
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1995-02-22

Architecture and protocols for a decentralized group

membership service for wide-area networks

Shukla, Shridhar B.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/24404

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36717554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NPS-EC-95-004

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Architecture and Protocols for a Decentralized Group
Membership Service for Wide-area Networks

by

Shridhar B. Shukla
David S. Neely
John Kostrivas

22 February 1995

Approved for public release; distribution is unlimited

Prepared for: National Science Foundation
Arlington, VA 22230

19950413 025

xyrio QPA

Naval Postgraduate School
Monterey, California 93943-5000

Rear Admiral T. A. Mercer
Superintendent

H. Shull
Provost

Shridhar Shukla was funded by the NSF RIA Grant CCR9309316
Approved for public release; distribution unlimited.

j^vyh-^J^
Shridhar B. Shukla

^ —
David S. Neely

Reviewed by:

MICHAEL A. MORGAN
Chairman
Department of Electrical and
Computer Engineering

&^-

Released by

PAUL J. MARTO
Dean of Research

Accession tor

HTIS GRA&I [9^
DTIC TAB D
Unannounced D
Just if i o at i on

By _r-
Distribution^"

Availability Codes

Avail SB*/«?

Bist

*

,\

«^JiSiHwS«»»*?*"-?-

>uWic reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources
"athcring and mamtaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
»flection of information, including suggestions for reducing this burden, to Washington headquarters Services. Directorate for Information Operations and Reports. 1215
reffcrson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC

*. TITLE AND SUBTITLE
Architecture and Protocols for a Decentralized Group Membership Service
for Wide-area Networks

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
February 1995

3. REPORT TYPE AND DATES COVERED
Final Report

AUTHOR(S)
Shridhar B. Shukla, David S. Neely, John Kostrivas

PERFORMING ORGANIZATION NAME(S) AND ADDRESSES)
Naval Postgraduate School
Monterey CA 93943-5000

SPONSORING/MONITORING AGENCY NAME(S) AND
ADDRESSES)

National Science Foundation, CTSE/CCR
4201 Wilson Blvd.
Arlington, VA. 22230

FUNDING NUMBERS

RJA Grant CCR9309316

8. PERFORMING ORGANIZATION
REPORT NUMBER
NPS-EC -95-004

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11 SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect Üie official policy or
Tosition of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Entities cooperating as a group become simpler to construct if they possess access to a membership service to manage and

administer the membership information of such groups. This report describes the architecture and design of a wide-area group
membership service. Unlike any known membership service, the semce is based on a completely decentralized protocol executed
by a hierarchy of servers. This hierarchy permits a clear separation between the membership service infrastructure and support for
application groups, permitting global scaleability. The membership protocol itself is executed by a core set of membership servers
identified in a group-specific manner, permitting a separate name space, membership scope and partition handling for each group.
We describe a suitable application programmer's interface and provide correctness arguments for the protocol. A working
implementation of the basic membership protocol is described.

4. SUBJECT TERMS
Group membership, multicast, decentralized, change protocols, network partitions.

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES
31

16. PRICE CODE

20. LIMITATION OF ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Sid. 239-18

TABLE OF CONTENTS

I. INTRODUCTION 3

II. MEMBERSHIP SERVICE ARCHITECTURE 5
A. COMPONENTS AND THEIR FUNCTIONS 5

1. Mservers And Member Interfaces 5

2. Failures, Partitions, And Dynamic Reformation 6

3. Change-Processing Core-Set 7

4. Lan Mserver Monitoring 7

5. Forming The Hierarchy 8

B. SUPPORT FOR APPLICATION GROUPS 8

1. Consistency 8

2. Naming 9

3. Membership Scope Control 9

4. Member Interfaces 10

5. Application Group Change Processing 10

C. APPLICATION INTERFACE WITH THE MS 10

III. PROTOCOL DESCRIPTIONS 10
A. PROTOCOL FUNCTIONS 10

1. Types Of Changes 12

a. Requests 12

h. Failures 12

c. Dynamic Reconfigurations 12

2. Ordering And Priority Of Change Processing 13

A. CHANGE PROTOCOL 14

B. CHANGE PROTOCOL WHEN COORDINATOR FAILS 14

C. PARTITION RESOLUTION PROTOCOL 15

IV. IMPLEMENTATION 17

V. CORRECTNESS ARGUMENTS 18
A. ASSUMPTIONS 18

B. TERMS AND DEFINITIONS 18

1. Change Events 18

2. Change Event Priority 19

3. Isolation 19

4. Gossip 19

5. Group View 19

a. Definition 19

b. Remarks 19

6. Group Partition 20

iii

a. Definition 20

b. Remarks 20

7. Group Membership Protocol 20

a. Definition 20

b. Remarks 20

C. REMARKS ON THE PROTOCOL STRUCTURE 21

D. CORRECTNESS ARGUMENTS 21

1. Claim 1 21

2. Proof 21

a. At the coordinator 21

b. At the non-coordinator 21

3. Claim 2 22

4. Proof 22

5. Claim 3 22

6. Proof 22

7. Theorem 23

8. Proof 23

VI. CONCLUSIONS AND FUTUREWORK 24
A. CONCLUSIONS 24

B. FUTURE WORK 24

LIST OF REFERENCES 25

INITIAL DISTRIBUTION LIST 27

IV

ARCHITECTURE AND PROTOCOLS FOR A DECENTRALIZED GROUP MEMBERSHIP

SERVICE FOR WIDE-AREA NETWORKS

Shridhar B. Shukla
David S. Neely

John Kostrivas

Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5121

February 22,1995

ABSTRACT

Entities cooperating as a group become simpler to construct if they possess access to a member-

ship service to manage and administer the membership information of such groups. This report describes the

architecture and design of a wide-area group membership service. Unlike any known membership service,

the service is based on a completely decentralized protocol executed by a hierarchy of servers. This hierar-

chy permits a clear separation between the membership service infrastructure and support for application

groups, permitting global scaleability. The membership protocol itself is executed by a core set of member-

ship servers identified in a group-specific manner, permitting a separate name space, membership scope and

partition handling for each group. We describe a suitable application programmer's interface and provide

correctness arguments for the protocol. A working implementation of the basic membership protocol is

described.

I. INTRODUCTION

Construction of distributed applications that require co-operation among a group of entities is fa-

cilitated by a variety of network-based services which provide clock synchronization, wide-area file systems,

naming and directory information, and secure remote access. Such applications are typically also required to

manage dynamic groups of entities, such as processes, devices etc., for which the membership changes due

to voluntary, as well as involuntary, actions. As such applications proliferate on a typical organization's wide

area network, access to a membership service (MS) to manage and administer the membership information

of individual groups becomes necessary. As shown in Figure 1, each group's members can access the MS

provided by membership servers (mservers) spread over an a wide area network (WAN) supporting

independent, nested and overlapped groups.

Figure 1: Membership Service and Client Application Groups

The type of membership information required depends upon the nature of the cooperation to be

achieved by the members of the client groups. Examples of membership-related information are group size,

members' identities, their geographical and organizational distribution, and a history of membership changes.

