») + f(x,y; v + wj w + w , v -h w ), with v(x, <^(x))
x\ x y J

z v (x,lf(x)) r vv{*»^( x )) s t a problem of the type covered* y

by Theorem 4*

d) Hypothesis 4) of Theorem 4 Is more restrictive than

it need be. At isolated points o r ^ we may have a horizontal or

ertioal tangent, provided that ~f does not cross the same char-

acter! stlo more than once. ?or, under these conditions the in-

verse function if to If will exist and be continuous for all

Oar improvement of this theorem is as follows*
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Theorem 4a

1)

{?) f is partially Lipschitfian on P, (as defined in Theorem

la).

3)

5) There exists at least one function u(x fy) e v (R) i

u (*,y) « C(K), where Kl \
A
, such that for each

(x,y) e 1 , the point (x,yj u(x,y); u (x,y), u <x,y))^ '•, and
* y

u (x,y) r f(x,y; u(x,y){ u
x
(x,y), u (x,y)) #

u(x # (?<*)) 8 l(l,(i?(l)) = u (x,Q7(x)) «0
* y

for each (* # y) s R.

Outline of proof* _ .

C x a *f(y)
The path » aay also he expressed as T| 1

LO^y^/ where

^ (y) £ CM D>,/
pl ), l[/My> ^ -or y e frs/g] - ty

l * ^a

Inverse o ^

Va nay express the problem as the Integral equation

1)

(3.3) Uyd.y) s\ ^ *<£ ,y| ;

x ,u
y
)d£ .





39

By ffEIS IS* theorem, there exists a sequence of poly-

nomials jg i
unyf. f on R# ^ extend the domain of definition

of f and the polynomials g, over B to ' by definition (8.1).

We obtain again the constant L>0 such that | g vj <^ L in B'

for all X» Moreover, for each g\ the Lipsohit* condition

(?.2) is satlsfle Thus, by Theorem 4, for each X there exists

a unique solution u \ to the problem

(3.4)4 A ,xy A * A ,x A ,y

L«^(»# ty(m)) s u >

x
(x,^(i)) s u (x, (p(x)) s 0.

areThat the sequences } , / , < u v ~? , W \ y^

Iformly bounded on R, and that the sequence \ u , ? is equl-

continuous on R is lirimediately evident from the equivalent inte-

gral expressions

(3.6) m
x
^C*.y) ^^ (B, ^ ,u

x
I.

A
,,u

x^ .

(3.7) •x.y
<m',r}

*r^(y)*X^»
f, ', X'

mA^m
X.yM5 *

We now establish the equi continuity of > u »

~£ and of \ u » 7 •

This done, the same arguments as those for the proof of Theorem

la will serve to obtain a subsequenee 2 u \*
{ of

)
u

\ £ which

converges uniformly to the solution •
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There Is no loss in generality in restricting ourselves at this

point to the consideration of those points (x,y) <s R i\
x

•

r we shall see that the ar.-^iaents developed below will apply

f ^ x ^ /
as well for (x,y) e R : *) * after a simple coordinate

1
L O^y^(x)

translation and rotation. Thus if we insure existence of a solu-

tion on i! , existence on H is simultaneously verified* Moreover,

the Cauchy initial data Insure that such Integral surfaces have

a first order contact along T and hence define an integral sur-

face throughout all of R s R, + ~ •

Oiven points (x ,y ) e F
rt #

(x, ,y, ) £. R , it is always possible
2 2 2 11 2

to label these points in such a way that (x ,y ) e. £ • This being

done, we have that

(3.3) l» x#Jt(V»fJ " u
X.«

(X
l* yl

>
l
* M7S

_ yll '

< 3 - 9
' l"\.r (VV • •>.?<VVl * L 1*2 " x

il
*

assvminjr, without loss, that y ^ Cp (x
2 ) >Q7 (x ) , we have that

< 3 .10) « X ^V'>-A^-1^ J^|«4f
, A CM l

a -X.x-'A.t'

We operate on the first Integral on the ri/?ht hand side of

(3.10) in the Banner demonstrated in equation (2.?0). We obtain a

formula identical with (2.20) except that here the lower limit

of Integration is y s [( (x
g ) instead of y » 0. For brevity, we

omit the formula.
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Since

And alnee (Jj (x) is uniformly contimo :.s on \_0»A~( # bT tn* aama

reasoning as befara wa arrlra at tha alight modification to

from which, by Lemma 1,

f1 .

The equieontinulty of |u . f la thus assured*

The argument for the equieontinulty of X u v L is similar,

hence Theorem 4a obtains*

Remarks c) and d) to Theorem 4 apply aa well to Theorem 4a*

its obviously, if f is continuous, bounded and Llpsehltzlan

(or partial! schitrian) on the infinite cylinder with cross

section R, then hypothesis 3) of Theorem 4 (or 4a) is immediately

satisfied* In fact, this was the form of Theorem 4 whleh vaa

itil!*e<1 in the proof of Theorem 4a*

As previously mentioned, the extension of Theorem 4 to systems

of equations was first obtained. In principle, by 0. K "TTI

!_l4j[ • He was not, however, explicit abvmt the domain of exist-

ence of the solution. Th* following statement may be derived





4P

from the same arguments of F. KaXKK \jf\ p* 405 and p. 410 used

as the basis for Theorem 4*

Theorem 5 »

1) f
t
(ft,T| u

x
, •••, u

fi
; p^ •••, pn> qlf •••, o^) s C(B")

r o ^ x < /,
j H

x

-b^ pt < b
x

(1 8 1, •**, n).

|"V^I ^ b
I

2) The f. are Lipsehitxian on h n
f (as defined in Theorem 3).

3) K /x / < a, * lx <c b
?

, M /g
<b

x
. where

¥ s max [jf^ , ••*, jfj^ on »••

C0<x</,
4) T »A

X *here if (x) e C'(L0,/J), ty'Cx) /
17 « <P (*)

for x^L0,/j3 and If (0) . /2# yif^ - 0.

5) There exists one and only one set of functions \ u,, ### ,u 1,

B
1
(sty) e >0 )# u

t
^(x.y) e C(R), (i - !,•••,n), where

fo^x^A
4 , such that for each (x # y) e I the point
[0^y^/

s

,71 u.(x,y); u.
x
(x,y), u^

y
(x,y))e H, and

u
i #xy

( *' y) s f
i

( *» * ^("srtf « x (*»y)» u
j T (**y))»

u
1
(x, (^(x)) s »

t x
(x,l^(xj) 8 u

i,y
(x » V<*>) * °»

(1 = !»***»), for eaeh (*,y) s '•

.
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We may extend the arguments In the proof of Theorem 4a to apply

to system* of equations. The extension Is practically Identical

with the previous extension of Theorem la to Theorem 3a, except

that now Theorem 5 Is used to establish existence >nd uniqueness

of the solutions of the system

under the Cauohy initial conditions. 3e obtain the following

theorem:

Theorem 5a

1)

2) the f^ are partially Lipschitslan on B", (as defined in

Theorem 5a ).

8)

4)

z=5>5)' There exists at least one set of functions \ u. ,••• »*

\i
i
(r,j) G C'(K) # «i

1 ^xy
{y fy) <s C(h), (i » lV*«»ft)« where

C < x ^ /,
R:i f such that for each (x,y) eR the point
C0^y^/2

ui,xy (x»^ s fi(*#Ti *j(«*y)i ".
>7:
^#y)» tM#

T
'*>y))#

u^'x, 10 (x)) « u
t
^(x f (p(x)) * u

i #y
* x » V **)) • °»

(1 s I,*", n), for each (x,y) e ?.•
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ark c), with obvlois rodl float Ion* and Remark d) to Tneore«

4 apply aa wall aa to Theorema 5 and 5a* Moreover, In Theorem 5

(or 5a) we may eliminate hypotheala 3) by demanding that tha f

be continuoja, bounded and Lipaehitsian (or partially Llpaehltslan)

on tha Infinite cylinder with croaa aectlon };.





CHAPTitf I?

Kxlatence Theorems for Canonical
Hyperbolic First Order Systems

In this chapter, and in Chapters & and 6 as wall, we shall not

give explicit doxoaina of definition for the functions involved in

the differential equations* Aa a consequence, existence will be

shown "Ik the small" only* we do this because our method of attack

will not yield any improvement upon the domains of existence, no

natter how large the domains of definition are taken, provided the

other hypotheses are not weakened* we shall elaborate on this

peculiarity in the course of the exposition*

Theorems 6 and 7 below ware given by II* ClaVJiNI-CIfcftARIO U2]

p* 180 in the form stated* A statement under somewhat weaker

hypotheses, but based on the sane proof, may be found in H*

COORAKT-D* HILB&HT [17] p. 324. tfe examine the proof to show that

the arguments therein are independent of the uniqueness of the

solutions to the problems involved* As s consequence, our re-

sults in Chapters 2 and 5 apply and we arrive at the improved

statements given by Theorems 6a and 7a, where hypotnesie 2) of

Theorems 6 and 7 is dropped altogether and the corresponding con-

clusions are altered to read "at least one".

Common hypothesis 1) *«e shall suppose the functions a Q

(i,k«l, •'*,n), of arguments x,y,u., ••,u , to be continuously dif-

ferentiate with bounded derivatives in a certain domain D* Pur-





ther, we suppose the determinant

(4.1) Kk| *° ** .

Under these assumptions, the system

(4.2) J A
1
(x,y) » 2 *

lk
u
lt^ jt

(x,y)-c
i

0, (i«l,--»,m<:n)

n
B^^y) « ^> a, ak (x# y) -c, m 0, (i«*+l,' -^n)

tf3K ^ ** ' eT ,ea

is called a canonical hyperbolic first order system*

frneo^om 6. (Characteristic initial value problem.)

1)

2) All first derivatives of the Tunc t ions a k#««# (i*k«l# •••,!$

satisfy a Llpschl-E condition with respect to arguments Ui»***» uQ

in D.

3) U^x) c C'ftO,^])

^(y)^ C«(tO,/
2
J)

^(0) » v
x
(o)

( i«l> • • • , n)

Moreover, for each x e [0,/^], the point (x,0;U.(x)) g. D

and
n

l4.3) a
ik (x,0i

Uj(x))U» k (x) - c
l
(x # 0|U

j
(x)) » 0,

(!«!,•••,» <l nil

aud, for each y e [0,/ ], the point (O.yj V,(y)) 6= D and
n J

(4.4) -£ a
lk

(0,yiV
J
(y))V«

k(y)
. c^O.y* V^y)) * 0,

<i«m*l,"- f n).

3. Recti! the notation: (x# yju*(x)) » (x,y?J ^(x), •••,Du(x)
)'
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-^^> 4) There exlata one and only one a-st of function!

W'*"' ,U
n\ >V X,y) * ^ } ' u

i,*y * C(r
^

} '
(1 * *»••••»)•

wh«re I u t[°^*^^A , with <^- ^ ^ 1 *nd b sufficiently

lo<y^/
p

small, such that the tet of functions satisfies the system (4.?)

for each (x,y) e. Mb and satisfies the c ions

u,(x,0).U.U) for xefo, /.""[ ")

1 1 V (1 * l,"',n).
u^O.y) s v

1
<y) for y e £0* f2J )

Theorem 6a .

1)

3)

^^4)' Th#re exists at least one set of functions, etc. (as in

Theorem 6).

orem 7» (Cauehy problem.)

