
Calhoun: The NPS Institutional Archive

Reports and Technical Reports All Technical Reports Collection

1995-08

Fast interpolation for Global Positioning

System (GPS) satellite orbits

Clynch, James R.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/24432

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36717582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NPS-MA-95-006

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
$t*ELECTE
^% SEP 2 2 1995J

FAST INTERPOLATION FOR GLOBAL POSITIONING
SYSTEM (GPS) SATELLITE ORBITS

by

C.P. Sagovac
D.A. Danielson

J.R. Clynch
B. Neta

August 1995

Approved for public release; distribution is unlimited.

Prepared for: Naval Postgraduate School
Monterey, CA 93943-5000

19950919 192 DTIC QUALITY INSPECTED 8

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943

Rear Admiral T.A. Mercer
Superintendent

Richard Elster
Provost

This report was prepared in conjunction with research conducted for the Naval Postgraduate School and
funded by the NISE West Coast Division.

Reproduction of all or part of this report is authorized.

This report was prepared by:

C. P. Sagovac

D.d. UcrtvJLfrK
D. A. Danielson
Professor of Mathematics

LR. Clynch
Professor of Oceanography

B. Neta
Professor of Mathematics

Accesion For

NTI.S CRA&I
DT1C TAB
Unannounced
Justification

D

By..
Distribution/

Availability Codes

Dist

M

Avail and/or
Special

■»*

Reviewed by:

ICHARD FRANKE
Chairman

Released by:

Ak-
PAULJ.f/MARTO
Dean of Research

REPORT DOCUMENTATION PAGE
Form Approved

OM8 No. 0704-0188

Public reporting Duraen 'or this collection of information is estimated to average i hour oer response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this ourden. to Washington Headduarters Services. Directorate for information Operations and Reports. 1215 Jefferson
Davis Highway Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Proiect (0704-0188). Washington. OC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

August 11. 1995
3. REPORT TYPE AND DATES COVERED

July-August 1995
4. TITLE AND SUBTITLE

Fast Interpolation for Global Positioning System (GPS)
Satellite Orbits

6. AUTHOR(S)

C. P. Sagovac D. A. Danielson
J. R. Clynch Beny Neta

S. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

PERFORMING ORGANIZATION
REPORT NUMBER

NPS-MA-95-006

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

NISE West Coast Division
4297 Pacific Highway
San Diego, CA 92110

10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The Views expressed in this report are those of the authors and do not reflect the
official policy or position of the Department of Defense or the United States
Government.

12a. DISTRIBUTION /AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

In this report, we discuss and compare several methods for polynomial interpolation
of Global Positioning System ephemeris data.

14. SU8JECT TERMS

Comparison of several methods for the polynomial interpolation

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

31
16. PRICE CODE

20. LIMITATION OF ABSTRACT

MSN 7540-01 -280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI >td Z39-'8

Fast Interpolation for Global Positioning
System (GPS) Satellite Orbits

C. P. Sagovac
819 South Charles Street

Baltimore, MD 21230-3938

J. R. Clynch
Naval Postgraduate School

Department of Oceanography
Code OC/CI

Monterey, CA 93943

D. A. Danielson
Naval Postgraduate School
Department of Mathematics

Code MA/Dd
Monterey, CA 93943

Beny Neta
Naval Postgraduate School
Department of Mathematics

Code MA/Nd
Monterey, CA 93943

August 29, 1995

n"

Abstract
In this report, we discuss and compare several methods for polynomial interpolation of

Global Positioning System ephemeris data.

Intoduction
The problem of interpolating Global Positioning System (GPS) ephemeris data is an

important aspect of GPS. Given that a high accuracy (< lm), high precision (1 cm) orbit
can be generated though the use of dense observations and special integrations, it is necessary
to interpolate these ephemeris at high accuracy to utilize these orbits.

These high accuracy orbits are produced by several organizations (DMA, NGS, JPL,
several Universities) and are widely available. An ephemeris typically consists of satellite
positions at evenly spaced times over a week. Most ephemeris are given at 900 sec (15 min)
time steps although the NGS ones are at 1200 sec (20 min). The GPS satellites are in 12 hr
circular orbits making 900 sec ephemeris steps 7.5 deg of arc.

The typical user collects GPS data at intervals from 1 sec to 30 sec and needs to find
the satellite position at the times of that data. The times needed are really not the evenly
spaced received times, but the transmit times that are about 60 msec before reception. A
precise value for this propagation delay is not known until the solution process in partially
done. Therefore usually one needs to find a cluster of satellite positions a few msec from a
nominal evenly spaced interval.

In the past the typical technique used by the DMA [Malys, 1989], NGS [Remondi, 1991],
JPL [Watkins, 1995] and others is a Lagrange interpolation. The orders vary from 8th to
llt/l. This approach directly computes the value of the function (the three Cartesian Earth
centered earth fixed coordinates) from the unique polynomial going through the data points.
The coefficients are not found, and finding them may introduce errors [Press et al, 1992].
Several evaluations of the accuracy of this method [Remondi, 1991, Smith and Curtis, 1983]
have been made. It is generally found that an 8ih order Lagrangian interpolation using
900 sec data with the unknown in the center of the points gives values that compare with
numerical integration at the 1 cm level.

The problem addressed here is to find if a more efficient numerical method that achieves
the same accuracy can be used. This is motivated by the movement of processing from
mainframes to PC's (486's and above).

Several aspects unique to the GPS satellites make this problem of interpolating the
data different from the general problem of interpolation. Though we are interpolating GPS
satellite orbital position data, it may be that the methods here are applicable to a broader
class of problems. Where possible, we intend to take full advantage of the special geometry
of the GPS satellite orbits.

