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S'jnmiary

A theoretical and experimental Investigation of a modified Navion

type aiirplane was undertaken to determine the effect on the phugoid mode

of obtaining artificial static stick-free stability with bobweights and/or

downsprings while the center of graclty was well aft of the basic air-

plane's neutral points.

The theoretical study was very rewarding emd indicated that even

though adequate static stability could be introduced with gadgetry, if the

effect of the gadgetry wer« to move the static stick-free neutral point

aft of the meneuverlng neutral point, the phugoid mode will become rapidly

divergent although remaining oscillatory. This change in the relative

positions of the neutral points can be accomplished only with downppr^ng.

The experimental flight research progreui confirmed the qualitative

resiilts of the theoretical study and even agreed surprisingly well with

the quantitative results.

An interesting sidelight of the exporlmontal program concerned

Btlck-fixed stability. It was concluded, after many hours in the air with

the center of gravity aft of the stick-fixed neutral point, that the pilot

is insensitivo to negative static stick-fixed, or elevator poaition, sta-

bility. It appears that if the pilot has satisfactory force stability,

satisfactory dynamic stability, and adequate elevator for the flight re-

quirements, the relative positions of the stick-fixed neutral point and the

center of gravity is unimportant.

There appears to be only two minor qualifications to the accepta-

bility of st'itic and d;m'i-nic stability when artificially acquired with





Cadgetry. The cadgetry may introduce such static nonente into the system

that it is unsatisfactor}' fron ,:^round-handllnc considerations, or it may

increase the system inertia so that the pilot will find it unsatisfactory

because of high forces necessary to overcone the inertia even in level

flight.





/ THE EFFECT OF BOBTz/EIaHT AND DaWI.'SPRIfJG OF TliE

LOiXITUDINAL DYNA-MIC STABILnY OF tc: AIRPLANE

lOTRODUCTION

Since the beginning of World War II, the airplane oesigner has

hart to nrortuce almlanes of grent<^r an^ TPator capabilities, load

caiTying capacities and versatility, so that many design llTJltutions

such as size, cost, coraplexity, ninvay lon^jths, etc., have forced on him

the necessity of making many more major comnromlsea in his desir'n. Re-

gardless of compromises and means nocossarj' to achieve an end, however,

ty ere have always been certain minimum requirements for airplane stability

and control which had to be satisfied. These requirements have been

established by the various customers of the aircraft industry, with the

assistance of the National Advisory Conmltteo for Aeronautlcst and estab-

lish a criteria for all major neaauren of handling qualitlon, with one

notable oxcoption. In naklnK his conprcnisoa and in uoin^; his imat^inative

powers in turning; out a final design, the airplane manufacturer has never

had to trouble himself with .")no -nore of thf^ airplane's loncltudlnal dynamic

stability, the lon,3 period oscillatory phu,;oid mode. This mode of oscil-

lation in past airplanes has always been of such long oeriod that it was

relatively imlmportant whether it was damped or undamped, as lon^^ ao any

possible divergence was not too rapid. Consequently scant attention has

been paid to this mode of dynamic response, and comparatively little work

has been done in studying the phugoid node.

In recent years, the necessary conpronises in design have resulted

in many airplanes being built with their center of gravity too far aft,
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30 that static anH maneuvering lontjitudinal stability of the finished

airplane has been unsatisfactory. Designers have met this problem with

the introduction of the relatively familiar downspring and/or bobweight

into the lonf^itudinal control system. These devices are satisfactory in

Improving static stability but their effect on dynamic stability was only

lightly consldere'', since the short period mode is generally very heavily

damped, and the phugoid node historically was of such little consequence.

Within the military seirvices and some educational institutions,

howpver, there has always been a groun of aerodynamic 1st s wlio hnve felt

that the phugoid mode was not getting deserved attention whenever control

systems were modified with mechanical devices producing artificial static

stability. Their feelings on the subject have receive'' support from

airplane pilots, particularly those flying all-weather, who greatly desire

that the transient reoponse of an airplane to any disturbance such as a

gust be stable, and any resulting oacillationg be either danned out in a

few cycles or of such lonij period that they are barely noticeable. As a

result, the U. S. Air Force awarded Princeton University a contract for

applied research to study the phugoid mode as It la affected by gadgetry

in the longitudinal control system.

