
Calhoun: The NPS Institutional Archive

Reports and Technical Reports All Technical Reports Collection

2012-02

Runtime monitoring and verification of

systems with hidden information

Drusinsky, Doron

Monterey, California. Naval Postgraduate School, Department of Computer Science

http://hdl.handle.net/10945/24397

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36717547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NPS-CS-12-001

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

 Approved for public release; distribution is unlimited

Prepared for: Defense Threat Reduction Agency (DTRA) -

8725 John J Kingman Rd., Stop 6201 (RD-BAT), Fort Belvoir

VA 22060-6201

RUNTIME MONITORING AND VERIFICATION OF

SYSTEMS WITH HIDDEN INFORMATION

 by

Doron Drusinsky

February 2012

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL

Monterey, California 93943-5000

Daniel T. Oliver Leonard A. Ferrari

President Executive Vice President and

 Provost

The report entitled “Runtime Monitoring and Verification of Systems with Hidden Information”

was prepared for and funded by the Defense Threat Reduction Agency (DTRA).

Further distribution of all or part of this report is authorized.

This report was prepared by:

Doron Drusinsky

Associate Professor

Department of Computer Science

Reviewed by:

Peter Denning

Chairman

Department of Computer Science

Released by:

Douglas Fouts

Interim Vice President and Dean of Research

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and

Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person

shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN

YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE

February 2012
2. REPORT TYPE
Technical Report

3. DATES COVERED (From - To)
 8 August 2011 – 7 August. 2012

4. TITLE AND SUBTITLE

Runtime Monitoring and Verification of Systems with Hidden

Information

5a. CONTRACT NUMBER

11-2338M

 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Doron Drusinsky

5d. PROJECT NUMBER

R6DA1

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

1411 Cunningham Road

Monterey, CA 93943

8. PERFORMING ORGANIZATION

REPORT NUMBER

NPS-CS-12-001

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S

ACRONYM(S)
Defense Threat Reduction Agency, 8725 John J Kingman Rd., Stop

6201, Fort Belvoir VA 22060-6201

11. SPONSOR/MONITOR’S REPORT

 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES
The views expressed in this report are those of the author and do not reflect the official policy or position of

the Department of Defense or the U.S. Government.

14. ABSTRACT

This paper describes a technique for Run-time Monitoring (RM) and Runtime Verification (RV) of systems with invisible

events and data artifacts. Our approach combines well-known Hidden Markov Model (HMM) techniques for learning and

subsequent identification of hidden artifacts, with run-time monitoring of probabilistic formal specifications. The proposed

approach entails a process in which the end-user first develops and validates deterministic formal specification assertions,

s/he then identifies hidden artifacts in those assertions. Those artifacts induce the state set of the identifying HMM. HMM

parameters are learned using standard frequency analysis techniques. In the verification or monitoring phase, the system

emits visible events and data symbols, used by the HMM to deduce invisible events and data symbols, and sequences

thereof; both types of symbols are then used by a probabilistic formal specification assertion to monitor or verify the

system.

15. SUBJECT TERMS
Runtime verification, Hidden data, Hidden Markov models, Formal specifications

16. SECURITY CLASSIFICATION OF:

17.

LIMITATION

OF

ABSTRACT

18.

NUMBER

OF

PAGES

19a. NAME OF RESPONSIBLE

PERSON
Doron Drusinsky

a. REPORT

Unclassified
b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

UU

27

19b. TELEPHONE NUMBER (include

area code)
831 656 2168

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

THIS PAGE INTENTIONALLY LEFT BLANK

 1

1. INTRODUCTION

A Hidden Markov Model (HMM) can be considered a state machine in which

state transitions and state outputs, or observations, are probabilistic. HMM’s are used to

learn and classify sequences of observables. HMM technology has been used

successfully in a diverse set of applications, such as speech recognition [Da, Pi], Gene

prediction [Rä], and Cryptanalysis [Si].

Because of the probabilistic nature of the underlying process being observed by

HMM’s, they are not used often to recognize long-periodic sequences. Rather, they are

mostly used as discriminators, to determine whether one HMM is better than another. For

example, an HMM-based speech recognition system may have each HMM represent a

word, with run time voice recognition choosing the HMM that best fits the incoming

sequence of speech features.

This is in contrast with Deterministic Finite Automata (DFA) [HWU], Finite

State Machines (FSM’s) [KJ], or Harel-Statecharts [Ha, D1, D2], which are often used to

identify and classify individual sequences. Stated differently, because HMM’s identify

individual sequences of external observables with a relatively low probability, it is

usually not perceived as convincing evidence of the occurrence of a particular sequence.

