

Calhoun: The NPS Institutional Archive

An analytical and experimental investigation into application of a polyphase transistor switching circuit for speed control of induction motors

Dorsey, John Michael
Massachusetts Institute of Technology

DUDLEY
Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

an analytical and experimental Investigation INTO THE APPLICATION OF A POLYPHASE TRANSISTOR SWITCHING CIRCUIT FOR SPEED CONTROL OF INDUCTION MOTORS

John M. Dorsey and
Randolph D. Zelov

$$
1: P 1: D Y
$$

U.S. NAVML GI 'C ALLAAE SCHOOE

IVICN:EMY, EA! IFRNIA
AN ANALYTICAL AND EXPERIMENTAL TNVESTTGATION INTO THE APPLTCATION OF A POLYPHASE TRANSISTOR SWTTCHTNG CIRCUTT FOR SPEED CONTROL OF INDUCTEON MOTORS
by
John Michael Dorsey, Lieutenant Commander, U. S. Coast Guard
BoSo, U, S. Coast Guard Academy, 1944
Randolph Dickinson Zelov, Lieutenant,U. S. Navy
BoS., U. So Navel Academy, 1947
and
Robert Lee Krag, Lieutenants U, S. Navy BoS., U. S. Naval Academy, 1950
SUBMITTED IN PARTIAL FULFILLMENT OR THEREQUIREMENTS FOR THE DEGREE OFNAVAL ENOINEER
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Tune, 1956

Thiocis

$$
\text { blix } 8
$$

Cambridge, Massachusetts

May 21, 1956

Professor Leicester F. Hamilton Secretary of the Faculty Massachusetts Institute of Technology Cambridge, Massachusetts

Dear Professor Hamilton:
In accordance with the requirements for the Degree of Naval Engineer, we submit herewith a thesis entitled: "An Analytical and Experimental Investigation into the Application of a Polyphase Transistor Switching Circuit for Speed Control of Induction Motors."

Respectfully yours,

AN ANALYTICAL AND EXPERIMENTAL INVESTEGGATION INTO THE APPLICATION OF A POLYPHASE TRANSISTOR SWITCHING CIRCUIT FOR SPEED CONTROL OF INDUCTION MOTORS

by
John Michael Dorsey Lieutenant Commander, U. S. Coast Guard
Randolph Dickinson Zelov Lieutenant, U. S. Navy
and
Robert Lee Krag Lieutenant, U. S. Navy
Submitted to the Department of Naval Architecture and Marine Engineering on May 21, 1956 in partial fulfillment of the requirements for the degree of Naval Engineer

ABSTRACT

The polyphase switching-transistor cirouit studied in this thesis offers promise of attaining speed control of induction motors by providing a simple means of varying line frequency. Both by theoretical analysis and in experimental work, the practicability of such an application is proved. While problems do exist, viz., undesirable rotor heating due to harmonic content in the switching-circuit output, possibility of difficulty in starting the motor due to the low impedance of an induction motor at starting, and relatively low power levels obtainable from presently available power transistors, all these difficulties are capable of solution.

The theoretical analysis includes a study of operation of the single-phase circuit based on operation as a relaxation oscillator. Then, the effect of adding more phases is studied, These analyses point out the importance of various circuit parameters in determining range of circuit operation.

The procedure for designing a three-phase circuit is outlined and the problems encountered in attempting to attain maximum power output are discussed.

The feasibility of utilizing the switohing-circuit output as a power supply for a conventional induction motor is investigated analytically. The most important subjects studied are the effects of harmonic content in applied voltage on torque-speed characteristics of the motor and the additional rotor copper losses which result due to this harmonic content.

The experimental work consists of designing a threephase oirouit and making it operate. Experimental data obtained deals primarily with the effeot of various circuit parameters on operation, providing confirmation of the predictions of theory. A synchro, with shorted rotor, was run as an induction motor and its speed varied by changing the applied d.c. voltage.

It is concluded that the qualitative behavior of the polyphase transistor-switching circuit is accurately predicted by theory. By careful determination of the many parameters in the circuit, quantitative predictions should be very precise. It is further concluded that speed control of low-power induation motors, using the switohing oircuit output as a power supply, is feasible, but that it is desirable to filter out the harmonic content of the switching circuit output in order to minimize undesirable losses due to the harmonics.

It is recommended that further experimental study be made, particularly with regard to speed control of induction motors, that the switching circuit design be optimized for maximum power output, that the problem of filtering the switching cirouit output to remove harmonics be investigated, and that schemes for inoreasing the power rating of the circuit be devised.

Thesis Supervisor:
Alexander Kusko
Associate Professor of Eleotrical Engineering.

ACKNOWLEDGEMENTS

The authors are indebted to Professor A. Kusko, of the Electrical Engineering Department, Massachusetts Institute of Technology, for his advice and guidance as thesis supervisor; to Messrs. T. H. Putman, R. D. Thornton, and H. H. Woodson, of the Electrical EngineerIng Department, Massachusetts Institute of Technology, for their interest and assistance in the development of this thesis; and to Miss Catherine Ahearn, for her patience and skill in preparing the thesis in its final form.

TABLE OF CONTENTS
Page
ABSTRACT $1 i$
ACKNOWLEDGEMENTS iv
LIST OF ILLUSTRATIONS viき1
TABLE OF SYMBOLS 蚟
CHAPTER
I INTRODUCTION I
II PROCEDURE 3
III ANALYSIS OF SWITCHING CIRCUIT OPERATION 5
3.1 Basic Circuit 5
3.2 Effect of Load on Basic Circuit v-i Characteristic 8
3.3 Oscillatory Behavior of Basic Circuit 10
3.4 Importance of Various Time Intervals in Determining Frequency 14
3.5 Conclusions Concerning Operation of Basic Circuit 15
IV POLYPHASE SWITCHING CIRCUITS 15
4.1 Phase-locking Principle 16
4.2 Effect of Phase-locking on Operation of Switching Circuit 20
V DESIGN OF THREE-PHASE SWITCHING-TRANSISTOR CONVERTERS 23
5.1 The Three-phase Circuit 23
5.2 Determination of Number of Turns on Cores 23
5.3 Determination of Load Line for Maximum Power Output 27

TABLE OF CONTENTS

VI OPERATYON OF INDUCTION MOTOR EXCTTED BY POLYPHASE SWITCHJNG CTRCUIT OUTPUT 30
6.1 Technique of Analysis 30
6.2 Equations Describing Machine 30
6.3 Effect of Harmonic Content in Applied Voltage on Torque 32
6.4 Losses Due to Harmonic Content of Applied Voltage 44
6.5 Effect of Varying Line Frequency and Voltage on Maximum Torque 45
6.6 Conclusions Concerning Square Wave Excitation of Induction Machine 46
VII EXPERTMENTAL RESULTS 48
7.1 Outline of Procedure 48
7.2 Design of Circuit and Procedure for Test 48
7.3 Single Phase Converter 49
7.4 The Two-phase Circuit 50
7.5 The Three-phase Circuit 50
7.51 Effect of Load Resistance (R_{L}) on Frequency 50
7.52 Effect of Added Base Resistance (R) on Frequency 51
7.53 Effect of Circuit Parameters on Range of Oscillation 52
7.54 Effect of Number of Phases on Frequency 53
7.55 Effect of Inductive Load 53
7.6 Operation of an Induction Motor With Circuit Output 53
7.7 General Comments 54
VIII CONCLUSIONS AND RECOMMENDATIONS 64
8.1 Conclusions 64
8.2 Recommendations $6 ?$

TABKE OF CONTENTS

APPENDIX Page
A PIECEWISE-LINEAR ANALYSIS OF THE BASIO CIRCUIT 69
B CALCULATION OF PARASITIO TIME INTERVAL IN 76 SWITCHING
B-1 Transistor Switohing Time 76
B-2 Parasitic TIme Interval Due to Non-zero Saturation Inductance of Core 78
0 PREDICTION OF EFPECT OF PHASE-LOCKING ON OPERATION OF BASIC CIRCUIT 82
D DETAILS OF INDUCTION MOTOR ANALYSIS 90
D-1 Calculation of Currents 90
D-2 Calculation of Torque 93
D-3 Calculation of Typical Torque-Speed Curves 95
D-4 Calculation of Losses for silp of 10% Relative to Fundamental 97
E DESIGN OF POLYPHASE SWITCHING CIRCUIT 99
-

LIST OF ILLUSTRATIONS

Figure Title Page
I Basic switching ircuit 5
II Representation of conducting half of switching circuit for breakpoint analysis 6
III v-i characteristic of switching circuit as viewed from magnetizing inductance of core 8
IV Representation of switching circuit and load 8
V V'-i' characteristics of load and negative resistance oscillator, showing the effect of R_{I} on operation
VI (a) V-i characteristic of switching circuit (b) Typical hysteresis loop for core material 10
VII Current and voltage waveforms in steady state operation of switching transistor circuit 12
VIII Arrangement for locking two converters together with predetermined phase-shift between the outputs 17
IX Output voltages from two-phase circuit and sum and difference voltages which appear across saturable reactors 18
X rhree-phase switching circuit 24
XI Zypical collector characteristics for power transistor in common emitter configuration 26
XII Mransistor in common emitter configuration 27
XIII Fhundamental and first two harmonics of two square waves displaced 900 in time 39
XIV Torque-speed curves for fundamental and first two harmonics of torque produced by two-phase square wave excitation 42
XV Fundamental and first two harmonics of three square waves displaced 1200 in time 43
XVI Erfect of adding additional base resistance on output frequency of a single converter 56

LIST OF ILLUSTRATIONS

Figure Title Page
XVII Effect of load resistance (R_{L}) on output for three-phase circuit 57
XVIII Effect of number of phases in circuit on output frequency 58
XIX Effect of load and number of phases on probability of oscillation 59
XX Effect of load resistance, R_{L}, on frequency 60
XXI Eiffect of load resistance on maximum frequency of three-phase circuit 61
XXII Relatifinship between load resistance (R_{L}) and added base resistance (R) needed to insure oscillation 62
XXIII Speed of an induction motor versus control voltage 63
A-I Basic switching circuit 69
A-II Conventional piecewise-linear model of saturated transistor 70
A-III Representation of "lA" half of switching circuit with transistor in saturation 70
A-IV Circuit of Fig. A-III with transformer windings replaced by an ideal voltage source and an ideal current source 71
A-V v-i characteristic of basic switching circuit 73
A-VI Resistive load placed across temminals of device having known v-i characteristic 74
A-VII vinl 1 characteristic showing effect of resistive load on operation of basic circuit 75
B-I High-frequency equivalent circuit of transistor 76
B-II v-i characteristic of switching circuit 79

LIST OF ILLOSTRATIONS

Figure Tritle Page
C-I Phase relationships in cirouit of Figure C, 82
Q-II Two-phase circuit for prediction of effect of phase-locking oircuit on operation of basic circuit 83
C-III Subtractive loop with Thevinin equivalent looking in at R 85
E-I Typical output characteristics of 2N66transistor in common emitter configuration(load IIne of 50 ohms is shown super-imposed)101

SYMBOLS

a Transistor current amplification factor
E Applied DC voltage to converter
f Frequency
1_{b} Transistor base current
i_{c} Transistor collector current
I_{e} Transistor emitter current
$i_{a} \quad$ Current in additive phase-locking loop
$i_{s} \quad$ Current in subtractive phase-locking loop
1 Load current
$i_{d_{n}} r n^{\text {th }}$ direct axis rotor current
i $\mathrm{r} \mathrm{n}^{\text {th }}$ quadrature axis rotor current
$i_{\mathrm{o}} \mathrm{s} \quad \mathrm{n}^{\text {th }} \alpha$ axis stator current
$i_{\beta_{n}}$ nth β axis stator current
Im Magnetizing current of core
$I_{s} \quad$ Saturation inductance of core material
$I_{\mu}{ }^{r} \quad$ Rotor self-inductance per phase
$I_{\mu} \mathbf{S} \quad$ Stator self-inductance per phase
L_{μ} Sr Mutual inductance between one phase of rotor and one phase of stator
n Order number of $\mathrm{n}^{\text {th }}$ harmonic
Number of turns on a winding
P 1. Power
2. Number of poles on motor

R
Resistance introduced into base for phase-locking
-

R^{\prime}	Inverse slope of positive-resistance portion of v-i characteristic
R_{0}	Inverse slope of negative-resistance portion of v-i characteristic
R_{0}^{\prime}	Inverse slope of negative-resistance portion of $v-i$ characteristic as modified by phase-locking circuit
$R_{\text {l }}$	Loed resistance
R_{0}	Transistor base resistance plus resistance of ${ }_{2}$ winding in base circuit
$\mathrm{R}_{马}$	Transistor saturation resistance ($r_{s} \triangleq \partial V_{c} / \partial I_{c}$) W_{1} plus resistance of winding in collector circuit
R^{20}	Rotor resistance per phase
R^{3}	Stator resistance per phase
r_{n}	Restitance of $n^{\text {th }}$ transformer winding
9	remsiston base resistance
r_{c}	Mnansさstor collector resistance
${ }^{\circ} \mathrm{C}$	\%a¢cnisitor emitter resistance
$r_{\text {g }}$	Mransistor saturation resistance
${ }_{3}$	Wotor slip at maximum torque
E	Motor slip ($\mathrm{n}^{\text {th }}$ harmonic)
$\mathrm{ram}_{\text {en }}$	Maximum electromagnetic torque
S_{2}	Elcceromagnetic torque due to $\mathrm{n}^{\text {th }}$ harmonic in applied voltage
$\overrightarrow{\mathrm{W}}$	Complex voltage
\vec{V}	Coniugate of complex voltage

SYMBOLS

$v_{\alpha_{n}}{ }^{s}$	$n^{\text {th }}$ harmonic of voltage applied to stator windings
$v^{\prime} \beta_{n}{ }^{s}$	$\mathrm{n}^{\text {th }}$ harmonic of voltage applied to stator windings
v	Load voltage
z_{L}	Load impedance
$2^{\text {S }}$	$\mathrm{R}^{\text {S }}+j \omega L \mu^{\text {S }}$
z^{r}	$R^{r}+j \omega L_{\mu}{ }^{r}$
ω	Frequency of fundamental component of applied voltage
ω_{m}	Motor speed
\varnothing	Flux

CHAPTER 1

INTRODUCTION

With the coming of age of automation, the need for variable speed control of electric motors for use in control systems has assumed great importance. Even before automation in industry, variable speed electric motors found many applications in military servo systems. Because of the difficulty in obtaining speed control of AC motors, it has Invariably been necessary to use DC motors in the aforementioned applications. This, of course, introduces the disadvantage of the commutator as well as requiring extensive additional equipment if wide speed range is desired.

There would be several advantages attendant to using induction motors in the above applications, among which are the ruggedness of the motor, the inexpensiveness of the squirrel-cage rotor induction motors, and the fact that there is no commutator. The inflexibility of the induction mechine from the standpoint of speed control has prevented its wide use in control applications, but smooth speed control over any range can be provided if the line frequency is varied. Since it has not been convenient to do this in the past, the induction motor has been regarded as essentially a constant-speed machine. The switching circuit studied in this thesis offers a means of conveniently varying Ine frequency and, thus, varying the speed of an induction motor.

İ is the purpose of this thesis to investigate analytically and experimentally the application of a switchingtransistor DC to AC converter described by Royer in [1] to speed control of induction motors. This circuit has an output frequency proportional to the magnitude of the DC input voltage, so it provides the variable frequency source required to attain such speed control. Furthermore, the magnitude of the output voltage is also proportional to the DC imput voltage, so the maximum torque attainable remains nearly constant since the flux density is approximately constant. By the use of phase-locking techniques described by Milnes in [2], two or more of the basic circuits may be corabined to provide a polyphase power supply. Since the output of the converter is a square wave, the effect of square voltage wave excitation on the torque of an induction machine must be determined.

The operation of the basic circuit, the phase-locking principle and the effect of phase-locking on operation of the iasic circuit, and the effect of applying square voltage waves to an induction machine will all be analyzed theoretfeally. Insofar as possible, the predictions of theory will be checked experimentally.

CHAPTER 2

PROCEDURE

In both the analytical study and the experimental work, the procedure has been to start with the simple and proceed to the more complex. For example, in the theoretical analysis, the basic circuit is first analyzed for operation with passive loads, then the phase-locking principle is studied, after which the operation of the converter with phase-locking elements included is determined. These analyses place the limits on the load which can be placed across the output and indicate the departure of operation from the ideal case. The analytical portion of the thesis is then completed with the analysis of the effect of square voltage wave excitation on the torque-speed characteristics of the polyphase induction motor.

In the experimental phase of the thesis, a similar procedure is followed. The basic single-phase converter is designed and assembled and then tested to determine operation with various passive loads. Then, successively, two-phase and three-phase circuits are assembled and tested.

The object of the experimental portion is to determine degrees of agreement with theory and practical limits of operation. Therefore, information of interest includes range of input voltage over which satisfactory operation is obtzined, frequency of output for a given input voltage,
range of frequency obtainable, and power level of the output. This information is readily obtained once the circuit is properly operating.

As will be developed in the analysis of the basic circuit, the problem of starting an induction motor using the switching circuit is a difficult one. For proper operation, the cireuit requires a certain minimum load impedance, and the induction motor, at starting, is almost a short circuit. Therefore, the phase of the experimental work concerned with applying the switching circuit output to the windings of an induction motor consists of trying to devise schemes for introducing impedance into the load in order to maintain oscillatory operation of the switching circuit.

The thesis follows, in general, the outline of procedure given above.

CHAPTER 3

ANALYSIS OF SWITCHING CIRCUIT OPERATION

3.1 Basic Circuit

The basic switching circuit proposed by Royer in [1] is shown in Figure I. The operation of this circuit has been described in terms of core saturation in both [1] and [2]. While such explanation does express the mode of operation of the circuit, it leaves many questions unanswered. By analyzing the circuit as a negative resistance oscillator, a more complete picture of the operation may be obtained and, in paroicular, the importance of the load impedance level shows up clearly.