.x 10 GPS ephemeris data (4 days)

c
■a

I x
TJ
I
X •
IS

I
£
« _1 - in ■

50 100 150 200 250
point number (time)

300 350 400

Figure (1) - 4 day x-coordinate GPS ephemeris data at 900 second intervals

A typical precise ephemeris orbit is supplied over an interval of eight days. Each ephemeris
overlaps 1 day at each end with another ephemeris. It consists of position data which is
Earth-centered, Earth-fixed Cartesian coordinates given every 900 seconds (t,x,y,z). We
will not include velocity data which may in some cases be available. A plot of the data shows
that it is "almost" periodic with a period of 24 hours or 96 intervals of 900-second each; Of
course the data would be periodic in inertial coordinates. The data is given in a rotating
frame (Earth centered - Earth fixed) however. This is done to place several subtle effects,
such as polar motion, into the ephemeris generation problem. The user then does not have
to have access to current data for geophysical effects to compute an Earth fixed position
.solution. Figure (1) is a plot of ^-coordinate data (in kilometers) over a four day period.
Note that the plot is with respect to the node (point) number which ranges from 1 to 384. It
is convenient to use node numbers since we may choose to map the interval of interest into
different subintervals. For instance, the Lagrange interpolation method maps the interval
of interest into the interval [—1,1) while the trigonometric polynomial interpolation method
maps the interval of interest into the interval [0,2n). Later we will use the node numbers to
compare the residuals for different methods.

There are two lengths of computation time in which we are interested for this problem.
One time length is the generation time of the function (interpolant) which interpolates the
evenly-spaced data. The other is the time needed to evaluate the interpolant at a point. For
polynomial interpolation these might be the calculation of the coefficients of the polynomial
interpolating the data and the time needed to evaluate that polynomial, once generated, at
a particular point. As we shall see, however, there are clever ways in which to minimize the
amount of work done in generating the desired data, and the two times might not be easily
distinguished in these cases. In recommending a particular technique for interpolation it is

important to know whether the interpolant will be evaluated once (or just a few times) on an
interval or if it will be evaluated many times throughout the interval. With a cluster of times
to be interpolated on an interval, the cost of generating the interpolant should be amortized
over the set of times. This means that the time needed to generate the interpolant (a one-
time cost) would not be as much a concern as the time needed to evaluate the interpolant
at each of the desired times (a recurring expense). On the other hand, if one or a very few
points were to be calculated on a given interval, the time needed to generate the interpolant
would probably be more significant a concern than the time needed to evaluate it at the
desired times since in general the generation of an interpolant is much costlier (in time) than
its evaluation. This is a similar argument as one finds in deciding whether to use Gaussian
elimination or LU factorization in solving systems of linear equations.

One method of polynomial interpolation involves performing the interpolation at a point
without actually calculating the coefficients of the interpolating polynomial. This involves
many less operations than the evaluation of a polynomial of degree n at a particular point.
This is a common technique currently employed. If we do not explicitly calculate the in-
terpolant, however, we will in general still need to calculate some quantities prior to in-
terpolation. For instance, we shall see that divided differences would need to be available
prior to using the nested multiplication algorithm used in evaluating the Newton form of the
interpolating polynomial.

Since ephemeris data is generated for an eight day time period, we have the opportunity
to "front load" our work at the time of ephemeris receipt. By calculating needed data
in advance we should be able to shorten the real time operation count. Thus we will be
more concerned with the rapid evaluation of interpolants for specific times than their rapid
generation. Of course in some cases the times of evaluation and generation will be closely
related, as mentioned above. In others, they will be quite different and our hope will be to
shift as much of the work as possible to the generation of efficient interpolants so as to allow
the rapid evaluation of those interpolants.

In summary, we will describe the following methods:

• Lagrange polynomial interpolation

• Newton's divided difference interpolation polynomial

• Difference Tables

• Cubic Spline interpolation

• Trigonometric polynomial interpolation

• Tshebyshev polynomial interpolation

We will describe the advantages and disadvantages of each of these methods for the problem
of interest, namely for the efficient interpolation at clusters of points.

Lagrange Polynomial Interpolation

Before we begin our investigation, it is necessary to describe the method which is currently
being used. Simply put, given the n + l ephemeris values f{to),f(ti), ■ ■ ■ ,f(tn) at the distinct
times t0, ti,..., tn, there exists a unique interpolating polynomial pn satisfying

Pn(U) = f{U), i = 0,l,...,n

This polynomial can be written in the form (called the Lagrange interpolation polynomial)

t'=0

whore
(f\ = (t - tp)(t - fr) • • • (f - ti-!)(t - ti+1) ■•■(t-tn)

i[j (*•■ - to)(U -<!)••• {U - <i-i)(*,- - ti+1) ■ ■ ■ (U - tn)

The eleventh order Lagrange method uses twelve data points to generate an eleventh order
polynomial according to equation (1). This polynomial can then be evaluated at desired times
within the interval of interest. The error Rn(t) in using the Lagrange interpolant pn(t) to
estimate the function /(<) (having at least n + l derivatives throughout the open interval)
at some point t can be written [Buchanan and Turner, 1992]:

Rn{t) - f(t) ~ Pn(t) = (n + l)\

where £ is some point in the interval [to, tn] and

Ln+i(t) = fl(t-ti)

One difficulty in implementing high degree polynomial interpolation routines of any kind
is the fact that the error between the interpolating polynomial and the data or function being
interpolated grows rapidly near the endpoints of the interval over which the interpolation
is being performed. For this reason the eleventh order Lagrange method is overlapped as
successive intervals are chosen within the ephemeris (we call this walk-along interpolation).
Due to the high accuracy requirements, only the center subinterval is interpolated for each
Lagrange polynomial which is generated. Whereas the initial interval spans points one
through twelve, the second interval spans points two through thirteen in order to provide
the highest degree of accuracy. The first eleventh order Lagrange polynomial would then
be used for times between points six and seven, while the second polynomial would be valid
for times between points seven and eight. The numerical accuracy of this method has been
verified to the 1 cm level for the data we are interpolating [Remondi, 1991].