Run-time Verification (RV) of formal specification assertions (RV), also known

as Run-time Execution Monitoring (REM), is a class of methods for monitoring the

sequencing and temporal behavior of an underlying application and comparing it to the

correct behavior as specified by a formal specification.

Some published RV tools and techniques are: the TemporalRover/DBRover [D3], PaX

[HR] and RT-Mac [SLS], all of which use extensions and variants of Propositional

Linear-time Temporal Logic (PLTL) as the specification language of choice, and the

StateRover [SR] that uses deterministic and non-deterministic statechart diagrams as its

specification language. In [D2], Drusinsky describes the application of RV using

statechart assertions to the verification of DoD and NASA applications, and to those of

the Brazilian Space agency

Execution-based Model Checking (EMC) is a combination of RV and Automatic

Test Generation (ATG). With EMC, a large volume of automatically generated tests are

used to exercise the program or System Under Test (SUT), using RV on the other end to

check the SUT’s conformance to the formal specification. Some ATG tools that, when

combined with RV tools, create an EMC technique are the StateRover’s white-box

automatic test-generator [SR] and NASA’s Java Path Finder (JPF) [HP].

Runtime Monitoring (RM) is a technique for monitoring system behavior with

respect to formally specified properties, but for purposes other than verification, such as

performance or statistical analysis. In the remainder of this paper we refer to RV as the

union of RV and RM.

In [DMS], the authors present a visual tradeoff space, called the Formal

Validation and Verification (FV&V) tradeoff cuboid, which qualitatively compares three

categories of FV&V techniques: Model Checking (MC), Theorem Proving (TP), and RV

 2

combined with automatic Test Generation (ATG). The tradeoff space compares the cost

and test-space coverage associated with these three categories of techniques. This

tradeoff space highlights the wide spectrum of systems for which RV has a favorable

cost-performance ratio.

In this paper, we use HMM’s to identify hidden events and sequences thereof, for

the purpose of subsequent RV. We will not be using the (rather small) probability of an

observable sequence, but rather the probability of a hidden state being reached given a

sequence of observables. Hence, the technique identifies hidden events with a relatively

high probability.

This paper describes an extended RV technique suitable for systems in which not

all artifacts are necessarily observable. The technique is a novel combination of Hidden

Markov Models (HMM’s) with probabilistic RV of formal specification assertions.

Throughout the paper, we will be using the Statechart assertion formal specification

language of [D1, D2]. We will show a probabilistic variant of this formalism suitable for

RV of systems with hidden inputs.

Our proposed technique is suitable for the verification of complex systems in

which visible data does not necessarily contain all the information required for

monitoring the systems health or for verifying its behavior, as in the case of telemetry

files of space missions. It is also suitable for monitoring the behavior of systems that are

not fully accessible, such as a nuclear facility or distant unmanned vehicle, and for

forensic applications, such behavioral analysis of a post-accident aircraft or automotive

system using black-box information.

The rest of the paper is organized as follows. Section 2 provides an overview of

RV using UML-based statechart assertions. Section 3 provides an overview of HMM’s

and HMM related algorithms. Section 4 describes our proposed extended-RV architecture

and process that uses a combination of hidden and visible data, using an HMM connected

to a special formal specifications monitor. Sections 5, 6 and 8 provide specific details of

the two key components of this process: section 5 describes the HMM component,

section 6 describes the operation of the formal specifications monitor, and section 8

describes three techniques for computing the probability distribution used by that

monitor. While sections 5 and 6 focus on formal specification assertions with hidden data

- manifested as UML statechart conditions, section 7 extends the technique to formal

specification assertions with hidden events. Section 9 extends the technique to assertions

with hidden continuous data. Finally, section 10 compares our suggested extended-RV

architecture with two alternative architectures.

2. RV OF (DETERMINISTIC) FORMAL SPECIFICATION

ASSERTIONS – AN OVERVIEW
Runtime Verification (RV) is a light-weight formal verification technique in which the

runtime execution of a system is monitored and compared to an executable version of the

system’s formal specification. In other words, RV behaves as an automated observer of

the program’s behavior and compares that behavior with the expected behavior per the

formal specification.

 3

The following formal specification example will be used throughout the rest of

the paper.

Consider the following Traffic Light Controller (TLC) requirement R1: whenever

vehicle speed in the Main direction is greater than 42km/h for more than 2 consecutive

minutes while lights in the Main direction are green, then lights in that direction should

turn red within 30 seconds afterwards.

Figure 1 depicts a statechart-assertion for R1. As described in [D1,D2], a

statechart-assertion is a UML state-machine augmented with a Java action language and a

built in Boolean flag named bSuccess, whose value indicates whether the assertion is

succeeding (e.g., the input scenario conforms to R1) or failing (e.g., the input requirement

violates R1).