1)

?) (as in Theorem 0.)

5) Tl) for X e[o f ll, x<r) and y(r) € C»(Lo,lI)
( y » y(r )

and strictly monotone, i.e., x / 0, J 4 on £0**3 •

Dj(r) e C»(L0,d)» tt = l, -,# »n). ;>r each T^ L0,Q, the point

(x(t), y(r)i u U)) e. •

=^6) There exists one an^ o'-.ly one set S ^* ^
u
l ,
" f,

'

! 1»

«
t
(*»y) ^ r)# u

i txy
(x » y ^ s '' ^ J » ^ * 1 »""» n^ where R T

is a sufficiently small neighborhood of the ?urve T , such that





«a

the apt of function* eatisfies the eyatera (4.2) for each

(*,) e HT and satisfies tha eondltlona

u^xfzr), y(r )) •
l
(2'J -'or £-«DmJ« (i = lv,n).

Theorem 7a

1)

ft)

=^6)' There exists at least one s^t of functions etc. (aa in

Theorem 7.

)

I proofs of these theorems are contained in the follow-

ing argument:

•»ose we have a set of funetiona < u
1
,• •• ,n i 9 either

aa a aolution to the characteristic initial value problem above on

a domain th , or as a solution to tha Cauchv problem above on a

domain P ^ • Then for either case,

n n _ n
(4.5) A, = ^ a ti

u. 4-2! i,. +Z3*ik u Ur

(4.6) B * Z a u 4-^ fa + ^ 9J^lk u ~]ui,x k-1 is: K fxy ksl L ,x r-1 3u r
» xJ k »y

n Q c i" e
« » - ^ «v t : 0, (i = m+l,--% n)

'one (4.5) and (4.6) are n linear algebraic equations in tha





it

n unknowns u. . -ince the determinant of this system 'a,.
1 ,

I
#
xy Ji ikl

does not vanish over the domain In question, we may solv* the

system to obtain explicitly

1»TT l J 3»X J,y

ler hypothesis 1) alone, the f are continuous and partially

Lipschitrian over any bounded domain In the Sn +- 2 dimensional

(x,yj u.; u, _, u )-spaoe where (x,y; u.) e D. If hypothesis

t) also applies, the f^ are "filly" LlpschitEian over any such

domain.

Consider Theorems I and 6a. The character!

s

tie initial condi-

tions imposed therein, coupled with the system (4.7), forei a

problem of the type considered in Theorems 3 and 3a, respectively.

apter 2). We have shown a'ove that any solution of a canoni-

cal hyperbolic system Is also a solution of a particular system

of type (4.7). If we now demonstrate the converse for character-

istic Initial conditions, i.e. that any solution of the derived

system (4.7) is alao a solution of the original system (4.2), then

Theorems 6 and 6a follow directly from Theorems 3 and 5a respec-

tively.

ose we have a set of functions * u ,••• ,u I as a solution

of (4.7) over a certain domain including the initial character-

istics. ), which are merely alternative forms

of (4.7), we hav#





(4.3)
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A, Jx.y) r # (i = !»•••• » <«)

B
l x

(x ' T * = ° ^ s »+l#" - *» n )

over this domain. Dut, by (4.3) ar. of hypothesis 3) to

both Theorems 6 and 6a, we have that

(4.9)
\(*,0) a , (1 s !»••• m < n)

Bj.fO,*) s , (1 a *#••• n),

.
(x»y)-o , (l • l$y, m <»)«

,
f*,y) ^0 , (1 » m+lv, n),

throughout the domain. Hence the converse is shown.

or the Cauchy problem considered In Theorems 7 and 7a, we

observe first that we can determine u« _(x{?r), y(r')) end

« r(T)j y(^)), (1 r i###*f*)* *>s functions continuous for
i»

each ^ e [0,1^ > solely from the prescription of u (x(^) # yCT))

2l*{'&)$ (* r l»* #*e*)§ an<3 ***• requirement that the canonical

hyperbolic system (4.?) must be satisfied at each point of f«

'or, since x +-
J-
2 / along T"

f we may write the strip conditions

(4.10) ft^p^+q^ (1 m !#••*#*)•

as one of

(4.11) q
t

I (u
x

- Pix) orplS J. rtj - qi^), (1 = !#•*%*)•

alder a particular point P e °^ where y / 0. Here we substitute

q
i

r u
l y * ^ ^1 " p i*'

lnt0 •Rations \W s 0, (l»m-»-l," # ,n).
m

These, together with the equations A.(?) • 0, (i s !,•••» m^0) f
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form a linear algebraic system In the p. s u. (?) with deter-
1 1 , x

ant
J
a 1^0. Thus the p are tely determined at P, and,

bv M.ll), the q. as well are uniquely determined it P* If f •

at ?, then 3r / there and a similar argument applies utilizing

Thus we have, in effect, prescribed all three sets u, , u, ,

u, .1 s l,***#n), alone T once the u are prescribed along T
i»y l

and the u, and the u, are merely required to satisfv the
i#* i#y

str * tlona (4*10) and the canonical hyperbolic system at

(4.P) at each point of ^ .

^se we have a set of functions 5 u ,•••, i as a solu-

tion a

(4.7) » a M*,?! « CJ
u, ,. u ), (i s l,* #-

, n) In a
i,xy * J J»> J,y

neirhborhood of the initial curve T and taking, with their first

derivatives, precisely the above determined values at each point

of T . Then by (4.5) and (4.8), the fact that these functions

and their first derivatives satisfy the canonical hyperbolic

system (4.2) at each point of • implies farther that the system

(4.P) corresponding to (4.7) la satisfied everywhere in the

neighborhood In question.

With hypo the. is 2) luposed, system (4.7) and the initial data

on T satisfy the hypotheses of Theorem 5, while without hypothe-

sis P) , system (4.7) ana the Initial data on Y satisfy the

hypotheses of Theorem 5a. i*at since we have shown above that each

uol of (4.7) is a so' a of the corresponding canonical





hyperbolic system (4.2J, we have that Theorem 7 is a consequenoe

of Theorem 5, while Theorem 7a is a consequenoe of Theorem 5a.

these four theorems we are unable to prescribe the don

of definition of the functions

f.(x,y; u .; p,,q,), (i z I,"** n),

in such a way as to insure existence of a solution throughout
" ^ x ^ /,

F : \ • This is because the f, are continuous for
o^y^/

r
i

all p, and q., (J s l«* ,# »n), but aay turn out to be bounded only

when these variables are restricted to finite domains* The fol-

lowing example demonstrates why the existence of solutions oan be

found only "in the snail .

"xa-"?le 3« naider the characteristic Initial \*elue problem

for the system

u
p
(0,y) -

xy = ° * u
g
(x,-l) = 0,

! !

u =n,xy f u (x,-l) - 0,n
u (0,t) s 0.
n

Py quadratures, we obtain the solution u (x,y) - Z]L » while
1 v

u • s ••• » u s 0, quite obviously. The f.corres Qg to this

problem possess derivatives of all orders for all values of all

2
variables* However, f* s u. becomes unbounded as the argument

u,
x

increases Indefinitely in absolute value* -»e note that,

despite the specification of initial data everywhere alonr the





intersecting charaoter* sties x « and y * -1, the flr»t function

the * xmsly u», ha» a ontinuity across ths Una

y « 0. Rencs this example typifies thOi«e eases for which sol -

ttOM *»xist "in the small * only.

We note that Remark d) of Chapter III applies as well to

is sis 5} of Theorems 7 and 7a. Hie statement Is that
r x « x(r ) -

T m for 6 6> |_0,1J need only hav* x(ZT) and

c y » jCz')

yCZT) e ^
» ( IP » l3 ) # monotone, and with x? + f

? / at each point

of T* . , the argument in the proof above applies directly

to this statement*
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CHAPTER V.

The Cauchy Problem for >(x,y; u; p,qj r,s,t) a 0.

In this chapter we concern ourselves with the Cauchy problem for

the general non-linear second order partial differential equation

in the Hyperbolic domain, ically, the problem Is to deter-

mine er. Integral surface of the e on

(1.1) ?(*,y; u; p,qj r,a,t) s

such that the hyperbolic condition

(1*9) - 4 9 9 >0
s r t ^

Is satisfied thereon j r.or«over, the Integral ourface must have a

s^eor/i order contact with a riven second order strip which is no-

where a characteristic stri

In his celebrated paper \j-0j $ H. LSWY successfully attacks this

problem by reducing equation (1.1) to a system of first order par-

tial differential equations for the unknowns x,vj uj p,q; r,6,t

as functions of the parameters A and IL- of the two families of

characteristics on the integral surface in question. LKWY 1 *

existence proof for the system is based on a finite difference

argument. However, the s is of canonical hyperbolic form and

the theorem of K. CIKC - \ >, Theorem 7 of Chapter IV, is

Immediately applicable and insures existence and uniqueness of the

solution In a sufficiently small neighborhood of the initial strip.

Moreover, as demonstrated below, Theorem 7a may be used to effect

an improvement on LKwTfi work.

£e present simultaneously LIVY't original theorem and our





M

^roveaent on it. LSftT'si theorem Is obtained by oalttln^ the

par*nthetes. >jr theorem is obtained by replacing the under-

scored etateasnts by the corr*«r . ones le the par*ntheses<

Theorem 8 (3a)

1) S2 : is • m{V J

y « r(£ ) ^ 6 E^»^3 * 8 * nowh«re character-

istic second order str'.b -i(r )

a p(^)

Q s q( z^>

r s r( 6 )

• » s(T )

t r Mr J

i.e. j,j; : ?,q; r,s,t(Z") <s C»(LO,ll}, and for each ^^LO»lI#

1) ft* + f*rf« f

ii)

lil)

It) (x(r), y(zr)j a(r)| p(r),q(2~)j r( 2r),s(z- ),t(r))

s 0.

•) '

5
s c * '

!
' fe

?

I * •**%•! BitfflWVBOOa or A
3) are exists one an^ onl? one ( at least one ) Integral sur-

face J: u * a(x#y) ie equation :
? (x*y; aj p,q| r,s,t) « such

that tt(x»7) £ n> U A • rlaatly saall neighborhood of the

2 - 4 ,

fc

>0,

r

has* cure* HT :

x<r )

y » y(r)
for r^llo,!] , and such that

fx,y) has a second -ontaot with the strip S •





5fl

firs- at any sol D of the above problem,

together with its derivatives of the first and second orders,

represents a solution of a particular oanonlcal hyperbolic system

th« sane boundary conditions*

assume that r £ and P» <£ in the domains considered in

the following ar,ru3ient« R may be done without loss of gener-

ality-, or, by Do] a, a characteristic base curve must

satisfy

1) ?r J
2 - '

a y x + * x
?

« 0,

2) tz + y? ^ .

