
Calhoun: The NPS Institutional Archive

Reports and Technical Reports Thesis Collection

2002-06

Internetting of fires

Olwell, David H.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/24462

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36717612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NPS-OR-02-003-PR

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Internetting of Fires

by

David Olwell and Alan Washburn

June 2002

Approved for public release; distribution is unlimited.

Prepared for: TRAC

2OO20723 111

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943-5000

RADM David R. Ellison Richard Elster
Superintendent Provost

This report was prepared for and funded by TRAC.

Reproduction of all or part of this report is authorized.

This report wasprepared by:

AtAN R. WASHBURN ,,--DAVID H. OLWELL
,_,-'/Professor of Operations Research Senior Lecturer of Operations Research

Reviewed by:

R. KEVIN WOOD
Associate Chairman for Research
Department of Operations Research Released by:

JAWS N. GLE DAVID W. NETZER >'
C/'airman Associate Provost and Dean of Research
Department of Operations Research

Table of Contents

Table of C ontents .. 1
Executive Sum m ary ... 2
1. Introduction ... 3
2. A nalysis of Fire A llocation M ethods .. 5

Cases RAND OM , GREEDY , and OPT .. 5
Other Possible V iew s of the Fire A llocation Problem ... 10
Case BD A .. 13
The A O Boundary .. 15

3. N etFire.xls .. 16
JAN US D ata .. 16
The M ain Sheet of N etFire.xls .. 17
Scenario D evelopm ent in Resam ple .. 18
Com putations Carried Out W ithin V alKill ... 21
General Tendencies ... 22

Appendix .. 25
References .. 31
Initial D istribution List ... 32

Internetting of Fires

by David Olwell and Alan Washburn

Abstract

The advent of long-range, accurate weapons, together with advanced sensors and information systems,
has changed the nature of the modem battlefield. Targets can now be engaged by weapon systems that are
widely separated geographically from their targets. These new capabilities bring increased demands for
coordination and optimization when multiple weapon systems ("shooters") engage multiple targets. There
are aspects of an assignment problem where each shooter does what he is good at relative to other shooters
in order to maximize destruction to any given set of targets. This report introduces methods for making
assignments optimally, and compares them to simpler methods that optimize only locally, instead of
globally. The benefits for global optimization depend on circumstances, but can be substantial.

Executive Summary

Here we introduce a simplex-type algorithm for optimally assigning shooters to targets, and

compare it to other methods. The algorithm rapidly solves the problem of optimally assigning a

fixed collection of shooters to a fixed collection of targets, given known kill probabilities for

each potential assignment. The algorithm itself is represented by SIMPLL.dll, a Windows

dynamic-linked library.

Optimal methods, of which SIMPLL is but one example, are compared to other methods that

make decisions locally, rather than globally. These comparisons are made using NetFire.xls, an

Excel workbook that implements all methods simultaneously so that they can be compared on

specific scenarios. Optimal methods are bound to win such a comparison, but the interesting

question is whether the margin of victory is big enough to justify the C4ISR system that must

accompany the global point of view in practice. The answer, unfortunately, is that the margin of

victory depends strongly on circumstances. In cases where all targets are equal and all shooters

have the same capability, there is little to be gained by global coordination. In more variable

2

circumstances, the margin of victory can be large.

It is sometimes suggested that warfare can be conducted by autonomous "agents" that

operate and make decisions based only on locally available information. It is also sometimes

suggested that modem armed forces should attempt to achieve a C4ISR system sufficiently

sophisticated to achieve "intemetting-of-fires", since it is only with such a system that the

capabilities of long-range weapons can be exploited to the fullest. These suggestions are in

conflict, since the one asserts that local optimization is sufficient or at least inevitable, while the

other asserts that only global optimization will do. In an abstract way, these ideas are

represented by the different targeting schemes discussed in this report. Possibly NetFire.xls

and/or SIMPLL.dll will prove useful to those interested in exploring this issue further.

We have found instances where global use of information can achieve the same results as

local use of information, but at a cost of only half the number of weapons. We have also found

instances where there is no advantage to global use of information. We explain some of the

factors that influence the difference.

1. Introduction

Modem warfare is distinguished by the presence of increasing amounts of relevant

information on the battlefield. The fog of war will never disappear, but it has thinned a bit due to

continuing improvements in sensors, computers and communication networks. It is now realistic

to talk about "intemetting of fires" in the sense that targeting information used by a given shooter

may come from sensors not under his direct control. But this intemetting capability comes at a

stiff price. There are even questions about whether the money might be better spent in more

effective ways. General Howell M. Estes III, USSPACECOM, has put it succinctly:

3

Hard choices need to be made between investments in information infrastructure [and]
the combat systems themselves. This is an extreme dilemma, because combat systems,
without timely, relevant information, are useless. On the other hand, you can't take out
an enemy tank with just information. We need to strike a balance between 'shooters' and
"information systems' if we 're going to be successful in the future.

The subject of this report is the value of information in the context of land combat, with

emphasis on the tradeoff between information and firepower. To get at this tricky issue, we

postulate a group of targets, each of which has a value, and compare various targeting schemes

on the basis of the Measure of Effectiveness (MOE) "fraction of total value killed, on the

average". Clever schemes with a high investment in information systems can be expected to

achieve high scores, but so can less advanced schemes that simply have more firepower. The

incremental dollar should be spent in whatever manner increases the MOE the most. The

resulting combat model, NetFire, is embodied in an Excel workbook.

The general concept in NetFire is that there is a certain length of time called a decision cycle

within which no Battle Damage Assessment (BDA) is possible. Within that cycle, a fixed set of

weapons ("shooters") is available to be fired at the enemy. NetFire reports results for several

different methods of targeting, some methods requiring only local information and some

requiring global information. One of the latter is a system wherein each shooter is directed to

fire in such a manner as to maximize the MOE. The algorithm for doing this (SIMPLL) is a

principal output of this research, and may be of use more generally than in NetFire.

