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Abstract 
In this report, we discuss and compare several methods for polynomial interpolation of 

Global Positioning System ephemeris data. 

Intoduction 
The problem of interpolating Global Positioning System (GPS) ephemeris data is an 

important aspect of GPS. Given that a high accuracy (< lm ), high precision (1 cm) orbit 
can be generated though the use of dense observations and special integrations, it is necessary 
to interpolate these ephemeris at high accuracy to utilize these orbits. 

These high accuracy orbits are produced by several organizations (DMA, NGS, JPL, 
several Universities) and are widely available. An ephemeris typically consists of satellite 
positions at evenly spaced times over a week. Most ephemeris are given at 900 sec (15 min) 
time steps although the NGS ones are at 1200 sec (20 min). The GPS satellites are in 12 hr 
circular orbits making 900 sec ephemeris steps 7.5 deg of arc. 

The typical user collects GPS data at intervals from 1 sec to 30 sec and needs to find 
the satellite position at the times of that data. The times needed are really not the evenly 
spaced received times, but the transmit times that are about 60 msec before reception. A 
precise value for this propagation delay is not known until the solution process in partially 
done. Therefore usually one needs to find a cluster of satellite positions a few msec from a 
nominal evenly spaced interval. 

In the past the typical technique used by the DMA [Malys, 1989], NGS [Remondi, 1991], 
JPL [Watkins, 1995] and others is a Lagrange interpolation. The orders vary from 8th to 
llt/l. This approach directly computes the value of the function (the three Cartesian Earth 
centered earth fixed coordinates) from the unique polynomial going through the data points. 
The coefficients are not found, and finding them may introduce errors [Press et al, 1992]. 
Several evaluations of the accuracy of this method [Remondi, 1991, Smith and Curtis, 1983] 
have been made. It is generally found that an 8ih order Lagrangian interpolation using 
900 sec data with the unknown in the center of the points gives values that compare with 
numerical integration at the 1 cm level. 

The problem addressed here is to find if a more efficient numerical method that achieves 
the same accuracy can be used. This is motivated by the movement of processing from 
mainframes to PC's (486's and above). 

Several aspects unique to the GPS satellites make this problem of interpolating the 
data different from the general problem of interpolation. Though we are interpolating GPS 
satellite orbital position data, it may be that the methods here are applicable to a broader 
class of problems. Where possible, we intend to take full advantage of the special geometry 
of the GPS satellite orbits. 
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Figure (1) - 4 day x-coordinate GPS ephemeris data at 900 second intervals 

A typical precise ephemeris orbit is supplied over an interval of eight days. Each ephemeris 
overlaps 1 day at each end with another ephemeris. It consists of position data which is 
Earth-centered, Earth-fixed Cartesian coordinates given every 900 seconds (t,x,y,z). We 
will not include velocity data which may in some cases be available. A plot of the data shows 
that it is "almost" periodic with a period of 24 hours or 96 intervals of 900-second each; Of 
course the data would be periodic in inertial coordinates. The data is given in a rotating 
frame (Earth centered - Earth fixed) however. This is done to place several subtle effects, 
such as polar motion, into the ephemeris generation problem. The user then does not have 
to have access to current data for geophysical effects to compute an Earth fixed position 
.solution. Figure (1) is a plot of ^-coordinate data (in kilometers) over a four day period. 
Note that the plot is with respect to the node (point) number which ranges from 1 to 384. It 
is convenient to use node numbers since we may choose to map the interval of interest into 
different subintervals. For instance, the Lagrange interpolation method maps the interval 
of interest into the interval [—1,1) while the trigonometric polynomial interpolation method 
maps the interval of interest into the interval [0,2n). Later we will use the node numbers to 
compare the residuals for different methods. 

There are two lengths of computation time in which we are interested for this problem. 
One time length is the generation time of the function (interpolant) which interpolates the 
evenly-spaced data. The other is the time needed to evaluate the interpolant at a point. For 
polynomial interpolation these might be the calculation of the coefficients of the polynomial 
interpolating the data and the time needed to evaluate that polynomial, once generated, at 
a particular point. As we shall see, however, there are clever ways in which to minimize the 
amount of work done in generating the desired data, and the two times might not be easily 
distinguished in these cases. In recommending a particular technique for interpolation it is 



important to know whether the interpolant will be evaluated once (or just a few times) on an 
interval or if it will be evaluated many times throughout the interval. With a cluster of times 
to be interpolated on an interval, the cost of generating the interpolant should be amortized 
over the set of times. This means that the time needed to generate the interpolant (a one- 
time cost) would not be as much a concern as the time needed to evaluate the interpolant 
at each of the desired times (a recurring expense). On the other hand, if one or a very few 
points were to be calculated on a given interval, the time needed to generate the interpolant 
would probably be more significant a concern than the time needed to evaluate it at the 
desired times since in general the generation of an interpolant is much costlier (in time) than 
its evaluation. This is a similar argument as one finds in deciding whether to use Gaussian 
elimination or LU factorization in solving systems of linear equations. 