A membership service has typically been provided as an embedded component of toolkits for build-

ing distributed applications. Table 1 provides a summary and comparison of the known protocols for both

synchronous and asynchronous environments. When the maximum delay faced by a message can be guaran-

teed, the environment is called synchronous. Such a guarantee cannot be provided in asynchronous environ-

ments in which a message may be delayed arbitrarily. The Internet represents an asynchronous environment.

We note that many of the protocols listed in Table 1 make unique assumptions about the communication

environment.

The main motivation for this work is that none of the existing approaches takes the view that a

membership service is useful as an internetwork-wide service much like the name/directory services such as

the Domain Name Service or X.500. In each of the cases, the protocol lacks one or more of the basic fea-

tures of scaleability over WANs, portion of a range of membership services, and, in many cases, assumes

network properties that are not representative of today's wide-area networks.

Therefore, the MS described here, assumes a "best-effort" network such as the Internet, is scale-

able with respect to the size/distribution/number of groups, uses network-level multicasting when available,

employs a decentralized protocol with provably minimal number of phases for committing changes, and of-

fers different qualities-of-service(QoS).
Table 1: A Summary of Existing Membership Protocols

Protocol Required Network
Properties

Principle Feature A H L M N O P R S X

Araichronous Environment

Chang etal

[13]

unreliable message token site s *~■

Bruso

[14]

message diffusion version numbers, stable

storage

E E
"

HAbbadie/a/.

[15]

unreliable message virtual partitions E U S S — E S "~ S
"

Verissimo el al.

|16]

broadcast

LAN

two-phase accept s E
"

Moser el al.

[17]

ordered, reliable ordinal numbers - - - - — E — — *~
~

Riccardi el al.

[9]

unreliable message reconfiguration manager E E E E S E — — ~ —

Mishra el al.

[18]

ordered, reliable Psync & conversations - - E E - E u — S E

Auerbach etal.

|19]

multicast hardware multicast sequences - E - - u S s *~ s —

Jahanian el al.

[12]

unreliable message crown prince E E E E u — E "" s s

Goldingrto/.

[20]

unreliable message time-stamped

anti-entropy

E S S S s — S

"
s

Synchronous Environment

Cristian

[5]

bounded delay attendance

lists
- - - - S — — s E

Ezhilchehan

elal. [21]
bounded delay time-domain

multiplexing
- - - - S — — s S "~

Kim etal.

[22]

TDMAbus reception
history

- - - - s — -* s S —

Rodrigues el al.

[23]

exposed LAN
interface

transmit-with-

response
— — — — s —

"
s S

Index to Entries S: Supported, -: Not supported E: Support possible with extensions, U: Unknown
Index to Columns A: Adaptive status monitor, H: Hierarchical protocol, L scaLability to large groups, M: Multiple network support, n: Non blocking

This report describes a wide-area membership service to facilitate the creation and management of

large, widely distributed groups for which different types of membership-related information must be main-

tained. Figure 2 shows the relation of the MS protocols to TCP/IP suite of internetworking protocols.

Section II-describes the MS architecture and its discrete components, Section III defines and ex-

plains the protocols used by MS and Section IV describes the implementation of the core membership

protocol. In Section V we give a more formal description of the protocol and provide correctness argu-

ments. We conclude with Section VI.

Application and Upper-Layer
Protocol Modules

Membership Service Interface

Member Interface (Ml)

Membership Service
Module

Datagram Network Interface

IP Multicast multicast
emulator

User Datagram Protocol

Figure 2: Position of MS in the Communication Protocol Hierarchy

II. MEMBERSHIP SERVICE ARCHITECTURE

The key to a scaleable MS is a decentralized, hierarchical architecture, designed to exploit the exist-

ing physical topology of subnetworks, networks, and internetworks upon which the distributed application

process groups that the MS supports will be running. This section describes the structure and composition

of the physical hierarchy of the MS and how this architecture supports application process groups.

A. COMPONENTS AND THEIR FUNCTIONS

1. Mservers And Member Interfaces

The MS is comprised of two primary entities: membership servers (mservers) organized in a physi-

cal tree hierarchy and member interfaces (MI) that represent the leaves of the tree. The mservers are pri-

marily responsible for processing changes and providing information to the members of the physical

hierarchy as well as the application process groups using the MS. Application group processes interface with

the MS through an MI process running on each host computer. Each MI accepts requests for changes to or

information about application groups from the individual application member processes running on the par-

ticular host computer. The MI then reliably relays these requests to the LAN mserver to access the MS.

The MI receives responses from the LAN mserver and reliably propagates these responses to the application

member processes that it supports. Each MI supports numerous application groups and numerous individual

member processes from each application group.

Figure 3 illustrates an example logical hierarchy of mservers, Mis, and application group processes.

The architecture shown is a representative configuration for a small area encompassing a single institution,

such as a campus or business. The MI process remains resident on the host computer even if no applications

are running to provide quick access to the MS. The logical hierarchy shown in Figure 3 corresponds to the

physical topology of networks and computers. It shows 11 departmental LANs served by as many mservers.

The 11 mservers form 3 groups at the building level. At the next level (top) 3 mservers form a group to

serve the entire campus. This hierarchy of mserver groups forms the MS infrastructure. Figure 4 shows the

messages that are exchanged between LAN mservers, Member Interfaces and application group members.

Backbone

App
Pr

MI per host

plication {^...Application 1
recesses \m\. -Application 2
ter host W-"Application 3

Figure 3: Logical MS Hierarchy

The mservers and Mis are administratively configured into the desired physical hierarchy by a local

system administrator or cognizant authority. This configuration is expected to be semi-static, normally

changing only when additions and deletions to the physical topology are made. The system administrator

will assign appropriate names for each set of mservers at each level. If network-level multicasting is avail-

able, will join each set into a multicast group for efficient communication. The assignment of a set name and

multicast address is accomplished when the set of mservers is created and joined together, using software

calls between the MS and the kernel.

2. Failures, Partitions, And Dynamic Reformation

Mserver failures and network partitions lead to a dynamic reconfiguration of the physical structure

of the MS, with the surviving mservers and Mis automatically reforming into partitioned sets. Perceived

mserver failures represent virtual partitioning of the network into one or more partitioned subsets of the

original set of mservers. Each partitioned subset corresponds to the subtree of the physical hierarchy in a

single piece of the partition. A piece of a partition refers to all of the mservers which are still able to commu-

nicate over the non-partitioned network. Each partition of the MS reforms and continues to function, pro-

viding service to all application process groups with all members still existing in the partition. The

application process groups which span the partitioned network will experience a partition in their member-

ship. This condition will continue until the physical network partition is repaired, at which time the physical

hierarchy of mservers will either administratively or automatically be reformed to the original configuration.

Once the physical hierarchy is restored, the surviving application groups will also be reformed, as per the

QoS related to partition resolution chosen by the MS user at start up time. Mservers may detect fail-

rues/partitions of the MS by continuously monitoring other mservers in the manner described later.