NetFire is an abstract combat model. The enemy does not move or shoot back, and, with one

exception, time is not represented. "Combat" simply consists of one-off situations where

dispersed shooters must simultaneously commit to targets. Nonetheless, NetFire can be used to

explore the significance of certain kinds of information, specifically BDA information and

coordinating information. The next section describes the analysis that underlies the calculations.

The specifics of using the Excel workbook NetFire.xls will be described later.

4

2. Analysis of Fire Allocation Methods

Cases RANDOM, GREEDY, and OPT

Information may or may not be important to determining the battle outcome. Consider the

following scenario. Suppose that there are m shooters and n targets, with each shooter having a

single shot that is capable of killing its target with probability Pk. Temporarily make the

following assumptions:

"* the weapons are all "long range" in the sense that any shooter can physically attack

any target;

"* each target has the same value;

"• each shooter possesses the required targeting information for each target; and

"* there is no BDA between shots over the time period under consideration, so all shots

might as well be committed in one salvo.

It does not follow from these assumptions that shooters can communicate with each other, nor

does it follow that there is a commander capable of sensing the overall situation and giving

appropriate orders. How much is this additional coordinating information worth?

The worst possible outcome from the viewpoint of the shooters would be if all m shots were

directed against a single target, in which case the unfortunate target would be overkilled (unless

Pk is very small), while n-I targets would not be attacked at all. The optimal outcome in this

case would be if all targets were shot at equally. Clearly, achieving the best outcome requires a

commander with perfect information. However, the worst outcome also requires a commander

with perfect information, albeit with a different motivation, so comparing the best with the worst

will not be enlightening. If the shooters cannot communicate-either with each other or with the

commander-then it makes sense to assume that the target chosen by one shooter is statistically

5

independent of the targets chosen by other shooters. The resulting outcome will be intermediate

in terms of outcome, but represents an information extreme in the sense that no coordination

whatever is required to achieve it. It is these two extreme situations, random versus optimal, that

should be compared in discussing the value of coordinating information.

The optimal allocation will allocate the shots equally, so m/n shots will be assigned to each

target. Each target survives only if all of these shots miss, so the average number of targets

killed will be EoP, = n(1 - (1 - Pk)m/n). On the other hand, if each shot is directed at a random

target, then each target survives a given shot with probability 1 -Pk/n, independently of the other

shots. Since there are m shots in total, the average number of targets killed will be

Ero, d = n(1 - (1 - Pk / n)"). Figure 1 shows both of these quantities as a function of m when n=1 0

and Pk=-0.5.

10

8
7

6 ~ -. E-opt

2#A i---- Erand

3
2
1
0

0 10 20 30 40

Figure 1: Average number killed versus total number of shots.

It can be seen from Figure 1 that there is very little difference between the optimal and

random results when m is zero (in which case both quantities are of course 0) or very large (in

which case both approach n). Even in the middle, where mPk and n are approximately equal, the

functions are surprisingly close, given the extreme differences between the command and control

6

systems being modeled. When all weapons are equally effective, all targets are equally valuable,

and the kill probability is not too large, there turns out to be only a limited payoff for information

that would permit the commander to make an optimal assignment for every weapon. When the

global object is simply to distribute weapons evenly over targets, the local tactic of assigning

weapons uniformly at random is not that far from global optimality.

In mixed scenarios where target values differ and the kill probability depends on both

weapon and target, the situation changes. It is no longer clear what firing strategy should be

used in the extreme case of no coordination, since now there is a conflict between treating all

targets equally and selecting the target for which the kill probability is largest. To be more

precise about this, as well as to account for the type of internetting information that makes firing

even feasible, we introduce the following notation:

i indexes shooters, k indexes targets

Vk = value of target k

S-=number of shots from shooter i

pjk = prob that one shot of i kills k, given i shoots at k

Ilk= 1 if it is feasible for i to shoot at k, else 0 {depends on weapon range, internetting, and

possibly other command and control factors}

Pik=piklik {only the product ofp and I is important}

When there is no commander able to coordinate fires, each shooter could still choose a target

at random. But a target truly chosen at random could very well have a zero kill probability, so

instead we assume that the randomization is done only over those targets for which the kill

probability is nonzero, the ones that are reasonably close to the shooter. To be precise, we define

Case RANDOM: Assume that each shot from i is equally likely to be taken against any

7

target k for which Pik>O. Define the sets TI-{k!Pik>O} and R f{iPik>O}, and let #0 count the

number of elements in a set. Then Pik/#(Ti) is the probability that each of i's independent shots

kills target k, and therefore the probability that target k survives is qk = 1-1- Pik '1. The
=eRk .T#()

survival events are not independent among the targets, but nonetheless the expected remaining

target value is V* = V (1- qk).
k

Case RANDOM could still be criticized for sometimes directing fire against targets where

the kill probability is low. It is tempting instead to assume that shooter i directs all of his fire

against the target for which the product of target value and kill probability is largest. This

"GREEDY" procedure is also feasible without coordination by a commander as long as target

values can be sensed locally. To be precise, we define

Case GREEDY: Assume instead that each of i's shots is taken against the target for which

it is most effective, namely target K(i)--argmaxk { VkPik}, and let Rk= {iIK(i)=k} be the set of

shooters who attack target k. Then q = flI(1 -Pik)S , and the expression for V* is as before.
iERk

Case GREEDY may not do as well as Case RANDOM. Suppose that there were some single

valuable target that is very vulnerable to fire from every shooter. Then all fire would be directed

against that one target in Case GREEDY, and all others would escape. Case GREEDY makes no

provision for spreading fire over other targets.