One method of polynomial interpolation involves performing the interpolation at a point 
without actually calculating the coefficients of the interpolating polynomial. This involves 
many less operations than the evaluation of a polynomial of degree n at a particular point. 
This is a common technique currently employed. If we do not explicitly calculate the in- 
terpolant, however, we will in general still need to calculate some quantities prior to in- 
terpolation. For instance, we shall see that divided differences would need to be available 
prior to using the nested multiplication algorithm used in evaluating the Newton form of the 
interpolating polynomial. 

Since ephemeris data is generated for an eight day time period, we have the opportunity 
to "front load" our work at the time of ephemeris receipt. By calculating needed data 
in advance we should be able to shorten the real time operation count. Thus we will be 
more concerned with the rapid evaluation of interpolants for specific times than their rapid 
generation. Of course in some cases the times of evaluation and generation will be closely 
related, as mentioned above. In others, they will be quite different and our hope will be to 
shift as much of the work as possible to the generation of efficient interpolants so as to allow 
the rapid evaluation of those interpolants. 

In summary, we will describe the following methods: 

• Lagrange polynomial interpolation 

• Newton's divided difference interpolation polynomial 

• Difference Tables 

• Cubic Spline interpolation 

• Trigonometric polynomial interpolation 

• Tshebyshev polynomial interpolation 

We will describe the advantages and disadvantages of each of these methods for the problem 
of interest, namely for the efficient interpolation at clusters of points. 



Lagrange Polynomial Interpolation 

Before we begin our investigation, it is necessary to describe the method which is currently 
being used. Simply put, given the n + l ephemeris values f{to),f(ti), ■ ■ ■ ,f(tn) at the distinct 
times t0, ti,..., tn, there exists a unique interpolating polynomial pn satisfying 

Pn(U) = f{U),        i = 0,l,...,n 

This polynomial can be written in the form (called the Lagrange interpolation polynomial) 

t'=0 

whore 
(f\ =       (t - tp)(t - fr) • • • (f - ti-!)(t - ti+1) ■•■(t-tn) 

i[   j (*•■ - to)(U -<!)••• {U - <i-i)(*,- - ti+1) ■ ■ ■ (U - tn) 

The eleventh order Lagrange method uses twelve data points to generate an eleventh order 
polynomial according to equation (1). This polynomial can then be evaluated at desired times 
within the interval of interest. The error Rn(t) in using the Lagrange interpolant pn(t) to 
estimate the function /(<) (having at least n + l derivatives throughout the open interval) 
at some point t can be written [Buchanan and Turner, 1992]: 

Rn{t) - f(t) ~ Pn(t) =  (n + l)\  

where £ is some point in the interval [to, tn] and 

Ln+i(t) = fl(t-ti) 

One difficulty in implementing high degree polynomial interpolation routines of any kind 
is the fact that the error between the interpolating polynomial and the data or function being 
interpolated grows rapidly near the endpoints of the interval over which the interpolation 
is being performed. For this reason the eleventh order Lagrange method is overlapped as 
successive intervals are chosen within the ephemeris (we call this walk-along interpolation). 
Due to the high accuracy requirements, only the center subinterval is interpolated for each 
Lagrange polynomial which is generated. Whereas the initial interval spans points one 
through twelve, the second interval spans points two through thirteen in order to provide 
the highest degree of accuracy. The first eleventh order Lagrange polynomial would then 
be used for times between points six and seven, while the second polynomial would be valid 
for times between points seven and eight. The numerical accuracy of this method has been 
verified to the 1 cm level for the data we are interpolating [Remondi, 1991]. 

Difficulties arise in that the process of creating and evaluating the resulting eleventh 
order polynomials is computationally expensive. The cost of evaluating the Lagrange form 

at a point is provided by de Boor [1978]. It is 

(2n-2)A + {n-2)M + {n-l)D 



for each of the n + 1 numbers /,•(£), where A denotes an addition or subtraction and M and 
D denote multiplication and division, respectively. Forming equation (1) then takes another 

(n-l)A + nM 

operations, leaving the total count per component of the position vector at 

(3n - 3) A + (2n - 2) M + (n - 1) D 

This is the number of operations per component in the implementation of Lagrange inter- 
polation. A simple modification of the algorithm would reduce the amount of work to 

(2n-l)A + nM + nD 

operations (see de Boor [1978]). It consists of first forming the quantity 

Y      IM  i = l,...,n 

Afterwards, pn(t) is calculated through 

n 

<MO=n c - *«•) 
n 

Pn(t) = 4>n{t) Y, Yi/(t ~ ti) 
i=l 

This method is somewhat faster than the method currently being used and would be easy 
to implement (see program lagrange in Appendix A). In addition, no loss of accuracy would 
occur in its implementation. If the time t is very close to one of the interpolating points £,-, 
one must be careful in computing pn(t) because of the division of Yi by a very small number. 