LAN
m s e r v e r

Submit/ Reply Query
■ tMloHo ('•>»/ Ml Ml „..-_ .. - - r

change and Information / monitoring mOBitorlng \ c h a a g e and information
mcniagei / m t I ■ a g e e ntiti|ti \ metiagri

/ it
M I

application gronp chaagei.
Information, rrqititi, monitoring

(within a hoiT machine)

application group member process

Figure 4: Messages sent by LAN Members and Member Interfaces

3. Change-Processing Core-Set

The group of mservers at each level in the hierarchy is called a change-processing core-set, with re-

spect to a particular application group, when it is designated to be responsible for processing all membership

change requests submitted by members ofthat application group. Every such set is also responsible for en-

acting changes in the physical hierarchy immediately below it. The change processing involves reaching

agreement amongst all mservers in the core-set about the change submitted and propagating this change

back to the application or physical hierarchy group members, who are then guaranteed to have a new view

of the changed group membership.

For example, the set of mservers labeled backbone in Figure 3 is the core-set for the application 1

group, since this application group has members distributed on all LANs. The sets of mservers at lower lev-

els in the hierarchy will not process membership changes for application 1, but will submit them to the core-

set backbone, then relay the results back to the Mis. Similarly the mserver group labeled building 2 serves

application 2 (■). Also if the mserver for department 3 LAN fails, the mserver group labeled building 1 will

process the change to the physical hierarchy.

For each membership change request submitted to an mserver group, a coordinator is chosen. The

criteria for selecting the coordinator depends on the particular type of change and how it was submitted to

or detected by the mserver group. The fact that the coordinator is not a fixed member of the mserver group,

but instead varies from change to change, is a powerful feature of the MS.

4. Lan Mserver Monitoring

Due to the high bandwidth, low latency, hardware multicast capability, and limited number of Mis

to monitor, the mserver representing each LAN uses a simple polling scheme to conduct status monitoring

of the Mis on the LAN. Each MI on the LAN is successively polled with a Query message by the LAN

mserver. The MI responds with a Reply message indicating normal status. Timeouts and retries are used to

detect a non-responding MI and announce the perceived failure. Note that this monitoring emphasizes

collection of status of individual Mi's on the LAN. This is to be distinguished from the monitoring done by

IGMP which detects if there exists a member (any) on the LAN [6],

5. Forming The Hierarchy

The final organization of mservers and Mis involves forming the hierarchy of the sets of mservers

that cooperate for monitoring and change processing, with the Mis at the leaf level. As shown in Figure 3,

each mserver in the hierarchy has either a set of children mservers or Mis. All mservers and Mis also have a

parent mserver, except the mservers at the highest level of the hierarchy. Each mserver above the lowest lev-

el in the hierarchy has a dual membership in the "child-set" as well as the original core-set of mservers.

Having the parent mserver as a member of the child-set has two primary advantages. First, the par-

ent mserver is part of monitoring the child set; thus, the child-set will immediately learn of the failure of the

parent mserver by monitoring. Second, the parent mserver takes part in all change processing conducted by

the child-set; therefore, it will learn of any changes in the membership of the child-set directly. Together,

these two points ensure that "vertical monitoring" is conducted in the hierarchy. This provides the means to

ensure that a failure or partition between levels in the MS hierarchy will be detected, allowing the MS to re-

form as necessary.

B. SUPPORT FOR APPLICATION GROUPS

The MS is responsible for managing the membership of the application groups and providing ser-

vices to the application groups with features as described below.

1. Consistency

The primary service that the MS provides application groups is a consistent view of the group

membership at all members, as well as a consistent ordering of changes to the membership of the group at all

members. These consistency guarantees ensure that a group member either acquires the same consistent

view as all other members of the group eventually, or is excluded from the membership of the group. The

term "eventually" refers to the asynchronous nature of the environment, leading to delays at some sites. Us-

ing this guarantee of consistent membership at all members, the application can expect that members with

the same group view number have seen the same sequence of membership changes and have the same view

of the membership of the group. Using this knowledge, the application can decide to accept or reject mes-

sages from other application processes depending on the included group view number [11, 27]. The guaran-

tee of consistent membership can be used as the foundation upon which to build many distributed

applications.

The MS provides consistent ordering of membership changes to application groups by ensuring that

only one change is ever processed at a time in the core-set ofthat application group, and that all active mem-

ber processes eventually receive this change. The selected change is committed by all core-set mservers,

then reliably propagated to the Ms, and finally, to the distributed application member processes. The MS

provides the guarantee that an application member process either receives each revised group view or is de-

tected as failed, and excluded from the group. In this manner, all surviving application member processes

are guaranteed to have exactly the same ordering of membership changes.

2. Naming

The MS manages the names of all application groups using the MS. Application group names are

guaranteed unique within a predetermined scope. When an application group is created, the software call

from the application to the MS includes as a parameter a level in the MS physical hierarchy, under which the

application group name will be guaranteed unique. This name-scope parameter is either the actual name of

the core-set or a level number above the MI level in the physical hierarchy. For example, to guarantee an

application group name of "application 1" as unique under the scope of the backbone core-set from Figure 3,

the name backbone or the level number 2 would be used as the name-scope parameter. The name-scope

level must be at or above the core-set level for the application.

With the creation of each new application group, the name-scope parameter is checked at each lev-

el in the mserver hierarchy up to and including the name-scope level. If the name already exists, the creation

of the new group is refused, and an error code is returned to the calling application. If the name is not

found, then it is registered at the name-scope level of mservers and a successful group creation is reported to

the calling application. When new application members at distributed locations wish to join an existing ap-

plication group, a join request is submitted via the resident MI, then propagated up the hierarchy until either

an mserver is located with the application name stored or the highest level in the physical hierarchy is

reached and the application name is not located. If the desired application group name is located, the new

member is joined into the application group through the normal change-processing sequence, and a succes-

sful join is reported back to the requesting process. If the name is not located, an unsuccessful join attempt

is reported back. Through judicious use of the name-scope parameter, application names may be used freely

with little concern about duplicate name usage.

3. Membership Scope Control

An additional feature provided by the MS is the ability for an application to decide at what level in

the MS physical hierarchy to limit the scope of the application group. By providing a membership-scope pa-

rameter with the creation call for a new application group, the application guarantees that the span of the

application's membership will not exceed that of the given core-set level in the physical hierarchy. In return,

the MS is able to provide more efficient service by limiting the scope of application group name searches to

the membership-scope level and below. Instead of propagating every unsuccessful application group name

search to the highest level of the MS hierarchy, the name search will cease at the membership-scope level.

Without use of the membership-scope, it might be possible for a bottleneck to form at the "top" of the MS

hierarchy.

4. Member Interfaces

The Mi's accept application membership change and information requests from application pro-

cesses and submit these changes to the mserver hierarchy for processing. When the change or information

data is returned, the MI passes the data to the requesting member processes.

The MI, running on an individual host computer is capable of interfacing multiple application

groups, each with multiple members, with the LAN mserver and maintains a list of all application groups it is

managing as well as all member processes from these groups running on the host computer. Thus, the mem-

bership information for each application group is maintained in a decentralized, scaleable manner. When an

application member process needs to communicate with another application member process on a different

host, it submits a request for addressing information to the MI. The MI relays this information request to

the MS, which obtains the desired information from the MI managing the desired member process, and re-

lays the information back to the requesting MI and application member process.