The fact that neither RANDOM nor GREEDY is clearly the right thing to do when no

coordination is possible simply bespeaks a difficult fire allocation problem. In this circumstance,

one might suspect that a coordinating commander could make more of a difference, particularly

when at least some of the kill probabilities are large. Our reasons for introducing the RANDOM

8

and GREEDY procedures are not that we advocate them in any sense, but that they are simply

two procedures that might characterize what actually happens in the absence of the coordination

that intemetting makes possible. Specifically, they might characterize target selection by

"agents" whose behavior is based only on locally sensed conditions.

The best scenario for coordination information, then-the case where its value in terms of

additional targets killed is largest-will be when:

"* targets have different values;

"* kill probability is variable;

"* at least some kill probabilities are large; and

"* the scenario is not one of massive overkill or underkill.

It might seem that this is a rather narrow scenario, and in a way it is. Nonetheless, our

intention is to concentrate on cases of this sort. Our contention is that this situation characterizes

modem warfare. In particular, modem weapons may be guided weapons that are long range and

have large kill probabilities, but which are in limited supply on account of being expensive. It is

particularly important to employ such weapons carefully, reserving them for cases where less

expensive weapons cannot do the job. Only coordinating information can enable this.

When coordinating information is available and timely commands to individual shooters are

feasible, the fires of all the shooters can be directed in a manner that maximizes the average

target value killed. The resulting optimization problem might be called a nonlinear assignment

problem, since the objective will be best accomplished by assigning each shot to the target at

which it is most effective. Let the variable xik represent the number of shots made by shooter i at

target k. Then Case OPT is to

maximize J Vk (1 - qk), subject to the constraints
k

9

q ý -(1 -- P ik~ x k

ZXik-Si,
k

Xik > 0

Here, and in all following optimization formulations, we use the convention that variable names

begin with lower case letters, whereas constants begin with upper case letters. The formula for

qk, the miss probability for target k, reflects the usual independence assumption in the extended

product of miss probabilities.

Case OPT is actually a nontrivial Mathematical Programming problem, since the objective

function is nonlinear and the variables are also required to be integral in value. We cannot solve

it in reasonable amounts of time for large problems. However, an upper bound on the optimal

objective function can be obtained by relaxing the integrality constraint, which produces a

simpler, continuous optimization problem for which an efficient solution technique is known

(Washburn[1995]). A lower bound can then be constructed by rounding the solution to integers

in such a manner that shot constraints are still enforced. This process is carried out in

SIMPLL.dll, a dynamic-linked library that can be used with any Windows-based application.

The SI1MPLL algorithm is actually a branch-and-bound method (Washburn[1998]) that will find

a solution accurate to within TOL, a nonnegative tolerance for error.

Other Possible Views of the Fire Allocation Problem

The basic viewpoint taken above is that finite stocks of weapons must be allocated to targets

within any given decision cycle. The weapons themselves are not "costly" in any sense other

than being in limited supply. This is a common point of view, but by no means the only

reasonable one. If weapons are costly, instead of being constrained, it may make sense to

minimize the cost of "getting the job done" in some sense. This new point of view results in the

10

consideration of optimization problems such as NLP 1:

minimize ECixik, subject to the constraints
i,k

qk = r- G1- Pik)Yi"
i

E Vkqk < V,
k

Xik >-0

In NLP1, the weapon constraints Si have been replaced by weapon costs Ci, and the object is

to minimize the total cost of shooting, subject to the total surviving value not exceeding V. Costs

may be in units of dollars, or may reflect the weight or volume of the weapons, which would be a

consideration when moving weapons into a distant theater. Cost might also reflect tactical

preferences.

NLP 1 is a nonlinear but convex program, since the target value constraint amounts to

requiring that a convex function not exceed V. NLP 1 can therefore be solved by any of a number

of commercially available nonlinear optimization packages. If the variables are required to be

integers, a branch-and-bound algorithm could be based on an NLP1 relaxation, as in SIMPLL.

However, there is no tailored algorithm for solving NLP 1. We have investigated solutions to this

problem using GAMS (Brooks, Kendrick, and Meeraus[1988]) to access general purpose solvers,

and find that it solves much more slowly than Case OPT. For example, solving a 25 shooter, 75

target problem takes about a second for SIMPLL, but a minute for GAMS using the formulation

shown in the Appendix. The performance spread increases as the problem size grows,

highlighting the advantages of having a special-purpose tailored algorithm such as SIMPLL.

In principle, one could also solve NLP2

minimize E Cgxik + E"Vkqk, subject to the constraints
i,k k

11

qki
qk =fJ-(lP1-P)x,

i

Xik > 0

NLP2 is the problem of minimizing total cost, including the "cost" of the surviving targets,

subject to no constraints on either target value or weapon consumption. Weapon consumption is

left to be whatever is natural for the target complex. NLP2 is a Lagrangian relaxation of Case

OPT as well as of NLP1, so it should be easier to solve than either one. A special-purpose

algorithm similar to SIMPLL could surely be developed for it. NLP2 suffers from the practical

problem that both weapons and targets must be valued on the same scale, probably dollars. The

tradeoffs that are implicit in Case OPT and NLP 1 are explicit in NLP2.

One could also go in the opposite direction and add constraints to NLP1, rather than remove

them. If every target is constrained to survive with only an input probability Qk, one arrives at

NLP3:

minimize Y Cxi , subject to the constraints
i,k

qk =f- (1x-Pik•),
i

qk < Qk

Xik > 0

NLP3 is especially simple because qk can be eliminated, after which the constraint set is:

Sxi ln(a - Pik) < In(Qk)

Xik >0

Since the objective function and all constraints are linear, this is a Linear Program. The problem

here is that one must give a survival probability for each target, with no tradeoffs possible

between targets. The minimized objective function might be disappointingly large if Qk were

made small for some hard-to-kill target.