Newton's Divided Difference Interpolation Polynomial 

A more efficient means by which we may form the interpolating polynomial is through 
divided differences. We follow the developments given in Buchanan and Turner [1992] and 
de Boor [1978]. Suppose we have n + 1 distinct interpolation points t0, ti,..., tn. Define the 
zeroth divided difference at ti by /[£,•] = /(£,-). The first divided difference at U,tj is defined 

and the fcth divided difference f[to,ti,... ,ijt] is denned by 

rr.      . .   i        /fo), h, . . . , *fe-i] - f[h,t2, ...,tk] 
Ofc = j[tQ,ti,...,tk\ = ,     k > 0 

tn — tu 



Newton's divided difference interpolation polynomial is the interpolation polynomial agreeing 

with the function / at the points t0,tu...,tn and is given by 

pn(t) = a0 + {t- t0)ai + (t- t0)(t - tx)a2 + ... + (t- t0)(t - ii) ■•■(*- tn-i)an     (2) 

or, rearranging, 

71—1 times 

Pn(t) = a0 + {t- t0){ai + {t- h){a2 + ■•• + (<- ^-2)K-i + (t - <„-iK }■■■}} 

This form consists of two additions and a multiplication per level in the expression. Since 

there are n levels, the operation count is seen to be 

n(2A + M) 

which is more economical than the standard Lagrange form. This leads us to the so-called 
nested multiplication or Homer's algorithm: 

Given the n + 1 distinct points t0,tu...,tn with associated coefficients a0, ax,..., a„, the 
value of the interpolating polynomial pn(t) for some t G [t0,tn] is given by b0 according to 

the following iteration: 

Set bn = an 

For k = n - 1 to 0 by -1 
bk = ak + (t - tk) bk+i 
End For 

By the uniqueness of the interpolating polynomial there can be no difference in compar- 
ison to Lagrange, but the gain in speed may be of importance for our purposes. Note that 
the divided differences ak can be calculated and stored in advance of the actual interpola- 
tion so that the operation counts given here reflect the operations needed at interpolation 
time. A total operation count would have to include the operations needed to generate the 
divided differences. Also, calls from storage may need to be counted, depending on system 

architecture considerations. 
The divided difference algorithm does not take advantage of the fact that our interval 

sizes are fixed - we required the nodes to be distinct but made no restriction on the spacing 
between nodes. In the next section we will investigate the special case when the interval 

sizes are constant. 

Difference Tables 

The case of equally-spaced data points is a special case of Newton's divided differences 
and leads to other interpolation formulas. The error and operation counts for the methods 
presented here are essentially identical to those presented above. The formulas are given 
in their simplest form and should not be used for computation. A nested multiplication 
approach similar to the one described in the previous section should be used for each of 
these in order to minimize the cost of computation.  One important aspect of this method 



is the determination of the differences and the method to be used to interpolate at a given 
time t. It will be necessary to include some code to determine which differences are to be 
used, though the differences themselves can be calculated when the given ephemeris becomes 
available. In addition, the chosen method will depend on the location of the interpolation 
time relative to the data times. Here we follow the description given in Buchanan and Turner 
[1992]. Our data occurs at times which can be expressed as 

tk = t0 + kh 

where to is a reference time for the interval of interest and h is the constant steplength. We 
normally think of k as being a positive integer and t0 as being the initial time in the interval 
of interest but in this case we will only require k to be an integer and t0 to be any time 
corresponding to a data point in the interval. The sign of k will depend on the reference 
time to in relation to the time of interest. There are now several differences which can be 
defined, one of which is the forward difference. 

The general forward difference A/(£t) is given by 

Af(U) = f(ti+1) - f(tt) = f(U + h)- /(*,-) 

Its powers are calculated recursively according to the following 

Akf(ti) = A(Afc-7(*,0) = A*-7(*.-+i) - Ak~lf(U) 

j=0 v / 

where we have introduced the notation /, = f(ti).  Additionally, the differences are related 
to divided differences by 

Akf(U) = k\hkf[ti,ti+1,...ti+k] 

An application of this last formula to equation (2) immediately yields a forward difference 
• formula (called Newton's forward difference formula or the Newton-Gregory forward differ- 
ence formula). Here we assume that the degree of the interpolating polynomial is n while 
the number of data points in our table is N: 

„   m-   f     I    (*-*°)Af     ,    (*-*0)(*-*l)Aaf     , ,    (*-*0)(*-*l)-"(*-*n-l)A„f Pn(t)-f0 + —— A/0 + ^ A /„ + ••• + ^ A/o 

A simple change of variable r = (t — tQ)/h yields the compact form 

Pn(r) = E(
T
W/O 

j=0 v/ 

with the generalized binomial coefficients 

V\       r(r-l)---(r-j + l) 

j! 



Examination of these formulas reveals that their operation counts could be made similar 
to the operation count for the Newton divided difference formula with a constant step size 
through the use of nested multiplication. Their accuracy is the same as the Newton divided 
difference formula so that none should be ruled out in the search for a more rapid method 

of interpolation. 