The author of this thesis asked to be allowed to participate in

this research and was greatly flattered when he was allowed to take a

considerable part in tho program. This thesis is a presentation of the

study, flight research, and results of that part of the program dealing

with bobweights and downsprings. Although it is complete as to this phase

of the program, this thesis is not to be construed in any way as a report
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on the results of the Air Force procrara which is the peculiar responsibility

of Princeton University.

The thesis will cover the subject -natter in the following general

gaahion. First will be presented a brief discussion on the effects of

bobweights and dovnsprings on static stability in order that the reader

nay more easily understemd their effect on dynamic stability. This will

be followed by a brief report on the analytical study of these effects and

a presentation of the results. The flight research program will then be

introduced. In order that the very interestinj conclusions in regard to

the effect of gadgetry on the phugoid mode be not obscured by the many

relatively trivial but time-consuming ancillary problems, those matters of

merely incidental interest will receive only brief mention.

THE EFFECT OF D0WNSPRIX3 AND BOff-rtKHTS
ON STATIC STABILm

Both the downsprin: m-" the bot*^ight affect stick-free, or control

force, stability by introducing a moment into the longitudinal control

system which changes the stick-free floating an^^le of the elevator in the

downward direction. In the case of the downspring this moment is independent

of normal accelerations, i.e., is not affected by maneuvering. Increasing

normal acceleration with a bobweight Installed, however, increases the

inertia force of the bobweight so that the hinge monent produced by the

bobweight is directly proportional to normal acceleration.

The floating angle of the elevator resulting from aerodynamic and

mechanical effects may be expressed in coefficient form as follows:
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Terms are defined in the Appendix, page^^. The contribution of

the free elevator to the airplane pitchinc moment equation is aimplyj

frf ^ fleet

Meutral points occur wherever the change in pitchlni^ moment with

change in lift coefficient is zero. These points are found by taking the

derivative of the pitching moment equation with respect to C. . If the

static stick-free neutral point is desired this derivative must be taken

holding: r 1, or the product CiV ©qual a constant. If the naneuvering

neutral point io desired, velocity must be held constant and n may vary

in direct proportion to angle of attack or lift coefficient.

The shift In neutral point due to the free elevator is obtained

by taking the derivative of its contribution to the moment equation.

Holdinr C V equal to a constant, then / • ^^ • and the derivative ist

^"^ ^'.[ ^ ^^ "'"• ^ ^
This shows that a gadget producing a hinge moment coefficient equivalent

to ILLlI^ increases the static stick-free stability margin l?y a factor

5«Q
J

5 ^^~' rs c^^





If the derivative is taken holding V a constant which is the con-

dition obtaining in maneuvering flight, then -^ is not equal to ^±. ,

but also i3 a constant, and the entire second tern vanishes. This indicates

that a mechanical hinge moment which is not a function of normal accelera-

tion such as that introduced by a downspring, has no effect on the stick

free maneuver margin.

However, if the mechajilcal hinge moment is a direct function of

normal acceleration, such as that introduced by a bobwelght, then the

addition to the moment equation produced by fi-eelntj the elevator is:

Where n • 1, as in rectilinear flight wheire Ci V ^ equals a constant.

it is plain that the bobwelght has the sane effect as the downsoring in

increasing the static stability margin, since the equations are identical.

Howover, where V is held constant, then n is not equal to 1, but equals

Q'^L. , 30 that the resulting contribution to the moment equation, velocity

held constant, 1st

ACr,^ =~Cn/j^o^, -^ fc^) m-

Taking the derivative with respect to C. ^o find the effect of the

mechanical hinge moment in changing the maneuvering neutral points





.6.