The statechart-assertion of Fig. 1 starts-up in the top-level Init state. When lights

turn green (lightsTurnedGreen event) it transitions to the Init state of the OnGoing sub-

state of the Green super-state, where it polls until the Speed variable becomes HIGH

(using a 1Hz clock tick event named clockTick); the assertion then transitions to the

SpeedHigh state. It then polls for Speed to become non-HIGH within 2 minutes. If Speed

value is or becomes not HIGH then the assertion waits in Green.OnGoing.Init until Speed

turns HIGH again. If two minutes have elapsed then the assertion waits for an additional

30 seconds, during which it checks whether lights have turned red as required. If so, then

the process restarts in the top-level Init state. Otherwise, R1 has been violated and the

assertion transition’s to the Error state where it sets the bSuccess flag to false. This flag

indicates that the assertion has failed.

Figure 1. A statechart-assertion for requirement R1.

Fig. 2 illustrates the conventional RV architecture: an executable formal

specification assertion observes inputs and outputs of the SUT (the TLC in our example),

and compares those sequences to the expected behavior; whenever that actual behavior

violates the requirement the specification announces a failure.

 4

Figure 2. The RV architecture for the TLC and requirement R1.

Fig. 3 depicts two timeline diagrams of validation tests for the assertion of Fig. 1,

i.e., tests that assure the statechart-assertion correctly implements the natural language

requirement R1. Fig. 3a depicts a test scenario that conforms to R1 – checking that the

assertion succeeds for this scenario, as expected. Fig. 3b depicts a test scenario that

violates R1 – checking that the assertion fails for this scenario, as expected.

Validation testing is an important step in the process because the formal-

specification assertion is to be trusted to represent requirement R1 in the subsequent

automated verification phase, discussed below1.

a. Timeline diagram for validation test Test1.

b. Timeline diagram for validation test Test2. R1 is violated by this scenario (as

indicated by the JUNit Assert False arrow) because Speed is HIGH for more than two

minutes while lights are green, yet lights didn’t turn red as required.

Figure 3. Timeline diagrams for two validation tests for the statechart-assertion of

Fig. 1.

Verification is performed by comparing a trace of the system (e.g., as captured by

a log file) to the behavior of the assertion set. The StateRover tool does so using a two

1 Further details about validation testing is available in [D2].

TLC

Sensors
Formal

spec.

assertion

(Fig. 1)

Speed

Light colors

Success

/Fail

 5

step process. First, the log file is converted into an equivalent JUnit test [JU], and the

assertion is code-generated into an equivalent Java class (details about this code generator

are available in [D1]). Next comes the RV step, the JUnit test is executed, thereby

checking that the log-file trace conforms to the requirement as manifested by the

assertion.

The extended-RV technique suggested in this paper uses the same process for the

development and validation of assertions, i.e., assertions are developed as deterministic

assertions. However, rather than performing deterministic RV by the virtue of using an

assertion code generator that generates a deterministic implementation, our technique

performs probabilistic RV using a special assertion code generator that generates a

probabilistic, weighted implementation. Specific details are provided in section 6.

3. HIDDEN MARKOV MODELS

A (discrete) hidden Markov model (HMM) is a statistical Markov model in which

the system being modeled is assumed to be a Markov process with unobserved, or hidden

states. while in a regular Markov model, the state is directly visible to the observer, in a

hidden Markov model the state is not directly visible, while the output, dependent on the

state, is visible.

The parameters of a simple HMM are [Ra]:

 N, the number of states in the model. Individual states are denoted S = {s1, s2,...sN},

and the state at time t as qt.

 M, the number of distinct observation symbols. Individual states are denoted V = {v1,

v2,...vM}.

 The state transition probability distribution A = {aij} where aij = P[qt+1 = sj|qt = si], 1

i,j N. Clearly, i, 1 i N, 1 j N aij= 1.

 The observation symbol probability distribution in state j, B={bj(k)}, where bj(k) =

P[vk at t | qt = sj], 1 j N, 1 k M.

 The initial state distribution = { i}, where i = P[q1 = si], 1 i N.

Rabiner [Ra] describes the following three primary problems associated with

HMM’s:

1. Given the observation sequence O = O1O2...OT, and an HMM model = (A,B,),

how do we efficiently compute P(O|)?

2. Given the observation sequence O = O1O2...OT, and an HMM model = (A,B,),

how do we choose an optimal state sequence Q = q1 q2...qT?