Suppose at a ; of S" th - ()• Then x - represents the

ve- Ural tangent taken by one of the characteristic base curves

the projection of th?. s point ont>o the xy plane. con-

versely, if one of the characteristic base curves through a point

in the projection of ffl has a vertical tangent, then x s there

and, consequently, f a at ths corresponding point on . . >*e-

wise, / - if and only If y » 0, in the sense above. is, by a

suitable coordinate rotation In the xy plane, we may insure that

/ and *'. ^ in a neighborhood of the point in question on

An? that this Is a local property only and that the

particular rotation performed way introduce values of PL - or

) at soiae other toffl sly distant points o . we o -

serve that this local r; ty is sufficient because our proof it

ultimately based u 'heorems 4 and 4a of Chapter . In those





57

theorems the Integral equation statement of the problem made It

plainly evident that, the value of the integral at any point P

depended -?on the port lor of the initial curve l f by

the two characteristics intersecting at P. Consequently, we may

eonslltor the "s below as applying in succession to small

p
overlapping segments of S , ^ith coordinate axes rotated suitably

for each segment considered, (See also F. COtJRaWT - D.

]J7] p. 323 and p. 33?.)

assume that we have an integral surface J: usu(x,y)

satisfying the conditions o* either Theorem 8 or Theorem 3a. Then

by (1.5) we conclude that the related characteristic base curves

are the two one-parame ter families of curves determined by the

equations

.1}

1

where

.3)

•4)

V a ft *lA- »

s + \/« - < 1\ »«

2
-r

»• - v^77
t

~r

P
1

and /^ are functions of the variables x,y; «J p,qi r,s,t

and r y i P r> *n * neighborhood of S by the hyperbolic condition

(1.3).

Cons5der the coordinate transformation

. X S X( \ , 1A.)

(5.5) I
r

7 = y( A , ul) .





M

9 Jacobian of this transformati on ,

(5.6) yx >/t
- f/L *

x
m tf>x

-
f> a

) x
x y .

g
does not vanish In a vicinity or the projection of C . This fol-

lows since P. / O „; while x^ r v»ojld, by (5.1), irnply

7\ z 0, contradicting the requirement x2 -+ y2 4 °# (similarly for

% u, )• Hence the inverse transformation,

f\: ^ (*,y)
7) J

\
jju z ja* (x,y) ,

exists in a vicinity of the projection of S •

Alonp- the characteristics on J: u«u(x,y) certain additional

equations must be satisfied. These are determined as follows:

nee F e C"»( e C»») and u e C ,, », we obtain by

differentiation

J

*X rx ^ ^X »x r>

where

•1 W, = nr +'*> + P +
-

'u JX P Q X

Sinilarl-,

(5 .io) f
F»*, + '.V +,**y»- W»
x
x
r
y + y x

s
y ' 'a





ftt

•u) n^i y «
v +%* +

, .

+

M X 1« the parameter for one family of characteristic

ves and, consequently, is the path parameter along each 01 the

'SB of the other family, the determinant

-

rr a

X A
V
A

x

r?A '*yA *A +

Hence th« quantities on the ri-;ht-hand side in each or the systems

(5.S) and (5.10) must be linearly dependent, i.e. in each svstem

- augmented matrix of co*f*5ci^nts must be of rank less than

thre~. 'insequentlv,

?r ?
t w«

*A °
-r

>

° '» -A
Va *A

+ V* X
X * C»3 x* x

rx* a

calling the assumption made without loss,

(5.14)

* A "J"*! A ^ °* equation (5.15) l tl to

-:ewiae, ^"roff (5.10) we obtain the linear dependence of the

it-hand terms in the form

f,V> + t^A + t l y yA « o,

rves of the other farilv of characteristics the

folio? .elation* must be satisfied. These are obtained in a





n

fashion conplstely analogous to that used in obta'nin;r ) and

)l

(5.16)

17)

%V% -tv^t^^v

p. %V + %v +W * y * °<

7n- addition, the s^rip jns

(1.

(1.9)

u

4 =

p x -f q y

a x + t fr

Ml be satisfied alon^ any curve lying, on Ji u»u(x,y). In

particular, they must be satisfied along any characteristic on J*

row equations (5*1), | ,(5.14) through (5.17), (1.3) and

(1.9) we obtain the following system of "eharaeteristle equations**

i.e. equations which nuat be satisfied along the characteristics

^ t» x
+W X\

on any integral surface Jj

»3 ?\ V> + Vx +M y *
A =°

(^ r u ^ • * * ^ " q *\ r0

~\

(5.13)
astern

V " ^ V
V > + -.'*>

*

t>3,> 5





(••18)
*d)

^6 »« - s x, - t y

s

«

II

> -9U
B

we observe that System A of (5.19) la of canonical hyperbolic

form in x # y; |
r,s,t as ions of A andy*- • Since for

Theorem 8, f & C"\ while for Theorem 8a, f e C»», the coeffici-

ents of all equations in (5.18) are functors of class C»» for

**m S $ and of class fM Tor ^hcor^nt 8a. "oreover, the deter-

minant o .' niatrix or ooe" 5 clenta for System A, is, after

interchange of rows and columns,

(5.19)

/i

ft
e

*

I

*

1

1

*

-

t

I

f> v r **

o

9

C

c

1 c

1

1

where lolents rteai Ly by asterisks, *, i\o not

e val .") 'tjeratnant. fir.ee
r ^ f

' ^0

^1 ^ f?
ln * n#1 Shb

"

> of S r
, the determinant (5.19) does

not vanish therein. Hence any solution J: u»u(x,y) of the problem

of Theorem 3, together with its first and second derivatives.
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satisfies the hypotheses ^or Theorem 7; because the requirement

that f e C MI la certainly sufficient to insure that the flrat

derivatives of the coefficients of System A be Lipsohitzian with

3pect to variables x,y; u; *">,q; r,s,t. Moreover, the require-

ment In Theorem 8a that f e CM Insures that the coefficients of

System A are of class C 1
, as demanded by Theorem Va-

in the \n , or characteristic, plane, the initial base curve

has the parametric form

^ I Us \ (*(r ), y(r)) for re [o,i],

I
^ls jk (x( t), y(r ))

and Is nowhere parallel to either the X or uu axes- Consequently,

T may be expressed In the non-parametric form

X • (? </*- J

where G? (//_)<£ C and ltf«(/0 ^ 0. If we Introduce X f * A and

u f s - \( (lk) as new characteristic parameters, we observe that

equations (5.18) ramaln unaltered In form. Hence we may assume,

without loss, that the initial base curve HP has the representa-

tior

(5.20) \ + jju s

in the \/>u plane.

We now demonstrate that any solution of System A satisfying

the given Cauchy Initial conditions is also a solution of the

problem of Theorems 8 and 3a. This done, Theorems 8 and 8a are

lsmediate consequences of Theorems 7 and 7a, respectively.

Following J. HADAMARD \j>lj V 504, we show that for each set of

functions satisfying System A and the Initial conditions on
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X + //L" 0, the Syatem b la likewise sallafled* tfoto tnet in this

part of tue argument we cannot admit that p.q, r,s and t are de-

rivatives of u* flail la now a matter of pr >of .

Differentiating F(x,y; a; p.qj r,a,t) by ^ &nd obaervlng

equations (5.18), ma obtain

lienee ~ • for each aet of functlona satisfying y«tem A. Horn*

ever, by hypothesis, P along X + M- m °» Thus F= throughout

that region where the aet of func clone satisfying System A la de-

fined* This in turn implies that

(b.22) §£ » l|>

g
« (|/5

P
u

l|/

4
P
p

l^
5

P
q ^6

- throughout the

region* By hypothesis, l|/ * in thia re .Ion, hence

(».») y, - - *„ 1>4 - p
P ^ -

', t

w
Since Pi Pv

m Lk * we obtain from (5*18) by simple algebraic

6

therein*

/V"
operat lone

where

(5.86) H m *\ V [y] « V 1^ [f ] ,

PJ * rr *
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(6.88) £ ¥s
-» «

x *V, X
«.

where

(5.«9) k-V^- [?,
y " *^ t?1

»
*

By Theorem 7 or Theorem 7a, the functions of the set satisfy-

ing System A and the Ceuehy Initial data are continuously differ-

entlable and possess continuous mixed second derivatives* Thus

we may perform the differentiations in tne following relations!

turn) (|^ x
. ip -p

x
xa

+ ,
x ^ -^,A

(6.S1)
H»

" V *»/*- a A A >• /» A

"PI "t

"4VA

V'A

by (6*24) and (5*25) above;

< 6-3* ) Kx - ^
6,y.

•/> *A * '*

1^3 - 2^3 •

- "aV

by (5*27) and (5*28) above* But System A Is satisfied, hence

(0.30), (5.31) and (6*32), by virtue of (5.23), reduce to

(6.33)^





In (5*33) all functions are known except ^ , lp , []J and

their derivatives with respect to X • Moreover, along \ • />u

Systea B is satisfied, i.e. ^ • l|/ « ^ • o for X « -^ .

For fixed yO- ee may consider (5*33) as a homogeneous systea of

linear first order ordinary differential equations under homo-

geneous onepoint boundary conditions* This systea has the unique

sola tl on

throughout the region of definition of the set of functions satis-

fying Systea A* h$ (5.23), ll/ » also, and the Systea B is

shown to be dependent upon the Systea A in the sense above*

From the functions x « x(\ , a), y * y(A 9 lk) of the set

satisfying Systea A, we may fora the inverse functions A*A(x,y),

1A K(x,y), since the Jacohlan

(5.8) y
x
xA -,^x

x .(f x -f>J x^x^

does not vanish* Hence we aay express the function u » u( A, u)

as a function of the independent variables x and y.

We now need to show only that

(5*34) p a u , q * u_, r • u , s » u and t » u
X J XX* Xy yy

throughout the above region to complete the proof*

low C?4
-*

x
- px

x
- qyA

-0

while the determinant of this lineer system is the JacobIan (5*6)

and hence does not vanish* Thus there exlete a unique solution*
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But p - u , q « u obviously satisfies and hence represents the
J

unique solution*

Similarly,

¥»**"V
- p> -> *

'

hence r = u and a = u ;
jut xy

hence t * u and u « u » a* flat proof la now complete*
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CHAPTRB VI

The Characteristic Initial Value Problea for

*(*.Tlu|P.q* r,s,t) » 0.

The whole idea of a charaoterietlo Initial value problem for

the equation

(1.1) I p,qj r,s,t) «

a ppears paradoxical at first glance* In the Cauohy problem the

prescribed Initial data was sufficient to determine whether or not

the projection of the Initial curve was characteristic* In this

problem, however, we merely prescribe two Intersecting space

curves through which an integral surface of the equation (1.1)

must pass* since the characteristics are, in general, dependent

on the Integral surface in q-est'on, it would appear impossible to

determine, a priori, whether or not the prescribed initial curves

have characteristic projections.