From this equation is seen the fact that the bobveight shifts the

iLaneuvering neutral point aft L> a factor

which is exactly equivalent to the shift in static neutral point produced

Ly the lobweight*

In suninary it has leen shown that the downspring changes the static

neutral point lut has no effect on the maneuvering neutral point, whereas

the lolweight affects each by an equivalent amount. To express this con-

conclusion in the form in which it will be referred to in the r««ainder of

this thesis, tlie downspring increases the static margin { N^'-J^ct,) but not

the maneuver margin (A^^'-X^, ) whereas the bobweight increases both an

•quivalent ai-.ount. The downspring reduces the laargin (/V^ -/Vo) whereas

the bobveight keeps this rtargin, the difference between the two neutral

points, a constant*

It is essential that this distinction be understood and accepted

in order that the rer^inder of this thesis ba fuLl;, appreciated,

ANALTTICAL STbDT OF TilE EFFcTT OF DOWNSPRINOS
AN'^ roiWLi;;rrs on dytiamc rTAriLiTT

The generally accepted equations of notion of an- airplane in th«

longitudinal plane and with elevator free to rotate are, in operator form,

as follows I





-7-

L/ff^Q C^ -h (^^-hd) ^ - d&=^0
z

Moment sq: C^^u ^ (Cn.^ t c.^) ^ ^^^ ^ ^^^z) e- r (c,^ ^^^i^)<^e
- ^

Hlt^GE MO. EQ: ZC^u t (C^^h,d)a>< ^ (C^- h^d^ -^M -i.d ) Q

where all variables are incremental values t U' ^ • and the time

parameter is ^ r- _JC.

Uyj is the initial aerodynamic hinge mooent from any cause, includ-

ing the aerodynamic hinge moment necessary to balance the dounspring and/or

bobweight.

h^ is the tern taking into account the mass unbalance of the

elevator, including the effect of a bobweight in the system.

^, is the tern accounting for the effect of pitching accelerations

on the mass unbalance of the elevator.

h Is the inertia term for the airplane.

A>2 is the tenn accounting for the elevator's moment of inertia

about its own axis.

All coefficients which are stability derivatives are expressed in

a short-hand notation so that, eg., l /. . Is equivalent to ^^p-

All terns are defined in detail in the appendix but for the purposes

of this discussion it is only necessary to know the origin of the terns.
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Before proceedini^ with the solution of these equations, it was

assianed that ^1.-^/7 -Q * since in most airplanes the elevator mode of

oscillation is of such short period and so heavily damped that an assumption

that the elevator instantaneously assumes its trim position does not affect

other airplane motions appreciably.

Since it is not the purpose of this thesis to demonstrate how such

differential equations are solved in order to determine the transient

notions following a disturbance, only a brief descriotlon of the orocess

followed by the solution for dampinj^ and period of the transient oscillations

resulting iron a disturbance w111\b presented. For details of this process

the reader is referre-i to Ref. 1.

The solution of the four equations for the transient motion is

assumed to bo of the form U^ L4 t T o{ = o\ 9 ^ etc.

These assumed solutions are substituted into the four differential equations

and the result is four honogeneous algebraic equations. Since they are

consistent, the determinant of the coefficients of the variables must equal

zero. This determinant is expanded and can be presented as a quartlc in ,

known as the characteristic equation, of the forrai

The roots of this quartlc determine the character of the motion of

the alrolane. If emy roots eo^ real numbers, the motion is aperiodic, con-

vergent If negative, divergent if positive. If there is a complex pair of

roots, there is oscillatory motion, damped if the real part is negative,

undamped if the real part is positive.





-9-

After the determlmint was expanded, the coefficlenti of the charac-

teristic equation were found, each of which consists of many of the co-

efficients of the equations of motion grouped in an algebraic relationship.