5. Application Group Change Processing

As previously discussed, application group change processing begins with the submission of a

change request to the host MI. This request is relayed to the core-set of the application, which conducts the

mserver change-processing procedure, resulting in all core-set mservers committing the change. Each core-

set mserver then reliably relays the change directive down the hierarchy to the MI, and then to the requesting

application process. Timeouts and retries are again used to detect failures and partitions.

C. APPLICATION INTERFACE WITH THE MS

Table 2 summarizes the calls to the MS that provide membership service to the clients. In addition

to these explicitly requested actions, the MS takes appropriate actions when failures and/or partitions occur

and provides notifications to all remaining members.

HI. PROTOCOL DESCRIPTIONS

A. PROTOCOL FUNCTIONS

The basic change-processing protocol uses a modified form of the three-way handshake often seen

in unreliable networks for reliable message delivery. The coordinator initiates the change processing with a

multicast to all group mservers, collects acknowledgment (ACK) messages from all, then multicasts a final

message for all to commit the change. Timeouts and retries are used by mservers waiting to receive ACKs

10

or Commit messages from other mservers to ensure that continual progress is made toward completion of

the change. As with the monitoring scheme, if the expected reply is not received from an mserver after the

timeout period and all successive retries, then that mserver is declared failed and the failure is announced to

all other mservers in the group.

Table 2: Application Interface Calls

CATEGORY

create_group (char *group_name, char «properties)

wtjgroupjiitributes (char «group, char «properties, _):

NAME OF CALL
Creates and registers wilh the mservers a group with the given name
with null membership. Permits the creation of a subgroup.

Sets the attributes of a group such as name-scope, membershif

scope etc. _^___

delete_group (char «groupjaroe, -): Cleans up a group, forcing all participating members to leave.

se«jnember_attributes (char «group, char «address, char
«properties, _)

split_group (char «parent_group, char «chBd_l, char «chfld_2, -)

mergejgroup (char «group_l, char *group_2, char «new_group,
...)
bmember (char «address, char «group, view «viewid, _)

get_view (char «group, _)

get_B*t (char 'group, char «properties, view «viewid, -)

2 getjgroups («it level, char «address, char «properties, -):

getmemberjutributes (char «group, char 'address, -.)

DESCRIPTION

Sets the attributes for the specified member of a group such as
access rights.

Creates two subgroups, by splitingthe parent group.

Creates a new group by merging two old groups.

Returns the membership status of a member for a specific group and
view.

Returns the current view soope of a group as a membership list

Returns the members of a group with certain properties fixm a view.

Get a list of groups at a specified level.

Gets the properties for the specified member.

get_jgroup_anributes (char «group, -) Get the properties for the specified group.

getjsites (char *group_Bst, _) Get a list of sites on which members of specified groups exist

get_gsites (char «group, char *member_attributes, _)

sendjnsg (char «group, char *member_attributes, _)

jojnjrroup (char *group_name, char «mv_address, _)

Get a list of group sites on which the specified group has members
with specified attributes.

Send a messge to members of a group with given attributes.

Joins a group if it exists, else creates one. Permits a new incarnation
to join as an independent member.

leave_group (char *group_name, char «address, _) Forces a member with given address to leavePermits leaving
groups with certain attributes.

Index for Categories: l:Group management, 2: Group information, 3: Communication, 4: Membership

The use of timeouts and retries on change-processing messages creates a secondary but essential

method of detecting mserver failures. Since mserver monitoring uses unicast messages and change-

processing uses multicasts, it is possible that a network partition could occur that affected only multicast

message delivery between one or more mservers. The inability of mservers to communicate all necessary

data creates a virtual partition between the mservers. Without the use of this secondary detection method, it

is possible that one or more mservers could be functioning perfectly well, sending the required monitoring

messages, but unable to respond to change-processing messages, thus creating a deadlock situation. The

timeout and retries- on change-processing messages ensures that an mserver unable to communicate will be

11

detected failed, and the remaining mservers will be able to complete the change in a timely manner. In the

event of a coordinator failure during the change processing, a distributed election is conducted and a new

coordinator is elected to continue the original change. This is described later.

1. Types Of Changes

There are three primary types of membership changes processed by a group of mservers: requests,

failures, and dynamic reconfigurations.

a. Requests

Requests are voluntary, planned membership changes, submitted to the group for process-

ing by an application process or system administrator. Change requests for the MS physical hierarchy may

be to Join to a core set, Leave a core set, Split a core set to form two new ones, Merge two core sets to

form one, Addjxtrent to add a parent mserver to the core set and Deljparent to remove a parent from the

core set. Physical change requests are multicast to a specific group in the hierarchy by a system configura-

tion call, usually invoked by a system administrator during manual configuration of the MS hierarchy.

Application group change requests are submitted to the resident MI process on the host computer by the ap-

plication user. The MI then propagates the request to the group mserver above it in the hierarchy. The re-

ceiving group mserver queues the request to be processed when other higher priority changes have

completed processing.

b. Failures

The second primary type of membership changes are detected failures. These detected

failures may be the result of the actual failure of an mserver, MI, or application process, or the host machines

upon which they are running. Additionally, network partitions will be perceived as failures of the partitioned

mservers, and will lead to the processing of failures and reformation of the partitioned subsets of mservers

and subgroups of application processes. The partitioning of the MS physical hierarchy leads to a partitioning

of the application groups residing on this hierarchy. The MS automatically reforms both the physical hierar-

chy and the supported application groups in the event of a network partition. Failures detected or received

by a group mserver are queued and processed according to their priority. Multiple failures queued at a

group mserver are processed all at once, in a "batched" manner. This greatly reduces the time required to

reform physical core-sets or application groups.

c Dynamic Reconfigurations

The final type of changes are the result of automatic actions taken by core-sets of mserv-

ers. This type of dynamic reconfiguration occurs when new members join an application group, causing the

span of the application group to increase beyond that presently covered by the current application core-set.

In this event, the application core-set must be moved from the present level in the physical hierarchy to a

higher level covering the new span of the application. This new level must be at or below the name-scope

12

and membership-scope levels of the application group, if these levels were designated when the application

group was created. The MS automatically moves the application core-set to the new level. In a similar

manner, the departure of application member processes may lead to a reduced span of the application. An

application core-set must have at least two mservers with application members in their subtrees; otherwise,

there is no need to have the application core-set at this level in the hierarchy. If the application core-set is

reduced to only one mserver supporting an application, the application core-set will automatically move

down to the child-set of this mserver.

The repositioning of an application core-set is initiated by the set of mservers detecting the

need to move the application core-set. Messages are exchanged between the old and new core-sets and a

change involving the join or departure of the instigating application member is processed along with the

change in application core-set level by both core-sets. After committing the changes, the internal state of all

mservers in both core-sets is changed to reflect the new application core-set level.

2. Ordering And Priority Of Change Processing

A key issue associated with processing membership changes is the ordering of changes committed

by the core-set. As previously described, to guarantee consistent ordering of membership changes at all

mservers in the group, only one change may be committed at a time. However, it is possible that more than

one membership change may be submitted to or detected by the group at one time. Each receiving or de-

tecting mserver in the group will attempt to become the group coordinator and initiate the change it received

or detected. These multiple change initiation attempts are referred to as "virtually simultaneous", since they

have all been initiated before the group has reached a consistent and uniform decision on the current change

to process.