That s jeh Is not the ease is demonstrated by M» CX9QPXK*

3 Ll3~U Tn this paper she treats the characteristic

initial value problea as a special case of the more general ~our-

sat problem, i.e. where two arbitrary intersecting spaoe curves

are prescribed through which an integral surface of (1.1) must

pass. CocKsaRcing on p. £20, she fives the necessary and suffi-

cient conditions that these curves be characteristic to any in-

tegral surface passing through them. ?e call curves satisfying

these conditions "intrinsically characteristic" curves.





n this chapter we examine her development , for the particular

case of the characteristic initial val :e problem, tip to the point

where a modified form of the eye tea of characteristic equations

(5*13) and the above necessary and sufficient conditions are ob-

tained. There are two important differences between her develop-

ment and that of H. LEWY giver, in the preceding chapter. First,

she transforms the initial curves into the coordinate axes* Since

these curves are characteristic, this implies Immediately that

?-0 and ?
t

- at the or! -in* Thus many of the divisions per-

formed In Chapter V are now invalidated* Second, she le able to

solve (1.1) explicitly for s, obtaining

• • f(x,y; uj p.qj r,t)

and thus to reduce the number of equations in the system of char-

acteristic equations by two*

V* do not follow the remainder of her existence proof, in which

she reduces the system of characteristic equations to an Integral

equation form and then applies successive approximations to obtain

the existence of a unique solution to the general Qoursat problem*

Instead we deal directly with the special case of the character-

istic initial value problem by a method analogous to that of

apter V. Such an approach is indicated by If* CISQUINI-CIBRABIO,

herself, JJUQ p. 130, footnote 8. She states, in effect, that the

fol levins; Theorem 9 car. be shown to be a consequence of Theorem 6,

Chapter IV. we present this proof in detail and, in ad i, we

extend it to apply to the derivation of Theorem 9a as a consequence

of Theorem 6a. The improvement obtained corresponds to that of





Chapter V for the Cauchy problem. Hamely, the req. irement that

e C 11 ' la reduced to require merely that ? e C'» while the con-

clusion It altered to read "at least one solution" Instead of "one

and only one solution*.

Theorem 9

y s r
x
U) F

1
(3t)^c» '(Dv$ >t

x 4-Sl>s

u s F
x
(x)

yx
" ty« 7^ Ti^-^ F

2 (J)
£ Ci t( Oi-^Ti 4-^ )

u r F
2 ^ y ^

The point (ju ,y ) is the only point of intersection of T. and

HP and it 1» interior to ^oth curves* Moreover, P^toi) « &Vi^
and f »(x )f f (y.) ^ 1. (I.e. T ^ and T

g do not have a ooiamon

tan/rent at the point (x.,y.)•)

2) \ , and 1 are "intrinsically characteristic" in a neigh-

borhood of their point of intersection, i.e. they meet the neces-

sary and sufficient conditions, given below, that they be character-

istic to any integral surface of

(1.1) ?(x,yj »J P.<U r,s,t) a

passing through them. As we shall see below, this hypothesis

ether with hypothesis 1), tacitly Implies that at the intersec-

tion point (x1# y1# su) of T ^ and P
g

the values p1> q^ f«, a^r
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t.) 9 the hyperbolic condition

*.* - 4 r t >°»
•x

r
l H

is satisfied, (notation: F
g s ?,(xltf.| u^ P1 »q1

IF19 ilv t
]>

) 9 ete«)
1

3) e '«» in a neighborhood of the point

(»1»7
1

J vx
x j p19 qx ; r

1
,s19 t

1
).

=^4) There exiata one and only one integral surface Jtu«u(x 9 y)

of ?(x 9y; <JfPtQI r 9 e 9 t) » 9 defined and of claea C ,M in a suf-

ficiently small neighborhood of the point (xj^y^) and passing

through subarcs of I ^ ftnd P ioterseoting at the point (x 19 y^ 9 u 1
)»

Theorem ft*.

1)

t)

3)' r.' e C»» In a neighborhood of the point

-=^^4)* There exista at leaat one integral surfaoe etc,

(as in Theoreas 9)*

Proof of Theorems 9 and 9a

We first perform the coordinate transformation

(6.1) f x 3 x - f
2 (y)

\y»y - f
x
(x)

talcing T^ into the x axis 9 T into the y axis and the point

(x1# y.) into the origin# !a transformation Is univalent in a
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neighborhood of (x-,y ) since the Jaoobian

(6.P) 1 - f »(x )f '(y ) i119 1

by hypothesis 1). Cconetrioally, this seans that T and HT do

not have a oonmon tangent at their point of intersection*

Without loss, we !nay assume homogeneous Initial conditions*

r, suppose we have an integral eurfaoe Zx u«u(x,y) of equation

(1.1) passing through the curves \ . and P. Itoen by the above

transformation, considering (6.£),

(6.3) u(x,y) * u(x(x,y), y(x,y)),

and henoe for ±nj such Integral surface

(6.4) f^U) a itSfT.is)) * ufxU^fx)), 0),

\ \,(y) s u(f
g (y),y)

« u( 0,y(f
2
(y),y)).

Letting

w(x,y) ~(x,y) - 1(7,0) - u(O p y) + u(0,0),

and since, by hypothesis 1), f , f , ? and W e. ~m, we obtain
1 P 1 £

(6.6) w(x,0) = wy(x,0) a w^t*/)) 0,

»(0,y) = w„(0,y) w (0,7) = 0.
y "

Thus we nay reduce the problem to that of finding a function

w « »(x,y) which vanishes on the coordinate axes in a vicinity of

the origin and satisfies there the transformed form of equation

(1.1).
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(6.7) ^(x fyiLw-»-rij &r+ *3jp fr* 8^,?1 t_w + «3
# 5ear»

where

(6.8) g(x,y) • u(x,0) + u(0,y) - u(0,0).

The function g is known from the prescribed initial data..

;'or simplicity, we return to our original notation and state

the problea in this ways

?o determine the function u x u(x,y) satisfying equation (1.1)

and the initial conditions

u(x,0) s u(0,y) m 0,

where, in the notation above,

o o ^*o o o

and

(6.9) (0,0; 0; 0,0; 0,e 0) s 0.
o

By hypothesis £), there exists a unique value s satisfying

(6.9).

The characteristic base curves and, a fortiori, the hyperbolic

condition are invariant under the transformation (€.1). (See

R - D. 3X1391 Il7] ,. ;.) ISoreover, the substitution

w u - g also preserves the lnvarlanoe of the equation for the

characteristic base curves and the hyperbolic condition as is

easily seen by differentiation of (6.7). Hence, by hypothesis 2),

we have the hyperbolic condition
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(6.10) F,
2 - 4 9> 1\ > 0,

while the equation for the characteristic base curve direction* at

the origin it

(6.11) Pp dy* - f. dxdy + P
t

dx 8 0.
o o o

Hypothesis 2) implies that the coordinate axes must be char-

acteristic base curves* By (6*11) and (6.10) this in turn implies

that ? s Pt s 0, and hence that P# / 0. But now the Implicit
o o o

I\metlon Theorem tells us that in the neighborhood of the point

(0,0; 0; 0,0; 0, aQt 0) equation (1.1) can be solved explicitly

In the form

(6.12) s • f(x,yj uj p,qj r,t).

^nder hypothesis 3) or 3) 1
, the function f eC ,M or CM , respec-

tively, in a neighborhood of this point. Moreover,

(6.13) f„ s ft s and s„ - fr
o o o-o

while the hyperbolic condition becomes at the origin

(6.14) 1-4 fp f « 1 >
o ro

and the equation for the characteristic base curves becomes

(6.15) f_ dj2 + dxdy + f.dx* r 0.

Let us assume that we have a particular integral surface

J: u » u(x,y) passinr through the coordinate axes li a ne. i*-

v3 of the origin, with u(x,y) e c»»» in this neighborhood..

We define
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1 »£*f "»2f

(0.16) & r 'I 1-4 f_f . , p m _* . (Ts _£. ,

£> , ,£> and CT being of class • • by hypothesis 3), or of class

1 by hypothesis 3)'# in the variables a,yj BJ p,qj r,t In a

neighborhood of the point (0,0; 0; 0,0j 0,0). The two one-param-

eter families of characteristic base curves corresponding to J

are thus represented by the equations

(«J7) j x -p*^

(6.18) x s ^y^ •

Kote that £, x 1, hence ^ > in i neighborhood of the origin,

while P = 0~
o 0.

As In Chapter V, to obtain the system of characteristic equa-

tions, we transform to the characteristic base curves as co-

ordinates and eonsidar what relations s&rat be satisfied along

these coordinates for any riven Integral surface J. In parti-

cular, we specialise the transformation

(6.19) J /

by s that a line X s constant shall have x-intere*pt

( X #0) and a line a, « constant shall have y-intereept (0,^),

with X r U/tC it the origin. The Jacobian of this transfoma-

m, evaluated at the origin, has the value

(6.20) x J - y
v * =*yJ (1~ A^o* • x

v * 4 °'Ao^o Xo^o *°/«-o (°o Xo^oT

since if x - 0, then y. « by (6.17), contradicting the re-
Ao . »^ A

quxireraent that xs -v- y
c ^ along any characteristic curve.
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Similarly. If y |0| then x s by (6.1&) ari the contradic-
Ao / o

tion it again obtained*

Paralleling our development in Chapter V, we 8«e that eertaln

determinant* mu*t vaniah at each point of the Integral surface J,

jitldlag oquationa which rauet be eatlsiisd alonp the character-

i0tlo0 on J. We have

(6.?1

r u -1 x t

A rA

V

>

sf
r
r
X

y
X

+ VA*> +W,* A
r
A
.o

where

(6.?2) [f] sfr+ffifp +f .

* P Q u'

alao

(6.891)

where

•['],1- - y t

0\X

*> r

>

»V^A +VXVW y* A
XA

(6«>J>4) [fQ -ff + ft+fq+f.
y " P q 7

rUrinating 0^ between (6.?1) and (6.23), we obtain

(6,25) f V y. ' - f
2
t , x »

2 + [f] fx.y
x
2 -

r A A t A A u -* x r a * A

W _V ,V = 0.
y t a a

By virtue of definition© (6.16) and equation (5.17). we may

write (6.25) as

(«••«) f
t* *A * H( >k,/

c) * °
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(6.27) H( A,^) r
x
(T

2
- t

A+ -|^\lrl y
- ^W,! *X

#

t, as shown above, x \ / alon? any of the characteristic

base curves of J of the corresponding family, hence (6*26) raduces

to

(6.23) f 2 • H( \,Jjl) a 0.

Where *
t
s w have iiamadiately that H( A , £l ) = 0. ppose

at a particular point of J that f r 0. Then by (6*16) and (6,17),

we have there that

(6.P9) O « 0, & s 1, q- « -f
r

and y. - 0.

Thus, at this point, by (#••€) f

(6. 3o) »A «VX " (f
r

r
y
+W y

)»
A J

while by (6.2?),

(6.31) r
x
0- E

« f
p
2VA s f

r

S
(. x

- [*] x
x
x ).

Substituting (6.30) and (6.31) into (6.27;, we obtain that

wher* f^ : on J, U{ X 9 hu) • 0. Hence by ) A*k) •

everywhere on J tuiti. I ~enta a relation vhich oust be satisfied

along each characteristic of the corresponding family on J.

For the other family of characteristics on J, we have deter-

minants eorrespor.aing to (6.?1) and (6.~f) which vanish at each

point of J.
r l'~inatlng s^ between these and arguing in a

fashion analogous to that above, we arrive at the following rela-
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tlon which isust be satisfied along each characteristic of this

fatally on J:

(6.32) E(X#^J « (?

zy - >^+ i^jtrl,- flillr . o.

Ye are now in a position to prescribe the necessary and suf-

lent conditions that the coordinate aires be characteristics

* any Integral surface of

(6.1S) a s f(x t yj «J p,qj r,t)

passing through then.

Suppose that, in a neighborhood of the origin, the coordinate

axes are characteristic to so*»e integral surface Ji u»u(x,y) of

(6.1?) passing through them, ?her In terras of the characteristic

baa« curves to J as coor3ir-ar.es, defined by the coordinate trans-

formation }, we have for Lk • 0:

* « \ iM^i u « p • r s 0, q « Q( A ) f t - ?( X )

»

where, from (6*1?),

(6.33) Q«( \) f(A.O| Oj 0, Q( A>1 0, 7(\)) 9

while, fross H( \ f m.) » 0, since /? « f
t s 0, & » 1 and

<r= - f
r .