Difficulties arise in that the process of creating and evaluating the resulting eleventh
order polynomials is computationally expensive. The cost of evaluating the Lagrange form

at a point is provided by de Boor [1978]. It is

(2n-2)A + {n-2)M + {n-l)D

for each of the n + 1 numbers /,•(£), where A denotes an addition or subtraction and M and
D denote multiplication and division, respectively. Forming equation (1) then takes another

(n-l)A + nM

operations, leaving the total count per component of the position vector at

(3n - 3) A + (2n - 2) M + (n - 1) D

This is the number of operations per component in the implementation of Lagrange inter-
polation. A simple modification of the algorithm would reduce the amount of work to

(2n-l)A + nM + nD

operations (see de Boor [1978]). It consists of first forming the quantity

Y IM i = l,...,n

Afterwards, pn(t) is calculated through

n

<MO=n c - *«•)
n

Pn(t) = 4>n{t) Y, Yi/(t ~ ti)
i=l

This method is somewhat faster than the method currently being used and would be easy
to implement (see program lagrange in Appendix A). In addition, no loss of accuracy would
occur in its implementation. If the time t is very close to one of the interpolating points £,-,
one must be careful in computing pn(t) because of the division of Yi by a very small number.

Newton's Divided Difference Interpolation Polynomial

A more efficient means by which we may form the interpolating polynomial is through
divided differences. We follow the developments given in Buchanan and Turner [1992] and
de Boor [1978]. Suppose we have n + 1 distinct interpolation points t0, ti,..., tn. Define the
zeroth divided difference at ti by /[£,•] = /(£,-). The first divided difference at U,tj is defined

and the fcth divided difference f[to,ti,... ,ijt] is denned by

rr. . . i /fo), h, . . . , *fe-i] - f[h,t2, ...,tk]
Ofc = j[tQ,ti,...,tk\ = , k > 0

tn — tu

Newton's divided difference interpolation polynomial is the interpolation polynomial agreeing

with the function / at the points t0,tu...,tn and is given by

pn(t) = a0 + {t- t0)ai + (t- t0)(t - tx)a2 + ... + (t- t0)(t - ii) ■•■(*- tn-i)an (2)

or, rearranging,

71—1 times

Pn(t) = a0 + {t- t0){ai + {t- h){a2 + ■•• + (<- ^-2)K-i + (t - <„-iK }■■■}}

This form consists of two additions and a multiplication per level in the expression. Since

there are n levels, the operation count is seen to be

n(2A + M)

which is more economical than the standard Lagrange form. This leads us to the so-called
nested multiplication or Homer's algorithm:

Given the n + 1 distinct points t0,tu...,tn with associated coefficients a0, ax,..., a„, the
value of the interpolating polynomial pn(t) for some t G [t0,tn] is given by b0 according to

the following iteration:

Set bn = an

For k = n - 1 to 0 by -1
bk = ak + (t - tk) bk+i
End For

By the uniqueness of the interpolating polynomial there can be no difference in compar-
ison to Lagrange, but the gain in speed may be of importance for our purposes. Note that
the divided differences ak can be calculated and stored in advance of the actual interpola-
tion so that the operation counts given here reflect the operations needed at interpolation
time. A total operation count would have to include the operations needed to generate the
divided differences. Also, calls from storage may need to be counted, depending on system

architecture considerations.
The divided difference algorithm does not take advantage of the fact that our interval

sizes are fixed - we required the nodes to be distinct but made no restriction on the spacing
between nodes. In the next section we will investigate the special case when the interval

sizes are constant.

Difference Tables

The case of equally-spaced data points is a special case of Newton's divided differences
and leads to other interpolation formulas. The error and operation counts for the methods
presented here are essentially identical to those presented above. The formulas are given
in their simplest form and should not be used for computation. A nested multiplication
approach similar to the one described in the previous section should be used for each of
these in order to minimize the cost of computation. One important aspect of this method

is the determination of the differences and the method to be used to interpolate at a given
time t. It will be necessary to include some code to determine which differences are to be
used, though the differences themselves can be calculated when the given ephemeris becomes
available. In addition, the chosen method will depend on the location of the interpolation
time relative to the data times. Here we follow the description given in Buchanan and Turner
[1992]. Our data occurs at times which can be expressed as

tk = t0 + kh

where to is a reference time for the interval of interest and h is the constant steplength. We
normally think of k as being a positive integer and t0 as being the initial time in the interval
of interest but in this case we will only require k to be an integer and t0 to be any time
corresponding to a data point in the interval. The sign of k will depend on the reference
time to in relation to the time of interest. There are now several differences which can be
defined, one of which is the forward difference.

The general forward difference A/(£t) is given by

Af(U) = f(ti+1) - f(tt) = f(U + h)- /(*,-)

Its powers are calculated recursively according to the following

Akf(ti) = A(Afc-7(*,0) = A*-7(*.-+i) - Ak~lf(U)

j=0 v /

where we have introduced the notation /, = f(ti). Additionally, the differences are related
to divided differences by

Akf(U) = k\hkf[ti,ti+1,...ti+k]

An application of this last formula to equation (2) immediately yields a forward difference
• formula (called Newton's forward difference formula or the Newton-Gregory forward differ-
ence formula). Here we assume that the degree of the interpolating polynomial is n while
the number of data points in our table is N:

„ m- f I (*-*°)Af , (*-*0)(*-*l)Aaf , , (*-*0)(*-*l)-"(*-*n-l)A„f Pn(t)-f0 + —— A/0 + ^ A /„ + ••• + ^ A/o

A simple change of variable r = (t — tQ)/h yields the compact form

Pn(r) = E(
T
W/O

j=0 v/

with the generalized binomial coefficients

V\ r(r-l)---(r-j + l)

j!