To resolve these virtually simultaneous changes and select only one change to be processed, a

priority scheme is used. This scheme uses the type of change and the unique group id (rank) of the subject of

the change to decide which change will be processed by the group. The subject of a change refers to the

member whose membership status has changed. The highest priority is given to any current change being

processed by the group; that is, a change which is in progress at an mserver (i.e. an ack to the initiate has

been sent). It is essential that such a change progresses to completion at all group mservers; otherwise, the

possibility of inconsistent membership views exists if some mservers commit the change while others do not.

The next lower priority is that physical hierarchy changes always have priority over application group

changes. This is because it is important to ensure a complete and whole MS infrastructure before attempting

to change the membership of an application group using the MS. Once these decisions have been made, the

priority of the change is determined by the rank or age of the subject of the change in the group. The only

exceptions to this rule are for the failure of the coordinator of the current change or a Join. The failure of

the coordinator of a change in progress, has priority over otherwise equal status changes. A newly joining

13

mserver or member will not have an associated rank until after the join is completed. For this reason, the

network address of the joining member is used instead of a rank number to decide priority among Joins.

The final rule used to determine the priority of virtually simultaneous changes is applicable when changes are

submitted to the core-set by different application groups with identical subject rankings in each group. In

this case, a tie-breaker is needed, and the ranks of the coordinators in the group are used to decide which

change will be processed.

A. CHANGE PROTOCOL

The basic change-processing protocol consists of two phases: the Initiate and Commit phases. A

timeline for this protocol is shown in Figure 5. In the Initiate phase, the coordinator multicasts an Initiate

message to all mservers in the group. The group mservers respond with ACKs, acknowledging reception of

the Initiate message. When the coordinator has received all the acknowledgments, the second phase of the

protocol begins with the coordinator sending the Commit message. This message indicates to members of

the group that is safe to commit the change. Phase I is achieved through a reliable schema. The coordinator

sends the Initiate message a predetermined number of times if one or more group mservers do not reply. Af-

ter that, it assumes that the mserver(s) that did not reply have failed.

B. CHANGE PROTOCOL WHEN COORDINATOR FAILS

The two phase protocol is not sufficient in case coordinator of a change fails while processing a

change. As shown by Riccardi and Birman [9], a three phase protocol is required. After the coordinator of

the current change fails, and its failure is detected by a member of the group, a three phase protocol is initi-

ated, with the election of the new coordinator as the first phase. Figure 6(a) illustrates the three phase elec-

tion and change processing protocol. In the election phase only those members that have finished phase one

of the original change protocol participate.

Phase I Phase II
Initiate Commit

coordinator—Q- oordinator—Q- ^ . Q >
1^ //7 ^L^

core-set \\. / / vV
mservers ^-A* ^->

* / *_>
time

Figure 5: Basic Two Phase Change Protocol

When the new coordinator is elected, it knows the status of each member with respect to the

change, due to a status broadcast during the election phase. If at least one mserver has finished the change

(committed) it means that the old (and detected failed) coordinator had already collected all ACKs and had

started the Commit phase. So the new coordinator, knowing that phase one was completed, can continue

14

with the final phase of the change, instead of restarting phase one. This compressed three phase protocol is

shown in Figure 6(b).
Phase I Phase II Phase III Phase I

Election Initiate Commit EUctimm
detecto :::::: \&t \ w \ :■
«server, Igg^ I / S~^

(a) (b)

Figure 6: Three Phase (Election and Change) and Compressed Three Phase Protocol

A simplified algorithm for the two phase and three phase algorithm is shown in Figure 7. Only the

important arguments are shown. All sends and receives of messages are done with timeouts. This way the

protocol does not block and takes appropriate actions in case of no response. In line 5, the term "reliably"

implies that a message is sent and specific answers are expected from all members in a specific time interval.

If some or all of them do not reply, a number of retries are attempted. After the retries and the last timeout

expire, the sender assumes the non responding mservers to have failed. In line 11, the same function is called

recursively to process the failure(s) of the members) that did not reply. In line 8, the second phase is ex-

ecuted by sending a commit message. Then the coordinator has to make the change to its internal state.

Lines 13 through 25 are devoted to the non coordinator. Since this code is executed everywhere, it contains

both cases (coordinator, non-coordinator), and the if statement in line 3 decides which part of the code

should execute.

Lines 17 through 25 form the three phase protocol in case the coordinator of the current change

fails. Lines 17 through 21 refer to the member(s) that detected the failure of the current coordinator. Lines

22 through 25 refer to the member(s) still not detect the coordinator's failure but wait for a Commit mes-

sage. Both sides triggered by the coord Jail message, start collecting status of the rest of the members.

Then in lines 20 and 24 an election of a new coordinator is done. The lowest rank among the survived and

responded mservers gets elected and all members go to process the new (and of higher priority) change. If

the current coordinator does not fail, all members commit the change, updating their internal state, in line 27.

C. PARTITION RESOLUTION PROTOCOL

As part of the processing of multiple failures caused by a network partition, a group is often parti-

tioned into two or more subsets. After the membership changes in each subset stabilize, these sub-core-sets

attempt to reform into the original group by sending messages to the other subsets of mservers. Since the

sub-core-sets still share the same multicast address, once the network partition is mended, the other sub-

core-sets receive these reformation messages. Upon learning of the existence of a sub-group from the origi-

nal group, the partitioned subsets of mservers reform into the original group automatically. In addition to

reforming the physical group, all application groups which were partitioned and are still functioning are also

15

reformed. The reformation process for both physical core-sets and application groups merges the currently

existing membership of each, taking the union of all subsets or subgroups, and making the reformed group

or application group membership the current view. In the event that the network partition is not repaired in

a predetermined period of time, the partitioned subsets of mservers will abandon their attempts to reform the

original group, and will create a new multicast group with only the current group mserver included.
1. fmembeship change protocol*/
2. processjchange (type of change, subject)
3. ifcoordhator
4. r start phase IV
5. send agree to group reiably
6. receive acks
7. put members that dd not reply, on fai ist
8. send commit message
9. commit the change
10. if fai 1st is not empty
11. prceess_change (fal, first h fai ist)
12.
13. else Anon-coordinator V
14. receive agree msg
15. sendacktocoordriator
16. wait for commit
17. if commit is not received
18. send coord_fai msg broadcasting status
19. colectstatus from other members
20. determine new coordriator
21. process_change(fai,oldcoordfiator)
22. else if coord fai msg is received
23. broadcast own status and colectstatus from other members
24. determine new coordnator
25. process_charige(fai,c«coordhator)
26. else /'commitreceivedV
27. commit change

Figure 7: The Membership change protocol (two phase - three phase)

If the group partitions, the application groups that span the partition, also experience a virtual parti-

tion. These partitions are handled using the following two rules.

• Keep alive any partitioned subgroups that meet a certain condition specified by the user. Any subgroups
which do not meet the condition are terminated.

• Partitioned subgroups attempt to find and merge with other partitioned subgroups that have a certain
user-specified property.