(6.34) T»(X ) - Stfl
y
+ f

r Wxl ( ^ *° ; °* °» Q( XU °»*<A))s

"or* over,

(6..; Q(0) = ?(0) = 0.





n
ationa (6.33) and (6*34) represent a ayetenr. of flr»t order

ordinary differential equation* under on* point r^omdary condi-

tlona (6.35). The right hand aidee of the equ*tlone of thia eye-

tea are of olaee C" under hypot>i«ala 3), or of elaee C» under

hypotheala 3) f
, in the variables A, ' and ?• Hence, in either

caae, the funcwione Q and T are uniquely determined in a neigh-

borhood of ^X « 0. If the x axie la charaetariatie, th*ae func-

** fc also *atlafy

(6.36) f (\ ,0? 0; 0, '.( \)t 0, ?(A)) * 0.
t

Xarly, for X • 1

* s 0, y « , u : q t « 0, p s *(/*-)» i n(*0»

wher«, from (6«lt)»

.37) p'Uu) riC,jJLt Oj P(yO,0j K(u,),0),

while, fron K( \,hu) x 0, s'.nce CTg f
p

» 0, £> • 1 and P * - f -

(6.38) P.t(^) *A[Y] x -r ftLfl y (
(0,^lJ0i PU,),0j IUO,0).

Moreover

,

(6. P(0) = T(Q « 0.

Hence, if the y axi* la character la tic, the Ions P and h,

uniquely detem'ned by (6.37), (6*33), and (6.39), muat alao aat-

iafy

(6.40) f
p(0,^; 0; ^(^),0j Kll,),Q) a 0.





> reoapit ulate, the necessary condition that the x axis be a

characteristic of some Integral surface ie that the functions Q

and T determined from the system (6.32) and (6.34), under boundary

conditions (€.£;), shall satisfy (6*36) for each A In a neKh

hood of \ = 0. The necesssry condition that the y axis be a

characteristic of some int«vral surface is that the functions P

and B determined from the system (6.37) and (w*g , r boundary

conditions (6.25), shall satisfy (0.40) for eaoh ja> in a neigh-

bor' tf i^, z 0.

We now show that thes* t.'ons *re also sufficient, i.e.

4 7©n in the vicinity of the oririn, an Integral surface

J i u - u(x,y) of (6.1?) passing through the coordinate axes, with

(6.41) P^y) -u
x
(o,y), F

x (y) . ^(O,^), ^(x) «u
y
(*,0),

and T
x
(x) a u (*,0),

we show that the requirement

(6.40)' fp (0,y; Oj P^y^O; K^y^O) r

Is clent that the y axis be a characteristic on J.

The argument needed to show that the requirement

*\(x f 0; 0; 0, ->(*); 0, T (x)) =* 11
is sufficient in order that the x axis be a characteristic on J

is analogous to the following and will not be given here.

we need show only that under requirement (6.4Q)», P.(y) x P(y)

l(j) » htj), where P(y) and R(y) are those funotlona obtained
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rr*"1 *i »ly ' nder the assumption that the y-axie was "intrinsically

characteristic".

How P (0) R.(0) r since u(x,0) • 0. Boreower, since x

satisfies

(6,1?) s r(s,j| uj p,q; r f t),

for x « 0,

.37)' P
1

,

(y) r f(0,yj Oj ?
x
(y), 0; F

x
{y),C).

Row, recalling that u e C ,,f
#

i ) x f r +- f t +[/] ,
jr r x t x UJ x

(6.43) a - f
p

» + f
t

t -*- Lfly.

r;ee u{0,y) • 0, we obtain t (Q,y) « 0. Writing tAO,j) » w(y)
y *

and aubstltuting (6*43) Into (6*4?) with x s 0, «re obtain

(6.44) a (0,y) w P (0,y)

Put, u(0,y) - u (C,y) s u • 0, hence by (6.44),
y .'j

Sow aquation (6.37) • la precisely the same as (C.37), while

requJreswnt (6.40) 1 is sufficient to reduce (€•?<*) • to i . }.

Bat this lilies that P (y) * r(y) and fc.(y) r i.(y) since the

solution of the systea of ordinary differential equations in

question la unique.





the foregoing arguments we have developed a procedure for

deter^I r/n<r whether or not the initial carves are "intrinsically

eharac k *r' stlc". Ey transformation (8.1) and tuba ti tuition (6.5),

we red ;ee the initial curve a F and | to the coordinate axes.

now b can he uniquely determined from (6.9) we may verify the

hyperbolic condition and obtain the characteristic direetiona at

the origin. If theae direetiona coincide with the coordinate

axes, then elation (1.1) can be solved explicitly for (6.12).

^>n this, the ays ten (6,37) and (6.38) under boundary condition

(€•.39) can, in principle at laast, be solved for funetlona P and

R. Finally if P and R aatlsfy (6«40) then the y axis la char-

aoseristlc to any integral surface of the problem, i.e. "intrinsi-

cally characteristic n
. Likewise, from the system ( and

.34) under boundary condition (6.36), the functions Q and T can

be determined. If these satisfy (6.36) then the x axis is

"intrinsically characte c
H
. Eofce that , j

and T are

evidently of claas C 1 .

Having iven hypothesis 2) a precise meaning along with a pro-

r*fr\r» Tot determining wh*t)-er or not It is verified for a given

pr^ , we continue with the proof under the assumption that

hypothesis ?) is verified*

on ec- (6.17), (6»18), (e.?7), (6.32) and the strip

iitlona we obtain the following ays teat of characteristic equa-

tions, which must be satlp alon^ the character! sti c a on any

integral surface Jt





T

45)

^3 * n
x • p*x - qyx

°

(p 4 = p
x

^5 = q
\ " -X• tax - ty, s o

X

?- ;- s tea
A

A

y
o

s C

r

r

lystem
B

',ve observe that System A of (6»4S) Is of canonical hyperbolic

fW in r.yj ! P»Q» r,t aa function* of A and J*- • . inee for

Theorem 9, p a rift, while for Theorem 9a, P e C*», the coeffici-

ents of all equations in (S«45) are functions of clsss C 11 for

Theorem 9, and of class C 1 for Theorem 9a* Moreover, the matrix

of coefficients for System A is. after Interchange of rows and

MBS j

(6.46)

1

C

«

1

-<r

o

1

(i - zj(T ) (^
2 <r s-i) 3

o

-l

-ar
1

c

1

1

E





where the coefficients designated only by iltfrlc'<9, », do not

contribute to the val'ie of the deterwinant. mt & > everywhere

on 9 In a neighborhood of Hm orirln, h^»nee the determinant

(4*46) does not vanish ther**m.

the initial con «, we have, by hypothesis 1

Theoretas 9 am! 9a for Ik - 0,

* a y , y • 0, tt a p s r • 0, q s --( X )» t • T(X )»

and for X s 0,

t « 0, y -i>L ,u«ist«0, p«F(z*.), r« R( /^

)

where C, ? and P,J» are detenn ned fro i their respective systews

and are of class r«, Bis* , or lk « 0, by (6«36) t f
fc

0.

sit /? s 0, Ss 1» and CT » - » - 3 together w! *h

y\ sJ*\ ||\ • P\ • an -*
{ •<2M»tlon (S.34) pTGv* that

(6.47) ^ X (A»0) m V ffXaO) « (^ s
( A,o) tp

4
<A .0) .^s

(A,o}*o

- fill X in a aei.*hborh.oo^. of A * 0. SI ilarly, for \ « 0,

by (6.40), fr s 0. F.ence CT « 0, & r 1 and P * - f
fc

. This to-

gether -with x^ r t^ - u» a q^ r and equation |
. " ) prove

* at

i^l(Of^) * P*&•/*) « ^s/ */-' - ^ t
(0,^)a i^

b
(O f̂ )mO

for all ^c in a neighborhood ot jju z 0. Thna the Initial condition

requirement* of hypothesis 3) of rheorema | and 6a are sat5s*Sed.

Since the coefficient* la (-.45) are of class C»« for Tbeorea

9, hypotheses 1) and 2) ot Theorew 6 are satisfied. Also, since

the ro'mciants la (~. ' •) are of class C for fheorer. 9a, the
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eommon hypothesis 1) of Theorems 6 and 6a is satisfied, but

hypothesis 2) of Theorem 6, a hypothesis which oes not appear in

Th»or-m 6a, is not satisfied* Thus If we now show that any sola*

tion o T" the canonical hyperbolic system. System A of (6«45), with

the fflven characteristic initial condition* is also a solution of

the corresponding problem for the equation

(6.12) s • f(x,yj a| p><ii r,t)

with the same initial cox is, when rheorem 9 is an i-^ruediate

consequence of Theorem 6 and Theorem 9a is an Lmte-'late conseqienct

of Theorem 6a«

As in the Catchy prob 1 hapter 5, we show that for eaoh

solution of System A under the given characteristic Initial condi-

tions that System E Is likewise satisfied* Sfote that here we can*

- assume that n,q,r and t are derivatives of nj this is a matter

of proof. calling from Theorems I and 3a that the functions of

solution of System A, x,y, , , -i,r,t are of class C f and that

f e C ,,f under hypothesis 2} of Theorem 9, or f e C M under

hyrothesis 3}* of Theorem 9a, we obtain by differentiation and

consideration of (§«45) that

= ^4'X + V* - «**A - <VA •

Moreover, since 1$ § z U? . s if. » ©»

( - 50
> ^ Va + -Vx +Va + V> + V> + Va +Va





n

lM] > = V> + ft> + V> * V>" ^u> + f*V V>
*V/* + rt> +Hx> + £ fVA

PWq5 u'3

Thus by (6.45), (6.50) and (6.51),

and

Taking into account the fact that Systaa A It satisfied, we re-

duce (6.49), (0.58) and (6. 53) to the system

f 3,x = 4Va + *IV>

(6.54) Kx •M».*. + %f« +SM
^5.X *»>£'. ^'^IV,^
~ed u i (6.54) r*nr*eents a system of linear, hoao-

eons, first orSer ordinary differential equations ror the func-

tions w %9 {1/ and (J/ of the variable }\ • Moreover, by (6.48),





the hossogeneots one point oounuary conditions

ttjflt be satisfied. Hence, the unique solution for the system

(6.54) is

wherever the solution of system A is defined*

It the linear al^ebr&ie system,

[ h "> " p> " *y •••

The determinant of this system, qj (;%?Q), uoes not vanish in

a neighbor of the origin, hence in this neighbor tnere

exists a unique solution for and q» Since p a u and q s u
* y

satiafy (6.55) they are the solution of (6»55)

larly, frost

^ = p
x • * *x " fy

x

while frovi

(6.57) U 6
= =j

x
- r«

x
- ^

we obtain the addition. oraation that t - u_y Consequently,

any solution of System A under the t-iven characteristic initial

conditions satisfies the equation
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u g f(x,yj uj u , u J « , u )

* y yy

In i neighborhood of the point (0*0 J 0; C,G; 0,0) and the proof

of Theorems 9 and 9a It now complete*

s designate the problcsi considered In Theorem* 9 anr* 9a

as t • 9y virtu* of the exposition of Chapter Vt and thi*

present chapter, we way associate to this problem a particular

Problem II, of the type considered in Theoxwu 3 and 3a of Chap-

ter II • A* Vt have shown, any solution of I is a solution of II,

and, conversely, any solution of II is a solution of I* ffhera

r I, F e C ||f
, Theorem 5 tells u* that the solution of the re-

lated Problem II 1* unique. Hence, as It stated in Theorem 9,

the solution for I 1* likewise unique* If, however, for Problem I,

e. M -0;;, -hen vh**orer* 5a tells ue merely that the related

Problem VI has at least one solution* Moreover, Example 1, Chap-

ter IT, tell* us that tftti* solution cannot be shown to be unique.