12

Case BDA

It was mentioned in the Introduction that NetFire does not model time, with one exception.

Here we discuss that exception.

All of the previous calculations pertain to a "one-off' war that is one decision cycle in length,

where all weapons are assigned without regard to the effects of other weapons. It is likely in

such circumstances that some weapons will be assigned to targets that have already been killed

by other weapons-a potentially significant waste if the weapons are expensive. In a multi-cycle

war where BDA information about the status of targets is available, this waste could be

prevented. To bound the value of such BDA information, we consider in this section a situation

where there is no time pressure, and where every shot is followed by an instantaneous, perfect

assessment of whether the target was killed or not. No real BDA system is this good and no war

is so leisurely, but it is still of interest to see how much additional target value could be killed (by

weapons not previously wasted on dead targets) in this circumstance.

The data Pik, Si, and Vk has the same meaning as before, but many policies are now feasible

that were previously not. These new policies all involve shooting a single shot at some target,

assessing its effects, and then, depending on the effects, shooting another single shot at some

possibly different target, and so on. Each of these policies is a very complicated object, since all

eventualities must be allowed for. Each might be expressed as a decision tree. For example, one

policy might begin, "Fire weapon 3 at target 6. Then follow branch A if target 6 is killed,

otherwise follow branch B". There are a great many possible such policies, but the number is

finite. The problem of finding the one that maximizes the expected target value killed is

therefore well defined, but the number of possible decision trees is large enough to make

exhaustion an unattractive technique.

We know of no practical way of finding the optimal policy. Our goal here is merely to

13

bound from above the expected target value that such a policy might achieve. Toward that end,

we define a collection of indicator random variables:

Y•k =1 if target k is killed by weapon i (for each k, at most one of these can be 1),

Yk=l if target k is killed, and

X.k=l if weapon i is assigned to target k (for each i, at most one of these can be 1).

The firing policy will induce many correlations between these random variables, so

independence assumptions among them are not appropriate, but the collection is still useful for

formulating the problem of finding the optimal policy. We first note that Yk = Yik, and that the

total value killed is Z = VkYk . The problem (call it P1) of finding the optimal policy can
k

therefore be posed as maximizing z, the expected value of Z, subject to constraints

(1) 1 Xik < Si for all i with certainty,
k

(2) Yk = Y Yk for all k with certainty,

(3) Yk!l for all k with certainty,

(4) other constraints.

The other constraints in P1 include the crucial relationship between X.k and Yik, the essence of

the firing policy. Whatever that relationship, it must certainly hold that E(Yik)< Pik E(Xik). Now,

using lower case letters for expected values of random variables, we can construct a relaxation of

P1 that we name P2:

maximize z = _Vk Yk subject to
k

(1) 1 x, _< Si for all i,
k

14

(2) Yk < xikPiik for all k, and
i

(3) yk 1 for all k.

P2 is a relaxation of Pl, because a relationship that is true with certainty will also be true on

the average, because sums and expected values can always be interchanged, because (4) implies

that E(Yik)-xik Pik, and because the rest of (4) has simply been omitted in P2. P2 is a simple

Linear Program that provides an upper bound on what is achievable with any shoot-look-shoot

policy. P2 has a direct interpretation where xik is the average number of weapons of type i used

on target k, and yk is the probability that target k is killed. (1) requires that the average number of

weapons of type i used not exceed the number available, (2) requires that the effect of each shot

not exceed Pik, and (3) requires that target k be killed at most once.

This BDA upper bound is one of the computations made in NetFire.xls, using Excel's Solver

to solve the Linear Program.

The AO Boundary

Hierarchic military organizations sometimes partition the target set into parts, with each unit

in the hierarchy being responsible for one of the parts. Doing so simplifies command

relationships and minimizes the need for communications. It may also be beneficial in avoiding

some of the overkill errors that Case GREEDY is subject to, where too many shooters choose a

soft or valuable target. However, the partition can also be viewed as the addition of constraints

to Case OPT, which can only have the effect of reducing the objective function. Is the reduction

significant? An easy way to find out is to partition the battlefield into two halves, with the

shooters and sensors in one half being ineffective in the other. Each of the cases discussed above

can be applied separately in each half, and the results added. By comparing the results with the

cases where the battlefield is not partitioned, one can measure the significance of the partition, as

15

in NetFire.xls.

3. NetFire.xls

JANUS Data

NetFire is distributed with a variety of defaults, including the entire database pertaining to

(shooter, target) kill probabilities. This subsection will be of interest only if the user wishes to

change those defaults, and may be skipped on first reading.

Most inputs to NetFire.xls are directly from the user. The main exception is a mechanism for

incorporating kill probability data from the JANUS combat model. To do so, one must first

obtain from the JANUS database a text file named PKJL.csv in the same format as sheet "PKIL".

There should be a single header line followed by a separate line for each (weapon type, target

type) pair, typically a long file because each shooter type may have several target types in

JANUS. Each line after the first should give a sequence of kill probabilities (more precisely "hit

and kill" probabilities) indexed by range and attitude relative to the shooter, as shown on sheet

"PKIL". This file should be placed in the same directory as NetFire.xls, after which pressing the

"Update tables from PKIL.csv" button on sheet "PKIL" will overwrite the data on that sheet with

the new data in PKJL.csv.

The command button labeled "Update tables from this sheet" on sheet "PKIL" uses the data

on that sheet to create sheets "QTable" and "RTable". As NetFire is distributed, the data shown

on sheet "PKIL" is abstracted in subroutine NewQKO so that every (shooter, target) pair has a

single miss probability that is valid out to a maximum range, after which the miss probability is

1. This subroutine then writes the miss probabilities to sheet QTable and the maximum ranges to

sheet RTable, each in the form of a table with shooters on the rows and targets on the columns.