Cubic Spline Interpolation 

Cubic spline interpolation is computationally efficient and has an advantage with respect 
to walk-along Lagrange because it allows the user to calculate the interpolating polynomials 
over the entire interval at one time, at the beginning of the interpolation process. This 
calculation involves solving a tridiagonal system of equations. Additionally, the fact that each 
subinterval is represented by a cubic polynomial means that evaluations on those intervals 
are much quicker than their eleventh order polynomial counterparts, making the cubic spline 
method a good choice where accuracy is less important than speed. 

Here we will sketch the derivation of the cubic spline interpolation; thorough treatments 
of cubic spline interpolation can by found in [Ahlberg, Nilson and Walsh, 1967], [Buchanan 
and Turner, 1992], [de Boor, 1978], and [Press, 1992]. Given the n + 1 ephemeris values 
/(<o),/(*i)i •••,/(<»») at the distinct times a = t0,ti,...,tn = 6, we construct a piecewise 
cubic interpolant p to / as follows. On each subinterval [U, ti+i] we wish to construct a cubic 
polynomial p,- in such a way that the resulting interpolation formula over the entire interval 
is continuous in its first and second derivatives. The result is 

Pi(t) = Mt) ttU) + Bt(t) f(ti+l) + d(t) f"(U) + Di(t) f"(ti+l),        i = 0,..., n - 1     (3) 

where ft t-t- 
A.=sh±LZli      Bi=  '*   u 

Ci = \{A$- At) (ti+i - U)2,        Di = I (B? - Bi) (t,-+1 - Uf 

We do not yet have the n + 1 values of f"(U) needed for the determination of the solution, 
but application of the continuity of the first derivative on the entire interval leads us to the 

following equations: 

U - *,-_i    „ tj+i - tj-i   „.   .       tj+i - U   „ . _ f(ti+i)-f(tj)       fjtj) - /(*i-l) 
——f (u-i) + —3—/ (u) + —r-f te+o -   t  _ u   -   u_ t._x 

.(4) 

for i = 1,2,... ,n - 1.   Note that there are n - 1 equations for n + 1 unknowns, leaving 
two second derivatives undetermined. The choice of the two boundary conditions f"{a) and 
f"(b) provides the required unique solution. In our case it makes sense to use the periodicity, 
i.e.  apply (3) and (4) for i = n and enforce p0(t) = pn(t + tn) for t0 < t < tx.  As a 
consequence, f(t0) = /(*„),     f(h) = /(<n+1),     f"(t0) = f"(tn),     and f"(h) = /"(i?+i). 
Therefore if we use equal step size h, the cubic spline version of equation (4) can be written 
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where /?,- = 24/[*;_i,i,-,*i+i]. 
If accuracy can be sacrificed for speed then the cubic spline method may be preferred 

over any of the methods here. However, the 0(h4) accuracy provided by the cubic spline 
may be insufficient for GPS satellite interpolation requirements. 

Trigonometric Polynomial Interpolation 

The roots of this method of interpolation can be traced to the beginning of the nineteenth 
century. Briggs and Henson [1995] present a brief history of this method, in particular the fact 
that Gauss used it around 1800 to interpolate the orbit of the asteroid Pallas. The preceding 
methods are standard interpolation techniques typically used for continuous, differentiable 
functions defined on compact intervals. No other special information about the functions 
being interpolated is exploited by these methods. It is at this point that we examine some 
special properties of our GPS ephemeris data. As previously mentioned, our ephemeris 
data is supplied over an interval of eight days and consists of Earth-centered, Earth-fixed 
Cartesian coordinate position data given every 900 seconds. A plot of the data in Figure 
(1) shows that it is very close to periodic, and it is for this reason that we examine the 
trigonometric polynomial interpolation method. 

Due to the fact that the position data has a period of twenty-four hours, we restrict our 
attention to a single twenty-four hour period and generate a trigonometric polynomial pn 

using all the data available over that period. Again, we must remember that our satellite 
orbit is not truly periodic, but very close to that in inertial coordinates. Since the error 
incurred by assuming the data to be periodic over a j day period would be almost j times 
as great as the error incurred from assuming the orbit to be periodic over a single day, we 
discourage use of this routine over intervals exceeding the fundamental period of the data. 
In order to minimize the effects of the assumption of periodicity one should interpolate over 
a single period. 

The idea in generating our interpolant is to assume that the data is from a periodic 
function of time defined over the interval [0,2n) which can be represented by a trigonometric 
polynomial of the form 

n 

pn(t) = aQ + ^ (a,k cos kt + bk sin kt) 

In our problem we simply map the twenty-four hour interval of interest into the interval 
[0,2n) using a linear change of variable. In deriving the coefficients we follow the discussion 
of interpolating polynomials and the Fast Fourier Transform found in Buchanan and Turner 

10 



[1992]. Clearly, the above equation can be written as 

k=—n 

where the coeffcients are given by 

7fc = ak + ißk        k = -n,..., n 

If we denote the point on the unit circle corresponding to t € [0,27r) by 

f = «" 

we may then write 

Pn(t)=    £    7*£* 

If we denote the points corresponding to nodes by 

£j = ext> = cos tj + i sin £y 

the interpolation problem is to find the coefficients satisfying 

Pn(tj)=    £    7*f?=/(*i) 

where /(£,-) are the function values for j = 0,1,..., 2n. For an odd number of nodes, it can 
be shown that 

i 2n 

7P = ^—-T- £ fktk P        p=-n,-n + l,...,n 

Unfortunately, as pointed out by Buchanan and Turner [1992], the operation count for 
this discrete Fourier Transform is 0(n2) making it too expensive for practical application. 
Luckily, there is a faster way to calculate the discrete Fourier coefficients. 