By combining these two rules, every possible combination of partition handling methods can be

produced. The first rule determines who survives, and the second rule determines who will attempt to

merge. Each rule can also combine multiple parameters to provide very specific and flexible methods of

handling partitions. For example, all subgroups larger than a size of three which contain a particular member

type could be permitted to survive and merge with subgroups larger than half of the original group size and

containing another particular member type. Note that all partitions of the group necessarily survive network

partitions.

16

In the event that the partitions of mservers are unable to restore communications, the reformed sub-

sets are converted to completely independent core-sets. Since all core-sets of mservers must have a unique

name and multicast address, some method must be used to automatically obtain these unique values. To ob-

tain a unique name, each sub-group appends a unique suffix to the original group name. This suffix value

must be automatically derived by each partitioned subset of mservers independently, and with a guaranteed

unique value for all partitioned subsets. The most readily available attribute that all subsets can use to obtain

a guaranteed unique name is the original group identity (gid) of a significant mserver remaining in each parti-

tion. The lowest mserver gid of the mservers remaining in each partition is appended to the original group

name. In this manner, all partitioned core-sets are guaranteed a unique group name. However, all parti-

tioned core-sets are still easily identifiable as subsets of the original group, which simplifies the task of

manually reconfiguring the physical hierarchy when the network is repaired. Once a unique name is obtained,

traffic on the same multicast address can be easily filtered by the individual sub-core-sets.

IV. IMPLEMENTATION

The use of multicast message delivery is essential to the efficient and scaleable operation of an MS.

In network environments where IP multicast is not available [7], the MS must use point-to-point messages.

So a multicast emulator was implemented to provide with the same interface to mservers running either in

an IP-multicast-capable or a unicast environment. Figure 8 shows how the mcaster is embedded in the com-

munications among mservers with IP multicast capability and unicast only capability. Each mserver has two

sockets. One of them is unicast dedicated to monitoring and the other can be either a multicast or a unicast if

IP multicast is not available on the LAN. If this socket is multicast mserver uses pure IP multicasting to

send and receive group messages. If it is unicast, the mserver communicates with the group through mcaster.

Figure 8 shows the two cases where the sender is on a multicast and on a unicast capable host.

("I multicast socket

O unicast socket

: group message
: unicast retransimission of group message

^ : multicast retransmission of group message
>: monitor message

*•—-^ : mcaster specific message

Figure 8: Communication Among Mservers

17

The 2-phase and three-phase membership change protocol described earlier, has been implemented

and tested over a campus WAN of IP-multicast and non-multicast LANs.

V. CORRECTNESS ARGUMENTS

In this section we present the correctness arguments to show that the structure of the protocol and

the actions it takes at each mserver lead to the desired attributes of the service itself.

The focus of the argument is on a core set of mservers as a group and refer to individual mservers

as members of the group. It is shown that changes to the membership of this group are made to in order to

maintain consistency of the membership information. Application group membership consistency can be ar-

gued about in an identical manner. The assumptions made and the terms used and their specific implications

in the correctness arguments are described first. This is followed by the correctness criteria and a summary

of the actions that the protocol takes to maintain the membership knowledge accordingly. Finally, key state-

ments about different aspects of the protocol are proved.

A. ASSUMPTIONS

As described previously, an asynchronous communication environment is assumed to exist, provid-

ing an unreliable message delivery capability with an unbounded delay, as in the present best-effort Internet.

Thus, network failures that include dropped messages and network partitions are permitted. All member fail-

ures are assumed to be crash or fail-stop [5, 9, 10, 11]. In such conditions, failures can only be perceived,

and both actual member failures and network partitions lead to perceived failures of the members. For this

reason, every perceived failure is processed as an event that partitions the group. Partitions of the member-

ship of a group are assumed to be acceptable to the user of the membership service, who may make QoS

selections to determine how partitioned groups will continue to function, as described in earlier chapters.

Unlike many other membership protocols, majority-based decisions are not used by this MS to ensure that

only a single partition survives; instead, complete agreement is required among all surviving members that

can communicate, leading to the possibility of separate, functioning partitions of any size. Continuous

changes to the membership are allowed, however, the changes are committed one at a time, and with a spe-

cific order in each partition.

B. TERMS AND DEFINITIONS

The specific terms and implications of their use in the correctness arguments described later are

listed below.

1. Change Events

The events that cause a change in the membership are: explicit join and leave requests by members,

perception of failure by the monitoring of members by other members, and suspicion of failures resulting

from member or network failures which lead to a lack of response during change processing.

18

2. Change Event Priority

Every change event has an associated priority to enable ordering of virtually simultaneous changes.

Failures have a higher priority than voluntary joins or departures. Priority of a failure or departure event is

the rank, or seniority, of the failed member in the group. The most senior member always has a rank of 0.

When two or more members initiate a change simultaneously, the coordinator initiating the higher priority

change, as determined by the rank of the subject of the change, prevails. In virtually simultaneous joins, the

subjects do not yet have a group rank, so the network address of each subject is used in place of the rank.

The subject with the lower network address will be interpreted as having a higher temporary rank, and there-

fore will have a higher priority, joining the group first.

3. Isolation

A member that perceives another member as faulty ceases all communication with that faulty mem-

ber. This leads to the member perceived as faulty also determining that the other member is faulty, since no

communications are received.

4. Gossip

A member that isolates another member gossips about the isolation in the subsequent communica-

tion it has with every other group member. Thus, in the absence of any other failures, a multicast following

an isolation leads to the whole group isolating the member that was perceived faulty by the sender of the

multicast.

5. Group View

This term denotes the ordered membership list maintained by each member mt, and is denoted as

Viewx(w), where x denotes the view number.

a. Definition

The group view at a member is the set of members that are perceived to be part of the

group. It is ordered with respect to the seniority of members in the group and has an integer, called a view

number, associated with it.

b. Remarks

Every membership change alters the number of members in the view at a member and

leads to the installation of a new view identified by the next higher view number. The number of members in

the group may change by more than one in a single view change The rank of a member denotes its seniority

in the group, with the most senior member having rank 0. Identical views imply identical membership as

well as ranks.

19

6. Group Partition

Let G denote the set of all possible potential and current members of a group. A partition P of G is

defined below.

a. Definition

P is a subset of the all members' set G, such that V/w,, mj € P, if View//»,) and View//»,)
are defined, then V/wt € View//».): /wt € View//»,.) ** mk € View//»,), and all members have the same
rank in the two views.

b. Remarks

The current view associated with partition P is denoted Viewp, and the partition contain-

ing mi is denoted P(/»,). Thus, all members in a partition must have identical views. However, it is possible

that there exists an mk outside a partition, but still in every member's view for that partition. Such partitions

are called unstable partitions. The MS protocol treats such a partition as legal, and eventually removes mk

from the views of all members of the partition. When no such mk exists for a partition, the partition is called

stable. Both, perceived network and member failures, lead to the creation of group partitions in asynchro-

nous environments.

7. Group Membership Protocol

Using the definitions of the terms above, a protocol that solves the Group Membership Problem

(GMP) is defined as below.

a. Definition

A protocol solves the GMP correctly if every change event results in group partitions

eventually.

b. Remarks

The above definition of a correct solution of the GMP requires it to satisfy distinct proper-

ties corresponding to the underlined conditions in the definition above.