Making miss probability be (say) a linearly interpolated function of range would require writing

16

new VBA code in subroutine NewQKO.

Subroutine NewQKO also incorporates a weapon reliability parameter that is hardwired to .9.

As a result, no miss probability on sheet QTable will be smaller than. 1. This subroutine also

initializes the number of shots available (the default for column 1 is 4 shots) and the sampling

weight (the default for column 2 is set to 1 for all shooter types) of each shooter, as well as the

values (row 1 is set to 10) and sampling weight (row 2 is set to 1) of each target. These values

can subsequently be edited by hand, but will be renewed at the default values whenever the

"Update tables from this sheet" button is pressed. The defaults can be changed by editing the

VBA code for NewQK0.

As distributed, NetFire.xls is unclassified because it uses an unclassified dataset from

JANUS. More realistic, classified data would provide more realistic, classified results.

The Main Sheet of NetFire.xls

The main sheet of NetFire.xls is the sheet named "pij". On this sheet can be found a digital

and graphical description of the current scenario, along with command buttons "Resample",

"ValKill", and "MultiRep". These buttons have the following functions:

* The battle involves three types of objects: shooters, sensors and targets. Command

"Resample" randomly selects and writes the object properties to the "pij" sheet,

thereby defining a scenario. It also shows the object locations in a chart. The user's

inputs here are the cells colored with a light green background: the number of each of

the three types of object, the dimensions of the areas within which they are located,

and, if desired, an AO boundary location. Resample also uses data from the sheets

"QTable" (miss probabilities), "RTable" (max ranges), and "STable" (sensor data) to

compute and write the miss probability matrices for both the AO case and the non-

AO case. The user input cell "Value variance" increases the variability of the target

17

values, with input 0 leaving them all at the default.

"* "ValKill" computes the MOE "average fraction of target value killed" for four cases

and two AO possibilities, writing values to the rows and columns of the output cells

with a light yellow background. One method (OPT) has two rows because both a

feasible solution and an upper bound need to be shown. ValKill uses the data in the

ranges named "shots", "values", "missprob", and "missprobrl". Two tables of miss

probabilities are needed because results must be computed both with and without an

AO. This data can be edited directly if desired, but will be overwritten when the

Resample button is again pressed.

"* "MultiRep" iterates the Resample/ValKill combination an input number of times,

leaving only the last replication on sheet "pij". The 10 numbers computed by ValKill

are written on the sheet "MultiRep" in rows, plus one additional row that averages the

results in each column. The desired number of iterations is in the green cell right

above the button.

Figure 2 shows a screen shot of the main sheet, including part of the map showing object

locations and two of the command buttons. The check boxes are included because sometimes it

is useful to resample only parts of the scenario, but normally all will be checked. The 10

numbers shown next to the ValKill button are the main outputs.

Scenario Development in Resample

The Resample command button creates each scenario by first creating objects called

shooters, sensors and targets with randomly selected properties. All such objects have locations

(.X and .Y) that are uniformly sampled based on the limits given by the user on sheet "pij".

These coordinates are shown on that sheet both digitally and graphically.

18

Erile Edit View Insert Farmnat blolDa t~a ffindow hialp Acrollat U, IA
iAMal .10 B'I I ,J

A B C- * E F -1 G .H I J K L_
7000 bottom

7 ~~6000- *tres right
E-500 shooters to

10' 5000- sensors ,tp......
~f Resample .4* * -A-o

13 .2000*'

14 lTa Ir.g -e..t s .oo... number

1I' FShooters 0
S.......-10000 -5000 0 5000 10000

~ sensors
18x coord (meters) Ilndex

19 __ Namne
20 .Range

21 Sngl AO TwoA~s Change the inputs in the geen inu cells,: press nme
22 aliU~nd 0.20369784 0.204980366 Resample to produce a new scenario and update

23 ValKHfGreed' 0.28549067 0.284797506 ~the chart, then press ValKill to compute the yellow A
24 Va1f 1a~l~tw~03747 .0575 outputs. Properites such as AX or .Shots can be

25VaKiUptbpr 0.30715406 0.305749723 IdutdwtotRsmln.VlilL~rwl ndex
26 ~Val~iUSLSUpi; 0.39278687 0.392786868 adutdwihuaesmln.eaKISL~rwlbe blank unless shooters x targets -=200 (Solver ~.Nm

- -limit). Shots

29
0nubrtgts, value variance

31 20 4
2 X .Y .lndex ,t~ype Value Oi~j

33 1 9306.818 7766.26825 32 RAPC3 376.6174

Otaw. C. , AutaShapes - \ ~.O4~ 1 !

Ready

VAS.."- Lt.DBi f I.'Com4Dt. JNL.M...j DoE.. D..ýký. ýM

Figure 2: Screen shot of the main sheet "pij" of workbook NetFire.xls.

Each shooter also has a type that is selected with a sampling weight read from column 2 of

sheet "QTable". These weights are all set to 1 when the sheet is created, but can be changed by

the user if some shooters are desired to be more numerous than others. For example, make the

weight of "PISTOL" 10 if Pistols should be 10 times as numerous as other shooters (only relative

values of weights are significant, so arbitrary nonnegative values are permissible). Other

editable items taken from "QTable" include:

"* The number of shots available to each shooter (column 1).

"* The value of each target (row 1).

"* The sampling weight of each target (row 2).

19

* The miss probability for each (shooter, target) pair, conditional on a shot being

feasible.

The maximum range for any given (shooter, target) pair is taken from sheet "RTable".