3. How do we calculate the model parameters = (A,B,) to maximize P(O|)?

The most well known algorithms used to solve these problems are:

1. The forward algorithm, for calculating the forward variable t(i) = P(O1O2...Ot, qt =

si |). The forward algorithm is a dynamic programming algorithm based on the

recurrence:

t+1(j) = [i=1..N t (i)aij] bj (Ot+1), 1 t T-1, 1 j N,

with the initialization:

 6

 1(j) = j bj(O1).

Note that P(O1O2...Ot|)= i=1..N t(i).

` is the normalized version of :

`t(j)=P(qt=si|O1O2...Ot,), calculated recursively as:

`t+1(j)= t+1(j)/P(O1O2...Ot|).

2. The backward algorithm, for calculating the backward variable t(i) =

P(Ot+1Ot+2...OT |qt = si,). The algorithm is a dynamic programming algorithm based

on the recurrence:

t(i) = j=1..N aij bj (Ot+1) t+1(j), for

t =T-1,T-2,...,1, and 1 i N,

with the initialization:

 T(i) = 1, for 1 i N.

3. The forward-backward algorithm, for calculating the forward-backward variable

t(i)= P(qt = si | O1...OT,).

 is also:

t(i)=(t(i) t(i))/ P(O1O2...OT|)

 can also be expressed as:

t(i)=∑1 j N t(i,j) where:

t(i,j) = (t(i) aij bj(Ot+1) t+1(j))/P(O1O2...OT|).

4. The Viterbi algorithm, for calculating the best state sequence that explains an

observation sequence, T(O1O2...OT |). The algorithm defines:

 t(i)=max[q1,q2,... qt-1] P(q1,q2,...qt=si, O1O2...Ot |),

and uses the following recursive formula:

 t(j) = max1 i N [t-1(i) aij] bj(Ot)

along with the following formula, used to recover the actual most probable

state sequence:

 t(j) = argmax1 i N [t-1(i) aij], where 1(j)=0;

The Viterbi algorithm is essentially the forward algorithm with a recurrence in

which a max operator is used instead of the sum. The probability of best state

sequence T(O1O2...OT |) is then the maximal T(i), 1 i N, and qT = argmaxi

T(i), 1 i N.

The most probable state sequence q1,q2,...qT is calculated in a backward

manner, using qt-1 = t(qt).

4. RV OF SYSTEMS WITH HIDDEN STATES

Suppose our TLC is being monitored or verified. Suppose also that, as assumed

by the statechart-assertion of Figure 1, it emits 3 color change events: (lightTurnedRed,

lightTurnedGreen, and lightTurnedYellow), but it not have a Speed input or output.

Instead, the TLC has input sensors that measure the frequency of cars going through the

junction in a particular direction (e.g., in the Main direction). In other words, frequency is

an observable whereas speed is a hidden artifact.

 7

To enable RV of the TLC with respect to R1 and its corresponding statechart-

assertion, we modify the architecture of Fig. 2 as depicted in Fig. 4. This architecture

differs from the conventional RV architecture of Fig.1 in three main aspects:

1. It contains a Hidden Markov Model (HMM), used to decode the probability of

occurrence of sequences of hidden Speed states given sequences of the frequency

observable. This HMM provides a plurality of weighted Speed inputs to the

statechart-assertion, instead of a unique un-weighted Speed input used in Fig. 1.

Detailed of the HMM are discussed below.

2. It uses a special code generator that generates a probabilistic implementation for the

statechart assertion(s), one that operates on the weighted inputs from the HMM.

3. It evaluates the assertion using a success score in the range [0,1].

Figure 4. The RV architecture for the TLC and requirement R1 when the Speed

input is hidden.

In our example, visible frequency measurement pertains to a sensor under the

Main Street that measures the frequency of cars driving over the sensor. The sensor

produces symbols, f1,f2,…,f5 where fd represents a measured frequency in the range of (d-

1,d] cars per second, for all d 2. Loosely speaking, using a 4 meter per car metric

(including car to car spacing), Speed = 14.4*f km/h. We categorize 3 ranges of speeds for

cars going over the sensor, as follows: (i) HIGH: cars speed is above 40 km/h, (ii) LOW:

car speeds below 15 km/h, and (iii) MED: for all other possibilities.

While we could use the above-mentioned stationary process do deduce the hidden

Speed value-range from the visible frequency measurement, it does not account for

dynamic aspect of the system. First, it does not account for the fact that distances

between cars change with car-speed, rendering the 4 meters per car estimate inaccurate.

Also, it is expected for Speed to seldom change from HIGH to LOW directly.

Consequently, we use an HMM to model this random process. Figure 5 depicts an

HMM for the TLC example. Its parameters are:

 The state set Q consists of three states that correspond with Speed, namely, HIGH,

MED, and LOW, also denoted as states 0, 1, and 2, respectively. Note that it is not a

coincident that the HMM states capture the hidden variable in the assertion of Fig. 1;

we will discuss this relationship in section 5.