• El This property, arising from the condition of every, requires that a change event observed by a member
is processed despite other virtually simultaneous change events and failures during protocol execution,
including that of the coordinator. The only situation in which a change event is not processed is in case of
catastrophic occurrences in which all the members with knowledge of the change event suffer real failures.

• E2 This property, arising from the condition of eventually, permits the processing of a change event to be
suspended temporarily, however, it requires that the resulting view is always installed at all members of the
partition before the change event occurred and after only a finite number of changes are allowed to take
place.

• GP This property, arising from the condition of group partitions, implies identical views at all members of
each partition. As per the protocol described, all partitions resulting from change processing always
become stable.

20

Requirements imposed by the El and E2 properties satisfy the condition commonly known as live-

ness in distributed systems and those imposed by the GP property satisfy safety [5, 24, 25]. Thus, the

uniqueness of views and identical ordering of changes at all operational members is guaranteed by GP.

C. REMARKS ON THE PROTOCOL STRUCTURE

Unless specified otherwise, the term failure is assumed to imply a perceived member failure that

may have been caused by either a network failure or a member's failure. Any of the members may initiate a

change when it perceives a change according to the change events described earlier. The change initiator is

called the coordinator for that change and carries out the membership change protocol of Figure 7. The

non-coordinator's actions consist of sending the ACK message and committing the change. Due to the possi-

bility of other changes occurring during a change processing, both the coordinator and non-coordinators

must take additional actions. Depending upon the message received by the coordinator as it collects the

ACKs, it switches to a higher priority change, enters an election, or delays the change it is coordinating due

to a previous change that may not yet have completed.

D. CORRECTNESS ARGUMENTS

Based on the protocol detailed description given earlier, a proof is presented that shows that the

MS protocol has all the properties as identified above for a correct solution to the GMP. Also shown is that

a more refined solution to the GMP defined earlier by Ricciardi and Birman [9] is possible.

1. Claim 1

Change event processing always completes at both the coordinator and the non-coordinator ex-

cept when all members, including the coordinator, with knowledge of the change fail.

2. Proof

Consider a change event changefsubject, coordinator) initiated in P.

a. At The Coordinator

Although the coordinator makes multiple attempts to deliver the Initiate message to all

perceived members of P, it does not require a predetermined number of them to respond before it sends a

Commit message. If the coordinator switches to a higher priority change before it sends a Commit message,

the information about the old change is saved. The old change is reinitiated by the coordinator after all high-

er priority changes complete.

b. At The Non-Coordinator

The non-coordinators waiting for the Commit of the lower priority change, switch to the

higher priority change, when the corresponding Initiate is received.

Ifthe coordinator fails, at least one member times out on the Commit message and starts

an election. The highest rank member with the change active is elected to resume the change. The fact that

21

the election is conducted among those with knowledge of the change ensures that the change completes

even if the coordinator and the only members to have committed the change fail. This takes care of the in-

visible commits described by Ricciardi and Birman [9],

3. Claim 2

In any partition, either only one change event proceeds to the commit phase, or members reaching

the commit phase for different change events form separate partitions.

4. Proof

Initially, all members have identical views of the membership (definition of a partition). In the set

of all potential change events, there exists a unique priority order due to the uniqueness of ranks, which or-

der failures and departures, and network-level addresses, which order joins. This permits every member re-

ceiving multiple Initiate messages before receiving any Commit message to switch to the highest priority

change that will install the next view. Overlapping of Initiate messages to install successive views with dif-

ferent view numbers is not possible, because every member accepts only the highest priority Initiate to es-

tablish the current change.

Suppose a member receives a Commit message for the current change that will change the view

number from x to x+I. Suppose this mserver then receives a higher priority change that also corresponds to

a view number change from x to x+I. It is guaranteed that the coordinator sending the higher priority Initi-

ate appears in the gossip accompanying the received Commit message. This happens because the coordina-

tor of the lower priority change will have timed out on the coordinator for the higher priority change and

isolated it before generating a Commit message. This ensures further partitioning.

5. Claim 3

If the coordinator fails after sending the commit message, a two-phase protocol consisting of an

election followed by a commit can solve the group membership problem correctly.

6. Proof

Begin by proving the contrapositive statement:

A two-phase protocol consisting of an election followed by a commit cannot solve the GMP cor-

rectly if the coordinator fails before sending the commit.

If the coordinator fails before sending the Commit message, it is possible that one of the members

has not yet received the Initiate message for the change. This member would respond in the election with a

Coord-Fail message that announces that it is not aware of the change for which the election has been

started. This member must receive an Initiate message before it can commit the change for which the

coordinator failed. If the Coord-Fail message is used to start the change in place of a separate Initiate

22

message, and only a Commit message is sent to complete the change, then the GP property can be violated,

as shown in the example below.

Consider a partition consisting of members mt, mp m„ Ca, and Cb. Let Ca initiate change "a" by

multicasting Initiatea, which is received only by mi due to network failures. Ca fails immediately after send-

ing Initiate^ and this failure is perceived by /»,, which then starts an election by multicasting Coord_Faila.

m and mk participate in the election, but Cb does not because it has failed. However, before failing, Cb starts

another higher priority change by multicasting Initiate,,, which reaches only mj due to network failures.

Since change "b" is a higher priority change, m] drops change "a" as the current change. At this point, ms

perceives Cb failed and starts an election by multicasting Coord_Failb.

Throughout this time, mi waits to hear Ct's response to the election for change "a", which will not

arrive due to Q's failure before Coord Faila reaches it. Eventually, m, times out in the election, determines

that it must be the winner, and assumes the responsibility for completing change "a". Using the compressed

3-phase protocol of Figure 6(b), m, skips the Initiate^ and commits change "a" and multicasts Commit\ to

the group with gossip about Q's isolation. If the Commita reaches mi and mk after they have switched to

change "b" due to the Coord Failb message, they will quietly discard the Commita message due to its lower

priority. Thus, mi will have committed change "a", whereas mj and mk will never commit it. This inconsis-

tency violates the GP property and makes the use of a two-phase protocol incorrect in this situation. Thus,

the contrapositive statement is proved. This will not happen if mt used all the three phases.

The contrapositive statement proves Claim 3 above. It should be noted that the failure of the coor-

dinator after sending the Commit message with simultaneous failures of all members that receive the Commit

message is equivalent to the coordinator failing before sending the Commit message. It is not possible to

differentiate between these two situations, thus the change must be completed in three phases. In the proto-

col described in this report, the three phases are the broadcast election, initiate, and commit phases. Thus,

the elected coordinator is required to complete the change with a Commit message if some member that had

committed the change participates in the election, permitting a two-phase processing of the coordinator fail-

ure. Otherwise, the elected coordinator simply reinitiates the change, providing a three-phase processing of

the original change.

7. Theorem

The proposed group membership protocol is safe and live.

8. Proof

The liveness properties El and E2 follow directly from Claim 1. The safety GP property follows

from Claim 2 and 3.

23

VL CONCLUSIONS AND FUTUREWORK

A. CONCLUSIONS

This report presented a globally scaleable, fully decentralized group membership service which pro-

vides the framework for distributed applications of any size and distribution. A complete description of the

architectural design and protocol specifications was presented, and a complete implementation of the basic

membership is described.