Fig. I. Basic switching circuit.
Obviously, one-half of the circuit may be investigated \&t a time since, when one transistor is conducting, the other is blocking and does not affect the output. The
analysis is carried out in detail in Appendix A, but the assumptions made in the analysis are important and include the following:

1. The transistors are perfect switches, 1.e., when blocked the leakage current is negligible and is assumed to be zero.
2. Leakage inductances of the core windings are negligible. This assumption simplifies the analysis considerably and is justifited by the fact that these inductances do not fundamentally afrect circuit operation.
3. Winding resistances of the core windings may be lumped with other resistances in the circuit.
4. Based on (2) and (3), the windings may be represented as ideal transformers.

Granted these assumptions, we are able to look into the cirouit of the "N" windings, with the magnetizing finductances and load being taken out of the circult. The cirevic may then be reduced to the form shown in Fig. II. The piecewse-Inear model of the transistor is the conventional represertation of a transistor in saturation.

Fig. II. Representation of conducting half of switching circuit for break-point analysis.

Using conventional methods of break-point analysis, the v-i characteristic of the circuit can be determined. Then, from symmetry considerations, the piotuxe may be completed by adding the effect of the other half of the cirauit, the resultant $v-1$ characteristic being shom in Fig. III. The quantities of interest are as follows:

$$
\begin{align*}
& V_{0}=\frac{E}{1+\frac{1}{n R_{b}}\left(\frac{a R_{s}}{1-a}\right)} \tag{I}\\
& I_{0}=V_{0}\left[\frac{1-a(n+1)}{n^{2}(1-a) R_{s}}\right] \tag{2}\\
& R_{0}=\frac{n^{2}(1-a) R_{b}}{1-a(n+1)} \tag{3}\\
& R^{\prime}=\frac{R_{s}\left(n^{2} R_{b}\right)}{R_{s}+n^{2} R_{b}} \tag{4}
\end{align*}
$$

where

$$
\begin{align*}
& R_{b}=r_{b}+r_{w 2} \tag{5}\\
& R_{S}=r_{S}+r_{w / 1} \tag{6}\\
& n=N_{1} / N_{2} \tag{7}
\end{align*}
$$

Note that R_{0} is negative for any norral value of the turrs ratio, so that the circuit, as seen from the magnetizing inductanes of the core, displays the volt-ampere charaoteristic of a negative-reststance oseliletor.

Fig. III. V.i characteristic of switching circuit as viewed from magnetizing inductance of core.
3.2 Effect of Load on Basic Cireult v-i Characteristic

Bised on the foregoing, the cirowit may be represented by the magnetizing inductence and the load placed across the terminals of a black box whose v-i characteristic is known. This representation is shown in Fig. IV.

Pig. IV. Representation of switching circuit and load.
For the moment, assume that the magnetizing inductance is infinite and that the load is resistive. Then if we Iump the winding resistance of the load and the load itself and call the resultant resistance $R_{\text {I }}$, we can look in at the
vi-1' terminals and observe the effect of R_{L} on circuit operation. As shown in Fig. V, the effect of the load is to change the value of the negative resistance. The

Frog. V. V'-1' characteristics of load and negative resistance oscillatow, showing the effect of R_{L} on operation.
pactefeal inportance of this is obvious in that if R_{L} equals R_{0} (R_{0} being defined by Equation (3)), the circuit no longer looks like a negative resistance, so oscillatory behavior will not occur. This poses a difficult problem to the purpose of this thesis for 15 is hoped to apply the output of this circuit to the stator windings of an induction motor. Since, at starting, the resistance of an induction motor is very nearly zero, the effect of placing this motor directly across the switching circuit output may be to stop che oscillations or that circuit.

TherePore, at starting, some means will have to be devised to make the load present a high impedance to the switching circuit.
3.3 Oscillatory Behavior of the Basic Circuit

It has so far been shown that the basic circuit displays a negative resiatance portion in its vol气-ampere characteristic, and it has been implied that this can lead to oscillatory behavior. This effect will now be shown.

When we look into the N_{1} windings of the basic circuit from the magnetizing inductance of the cose, we see the v-i characteristic shown in Fig. VI(a). Por siraplicity, the case

(a)

(b)

Fig. VI. (a) v-i characteristic of swtching circuit.
(b) Typical hysteresis loop for core material. Letters refer to particular states in the operation. where R_{L} is infinite is shown. If sone finite value of R_{L} is taken (so long as R_{L} is greater in mannitude than R_{0}), the
only effect is to change the slopes of the $v-1$ characteristic; the principle remains the same.

Suppose that the initial state of the core is at point A in Fig. VI(b). On the $V-1$ curve in Fig。VI(a), this point is located as shown. So there is some voltage, V_{1}, across the windings and a raggnets:ing current, I_{m} flowing In the windings. So far as the $v-i$ curve is concerned, this state remains while the core absorbs $2 \lambda_{S}=2 N \phi_{s}$ volt seconds. After this absorption, the core is at point B, as indicated in Fig. VI(b). So far as the V-i curve is concerned points A and B are identical.

At point B, the core saturates and the voltage and current ace constrained to operate on the $v-i$ characteristic and are related by

$$
\begin{equation*}
v=L_{s} \frac{d i}{d t} \tag{8}
\end{equation*}
$$

so the current and voltage increase (voleage becomes less negative) along the path $B C$, indicated in Fig. VI(a). At point C on the $v-1$ curve, the curnerit cannot continue to increase in accordance with Equation (8) because the v-i locus will not allow it. So, still rexerring to pig. VI(a), operation switches almost instan'zaneously to point D. (The time interval here depends upon the switching time of the transistor.) At point D, the $v-1$ locus is such that the relationship given in Equation (8) may again be satisfied, so both current and voltage decrease until point E on the hysteresis loop is reached, at which time the core desaturates.

Voltages and currents then ramain constant while the core once more absorbs $2 \lambda_{S}$ volt seconds. At that point, saturation again occurs and the same sort of operation as is described above is repeated to close the oscillation loop.

Looked at as a function of time the voltages and currexts appear as shown in Fig. VII. If the saturation

Fig. VII. Current and voltage wavelorms in steady state operation of switching transistor circuit.
inductance were zero and if the transistors switched inscantaneously, the transition from B to E and F to A would be instantaneous and a perfect scuare wave output would be obtained. Furthermore, the frequency of operation would depend solely on the time it takes for the core to go
from negative to positive saturation, 1.e.,

$$
\begin{equation*}
2 \lambda_{s}=V_{1} \Delta t \tag{9}
\end{equation*}
$$

Where Δt is the time for one hali cycle to occur. Then, we have

$$
\begin{equation*}
f=\frac{V_{1}}{4 N_{1} \phi_{\mathrm{s}}} \tag{10}
\end{equation*}
$$

Which is the fundamental frequency relationship for this circuit.

One interesting fact is inmediately evident. In the usual approach to analyzing the operajion of this circuit, the frequency relationship has been wittten with E repiacing V_{1} in Equation (10). Neglecting other time intervals in the cycle (i.e. assuming L_{s} is zero and transistor switches Instantaneously), for any non-zero value of R_{s}, the ideal frequency is approached more and more closely as $n^{2} R_{b}$ is made very much larger than R_{S}. This is shown by the following equation:

$$
\begin{equation*}
V_{1}=\left(E-I_{m} R_{s}\right) \frac{n^{2} R_{b}}{R_{s}+n^{2} R_{b}} \tag{11}
\end{equation*}
$$

Since $I_{m} R_{s}$ is very much smaller than E, it can be neglected, so the importance of the $n^{2} R_{b}$ term in devemining the deviation of the frequency from that predicted for the ideal case is evident. Unfortunately, as can be seen by reference to Equation (3), an increase in the quantity $n^{2} R_{b}$ also increases R_{0}, thus increasing the minimum aliowable load impedance: Insofar as operation of the basic circuit is concerned, the only other question of importance concerns the relative
magnitudes of the various time intervals in determining frequency.

3.4 Importance of Various Time Intervals in Determining Frequency

Reference to Fig. VII shows that two parasitic time intervals exist in any given cycle, that is, the time to go from B to C and from D to E, and the switching time of the transistor (C to D). We can find the time to go from D to G to account for the intervals from B to C and D to E, and the switching time of the transistor may be estimated using the high-frequency equivalent circuit.

To determine the time involved in going from D to G, we can use Equation (8) and the following relationship:

$$
\begin{equation*}
v=\left(\frac{R_{s} n^{2} R_{b}}{R_{s}+n^{2} R_{b}}\right) i+\frac{E n^{2} R_{b}}{R_{s}+n^{2} R_{b}} \tag{12}
\end{equation*}
$$

This calculation is made in Appendix B, using representative values of the circuit paraneters, and shows that the time interval involved in one complete cycle is approximately twenty-Ifve micro-seconds.

In order to escimate the switching time of the transistor, the high-frequency piecewise-Inear model of the cransistor given in [4] is used. Again calculations are included in Appendix B and show that the switching time of the transistor is of the order of micro-seconds, so the time interval for switching the transistors is negligible.

When we consider the fact that the maximum frequency we are interested in for our purposes is 100 cps , we see
that the minimum period we will be dealing with is ten milliseconds; therefore, neither of the parasitic time intervals is of any consequence in detemining the frequency of operation of the oscillator.
3.5 Conclusions Concerning Operation of the Basic Circuit

Eased on the poregolng, tre following important conclusions can be made with regard to opexetion of the single phase switching-transistor cirouit:

1. There is a minimum value of load impedance, below which oscillatovy benavio: of the suitching circưt ceases.
2. Because of the aforementioned restrituton on the value of load impedance, the powe: which can be delivered to che load is ilimited. (Since $P=$ $\mathrm{V}_{\text {Load }}{ }^{2} / \mathrm{R}_{\mathrm{L}} \cdot$)
3. The frequency of operetton apyosches more closely the Ideal prediated frequency as the quantity $n^{2 R}$ is increesed. Untortunately, increasing $n^{2} R_{b}^{D}$ has the concomptrant erfeet or increasing the minimum allowable load imperance.
4. Parasitic time intervals are or ro consequence in detemmining frequency of operation of the circuit over the range in which we ard interested.

The rext step is to investigate the phase-locking principle and detemane the effect of phase-locking on the operation of the bastc circutt.

CHAPTER 4

POLYPHASE SWITCHING CIRCUITS

4.1 Phase-locking Principle

By utilizing phase-locking techniques proposed by Milnes in [2], two or more of the converters deseribed in Chapter 3 may be locked together with their ontput dreering in phase by any desired amount. In ehis chepore, a cireuit in which two of the besto converters are locked together with a 120° phose diference will be described. In order to construct a three--phase system, it 13 then simply recessary to add another converter locked 120° behind the other two.

In order to link the basic converters to form polyphase gystems, the arrangement shown in Fig. VIII is used. In this arrangement, the elements destynated L_{1} and L_{2} are saturable reactors, the voit-tirne retinge of wheh are adjusted to provide the exsired phase diference ketween the outputs, V_{1} and V_{2}

The analysis of the basic converter circuit as a negetive-resistance cevice led to meny inveresting conclusfons kith regard to さis operation, parifcularly giving an insight into the effect of various eircuit parameters on operation. In analyzing the phase-locking principle, this techrique is not useful. Instead, operation is conveniently investigated in terms of volt-time areas.

Converter No. 1
Converter No. 2
PLg. VIIT. Armengement for locking two converters together with predetermined phase shist between the outputs.

Mre desired output wavefomns ere shown in Fig. IX (a) and (b). Now, rererence to Fig. VIII shows that, with winding polarities as indicated, $\left(V_{1}+V_{2}\right) N_{-} / N_{1}$ appears across L_{1} and $\left(V_{1}-V_{2}\right) N_{3} / N_{1}$ appears across L_{2}. These sum and difference voltages are shown in Fig. IX (c) and (d).

Fig. IX (c) and (d) show that row the phase difference desired, the volt-time rating of I_{2} must be twice that of L_{1}. It in now desired to relate the volt-time ratings of the

Fig. IX. Oitput voltages from two-phese circuit and sum and difference voltages which appar across saturable reactors.
saturable reactors to that of the mein wincings. First, we zeagnize that in any halt cyale each of the saturaole reactors goes from negetive saturetion to postive saturaGSon. Then we can say that in one nelfocycle, L_{1} absorbs:

$$
\begin{equation*}
2 V_{1} \frac{N_{3}}{N_{1}} \frac{\tau}{6} \text { volt secs. } \tag{13}
\end{equation*}
$$

and I_{2} absorbs:

$$
\begin{equation*}
2 V_{1} \frac{N_{3}}{N_{1}} \frac{\tau}{3} \quad \text { volt } \operatorname{secs} . \tag{1.4}
\end{equation*}
$$

In this half-cycle, the main windings absorb:

$$
\begin{equation*}
V_{1} \frac{\tau}{2}=2 N_{1} \phi_{s} \text { volt secs. } \tag{15}
\end{equation*}
$$

from which we can solve for T.
We then observe that L_{1} and L_{2} togetiner absorb:

$$
\begin{equation*}
V_{1} \frac{N_{3}}{N_{1}} \tau=2 N_{L_{1}} \phi_{L_{1}}+2 N_{L_{1}} \phi_{L_{2}} \quad \text { volt secs. } \tag{16}
\end{equation*}
$$

Where $\phi_{L_{2}}$ and ${M_{2}}_{2}$ are the saturation Plutes of L_{1} and L_{2}, respecterciy.

Wen, using the eact that the volt-itine aiting of L_{2} must be twice that or I_{1}, and assunang thet $\phi_{L_{1}}$ equals $\phi_{L_{2}}$ (as It will in the prectacal case), we find thet:

$$
\begin{equation*}
N_{L_{1}} \phi_{L}=\frac{2}{3} N_{3} \phi_{S} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{L_{2}} \phi_{L}=\frac{4}{3} N_{3} \phi_{S} \tag{18}
\end{equation*}
$$

E'cuations (1?) and (18) are Gine -undanental relationship between the volt.-time ratings of one setureble reactors and the volt-tine retting of the phase..lowing cinoutt turns (N_{3}) on one mann cones when tho converrere are locked together with 120° phase shtet.

How does than assure the destred phese-locking? In the outputs are not out or phase by 200°, the sum and dirrerence voltazen will be difxerent from thoae shown in Fig. IX. For example, if the ovtputs are out of phase by less than 120°, the sum $\left(V_{1}+V_{2}\right) N_{3} / N_{1}$ will appear across L_{1} eariler than is shown in Figure IX (c). However, I_{1} is designed to absorb a certain number of volt-seconds, so, arter absorbing this deatgned anount, it will saturate. The sum voltage will then
appear across the rectifier bridge, thence across the resistance in the base circuit of transistor IA in such a direction as to make the transistor non-conducting. (Refer to Fig. VIII.) Thus, the transistor will switeh sooner than it would have withcut phase-locking. By following cycles of this sort the two circuits finally arrive at the desired phase relathonship. A more detalied discusbion of the above action for a quadrature phese--locking circul.s is given in [2]. It should be mentioned theit invesifgetion of the phase-locking achan in detail shows that the relationshaips given in Equations (17) and (18) are not exact in the prectical case, but that the volt-time ratings of the saturable reactors should be slightly less than those lecel values [2]. The discrepancy is smail and is not amenabie to precise prediction, so in designing the circuit it is cesireble to provide taps on the windings on L_{1} and L_{2} in order to pemit adjustment of the number or tums to give exactly the desired phase shift. $4.2 \frac{\text { Ereot or Phese-locking on Operecton of Switehing }}{\text { circutit }}$

In this section we are interested in determining the effect of introducing phase-locking on the operation of the besice circust. That is to say, how does it affect the converter operating as a negative-resistance oscillator?

The analysis is made in detail in Appendix C. In order to simplify the equations, the two-phase circuit is analyzed, extension to the three-phase case being made by deduction. In order to make this analysis it is necessary
to regard all transformers in the circuit as ideal except for winding resistance. Accordingly, self-inductances of the windings are assumed to be zero and magnetizing inductances are assumed to be infinite.

As shown in Appendix C, the basic effect in the steady state of adding the phase-locking circuit is to modify the v-i characteristic as seen from the load. The slope of the negative resistance portion (R_{0} in Fig. III) is changed in accordance with the following relation:

$$
\begin{equation*}
R_{0}^{\prime}=\frac{R_{0}\left(R+R_{b}\right)}{R_{b}(1+K)} \tag{19}
\end{equation*}
$$

where R_{b} is as defined in Equation (5), R_{o} is defined in Equation (3), R is the resistance introduced into the base circuit of each of the transistors (See Fig. VIII), and K is defined by the following:

$$
\begin{equation*}
K \approx \frac{n \operatorname{Im}\left[n(1-a)\left(R+R_{b}\right)+a R_{s}\right]}{\left[E+\left(\frac{a}{1-a}\right)\left(\frac{R R_{s}}{R+R_{b}}\right) I_{m}\right][1-a(n+1)]}\left[\frac{N_{3}}{N_{1}}-\frac{[1-a(n+1)] R}{n(1-a)\left(R+R_{b}\right)}\right] \tag{20}
\end{equation*}
$$

Where I_{m} is the magnetizing current of the main core (for example, see Fig. VI(b)) and other quantities have been previously defined. The magnitude of K is normally small but, whatever its magnitude, the effect is to make R_{o}^{\prime} larger. Therefore, the most important result of introducing phase-locking in the two-phase case is to increase the value of the negative-resistance portion of the $v-1$ characteristic as seen from the load, thus increasing the minimum allowable load impedance for oscillatory operation.
-

In the three-phase case, the effect is even more pronounced in that the center converter sees more additional resistance because of the additional phase-locking windings so that the quantity, K, in Equation (19) will be further increased, thus increasing $R_{o}{ }^{\prime}$ once more.

These effects are all observed experimentally. Each time the number of phases is increased in going from singlephase to three-phase operation, it is found necessary to increase the minimum load resistance to sustain oscillatory operation.