Suppose that we have the case where the number of nodes is of the form n = 2N. The 
task is then to find the trigonometric polynomial pn which interpolates / at the uniformly 
spaced data set <o,*i> • • • i^n-i- In this case the trigonometric polynomial can be calculated 
by using the Fast Fourier Transform, which has an operation count of 0(n log n). This 
makes it an attractive method for our purposes and we will refer to it as the FFT method. 
Unfortunately, however, over a twenty-four hour period our data will consist of ninety-six 
points separated by intervals of 900 seconds. Though ninety-six is not a power of two, we 
nevertheless can use n = 25 = 32 points in the interval to test our trigonometric polynomials. 
We simply select every third point in the interval and calculate the trigonometric polynomial 
which interpolates at those thirty-two points. We may then compare the Lagrange method 
to the FFT method by choosing some subinterval having a length of 36 nodes, twelve of 
which are used to generate the eleventh order Lagrange interpolating polynomial.   These 

11 



twelve nodes (equally spaced with 3 times the spacing) should coincide with twelve of the 
thirty-two nodes used in the FFT method. 

The above calculations were performed with the aid of Maple (Appendix B) and a plot 
of residuals in centimeters is shown in Figures (2) and (3). A linear change of variable was 
used to map the trigonometric polynomial defined on the interval [0, 937r/48] into the interval 

[-1,1]-' 

Figure (2) - Trigonometric polynomial residuals (cm) 
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Figure (3) - Trigonometric polynomial residuals (cm), (zoomed) 

The subinterval chosen for this analysis was located at the center of the set of nodes in 
order to show the location where the trigonometric interpolant is most accurate. Examina- 
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tion of Figure (5) reveals that on a single subinterval the trigonometric polynomial method 
agrees with the Lagrange interpolation method to within roughly ten meters. The Maple 
worksheet used to generate this figure is included as Appendix C at the end of this paper. 

The effects of error growth near the ends of the intervals for the FFT method could 'be 
handled by shifting the twenty-four hour period over which the trigonometric polynomial is 
derived, placing the data point squarely in the center for the most accurate work. A bound 
on the mean square error incurred by approximating the periodic function / from which the 
data is sampled by the interpolant p is given in Briggs and Henson [1995] as 

ll/-HI<   ° j\[p+i 

where N is the number of data points, C is a constant and the periodic extension of / has 
(jo — 1) continuous derivatives, p > 1. Since continuity of the periodic extension of / is 
required for this bound we cannot use it unless the function is truly periodic on the chosen 
interval. Briggs and Henson [1995] perform a trigonometric interpolation on an arbitrary 
polynomial defined on [—1,1] and comment that it is not unreasonable to suspect the mean 
square errors to decrease as iV-1. 

Another concern will be the time required to evaluate the interpolant, so it is of interest 
to discuss the rapid calculation of the trigonometric polynomials, in particular the terms 

cos 7ri, sin nt, cos 2irt, sin 2irt,..., cos nnt, sin nnt. 

Using the trigonometric summation formulas one can write the well-known recursion [Go- 

ertzel, 1960] 
(Tfc = cos knt 

Tk = sin kirt 

(**+iW*i   -M (*»\      fc = 1 2>... 
V Tk+1 J \Ti        <Tl   J    \Tk/ 

which requires only two trigonometric calculations in order to recover all the needed terms. 
•Of course, the growth of round-off errors should always be checked when using a long sequence 
(i.e. n large). 

It is important that we use all the available data in forming the trigonometric polyno- 
mial pn(t) because the mean square error involved in using the FFT method depends so 
critically on the number of data points. Since 96 is not a power of two and since the DFT 
is computationally expensive, we must resort to another algorithm. 

Tshebyshev Polynomial Interpolation 

In order for us to understand Tshebyshev polynomial interpolation, it is necessary to 
re-examine the polynomial interpolation of n + 1 data points on a given interval. Given n +1 
points on an interval, the nth degree polynomial which interpolates those points over the 
given interval is unique. Of course this does not prevent us from writing the polynomial in 
a number of different ways. Before we describe what Tshebyshev polynomial interpolation 
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is, it may be a good idea to say what it is not. Tshebyshev polynomial interpolation is 
not the expression in the Tshebyshev polynomial basis of an nth order polynomial which 
interpolates n +1 arbitrary data points on a given interval. We are free to choose any suitable 
polynomial basis for expressing such a polynomial, but we must remember that the results 
of any calculations performed using that polynomial will be the same regardless of how the 
polynomial is expressed; simply writing a given polynomial in a different basis does not alter 
it. Therefore the residuals which are produced when using these different forms of the same 
polynomial will be the same. However, another set of n + 1 points on the same interval 
would yield a different polynomial. As it turns out, polynomial interpolation is sensitive to 
the distribution of the points being interpolated. If we were allowed to choose the points on 
an interval to be interpolated, we would find that certain choices of n + 1 points would yield 
polynomials which did a better job of interpolating than others. As stated, our data points 
are evenly spaced throughout the interval of interest, so that will not have the luxury of 
choosing a preferred set of n + 1 points on any interval unless we are able to generate more 
data. The following discussion closely follows the treatment given by Press et al [1992]. The 
Tshebyshev polynomial of degree n on [—1,1] is defined as 