Wt must not conclude merely from the above that for Ke C ,f

the solution to Problem J cannot be shown to be istttati § can

, though, that any proof for uniqueness, if such can be made

at all, will apparently have to be based upon arguments Independent

of these of this paper*





Chapter 711

The Mixed Boundary Value Problem

for u a f (x,yj uj u , u )•

In the terminology of J. HAD*v U [ill, appendix II, p. 456,

the mixed hyperbolic boundary value probleia le one In which we

prescribe the varies of the Integral surface along two lines

issuing fro® a point, one of which Is characteristic to the sur-

face in question, while the other is nowhere characteristic*

J. RADaJSaSD, In the reference above, and B. PICARDIt], p. 135,

prove the existence of a unique solution to the linear equation

(7.1) tt^ • a tiy -v- b u + c i ,

a, b and c continuous functions of x and y alone, satisfying the

initial conditions

(7.2) u(x,0) s u(x,x) • 0.

Tn Theorems 10, below, we extend Sheir conclusions to the

ation

(7.3) u^ s f(*,-; u| a
x
,u )

maintaining initial conditions (7.?). The result Is veil known,

but does not appear in the literature in the precise fona stated*

'"• require this precise statement because we wish to proceed frost

Theorem 10 by the methods of Chapters II and III In which we re*

lax the Lipschitt condition on the ion f to require merely





^9

that f be partially Lipachitsian. Thus we obtain the Improved

state?-»ent of Theorem 10a.

Theorem 10

1) n*,y; • ! P#<l) e e(B)»ts<{
o^ y<c /

-a =< u ^ a

-*> ^ P^ &

-b ^ q ^ b

2) f Is Lipschltxian on B (aa defined In

Theores 1.

)

3) U f<k a, X /^ b f where

s max \t\ on £

4) There exists one and onlv one function u(x.y) e CM
fO^V^/

u (x.y) e C(R). whore R« i such that for eaeh
*T [0 ^ y ^ /

(*,y) e V, the point (x,yj u(x,y); • (x,y), u (x f y))<= B, and

xy * y

u(x,Q) s u(x,z) for eaeh (x fy) e R.

Proof

This proof Is based upon PICAKD's variation of th* method of

successive approximations, \jl\ p. 359 or H7j P» H?. Here the

uniform convergence of the approximating functions to the solution

is verified by means of a majorant series* The majoranfc series

used is that obtained from the approximating functions converging

uniformly to the solution for the particular linear equation
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(7,4) 1 »K(I+I -h ** )
?-7 X 7

vith the same Initial condltVona. K is the Lipeehit* constant

for the function f of (7*3). PICABD applied this technique to the

characteristic initiel val>e problem, obtaining Theorem 1 of Chap-

ter II* He thus obtained the theorem for the characteristic Initial

value problem for the non-linear equation (7*3) from the thaorem

for the characteristic initial valie problem for the linear equa-

tion (7.1).

For the mixed boundary value problem under consideration, a

curio is situation arises* Se do not obtain a majorant series from

equation (7*4) under mixed initial conditions* However, we do

find that F26al?+J nejorant series for the characteristic initial

value problem serves as well for this problem* Thus Theorem 10

follows not from the theorem for the mixed boundary val'?e problem

fir the linear equation (7.1) but from the theorem for the char-

acteristic initial value problem for equation (7.1).

It ie sufficient, as we shall demonstrate later, to show
("0£ x ^/

existence of a unique solution in region R :*( •

[0 ^ j^ x
aesumimr (x,y) e. R , we may express the problem as the integral

X

7

By different! at'

(7.5) u(x,y) «\ d£ [ f(£ J[ ; tt| u,,u
y
)d^

(7.6) u
x
(x,y) «( f(x,h i *| u

x
,u

y
)d)7 ,

: Si





II

(7,7) a (x,y) *T f(| ,y| *> *V u^)d£ -^ f(y, ^mm^u )d£

tfo for* the »'.;cc«»«lve a:Vproxlsafclon»

(7.8)
: :

I
where, by ilf f rontlatlon,

(7.0) u (x,y) s \ f(i,bj a .; u . , J* !/ »
n,x Jo ^ n-1 n-l,x n-l,y t-

(n • }»t9***).«

(7.10) «^C***> sj*f<l tfl «W »*.;.*• ^-l.y^l

-\ f(y,h j u i u , . u )db ,Jo L n*x v-» x n-l f y ^
(n a !,£,••• ).

ce the point (x,y| Oj 0,0) G 3 for (x,y) £ R2f by hypothesis

3),

\o
1
(x,y)| ^ S (x-y| •

\ T\^V.f^ a,

l*lfJC
Cx.y>| ^ H |y\ ^M /^b,

K,y (, ' y) l ^ * [l* - Tl + Ui]

r »1*K V /^b

Thus, by Induction, for all n and for any (x f y) £

(7.ii)
j

|u
n#3t

u.y)!^/^ b,

[u
r^y

(x,y)|^M/ ^ b.





Our purpose if to show that on R

such that the function u and Its derivatives satisfy conclusion

4) for (x,y) e B • fo accomplish this we consider the successive

approxiasa tl ons

•

(7.13) . rx ry .

» U,y) s \ <*5 «<w -f w + w )db
n

J J n*l n-l fx n-l f y i

t :

where, by differentia ti ,

(7.14) ,
n>3t

(„y ) s ^ M [»„.! + .^^ ,
r__1>y

-j lx,\ )d £ ,

(n » 1. ;%•••),

(7.15, .^C«.7) « J/tvi + "n-l.* + VtJ ( * '**£ '

(n • !,?,•••)•

Here H - max
[
f

[
on E ehile K is the Lipscaits constant of

hypothesis 2).

*** *%(*#) « toy, hence w-(x,y) w
1
(y,x)» Moreover,

w
1#x(x,y) • Hy f w

x y
(x,y) * Ex, hence «l

x
(x fy) *

lf7
(y,x).

Let us oake the inductive hypothesis that for soste fixed

positive inta^er n,

w (x,y) « V t?»x)f w (x,y) s w (y.x).
n n **,* n y





©3

t this lap] !•• that

(7.17) Vw +- » + • 71 (x,y) s [1^ + 1 + * _"] (y,x)
i— n n,a n*y-j i_ n n,jr n f y-A

and thus, by (7.1?)

,

wn+1 (x,T) * %*<*•>
Al»o, by (7.14) una (7.15), (7.17) l.iiplle» th«t

n+l,y

Hence, by induction, (7.16) hold* for r a 1 #
?,••••

PICAlvD, In the inference* quoted above, shows that

(7.13) ^L w a w, ^1 w « « , ^1 w • w ,

rial
n asl

n ' x * n.1
n*y T

each uniformly convergent on P, where the function w and its

derivatives satisfy

w__ a K(w •+- w_ 4- w„),
(7.19) *y x y

w(x,0) - w(G,y) s 0.

wo now show thst these series are aajorant to the series

(7.90) ^ tV^Ua*i ^ ^i^iJ* ^ •< „-*„ , J.
n-1 n °-1 n»l n»* n-l,x ^ n,y n-l,y

respectively, for eaeh (x,y) s B
fi
, (with u

Q s 0).

low, for (x,y) e R
g ,

^••T^^K* |
*l£ *\ I °* 0,0)

|
d^Pd|[

7
|M^» w

1
(»,y)

|u
1#x

(x, 7)^ )

f(x^ ,050,0)1 a^ifc^ - -
ltX

(x,y)





I i

Also, abbreTiating o-ir notation aomswhat,
x r y

-f(g .l|> 0; 0,0)
|
d
£

s V,

J/Lv 'i.» + "lt! < r ' y} a^

w
a.y*

Henea, by Induction, we obtain fop n 1,P,'**

|
n n-1

|

— n' ) > n-l,jr ,

=* h,x '

(7.?X) IVj^h-I,;]- for each (x,y) s E„.





Thus the series of (7. Id) are raajor&nt to the corresponding series

of (7.20). 'or*over, the requiresiente for termwiss differentia-

tion of an infinite sua are satisfied since each of the series of

(7.?0) is now known to bo *inifor«ly convergent on R • Hence, for
I

(x,y) € 1 -

I

^f (tt -U , } 8 U
Ml n-*

(7.2?> ^ ^- fa~ ••** < ) r «

CO

^ n«l
^ n,y n-l ty y

or, in other tersss, since each of these aerlea telescopes,

a?e now verify that the function u and its derivatives u and
x

1 satisfy the integral e qua tion statement of the problem (7«5}t

(7.85)

^lu(x,y) -n (*,7)\ 4-\ *£ \ UPCf »V **!*•» )

^ |u(x f y) - un(x f y)





JV

Skua, by (?*•£)% given e>0, there exlete a positive Integer U

depending on e alone , eoeh that n > U =^-

juU,y) - C dg f f<£
,ty

# ui n^u )dVj
/

|<c^ U*3*/*),

for (x,y) e R • But ^ la arbitrary, hence the Integral equation

It aafciefied.

by (7.11) and (7.22)' «e aee that Tor any (x,y; e r , the

point (x,yj u(x, v)| u^lx, y; # u U,j))e B. Baal exieteace of a

eolation on H la now proved*
2

To prove unlqueneae, let ua suppose that u- and u are two

eolation* on R * then

r *

(7.S6) -f<£ ,,| u.^ Ub,,.^,)! d£

+
\ n

l*^'^' V ul.x' uW>5
-f(,^, U

g
, l*,,.^ >|dl£





J'f

ttith A»i1 , /* mln (1, /, JU ), we have
(_ ^ y ^ x

^ U#y) 6 C(K*). Moreover, there exists e point (x*,y*) £ R*sueh

that y (x*,y«) « J^ where m- max f (x,y) on R*. but, adding

(7.24), (7.25) end (7.86) v» obtain

ty
<X,y) ^ *f{ <X-y)y y (x-y) y|

^ K ^ (xy + x y)

^K;
/*- •

6K °yf*

hence ^ (x#,y*) • M. -frr* which implies 1A » snd thus

(7.27)

for (x,y) e. Re

3|

u
x
(x,y) » u

g
(x,y)

To extend this uniqueness proof to

the domain H^, we subdivide H
£

as

shown In the diagram. We know that

the solution u is unique on Re snd

hence determines u(/*,y) for

o < y <£ /*.