CHAPTER 5

DESIGN OF THREE--PHASE

SWITCHING-TRANSISTOR CONVERTERS

5.1 The Three-phase Circuit

As is mentioned in Section 4.1, the three-phase switchingtrensistor circuit is made up of three converters, each differing in phase from the othersby 120°. Suchararrangement is shown in Fig. X. In this scheme, the volt-time ratings of L_{1} and L_{3} are equal, as are those of L_{2} and L_{4}. The volt-time rating of I_{2} and L_{4} is twice that of L_{1} and L_{2}. In actual practice, the converters are supplied from the same D.C. source, three different sources being shown in Fig. X in order to simplify the alagem.

The design of the particular circuit used in experimental work for this thesis is outlined in Appendix E, the following procedure being given for the general case.
5.2 Determination of Number of Turns on Cores

The first step is to detemine the number of turns to be used in the various windings shown in Fig. X. For design purposes, the frequency relationship given in Equation (10) may be approximated by the ideal relationship which follows:

$$
\begin{equation*}
f=\frac{E}{4 N_{1} \Phi_{s}} \tag{21}
\end{equation*}
$$

In order to solve for N_{1}, three quantities, f, E, and \varnothing_{S}, are required. ϕ_{s} is a function of the core material and dimensions and is assumed known. For a constant frequency

FIg. X.
Three-phase Switching Circuit.

circuit, f is known uniquely. In the variable Irequency case, it is the maximum frequency at which the converter is desired to operate. The input voltage, E, is dependent upon collector characteristics of the transistor operating in the common emitter configuration and upon the maximum allowable collector-to-emitter voltage for the branslsto: This last chamacteristic gives tive maximum allowable value or input voltage. In this connection, it must be remembered that when the transLstor is cut off, trise the input voltage appears across collector-to-emitter, so the mazimun permissible input voltage Ly onewhal the maximun aliowabie collector-to-emitter voltage.

Knowing all these quantitses, N_{1} may be calculated. If It is smportant that the meximum Irequency of operation be aghered, the calculation should be ior some input voltage Iess than the maximum allowable since, as was shown in Section 3.3. the voitage whith appears across the core is less than E.
N_{2} is determined by the amount of base current requined to saturate the transistor. Reterming to typical collector chardoteristits for the transtaton in the common emitier configuration, as shown in $F i{ }^{\circ} \mathrm{E}$ 。 XJ , a load line for the maximum allowdie voltage is chosen so as to obtain the maximum possible power from the transistor when saturated. For the present, assume that this load line is 2.9 shown. It can be seen that in order to seturate the transistor ($I_{c}=400 \mathrm{ma}$), the base current must be about 10 ma . Then, knowing the value of the resistances in the base, the voltage required across

Fig. XI. Typiaal collector characteristics for power transistor in common emitter conifguracion.
the "Ny" winding to give this required base current may be detemined. Knowing this, the turns ratio, N_{2} / N_{1}, may be fourd for the maximum input voltage. In the practical case. N_{2} mey be chosen larger than the value indicated by the above to provide a safety factor and assure saturation. It must be recognized, however, that this will increase dissipetion in the base.

Where is no particular requirement on the value of N_{3} except that when the phase-locking saturable reactors do saturate, the voltage which appears across R in the base circuit of the transistor (see Fig. X) must be sufficient to overcome the voltage across N_{2} and block the transistor. Trerefore, it should be sufficient to make N_{3} equal to N_{2}. It should be mentioned that it is desirable to make N_{3} as smail as possible in order to limit winding resistance losses and to reduce the total number of turns on a core.

Having chosen a value of N_{3}, the required number of turns on the phase-locking saturable reactors may be determined from Equations (17) and (18).

Based upon the above, the number of turns in all the windings indicated in Fig. X may be determined. Another important Ractor in this design is the determination of the load line siown in Fig. XI.
5.3 Determination of Load Iine for Maximum Power Output

In this discussion, the circuit shown in Fig. XII will be investigated. Essentially, this is what we would like the

Fig. XII. Transistor in common-emitter configuration. basic converter circuit to reduce to when the transistor is saturated. (This presumes that V_{b} is chosen to give this condition.) Then, provided there were no other limitation on the value of load impedance, R_{L} would be chosen in order that the maximum power would be delivered to the load, that 1s, so that the transistor is delivering all the power it can without exceeding the maximum current rating. It should be noted that the circuit used in experimental work in connection with this thesis was designed on this basis.

le

However, as was shown in Section 3.2 , the choice of R_{L} is not an independent one in this switching circuit, for it must be larger in magnitude than the negative resistance portion of the $v-i$ characteristic of the circuit, Therefore, if the maximum amount of power is to be delivered to the load, R_{o} must be minimized. Reference to Equation (3) (Equation (19) for the polyphase case), shows that R_{o} is a function of the collector-to-base transformer turns ratio, the total resistance in the base circuit, and the current amplification factor of the transistor. Of interest is the ability of the designer to minimize R_{0} by controlling the values of the first two of these factors. With regard to che turns ratio, n, we have:

$$
\begin{equation*}
\frac{\partial R_{0}}{\partial n}=\frac{[1-a(n+1)]\left[2 n R_{b}(1-a)\right]-\left[n^{2} R_{b}(1-a)\right][-a]}{[1-a(n+1)]^{2}} \tag{22}
\end{equation*}
$$

Equating this to zero and solving for n, we find:

$$
\begin{equation*}
n \triangleq \frac{N_{1}}{N_{2}}=\frac{2(1-a)}{a} \tag{23}
\end{equation*}
$$

in which case

$$
\begin{equation*}
R_{o_{\text {min }}}=\frac{-4(1-a)^{2} R_{b}}{a^{2}} \tag{24}
\end{equation*}
$$

But this result requires that N_{2} be greater than N_{1}, which is totally unrealistic. Therefore, it is concluded that the best the designer can do, in choosing this turns ratio to reduce the value of R_{0}, is to make n as small as possible consistent with acceptable amounts of dissipation in the base circuit.

The primary means of minimizing R_{0} is, then, to reduce the value of total resistance in the base. This resistance is comprised of the transistor base resistance, the winding resistance in the base, and the external resistance, R, introduced into the base in the phase-locking circuit (Refer to Fig. X). By proper design of the core windings, the second may be made very small. The external resistance, R, is also small, so the most important resistance in the base circuit is the non-controllable base resistance of the transistor itself。

The problem reduces to minimizing all resistances in the circuit by careful design of the core windings and by Introducing the smallest possible resistance into the base for phase-locking. Then, by judicious choice of the turns ratio, n, the magnitude of R_{0} may be controlled. It must be remembered, however, that there is a limit on the value of turns ratio below which dissipation in the base becomes undesirably large. This dissipation, besides representing a loss of power, also results in internal heating of the transistor.

No simple rule can be given for determining the load line for maximum power output since so many factors enter into the problem. However, the principles outlined above do give the designer a point of departure.

CHAPTER 6

OPERATION OF INDUCTION MOTOR EXCITED BY POLYPHASE SWITCHING CIRCUIT OUTPUT

6.1 Techn:que of Analysis

In the analysis which follows, an idealized model of the roteting electrocal machine will be used and constraints will be applied to make it operate as an induction motor. The techniques employed are those developed in the course in Electric Power Modulators (6.06) given at Massachusetts Inatitute of Technology. The analysis will be made of a twopinsse msichine since the results are perfectly general and can be appided to the three-phese case by making a symmetrical comporent trensformation.

Whe following assumptions are made with regard to the new inne :

1. Rotor and stator are non-salient, ioe., the air gap Ls uniform.
2. Whe stator windings are symmetrical and sinusoidally distrobuted in space quadrature.
3. Trae perneability of the iron is infinite.

2 Silot erfects may be neglected.

6.2 Equations Describing Machine

From [5] we have the following relations for the generalized electromechanlcal power modulator:

$$
\left.\begin{array}{c}
v_{a}^{s} \tag{25}\\
v_{b^{s}}^{s} \\
v_{a}^{r} \\
v_{b}^{r}
\end{array}\right]=\left[\begin{array}{cccc}
R^{s}+p L_{\mu}^{s} & 0 & p L_{\mu}^{s r} \cos \phi & -p L_{\mu}^{s r} \sin \phi \\
0 & R^{s}+p L_{\mu}^{s} & p L_{\mu}^{s r} \sin \phi & p L_{\mu}^{s r} \cos \phi \\
p L_{\mu}^{s r} \cos \phi & p L_{\mu}^{s r} \sin \phi & R^{r}+p L_{\mu}^{r} & 0 \\
-p L_{\mu}^{s r} \sin \phi & p L_{\mu}^{s r} \cos \phi & 0 & R^{r}+p L_{\mu}^{r}
\end{array}\right] \times\left[\begin{array}{l}
i_{a}^{s} \\
i_{b}^{s} \\
i_{a}^{r} \\
i_{b}^{r}
\end{array}\right.
$$

$$
\begin{equation*}
T_{e}=L_{\mu}{ }^{s r}\left[\left(i_{a}^{r} i_{b}^{s}-i_{b}^{r} i_{a}^{s}\right) \cos \phi-\left(i_{a}^{r} i_{a}^{s}+i_{b}^{r} i_{b}^{s}\right) \sin \phi\right] \tag{26}
\end{equation*}
$$

where the currents and voltages are measured on the fixed stator and moving rotor. In discussing the induction motor, it is more convenient to represent the rotor currents and voltages which are moving in space by equivalent quantities which are stationary with respect to the stator. To do this, the $\alpha-\beta, \alpha-q$ transformation is employed:

$$
\left.\left.\begin{array}{l}
x_{\alpha}^{s} \tag{27}\\
x_{\beta}^{s} \\
x_{d}^{r} \\
x_{q}^{r}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos \phi & -\sin \phi \\
0 & 0 & \sin \phi & \cos \phi
\end{array}\right] \times \begin{array}{c}
x_{a}^{s} \\
x_{b}^{s} \\
x_{a}^{r} \\
x_{b}^{r}
\end{array}\right]
$$

Applying this transformation to Equations (25) and (26), the following are obtained:

and

$$
\begin{equation*}
T_{e}=\frac{P}{2} L_{\mu}^{s r}\left[-i_{\alpha}^{s} i_{q}^{r}+i_{\beta}^{s} i_{d}{ }^{r}\right] \tag{29}
\end{equation*}
$$

By applying various constraints to Equation (28), the performance of the induction motor may be studied for any conditions of interest. In this thesis, we are interested in the effect of varying line frequency and voltage on maximum torque and in the effect of harmonic content in the applied voltage on the torque-speed characteristics, as well as the
effect of these harmonics on heat generation in the machine. These factors are all studied in the following sections. 6.3 Effect of Harmonic Content in Applied Voltage on Torque

In previous analyses [5], the voltage applied to the stator windings of an induction machine has been represented by a single sinusoid. Since the object of this thesis is to apply the output of the polyphase switching circuit to the stator windings, the effect of such excitation on the torquespeed characteristics of the machine must be determined. Furthermore, the effect of this excitation on machine heating may be important. This last will be discussed in the followIng section.

For the case of balanced two-phase excitation, the stator excitation voltages may be represented by the following:

$$
\begin{equation*}
V_{\alpha}^{s}=\frac{4 V}{\pi} \sum_{\substack{n=1 \\ n \text { odd }}}^{\infty}-\frac{(j)^{n+1}}{n} \operatorname{Re}\left(\epsilon^{j n \omega t}\right) \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
v_{\beta}^{s}=\frac{4 V}{\pi} \sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{-(j)^{n+1}}{n} \operatorname{Re}\left(\epsilon^{j n \omega t-n \pi / 2}\right) \tag{31}
\end{equation*}
$$

Where $2 V$ is the peak to peak magnitude of the applied square wave. If we then define the following complex quantities:

$$
\begin{align*}
& \vec{V}_{\alpha_{n}}^{s} \triangleq \frac{-(j)^{n+1}}{n} \frac{4 V}{\pi} \tag{32}\\
& \vec{V}_{\beta_{n}}^{s} \triangleq \frac{-(j)^{n+1}}{n} \frac{4 V \epsilon^{-j n \pi / 2}}{\pi} \tag{33}
\end{align*}
$$

we can write

Note that:

$$
\begin{align*}
& V_{\alpha}^{s}=\sum_{n=1}^{\infty} \operatorname{Re}\left[\vec{V}_{\alpha_{n}}^{s} \epsilon^{j n \omega t}\right] \tag{34}\\
& V_{\beta}{ }^{s}=\sum_{\substack{n=1 \\
n \text { odd }}}^{\infty} \operatorname{Re}\left[\vec{V}_{\beta_{n}}^{s} \epsilon^{j n \omega t}\right] \tag{35}
\end{align*}
$$

$$
\begin{equation*}
\vec{V}_{\beta_{n}}^{s}=(-j)^{n} \vec{V}_{\alpha_{n}}^{s} \tag{36}
\end{equation*}
$$

Now we recognize that in an induction motor the rotor windings are shorted so that $V_{d}{ }^{r}$ and $\mathrm{V}_{\mathrm{q}}{ }^{r}$ are constrained to be zero, so all the voltage constraints on Equation (28) are known.

In order to solve Equations (28) and (29), it is assumed that mechanical transients are very long compared to electrical transients. Therefore, the aforenentioned equations may be solved for any destred steady-state value of mechanicel speed of rotation. Furiohermore, in the steady-state with sinusoldal excitation, the operator "p" in Equation (28) may be repleced by $f w$, providing the voltages and currents are represented in their complex forms.

Since the applied voltage is comprised of an infinite sexies of sinusoids, the effect of $2 l l$ must be included. The substitutions mentioned in the preceding paragraph convert Equation (28) to a set of linear differential equations with constant coefficients, so superposition applies. Therefore, we sclve for the $n^{\text {th }}$ component in the steady state and obtain the general result by summing n components, where n goes from
one to infinity. Subject to these conditions, Equation (28) becomes:

Where a 13 the frequency of the fundamental component of the square waves and ω_{m} is the mechanscal speed (equals ϕ). How We define the following:

$$
\begin{align*}
& Z_{n}^{s} \triangleq R^{s}+j n \omega L_{\mu}^{s} \tag{33}\\
& Z_{n}^{r} \triangleq R^{r}+j n \omega L_{\mu}^{r} \tag{39}\\
& Z_{1} \triangleq Z_{n}^{r} Z_{n}^{s}-\left(j n \omega L_{\mu}^{s r}\right)^{2} \tag{4.0}\\
& Z_{2} \triangleq \omega_{m} L_{\mu}^{r} Z_{n}^{s}-j n \omega_{m} L_{\mu}^{s r^{2}} \tag{42}
\end{align*}
$$

By substituting Equations (38) and (39) in Equation and solving for the currents, the following equations are obterred:

$$
\begin{gather*}
\vec{I}_{\alpha_{n}}^{s}=\frac{\vec{V}_{\alpha_{n}}^{s}}{Z_{n}^{s}}\left[1-\frac{j n \omega L_{\mu}^{s r^{2}}\left(n \omega-\omega_{m}\right)}{Z_{2}+j Z_{1}}\right] \tag{42}\\
\vec{I}_{\beta_{n}}^{s}=-j \vec{I}_{\alpha_{n}}^{s} \tag{4;3}\\
\vec{I}_{d_{n}}^{r}=\frac{L_{\mu}^{s r} \vec{V}_{\alpha_{n}}^{s}\left(n \omega-\omega_{m}\right)}{Z_{2}+j Z_{1}} \tag{44}
\end{gather*}
$$

$$
\begin{equation*}
{\overrightarrow{I_{q n}}}^{r}=-j \vec{I}_{d_{n}}^{r} \tag{45}
\end{equation*}
$$

for $n=1,5,9, \cdots,$.
and

$$
\begin{gather*}
\vec{I}_{\alpha_{n}}^{s}=\frac{\vec{V}_{\alpha_{n}}^{s}}{Z_{n}^{s}}\left[1+\frac{j n \omega L_{\mu}^{s r^{2}}\left(n \omega+\omega_{m}\right)}{Z_{2}-j Z_{1}}\right] \tag{46}\\
\vec{I}_{\beta_{n}}^{s}=+j \vec{I}_{\alpha_{n}}^{s} \\
\vec{I}_{d_{n}}^{r}=-\frac{b_{u}^{s r} \vec{V}_{\alpha_{n}}^{s}\left(n \omega+\omega_{m}\right)}{Z_{2}-j Z_{1}} \tag{48}\\
\vec{I}_{q_{n}}^{r}=j \vec{I}_{d n}^{r} \tag{4,9}
\end{gather*}
$$

for $\mathrm{n}=3,7,11$, . . .
The algebra involved in obtaining Equations (42) through
(49) is ouitined in Appendiz D.

Heving these expressions, the contribution of each hamonic to toraue may be found. Since only like hamonics interact to produce average torque, it is again possible to consider each hamonic independentiy and then choin the total torque by sumang the individuel cortorioutions.