These coefficients were simplified by making appropriate substitu-

tions, which will be defined later, and the result was as follows:

where h is the effective airplane inertia, defined as follows:

( C/r. "^ Cfr ) is the effective aerodynamic damping, defined as

follows:

fc>, / C^ )'= (C^ i-C^ //- T ^J
oH id%! ^ dot. <^e ' r
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" Tt^ i/^rn " ^ca) is the stick-free maneuvering stability and la

defined as follows

j

"" Cv i^o'Kcu^ is ^he stick-free static stability, and Is defined

as follows

t

A//>» - /ct and /vc ~
^''i

*^* ^^* maneuvering and static stick-free

stability margins, positive if stable. For a detailed discussion of these

equivalences, see Ref. 1.

The coefficients of the characteristic equation were arranged in

this fashion to facilitate study of the stick-free static auid maneuvering

margins on the characteristic transient motions of the airplane. With the

equation as set up, values for /\g -Ace, *nd /^^-/{^a wez*e varied and solu-

tions for th** equation were made for each variation. The vailues of the

other coaponents of the equations, including the stability derivatives,

were computed from theory and wind tunnel tests, using the Navlon as the

subject airplane. Approximately eighty variations were solvet^ by M. J. H.

Goldberg, so that the root loci for the equation as M 'Acq and Avvj '"^cc^

were varied could be quantitatively defined. The real roots, and the real

part of the conplex roots w*»re converted to the inverse of the tiae to damp

to 1/2 amplitude /
"7=" y and the Imaginary pajrts of the complex roots were
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converted to period (P) by the following relationships.

If a complex root is as follows:

X = m ± in

rh<l^ ^ =r -Ly ^ J_ end P^ 221 y .ccor,^s

nr.

The root loci of the characteristic equation are plotted in Fig. 1

of the Appendix for rarious values of N/n 'No • The real roots and the

real part of the c«nplex root are plotted on the upper family of curves,

with the inverse of tL-ne to danp to half amplitude as the argumeot. Negative

values of the inverse time parameter indicate negative danpin^, and are

equivalent to time to double amplitude. Dotted lines indicate oscillatory

motion and solid lines indicate a puro, or real root, divergence. The

ijnaginary part of the cooplex roots are plotted in the lower family of curves

with period as the argument.

Discussion of Results of Theoretical Study

The most prominent fact revealed by the curves of Fig. 1 Is that the

short period mode, the upper family of dotted lines, is independent of the

maneuver margin and of the margin Mr, "/V(i • In any event, as far as the

Navion is concerned the short period mode, even where it is aperiodic, is

so heavily damped that it is of no particular interest.

Almost equally prominent is the fact that the phugoid mode represented
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by the Lower familj of dotted lines is very greatly affected by the margin

nlrn ~ tVa . For some values of this partuneter it is apparent that the

phugoid mode is very divergent, going to double amplitude in a very few

seconds.

Of small interest is the fact that for certain negative values of

Nm 'Xce. two real roots conbine to becone comnlex and oroduce em oscil-

latory motion, since at the same tlTie there is a real root so rapidly

divergent that any such oscillatory motion is conpletely obscured.

Accepting the fact that the short period mode is of scent interest

while the ph'ogoid mode is of great interest, a cross plot of this family

of curves was made indicating the root loci of the phugold roots only.

This cross plot is presented on Fig. 2 and more clearly illustrates the

effect of stability margins on the phugoid. This plot was made with Air, ' ^c<i

and /V/Tf - Ne as the arguments. Varying downspring moves the roots along

the horizontal lines of constant A^/>, - Xc& while varying bobwoight moves

the roots along the vertical lines of constant Nrr 'No, Of course, lines

of constant Ho 'Xf<f are diagonal, as indicated.

It is readily apparent that there are definite stability boundaries

setting off distinct regions. In one region motion is aperiodic and divergent.

In another the phugoid motion is oscillatory but damped, while in the third

the motion is oscillatory but undamped. Lines of constant tLme (in seconds)

to double or half amplitude, depending on whether the motion is undamped or

datiped, are included in the upper plot.

The botton half of the cross plot Include lines of constant period.

It Is seen that within the regime presented the period of the phugoid varies
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fron 12 to 50 seconds. The rectangle superscribed on the plot indicates

the region in which flight tests were made.