 An observable O, which takes on one of the fd symbols discussed earlier.

2 We assume that frequencies above 5 cars/sec are measured as 5 cars/sec.

TLC

Sensors

Formal spec.

assertion

(Fig. 1) with

weighted

implementati

on (described

in section 6)

Frequency
HMM

S

peed Light colors

Success score [0..1]

 8

 Transition probabilities are indicated along the edges of Fig. 5.

Figure 5. Speed random variable HMM states and transition.

 bs(O), the probability of an observable O being observed in state s, is listed in Table

1.

O\state HIGH MED LOW

f1 0.02 0.18 0.63

f2 0.22 0.53 0.26

f3 0.47 0.17 0.11

f4 0.2 0.11 0

f5 0.1 0.01 0

Table 1. Probability of observation O in TLC state s

 The initial state distribution is [0.3, 0.5, 0.2] for HIGH, MED, and LOW,

respectively.

RV now proceeds according to the process illustrated in Fig. 4, as follows.

Sampled frequency values are periodically fed into the HMM, which then executes a

probability estimation algorithm, such as the forward-algorithm for the current iteration

(section 8 discusses three probability estimation techniques). These probability values

represent probabilities of the HMM being in states HIGH, MED, and LOW, respectively.

This vector of symbols and corresponding probabilities is passed to the assertion’s

implementation code, which executes a weighted version of a state-machine state change,

detailed in section 6. Finally, as discussed in section 6, the assertion announces the

probability it detected a requirement violation.

A more realistic HMM for deducing car speed is one in which the observable

frequency is a continuous random variable (called Frequency), e.g., with a normal

distribution whose probability density function (PDF) is fO(o)~N(,
2
), rather than a

Categorical distribution (as the case for TLC-example, whose distribution is listed in

Table 2). Using the TLC example again, the probability estimation algorithm of choice

(elaborated in section 8) will use fFrequency(frequency, j), the Frequency PDF in state j,

instead of bj(frequency).

State

:

H

IGH

M

ED

L

OW

 (cars/sec) 3.125 2 0.55

 (cars/sec) 0.35 1 0.50

Table 2. Normal distribution parameters of observation O in TLC states.

HIGH

0.7

MED

0.6

LOW

0.8

0.05

0.05

0.2
0.15

0.25
0.2

 9

5. FROM ASSERTIONS TO HMM PARAMETER ESTIMATION

HMM parameter estimation, i.e., estimating the transition probability and

probability of state observations, is a difficult problem. In particular, it is difficult to

estimate the number of HMM states, the extreme cases being using one state (i.e.,

reducing the HMM to a stationary process) or n states, n being the length of the

observation sequence.

In our case however, HMM states are known; they are directly related to the

hidden artifacts in the assertions. For example, in the TLC case, the three hidden symbols

pertain to Speed values HIGH, MED, LOW, which are derived from Fig. 1 and its

requirement R1, as well as from an assertion for the following requirement:

R2: if vehicle speed in the Main direction is between 15 and 30 km/h for more

than 2 consecutive minutes while lights in the Main direction are green, then lights

should remain green for a total of 4 minutes.

Fig. 6a depicts a statechart assertion for requirement R2, and Fig. 6b depicts a

timeline diagram for a validation test for this assertion.

a. Statechart assertion and validation test for requirement R2

b. A timeline diagram of a validation test for the statechart-assertion of (a)

Figure 6. Statechart assertion and validation test for requirement R2.

 Our use-case for HMM’s is simpler than usual in one additional aspect:

calculating transition and observable probabilities. Because HMM states relate to real

world artifacts (e.g., car speed values), we can conduct learning-phase experiments which

measure relative frequencies, such as one in which all speeds and sensor frequencies are

measured on a 1-second period basis; all HMM probabilities follow trivially. This is the

 10

case whether observables are distributed using a Categorical distribution or some

continuous distribution.

Consequently, we can deduce the workflow for developing the components of the

architecture of Fig. 4, as depicted in Fig. 7.

Figure 7. Workflow for developing the RV components of Fig. 4.