Constcer the $n^{t h}$ hermontc. The complex $n^{\text {th }}$ harmonic currents in the windings may be represented by a magnitude and a phase angle, for example:

$$
\begin{equation*}
\vec{I}_{\alpha_{n}}^{s} \triangleq I_{n}^{s} \epsilon^{j \theta^{s}} \tag{50}
\end{equation*}
$$

If all the currents are written in this form and the instar... taneous currents obtained therefrom, the following relations result:

$$
\begin{align*}
& i_{\alpha_{n}}^{s}= I_{n}^{s} \cos \left(n \omega t+\theta^{s}\right) \quad n=1,5,9 \cdots \tag{51}\\
&=-I_{n}^{s} \cos \left(n \omega t+\theta^{s}\right) \quad n=3,7,11 \cdots \tag{51a}\\
& i_{\beta n}^{s}= I_{n}^{s} \cos \left(n \omega t+\theta^{s}-n \pi / 2\right)=I_{n}^{s} \sin \left(n \omega t+\theta^{s}\right) \quad n=1,5,9 \cdots \tag{52}\\
&=-I_{n}^{s} \cos \left(n \omega t+\theta^{s}-n \pi / 2\right)=+I_{n}^{s} \sin \left(n \omega t+\theta^{s}\right) \quad n=3,7,11 \cdots \tag{52a}\\
& i_{d_{n}}^{r}=\left.I_{n}^{r} \cos \left(n \omega t+\theta^{r}\right) \quad n=1,5,9 \cdots\right) \tag{53}\\
&=-I_{n}^{r} \cos \left(n \omega t+\theta^{r}\right) \quad n=3,7,11 \cdots \tag{53a}\\
& i_{q_{n}}^{r}= I_{n}^{r} \cos \left(n \omega t+\theta^{r}-n \pi / 2\right)=I_{n}^{r} \sin \left(n \omega t+\theta^{r}\right) \quad n=1,5,9 \cdots \tag{54}\\
&=-I_{n}^{r} \cos \left(n \omega t+\theta^{r}-n \pi / 2\right)=I_{n}^{r} \sin \left(n \omega t+\theta^{r}\right) \quad n=3,7,11 \cdots
\end{align*}
$$

Using the above equations and forming the products indicated in Equation (29), we have:

$$
\begin{aligned}
i_{\alpha_{n}}^{s} i_{q n}{ }^{r} & =I_{n}^{s} I_{n}^{r}\left[\frac{\sin \left(\theta^{r}-\theta^{s}\right)}{2}+\frac{\sin \left(2 n \omega t+\theta^{s}+\theta^{r}\right)}{2}\right] \quad n=1,5,9 \cdots(55) \\
& =-I_{n}^{s} I_{n}^{r}\left[\frac{\sin \left(\theta^{r}-\theta^{s}\right)}{2}+\frac{\sin \left(2 n \omega t+\theta^{s}+\theta^{r}\right)}{2}\right] \quad n=3,7,11 \cdots(55 a) \\
i_{\beta_{n}}^{s} i_{d_{n}}^{r} & =I_{n}^{s} I_{n}^{r}\left[\frac{\sin \left(\theta^{s}-\theta^{r}\right)}{2}+\frac{\sin \left(2 n \omega t+\theta^{s}+\theta^{r}\right)}{2}\right] \quad n=1,5,9 \cdots(56) \\
& =-I_{n}^{s} I_{n}^{r}\left[\frac{\sin \left(\theta^{s}-\theta^{r}\right)}{2}+\frac{\sin \left(2 n \omega t+\theta^{s}+\theta^{r}\right)}{2}\right] \quad n=3,7,11 \cdots(56 \varepsilon)
\end{aligned}
$$

The time-varying terms in the above equations produce no average torque. Substituting average values in Equation (29), the following expressions for average electromechanical torque result:

$$
\begin{align*}
T e_{n} & =\frac{P}{2} L_{\mu}^{s r}\left[I_{n}^{s} I_{n}^{r} \sin \left(\theta^{s}-\theta^{r}\right)\right] & n=1,5,9 \cdots \tag{57}\\
& =\frac{P}{2} L_{\mu}^{s r}\left[-I_{n}^{s} I_{n}^{r} \sin \left(\theta^{s}-\theta^{r}\right)\right] & n=3,7,11 \cdots \tag{57a}
\end{align*}
$$

This result is not particularly useful, but it can be converted to useful form if we consider the following:

$$
\begin{align*}
& \vec{I}_{\alpha_{n}}^{s} \vec{I}_{q n}^{r *}=I_{n}^{s} \epsilon^{j \theta^{s}} I_{n}^{r} \epsilon^{-\lambda\left(\theta^{r}-n \pi / 2\right)}=I_{n}^{s} I_{n}^{r}\left[-\sin \left(\theta^{s}-\theta^{r}\right)+j \cos \left(\theta^{s}-\theta^{r}\right)\right] \quad n=1,5,9 \cdots(58) \\
&=-I_{n}^{s} \epsilon^{j \theta^{s}}\left[-I_{n}^{r} \epsilon^{-j\left(\theta^{r}-n \pi / 2\right)}\right]=-I_{n}^{s} I_{n}^{r}\left[-\sin \left(\theta^{s} \cdot \theta^{r}\right)+j \cos \left(\theta^{s}-\theta^{r}\right)\right] \tag{58a}\\
& n=3,7,11 \ldots
\end{align*}
$$

Similarly:

$$
\begin{aligned}
\vec{I}_{\beta_{n}}^{s *} \vec{I}_{d_{n}}^{r} & =I_{n}^{s} \epsilon^{-j\left(\theta^{s}-n \pi / 2\right)} I_{n}^{r} \epsilon^{j \theta^{n}}=I_{n}^{s} I_{n}^{r}\left[\sin \left(\theta^{s}-\theta^{r}\right)+j \cos \left(\theta^{s}-\theta^{r}\right)\right] \quad n=1,5,9 \cdots(59) \\
& =-I_{n}^{s} \epsilon^{-j\left(\theta^{s}-n \pi / 2\right)}\left[-I_{n}^{r} \epsilon^{j \theta^{r}}\right]=-I_{n}^{s} I_{n}^{r}\left[\sin \left(\theta^{s}-\theta^{r}\right)+j \cos \left(\theta^{s}-\theta^{r}\right)\right] n=3,711(59 a)
\end{aligned}
$$

So we can write:

$$
\begin{align*}
-\vec{I}_{\alpha_{n}}^{s} \vec{I}_{q n}^{r}{ }^{*}+\vec{I}_{\beta_{n}}^{s}{ }^{*} \vec{I}_{d_{n}}^{r} & =2 I_{n}^{s} I_{n}^{r} \sin \left(\theta^{s}-\theta^{r}\right) \quad n=1,5,9 \ldots \tag{60}\\
& =-2 I_{n}^{s} I_{n}^{r} \sin \left(\theta^{s}-\theta^{r}\right) \quad n=3,7,11 \ldots
\end{align*}
$$

The right hand side of the above equationsis of the same form as the bracketed terms in Equations (57) and (57a).

Using Equations (43), (45), (47), and (49), we now write:

$$
\begin{equation*}
-\vec{I}_{\alpha_{n}}^{s} \vec{I}_{q_{n}}^{r *}+\vec{I}_{\beta_{n}}^{s *} \vec{I}_{d_{n}}^{r}=-\vec{I}_{\alpha_{n}}^{s} \vec{I}_{q_{n}}^{r *}-\vec{I}_{\alpha_{n}}^{s *} \vec{I}_{q_{n}}^{r}=2 \operatorname{Re}\left[-\vec{I}_{d_{n}}^{s} \vec{I}_{q_{n}}^{r *}\right] \quad n=1,3,5 \cdots \tag{61}
\end{equation*}
$$

Combining the developments of Equations (57) through (61), we obtain the following expression for torque.

$$
\begin{equation*}
\operatorname{Te}_{n}=\frac{P}{2} L_{\mu}^{s r} \operatorname{Re}\left[-\vec{I}_{\alpha_{n}}{ }^{s} \vec{I}_{q_{n}} r *\right] \quad n=1,3,5, \cdots \tag{62}
\end{equation*}
$$

Performing the operations required by the above equation, we find:

$$
\begin{align*}
& n=1,5,9 \ldots \tag{63}
\end{align*}
$$

where

$$
\begin{equation*}
S_{n} \triangleq \frac{n \omega-\omega_{m}}{n \omega} \tag{64}
\end{equation*}
$$

$$
\begin{equation*}
T e_{n}=\frac{P}{2 n \omega S_{n}^{\prime}}\left\{\frac{\vec{V}_{\alpha_{n}}^{s s^{2}} L_{\mu}^{s r^{2}} R^{r}}{\left[\frac{L_{\mu}^{s} R^{r}}{s_{n}^{\prime}}+L_{\mu}^{r} R^{s}\right]^{2}+\left[\frac{R^{r} R^{s}}{n \omega S_{n}^{s}}+n \omega\left(L_{\mu}^{s r^{2}}-L_{\mu}^{r} L_{\mu}^{s}\right)^{2}\right]^{2}}\right\} \tag{65}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{n}^{\prime} \triangleq \frac{n \omega+\omega_{m}}{n \omega} \tag{66}
\end{equation*}
$$

Again, the algebra involved in obtaining these equations is outlined in Appendix D.

Now, the results given in Equations (63) and (65) must be interpreted. There is no difficulty in interpreting Equation (63); harmonics $1,5,9$, etc., all give rise to normal motor action, operating with a slip less than one. With regard to Equation (65), it is seen that motor action is produced by harmonics 3, 7, ll, etc., also, but in a direction opposite to the direction of rotation.

This result could have been predicted from consideration of the direction of rotation of the various harmonic fluxes. In Fig. XIII are shown the fundamental and two harmonics of

Fig. XIII. Fundamental and first two harmonics of two square waves displaced 90° in time.
two square waves displaced 90° in time. If the α wave is taken as the reference, vectors for the various components may be drawn, as shown in Fig. XIII, for $t=0$. We see that in the first, fifth, etc., harmonic, the α wave leads the β wave, whereas the α wave lags the β wave in the third,
seventh, eto., harmonics. The efrect or the latter is to produce waves traveling in the reverse direction. Therepore, the resultant flux travels in the reverse dineçion with the reault that negative torque is produced. In efiect, the negative corque-producing harmonics have reversed the leads to the motor.

It must be detemined whether this negative torque is of玉upsiciont importance to necessicate consideration on fatroducing filtera into the circuit to ramove the hammonc content ot the switching cisouit output. Substituting the expresnions for the exciting voltage from Equation (32) in the torque expressions, we find:

$$
\begin{align*}
& T e_{n}=\frac{P}{2}\left(\frac{16 V^{2}}{\pi^{2}}\right) \frac{1}{n^{3} \omega S_{n}}\left\{\frac{L_{\mu}^{s r^{2}} R^{r}}{\left.\left[\frac{L_{\mu}^{s} R^{r}}{S_{n}}+L_{\mu}^{r} R^{s}\right]^{2}+\left[\frac{R^{r} R^{s}}{n \omega S_{n}}+n \omega\left(L_{\mu}^{s r^{2}}-L_{\mu}^{r} L_{\mu}^{s}\right)^{2}\right]^{2}\right\}}\right. \tag{67}\\
& n=1,5,9 \ldots \\
& =-\frac{P}{2}\left(\frac{16 V^{2}}{\pi^{2}}\right) \frac{1}{n^{3} \omega S_{n}} \cdot\left\{\frac{L_{\mu}{ }^{s r^{2}} R^{r}}{\left[\frac{L_{\mu}^{5} R^{r}}{S_{n}^{\prime}}+L_{\mu}{ }^{r} R^{s}\right]^{2}+\left[\frac{R^{r} R^{5}}{n \omega S_{n}^{\prime}}+n \omega L_{\mu}{ }^{s r^{2}}-L_{\mu}^{r} L_{\mu}{ }^{5}\right]^{2}}\right\} \tag{67a}\\
& n=3,7,11 \cdots
\end{align*}
$$

The appearance of the tactor, n^{3}, In the denominaton Indlorites thet the harmonfos may not be too imporant an regancs tomue pioduction. It is not possibie to more any absoIute wtatement in this regard, however, for the Anportambe ot the vandous hermonscs will depend on the rezature masanturea on the paxameten or any given mechine.

In order to illustrate the effects of the harmonics, however, the torque-speed curve for motor action in the frequency range of the fundamental was calculated for arbitrarily assumed values of the various parameters. In order to get a picture of the curves over the entire speed range, maximum torque produced by each harmonic was also calculated. These calculations, given in Appendix D, result in torque-speed curves of the form shown in Fig. XIV.

For this particular assumed machine, we see that the harmonics have negligible effect torque-wise on operation. This result cannot be applied to the general case; rather, curves such as those shown in Fig. XIV should be calculated for any given machine of interest in order to determine the inportance of the various harmonics in torque production.

Now, the above analysis is for the case of a two-phase machine with balanced two-phase excitation. Early in this chapter it was stated that this result could be used to obtain the expressions for the three-phase machine by making a symnétrical component transformation. This is true, but the process would be long and tedious. We can apply the two-phese result qualltatively to the three-phase case by realizing that the primary effect of going to three-phase machine is to change the phese relationships of the various harmonics. Again consider the rotating fields which are set up in this case. In Filg. XV are shown the fundamental and two harmonics of three square waves displaced 120° in time. We observe that the first,
$=$
$=$ $=$$=$
Pr $\square-2$

-
\square
-
$1+\frac{1}{2}$
$2-1+2$

$+$

Fig. XIV. Torque-speed curves for fundamental and first two harmonics of

FIE. XV. Fundamental and first two harmonics of three square waves displaced 1200 in time.
seventh, thirteenth, etco, harmonics produce motor action in the direction of rotation, whereas the fifth, eleventh, seventeenth, etc., produce motor action opposing rotation. The third, ninth, etc., harmonics are in phase, hence produce no torque.

So in the case of the three-phase machine excited by balanced inree-phase square wave voltages, the harmonics have negligible effect in producing torque, since each harmonic torque will be attenuated roughly as the reciprocal of the third power of the order number of the harmonic. Since these harmonics contribute little to torque production, it may be best to filter them out of the square wave and apply

FiE. XV. Fundamental and first two harmonics of three square waves displaced 1200 in time.
seventh, thirteenth, etco, harmonics produce motor action in the direction of rotation, whereas the fifth, eleventh, seventeenth, etc., produce motor action opposing rotation. The third, ninth, etc., harmonics are in phase, hence produce no torque.

So in the case of the three-phase machine excited by balanced three-phase square wave voltages, the harmonics have negligible effect in producing torque, since each harmonic torque will be attenuated roughly as the reciprocal of the third power of the order number of the harmonic. Since these harmonics contribute little to torque production, it may be best to filter them out of the square wave and apply
only the fundamental to the induction motor. Whether or not this is important will be shown in the next section, where losses are discussed.
6.4 Losses Due to Harmonic Content of Appiled Voltage
loss

The rotor copper/due to any $n^{\text {th }}$ harmonic may be
sepreserted by the following relation [6]:

$$
\begin{equation*}
P_{\text {Loss }}=S_{n} n \omega T e_{n} \tag{68}
\end{equation*}
$$

THing Equatlons (67) and (67a), this cer be written as:

$$
\begin{equation*}
P_{\text {Loss }}=\frac{P}{2}\left(\frac{16 V^{2}}{\pi^{2}}\right) \frac{1}{n^{2}}\left\{\frac{L_{\mu}^{s r^{2}} R^{r}}{\left[\frac{L_{\mu}^{s} R^{r}}{S_{n}}+L_{\mu}^{r} R^{s}\right]^{2}+\left[\frac{R^{r} R^{s}}{n \omega S_{n}}+n \omega\left(L_{\mu}^{s^{2}}-L_{\mu}^{r} L_{\mu}^{s}\right)\right]^{2}}\right\} \tag{69}
\end{equation*}
$$

As in the case of harmonic contributions to torque, the Lmportance of this loss depends upon the paremeters of the paritouiar machine being consideled. In order to get some Adea of the importanse of the losses, calculatzons are made in Apperdix D for the machine aineady consfrered. In the celcuzasion, it is assunea tsat the motor is operating at a slip oi lo\% relative to the fundanental.

We calculation shows that, consicering only the funcamertal and first two herwonics, eppletency (neglecting other losses) falls from 90% with the fundamental alone to 72.5% when the fundamental and first two harmonics are included. Presumably the effect is even more pronounced when more harmonics are considered. Furthermore, the harmonics develop relatively large rotor copper losses,
contwiviving，in ract，far more power to uadesirable heating than to mechenical power to the load．

We can conclude，therefore，that，although the harmonic content in the voltage has negligible effect on torque－speed chamacteristica，the power losses associated with these

 demprable to filter the hamonies out of the swatching－ axacut output and mpply on？the Tumdareatal to the induction 20ざロシ．

6．5 prepet of Tarring Inine prequeng amd rolvage on
 Meximurn Tosque

In this section only the fundarnental component of applied
 Gorque ard，as was shown in the piecedane sectºr，ape aotually undesfinoble fiom the suencpotit of enixciency and reeturg anci shoulce be itltexed out．

Fhom Equatton（ 67 ），tie expreswson fon the torque produced by the foncemental＊s：

$$
\begin{equation*}
T_{e}=\frac{P}{2}\left(\frac{16 V^{2}}{\Pi^{2}}\right) \frac{1}{\omega s}\left\{\frac{L_{\mu}^{s r^{2}} R^{r}}{\left[\frac{\mu_{\mu}^{s} R^{r}}{S}+L_{\mu}^{r} R^{s}\right]^{2}+\left[\frac{R^{r} R^{s}}{\omega s}+\omega\left(L_{\mu}^{s r^{s}}-L_{\mu}^{r} L_{\mu}^{s}\right)\right]^{2}}\right\} \tag{70}
\end{equation*}
$$

It is desired to determine the effect of varying frequency and magnitude of applied voltage on the maximum torque produced． In Appendix D it is shown that the slip for maximum torque is：

$$
\begin{equation*}
S_{m}= \pm R^{r} \sqrt{\left.\frac{\left(\omega L L^{s}\right)^{2}+R^{s^{2}}}{\left(\omega L_{\mu}^{r} R^{s}\right)^{2}+\omega^{4}\left(L_{\mu} L_{\mu^{s}}-L \mu^{s+2}\right.}\right)^{2}} \tag{71}
\end{equation*}
$$

Equation (70) may be rewritten as follows:

Substituting (71) and (72) and solving, we obtain:

$$
\begin{equation*}
T e_{m}=\frac{P}{4}\left(\frac{16 V^{2}}{\Pi^{2}}\right) \frac{L_{\mu}^{s r^{2}}}{\left.\omega R^{s} L_{\mu}{ }^{5 r^{2}}+\sqrt{\left[\left(\omega L_{\mu}^{s}\right)^{2}+R^{s^{2}}\right]\left[\omega^{2}\left(L_{r}^{r} L_{r}^{s}-L_{\mu^{5}}\right)^{2}\right)^{2}+\left(\mu^{r} R^{5}\right)^{2}}\right]} \tag{73}
\end{equation*}
$$

For Ghe parificular machine stucied in Appendix D, the above equation shows that the maximum corque increases in direct proportion to the increase in frequency (since when frequency tis doubled, input voltage is coubled, etc.), but this is because the inductances were assuned to be equal. In mons pactical cases, however, the Inductance difference temn En Eqation (73) would we or consfaerable magnitude with the result that the maximum torque would remain very neariy constant as voltage and frequency are varfed simultaneously and in the same direction.