But u(x,0) a by hypothesis, consequently, by Theorem 1, Chapter

IX, we have e unique solution u to the characteristic initial

value problem on sub-region 1. Since u (/*,0) « u. x(/*,0), we

have from the differential equation that u (/*#y) • *± x (/*»y)

for 0^ y ^ /*, i.e. u and u. have a first order contact across

the line x * jf* and hence together represent a unique solution

for the region Re 1. Analogously, by the preceding "In the
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avail 1* uniqueness proof for toe mixed boundary value problem, the

solution u is unique In sub-region 2 and nas a first order contact

with u across the line y / • *«e continue obtaining unique solu-

tions for eharaoterletle initial value and mixed initial value

problems, alternatively as indicated by the numerical sequence in

the diagram* These solutions have first order contacts with each

other across the characteristics forming the boundaries of the sub-

regions, hence we have extended our uniqueness proof from the

region R* to the re. ion R •

Having thus determined the existence of a unique solution

satisfying conclusion 4) throughout K , we now consider the Cauehy
s»

problem for region R with the same equation and hypotheses thereon

and with the initial conditions

f u°(x,x) • 0, u*(*,x) • ul_.(x,x), and
(7.28)

^

x ^*
[ u|(x,x) » «^_<x,x) for x €. (0,/).

in (7*28) u and u are the ri/.ht-hand x and lower y de-
x* y- *

rlvatlves, respectively, determined at each polut of the line

y » x by the known solution u on H
r

• By Theorem 4, Chapter III,

there exists a unique solution u° to this Cauehy problem for each

(*#y) e Ri# hence

UjU*y) C u u»y) f<>r U*y) e \
(. u(x,y) for (x, y) e R

g

is the unique solution valid for each (x,y) <= U * H R , since

uQ and u have, by prescription, a first order contact across the

line f ex, mis completes the proof of Theorem 10*





Relaxing only hypothesis 2) of Theorem 10, we obtain tbo

following improves* nts

Theorem 10a

1)

2) v f la partially Lipschltzlan on B (a* defined in Theorem

la.)

*)

^ 4)* There exists at least oaa function, eto* (as In Theorem

10.)

Outline of the proof i

As in the proof of Theorem 10, we may, without loss, prove

existence on R2 only* For, prescribing Cauohy conditions on y • x

as before, we may extend the solution from R to L, by use of
* i.

Theorem 4a, Chapter III*

In this proof we follow very closely the derivation of Theorem

la, Chapter IIj hence only the differences oetneen the two proofs

will be noted*

•EI&RSTRaSS 1 theorem tells us that there exists a sequence of

polynomials, 5" t>? , converging uniformly to f on B* fte extend

the g x p ( * • U*# # '*)» »nd f from b to
r o^ x ^ /

b»i] o ^y^ j

by definitions anslogous to (2.1)* There
•00 <d_P <iC 00

-oo^. q<_ ao

pv] a "¥ q
/a constant L >0 such that |g x\^L in b« and for ell A * More-
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over, the g\ arc * fully" Lipschltxian In b' • Hence by Theoresi

10, (with a -^> <x>, b ->- co ), for each g^ there exists a unique

function u^ such that for (x,y)e k

(7.**) u x
-^d?^ex (|.^, u A , u

x#Jl
,u

Ajy
)d^ .

and thus

(7.31) a
kfj -^g^.y; u^i u A#x. u

A#y
)d^

Fop (x.y)e H , by (7.2* (7.30) and (7.31),

(7.3*)

u x (xf y)|^ L |P

^u A>x
(x,y)|^ L / j>

(A« 1»S#«")

l
u
A»y

(Jt» y) l- L !<*-*> y]

I.e. the sequences ju^, *u.v x > and U\ _£ are uniformly

ooundeci on H .

I

Given two points, (xllvl)^ R^, (Xg^y^)^ K , we may assune,

without loss, that x. ^ Xg. Then, if y, ^ y , let us asaune that

y /_ x • Then by integrating over the regions a, b and c in
1.

diagran (A) we obtain

(A)
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(7.53) W X (V y2 )
-U

X
(V J

l
)W L £' (V*1 } # 8' (V'i^ *

(B)

If y > x we may always choose

Int (x ,y ) -ithy^Kx3'* 3 3

and J.^ 7-<: X- *» in dia£r*m(fi.13 1

.hen, at above,

*-/

1
u
x ( *3**»>-u

x
(V yi } l^ L

{
/(W * a' (vyi } l

•

Adding, we obtain (7.33). ^urtner if y. ^ yg , we have the c&se

euown in diagram (C)« Here by

integrating over the regions

d, e and f we a.aln obtain

y el a
(C) ~^> (7.33) • Hence the sequence

}
u \ r i* equicontinuous on

How, for U^) e Rgj (**!.) « Igf oy (7,30)

(7.34) K^Hl^^l^^ •

Likewise, for (x #j) e H , (x^y) £ R
g
, by (7.31)

(7 *35)
l

u X.y (V y) "
a A,y<V y)

l
^ *'* - x

li
#

Moreover, by precisely the same argument as that used to prove

Lemma I of Chapter II, siven JA> 0, 5>Q, the e exist o > 0,

I >0, depending only on u and £ » respectively, such thet for

U2#y)
^ Kg* U

x
#y) ^ ^,
A>H and |x^ - x

x | <c £
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(7.56) ,u x#x(x
a.y)

- •>#,<V»>1

Thus by (.734), (7*36) and Lean* 1, Chapter II, tna sequence

Stt\ s is equlcontlnuous on Kg.

*e need the following refinement of the argument in order to

show that the sequence ^u v I is equlcontlnuous on Hi

Let us suppose (x,y ) <s R,., (x,y,,) <s R„, Without loss,

we may assume that x ^ y ^ y^. Then

tt

>.7
U,7* ) " u A.yu,yi )

(7.57) fig

"£ W^V u
A.»'

u
A.y

)dl
2

We have Just proved that the sequences |u\ / and \u \ x i

are equicontinuous on R • The sequence Sg \ i is certainly equi-

continuous on B» • Hence, considering (7.36), £lven a> 0, there

exists £>>0, depending upon M- alone, such that |yg*Ti I
^ o

(7.58)|^
1
[g

A
(y2,^ u

x, -X^m^-S^xsljl Vu
A,x'

u
A,

y

)]d ^ ^/

(7.39)|\ C6^(^yg|u^,y2 )|UA#x (f,y2 ), U\,
y (f

**,,)>

y2

"g\^*yi< a
x
(^yi>^ aA,x^>yi) ^x,y^^y2 ) )^^ ky*-*
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for X 1,2, •••.

kino, since ^g^
4^ f on £», given £>0, there exists M > 0,

depending upon g alone, ouch that X^> M

=^>
x

(7.40)1^* [
g)i

. f1(j-.y1<uA(g.y1
)|u

At3t
(j-.y

1
),uA>r

(|-t y2 ))dgUg .

oy
2

s

by hypothesis 2}',

(7.41)1^ Iftj-.y^u^l-.y^i^^^.y^.u^y^.y^)
oy

2

Koreover, since
\
g, \^ L, (X*l,^, #,#

),

(7.4^) \C
2
g
x(r^iiV

UA,x' aA,y>d^!^ L
i 72-^1 \Jyl

Thus by equations (7.57) through (7*41), given JA> 0, £ p> 0,

there exists &> 0, M > 0, depending only upon U- and ^ • **••

speetlvely, such that jy -y.^.6 and X>H
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(7.45) WA#y(x,y2
) - ^yU^I

by Lennsa 1, Chapter II, Inequalities (7.35) and (7.43) imply

th.t th. ..quene. [u^ 1. .quloontlauou. on R
g

.

From thle point on the proof is practically identical with

that for The oran la* Since the sequences Vu \(* / u
\ {

*nd

\ a v i are uniformly bounded and equicontlnuous on Rg , we may

apply ARZELA's theorem to obtain a subsequence of each, uniformly

convergent on Kg. Hence, as for Theorem la, by successive extrac-

tions of subsequences we obtain a subsequence )*\ f of |Uv (

converging uniformly on R to a solution u of the integral
w

equation

u(x,y) «f d£ ( f(£,£| uj u
x
,u

y
)d^ ,

and such that for (x,y) e. R

(x.yj u(x,y); u (x,y), u (x,y))e B. The proof for Theorem 10a
x 7

is now comple te.

Following 1« PICAHD [7] p. 135 and p. 139, we show that the

general statement of the mixed boundary conditions, (i.e. where u

is prescribed along two intersecting curves, one characteristic

and the other nowhere characteristic), can be reduced to the

statement found in Theorems 10 and 10a, (i.e. where u(x.O) *

u(x,x) « for xe[0,/]).

First, 1st us suppose that we prescribe
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(7.44)

^(0).

u(x,0) - 4>(x)

u(x,x) - ^U)

fori6[0,/l, (f(x) indf(x)eC , [0,/l) end Cf (0)

Consider

(7.45) w(x,y) - (?(x) * if (j) - C(>(y).

fte hare w * on H while

("f(x,0) - (f(x)
(7.46) ]

...

(_ w(x,x) « VCx)

for x a iOp /)m Hence, instead of the problem with non-homogeneous

boundary conditions (7.44), by setting

(7.47) » • u • w

we may consider the problem

C v » f(x,yj v wj v_ + w_, v w_)

(7.48)

» f(x,yj v + wj v + w , v w)
xy *" x x* y y

v (x,0) «

v(x,x) * 0,

a problem of the type covered by Theorems 10 and 10a.

Second, suppose we prescribe u along the characteristic

y * and the nowhere characteristic curve y » F(x), where

F(x) e3 CMCO,/^), pt(x) / for x^tO,/^ and F(0) • 0.

s coordinate transformation

x « ?(x)

7 * 7

reduces the curve y « F(x) to the die. Dual y « x since tne in-

verse F~* exists and is of class C* on [0, PfA)]. Moreover,

(7.60) u - P»(x) c^.

(7.49)
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Since F'(x) ¥ 0, the form of the deferential equation re-

mains unchanged and we reduoe the problem to one with initial eon*

dltlona in the form (7.44).

Thus the general statement of the -nixed boundary value problem

for

(7.3) u - f(x,y; uj u ,u )

can be reduced to the form treated in Theorem* 10 and 10a. Ae

note that vraatever continuity and Ldpscn.it* conditions are satis-

fied by (7.3) before transformation (7.49) and substitution (7.47)

are satisfied as well after these operations are performs d.





10?

VIII

uaSED OS THE
C D LOWSB BOUSDISO R7»JCTI0»

r the ordinary differential equation y f = f(x,y) with

y(x ) s y^# 0, ? I FiaQ, assamlng f sorely continuous, ilvee
v

an existence proor ;hat 1» entirely Independent of the classioal

proofs and contains thess as special oases* He bases his proof

on the concept of under and ever functions, defining Lp (x) to

be an under function If CP(Xq) s yQ and

(3.1) D+ If (x) < f(x, lf(x))

and defining y (x) to be an over function If lj/ (x
Q ) • y and

<?.?) r+ v|/(x) >f(x,\j/(x)).

the solutions are found to lie between the upper liroit function g

of the set of uodwrfunctions and the lower Halt function • of the

set of overfunctiona, g and themselves belnp; solutions*

&r. vuLLER L*~l shows that )K's proof will not carry over

directly to apply to a aystes*

(8*3) y s f,(x,y,,'**,y ) , (1 x l,--»»n).II 1 n

However, he is able to extend the classical theorem, o)tainlng

a statement which is sinllar to that of and whleh reduces

to the direct analogue of fWWR0e,,i theorem In the particular case

where the ions fj arc monotonlcally Increasing In the argu-

ments y1
,'-»

>yn
*
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In this clapter we return to the characteristic initial value

problem for

(8.4) u s f(x,yj *| _. »_)•xy * y

*e obtain results similar to thoaa of KJLLBI above. In the fol-

lowing; Theoreaa 11 and 11a we Improve the statements of Theorems

1 and la. Chapter I , by the introduction of upper ana lower

bounding fanctlona JX and oJ •

Theorem 11 (11a)

1) f(x#yj r»; p,q)e C(T), Tl( O^x^/
o^ y^ /

*>U#y) ^ u < ^(x,y)
Hx fx »y)^ P^ -^ x (x # y)

(fjy
(x,y)^ «*^-ay (x.y)

•1 ( ?)' ) f 5s Upschltzlan (partially Llpachltglan ) on T (as

defined in Theorems 1 and la).