The Resample command also creates sensors, using data on sheet "STable". Each sensor has

a name, a sampling weight, and a range within which it detects and identifies all targets. Given

the user input number of sensors, the sensors are chosen randomly according to their weight,

assigned the appropriate name and maximum range, and located uniformly at random within

user-designated limits. As with shooter and target objects, the properties of each selected sensor

are shown on sheet "pij".

Finally, the Resample command creates two miss probability tables and shows them on sheet

"pij". The first table is located in named range "missprob", and applies to the case where all

targets are in the same area of operations (AO). The miss probability for any individual (shooter,

target) pair is 1 if the shot is not feasible, or otherwise the value read from sheet "QTable".

Feasibility requires that:

"* The target must be within firing range of the shooter.

"* The target must be known. A target is known if it is either

"o within range of any sensor, or

"o within VisRange of the shooter.

The VisRange parameter is hardwired at 3,000 meters in subroutine Sampleo, which is the

subroutine called by the Resample command to do all of the scenario generation work.

A separate table "missprobrl" is created for the AO case. All objects are partitioned by the

AO boundary, and no shooter on one side of the boundary can even learn of a target on the other

side, much less shoot at it. The AO miss probabilities are always larger than the non-AO miss

20

probabilities, since shooters and sensors in one AO are not allowed to report on or shoot at

targets in the other. It does not follow that results in the AO case will always be worse (see

discussion below), although they usually are.

Computations Carried Out Within ValKill

All of the inputs required by the ValKill command are displayed on sheet "pij". In fact, the

only data involved are in the named ranges "shots", "values", and "missprob" (non-AO) case,

and "missprobrl" (AO case). All of this data can be edited directly before pressing the command

button, but it will be overwritten the next time the Resample command button is pressed.

The function of the ValKill command is to compute the 10 numbers in the yellow shaded

area, all of which are the MOE "average fraction of target value killed" in different

circumstances. All of these computations are carried out within the ValKill() subroutine. The

two local firing rules, RANDOM and GREEDY, are implemented directly within the subroutine.

The OPT firing rule is implemented by calling subroutine SIMPL0 in the external dynamic-

linked library SIMPLL.dll. This subroutine returns an upper bound on what is achievable by any

firing procedure faced with the same problem, so the upper bound is displayed, as well as the

score achieved by the (nearly) optimal firing plan. The subroutine is declared at the beginning of

module 1 of VBA code, and called from subroutine ValKillo. Finally, the BDA upper bound is

calculated by calling subroutine LPUpro, which formulates and solves the appropriate Linear

Program using the Excel Solver and sheet "LPUpper". Solver will only handle problems with

200 or fewer variables. If the product of the number of shooters and the number of targets

exceeds this limit, the upper bound is simply reported to be zero. This constraint could be

eliminated by replacing the standard Solver with a better optimizer.

Each of the computations is repeated in the AO case, except that miss probabilities are taken

from "missprobrl" instead of "missprob".

21

The SIMPLOsubroutine in SIMPLL.dll can theoretically be called from any Windows

application, as long as declarations are made carefully and the Compaq FORTRAN runtime

library DFORRT.dll is also available.

NetFire was designed to generate random scenarios for analysis. It is also possible to use

NetFire to analyze existing scenarios. To do so, first adjust the numbers of targets, shooters, and

sensors to the correct values and press the Resample button. This will generate a random

scenario with the correct dimensions. Then enter the correct target, shooter, and sensor data

manually into the appropriate rows and columns. Save the workbook to protect all this work.

Then uncheck the boxes for targets, shooters, and sensors under the Resample button on page

"pij". Pressing the Resample button will then calculate the two required tables of miss

probabilities. The ValKill button will then evaluate the different firing strategies.

General Tendencies

There are a few theoretical inequalities that must hold regardless of scenario. These will be

stated in terms of VK(ij), the ith row and thej th column of the 10 outputs, i=1,..,5;j=l,2. Table 1

shows a typical example.

1. VK(ij)< VK(4j); i=1,2,3 andj=1,2. This is because an upper bound on the optimal

score must necessarily be greater than any feasible score, and all scores shown in the

first three rows are feasible.

2. VK(i,2)< VK(4,1); i=1,2,3. VK(4,1) is an upper bound on what can be achieved by

any firing method that is required to make all shots within one cycle when there is no

AO boundary, and therefore is also an upper bound when the AO constraint is added.

3. VK(4,J)<VK(5j);j=l,2. One basically gets to the BDA bound by replacing the

function 1-exp(-x) in the OPT bound by the dominant function min(1,x), so the BDA

22

bound is necessarily at least as large as the OPT bound.

Single AO Two AOs

ValKillRand 0.2552852 0.245430418

ValKillGreed 0.26754648 0.245757911

ValKillOptLwr 0.31123148 0.276201159

ValKillOptUpr 0.31165106 0.276259909

ValKilISLSUpr 0.3365397 0.29697468

Table 1: Typical outputs from NetFire.xls.

All of the above inequalities should be true regardless of scenario. If any should ever fail to

hold, then please notify one of the authors because a bug has been revealed.

Other than these inequalities, not much can be said in general about even the ordering of

results, much less about absolute differences between them. It is not always true that GREEDY

is better than RANDOM. To provide a counterexample, generate a scenario where all miss

probabilities are equal. Every shooter will fire at the most valuable target in the GREEDY

method, whereas the RANDOM method will spread fire equally over all. If the most valuable

target is only slightly more valuable, RANDOM will get a better score. Also, in spite of

inequality 2 above, it is not always bad to have two AOs. The GREEDY method, in particular,

may do better when there is a constraint that prevents certain shooters from shooting at certain

targets.

The incremental value of information is highly circumstance dependent, and there are so

many dimensions to a NetFire scenario that one hesitates to make general conclusions beyond

the above inequalities. Nonetheless, after generating and solving a large number of scenarios,

any user will come to conclusions about tendencies. For the scenarios generated by the authors

in the course of developing NetFire, the following tendencies have been noted:

"* GREEDY generally outperforms RANDOM, but not by much.