Examination of these formulas reveals that their operation counts could be made similar
to the operation count for the Newton divided difference formula with a constant step size
through the use of nested multiplication. Their accuracy is the same as the Newton divided
difference formula so that none should be ruled out in the search for a more rapid method

of interpolation.

Cubic Spline Interpolation

Cubic spline interpolation is computationally efficient and has an advantage with respect
to walk-along Lagrange because it allows the user to calculate the interpolating polynomials
over the entire interval at one time, at the beginning of the interpolation process. This
calculation involves solving a tridiagonal system of equations. Additionally, the fact that each
subinterval is represented by a cubic polynomial means that evaluations on those intervals
are much quicker than their eleventh order polynomial counterparts, making the cubic spline
method a good choice where accuracy is less important than speed.

Here we will sketch the derivation of the cubic spline interpolation; thorough treatments
of cubic spline interpolation can by found in [Ahlberg, Nilson and Walsh, 1967], [Buchanan
and Turner, 1992], [de Boor, 1978], and [Press, 1992]. Given the n + 1 ephemeris values
/(<o),/(*i)i •••,/(<»») at the distinct times a = t0,ti,...,tn = 6, we construct a piecewise
cubic interpolant p to / as follows. On each subinterval [U, ti+i] we wish to construct a cubic
polynomial p,- in such a way that the resulting interpolation formula over the entire interval
is continuous in its first and second derivatives. The result is

Pi(t) = Mt) ttU) + Bt(t) f(ti+l) + d(t) f"(U) + Di(t) f"(ti+l), i = 0,..., n - 1 (3)

where ft t-t-
A.=sh±LZli Bi= '* u

Ci = \{A$- At) (ti+i - U)2, Di = I (B? - Bi) (t,-+1 - Uf

We do not yet have the n + 1 values of f"(U) needed for the determination of the solution,
but application of the continuity of the first derivative on the entire interval leads us to the

following equations:

U - *,-_i „ tj+i - tj-i „. . tj+i - U „ . _ f(ti+i)-f(tj) fjtj) - /(*i-l)
——f (u-i) + —3—/ (u) + —r-f te+o - t _ u - u_ t._x

.(4)

for i = 1,2,... ,n - 1. Note that there are n - 1 equations for n + 1 unknowns, leaving
two second derivatives undetermined. The choice of the two boundary conditions f"{a) and
f"(b) provides the required unique solution. In our case it makes sense to use the periodicity,
i.e. apply (3) and (4) for i = n and enforce p0(t) = pn(t + tn) for t0 < t < tx. As a
consequence, f(t0) = /(*„), f(h) = /(<n+1), f"(t0) = f"(tn), and f"(h) = /"(i?+i).
Therefore if we use equal step size h, the cubic spline version of equation (4) can be written

as

/4

1
0

0

M

1
4
1

0
1
4

0
0

0
0
1

1
0

1 \
0

) \

/"(*2)
/"(*3)

/"(*n-i:

/ Ä1

Rn

(5)

/

where /?,- = 24/[*;_i,i,-,*i+i].
If accuracy can be sacrificed for speed then the cubic spline method may be preferred

over any of the methods here. However, the 0(h4) accuracy provided by the cubic spline
may be insufficient for GPS satellite interpolation requirements.

Trigonometric Polynomial Interpolation

The roots of this method of interpolation can be traced to the beginning of the nineteenth
century. Briggs and Henson [1995] present a brief history of this method, in particular the fact
that Gauss used it around 1800 to interpolate the orbit of the asteroid Pallas. The preceding
methods are standard interpolation techniques typically used for continuous, differentiable
functions defined on compact intervals. No other special information about the functions
being interpolated is exploited by these methods. It is at this point that we examine some
special properties of our GPS ephemeris data. As previously mentioned, our ephemeris
data is supplied over an interval of eight days and consists of Earth-centered, Earth-fixed
Cartesian coordinate position data given every 900 seconds. A plot of the data in Figure
(1) shows that it is very close to periodic, and it is for this reason that we examine the
trigonometric polynomial interpolation method.

Due to the fact that the position data has a period of twenty-four hours, we restrict our
attention to a single twenty-four hour period and generate a trigonometric polynomial pn

using all the data available over that period. Again, we must remember that our satellite
orbit is not truly periodic, but very close to that in inertial coordinates. Since the error
incurred by assuming the data to be periodic over a j day period would be almost j times
as great as the error incurred from assuming the orbit to be periodic over a single day, we
discourage use of this routine over intervals exceeding the fundamental period of the data.
In order to minimize the effects of the assumption of periodicity one should interpolate over
a single period.

The idea in generating our interpolant is to assume that the data is from a periodic
function of time defined over the interval [0,2n) which can be represented by a trigonometric
polynomial of the form

n

pn(t) = aQ + ^ (a,k cos kt + bk sin kt)

In our problem we simply map the twenty-four hour interval of interest into the interval
[0,2n) using a linear change of variable. In deriving the coefficients we follow the discussion
of interpolating polynomials and the Fast Fourier Transform found in Buchanan and Turner

10

[1992]. Clearly, the above equation can be written as

k=—n

where the coeffcients are given by

7fc = ak + ißk k = -n,..., n

If we denote the point on the unit circle corresponding to t € [0,27r) by

f = «"

we may then write

Pn(t)= £ 7*£*

If we denote the points corresponding to nodes by

£j = ext> = cos tj + i sin £y

the interpolation problem is to find the coefficients satisfying

Pn(tj)= £ 7*f?=/(*i)

where /(£,-) are the function values for j = 0,1,..., 2n. For an odd number of nodes, it can
be shown that

i 2n

7P = ^—-T- £ fktk P p=-n,-n + l,...,n

Unfortunately, as pointed out by Buchanan and Turner [1992], the operation count for
this discrete Fourier Transform is 0(n2) making it too expensive for practical application.
Luckily, there is a faster way to calculate the discrete Fourier coefficients.