6.6 Conciusions Concerning Square Wave Excitation of Induc'ulon Machine

Besed upon the foregoing, the following general
conclusions are made:

1. Time harmonics in square-wave voltage excitation of an induction machine have no appreclable effect on the torque-speed characteristios in the speed range of the fundamental component of voltage.
2. For both two-phase and three-phase machines, the cumulative effect of all the harmonics is to decrease slightly the torque available at any given speed, since the harmonics which produce the largest torque oppose the motion of the machine.
3. The rotor copper loss due to harmonics is appreciable, being of such magnitude as to decrease efficiency somewhat and to produce considerable heating.

Summing up the conclusions, we can say that the overall effect of harmonics is bad. If possible, they should be filtered out of the switching-circuit output, leaving only the fundamental to be appiled to the induction motor.

CHAPTER 7

EXPERTMENTAI RESULTS

7.1 Outline of Procedure

The experimental phase of this thesis may be separated into four divisions:

1. Design of the circuit.
2. Investigation of parameter changes necessary to obtain good oscillation and wave form for a single converter.
3. Investigation of the effects of parameter changes with a three-phase circuit.
4. Operation of an induction motor.

7.2 Design of Circuit and Procedure for Test

The original circuit was designed primarily on the basis of papers by Royer [l] and Milnes [2]. No attempt was made to optimize the design, liberal sarety factors being included to ensure operation. Due to restricted time available for winding and assembly of cores, the circutt design was not refined after inftial design, except that the resistance introduced into the base in the phase-locking circuit was varied to obtain best results. Details of the design are outlined in Appendix E.

It has been noted in the preceding chapters of this thesis that the interacting influences of control voltage (E), load resistance $\left(R_{L}\right)$, base resistance $\left(R+R_{b}\right)$, and the number of phases have a definite influence on the ability of the
converters to oscillate and on the recuency of oscillations. In investigating these interactions a single phase converter was built first and tested. Then two converters we:re phaselocked 120° out of phase, and finally three converters were phase-locked to form the desired tiree-phese square wave output. The results of thesse tinvestigetions aze shom below in graphical fom. An explanation or the reaules in fneluded Which refers to the theory developed in preceding cinapters. 7.3 Single Phese Converiter

The exrenit used was that shown in Fis. I, Chenter 3. Fig. XVI below shows that the output inequency of a convercer is directly proportional to the control voltage, other paremeters being constant. Thas ilgure also shows that the amounc of reststance fin the bese hes a lange effect on the value of the output frequency. Sirne the base resistance was fixed by the seleation of trensfitor and cope windings, variatson in R_{b} wes simulated by acding extea resistance to the base carcuit. This efect is preaicted analytically by Equation (11), Gnapter 3. As Jine total base resistance becomes much lavger than $R_{i s}$, the value of V_{1} approaches E, the applied voltage, so that the output irequency approaches more nearly the ideal predicted frequency.

Fig. XVII indicates that the value of load impedance also offects the value of the output frequency. By increasing the load the frequency more nearly approaches the value given by the simple Equation (21) . Rererence to Fig。V
shows thet as the load is varied, the voltage, V_{1}, which is 2mpressed on the core changes suightyy, thus changing the output frequency. This effect is not nearly as significant as the effect of reflected base resistance and can be considered negligible.

Eech of the three converters to be used in the threephase cimoult was tested separately, As far as could be detemanned each converter exnibited identical frequency charecterdstics as variationa in parencters were made. T. 4 The Two-phase Circuit

The schematic diasrom for the cwo-phase circuit is shown in wig. VIII, Chapter 4. The sare variation or paraneters was made for circuit as is deacribed in Section Tod. However, the slope of the frequency versus control voltage curve was sonewhat greater than for the single phase cate. It was also noted that the mange of operation was gonewhet less than in the threempass sese. the resulta are ghewa in Regs XVIII and XIX. The interpetation of these xemults will be dealt with mone runz in the discussion of three-phese oparation.

Th The muce-mase Circuit
The schematic diagram for the three-phase circuit is shown in Th. X. Chapter 5. The results of tests for this circuit are show in Figs XVIII, XIX, XX, XXI, add XXII。 7.51 Erfect of Load Resistance (R) on Prequency

In discussing single-phase operation it was shown that the load resistance had a derinite efece on output
frequency. As can be seen from Fig. XVIII, increasing the phases lessens the effect. That is, by increasing the phases the frequency of the output more nearly agrees with the values given by the simple Equation (21). Although this was not investigated analytically, and it would seem to be extremely difficult to follow the effect of reflected load impedances in the circuit, the explanation appears to be the same as that given in Section 7.2. However, this variation is a minor one being only 2 percent for a change in load by a factor of 10 .
7.52 Effect of Added Base Resistance (R) on Frequency

In discussing the single phase circuit it was shown that the effect of added base resistance was to make the output frequency more nearly approach the values given by the Equation (21). The effect for the three-phase case 1 s more pronounced because R_{b} itself is Ancreased by reflected impedances from the many more resistances in the circuit. This effect can be seen from Fig. XXI, where in changing this resistance by a factor of 11 to 1 (from 5 to 55 ohms) only causes a variation in frequency of 2.6%. Thus it can be inferred that when designing a converter for threephase operation, the design can be based on Equation (21) without being too much in error. It was also noted that the frequency is directly proportional to the control voltage, in so far as the measurement techniques used in the testing could detect.

7.53 Effect of Circuit Parameters on Range of Oscillation

It has been pointed out in earlier chapters that the circuit will not oscillate unless the parameters are such that the reciprocal of the load resistance $\left(1 / R_{L}\right)$ is less than the slope of the negative reslstance portion of the converter characteristics. The negative resistance ($R_{0}{ }^{\prime}$) is a function of the number of phases, the total base resistance $\left(R_{b}+R\right)$, the load resistance $\left(R_{L}\right)$ and the control voltage. Jsing Equation (19), together with the definition of K in Equation (20), it can be seen that with fixed parameter values, the negative resistance will vary with the control voltage E. This means first that there is a minimum load resistance for osclilation, assuming the upper limit on E Ls set by the transistor, and secondly, that when the load resistance is such that osciliation oceure at maximum voltage chere will be a point at winch oscillation will cease as the control voltage decreases. This is verifiled experimentally as shown in Fig. XXix. Referring to the figgure, the area mariked "Range of No Oscillation" fncludes the combinations of R and R_{L} for which oscillation will not occur at the meximum control voltage (20 volts for the circuit described). The curves to the left of this region show the possible combinations of R_{L} and R_{b} for which osclllation will occur for values of control voltage from maximum down to the value listed as parameters on each curve.

I' should be pointed out that actually determining the range of oscillation was complicated by the fact that voltages tended to go out of phase at low values of control voltage. No theoretical explanation of this effect is known, it being assumed that non-linear effects come into the picture at low voltages. 7.54 Effect of Number of Phases on Frequency

As mentioned before no analysis of the effect of phases on frequency was made because of the complexity of the problem. However, it is an experimental fact that adding phases lessens the effect on the output frequency of the other main parameters (R_{L} and R)。
7.55 Efect of Inductive Load

Several runs were made with inductive load consisting of a series combination of resistance and inductance. However , the effect on output frequency was minor and the overail effect did not appear to be dependent on type of inductive load. The power factors of the loads varied from 1.0 down to approximately 0.85 .

7,6 Owsration of an Induction Motor with Circuit Output
Qne of the objectives of the thesis was to determine the reasibility of operating an induction motor with output of this three-phase switching circuit. Since the power level of the output of the circuit was limited to a maximum of 40 watts per phase by the transistor characteristics, it was not possible to obtain a polyphase induction machine of small enough size to use with the circuit. Nevertheless it
was possible to simulate an induction machine with a synchro control transformer by shorting the rotor leads. This was done with a synchro transfomer whose nameplate data was: SYNCHRO CONTROL TRANSFORMER, 1 C'S MK5, MOd is USN BuOrd Dwg. 292874. Sez。No. 9419 90/55 Volts a.e. 60 cas. Benriza Ariation Coipo Since the square wave outou' has a voltace magnituce of about 20 volts, it was deched to enmect the thipe-phase of the circuit in a Y-connecion to apyonch as closely as possible the value of 55 volts listed on the nemeplate. The inpur impedance of the moton was measured at approximately 15 ohms. Several atcenpes were made to run the motoir with an adrlec base resistance (R) of 50 ohms Without success. When the aded bese resistance wens reduced to 5 ohns operation was possible. rme resultis are chown in Fig. XXII. Operation was only possible for a renre of control voltage from 15 to 20 volts. At the lower range of voltages the operation becene emabic and the motor usually stopped sucidemy indicating a lack of suriticient torque. 7.7 General Sorments

It is feit that it should we pointee out that the circuit for three-phase operation is rather complicated and presents some difficulty to those who deare to set it up. Further, it was found that the circuit sometimes would present variations in behavior from day to dey. One peculiarity is that at times the circuit would jump out of phase when control voltage was reduced to low values. When
voltage was increased the phase locking did not reappear. It was found that by disconnecting any two leads in the phase-locking circuit and growidng them, phase-locking action occurred once more when the circuit was re-energized. A variable condenser was used at several places in the circuit in an atterns to correse this meanue it was relt that a charge was being built up in the phase locking circuit. A . 05 microfarad condenser acruss the eafter to coljector terminals somewhat alleviated fhis aftuasfon, However, the best results were usually gotten when sosts were resurned on a different day.

Another difficulty experieneed was wion fan? ty operation of the transistoms. It appenec. that one of the transiatons falled progressively。 the firnt effect noted was a reduction in circuit output reaveney firom previous values. Astde from this effect the cforut appeanea to be operating nomally. Later in the tent modren it was round that it wasn't possible to get full contro? volitase across the circuit. It was apparent that someshing wer menenting a short in the circuit when control voltase poemed 7.8-20 volts. It wen found to be ceused bir one of the trennators, replacement of which restored the cipeuit to nomal operation.

Thus, we can conclude that even with an understanding of the circuit based on fairly rigorous analysis, experimental results are difficult to obtain simply beceuse the circuit, being an intricate complex of non-lincer elemeris, often behaves in an unpredictable manner. While the circuit holds promise, much more experimental work is required.

[^0]

Fig. XIX Effect of load and number of phases on probability of osciliation.
525 ryd $f=A \bar{c}$ inin
$$
0
$$

Loa. Resistancz G_{L}) ohms
Fig. Effect of load resistance, R_{L}, on frequency.

F1g. XX. Effect of load resistance, R_{L}, on frequency.

[^1]61

Fig. XXIII. Speed of an induction motor versus control voltage.
Fig.

8.1 Conclusions

The following conclusions are made with regard to the study pursued in this thesis:

1. For any given oircuit parameters and number of phases, the switching-cirouit range of operation is load dependent. The effect of numbers of phases is shown clearly in Fig, XIX wherein it is shown that osoillations will occur with a load resistance of thirty ohms for the single-phase case, whereas a load of 150 ohms is required to obtain oscillatory action in the three-phase case. Pix. XXII shows the inter-relation of load resistance and added base resistance, the allowable minimum load resistance to sustain oscillatory operation decreasing as the added base resistance is deoreased. This conclusion, predicted by the analysis of this clrcuit as a relaxation oscillator, is weIl-substantiated by experimental results.
2. Over the frequency range of application studied in this thesis ($7-90 \mathrm{cps}$), the output frequency of the circuit is directly proportional to the DC input voltage, parasitic time intervals being of no consequence in determining frequency. Furthermore,
the output frequency approaches more nearly the Ideal frequency as the total base resistance, reilected into the collector circuit, is increased. The linear relationship between frequency and input voltage, as well as the effect of increasing resistance in the base, is shown in Fig。XiI。 Again, chis concIusion is predicted by theory and proved experimentally.
3. Because of the impontance of minnuiuing tive slope of the negative-resistance powion os whe val characteristic of the converion ax seen xuon the output temminals, the derign of a polyphase switchIng Eransistor ctocuit ios mextmun pose: ouput becomes a delfcate belance of compromises, wherein the single most important fector apears to be minimization of componeat impedances in the circuit. In lange measure, this conclusion is besed uoon the first.
4. The polyphase switching tiansistor cirouit can be used for speed control of induction motorg. A symchro with shoreed rotor wes operated suroessfully over a range from 950 RPM to 2200 RPM in the experimental work ateendant to this thesis. At the present time, the size of motors which can be so controlled, without modifying the circuit arrangement, is limited by the maximum ratings of
power transistors now available. This limitation can be overcome as power timasistors of higner rating are developed or ky denign oin an amvififer to amplify the switching-circuit output.
5. The problem of starting an incuction motor made problematical because of the pat that below a certain minfmum load impedance :relamation ozcillations camot occun, can be solved by camexul denign of the clroutt, the onject at the destisa being to mininize the negritve-senistance slope of the $v-1$ characteristio. Th the experimeston Work attendant to this theslis a factos of tea ieduction fin the resistance adied wo the base for phase-locining resulted fr an even gieater recuction in the minimurn load finpedence to surtain oscillatory action.
6. Hammonc content in the appled voltegen, while having negifgible erect on turuve of ar fucuction notor, does prociuce cimwroportunatc rotor ooper losses, thus decreaslue motro erpiciengy and mroducing uncesirable heatine Thererore, the hermonic content should be rlitered out of the switching circuit output berore applying it to the induccion motor. This conclusion is based upon theoretlcal analysis and was not verified experimentally.

8.2 Recommendations

The following recommendations for further study in the area covered by this thesis are made:

1. Obtain more experimental data concerning circuit operation, particularly as regards speed control of induction motors being supplied by the switching-circuit output.
2. Investigate optimization of switching circuit for maximum power output and maximum power conversion efficiency.
3. Design a filter circuit to remove harmonics from switching-circuit output. Such a circuit must be designed to operate satisfactorily over the frequency range for which speed control is desired.
4. In conjunction with (3), investigate practicability of filtering and amplifying switching-circuit output in order to obtain more power for application to the induction motor.
5. Investigate possibility of designing switching circuit with multiple power transistors to obtain higher power ratings than can be obtained from single transistors [II]。

A $\underline{P} \underline{P} \underline{E} \underline{N} \underline{I} \underline{X}$

APPENDIX A

PIECEWISE LINEAR ANALYSIS OF

THE BASIC CIRCUIT

The purpose of this Appendix is to carry out in detail the analysis of the basic circuit which results in the v-i characteristic of the circuit as shown in Fig. III of Chapter 3 and to show the effect of load on that characteristic. The circuit, as shown in Fig. I, is reproduced in Fig. A-I for convenience.

Fig. A-I. Basic switching circuit.

The analysis given in [1] shows that during half of each cycle one transistor is blocking while the other is operating in saturation. Therefore, it is sufficient to examine one-half of the circuit at a time, since the nonconducting side has no effect on the output, provided leakage current is neglected.

To simplify the analysis, leakage inductances of the windings may be neglected and winding resistances included
in the rest of the circuit. Noting then that the conventional piecewise linear model of a transistor is as shown in Fig. A-II, the half of the circuit which is to be analyzed may be represented as shown in Fig. A-III.

Fig. A-II. Conventional piecewise-ifnear model of saturated transistor.

Fig. A-III. Representation of "lA" helf of switahing circuit with transistor in saturation.

For the moment, regard N_{1} and N_{2} as 1deal transformers and substitute their ideal effects in the circuit as shown in Fig. A-IV.

Then recognize the fact that there is a finite magnetizing inductance and look into the circuit from it; that is, look into the circuit at the N_{1} windings from the magnetizing inductance of the N_{1} windings. At this point,

Fig. A-IV. Circuit of PIg. AwIIT With wransformer windings replaced by an ideal voltage source and an ideal current source.
we are ready to proceed with the break-point analysis, the object being to deternine the v -1 characteristic seen at the terminals indicated in $F \mathscr{I}$. Ar-IV. In that figure, (G) designates emitter diode and (0) designetes collector diode. There are three states of interest:

I	(5)	Open (0)	Open
II	(E)	Closed	Open
III	(4)	closed	closed

where the diodes are analogous to switiches.
In state I, all durrents irs the ciroult are zero, v is negative and of indeterminant magnituae. (wis corresponds to the condition wherein the transistor is blocked.)

The next item of interest s.s the break-point between states II and III. At that point, the collector diode has zero voltage across it and zero current through it. Then, the following equations can be written:

$$
\begin{align*}
i_{c} & =-a i_{\epsilon} \tag{A-1}\\
i_{b}=(a-1) i_{\epsilon} & =\left(\frac{1-a}{a}\right) i_{c} \tag{A-2}
\end{align*}
$$

$$
\begin{gather*}
i=i_{c}-\frac{N_{2}}{N_{1}} i_{b}=i_{b}\left(\frac{a}{1-a}-\frac{N_{2}}{N_{1}}\right) \tag{A-3}\\
-v+R_{s} i_{c}+E=0 \tag{A-4}\\
i_{b}=\frac{-N_{2} v}{N_{1} R_{b}} \tag{A-5}
\end{gather*}
$$

These equations can be solved for 1 and v to give the quantities defined as I_{0} and V_{0} in Chapter $3:$

$$
\begin{align*}
& V \triangleq V_{0}=\frac{E}{1+\frac{1}{n R_{0}}\left(\frac{a R_{s}}{1-a}\right)} \tag{A-6}\\
& i \triangleq I_{0}=V_{0}\left[\frac{1-a(n+1)}{n^{2}(1-a) R_{b}}\right] \tag{A-7}
\end{align*}
$$

from which we obtain:

$$
\begin{equation*}
R_{0} \triangleq \frac{V_{0}}{I_{0}}=\frac{r^{2}(1-a) R_{0}}{1-a(n+1)} \tag{A-8}
\end{equation*}
$$

This break-point, plus the knowladge that v is zero when 1 is zero (from State I), defines Siate IT on the v-i characteristic. It is now necessary to determine the v-i characteristic for State III.