"* The OPT policy typically increases the fraction of target value killed by about 20%,

23

relative to either GREEDY or RANDOM.

"* The BDA upper bound is typically about 30% above the GREEDY/RANDOM level.

"* A few percentage points are usually lost in going from one to two AOs.

The performance of BDA is surprisingly low, since BDA as used here represents a perfect

assessment system where time is not constrained and the true status of every target is always

reported correctly after every shot. As a means for promoting efficiency in firing, BDA appears

to be not particularly effective, at least if the scenarios examined by the authors are typical. Of

course, knowing the correct status of targets has a military payoff beyond weaponeering

efficiency.

All of the above observations are based on 10 shooters with four shots each. For reference,

the OPT policy with two shots each is approximately as effective as GREEDY/RANDOM with

four shots. In this case, optimal use of information is approximately equivalent to doubling the

firing assets available. If such results survive testing in more realistic scenarios, internetting of

fires will truly be worth the cost.

24

Appendix

This Appendix contains the GAMS file to implement NLP1 with random scenario data. It
can be amended to handle a given scenario by using input files to read the scenario data.

$TITLE SHOOTER-TARGET ASSIGNMENT PROBLEM, MINCOST WITH
EFFECTIVENESS THRESHOLD

*-----------DEFAULTS ----------------------------

$OFFUPPER ONSYMLIST OFFSYMXREF

$INLINECOM { }
option iterlim = 10000000;
option reslim = 10000000;
option minip = sbb
options optcr = .4;

* HEADER-----------------------------

$ONTEXT

Original: 5/01/2002
Authors: Dave Olwell and Alan Washburn
Revised: yes, 5/09/2002
Description: Mixed Integer Non-Linear Program designed

to find optimal assignment of shooter-target
combinations to minimize cost(be it weight, cube,
$$, or utils) while reducing the expected fraction
of remaining target value below a given threshold.

Uses random assignment of pks, values, and costs.

Designed to explore characteristics of algorithm prior
to developing version that imports data from files.

This is a 100 shooter, 200 target version;
size can be adjusted by changing indices for shooters and
target.

Sponsor: Mr. Mike Bauman, TRAC.

$OFFTEXT

* Option memnodes = 100000; {recommended by SBB documentation, but not allowed by

GAMS}

25

* - -- INDICES

Sets
s shooters /shtl*shtlOO/
t targets /tgtl*tgt200 / ;

scalar maxrounds maximum number of rounds fired by a shooter at a target / 3 /
b maximum fraction remaining /.3/
max v maximum target value /10/
max c maximum shooter cost /8/
goodq initial search bound
goodc initial search bound
goodv initial search bound
ttiv total initial target value (computed below)

goodq = .3;
good-c = ceil(max c/2);
goodyv = ceil(maxv/2);

*-----------PARAMETERS ---------------------------

Parameter

c(s) cost to fire a round from shts;
c(s) = floor(uniform(1,max c + 1));

{ c(s) is uniformly distributed over (1,2,3... max-c)}

Parameter
v(t) value of target t;
v(t) = floor(uniform (1,max v + 1));

{ v(t) is uniformly distributed over (1,2,3... max v)}

Parameter q(s, t) miss probabilities;

q(s,t) = max(floor(uniform(I, 10))/ 10, floor(uniform(.5,1.5)));

{ 50% of the qs are 1 by random assignment here,
rest are uniform over (.1, .2, .3, ..., .9)}

{ c(s), v(t), b, and q(s,t) will eventually be read in from a data file }

ttiv = sum(t, v(t));

26

---- --VARIABLES -

variables
x(s, t) rounds from shti to tgtk
z total cost of firing solution
ttev expected remaining target value
frac ttev divided by ttiv
truecost cost without non-integer penalty;

integer variable x;

*******************Iitial bounds*********************

x.up(s,t) = max rounds;
{will eventually be bounded via input file,
only fire MAXROUNDS For a given (s, t)}

loop((s,t), if(q(s,t) = 1, x.up(s,t) = 0)) ;
{bound the solution space reasonably, can't fire at guaranteed
miss}

********************Initial variable values***********

x.l(s, t)$(q(s, t)<=goodq and c(s)<-= goodc and v(t)>= good v) = 1;
{ pick the high value shots initially to seed search space}

-------------- EQUATIONS -------------
Equations

cost define objective function
threshold ttev less than b of ttiv
ttevdef defines expected remaing target value
fracdef defines frac;

cost .. z =e= sum((s, t) , c(s) * x(s, t))

threshold ttev =1= b * ttiv;

ttevdef ttev =e= sum(t, v(t)* prod(s,q(s, t) **(x(s, t))));

fracdef frac =e= ttev/ttiv;

model probde /all/;

27

probde.scaleopt = 1;

probde.nodlim = 50000;
* probde.optfile = 1;

probde.tryint = .25;

* First pass -- solve relaxed problem

solve probde using rminlp minimizing z;