Suppose that we have the case where the number of nodes is of the form n = 2N. The
task is then to find the trigonometric polynomial pn which interpolates / at the uniformly
spaced data set <o,*i> • • • i^n-i- In this case the trigonometric polynomial can be calculated
by using the Fast Fourier Transform, which has an operation count of 0(n log n). This
makes it an attractive method for our purposes and we will refer to it as the FFT method.
Unfortunately, however, over a twenty-four hour period our data will consist of ninety-six
points separated by intervals of 900 seconds. Though ninety-six is not a power of two, we
nevertheless can use n = 25 = 32 points in the interval to test our trigonometric polynomials.
We simply select every third point in the interval and calculate the trigonometric polynomial
which interpolates at those thirty-two points. We may then compare the Lagrange method
to the FFT method by choosing some subinterval having a length of 36 nodes, twelve of
which are used to generate the eleventh order Lagrange interpolating polynomial. These

11

twelve nodes (equally spaced with 3 times the spacing) should coincide with twelve of the
thirty-two nodes used in the FFT method.

The above calculations were performed with the aid of Maple (Appendix B) and a plot
of residuals in centimeters is shown in Figures (2) and (3). A linear change of variable was
used to map the trigonometric polynomial defined on the interval [0, 937r/48] into the interval

[-1,1]-'

Figure (2) - Trigonometric polynomial residuals (cm)

Trigonometric Polynomial Residuals

2500-

2000-

1500-
•

1000-

'

500-
■ •

\

ut) 0.02 O.'o4 0.'o6 o.'os

Figure (3) - Trigonometric polynomial residuals (cm), (zoomed)

The subinterval chosen for this analysis was located at the center of the set of nodes in
order to show the location where the trigonometric interpolant is most accurate. Examina-

12

tion of Figure (5) reveals that on a single subinterval the trigonometric polynomial method
agrees with the Lagrange interpolation method to within roughly ten meters. The Maple
worksheet used to generate this figure is included as Appendix C at the end of this paper.

The effects of error growth near the ends of the intervals for the FFT method could 'be
handled by shifting the twenty-four hour period over which the trigonometric polynomial is
derived, placing the data point squarely in the center for the most accurate work. A bound
on the mean square error incurred by approximating the periodic function / from which the
data is sampled by the interpolant p is given in Briggs and Henson [1995] as

ll/-HI< ° j\[p+i

where N is the number of data points, C is a constant and the periodic extension of / has
(jo — 1) continuous derivatives, p > 1. Since continuity of the periodic extension of / is
required for this bound we cannot use it unless the function is truly periodic on the chosen
interval. Briggs and Henson [1995] perform a trigonometric interpolation on an arbitrary
polynomial defined on [—1,1] and comment that it is not unreasonable to suspect the mean
square errors to decrease as iV-1.

Another concern will be the time required to evaluate the interpolant, so it is of interest
to discuss the rapid calculation of the trigonometric polynomials, in particular the terms

cos 7ri, sin nt, cos 2irt, sin 2irt,..., cos nnt, sin nnt.

Using the trigonometric summation formulas one can write the well-known recursion [Go-

ertzel, 1960]
(Tfc = cos knt

Tk = sin kirt

(**+iW*i -M (*»\ fc = 1 2>...
V Tk+1 J \Ti <Tl J \Tk/

which requires only two trigonometric calculations in order to recover all the needed terms.
•Of course, the growth of round-off errors should always be checked when using a long sequence
(i.e. n large).

It is important that we use all the available data in forming the trigonometric polyno-
mial pn(t) because the mean square error involved in using the FFT method depends so
critically on the number of data points. Since 96 is not a power of two and since the DFT
is computationally expensive, we must resort to another algorithm.

Tshebyshev Polynomial Interpolation

In order for us to understand Tshebyshev polynomial interpolation, it is necessary to
re-examine the polynomial interpolation of n + 1 data points on a given interval. Given n +1
points on an interval, the nth degree polynomial which interpolates those points over the
given interval is unique. Of course this does not prevent us from writing the polynomial in
a number of different ways. Before we describe what Tshebyshev polynomial interpolation

13

is, it may be a good idea to say what it is not. Tshebyshev polynomial interpolation is
not the expression in the Tshebyshev polynomial basis of an nth order polynomial which
interpolates n +1 arbitrary data points on a given interval. We are free to choose any suitable
polynomial basis for expressing such a polynomial, but we must remember that the results
of any calculations performed using that polynomial will be the same regardless of how the
polynomial is expressed; simply writing a given polynomial in a different basis does not alter
it. Therefore the residuals which are produced when using these different forms of the same
polynomial will be the same. However, another set of n + 1 points on the same interval
would yield a different polynomial. As it turns out, polynomial interpolation is sensitive to
the distribution of the points being interpolated. If we were allowed to choose the points on
an interval to be interpolated, we would find that certain choices of n + 1 points would yield
polynomials which did a better job of interpolating than others. As stated, our data points
are evenly spaced throughout the interval of interest, so that will not have the luxury of
choosing a preferred set of n + 1 points on any interval unless we are able to generate more
data. The following discussion closely follows the treatment given by Press et al [1992]. The
Tshebyshev polynomial of degree n on [—1,1] is defined as

Tn(t) = cos(n arccos i)

It follows that the Tshebyshev polynomials satisfy the three term recurrence relation

Tn+1(t) = 2tTn(t) - rB_x(<) n = 1,2,...