In State III, both diodes in the circuit of Fig. A-IV are short circuits. In this case, since we are interested only in the slope of the $v-1$ characteristic, it is most convenient to make an incremental analysis, l.e., E is zero. Then we have:

$$
\begin{align*}
& i_{b}=-\frac{v}{n R_{b}} \tag{A-9}\\
& i_{c}=\frac{v}{R_{s}} \tag{A-10}
\end{align*}
$$

$$
\begin{equation*}
i+\frac{i_{b}}{n}-i_{c}=0 \tag{A-11}
\end{equation*}
$$

from which we can solve for 1 in terms of v and find:

$$
\begin{equation*}
\frac{\Delta V}{\Delta i}=\frac{R_{s} n^{2} R_{b}}{R_{s}+n^{2} R_{b}} \tag{A-12}
\end{equation*}
$$

With the roregoing infomation, the v-i characteristic for the upper half of the circuit shown in Flig . A-1 may be constructed as shown in Fig. A-N. Tren, if it is recognized that the two halves of the efrouit of whe A-I are enti-. symmetrical, the v-i characherdstic for the entire circuit as seen from the magnetitung inductunce of the core may be derived by sketching in the other heir, as shown in dotted lines in Fig. A-Y. The result is the voi characteristic

Fig. A-V. v-i characteristic of Basic Switching Circuit.
given in Fig．IIT of Chapter 3.
With regard to the effect of loads on the operation of the circuit，the most important effect is imposed by a re－ sistance load．The effect is best glom by assuming the magnetizing inductance to be infinite，thus leaving a pure resistive load actor tie volt texatacile in Fig．A－IV．Maris may be represented as shown In 煺g．A－TV．

Fig．A－VI．Resistive load placed across terminal of device having known vain sicmentomiatio．

We have：

$$
\begin{gather*}
v=v^{\prime} \tag{A-13}\\
i^{\prime}=i+\frac{v^{\prime}}{R_{L}} \tag{A-14}
\end{gather*}
$$

With these relationzh？ such as are show in Fig．A－pNu dan De brained．It is seen
 exhibits a negative resiscamat phavactowistio，so relaxation oscillations cannot occur．

The effect of inarutive loans is，In effect，discussed In Section 3.3 when the core characteristic was regarded as the load on the circuit．It can be seen that the only effect of an additional inductive load would be to change the value

FIg. A-VII. $V^{\prime} \mathcal{I}^{\prime}$ charactexigitg smowing eriect of resistive load on operaton of basic circuit. of inductance used in Equetion (8).

APPENDIX B

CALCULATION OF PARASITIC TIME

INTERVALS IN SWITCHING

B. 1 Transistor Switching Time

The time intervals of intereat in this analysis are the transistor turn-on time, T_{0}, and the turrofif time This last is comprised of a storage time, T_{2}, curing which interval the transistor remans saturasad, arid a decay time, T_{2}, during which interval the output current decreases to the very small value it has when the transistor is biocking [4]. This current is assumed to be wero.

During the turn-on time, the trensistor may be represented by the high-frequency equivelent cirouit given by Gray [4] which is shown in Fiv. B-I. me Prequency-dependent

Fig. B-I。High-frequency equivelert elwcuit or cransistor. current amplification factor shown in this representation is defined as:

$$
\begin{equation*}
\alpha(s)=\frac{\alpha_{0}}{1+\frac{s}{\omega_{0}}} \tag{B-I}
\end{equation*}
$$

where ω_{0} is the alpha cut-off frequency. From [4] we have:

$$
\begin{equation*}
\frac{I_{0}(s)}{I_{1}}=-\frac{\frac{\alpha_{0}}{1+s / \omega_{0}}-\frac{R_{e}}{R_{c}}\left(1+R_{c} C_{c} s\right)}{1-\frac{\alpha_{0}}{1+s / \omega_{0}}+\frac{R_{e}+R_{b}}{R_{c}}\left(1+R_{c} C_{c} s\right)} \tag{B-2}
\end{equation*}
$$

which may be reduced to the following form:

$$
\begin{equation*}
\frac{I_{0}(s)}{I_{1}}=\left(\frac{\alpha_{0}-\frac{R_{e}}{R_{c}}}{1-\alpha_{0}+\frac{R_{e}+R_{b}}{R_{c}}}\right)\left[\frac{1-2 \xi_{1} \tau_{1} s+\tau_{1}^{2} s^{2}}{1+2 \xi_{2} \tau_{2} s+\tau_{2}^{2} s^{2}}\right] \tag{B-3}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{1}=\sqrt{\frac{R_{e} C_{c}}{\omega_{0}\left(\alpha_{0}-\frac{R_{e}}{R_{c}}\right)}} \tag{B-4}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{2}=\sqrt{\frac{\left(R_{e}+R_{b}\right) C_{c}}{\omega_{0}\left(1-\alpha_{0}+\frac{R_{e}+R_{b}}{R_{c}}\right)}} \tag{B-5}
\end{equation*}
$$

Since we are interested only in cruers of magnitude of these time constants, we can use values of ω_{0} and C_{c} for the $H-2$ transistor in determining them. Gray gives the following approximate expression for the relation betreen C_{c} and $V_{c}[4]$:

$$
\begin{equation*}
C_{c}=1350 \mathrm{~V}_{e}^{-0.8} \mu \mu \mathrm{f} \tag{B..6}
\end{equation*}
$$

which checks quite well with the coliestor capacitance information given by the manufacturer for the 2iN66 transistor. The minimum capacitance we could expect would ther be:

$$
C_{c_{\text {min }}}=1350(20)^{-0.8}=1490 \mu \mu f .
$$

A good value for the α cut-off frequensy is 200 kilocycles [4]. Based on actual measured parameters for the $2 N 66$ transistors (given in Appendix E), we take the following as average:

$$
\begin{aligned}
& \mathrm{R}_{\epsilon}=1 \Omega \\
& \mathrm{R}_{\mathrm{b}}=50 \Omega \\
& \mathrm{R}_{\mathrm{c}}=12 \mathrm{~K} \Omega \\
& \alpha_{0}=.95
\end{aligned}
$$

Solving for the time constants of Equations (B-4) and (B-5), we then obtain:

$$
\begin{gathered}
\tau_{1}=0.035 \mu \mathrm{secs} \\
\tau_{2}=1.1 \mu \mathrm{secs}
\end{gathered}
$$

so we see that the time constants are very small in the curn-on process, from which we can conclude that this time Interval is unimportant in the circuit investigated in this thesis.

Now, determination of turn-off the is a more complicated matter. However, it will be of the same order of magnitude as the turn-on time [4]. We thererore state, without proof, that transistor switching tine intervals, whether they be turn-on or turn-ofs intervale, ane of negligible importance in the circuit.

B. 2 Parasicic Time Interval Due to Non-mero Saturation Inductance of Core

The second, and actually most important parasitic time interval in any cycle is represented by the time required to go from D to G in Fig. B-II (Fig. VII(a) in the Section 3.3, repeated here for convenience). We have the following relations governing the current and voltage along the path of interest:

Fig. B-II. vii characteristic of switching circuit.

$$
\begin{gather*}
v=L_{s} \frac{d i}{d t} \tag{B-7}\\
v=\left(\frac{R_{s} n^{2} R_{b}}{R_{s}+n^{2} R_{b}}\right) i+\frac{E n^{2} R_{b}}{R_{s}+n^{2} R_{b}} \tag{3-8}
\end{gather*}
$$

Now define:

$$
\begin{equation*}
R_{p} \triangleq \frac{R_{s} n^{2} R_{b}}{R_{s}+n^{2} R_{b}} \tag{B-9}
\end{equation*}
$$

Then we have:

$$
\begin{equation*}
d t=\left(\frac{L_{s}}{R_{b}}\right) \frac{d i}{i+\frac{E}{R_{s}}} \tag{E-10}
\end{equation*}
$$

Integrating between $\left(I_{0}\right)$ and $\left(-I_{0}\right)$, we have

$$
\begin{equation*}
\Delta t=\frac{L_{s}}{R_{p}} \int_{I_{0}}^{-I_{0}} \frac{d i}{i+\frac{E}{R_{s}}}=\left.\frac{L_{s}}{R_{p}} \ln \left(i+\frac{E}{R_{S}}\right)\right|_{I_{0}} ^{-I_{0}} \tag{3-11}
\end{equation*}
$$

giving:

$$
\begin{equation*}
\Delta t=\frac{L_{s}}{R_{p}} \ln \left(\frac{\frac{E}{R_{s}}-I_{0}}{\frac{E}{R_{s}}+I_{0}}\right) \tag{3-12}
\end{equation*}
$$

Now, we can derive an analytical expression for I_{S}, assuming that at saturation the permeability is that of air:

$$
\begin{equation*}
L_{S}=\frac{N \phi}{I}=\frac{N^{2} B A}{H \ell}=\frac{N^{2} \mu_{0} A}{\ell} \tag{B-I3}
\end{equation*}
$$

Where A is the effective cross-sectional area and l is the mean length of magnetic path of the core material, both being available from manufacturer's data.

Io is defined by Equations (I) and (2), repeated here for convenience:

$$
\begin{equation*}
I_{0}=\left[\frac{E}{1+\frac{a R_{s}}{n R_{b}(1-a)}}\right]\left[\frac{1-a(n+1)}{n^{2}(1-a) R_{b}}\right] \tag{B-14}
\end{equation*}
$$

Since so many parameters, the precise value of which is not. known, are involved in Equation (B-1R), any calculation mins
 of magnitude values.

For the circuit used in this thesis, good approximate values of the parameters of interest are:

$$
\left.\begin{array}{rl}
a & =0.95 \\
R_{S} & =1 \\
R & =320 / 75=4.27 \\
R_{b} & =50 \\
A & =2.73 \mathrm{sq} \cdot \mathrm{~cm}_{0} \\
\ell & =23.99 \mathrm{~cm} .
\end{array}\right\} 2.5^{\prime \prime} \times 3.5^{\prime \prime} \times 1.0^{\prime \prime} \text { HY MU } 80 \text { core }
$$

By substifuting Equation ($B-14$) in Equaiton ($\mathrm{E}-12$) and simplifying, we obtain the following:

$$
\begin{equation*}
\Delta t=L_{R_{p}} \ln \frac{\left\{\frac{1}{R_{s}}-\frac{1-a(n+1)}{n\left[n R_{b}(1-a)+a R_{s}\right]}\right\}}{\left\{\frac{1}{R_{s}}+\frac{1-a(n+1)}{n\left[n R_{b}(1-a)+a R_{s}\right]}\right\}} \tag{B-15}
\end{equation*}
$$

If we substitute the numbers we find:

$$
\Delta t=1.46 \times 10^{-4} \ln \frac{1.0785}{0.9215}=23 \mu \mathrm{secs}
$$

Again, although of more significant duration than the transistor switching times, the above parasitic time interval is also negligible. Of course, the values of parameters in the above calculation are not precise, but even an order of magnitude error would be insignificant, since, at a maximum frequency of operation of the circuit of 100 cps , the period of onewhalf cycle is 5000 micro-seconds.

APPENDIX C

PREDICTION OF EFFECT OF PHASE-LOCKING ON OPERATION OF BASIC CIRCUIT

In Section 4.2, it is stated that the addition of the phase-locking cirouit increases the slope of the negativeresistance fortion of the v-i characteristic of the basic circuit. In this appendix, the equations given there for the two-phase case will be derived.

The circuit under analysis is shown in Fig. C-II. In the analysis, it is assumed that transistors 1 A and 2A are conducting, $1 B$ and $2 B$ being blocked. Further, it is assumed that phass relationships are as shown in Fig. C-I.

Fig. C-I. Phase relationships in circuit of Fig. C-II.

Fig. C-II
Two-phase efreuil: for proinction ol eafect of phise-locking circui.t on opration of basic circuit.

This being the case, we know from the manner of operation of the phase-locking elements that I_{1} is unsaturated, whereas I_{2} is saturated。

In the circuit of Fig. C-II, there are three indeterminant quantities, $v i z ., 1_{s}, 1_{a}$, and V_{cb}. Since, however, I_{1} is unsaturated, we can say that:

$$
\begin{equation*}
\left|i_{a}\right|=\left|I_{m}\right| \tag{c-1}
\end{equation*}
$$

Furthermore, since:

$$
\begin{equation*}
V_{L_{1}}=L_{1} \frac{d L_{A}}{d t} \tag{c-2}
\end{equation*}
$$

we know that the sense of 1_{a} is as shown in $F i g$. C-II, since the polarity of $V_{L_{1}}$ must be such that I_{1} can absorb most of the voltage induced in the transformer windings of the additive circuit $\left(V_{L_{1}} \approx V_{1_{a}}+V_{a_{a}}\right)$.

In order to simplify the analysis, we assume that the reactors, L_{1} and L_{2}, display an ideal square loop characteristic, i.e., there is a finite constant magnetizing current required to saturate them and their saturation inductance is zero. Therefore, at the time in which we are interested, L_{2} is a short circuit. Now, the direction of flow of i_{s} is important. If we assume that it is in the direction shown in Fig. C-II, we have:

$$
\begin{gather*}
V_{22}=i_{b_{2}}\left(R+R_{b}\right)+i_{s} R \tag{c-3}\\
-V_{1 s}+V_{2 s}+2\left(r_{w_{3}}+r_{L_{2}}\right) i_{s}+\left(i_{b_{2}}+i_{s}\right) R=0 \tag{c-4}
\end{gather*}
$$

Note that, in this case, diodes b^{\prime} and c^{\prime} are conducting, a^{\prime} and d^{\prime} are blocking.

It will be shown that $V_{1 s}$ is greater than $V_{2 s}$, but the difference is small. Since the difference involves V_{cb}, an indeterminant quantity, it is not possible to state definitely that Equation ($C-4$) proves that i_{s} is in the assumed direction.

If, however, we assume that the current in the subtractive loop is in the opposite direction of i_{s}, i.e., in the direction of $1_{s}{ }^{\prime}$ in Fig. C-II, we have:

$$
\begin{gather*}
V_{22}=i_{b_{2}}\left(R+R_{b}\right)+i_{s}^{\prime} R \tag{c-5}\\
V_{15}-V_{2 S}+\left(2 r_{w_{3}}+r_{L_{2}}\right) i_{s^{\prime}}+\left(i_{b_{2}}+i_{s}^{\prime}\right) R=0 \tag{c-6}
\end{gather*}
$$

In this case diodes a^{\prime} and d^{\prime} are conducting, b^{\prime} and c^{\prime} are blocking.

Solving Equation ($C-6$), we obtain:

$$
\begin{equation*}
i_{s^{\prime}}\left(2 r_{w_{3}}+r_{L_{2}}+R\right)=-\left(V_{15}-V_{2 s}\right)-i_{b_{2}} R \tag{c-7}
\end{equation*}
$$

Again, $V_{1 s}$ can be shown to be greater than $V_{2 s}$, so the right hend side of Equation (c-7) is negative. Therefore, the assumed current direction, 1_{s} ', is incorrect. From this we can conclude that the actual current is either zero or has some value in the direction of i_{S}. Essentially what we have is shown in Fig. C-III. In this diagram, the effect of the

Fig. C-III. Subtractive loop with Thevinin equivalent looking in at R.
converter as seen from the terminals x, y, has been replaced by a Thevinin equivalent voltage source (of the polarity shown) in series with some resistance. The magnitudes of the voltage and resistance need not be determined for an understanding of circuit operation. We see that there is some positive value of $E_{P_{L}}$ at which the effect of E_{x} will be overcome and a current, 1_{s}, will flow in the direction shown. If $E_{P_{L}}$ is less than this amount, $2 l l$ diodes block and ro current flows in the circuit. Since $E_{P_{L}}$ always has the polarity shown (at the time in winich we are interested), this confirms the above result which stated that i_{s} can be zero or have some finite value in the direction shown above. Therefore, in the analysis which follows, the current in the secondary loop, i_{s}. w1ll be assuned to have some ininite value in the direction shown in Fig. C-II.

We are interasted in the break-point at which (C) in Fig. C-XI is on the verge of conducting. Note that the base currents in that diagram are taken in their actual direction of filow, i.e., opposite to the conventional assumed direetion. This is because all currents affecting the action of the rectifier bridge must be taken in the direction in which they actually flow. In determining the breakpoint of interest, twenty equations in twenty-three unknowns may be written.

$$
\begin{equation*}
\frac{V_{1}}{N_{1}}=\frac{V_{1 s}}{N_{3}}=\frac{V_{1 a}}{N_{3}}=\frac{V_{11}}{N_{1}}=\frac{V_{12}}{N_{2}} \tag{c-8}
\end{equation*}
$$

$$
\begin{gather*}
i_{1} N_{1}-N_{3}\left(i_{a}+i_{s}\right)-i_{c_{1}} N_{1}-i_{b_{1}} N_{2}=0 \tag{c-9}\\
V_{12}=i_{b_{1}}\left(R+R_{b}\right)+i_{a} R \tag{C-10}\\
-E-i_{c_{1}} R_{s}+V_{11}=0 \tag{c-11}\\
i_{\epsilon_{1}}-i_{b_{1}}-a i_{\epsilon_{1}}=0 \tag{0-12}\\
a i_{\epsilon_{1}}+i_{c_{1}}=0 \tag{c-13}\\
V_{1 a}+V_{2 a}-i_{a}\left(2 r_{w_{3}}+r_{L_{1}}\right)-V_{L_{1}}-\left(i_{b_{1}}+i_{a}\right) R=0 \tag{0-14}
\end{gather*}
$$

Note that diodes a ard d in tio rectifier bridge are blocking, b and c are conducting.

$$
\begin{equation*}
V_{1 S}-V_{2 s}-i_{S}\left(2 r_{w_{3}}+r_{L_{2}}\right)-\left(i_{D_{2}}+i_{5}\right) R=0 \tag{0-15}
\end{equation*}
$$

Again, diodes a' and d' are olocizing, io' and c'are conaucting.

$$
\begin{align*}
& V_{22}=i_{s_{2}}\left(R+R_{b}\right)+i_{s} R \tag{c-16}\\
& -E-i_{c_{2}} R_{s}+V_{21}+V_{c b}=0 \tag{c-17}
\end{align*}
$$

Note that $V_{\text {cb }}$ either has some value in the direction shown in Fig. C-II or is wero. It cannot have a non-zero value In the reverse direction.

$$
\begin{gather*}
\frac{V_{22}}{N_{2}}=\frac{V_{21}}{N_{1}}=\frac{V_{2 a}}{N_{3}}=\frac{V_{2 s}}{N_{3}}=\frac{V_{2}}{N_{1}} \tag{C-18}\\
i_{2} N_{1}+i_{s} N_{3}-i_{a} N_{3}-i_{c_{2}} N_{1}-i_{b_{2}} N_{2}=0 \tag{C-19}\\
i_{\epsilon_{2}}-i_{b_{2}}-a i_{\epsilon_{2}}=0 \tag{c-20}\\
a i_{\epsilon_{2}}+i_{c_{2}}=0 \tag{c-21}
\end{gather*}
$$

Equations ($c-8$) and ($C-18$) are each actually four equations, so there are, in fact, the twenty equations mentioned earlier. Since there are twenty-three unknown, explicit solution for any variable is not possible. However, it fis possible to solve for v_{1} in terms of i_{1}, so the slope of the negative-restistance portion of the v-i characteristo may be obtained.