Draw deterministic

statechart-assertions

Do validation

testing

Does assertion

behavior conform to

expected behavior

specified by

requirement?

yes

Update/fix

assertion or

English

requirement

no

Identify set H

of hidden

events and data

artifacts in the

assertion

Define HMM

states as

symbols of H

Run learning-

phase

experiments -

determine HMM

parameters

Generate

weighted-

assertion-code

for assertion (see

section 6)

Perform probabilistic RV/RM based

on architecture of Fig. 4

English

requirement

 11

6. RV OF ASSERTIONS WITH PROBABILISTIC INPUTS

Using the architecture of Fig. 4, the formal specification assertion module

observes sequences that consist of visible as well as hidden artifacts; in Fig. 1 for

example, lightsTurnedRed, lightsTurnedYellow, lightsTurnedGreen, timeoutFire, and

clockTick event are visible, while Speed is hidden. Hidden artifacts have an associated

probability distribution which we call the probability-of-occurrence distribution (POD),

such as POD-1: Speed=HIGH, MED, LOW at time 5 occurs with probability 0.72, 0.2,

0.08, respectively. Section 8 describes three techniques, called `, , and ``, for

computing the cycle-by-cycle POD, based on , , and , respectively. We consider a

visible artifact to have a probability of occurrence of 1.

A weighted/probabilistic implementation of the statechart assertion module of

Fig. 4 responds to an input sequence I = <S1, P1>, <S2, P2>,.., <ST, PT>, where St is a

visible or hidden artifact (i.e., event such a clockTick, or data artifact, i.e., variable, such

as Speed, both in Fig. 1), and Pt is the POD of St.

We use the UML notation for St, St=eventt[conditiont], where conditiont is

optional; eventt and conditiont can either or both be visible or hidden.

An assertion’s implementation consists of a collection C of instances, or copies,

of the assertion, called configurations. Each configuration executes as a standalone

assertion and preserves its own present-state. Each configuration Con has a probability

measure P(Con), called the Configuration Probability Measure (CPM), that measures the

probability the assertion is behaving as suggested by Con, i.e., that its present-state is

Con’s present state. Upon startup, C consists of a single configuration Condefault whose

present-state, denoted PS(Condefault), is the assertion’s default state (e.g., state Init in Fig.

1), and having P(Condefault)=1.

All configurations of C respond to a pair <St,Pt> of I, as follows. If Pt = 1 then

the configuration performs a conventional state machine state change upon input Si, such

as SpeedHigh timeoutFire SpeedHishFor2Min, in Fig. 1. Otherwise, either eventt or

conditiont are hidden. In this case the configuration Con is replaced with two

configurations: Con1 and Con2, whose present-state probabilities are calculated as

follows:

 If eventt is hidden (as discussed in section 7) then P(Con1) = P(Con)*Pt and P(Con2)

= P(Con)*(1-Pt).

 If conditiont is hidden, then we calculate P(conditiont), the probability of the

condition, as a function of the probabilities of its constituent variables using standard

probability. For example, if conditiont is Speed = HIGH || Speed = MED then

P(conditiont) = P(Speed = HIGH) + P(Speed = MED), where each term is taken from

the POD at time t, such as 0.72 and 0.2 respectively, using POD-1.

We set P(Con1)=P(Con)P(conditiont), and P(Con2)=P(Con)(1-P(conditiont)).

 12

Let PS(Con) denote Con’s present-state. PS(Con1) and PS(Con2) are determined

as follows:

 If eventt is hidden (as discussed in section 7) then PS(Con1) is the next state

determined by the assertion’s transition out of PS(Con), under the assumption that the

event fired, and PS(Con2)= PS(Con).

 If conditiont is hidden (e.g., Speed==HIGH condition in Fig. 1), then PS(Con1) is

calculated assuming conditiont=true and PS(Con2) is calculated assuming

conditiont=false,

For the sake of simplicity we disallow assertions in which both eventt and

conditiont are hidden.

C configurations are routinely (i..e, every cycle t) managed as follows. All

configurations Con` with the same present-state3 are merged into a single configuration

Conmerged, using the sum of all P(Con`) as P(Conmerged).

The statechart assertion declares a probability of failure (POF), i.e., the

probability its corresponding requirement has been violated, on a cycle by cycle basis,

being the sum of all P(Con) for all configurations Con such that PS(Con) is an error state.

Note that statechart assertions typically have error states that are sink states, i.e.,

states with no outgoing transitions. For such assertions, the POF is monotonically

increasing with time.

7. RV OF ASSERTIONS WITH HIDDEN EVENTS

UML statecharts, message sequence diagrams (MSC’s), and other formalisms are

intrinsically event driven. In fact, the statechart assertions of Figures 1 and 6a are event

driven, using events such as lightsTurnedRed and the 1Hz clockTick event. However, as

presented in section 4, HMM symbols are propositional in nature - , manifested as the

states of the HMM, such as the Speed variable. Consequently, the assertions of Figures 1

and 6a must poll the Speed variable using the 1Hz clockTick event. In contrast, Fig. 8

depicts an event driven assertion for requirement R1; it uses hidden events

speedChangedToHIGH and

speedChangedFromHIGH.