In addition,

/

lTn{t)Tk(t)
—- U, k f: n

-i VT^t*
and

/•i Tn(t) Tk(t) = f 7T k = n = Q
y_! ^/T~fi ITT/2 k = n^0

so that the Tshebyshev polynomials are orthogonal on the interval [—1,1] with respect to
the weight function w(t) = l/%/l — t2. The first few Tshebyshev polynomials are given by

T0(t) = 1

7i(i) = t

T2(t) = 2t2-l

T3(t) = 4t3 - 3<

T4(t) = 8t4 - 8t2 + 1

T5(t) = 16t5 - 20t3 + 5t

It can be shown that the zeros of Tn(t) on [—1,1] are given by

tj = cos <j ~ 1/2)
n

j = 1,2, ...,n

14

and that the Tshebyshev polynomials satisfy a discrete orthogonality condition [Press et al,

1992]

J2Ti(tj)Tk(tj) = ln/2 i = k^0
j=1 In i = k = 0

The powers of t can also be expressed in the Tshebyshev polynomial basis.
Any function f(t) can be approximated by a finite linear combination of Tshebyshev

polynomials, i.e.

These coefficients en can be computed numerically using the M equally spaced data points

tj = -l+jAt, j = 0,l,---,M-l

M-\

e.g. via the composite midpoint rule (we have to avoid evaluating the integrand at the

endpoints, t0 and £M-I)

at = -22 —o A*'

where f(tj+1/2) can be approximated by a quadratic or cubic polynomial. For example to
use cubic splines to approximate the integrand, we get

2

7T

L4M-2 L3M-2 L2 Af-2 Af-2

4 i=o ° j=0 ^ j=0 j=0

where the integrand g(t) is approximated on the interval [tj,tj+i] by the cubic polynomial

g{t) = a,(* - *,-)3 + 6j(* - *;)2 + Cj(t - *,-) + dj

We can also use the midpoint rule on the two leftmost panels and the two rightmost
panels only. On the rest of the panels we can use the fourth order Simpson's | rule. This
will yield the following approximation for the coefficients:

At (2 8 4 8 2 , . \
• = — Ug2 + -g3 + 7:9* + gfl's + • • • + -^9M-3 + ^9M-?. + 4flfjvf-i J , CL; =

where „. .m. .
„ mm»!)

15

an take the trapezoidal

in Appendix C: 5 +OM2 + 4gM-if-

, lf(ri we then use the following reckon:

To evaluate }{T) v><=

djV+i = dN+2 " U

/(r) = 4 = ^-^+2- d .ationonthe interval is

t::atrtx/^Wo,

^ ^ä^1 shouid be measurei
run times ot tnese w

Acknowledgement Posteraduate School Research Program.
nnorted in part by the Naval Postgraau. ^^ ^^

^A"^* tba P-tW support of NISE
The authors grateiuujr

16

References

Ahlberg, J. H., Nilson, E. N., and Walsh, J. L., 1967, The theory of Splines and Their
Applications, (New York: Springer Verlag)

Briggs, W.L. and Henson, V. E. 1995, The DFT, An Owner's Manual for the Discrete Fourier
Transform (Philadelphia: SIAM)

Buchanan, J.L. and Turner, P.R. 1992, Numerical Methods and Analysis (New York: McGraw-

Hill, Inc.)

de Boor, C. 1978, A Practical Guide to Splines, vol. 27 of Applied Mathematical Sciences
(New York: Springer-Verlag)

Goertzel, G. 1960, Fourier Series, Mathematical Methods for Digital Computers (New York:
Wiley)

Malys, S., and M. J. Ortiz, 1989, Geodetic absolute positioning with differenced GPS carrier
beat phase data, Proceedings of the 5th International Symposium on Satellite Positioning,
13-17 March 1989, Las Cruces, NM.

Press, W. H., B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, 1992, Numerical Recipes
in FORTRAN, The Art of Scientific Computing, 2nd Edition (New York: Cambridge Uni-
versity Press)

Remondi, B. W. 1989, Extending the National Geodetic Survey Standard GPS Orbit Formats,
NOAA Technical Report NOS 133 NGS 46, (Rockville, MD: US Department of Commerce,

NOAA)

Remondi, B. W. 1991, NGS Second Generation ASCII and Binary Orbit Formats and As-
sociated Interpolation Studies, (Rockville, MD: US Department of Commerce, NOAA)

Smith, R. and V. Curtis, 1983, Interpolation Study, Naval Surface Weapons Center Dahlgren
Laboratory Memorandum.

Watkins, M., 1995, Private communication.

17

Appendix A

This section provides a FORTRAN subroutine which can be used to perform the inter-
polation discussed in this paper.