******************* formatted output stuff******************************

display x.1, x.m ;

file outputl /outputl.csv/, results /resultsl.txt/;

put results;
put @10, 'FORMATTED RESULTS'///;
put 'Date of run',@l 5,system.date ;
put /,'Time of run',@ 15,system.time;
put /, card(s),' shooters and', card(t), 'targets'///;

put 'Relaxed cost',@15,z.1 /;
put 'Rounded cost',@15, sum((s, t), c(s)*round(x.l(s, t)))/;
put 'Rounded effectiveness'/;
put @15, sum(t, v(t)/ttiv * prod(s,q(s, t) **(round(x.l(s, t)))))//;
put 'Non-zero shooter-target pairs and round count'!!;

put 'Shooter',@ 12,'target',@24,'Rounds'/;
loop((s, t), if(x.l(s, t)>0,put s.tl,@12,t.tl,@24,x.l(s, t):5: 1/))
put //,'cost', @10, z.1 :6:1//;

put 'shooter totals'/;
loop(s,put /,s.tl, @10, sum(t,x.l(s, t)):6:1)

put///, 'ttiv', @25,ttiv: 10:4;
put/, 'ttev', @25,ttev.l: 10:4;
put ///, 'B', @25, b:4:3 ;
put /,'fraction surviving', @25, frac.l:6:5

put ///, 'List of costs';
loop(s, put /, s.tl, @10, c(s));
put/I, 'List of target values';

28

loop(t, put I, t.tl,@l0,v(t));
putclose results;

put output 1; outputl1.pc=5; output 1 .pw-l 10000;
put 'target/shooter qs';
loop(s, put s.tl);
loop(t, put / t.tl, loop(s, put q(s, t)));
put //I;
put 'target/shooter rounds';
loop(s, put s.tl);
put /,'totals', loop(s, put sum(t,x.l(s, t)));
loop(t, put / t.tl, loop(s, put x.l(s, t)));

putclose output 1;

loop((s, t), x.up(s, t)$(x.l(s, t)0)0O);
loop((s, t), x.l(s, t) = round(x.l(s, t)));

************Second pass - solve integer problem with loose optcr

solve probde using minlp minimizing z;

~~~~ ~~output stuff ***************

display x.l1, x.m ;

file output2 /output2.csv/, results2 /results2.txt/;

put results2;
put @10, 'FORMATTED RESULTS'///I;
put 'Date of run',@15,system.date;
put /,'ime of run',@15,system.time;
put /, card(s), ' shooters and', card(t), 'targets'!;
put 'True integer cost',@15,z.l HI;

put 'Effectiveness',@20,frac.l:5 :4 N/;

put 'Non-zero shooter-target pairs and round count'!!;

put 'Shooter',@ 1 2,'target',@24,'Rounds' /;

29



loop((s, t), if(x.l(s, t)>O,put s.tl,@12,t.tl,@24,x.1(s, t):5:lf))
put //,'cost', @10, z.1 :6:1 N/;
put 'shooter totals'/I;
loop(s,put /,s.tl, @ 10, sum(t,x.1I(s, t)): 6:1 )

put ///, 'ttiv', @2 5,ttiv: 10:4;
put!, 'ttev', @25,ttev.l: 10:4;
put I/I, 'B, @25, b:4:3;
put /,'fraction surviving', @25, frac.1:6:5

put I/I, 'List of costs';
loop(s, put I, sAtl, @ 10, c(s));
put/I, 'List of target values';
loop(t, put!/, t.tl,@1I0,v(t));
putclose results2;

put output2; output2.pc=5; output2.pw= 10000;
put 'target/shooter qs';
loop(s, put sAtl);
loop(t, put / t.tl, loop(s, put q(s, t)));
put //I;
put 'target/shooter rounds';
loop(s, put sAtl);
put /,'totals', loop(s, put sum(t,x.l(s, t)));
loop(t, put / t.tl, loop(s, put x.l(s, t)));
putclose output2;

30



References

Brooke, A., Kendrick, D., and Meeraus, A., (1988), GAMS, a User's Guide, Scientific Press.

Washburn, A., "Finite Method for a Nonlinear Allocation Problem," (1995), Journal of
Optimization Theory and Applications, Vol. 85, #3, pp. 705-726.

Washburn, A., "Branch and Bound Methods for a Search Problem," (1998), Naval Research
Logistics, Vol. 45, #3, pp. 243-257.

31



Initial Distribution List

1. Research O ffice (Code 09) ........................................................................................ 1
Naval Postgraduate School
Monterey, CA 93943-5000

2. Dudley Knox Library (Code 013) ............................................................................ 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Defense Technical Information Center ...................................................................... 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

4. Professor Alan Washburn (Code OR/Wa) ............................................................... 2
Department of Operations Research
Naval Postgraduate School
Monterey, CA 93943-5000

5. Richard M astowski (Editorial Assistant) ................................................................. 2
Dept of Operations Research
Naval Postgraduate School
Monterey, CA 93943-5000

6. Professor David Olwell (Code OR/O1) ..................................................................... 2
Department of Operations Research
Naval Postgraduate School
Monterey, CA 93943-5000

7. Professor Phil D epoy ................................................................................................. 1
Chair, Exped. War., IJWA
Naval Postgraduate School
Monterey, CA 93943-5000

8. Distinguished Professor Donald P. Gaver (Code OR/Gv) ........................................ 1
Department of Operations Research
Naval Postgraduate School
Monterey, CA 93943-5000

9. Professor Patricia A. Jacobs (Code OR/Jc) ............................................................... 1
Department of Operations Research
Naval Postgraduate School
Monterey, CA 93943-5000

32



10. Director, U.S. Army TRADOC Analysis Center ...................................................... 2
ATTN: ATRC (Mr. Michael Bauman)
255 Sedgewick Avenue
Ft. Leavenworth, KS 66027-2345

11. LTC Eugene Paulo ................................................................................................... 2
Director, TRADOC Analysis Center - Monterey
P.O. Box 8692
Naval Postgraduate School
Monterey, CA 93943-0692

12. M ajor M att Chesney .................................................................................................. 1
TRADOC Analysis Center - Monterey
P.O. Box 8692
Naval Postgraduate School
Monterey, CA 93943-0692

13. T R A C -W SM R ............................................................................................................... 1
ATTN: ATRC-WAC (Dr. Cassady)
White Sands Missile Range
White Sands, NM 88002-5502

33