In order to point out a retjion of particular interest, and to illus-

trate the use of the plot of phugoid characteristics, consider a maneuver

margin, Nr^-'Kcc. of t.OZc . By adding do\/nsprintj to the syatan, we move

horitontally, with AJr^-tca remaining unchanged. Moving from right to

left, it is seen that for a margin Nn) ' ^o equal to 4- <:>^c t,he motion

is aperiodic and unda-nped. Increasing downspring moves the airplam* into

the region of damped oscillatory motion, which shows an Improvement.

Increasing downspring further moves the airplane into undamped oscillatory

motion with a fairly short period which very rapidly becomes so divergent

that araolitude is doubled in less than 20 seconds. Notice that this occurs

even though both the static and maneuver margins flure stable.

The effect of changing bobweight la to move the airolane along the

vertical lines of constant /V/>7 " A'c • Aa long as both static and maneuver

margins are positive, it is apparent that there is no serious change in

the oscillatory mode due to varying bobweight.

These curves are deservlnc of more extensive discussion, but they

are also susceptible to easy analysis. It is very apparent from this

analytical study that an indiscriminate use of downsprinj can have a serious

adverse effect on the phugoid mode whereas the effect of bobweight is not

so pronounced. A flight research program was undertaken to see whether the

airplane appreciated this distinction. The results of this program will be

presentef^ forthwith.
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THE FLIGHT RESEARCH PROGRAM

Description of the Test Airplaine

The flight research was conducted on a Ilavlon airplane which was

modified as follows. The area of the horizontal tall surfaces was reduced

Id percent by reducing the span 36 inches. The chord of the elevator

trim tabs was increased one inch, or x :? percent, by adding a flat plate

which was then bent upwards 20 degrees to provide a fixed trimming moment

in addition to the adjustable trim.

The elevator control system was modified as indicated in the sketch

in Fig. J of the Aooendix. This system permitted unrestricted adjustment

of bobweights and downsprings while airborne. Throughout the range of stick

positions, the moment produced by the device was essentially constant.

For the static stability tests, elevator position and stick force

was measured with autosyn and strain gages so that deflections of .1 degree

and forces of 1 pound could be measured. An acceleroneter constructed with

spring and mass anf' encloae-! In a freely ausoended glass tube, accurate to

.01 g, was used in the maneuvering tests.

For the dynamic stability tests, where only the phugoid response

was required, a photo panel was used which contained, amon^ other things, an

airspeed indicator with the pickup from a boon on the starboard wing tip.

Fixed ballast of 80 pounds was anchored in the tedl and movable

ballast of 150 pounds was carried within the cabin so that the center of

gravity could be varied from .52c to .40c while airborne. This required

operating the airplane 8% over design maximum gross weight.
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Statlc Stability Phase

For the sake of standar'liaatlon, bobweights and dovnsprings were

varied in incrementa of 8 pounds equivalent stick force per increment of

either mechanical device. Inn'jmerable static and maneuvering tests were

performed to determine the neutral points with veirious conblnatlons of

downspring and botveight. Enough data was taken to support a comprehensive
•

report on static stability. Due to extreme elevator deflections, tab

deflections, and center of gravity positions, various nonline8Lritl,es were

encountered. However, since the purpose of these tests, and the need for

them, was merely to locate neutral points, any discussion of the static

data would be superfluous to the topic of this thesis. Suffice it to say

that standard pilot technique was employed, the neutral points were determined

carefully and with reasonable accuracy, downspring was found to have no effect

on maneuvering stability whatever, and that static stability is in fact as

indicated by the summary in Fig. V of the Appendix.

Dynamic Stability Phase, General

The dynamic test program was designed to determine the phugoid

responses at a constant static stability margin as bobweights and downsprlngs

were varied. In order that as many combinations of downsprings and bobweights

as possible could be used without introducing too much static stability, it

was necessary to test the airplane at center of (gravity positions well aft of

the neutral point.