Program lagrange
c
c implements lagrange interpolation of a function
c given as equally spaced data points
c
c let t_j=-l+j Delta t, Delta t=2/(M-l), M=96
c

implicit real*8 (a-h,o-z)
real*8 t(96),f(96),y(96)
real*4 taray(2),paray(2)
atony=dtime(taray)

c m is number of data points
m=96

c mp is the number of interpolating points
mp=12
print *,' m= ',m,' mp=',mp

c

c get m(=96) equally spaced points on [-1,1]
c

c

c

deltat=2./dfloat(m-1)

print *, 'delta t ',deltat
t(l)=-l.
do 10 j=2,m

10 t(j)=t(j-l)+deltat
c
c compute f values
c synthetic data

call finter(t,m,f)

c print the points
c

print 12,(j,t(j),f(j),j=l,m)
12 format(2x,i3,2el4.7)

18

c compute y values

c
call yi(t,f,mp,y)

atony=etime(taray)
write(6,*) ' User time = ', taray(l) ,' seconds'
write(6,*) ' System time = ', taray(2),' seconds'

write(6,*) ' Total time = ', taray(l) + taray(2),' seconds'

btony=dtime(paray)
ttt=-l.dO-.5d0*deltat
print *,' t ','approximate exact error'

do 5000 ij=l,mp
ttt=ttt+deltat

c
c compute phi_n (tau)

c
call phi(t,ttt,mp,phin)

sum=0.
do 1000 j=l,mp

1000 sum=sum+y(j)/(ttt-t(j))
pn=phin*sum
call finter(ttt.l.ddd)
print *,ttt,pn,ddd,pn-ddd

5000 continue

btony=etime(paray)
write(6,*) ' User time = ', paray(l) ,' seconds'
write(6,*) ' System time = ', paray(2),' seconds'
write(6,*) ' Total time = ', paray(l) + paray(2),' seconds'

stop
end

subroutine finter(t,m,f)
implicit real*8 (a-h,o-z)

real*8 t(l),f(l)
do 10 j=l,m
f(j)=dsin(t(j))+dcos(t(j))

10 continue
return
end

subroutine yi(t,f,m,y)
implicit real*8 (a-h,o-z)

real*8 t(l),f(1),y(l)

19

do 20 i=l,m

y(i)=f(i)
do 10 j=l,m
if(j.eq.i) go to 10
tt=t(i)-t(j)

y(i)=y(i)/tt

10 continue

20 continue
return

end

subroutine phi(t,ttt,m,phin)
implicit real*8 (a-h,o-z)
real*8 t(l)
phin=l.d0
do 10 j=l,m
phin=phin*(ttt-t(j))

10 continue
return
end

20

Appendix B

This section gives a Maple program for Lagrange/FFT Comparison using GPS Ephemeris.

\# Christopher P. Sagovac, 29 May 1995

\# The following x-coordinate data from satellite 1 in the file jpl07365.sp3

is used to compare the Lagrange Polynomial and FFT methods of
interpolation. 96 points separated at intervals of 900 seconds cover 23hrs
45mins. 11th order Lagrange interpolation is performed on 12 evenly
distributed points on a subinterval within the ephemeris; remaining points
are used to generate residuals. The user specifies the subinterval over
which the interpolation takes place by setting the starting node number in
the range a=1..61. For the Lagrange interpolation, the ephemeris data is
mapped into the interval [-1,1]. Selected points are separated by 2700
seconds. The FFT is performed over the entire ephemeris using 32 equally
spaced points with subinterval spacing of 2700 seconds; remaining points
are used to generate residuals. For the FFT interpolation, the ephemeris
data is mapped into the interval [0,95*π/48]. This allows a comparison
of the Lagrange interpolating polynomial and the FFT method over an ephemeris

interval.
Residual comparison takes place at corresponding node numbers on each of the

different subintervals.
First we generate a list of the ninety-six abscissas for both intervals:

> listl:=[seq(m*2*π/96, m=0..95)]:

> list2:=[seq(-l+m*2/95, m=0..95)]:

\# A list of the corresponding ninety-six ordinate values taken from file

jpl07365.sp3

\# (these are the same for both sets of abscissas):

> satlist2:=
[15500.414560,15268.853410,14843.274690,14200.160540,13322.919650,

>12202.689520,10838.841980,9239.173760,7419.776750,5404.594490,3224.683250,

>917.206990,-1475.795270,-3908.822870,-6334.455100,-8704.963870,-10973.938070,

>-13097.860380,-15037.578740,-16759.618700,-18237.288490,-19451.535890,

21

>-20391.524780,-21054.909440,-21447.795240,-21584.386110,-21486.330880,

>-21181.791750,-20704.269190,-20091.227140,-19382.570580,-18619.033950,

>-17840.542760,-17084.613010,-16384.851470,-15769.617150,-15260.897820,

>-14873.447530,-14614.220590,-14482.125710,-14468.110980,-14555.576720,

>-14721.100000,-14935.441300,-15164.792660,-15372.216220,-15519.214910,

>-15567.371330,-15479.988750,-15223.668540,-14769.761120,-14095.633690,

>-13185.705450,-12032.211050,-1063.663960,-9005.003600,-7157.422240,

>-5117.879990,-2918.327780,-596.668940,1804.500890,4239.327820,6660.254360,

>9019.637090,11271.368100,13372.440740,15284.402460,16974.641660,

>18417.461210,19594.898880,20497.263810,21123.368570,21480.447000,

>21583.759770,21455.901300,21125.832970,20627.678050,19999.323680,

>19280.882770,18513.075050,17735.590120,16985.496810,16295.762020,

>15693.938430,15201.073980,14830.887900,14589.247140,14473.965140,

>14474.931940,14574.570650,14748.602380,14967.088360,15195.707160,

>15397.214850,15533.028660,15564.870070]:

\# Normalize the data by dividing by $10~5$:

> list3:=[seq(evalf(satlist2[m]/100000,ll),m=l..96)]:

\# We next form the 11th order Lagrange interpolating polynomial using twelve
evenly spaced points on the interval. The other unused points will be used to
examine residuals. Setting the parameter "a" (below) chooses the point at which
the interval begins; valid choices are a=1..61. Subintervals chosen to lie
near the ends of the ephemeris interval represent a worst case for the FFT
method, which attains its greatest accuracy in the center of the interval.
For instance, the leftmost interval of length 36 points corresponds to a=l.
The rightmost interval of length 36 corresponds to a=61. In this way one can
peruse the entire ephemeris interval to see how the 32 point FFT method

compares to the local step along Lagrange method. Choose a value in the

22

center of the interval, a=32:

> a:=32:

\# Here are the values of the abscissas for the chosen subinterval on the

interval [-1,1) :

> plistl:=[seq(evalf(list2[a+3*m],16), m=0..11)]:

\# Here are the values of the ordinates (nodes) for the chosen subinterval

(from list3) :

> plist2:=[seq(list3[a+3*m],m=0..1l)]:

\# Now calculate the 11th degree Lagrange interpolating polynomial over the

chosen subinterval:

> p:=interp(plisti, plist2, z) :

> readlib(FFT):

\# Form a list of 32 evenly distributed data points from list3:

> fftlist2:=[seq(list3[l+3*m],m=0..31)]:

> x := array(fftlist2):

\# There is no imaginary component for this real data set; y is a zero array:

> y : =
array([0,0]):

\# Use hardware floating point number system for fast calculation:

> evalhf(FFT(5,var(x),var(y))):

> r:=map(x->x/32,convert(x, list)):

> s:=map(y->y/32,convert(y,list)):

> evenf:=r[l]+r[17]*cos(16*z):

> for n from 1 to 15 do evenf:= evenf+2*r[n+l]*cos(n*z) od:

23

> oddf:=0:

> for n from 1 to 15 do oddf:=oddf+ (-2)*s[n+l]*sin(n*z) od:

\# Here then is the interpolating trigonometric polynomial, good for the
entire 24 hour period:

> g:=oddf+evenf:

\# Plot the difference between the FFT method and the Lagrange interpolating

polynomial on [-1,1]:

> FFTResidsl: = [seq([-.3+m/150,$10~{10}$*abs(evalf(subs(z=evalf(-.3+m/l50,20) ,
p),16)-

> evalf(subs(z=95/96*π*(.7+m/150), g),20))],m=0..90)]:

\# interface(plotdevice=postscript, plotoutput=interp4);

> plot(FFTResidsl, style=point, title='Trigonometric Polynomial Residuals');

>

FFTResids2:=[seq([evalf(m/1000),$10~{10}$*abs(evalf(subs(z=evalf(evalf(m/1000)
,20), p),16)-

> evalf (subs(z =95/96*π*(l+m/1000) , g) ,20),)] ,m=0. .90)] :

\# interface(plotdevice=postscript, plotoutput=interp5);

> plot(FFTResids2, style=point, title='Trigonometric Polynomial Residuals');

24

Appendix C

This section gives a Fortran program for Tshebyshev approximation using Simpson'n §
rule for the numerical approximations of the coefficients.

subrout ine cheb(rr,a,t i,n,alf,t,f,m)
implicit real*8 (a-h,o-z)
real*8 a(l),ti(l),alf(1),t(l),f(1)

c
c rr is delta t / pi
c (t,f) are the equally spaced data points
c n is the highest degree of Tshebyshev polynomial in the expansion

c m is the number of data points

c
c
c

c
c
c

c

c

c

a(i) are the coefficients of the expansion in Tshebyshev polynomials

do 20 i=l,n
20 a(i)=0.

weights (alf) for midpoint/trapezoidal/simpson combination

alf(2)=4.d0
alf(3)=2.d0/3.d0

do 22 i=4,m-4,2
alf(i)=8.d0/3.d0
alf(i+l)=4.d0/3.d0

22 continue
alf(m-3)=5.d0/3.d0
alf(m-2)=l.d0

alf(m-l)»4.d0

c
c integration

do 30 j=2,m-2
tt=t(j)
den=dsqrt(1.-tt*tt)
print *,,j,tt,den=',j,tt,den

do 40 i=l,n

c compute all Tshebyshev polynomial up to degree n at point tt

call cheby(ti,n,tt)

25

term=ti(i)*f(j)*alf(j)/den*rr
a(i)=a(i)+term

c print *,'j i ti(j),a(i)',j,i,ti(i),a(i)
40 continue
30 continue

c print *,' a(i)= ', a

return
end

26

Distribution List

No. of copies

Director 2
Defense Technology Information Center
Cameron Station
Alexandria, VA 22314

Director of Research Administration
Code 81
Naval Postgraduate School
Monterey, CA 93943

Library
Code 52
Naval Postgraduate School
Monterey, CA 93943

Department of Mathematics
Code MA
Naval Postgraduate School
Monterey, CA 93943

Professor D. A. Danielson 10
Code MA/Dd
Naval Postgraduate School
Monterey, CA 93943

Professor Beny Neta
Code MA/Nd
Naval Postgraduate School
Monterey, CA 93943

Professor J. R. Clynch
Code OC/C1
Naval Postgraduate School
Monterey, CA 93943

27

Professor Rudolf Panholzer
Code SP/Pz
Naval Postgraduate School
Monterey, CA 93943

1

Professor Terry Alfriend
Code SP/A1
Naval Postgraduate School
Monterey, CA 93943

1

Professor Mike Ross
Code AA/Ro
Naval Postgraduate School
Monterey, CA 93943

1

Lt. Chris Sagovac, USN
819 South Charles St.
Baltimore, MD 21230

5

Dr. Stephen H. Knowles
U.S. Naval Space Command
Code N4/GT
Dahlgren, VA 22448-5170

- 1

Dr. Paul Schumacher
U.S. Naval Space Command
"Code 63T
Dahlgren, VA 22448-5170

1

Capt Daniel J. Fonte, Jr., USAF
PL/VTA
3550 Aberdeen Ave SE
Kirtland AFB, NM 87117-5776

1

Major Dave Vallado
PL/VTA
3550 Aberdeen Ave SE
Kirtland AFB, NM 87117-6008

1

28