3 More accurately, PS(Con) is an extended state vector, that includes the state variable and the states of

all local variables, such as the timer state and the bSuccess flag.

 13

Figure 8. An event driven statechart assertion for requirement R1 that uses hidden

events

The probability of these two events is induced by the probability of an HMM

transition from state i to state j being traversed at time t, i.e., by t(i,j). Hence, their

probabilities are:

1. P(event speedChangedToHIGH occurring at time t |O,) = ∑1 i N t(i,0).

2. P(event speedChangedFromHIGH occurring at time t |O,) = ∑1 j N t(0,j).

8. GENERATING THE PROBABILITY OF OCCURRENCE OF A

HIDDEN ARTIFACT

We propose three techniques for estimating the POD at time t: the alpha, gamma,

and delta methods, as follows.

 The alpha method, which uses N values of `t(i)=P(qt=si|O1O2...Ot,), one per

symbol si, 1 i N. Note that ∑1 i N `t(i) = 1.

 The gamma method, which uses N values of t(i)=P(qt=si|O1O2...OT,), one per

symbol si, 1 i N. Note that ∑1 i N t(i) = 1.

 The delta method, which uses N values of:

t``(i) = t`(i)/∑1 i N t`(i), where

t`(i) = max[q1,q2,... qt-1]P(q1,q2,...qt=si| O1O2...Ot ,), where

P(q1,q2,...qt=si| O1O2...Ot ,)= t(i)/P(O1O2...Ot). In other words, t``(i) is a

normalized version of t`(i), which in turn is the probability of the HMM generating

symbol si at time t, via the most probable state sequence, given the observation.

The gamma method is a backward-forward algorithm; it therefore requires the

entire observable sequence O1O2...OT for the evaluation of t(i) for t T. The alpha and

delta methods on the other hand, are forward algorithms and therefore do not require

future information for the calculation of `t(i) and t``(i). Nevertheless, scaling issues

discussed below effectively imply that no matter what method is used, it can only be used

verbatim with a limited number of observables. In section 10 we suggest a remedy to this

limitation.

When the HMM contains transitions with probability 0, then all three methods

might induce sequences of symbols that cannot be physically generated. For example,

consider an an HMM with N=3 and a1,2=0, and suppose t(1)=0.3 and t+1(2)=0.2; The

assertion then cosiders the sequence s1, s2 as possible, having a positive probability of

0.06.

All three methods suffer from inherent scaling problems, because the calculation

of `t(i), (i), and t``(i) generate values that scale down geometrically with t. There are

published numerical techniques designed to mitigate this problem [Ma]; nevertheless, this

constraint limits the length of the sequence of observables O1O2...OT, and its

corresponding sequence I = <S1, P1>, <S2, P2>,.., <ST, PT> of assertion inputs.

Meanwhile, the RV process, in of as itself, is not necessarily limited in duration, and

might continue working for intervals longer than T.

 14

A straight-forward solution to the scaling problem is to perform RV using a

sequence of frames of observables of length T, where the probability measurement values

computed at time T (i.e., `T(i), T(i), or T``(i)) of a certain frame are used as i for the

following frame. This approach however, introduces an error or noise every time we

reload the frame buffer.

To circumvent this problem, we propose the following smoothing approach in

which we use two partially overlapping buffers of observables of length T. Buffer B1

contains observables On+1On+2...On+T, while buffer B2 contains observables

Om+1Om+2...Om+T, where m=n+T/; in other words B1[t]=B2[t+T/2] if t T/2 and

B1[t]=B2[t-T/2] otherwise. This is applied repeatedly for frames n=0,1,2,.., where the

roles of B1 and B2 alternate. Now suppose we are using the gamma method; we apply it

to each buffer, resulting in
1

t(t) and
2

t+T/2(t) if t T/2, and
1

t(t) and
2

t-T/2(t) otherwise.

Finally use the average of these two values as our actual t(t) using a weighted average

that weighs the
j
t(t) value that is closer to the center of its buffer more that the one that is

farther away from the center of its buffer:

t(t) = (2t
1

t(t) + (T-2t)
2

t+T/2(t))/T, if t T/2

t(t) = ((2T-2t)
1

t(t) + (2t-T)
2

t+T/2(t))/T, otherwise.

In future research we will conduct experiments that measure the deviation of

`T(i), T(i), and T``(i) from their true values when this method is used.

9. RV OF ASSERTIONS WITH HIDDEN CONTINUOUS DATA

While requirement R1 asserts about vehicle speed greater than 42km/h in the

Main direction, the matching statechart assertion of Fig. 1 asserts about Speed values

being one of the symbols (HMM states) HIGH, MED, or LOW; as a consequence, the

task of matching HMM states to vehicle speed values becomes the TLC’s HMM

designer’s responsibility, while this is actually a requirement vs. assertion matching issue.