Tn(t) = cos(n arccos i) 

It follows that the Tshebyshev polynomials satisfy the three term recurrence relation 

Tn+1(t) = 2tTn(t) - rB_x(<)        n = 1,2,... 

In addition, 

/ 

lTn{t)Tk(t) 
—- U, k f: n 

-i  VT^t* 
and 

/•i Tn(t) Tk(t) = f 7T        k = n = Q 
y_!    ^/T~fi        ITT/2    k = n^0 

so that the Tshebyshev polynomials are orthogonal on the interval [—1,1] with respect to 
the weight function w(t) = l/%/l — t2. The first few Tshebyshev polynomials are given by 

T0(t) = 1 

7i(i) = t 

T2(t) = 2t2-l 

T3(t) = 4t3 - 3< 

T4(t) = 8t4 - 8t2 + 1 

T5(t) = 16t5 - 20t3 + 5t 

It can be shown that the zeros of Tn(t) on [—1,1] are given by 

tj = cos <j ~ 1/2) 
n 

j = 1,2, ...,n 
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and that the Tshebyshev polynomials satisfy a discrete orthogonality condition [Press et al, 

1992] 

J2Ti(tj)Tk(tj) = ln/2    i = k^0 
j=1 In        i = k = 0 

The powers of t can also be expressed in the Tshebyshev polynomial basis. 
Any function f(t) can be approximated by a finite linear combination of Tshebyshev 

polynomials, i.e. 

These coefficients en can be computed numerically using the M equally spaced data points 

tj = -l+jAt,        j = 0,l,---,M-l 

M-\ 

e.g.   via the composite midpoint rule (we have to avoid evaluating the integrand at the 

endpoints, t0 and £M-I) 

at = -22 —o A*' 

where f(tj+1/2) can be approximated by a quadratic or cubic polynomial.  For example to 
use cubic splines to approximate the integrand, we get 

2 

7T 

L4M-2 L3M-2 L2 Af-2 Af-2 

4    i=o °    j=0 ^    j=0 j=0 

where the integrand g(t) is approximated on the interval [tj,tj+i] by the cubic polynomial 

g{t) = a,(* - *,-)3 + 6j(* - *;)2 + Cj(t - *,-) + dj 

We can also use the midpoint rule on the two leftmost panels and the two rightmost 
panels only. On the rest of the panels we can use the fourth order Simpson's | rule. This 
will yield the following approximation for the coefficients: 

At ( 2 8 4 8 2 ,   . \ 
• = — Ug2 + -g3 + 7:9* + gfl's + • • • + -^9M-3 + ^9M-?. + 4flfjvf-i J , CL; = 

where „.   .m.   . 
„   mm»!) 
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an take the trapezoidal 

in Appendix C: 5 +OM2 + 4gM-if- 

,    lf(ri we then use the following reckon: 

To evaluate }{T) v><= 

djV+i = dN+2 " U 

/(r) = 4 = ^-^+2-        d    .ationonthe interval is 

t::atrtx/^Wo, 

^ ^ä^1 shouid be measurei 
run times ot tnese w 
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Appendix A 

This section provides a FORTRAN subroutine which can be used to perform the inter- 
polation discussed in this paper. 

Program lagrange 
c 
c implements lagrange interpolation    of    a function 
c given as equally spaced data points 
c 
c let t_j=-l+j  Delta t,  Delta t=2/(M-l),    M=96 
c 

implicit real*8  (a-h,o-z) 
real*8 t(96),f(96),y(96) 
real*4 taray(2),paray(2) 
atony=dtime(taray) 

c       m is number of data points 
m=96 

c    mp is the number of interpolating points 
mp=12 
print *,' m= ',m,' mp=',mp 

c 

c      get m(=96) equally spaced points on [-1,1] 
c 

c 

c 

deltat=2./dfloat(m-1) 

print *,   'delta t   ',deltat 
t(l)=-l. 
do  10 j=2,m 

10 t(j)=t(j-l)+deltat 
c 
c      compute f values 
c       synthetic data 

call finter(t,m,f) 

c   print the points 
c 

print 12,(j,t(j),f(j),j=l,m) 
12      format(2x,i3,2el4.7) 
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c       compute y values 

c 
call yi(t,f,mp,y) 

atony=etime(taray) 
write(6,*) ' User time = ', taray(l) ,' seconds' 
write(6,*) ' System time = ', taray(2),' seconds' 

write(6,*) ' Total time = ', taray(l) + taray(2),' seconds' 

btony=dtime(paray) 
ttt=-l.dO-.5d0*deltat 
print *,'    t    ','approximate exact     error' 

do 5000 ij=l,mp 
ttt=ttt+deltat 

c 
c      compute phi_n (tau) 

c 
call phi(t,ttt,mp,phin) 

sum=0. 
do 1000 j=l,mp 

1000     sum=sum+y(j)/(ttt-t(j)) 
pn=phin*sum 
call finter(ttt.l.ddd) 
print *,ttt,pn,ddd,pn-ddd 