No phugoid responses were taken with the center of gravity aft of .363c,

due to a critical shortage of down elevator deflection. Full down elevator
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waa require*^ at 90 raph with the e.g. at .39c. It was not felt that the

ar'ded information to be obtained at center of tpravity positions aft of .365c

Justified the very real possibility of losing the airplane due to inability

to recover from the nose- up swing of an oscillatory or divergent response.

As the flights progressed, it soon becane apparent that oscillations obtained

at 3ei chord could be as extreme as the Tlavion could safely withstand.

A trim speed of 110 mph was used in taking all of the phugold

responses. Very gi^at attention was devoted to getting trim as closely as

possible. Although control friction was reduced to 1 pound, trijnraing to

exactly 110 mph when the force gradients were veiv low was difficult but the

results show that any discrepancy was minor.

Responses were recorded by carefully trimniing the airplane at 110

mph, then aoplying the necessary force to cause absolutely rectilinear flight

5 moh either abov« or b<>low trl*^ sneed, and then releasing the stlrlt. The

reaultint: motion wac determined hy a plot of airspeed versus tixao taken from

the photo panel.

Dynaciic Stability Phase, Presentation of Results

Upwards of 90 different resnonsea were recorded during this phase

of the flight research progran. Most of thera are included in this report.

It was necessary' to discard some which indicated a gust input during the

transient response, or unsatisfactory initial conditions. For the aake of

emphasizing certain important conclusions, and pictorializing the literal

statements, various groups of these responses are presented separately for

the following purposes.
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In order to illustrate the fact that ohugoid rooponse can be unsat-

isfactory even thou^jh static stick-free stability is positive, and to show

that the response at a given center of gravity with the sane static margin

worsens rapidly ao downspring is employed in lieu of bobweight in order to

obtain the static margin, responses are plotted in Fig. S , page JO of the

Apoendix all of which were taken at a static raiirgin // " /<« ^ - OG-^i,

and center of gravity at
. 3^^c, . The tendency of the phu^joid to become

undamped and diverge rapidly with increase in the proportion of downspring

in the system is quite obvious.

In order to illustrate the fact that if the static margin be kept

constant and the margin A/o? - /\/o be kept constant the phugoid response

will remain unchanged even though the center of gravity is varied, resoonses

meeting these conditions are presented in Fig. (t , page >/ oi the Appendix.

These conditions can be met only by correcting center of gravity shift with

bobweight.

In order to illustrate the fact that there is a great change in the

phugoid response as the center of gravity is varied from .32c to .36c with-

out correcting with bobweight s or other devices, responses are presented in

Fig, y , page -J 2 of the Appendix and require no further conraent.

The general mass of the responses, including those already oresented.

is presented on page ^i'et subs. On the page preceding is tabulated the

margins and e.g. positions obtaining for each response. All responses are

grouped in major subdivisions of approximately equal static majrgin,

with the margin A'/n -A© in descending order within the suMivisions.

An interesting fact, consistent with sir:ple dynamics, is illustrated in this
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type of presentation. As long ao the static meurgin, which is analogous

to the spring in a spring-oiaas-dainper ayaten, is positive, motions are

oscillatory. As long as A//>) - AJo , which is analogous to the damping in

the simple dynamic systeir. , is positive, the oscillatory motion is damped,

or very nearly so. If N^v^ • A/« becomes negative, indicating negative

datiping, the oscillatory motion always increases in amplitude. Recall that

the difference between ^nr and A^» in a simple aerodynamic airframe is

due to aerodynaunlc damping. Therefore it is safe to conclude that even

though the static stability is positive, if the static force neutral point

is aft of the maneuverln-' neutral point, the phugoid will be unf^amDed.

These points Just discussed and illustrated definitely' confirm at

least the trend disclosed by the theoretical studty. In particular, the

flight research confirms the analytical conclusion that the dounsprini^ will

have a serious adverse effect on the phugoid mode whenever it moves the

static stick-free neutral point. A quantitative comparison of the experi-

mental and theoretical results will be made later in this paper.