Tfce functlone to{r 9 y) and jQ(x,y) e Of(l)i

with 60 (x,y) and JO. (x t
y)e r

'(K). Horeover,
xy *y

cO{x,C) m J2(x,0) m for x a [0»/J»

^(0,y) • i2.(o, v) a for yc[p,/J,

and, for each (x,y) e Rj

j5) ^^(x.y) ^ rain Lf(x,y; u; p,q)^ ,

^5) 12 (x, 7) ^aax [f(x,y; u; p,q)l
** S(x,y)

-*

whare





K>»

(3.7) x,y)l.
x s r

^(*,y)^ ^^M*,y)
^j (r. ty)^q^n (x,y)

^ 4) ( 4) '
) There exists org ar»g -only one ( at least one ) function

^(x,y) ^ 5, u e C(fi) e ieh that for each (x f y) e H the point

(x,yj ^(*,y)j *,y) u (x,y)) e T, and
x <?

u (*,y) « f(x,yj "(*,y); u <x,y), u (x,y)),
*y A y

*(x tG) s ?(0,y) * : or each (x,y) ^

Proof

to I

re extern the dcoaln of Oe ion of the faction f over T

^ ^ / *y defining f (x f y; mj p,q)

-ao ^ -;.^ co

-oo < p <1 CO

-oo < q <^ co

(x,t; uj p,q*), whore

•T = I If 6J(-,y)<u ^ -Q(x,y), j£*p if &; {x f
y)*cp<12 U,y) fx "

~= c^{y 9 y) if u < £J{x,y) pk^>x
(x,y) If p<OJ

x
(x,y)

r s.Q(7j) tf_a(^y)<cu p«fl x {x,y) If Xl
x (x,y)<.p

and qsqif &J-(*»T) ^ q<=£ (x,r)
* y

q s a)J*»y) 1^ S <<0) (x # y)
y y

q » J2
y
(x,y) if _Q

y
(x,y) < q.

By tofll }, f Is • conf ily

btsindsil In f
. Horeover, by hypotheais 2)(2)') ana (3.8) f satl

flea a T.lpachltx (partial )hits) condition in P*.
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-c*, by Theorem 1 (la) Chapter II, there exlata one and only

ona (at laaat ona) function aatiefyin?? conclusion 4)(4)') except

that for (x,y) ^ •«* ara aa?' red only that tha point (*,yji(* # y)

I

(
Y »y)»tt (*»y)) ^ -•• complete tha proof we ntuat show that

x y
this point actually liaa la 7; l*w« wa naiat ahow that for each

(*»y> e i

CO (x f /} ^ u(x,y) ^yi (*,y)

a? x{*#y)^ ux (x f y)^_Q x (x,y)

co
y
(x,y)^ a (*,y)<jQ

y
(x,y) .

accorapliah this, wa first prove tha following leamai

,1 i) 0)^(1,7) ^ %•****

^ 6o (x,y)

00
y
U»y)

! <*,y

^x (x,y

u
y
(x f y

ii) I2 xy(x,y) >uxy(s,y

_Q (x,y) > u(z,y

j2 x (x,y) ^ 'Jx (*»y

_j2
y
(*#y) ^ u

y
' T »?

for all (*»y) e R

for all (x,y) e R

>r i),
' ^Wi m

co (*,y) r

^x(*#y)

6? y
(*

y
<

o
x

\ o *V7 *

CO xy^y

>

d
* \ cVy s u( *' y)

«TV<3y s u (x f y)
q xy x

CO
*y JO xy

WP ii) la analoone.
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To prove '3«9) it rej&alna to verify that hypothec!* I) and

11) of leama 3 are satisfied by u* By hypothesis 3) and defini-

.8), for e*ch {x,y & ,

xy
*<*.y)

^ f(*,y; *(x ty); (*»y)# u (x,y))

and

J **y)
^ f(T,y; u(*,y)j u (x f y), a (x,y))

* y

This, by fjerc*a 2, reqvtlr*?&*nt | , lo satisfied for ©kch (x,y)e.fc

I the proof of ?hoor??i3 11 an3 11a te complete.

It !• evident upon Inspection of ?h*orflma 11 and 11a that ltt

-+ii\ of honvo s Initial conditions, we prescribe

(x,0) . u(x) with TJ(x) e C»( CO,iQ),

|0#r) v(y) with V(y) e. C'( tO,/J) f

where U(0) « v(0), then we »*»iat reQuira

GO(x,0) «il(r,c) - £<*),

£o> (C,y) »&<0,wj • ?(y).

The proof then goes throurh as before

.

Thf folio*' sample Is an Illustration of Theorem 11:

Tola 4

the problem





1X1

(8,10) u - (S?
1^ - < )

1/W+1
, i(x,0) . u(0,y) « 0,

xy *

we *aay readily verify MM

a+1

and

,1») il(*.T> - ''

+1)
XT

satisfy the hypotheses of fheor* XI for all x and

^ y ^ C* s —- 21/ra+1
a B&4-1

In Copter II we obtained the exact solution

wh«re

(ft.* C s B± i^^
11

lea branch point of the solution, M observe that aa a in-

creases in-Jefinitely CO SJ*J JO. approach u from below and abo/e,

re: ;etively« stills " raaefasa c frsa weuev«

9a tea froa this example that it la possible to obtain approxi-

mate solutions, *"ith known Halts of error, and to locate singu-

larities in the ictval sol itlon by uae of ?heore« 11, provided

that • ita'lc «nctlons CO and XL can be obtained. problems

where explicit solutions csmot b« obtained in "closed form", the

procedure Is to altsr the ri rat-hand side of the equation

\xxy. a f(x,yj aj ux , u
y

)

an explicit solution of the altered equation can be ob-
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talned satis ring the boundary conditions. This may lead to fune-

tlona co and -O. satisfying the hypotheses of Theorem 11. (See

. ?. WHtaOKS [it] and [•&]) The »otivation for equation* (3.11)

and (8.1?) of "xample 4 la now evident.

When we consider the possibility of applying, as explained

ow, the P method us-. Stir and over functions to the

characteristic i; I :ial value problem under consideration, we find

e situation much the same as that in the case of a system of

first Trier ordinary 61? ferenfcl&l equations. Vt a.:lw at the

unsatlsfactoi-y state of affairs wherein there is no assurance that

the under functions re^ir b**low the ov*r £ ;nctions throughout

the entire region on which a solution is known to exist. In fact,

we shall presently give an example where an under function exceeds

an function wit. 'usin of existence of a solution.

i—lllfflj inequalities (8»1) and (6.P), we may express the

application of the VURM1 ?sethod as follows i *• require v>oth the

under and over functions to satisfy the given characteristic

Lai conditions and to be continuously differentlabl* and to

osess a mixed second derivative at each point of the domain
To <i x ^ /

Hi < . £e farther stimulate that each under function, ,

shall satisfy

's> V^*.*) < '(x#yi cf(5t,y)i ^ x
U,y), qy*,y))»

hat eaeh over fu ictlon, y , shall satisfy

(8.14) l^Usr) >fOUTI Vp (v,y); t|/
x
(x,y), ^ y

(x,y))

r each (x,y) e.
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Analogous arguments to those used by PEKKOX for th.« ordinary

differential equation y 1 3 f(z,y) lead to the Inequalities

^x(0,y) < lp (0,y) or < y ^ / .

(f
(x,0) 4. l|f( x f 0) -r 04i4/,

for Any under function (^ and any over function lj/ • The se

Inequalities p tO£«Mer with the requirement that (f
and y ea isfy

9 charaeteristic Initial data on the positive x and y axes,

insure that f > ^f In 4 sufficiently small "L" shaped strip in

first quadrant adjacent to the initial characteristics*

Unfortunately* this is inadecuete as the following example demo

etrates*

ftta*sple 5

Consider the problem

•18) = C, u(x,C) t u(0,y) • 0*
xy

3 problem has the unique solutio? u 5 throughout the finite

!»« Let

r^xr -
v

- +
(3.16) <

T *7

[ W*7 « - r
'

•where «, 3, c ur.J D are positive constants* Integration in

16) we may obtain functions y and if satisfying the initial

conditions of (8*15). Qfevtonely* if is an under function for all

(x,y)» ^oreov-r. (1/ >0 for all (x,y) lying in the portion of
1 *y

the first quadrant oelow the paracolic are





I hance y -**<>&• she requirement* for an over function on a

domain R^i •< pr where / is arbitrarily large out finite*
/ [O^ y <£ ^

Defining h s ^ - ^ we have

hk (* f y) s Ax - 3y
2

4- C + D*
xy

awe h(r,0) m h.h f y) a 0, we obtain by integration

h(x,y) « a, x 9y - § xV -V (C +!» xy .

Se note that h >0 in that portion of the flret quadrant below

hyperbola branch

y u |
2(C+C)

while h <0 above this branch. Pro* the diagras it i» evident

at if we require

l< Jl

then there exists a positive con-

stant ft each that within the cor-

^ v resTvondln? ^o*ain R y we have a

WttbrWfien R* on which if > ^ . Hence the S method is not

directly applicable to t I f class of problems*

;in \- .oore«s 11 la, we observe that if, for fixed

(x,y), f is s. ^ally increas. for the arguments

and q y then

f(*,y; 0)(X97)| 0J
y
(x,7), ^ (x,y))

and

win
I

f(x,yj ej p.qH
S(x,y)

L -1

f{x,y; 11(35, y); _Q y (x,y)._Q (x fy))« Esax Tfd^yj
|

,q)i .

S(x,yr





lie

\* e*s* *• *ay al'-er h -els 3; to r* trtlj that

cO(n,j) < T{x,j; 4)<*,y); &)-(x,y), &J (*,y))TV .* y

J2 (x #y) > f(x,y; il(x,*)| _Q ^Ufcjr] , XL
y
(*,y)

)

for each (x,y) ^ . !s Is the direct analogue f s

theorem (ace \isj ) and corresponds to the previously mentioned

result or aULLSF. for a syst*w (9.5).

We cloee this chapter w< th the remark that Theoreas 11 and 11a

can be extended ir^edls ?o *ays. First, clM se^hod le

directly a able to the Canehy problera. We require the func-

tions cd and -O. to satisfy the Cauehy Initial data and observe

that the proof of Lemraa 3 le essentially unchanged. Second, the

method extends to apply to a eye tem

both characteristic and Cauchy initial value prescription s.

The >nodifi cat ions In the hypotheses and proof for ANfeM 11 and

a are obvious.
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