5000     continue 

btony=etime(paray) 
write(6,*) ' User time = ', paray(l) ,' seconds' 
write(6,*) ' System time = ', paray(2),' seconds' 
write(6,*) ' Total time = ', paray(l) + paray(2),' seconds' 

stop 
end 

subroutine finter(t,m,f) 
implicit real*8 (a-h,o-z) 

real*8 t(l),f(l) 
do 10 j=l,m 
f(j)=dsin(t(j))+dcos(t(j)) 

10      continue 
return 
end 

subroutine yi(t,f,m,y) 
implicit real*8 (a-h,o-z) 

real*8 t(l),f(1),y(l) 
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do 20 i=l,m 

y(i)=f(i) 
do 10 j=l,m 
if(j.eq.i) go to 10 
tt=t(i)-t(j) 

y(i)=y(i)/tt 

10     continue 

20     continue 
return 

end 

subroutine phi(t,ttt,m,phin) 
implicit real*8 (a-h,o-z) 
real*8 t(l) 
phin=l.d0 
do 10 j=l,m 
phin=phin*(ttt-t(j)) 

10     continue 
return 
end 
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Appendix B 

This section gives a Maple program for Lagrange/FFT Comparison using GPS Ephemeris. 

\# Christopher P. Sagovac, 29 May 1995 

\# The following x-coordinate data from satellite 1 in the file jpl07365.sp3 

is used to compare the Lagrange Polynomial and FFT methods of 
interpolation. 96 points separated at intervals of 900 seconds cover 23hrs 
45mins.  11th order Lagrange interpolation is performed on 12 evenly 
distributed points on a subinterval within the ephemeris; remaining points 
are used to generate residuals. The user specifies the subinterval over 
which the interpolation takes place by setting the starting node number in 
the range a=1..61. For the Lagrange interpolation, the ephemeris data is 
mapped into the interval [-1,1]. Selected points are separated by 2700 
seconds. The FFT is performed over the entire ephemeris using 32 equally 
spaced points with subinterval spacing of 2700 seconds; remaining points 
are used to generate residuals. For the FFT interpolation, the ephemeris 
data is mapped into the interval [0,95*$\pi$/48]. This allows a comparison 
of the Lagrange interpolating polynomial and the FFT method over an ephemeris 

interval. 
Residual comparison takes place at corresponding node numbers on each of the 

different subintervals. 
First we generate a list of the ninety-six abscissas for both intervals: 

> listl:=[seq(m*2*$\pi$/96, m=0..95)]: 

> list2:=[seq(-l+m*2/95, m=0..95)]: 

\# A list of the corresponding ninety-six ordinate values taken from file 

jpl07365.sp3 

\# (these are the same for both sets of abscissas): 

> satlist2:= 
[15500.414560,15268.853410,14843.274690,14200.160540,13322.919650, 

>12202.689520,10838.841980,9239.173760,7419.776750,5404.594490,3224.683250, 

>917.206990,-1475.795270,-3908.822870,-6334.455100,-8704.963870,-10973.938070, 

>-13097.860380,-15037.578740,-16759.618700,-18237.288490,-19451.535890, 
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>-20391.524780,-21054.909440,-21447.795240,-21584.386110,-21486.330880, 

>-21181.791750,-20704.269190,-20091.227140,-19382.570580,-18619.033950, 

>-17840.542760,-17084.613010,-16384.851470,-15769.617150,-15260.897820, 

>-14873.447530,-14614.220590,-14482.125710,-14468.110980,-14555.576720, 

>-14721.100000,-14935.441300,-15164.792660,-15372.216220,-15519.214910, 

>-15567.371330,-15479.988750,-15223.668540,-14769.761120,-14095.633690, 

>-13185.705450,-12032.211050,-1063.663960,-9005.003600,-7157.422240, 

>-5117.879990,-2918.327780,-596.668940,1804.500890,4239.327820,6660.254360, 

>9019.637090,11271.368100,13372.440740,15284.402460,16974.641660, 

>18417.461210,19594.898880,20497.263810,21123.368570,21480.447000, 

>21583.759770,21455.901300,21125.832970,20627.678050,19999.323680, 

>19280.882770,18513.075050,17735.590120,16985.496810,16295.762020, 

>15693.938430,15201.073980,14830.887900,14589.247140,14473.965140, 

>14474.931940,14574.570650,14748.602380,14967.088360,15195.707160, 

>15397.214850,15533.028660,15564.870070]: 