In proving tine sense of A_{8}, it was stated chat V_{18} is greater then $\mathrm{V}_{2 s^{\circ}}$ By suttable substitutions in the abose equations, we Iind thet:

$$
\begin{align*}
& V_{1}=\frac{E}{1+\frac{a R_{s}}{n(1-a)\left(R_{+}+R_{b}\right)}}+\left(\frac{a}{1-a}\right)\left(\frac{R R_{s}}{R+R_{b}}\right)\left[\frac{i_{a}}{1+\left(\frac{a}{1-a}\right) \frac{1}{n}\left(\frac{R_{s}}{R+R_{t}}\right)}\right] \tag{0-22}
\end{align*}
$$

Since 1_{3} is zeco in the fieal case and very snall in the actual case, certainly betng less then i_{a}, comparison of the above equations shows V_{1} to be greeter than V_{2}. rrierefore, $V_{1 s}$ is greater than $V_{2 s}$ as was stoted exilier. We are now interested in solving for d_{2} in texms of V_{1}. From Equations $(\mathrm{C}-10)$, $(0-12)$, and $(\mathrm{c}-13)$, we have:

$$
\begin{gather*}
i_{D_{1}}=\frac{N_{2}}{N_{1}}\left(\frac{V_{1}}{R+R_{b}}\right)-i_{a}\left(\frac{R}{R+R_{b}}\right) \tag{c-24}\\
i_{c_{1}}=-\frac{a}{1-a} i_{b_{1}} \tag{c-25}
\end{gather*}
$$

Substituting these expressions in Equation (c-9), we obtain:

$$
\begin{equation*}
i_{1}=\frac{V_{1}[1-a(n+1)]}{n^{2}\left(R+R_{b}\right)(1-a)}+i_{a}\left[\frac{N_{3}}{N_{1}}-\frac{[1-a(n+1)]}{n(1-a)}\left(\frac{R}{R+R_{b}}\right)\right]+i_{5} \frac{N_{3}}{N_{1}} \tag{c-26}
\end{equation*}
$$

Taking the ratio of V_{1} to i_{1} and substituting the expression for V_{1} from Equation ($C-22$) in the resultant equation, the new slope for the negative-resistance portion of the $v-1$ characteristic as seen from the load is found:

$$
\begin{equation*}
R_{0}^{\prime}=\left(\frac{R+R_{b}}{R_{b}}\right) \frac{R_{0}}{1+K} \tag{c-27}
\end{equation*}
$$

where $K=\left\{\frac{n\left[n(1-a)\left(R+R_{b}\right)+a R_{s}\right]}{\left[E+\left(\frac{a}{1-a}\right)\left(\frac{R R_{s}}{R+R_{b}}\right) i_{a}\right][1-a(n+1)]}\right\}\left\{i_{a}\left[\frac{N_{3}}{N_{1}}-\frac{[1-a(n+1)]}{n(1-a)}\left(\frac{R}{\left.R+R_{b}\right)}\right]+i_{s} \frac{N_{3}}{N_{1}}\right\}(C-28)\right.$

Since the quantity [1-a(n+1)] is invariably negative, n being greater than $1, K$ is normally negative.

Now, from our previous discussion we know that we can substitute I_{m} for I_{a}. With regard to I_{s}, we can argue that physical considerations dictate that it is very small, even less than I_{m}. Furthermore, the coefficient of i_{s} in Equation $(c-28)$ is less than the coefficient of i_{a}. Therefore, we can neglect the term in 1_{S} and write:

$$
K \approx\left\{\frac{n\left[n(1-a)\left(R+R_{b}\right)+a R_{s}\right]}{\left[E+\left(\frac{a}{1-a}\right)\left(\frac{R R_{s}}{R+R_{b}}\right) I_{m}\right][1-a(n+1)]}\right\}\left\{I_{m}\left[\frac{N_{3}}{N_{1}}-\frac{[1-a(n+1)]}{n(1-a)}\left(\frac{R}{R+R_{b}}\right)\right]\right\}(C-29)
$$

APPENDIX D

DETAILS OF INDUCTION MOTOR ANALYSIS

D. 1 Caloulation of Currents

In Chapter 6, the effect of harmonic content in applied voltage on torque was determined. However, many steps in the algebra of the solution were omitted. In order that the interested reader may oheck the acouraoy of the innal prediotions of that ohapter, an outline of the solution is given here.

From Seation 6.3 (Equations (37), (38), and (39), we haves

$$
\left.\left.\begin{array}{c}
\vec{V}_{\alpha}^{s} \tag{D-1}\\
\vec{V}_{\beta}^{s} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{cccc}
Z^{s} & 0 & j n \omega L_{\mu}{ }^{s r} & 0 \\
0 & Z^{b} & 0 & j n \omega L_{\mu}{ }^{s r} \\
j n \omega L_{\mu}{ }^{b r} & \omega_{m} L_{\mu}^{b r} & Z^{r} & \omega_{m} L_{\mu}^{r} \\
-\omega_{m} L_{\mu}^{s r} & j n \omega L_{\mu}{ }^{s r} & -\omega_{m} L_{\mu}^{r} & Z^{r}
\end{array}\right] \times \begin{array}{c}
\vec{I}_{\alpha_{n}}^{s} \\
\vec{I}_{\beta^{r}}^{s} \\
\frac{\vec{I}_{d n}^{r}}{I_{d}} \\
\frac{I_{q_{n}}^{r}}{r}
\end{array}\right]
$$

If we write the system equations from this matrix and then solve by determinants, we obtain equations of the following form:

$$
\begin{align*}
& \vec{I}_{\alpha_{n}}^{s}=\frac{\alpha \vec{V}_{\alpha_{n}}^{s}-\beta \vec{V}_{\beta_{n}}^{s}}{\Delta} \tag{D-2}\\
& {\overrightarrow{I_{\alpha_{n}}^{s}}}_{s}^{s}=\frac{\beta \vec{V}_{\alpha_{n}}^{s}+\alpha \vec{V}_{\beta_{n}}^{s}}{\Delta} \tag{D-3}\\
& {\overrightarrow{I_{d_{n}}}}_{r}^{r}=\frac{\gamma \vec{V}_{\alpha_{n}}^{s}-\delta \vec{V}_{\beta_{n}}^{s}}{\Delta} \tag{D-4}\\
& \vec{I}_{q_{n}}^{r}=\frac{\delta \vec{V}_{\alpha_{n}}^{s}+\gamma \vec{V}_{\beta_{n}}^{s}}{\Delta} \tag{D-5}
\end{align*}
$$

By Equation (36) of Chapter 6, we have:

$$
\begin{equation*}
\vec{V}_{\beta_{n}}{ }^{s}=(-j)^{n} \vec{V}_{\alpha_{n}}^{s} \tag{D-6}
\end{equation*}
$$

If we substitute this expression in Equations (D-2) through (D-5), we prove the following:

$$
\begin{align*}
& {\overrightarrow{I_{\beta_{n}}^{s}}=(-j)^{n} \vec{I}_{\alpha_{n}}^{s}}^{\vec{I}_{q_{n}}^{r}=(-j)^{n} \vec{I}_{d_{n}}^{r}} \tag{D-7}
\end{align*}
$$

Therefore, we need only solve for $\vec{I}_{f_{n}} s$ and $\vec{I}_{d_{n}} r$ because the other currents may then be obtained from the above equations.

The expressions for $\vec{I}_{\alpha_{n}}{ }^{s}$ and $\vec{I}_{d_{n}}{ }^{r}$ are:
$\vec{I}_{\alpha_{n}}^{s}=\frac{\vec{V}_{\alpha_{n}}^{s}\left|\begin{array}{ccc}Z_{n}^{s} & 0 & j n \omega L_{\mu}^{s r} \\ \omega_{m} L_{\mu}^{s r} & Z^{r} & \omega_{m} L_{\mu}^{r} \\ j n \omega L_{\mu}{ }^{s r} & -\omega_{m} L^{r} & Z_{n}{ }^{r}\end{array}\right|-\vec{V}_{\beta_{n}}^{s}\left|\begin{array}{ccc}0 & j n \omega L_{\mu}^{s r} & 0 \\ \omega_{m} L^{s r} & Z_{n}^{r} & \omega_{m} L_{\mu}^{r} \\ j n \omega L_{\mu}^{s r} & -\omega_{m}{ }^{r} \mu_{\mu}^{r} & Z_{n}{ }^{r}\end{array}\right|}{\Delta}$

$\Delta=Z_{n}^{s}\left|\begin{array}{ccc}Z_{n}^{s} & 0 & j n \omega L_{\mu}^{s r} \\ \omega_{m} L_{\mu}^{s r} & Z_{n}^{r} & \omega_{m} L_{\mu}^{r} \\ j n \omega L_{\mu}^{s r} & -\omega_{m} L_{\mu}^{r} & Z_{n}^{r}\end{array}\right|+j n \omega L_{\mu}^{s r}\left|\begin{array}{ccc}0 & Z_{n}^{s} & j n \omega L_{\mu}^{s r} \\ j n \omega L_{\mu}^{s r} & \omega_{m} L_{\mu}^{s r} & \omega_{m} L_{\mu}^{r} \\ -\omega_{r m} L_{\mu}^{s r} & j n \omega L_{\mu}^{s r} & Z_{n}^{r}\end{array}\right|$
In Chapter 6, two quantities were defined as follows:

$$
\begin{align*}
& Z_{1} \triangleq Z_{n}^{r} Z_{n}^{s}-\left(j n \omega L_{\mu}^{s r}\right)^{2} \tag{D-1.2}\\
& Z_{2} \triangleq \omega_{m} L_{\mu}^{r} Z_{n}^{s}-j n \omega \omega_{m} L_{\mu}^{s r^{2}} \tag{D-13}
\end{align*}
$$

Expansion of Equation (D-11) will show that:

$$
\begin{equation*}
\Delta=Z_{1}^{2}+Z_{2}^{2} \tag{D-14}
\end{equation*}
$$

If then we solve for $\vec{I}_{a_{n}} \mathbf{s}$ and $\vec{I}_{d_{n}}{ }^{\mathbf{n}}$, the solutions will be of the following form:

$$
\begin{align*}
\vec{I}_{\alpha_{n}}^{s} & =\frac{\vec{V}_{\alpha_{n}^{n}}^{s}}{Z_{n}^{s}}\left[1+\frac{L_{\mu}{ }^{s r^{2}}}{Z_{1}^{2}+Z_{2}^{2}}(\zeta-j \eta)\right] & n=1,5,9 \cdots \tag{D-15}\\
& =\frac{\vec{V}_{\alpha_{n}^{s}}^{s}}{Z_{n}^{s}}\left[1+\frac{L_{\mu}{ }^{s r^{2}}}{Z_{1}^{2}+Z_{2}^{2}}(\zeta+j \eta)\right] & n=3,7,11 \cdots \tag{D-15a}
\end{align*}
$$

where $\quad \zeta=n^{2} \omega^{2} \omega_{m}^{2} L_{\mu}^{s r^{2}}-n^{4} \omega^{4} L_{\mu}^{s r^{2}}+j n \omega \omega_{m}^{2} L_{\mu}^{r} Z_{n}^{5}-n^{2} \omega^{2} Z_{n}^{r} Z_{n}^{5}$
and

$$
\begin{align*}
\eta & =j n \omega \omega_{m} z_{n}^{r} Z_{n}^{s}+n^{2} \omega^{2} \omega_{m} L_{\mu}^{r} Z_{n}^{s} \tag{0-27}\\
{\overrightarrow{I_{d_{n}}}}^{r} & =\frac{L_{\mu}{ }^{s r} \vec{V}_{\alpha_{n}}^{s}}{Z_{1}^{2}+Z_{2}^{2}}[\rho+j \sigma] \quad n=1,5,9 \cdots \tag{D-.23}\\
& =\frac{L_{\mu}{ }^{s r} \vec{V}_{1}^{s}+Z_{2}^{s}}{Z_{1}^{2}}[\rho-j \sigma] \quad n=3,7,11 \tag{i-10a}
\end{align*}
$$

where

$$
\begin{equation*}
\rho=j n \omega \omega_{m}^{2} L_{\mu}^{s r^{2}}-j n^{3} \omega^{3} L_{\mu}^{s r^{2}}-j n \omega Z_{n}^{r} Z_{n}^{s}-\omega_{m}^{2} L L^{r} Z_{n}^{s} \tag{0.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma=\omega_{m} Z_{n}{ }^{r} Z_{n}{ }^{s}-j n \omega \omega_{m} L_{\mu}{ }^{r} Z_{n}{ }^{s} \tag{0-20}
\end{equation*}
$$

By simplifying the above expressions for $\overrightarrow{\mathrm{T}}_{n}^{5}$ and $\overrightarrow{\mathrm{I}}_{\mathrm{d}}{ }^{r}$, the following equations can be obtained:

$$
\begin{equation*}
\bar{I}_{\alpha_{n}}^{s}=\frac{\vec{V}_{\alpha_{n}}^{s}}{Z_{n}^{s}}\left[1-\frac{j n \omega L_{\mu}^{s r^{2}}\left(n \omega_{m}-\omega_{m}\right)}{Z_{2}^{2}+j Z_{1}}\right] \quad n=1,5,9 \cdots \tag{5}
\end{equation*}
$$

$$
\begin{array}{rlr}
\vec{I}_{\alpha_{n}}^{s}= & \frac{\vec{V}_{\alpha_{\alpha}^{s}}^{s}}{Z_{n}^{s}}\left[1+\frac{j n \omega L_{\mu}^{s r^{2}}\left(n \omega+\omega_{m}\right)}{--_{2}-j Z_{1}}\right] & n=3,7,11 \cdots \\
\vec{I}_{d_{n}}^{r} & =\frac{L_{\mu}^{s r} \vec{V}_{\alpha_{n}}^{s}\left(n \omega-\omega_{m}\right)}{Z_{2}+j Z_{1}} & n=1,5,9 \cdots \\
& =\frac{-L_{\mu}^{s r} \vec{V}_{\alpha_{n}}^{s}\left(n \omega+n \omega_{m}\right)}{Z_{2}-j Z_{1}} & n=3,7,11 \cdots \tag{D-22a}
\end{array}
$$

From Equations (D-7) and (D-8) we have that:

$$
\begin{array}{rlrl}
\vec{I}_{\beta_{n}}^{s} & =-j \vec{I}_{\alpha_{n}}^{s} & n=1,5,9 \cdots \\
& =+j \vec{I}_{\alpha_{n}}^{s} & n=3,7,11 \cdots \\
\vec{I}_{q_{n}}^{r} & =-j \vec{I}_{d_{n}^{r}}^{r} & n=1,5,9 \cdots \\
& =+j \vec{I}_{d_{n}}^{r} & n=3,7,11 \tag{D-24a}
\end{array}
$$

Equations (D-21) through (D-24a) appear as Equations (42) through (49) in Chapter 6.
D. 2 Calculation of Torque

In Chapter 6 the following expression is developed for the electromechanical torque developed in the machine:

$$
\begin{equation*}
T e_{n}=\frac{P}{2} L_{\mu}^{s r} \operatorname{Re}\left[-\overrightarrow{I_{\alpha_{n}}^{s}}{\overrightarrow{I_{q}}}_{r}^{r}{ }^{*}\right] \quad n=1,3,5,7 \ldots \tag{D-25}
\end{equation*}
$$

In order to perform these operations, it is convenient to obtain the following:

$$
\begin{equation*}
Z_{2}+j Z_{1}=-n \omega\left[L_{\mu}^{s R^{r}}+S_{n} L_{\mu}{ }^{r} R^{s}\right]+j n^{2} \omega^{2}\left[\frac{R^{r} R^{s}}{n^{2} \omega^{2}}+S_{n}\left(L_{\mu}{ }^{s r^{2}}-L_{\mu}{ }^{r} L_{\mu}{ }^{s}\right)\right] \tag{D-26}
\end{equation*}
$$

$$
\begin{equation*}
Z_{2}-j Z_{1}=+n \omega\left[L_{\mu}^{s} R^{r}+S_{n}^{\prime} L_{\mu}^{r} R^{s}\right]-j n^{2} \omega^{2}\left[\frac{R^{r} R^{s}}{n^{2} \omega^{2}}+S_{n}^{\prime}\left(L_{\mu}^{s r^{2}}-L_{\mu}^{r} L_{\mu}^{s}\right)\right] \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
& S_{n} \triangleq \frac{n \omega-\omega_{m}}{n \omega} \tag{D-28}\\
& S_{n}^{\prime} \triangleq \frac{n \omega+\omega_{m}}{n \omega} \tag{D-29}
\end{align*}
$$