The most significant contribution of the group membership service described herein is the definition

of the hierarchy and associated functions. The MS provides a consistent suite of services to client applica-

tions distributed on any scale, from a single LAN to the worldwide internetwork. No other membership pro-

tocol or service provides this capability. Other noteworthy contributions include the decentralized and

efficient nature of the MS, the concept of providing numerous user-selectable Quality of Service options to

tailor the MS to the needs of each client application and a programmer's interface permitting flexible access

to the membership service.

B. FUTURE WORK

Although a great deal of work was accomplished in the design and protocol implementation for the

MS described in this report, much more work remains to be done. First, to demonstrate that the MS is truly

scaleable to global proportions, a working implementation of the complete MS must be developed and in-

stalled on progressively larger scales. Second, complete performance analysis of the operation, overhead,

network constraints, service latency, and functionality of the MS must be accomplished. Third, a complete

formal specification of the protocols used by the MS must be accomplished, with a reachability analysis con-

ducted to demonstrate formally correct operation. Finally, the MS must be extended to take advantage of

the reliable, high-speed networks with newer network-level multicasting options, which are currently being

deployed.

24

LIST OF REFERENCES

1. K. P. Birman, "The process group approach to reliable distributed computing,"
Communications of the ACM, no. 12, vol. 36, December 1993.

2. F. Cristian, R. Dancey, and J. Dehn, "Fault-tolerance in the advanced automation system," The
20th International Symposium on Fault-tolerant Computing, pp. 6-17, June 1990.

3' L .L' Peterson> N- Buchholz, and R. D. Schlichting, "Preserving and using context information
in interprocess communication," ACM Transactions on Computer Systems, vol. 7, no. 3, pp.
217-246, August 1989.

4. D. Powell, M. Chereque, D. Drackley, "Fault-tolerance in Delta-4," Operating Systems Review,
vol. 25, no. 2, pp. 122-125, April 1991.

5. F. Cristian, "Agreeing on who is present and who is absent in a synchronous distributed
system," Proceedings of the 18th International Conference on Fault Tolerant Computing,
Tokyo, Japan, pp. 206-211, 1988.

6. S. Deering, "Host extensions for IP Multicasting,"Technical Report De89, Internet, Network
Working Group, RFC 1112, August 1989.

7. S. Deering,"Multicast routing in a Datagram Internetwork", PhD thesis, Stanford University,
December 1991.

8. S. Zabele and R. Braudes, "Requirements for multicast protocols," Internet, Network Working
Group, RFC 1458, May 1993.

9. A. M. Ricciardi and K. P. Birman, "Using process groups to implement failure detection in
asynchronous environments," ACM Symposium on Principles of Distributed Computing,
Montreal, Quebec, Canada, pp. 341-353, August 1991. Also available as TR91-1188, Dept. of
Computer Science, Cornell University.

10. R. D. Schlichting and F. Schneider, "Fail-stop processors: an approach to designing
fault-tolerant computing systems," ACM Transactions on Computer Systems, vol. 1, no. 3, pp.
222-238, August 1983.

11. K. P. Birman and T. A. Joseph, "Reliable communications in the presence of failures," ACM
Transactions on Computer Systems, vol. 5, no. 1, pp. 47-76, February 1987.

12. F. Jahanian and W. Moran Jr., "Strong, weak and hybrid group membership," Proceedings of
the Second Workshop on the Management of Replicated Data, Monterey, California, pp. 34-38,
November 1992. Also available as Technical Report RC 18040 (79173) 5/28/92, IBM
Research Division, T. J. Watson Research Center, 1992.

13. J. M. Chang and N. F. Maxemchuk, "Reliable broadcast protocol," ACM Transactions on
Computer Systems, vol. 2, no. 3, pp. 251-273, August 1984.

14. S. A. Bruso, "A failure detection and notification protocol for distributed computing systems,"
Proceedings of the 5th International Conference on Distributed Computing Systems, pp.
116-123, May 1985.

15. A. El Abbadi, D. Skeen, and F. Cristian, "An efficient fault-tolerant protocol for replicated data
management," Proceedings of the 4th ACM Symposium on Principles of Database Systems, pp.
215-229, 1985.

25

16. P. Verissimo and J. A. Marques, "Reliable broadcast for fault-tolerance on local computer
networks," Symposium on Reliable Distributed Systems, pp. 54-63, October 1990.

17. L. E. Moser, P. M. Melliar-Smith, and V. Agrawala, "Membership algorithm for asynchronous
distributed systems," Proceedings of the 11th International Conference on Distributed
Computing Systems, pp. 480-488, 1991.

18. S. Mishra, L. L. Peterson, and R. D. Schlichting, "Consul: A communication substrate for
fault-tolerant distributed programs," Technical Report TR 91-32, Department of Computer
Science, University of Arizona, 1991

19. J. Auerbach, M. Gopal, M. Kaplan, and S. Kutten, "Multicast group membership management
in high speed wide area networks," Proceedings of the 11th International Conference on
Distributed Computing Systems, pp. 231-238, 1991.

20. R. A. Golding and D. D. E. Long, "The performance of weak-consistency replication
protocols," Technical Report ucsc-crl-92-30, Department of Computer Science, University of
California at Santa Cruz, July 1992.

21. P. D. Ezhilselvan and R. de Lemos, "A robust group membership algorithm for distributed
real-time systems," Proceedings of the Real-Time Systems Symposium, pp. 173-179, 1990.

22. K. H. Kim, H. Kopetz, K. Mori, E. H. Shokri, and G. Gruensteidl, "An efficient decentralized
approach to processor-group membership maintenance in real-time LAN systems: The
PRHB/ED scheme," Symposium on Reliable Distributed Systems, pp. 74-83, 1992.

23. L. Rodrigues, P. Verissimo, and J. Rufino, "A low-level processor group membership protocol
for LANs," Technical Report Oct. 1992, Technical University of Lisbon, Portugal, INESC,

1992.

24. J. Misra and K. M. Chandy, Parallel Program Design - A Foundation, Addison- Wesley, New
York, New York, 1989.

25. G. Andrews, Concurrent Programming - Principles and Practice, Benjamin/ Cummings,
Redwood City, California, 1991.

26. D. Comer and D. Stevens, Internetworking with TCP/IP, Vol. I: Principles, Protocols, and
Architecture, 2nd edition, Prentice Hall, Englewood Cliffs, New Jersey, 1991.

27. K. Birman, A. Schiper and P. Stephenson, "Lightweight Causal and Atomic Group Multicast",
ACM Transactions on Computer Systems, pp. 272-314, 1991.

26

INITIAL DISTRIBUTION LIST
1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

2. Dudley Knox Library, Code 052 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Chairman, Code EC 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943

4. National Science Foundation ' 2
CISE/CCR
4201, Wilson Blvd.
Arlington, VA 22230

5. Professor Shridhar B. Shukla, Code EC/Sh 10
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943

6. LT David S. Neely !
P O Box 63
Arnold, California 95223-0063

7. LTJG John Kostrivas 1
310, Hatten Rd.
Seaside, California 93955

27