\# Normalize the data by dividing by $10~5$: 

> list3:=[seq(evalf(satlist2[m]/100000,ll),m=l..96)]: 

\# We next form the 11th order Lagrange interpolating polynomial using twelve 
evenly spaced points on the interval. The other unused points will be used to 
examine residuals. Setting the parameter "a" (below) chooses the point at which 
the interval begins; valid choices are a=1..61. Subintervals chosen to lie 
near the ends of the ephemeris interval represent a worst case for the FFT 
method, which attains its greatest accuracy in the center of the interval. 
For instance, the leftmost interval of length 36 points corresponds to a=l. 
The rightmost interval of length 36 corresponds to a=61.  In this way one can 
peruse the entire ephemeris interval to see how the 32 point FFT method 

compares to the local step along Lagrange method. Choose a value in the 

22 



center of the  interval,  a=32: 

> a:=32: 

\# Here are the values of the abscissas for the chosen subinterval on the 

interval [-1,1) : 

> plistl:=[seq(evalf(list2[a+3*m],16), m=0..11)]: 

\# Here are the values of the ordinates (nodes) for the chosen subinterval 

(from list3) : 

> plist2:=[seq(list3[a+3*m],m=0..1l)]: 

\# Now calculate the 11th degree Lagrange interpolating polynomial over the 

chosen subinterval: 

> p:=interp(plisti, plist2, z) : 

> readlib(FFT): 

\# Form a list of 32 evenly distributed data points from list3: 

> fftlist2:=[seq(list3[l+3*m],m=0..31)]: 

> x := array(fftlist2): 

\# There is no imaginary component for this real data set; y is a zero array: 

> y : = 
array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]): 

\# Use hardware floating point number system for fast calculation: 

> evalhf(FFT(5,var(x),var(y))): 

> r:=map(x->x/32,convert(x, list)): 

> s:=map(y->y/32,convert(y,list)): 

> evenf:=r[l]+r[17]*cos(16*z): 

> for n from 1 to 15 do evenf:= evenf+2*r[n+l]*cos(n*z) od: 

23 



> oddf:=0: 

> for n from 1 to 15 do oddf:=oddf+ (-2)*s[n+l]*sin(n*z) od: 

\# Here then is the interpolating trigonometric polynomial, good for the 
entire 24 hour period: 

> g:=oddf+evenf: 

\# Plot the difference between the FFT method and the Lagrange interpolating 

polynomial on [-1,1]: 

> FFTResidsl: = [seq([-.3+m/150,$10~{10}$*abs(evalf(subs(z=evalf(-.3+m/l50,20) , 
p),16)- 

> evalf(subs(z=95/96*$\pi$*(.7+m/150), g),20))],m=0..90)]: 

\# interface(plotdevice=postscript, plotoutput=interp4); 

> plot(FFTResidsl, style=point, title='Trigonometric Polynomial Residuals'); 

> 

FFTResids2:=[seq([evalf(m/1000),$10~{10}$*abs(evalf(subs(z=evalf(evalf(m/1000) 
,20),  p),16)- 

> evalf (subs(z =95/96*$\pi$*(l+m/1000) , g) ,20),)] ,m=0. .90)] : 

\# interface(plotdevice=postscript, plotoutput=interp5); 

> plot(FFTResids2,  style=point, title='Trigonometric Polynomial Residuals'); 
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Appendix C 

This section gives a Fortran program for Tshebyshev approximation using Simpson'n § 
rule for the numerical approximations of the coefficients. 

subrout ine cheb(rr,a,t i,n,alf,t,f,m) 
implicit real*8  (a-h,o-z) 
real*8 a(l),ti(l),alf(1),t(l),f(1) 

c 
c    rr is delta t  / pi 
c  (t,f) are the equally spaced data points 
c  n is the highest degree of Tshebyshev polynomial in the expansion 

c  m is the number of data points 

c 
c 
c 

c 
c 
c 

c 

c 

c 

a(i) are the coefficients of the expansion in Tshebyshev polynomials 

do 20 i=l,n 
20      a(i)=0. 

weights (alf) for midpoint/trapezoidal/simpson combination 

alf(2)=4.d0 
alf(3)=2.d0/3.d0 

do 22 i=4,m-4,2 
alf(i)=8.d0/3.d0 
alf(i+l)=4.d0/3.d0 

22      continue 
alf(m-3)=5.d0/3.d0 
alf(m-2)=l.d0 

alf(m-l)»4.d0 

c 
c       integration 

do 30 j=2,m-2 
tt=t(j) 
den=dsqrt(1.-tt*tt) 
print *,,j,tt,den=',j,tt,den 

do 40 i=l,n 

c   compute all Tshebyshev polynomial up to degree n at point tt 

call cheby(ti,n,tt) 
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term=ti(i)*f(j)*alf(j)/den*rr 
a(i)=a(i)+term 

c        print *,'j i ti(j),a(i)',j,i,ti(i),a(i) 
40      continue 
30      continue 

c print *,' a(i)= ', a 

return 
end 
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