Pilot Observations

In the long period or phugoid oscillations there was a very large

time lag in airplane response between attitude and airspeed, with attitude

leading airspeed by a rather extreme amount in some cases. For example it

often occurred that the airplane was pitching quite rapidly, on the order

of 12 degrees per second, and had obtained an extremely high nose attitude

while the airspeed, although falling rapidly, was of the order of 140 mph.

Naturally a recovery was necessary, and this often had to be accomplished
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before the airspeed had fallen considerably fron its maximum value. Con-

sequently the velocity traces are not truly indicative of the severity of

the oscillations. Another example of an extreme condition which occurred

several times during the tests, and indicative of the lag between attitude

and velocity, occurred at the hi^jh speed peaks of the oscillations. The

airplane would be pitching downward at a great rate, at least 12 degrees

per second since it would go from a conservatively estimated nose-up attitude

of 30 degrees to a nose down attitude of 50 degrees in 7 seconds. It would

reach its maximum nose -down attitude and rapidly reverse its direction of

pitch while the airspeed was still building \xp» Consequently before the

airspeed ever reached its maxijmim value, the accelerations at the botto'n of

the dive would build up so rapidly that a recovery was necessary before the

airspeed ever reversed to show another peeJc in the oscillation on the air-

speed plot of the maneuver. For these reasons thp airspeed traces of the

oscillations in many cases were cut short nearly a half cycle earlier than

a trace of airplane attitude versus time would show a cut-off. In other

wordu, were the phugoid rec^pon^e to be recorded by an attitude versus tir.e

plot, these very divergent curves would show am extra half cycle.

COMPARISON OF RESULTS FRO-! FLIGHT TESTS
AND THEORETICAL INVESTIGATIONS

Since the Navion was used in both the theoretical and experimental

phases of the investigation, there appears to be a good opportunity to compare

results from each type of investigation and possibly to confirm quantitatively

the theoretical results. It would seem rash, at first blush, to hope for
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any close quantitative coraparison, since the theoretical study required

the use of engineering estimates of stability derivatives in many cases,

and the solution of the equations of motion required certain approximations

in order to linearize thera. In particular, the theoretical study was nec-

essarily liniited by linear approximations to small perturbations, whereas

the actual notions, while very perturbing, were not at all anall. In detail

power effects undoubtedly varied considerably during the oscillations since

the Navion does not have a constant speed propeller, but the theoretical

study could not take this very nonlinear variation into account.

However, since a quantitative conparison is inevitable, the author

presents on page fSoC the Appendix the plot of phugoid characteristics

with constant damping lines, and with various flight test results susceptible

to reasonably accurate measurement plotted where they fail. Suitable cap-

tions identifying the points are presented beneath the curves. On page *y6 «

the plot of phugoid characteristics with constant period lines is presented

with a similar treatment of actual flight test results. AH things beinj

considered, the conparisons are very good and far better than expected.

PIU3T'S QUALITATIVE OPINION ON HANDLLU QUALITISS AS
INFLUEIICSD BY DOWNSPRINGS AND BOBWBIGOTS

This topic normally would be of extreme interest to an aircraft

designer with the pilot's interest at heart, if there are any, but unfor-

tunately all of these opinions are not strictly applicable to the general

airplane as the quantitative trends disclosed in this investigation appear

to be.





-21-

Accept the fact that a bobweight will provide stable force gradients

in an unstable airplane. Furthermore, this study showed the bobweight to

be most ineffectual in causing an unsatisfactory phugoid. In spite of

these obvious aiivantages, the pilot may well object to having very much

bobweight in the elevator control systen. The elevator generally has a

fairly low moment of inertia. '^Oien masses of lead on a moment arm are

Introf^uced into the system, the elevator moment of Inertia nay increase

considerably. In the case of the Navion, the elevator moaont of inertia

increased 32 times while moving the neutral points 5.1 percent chord with

bobwelrht. This trpmendous Increase was du« to th-^ very small mocion* of

inertia of this small airplane, and a larger aiiT>lane would not sha-r such

an increase percentage-wise while getting the sane effect on stability.