Then, write the currents as follows:

$$
\begin{align*}
& \vec{I}_{\alpha_{n}}^{s}=\frac{\vec{V}_{\alpha_{n}}^{s}}{Z_{n}^{s}}\left[1+\frac{j n \omega L_{\mu}^{s r^{2}}}{A-j B}\right] \quad n=1,5,9 \cdots \tag{D-30}\\
& =\frac{\nabla_{\alpha_{n}}^{s}}{Z_{n}^{s}}\left[1+\frac{J n \omega L_{\mu}^{s r^{2}}}{A^{\prime}-j B^{\prime}}\right] \quad n=3,7,11 \cdots \tag{D-30a}\\
& \bar{I}_{d_{n}}{ }^{r}=\frac{L_{\mu}{ }^{s r} \vec{V}_{\alpha_{n}}{ }^{s}}{-A+j B} \quad n=1,5,9 \cdots \tag{D-31}\\
& =-\frac{L_{\mu}^{s r} \vec{V}_{\alpha n}^{s}}{A^{\prime}-j B^{\prime}} \quad n=3,7,11 \tag{D-52}\\
& A=\frac{L_{\mu}{ }^{s} R^{r}}{S_{n}}+L_{\mu}{ }^{r} R^{s} \tag{D-33}\\
& B=\frac{R^{r} R^{s}}{n \omega S_{n}}+n \omega\left(L_{\mu}^{s r^{2}}-L_{\mu}^{r} L_{\mu}^{s}\right) \tag{D-34}
\end{align*}
$$

where
and A^{\prime} and B^{\prime} are of the same form except that S_{n} ' replaces S_{n}. Now observe that:

$$
\begin{align*}
\vec{I}_{q n}^{r^{*}} & =\left(-j \vec{I}_{d_{n}}^{r}\right)^{*}=j \vec{I}_{d_{n}}{ }^{*} \quad n=1,5,9 \cdots \tag{D-35}\\
& =\left(j \vec{I}_{d_{n}}^{r}\right)^{*}=-j \vec{I}_{d_{n}} r^{*} \quad n=3,7,11 \tag{D-35a}
\end{align*}
$$

The torques may then be written:

$$
\begin{equation*}
T e_{n}=\frac{P}{2} L_{\mu}{ }^{s r} \operatorname{Re}\left[-\frac{\vec{V}_{Q_{n}^{s}}^{s}}{Z_{n}^{s}}\left(1+\frac{j n \omega L_{\mu}^{s r}}{A-j B}\right)\left(\frac{j L_{\mu}^{s r} \vec{V}_{a_{n}}^{s}}{-A-j B}\right)\right] \quad n=1,5,9 \ldots \tag{D-36}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{P}{2} L_{\mu}^{s r} \operatorname{Re}\left[-\frac{\vec{V}_{Q n}^{s}}{Z_{n}^{s}}\left(1+\frac{j \cap \omega L L^{s r^{2}}}{A^{\prime}-j B^{\prime}}\right)\left(\frac{j L_{r}^{s r} \vec{V}_{\alpha n}^{s}}{A^{\prime}+j B^{\prime}}\right)\right] \quad n=3,7,11 \cdots \tag{D-36a}
\end{equation*}
$$

which may be reduced to:

$$
\begin{aligned}
& \left.T e_{n}=\frac{P}{2} \frac{1}{n \omega S_{n}}\left\{\frac{\vec{V}_{a n}^{s^{2}} L_{L^{s r^{2}}} R^{r}}{\left[\frac{L^{s} R^{r}}{S_{n}}+L_{\mu}^{r} R^{5}\right]^{2}+\left[\frac{R^{r} R^{s}}{n \omega S_{n}}+n \omega\left(L \mu^{3 r^{2}}-L_{\mu}^{r} L^{s}\right)\right.}\right]^{2}\right\} n=1,5,9 \cdots(D-5 i)
\end{aligned}
$$

D. 3 Calculation of Typical Torque-speed Curves

If we arbitrarily assume values of the motor parameters
Which appear in the corque equations, we can get some idea of the quantitative effect of harmonics on motor action. We assume, then, that:

$$
\begin{aligned}
R^{r} & =0.15 \Omega \\
R^{S} & =0.30 \Omega \\
L_{\mu} S^{S} & =L_{\mu}^{S}=L_{\mu}^{T}=0.04 \text { hemses } \\
\omega & =377 \mathrm{Red} / \mathrm{Sec} \\
V & =115 \mathrm{volice} \\
P & =2
\end{aligned}
$$

Substituting these values in Equations (67) and (67a)
from Section 6.3, we haves

$$
T e_{n}= \pm \frac{1.37 \times 10^{-2}}{n^{3} S_{n}^{\prime \prime}}\left\{\frac{1}{\left[\frac{0.006}{S_{n}^{\prime \prime}}+0.012\right]^{2}+\left[\frac{0.00012}{n S_{n}^{\prime \prime}}\right]^{2}}\right\}
$$

where torque is positive for $n=1,5,9$, etco, and $S_{n}{ }^{\prime \prime}$ is the appropriate slip defined by Equations (64) and (66).

Calculations for varlous values of motor speed for the fundamental and first two hamonics give the results tabulated in Table $\mathrm{D}-\mathrm{I}$ 。

Table D-I
Numerical Results of Torque-speed Calculations

n	1		3		5	
Motor Speed	S_{1}	T_{1}	S_{3}	T_{3}	S_{5}	${ }_{2}$
1 ¢	0	0	1.33	- 1.402	0.80	0.35
0.910	0.1	26.4	1.30	- 1.42	0.82	0.357
0.8ω	0.2	33.7	2.267	- ? 538	0.84	0.355
0.6 as	0.4	46.8	1.2	- 1.462	0.88	0.353
0.4ω	0.6	4.7 .1	1.133	. 1.4096	0.92	0.351
0.2 a	0.8	45.0	1.067	- 1.535	0.96	0.343
0.1 \%	0.9	43.4	1.033	- 1.55	0.98	0.342
0	1.0	42.3	1.000	-1.565	1.0	0.338

We also desire the maxmum torque produced by each of these hamonics. we have:

$$
\begin{aligned}
& T e_{n}= \pm \frac{P}{2}\left(\frac{16 V^{2}}{\pi^{2}}\right) \frac{S_{n}^{\prime \prime}}{n^{3} \omega}\left\{\frac{L_{\mu}{ }^{s r^{2}} R^{r}}{\left[L_{\mu}{ }^{s} R^{r}+S_{n}{ }^{\prime \prime} L_{\mu}{ }^{r} R^{s}\right]^{2}+\left[\frac{R^{r} R^{s}}{n \omega}+n \omega S_{n}{ }^{\prime \prime}\left(L_{\mu}{ }^{s r^{2}}-L_{\mu}{ }^{r} L_{\mu}{ }^{s}\right)^{2}\right]^{2}}\right\}
\end{aligned}
$$

from which the silp for meximum torque may be obtained:

$$
\begin{equation*}
S_{n_{\text {max }}}^{\prime \prime}= \pm \sqrt{\frac{n^{2} \omega^{2} R^{2} L^{2} s^{s^{2}}+R^{r^{2} R^{s}}}{\left(n \omega L_{\mu}^{r} R^{5}\right)^{2}+\left[n^{2} \omega^{2} L_{\mu}^{r} L_{\mu}^{s}-\left(n \omega L_{\mu}^{s{ }^{s}}\right)^{2}\right]^{2}}} \tag{D-40}
\end{equation*}
$$

For the parametern arsumaed above:

$$
S_{n}^{\prime \prime} \text { max }= \pm \sqrt{\frac{5.09 n^{2}+2.02 \times 10^{-3}}{20.36 n^{2}}} \quad \approx 0.5
$$

Sunctioutag this value of stap in the torgue equation, we have

$$
T_{n_{\text {max }}}= \pm \frac{2.74 \times 10^{-2}}{n^{3}}\left[\frac{1}{(.024)^{2}+\left(\frac{00024}{n}\right)^{2}}\right] \approx \pm \frac{47.6}{n^{3}}
$$

for the assumed mentace.
Bo, for the poreforlar manine we have assuned, the
 of the onder of the hamano.
 E0 Fucaranta!
Zquefor (69) in Mapten G gires the expression for zotor

$$
P_{\text {Loss }}=\frac{5.15}{n^{2}}\left[\frac{1}{\left(\frac{.006}{S_{n}}+.012\right)^{2}+\left(\frac{000012}{n S_{n}}\right)^{2}}\right]
$$

Wen the motor is operating at a sip of 10% relative to the fundemental, thes given tize followfig losses for the

$$
\begin{aligned}
& T_{\text {Losin }}=1000 \text { wetts } \\
& P_{\text {Ioss }_{3}}=2000 \text { wetto }
\end{aligned}
$$

The internal mechanical power developed by each harmonic is expressed by the following:

$$
\begin{equation*}
P_{\text {int }}=\left(1-s_{n}\right) n \omega T_{e n}=\frac{\left(1-s_{n}\right)}{\left(s_{n}\right)} P_{\text {Loss }} \tag{D-41}
\end{equation*}
$$

For the fundamental and first two harmonics this gives:
$\mathrm{P}_{\text {int }}=9000$ watts
$P_{\text {int }_{3}}=480$ watts
$\mathrm{P}_{\text {int }}{ }_{5}=122$ watts
We see that the efficiency is 90% for the fundamental
alone, whereas if we include the first two harmonics, efficiency falls to 72.5% 。

APPENDIX E

DESIGN OF POLYPHASE SWITCHING CIRCUIT

The circuit used in the experimental work of this thesis was basically the circuit described by Milnes [2]. In the course of the experimental work, three different sets of cores and two types of transistors were actually used but only one of these circuits is described here.

The first basic limitation on circuit design is that imposed by the transistor characteristics. The transistors used In this circuit were type $2 N 66$ manufactured by Western Electric Co. These are $p-n-p$ alloy type transistors, sealed in a welded can. They were mounted on an unpainted aluminum sheet ($3 \frac{1}{2}$ " $x 3 \frac{1}{2}{ }^{\prime \prime} x 1 / 16^{\prime \prime}$ thick) in order to provide an adequate heat sink. The pertinent characteristics of the $2 N 66$ type are Iisted below in Table E-I. The parameters of these transistors were measured and are Iisted in Table E-II.

Table E-I
General Characteristics of 2N66 Transistors
Current, continuous to any electrode
0.8 amps

Maximum collector to emitter voltage
40 volts
Maximum collector to base voltage
60 volts
Reverse current at -4.5 volts, collector to base 75

2 Base voltage for 400 ma collector current,
-2.0 volts

Since the limiting collector-to-emitter voltage is -40 volts, the maximum value of control voltage is limited to 20 volts. This is because twice the control voltage appears across the transistor when it is blocking,

The core material used was tape-wound Hy-Mu 80 (tape thickness: 2 mils) manufactured by Magnetics, Inc., and listed as item No. 50042 in their catalogue. These cores have an effective cross section area of 2.73 square centimeters. They are assembled in a protective case with a clear window area of 5.36×10^{6} circular mils. For practical purposes Hy-Mu 80 can be considered to have a maximum fiux density of 0.72 webers per square meter. Thus our cores had a maximum flux at saturation of 1.97×10^{-4} webers.

It was decided to design fo: a frequency of 60 cps of a control voltage of 15 volts. This mean operating point was chosen since the objective of one phase of the experimental work was to apply the output of the swicching circuit to a 60 cps induction motor. With these values the number of turns for the collector winding can be obtained from the formula:

$$
N_{1}=\frac{E}{4 f \Phi_{5}}=\frac{15}{4 \times 60 \times 1.97 \times 10^{-4}}=318
$$

A value of $N_{1}=320$ turns was selected.
Next it was necessary to determine the load which would be used. Since the power output would be small, it was felt that our induction motor would have to be simulated from available synchro elements. On this basis a resistance of

50 ohms was selected for the load of each phase. This load line is shown plotted on the transistor characteristics in Fig.E-I。

Fig. E-I. Typical output characteristics of a $2 N 66$ transistor in common emitter configuration. (Ioad line of 50 ohms is shown superimposed.)

From this figure it ean be seen that when the converter Is operating at 20 volts there will be a collector current of 400 mililamperes. From Table E-I it is seen that for this colleator current a base voltage of less than -2.0 volts would be required. Since the base voltage is N_{2} / N_{1} times the collector voltage a turns ratio less than $10: 1$ would be required for the base. However, in order to be assured of cut-off a ratio of about 4 : 1 was chosen. Accordingly 75 turns was used for the value of N_{2}. This was found to be greatly in excess of the value required, but at the time the circuit was designed the main objective was to
insure operation. If the circuit were to be redesigned in light of present knowledge, a tums ratio of 9 or 9.5 to 1 would be used, the main consideration being to reduce the power dissipation in the base. If the base resistance, R, has to be large for some reason, a smaller value of turns ratio ($9:$ I) will reduce the power dissipated and still assure operation.

There is no particular requirement on the turns selected for the coils in the phase locking circuit. Their purpose is to provide voltage for the phase locking circuit. The cnly consideration should be that they do not provide more volt time area than the saturainle reactors can absorb. For the circuit being discussed 150 turns was used for N_{3}.

The material used for the saturable reactors was Hypernik V, manufactured by Westinghouse. The core used hes an effective cross section of 0.69 squere centimeters and a maximim flux density of 1.4×10^{-4} webers per square meter.

It has previously been shown in Chapter 4 that the turns for L_{1} and L_{3}, designated $N_{L_{2}}$ and $N_{L_{3}}$ are given by Equation (I'7):

$$
\begin{aligned}
N_{L_{1}} & =N_{L_{3}}=\frac{2 N_{3}}{3} \frac{\varnothing \text { HYMU } 80}{\varnothing \text { Hypernix }}=\frac{300}{3} \times \frac{2.73 \times 10^{4} \times \cdot 72 \times 10^{-6}}{.69 \times 10^{4} \times 1.41 \times 10^{-6}} \\
& =200 \text { turns } \\
N_{L_{2}} & =N_{L_{4}}=2 N_{L_{1}}=400 \text { turns }
\end{aligned}
$$

Since in reference [3] it was mentioned that the turns for the saturable reactors should be slightiy less than the optimum value given above, the windings for the saturable reactors were provided taps to give the Rollowing range in turns:

$$
\begin{aligned}
& N_{L_{1}}=N_{L_{3}}=130 \text { through } 205 \text { in } 5 \text { tum steps } \\
& N_{L_{2}}=N_{L_{4}}=340 \text { through } 410 \text { in } 10 \text { turn steps }
\end{aligned}
$$

The rectifier bridges were constructed of the only diodes available in sufficient number, l6 diodes being required for the circuit. The diodes were a sfilicon type IN336 (0.4 ampere maximum at 120 volts).

Next it was necessary to wind the cores with as large a diameter wire size as possible in ordes to reduce the winding resistance to a minimum. Since the center core had the greatest number of windings, wire siees were chosen on this basis. This core required 3 windings of 320 turns, 4 windings of 150 turns, and 2 windings or 75 turns. An upper Iimft of 400 olrcular mils per anpere was chosen to Ifmit coil heating. In order to provide for the shuttle used on the winding machine, only one-thipd of the window area of the cores could be used (1.78×10^{6} circular mils). To provide a margin of safety the following allowable currents in the cores were used: N_{1} and $N_{2}-.8$ ampere max. $N_{3}-0.5$ ampere max。

The winding sizes were then chosen on the oasis of making the winding losses equal in 211 the coils as shown by the calculations below:

Coils Amp. Circ.MAls No. of Coils Total Turns Total Cire.Mils
N_{1} $\mathrm{N}_{2} 0.8 \quad \mathrm{x}$ $N_{3} \quad 0.5 \quad 5 / 8 x$
0.8 x

3
960
$960 \times$
4
600
$600 \times$
$-95 x$ 1655 x

$$
\begin{aligned}
1655 x & =1.78 \times 10^{6} \text { circular mile (available) } \\
x & =1070 \text { osrcular mils (use No. } 20 \text { awg) } \\
5 / 8 x & =670 \text { circuiar mils (use No. 22 ewg) }
\end{aligned}
$$

The saturable reactors had only one wincing each and presented no problem. AWG No. 22 was vised.

The remaining circuit elemant, the eoded besse resistance, was originally chosen accosoing to informetion given in reference [2]. In this it wes stated that cinss resistance should be epproximately equal to the inherent base restatance of the transiator. Fewly in the experimental work, this added resistance was theraiore set 2\% 50 onra, but as further experinental infomation ceveloped, the base resistance, R, was made a whiculu.

Table E-II
Measured Parameters 2 N66 Power Transistors

BIBLIOGRAPHY

1. Royer, E. Ho, A Switching Transistor DC to AC Converter Having an Output Frequency Proportional to the DC Input Voltage, Communication and Electronics, July 1955
2. Milnes, A, G., Phase-Locking of Switching-Transistor Converters for Polyphase Power Supplies, AIEE Advance Paper No. 55-543, presented at RIEE Summer General Meeting, Swampscott, Mass., June 27--July 1, 1955
3. Bright, R。Lo, Junction Transistoris Used as Switches, AIEE Advance Paper No. 55-156, presented at AIEF WInter General Meeting, New York, N. Y., January 31--February 4, 1955.
4. Gray, P. E., Pulse-Circuit Characteristics of Power Transistors, S.M. Thesis, M.I.T., June 1955
5. M.I.T. Course 6,06 Notes, Electric Power Modulators, MoI.T.Electrical Engineering Departiment Staft', 1.955
6. Fiongerald, A.E., and Kingsley, C., Jio. Electric Machınery, McGraw Hıll Book Coo, New York, N. Yo, 1952
7. Magnetic Circuits and Transformers, MoI.T.Electrical Engineering Department Staif, John Wiley and Sons, Inc., Hew York, N. Y., 1946
8. Loew, E.A., Direct and Alternating Currente, MoGraw H111 Book Co., New York, N. Y., 1946
9. Alger, P. L. The Nature of Polyphase Induction Machines, John Wiley and Sons, Inc., New York, N. Y., 1951
10. M.T.T. Course 6.02 Notes, Electronic Circuits, (Chapter KI. "Relaxation Oscillations"), M.I.T. Eiectincal Engineering Depariment Staff, 1954
11. Maisel, I., The Operation of Multsple Power Suttching Mrensistors, S.B. Thesis, MoI.T., Jenuary 1956

[^0]: (uppressed aro) ofncile
 output
 base resistance

[^1]: Output Frequency (CFS)
 resistance on maximum
 oad

 ## ${ }^{C H}$

 F1g XXI Effect