Yet it is ti'ue that a large increase in inertia In the systen will be very

objectionable to the pilot, both on the ground and in rough air, and it

may well be that the amount of bobweight which may be introduced into the

system will be limited by adverse pilot opinions.

Although a downspring will have a bad effect on the phugoir^, as far

as moving the elevator and controllin/; the airplane is concerned. It has

no discernible effect. Slxcept for Improving the static force gradient, the

pilot would not even know a downspring was in the system, except while

taxiing. However, when the airplane's phugold mode, although oscillatory,

is rapidly divergent, it is extremely difficult to trim the airplan*. And

of course, even If a trim were obtained, the first gust that hit the air-

plane would send it off trim speed never to return except to pass through

on its wa\' to other extreme speeds and attitudes. In other words, if the
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downsprin^ were responsible for producing an landa-'.ped phugoid, the pilot

would have to fly the nlaT* at all tires, keeping a positive control of

the airspeed.

Many hours of flying time was spent with the center of gravity aft

of th*? stntic stick-fixed neutral point. The unstable slope of the elevator

position versus lift coefficient curve was conpletely unnoticeabie, with the

exception that in extreme cases a shortage of down elevator as speed is

decreased is very noticeable and can be embarrassing. With this exception,

which can not apply to most aircraft, and which can easily be corrected by

adjusting stabilizer incidence angle, the author can see no objection to

unstable stick-fixed stability as a routine situation.

Pilots' opinion at best is not susceptible to quantitative definition.

These opinions are offered as a qualitative guide to possible objections to

extreme amounts of gadgetry in the systerw This author* as a pilot, has flown

many military aiz*planes equipped with the bobweight none of which had quite

as pronounced an effect on the elevator system as did the devices in the

Navion. Consequently it is not felt that the adverse cocaraents on handling

qualities as influenced by the bobweight is necessarily applicable to a

larger airplane. The downspria? l8 a different story. No pilot will like

any airplane which he can not trim longitudinally.

COXLUSIONS

Static and maneuvering stability nay be improved considerably with

the use of bobweights and downsprin,T3. Even though an airplane is basically

very unstable. Judicious U3e of t-hese devices will provide stable force
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gradlents. Mo attention need be paid to orovldlnj stable atick-fixed

stability, providing adequate elevator power and ran^ of deflections is

provided.

Correcting an unsatisfactor:/ static force stability with bobweight

can only have a favorable effect on the phu^^oi'^ node. Correcting the

force stability with downsprlng In some conditions will change the mode

from a pur*? dlverrence to a dar.oed osclllQtory motion, but In all contritions

it is possible to proiiuce very divortjent oscillations by an indiscreet use

of downsprinjs.

The roEults of the study clearly indicate that an lnr!if ferer.ce to

the phu^oid .-node is unjustified where gadgetry is used in the elevator

control systen, and prove a need for a rational specification as to minimum

require:nents in regard t-) this mode.

RECOMMSNBATIONS

Since this Investigation has been liji.lted to a study of the airplane

in the cruising conficuration, it is recoowended that there be some further

study of the phugoid response of an airplane In a wider remc© of conditions.
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DSSCRIPTION OF SU'.EOLS

Cl EHevator hinge mowent coefficient

CfTi Pitching monent coefficient

C i C^ Lift and Drag coefficient*

All stability derlratlves are e^qpressed in shorthand notation. For

(j The differential operator, using ^ as the tine variatle
rather than r . ^^. (^^^ ^ ^ ^ ^^ ^

^^ d Elevator deflection ^^)

St Elevator are«

^ Zlevator caord

^5 Elevator Effectiveness

9( Angle of attack, s for stalilixer, w for ving

> Angle of Incidence, s for stallliier, w for wing

^ Downwash angle

^ Pitch angle

U mjL g increnental change frcr. trim speed

D NunLer of normal accelerations. In g«

C Hean Aero. Chord of wing

X^q Location of center of gravity with respect to c ( from
J leading edge)

/Yi? static stick-free neutral point with respect to c.

/V/)} Maneuvering stick-free neutral point with respect to c.
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