An additional drawback of this approach is that the random variable being

asserted about (Speed, in the TLC case) typically has a more complex distribution than

the simplistic Categorical distribution.

Suppose that TLC Speed is not the HMM state, but a random variable associated

with the state, one with a continuous distribution such as a normal distribution. The Table

3 example lists the parameters of the Speed random variable distribution for the TLC

example.

State: HIGH MED LOW

Name of

distribution

F0 F1 F2

 (km/h) 40 28 14

 (km/h) 12 15 10

Table 3. Normal distribution parameters of the Speed random variable TLC states.

 15

Using this framework, we can now use a variant of the assertion of Fig. 1 that

uses transition conditions Speed>42 and Speed≤42 instead of Speed=HIGH and

Speed!=HIGH, respectively, thus addressing the letter of requirement R1.

Let Speed(t,i) denote a random variable (r.v.) representing Speed when the HMM

is in state i at time t. We assume its distribution is time independent, and therefore write

Speed(i); its cumulative distribution-function (CDF) is FSpeed(i)(speed) = P(Speed speed |

qt=si,). We also make the following counter-intuitive assumption: Speed(i) is

independent of the observables (sensor frequency measurements), given the present state

si. It is counter intuitive because after-all, vehicle speed seem to depend on those

frequencies. Nevertheless, the dependence is totally manifested by the qt=si, and given

that, Speed(i) is independent of the observables.

We now define modified variables , , and , as expressions rather than literal

numbers, as follows:

 Speed, t(speed, i)=P(O1O2...Ot, Speed speed, qt=si|).

Clearly,

Speed, t(speed, i)=

P(O1O2...Ot, qt = si |) P(Speed speed | O1O2...Ot,qt=si ,) =

t(i) P(Speed speed | qt = si ,),

the last equality results from Speed(i) being independent of the observables.

Hence:

Speed, t(speed, i) = t(i) FSpeed(i)(speed).

The normalized version,
`
 is:

` Speed, t(speed, i) = `t(i) FSpeed(i)(speed).

 Speed,t(speed,i) = P(Ot+1Ot+2...OT, Speed(i) speed | qt=si,). As in the case of ,

Speed,t(speed,i)= t(i)FSpeed(i)(speed).

 Speed,t(i)= P(Speed(i) speed, qt = si | O1...OT,) = t(i) t(i) FSpeed(i)(speed) /

P(O1...OT).

Rhe RV process of section 6 is modified as follows. In addition to using the alpha

or gamma methods to calculate a Categorical POD for HMM states such as POD-1, we

calculate or , respectively, using an instance value of speed (e.g., speed = 42) based

on the assertion. More specifically, given an RV computation Con, the calculation of

P(Con1) and P(Con2) discussed in section 6 is modified as follows:

 If eventt is hidden, the calculation is unchanged, because the probability of a transition

being traversed only depends on states and observations, not on the Speed variable. In

other words, Speed only pertains to conditions in the assertion statecharts, not events.

 If conditiont is hidden, as in Speed≤42 in the modified assertion of Fig. 1, then we

calculate P(conditiont), the probability of the condition, by evaluating the expected

value of `t(42, i) namely,

∑1 i N
`
t(i) FSpeed(i)(42) for the alpha method, or the expected value of t(42,

i) namely, ∑1 i N t(i) FSpeed(i)(42), for the gamma method.

 16

We set P(Con1)=P(Con)P(conditiont), and P(Con2)=P(Con) (1-

P(conditiont)), as in section 6.

10. A COMPARISON OF RV ARCHITECTURES

We considered the following two architectures for RV of systems with hidden

information, in addition to the weighted-probabilistic assertion architecture of Fig. 4:

The first alternative architecture, denoted the deterministic assertion architecture,

resembles that of Fig. 4, but has the HMM connected to a purely deterministic formal-

specification assertion, instead of a weighted probabilistic module described in section 6.

In other words, this architecture is the architecture of Fig. 4 where the Formal

Specification Assertion block implements assertions using a conventional deterministic

implementation, such as the one described in [D1].

Because this approach uses a deterministic assertion, it can only use a single

sequence of input symbols from the HMM, such as the sequence a1,a2,…,aT where at=

max1 i N(t(i)). However, the following example demonstrates the weakness of this

approach.

Consider the TLC scenario depicted in Fig. 9a. Using the above mentioned single

sequence method it induces the sequence seq1 of hidden states depicted in Fig. 9b, with

probability P1= T(seq1)=9.677258147046034E-7. This sequence conforms to

requirement R1 because it does not contain two consecutive minutes of Speed=HIGH

while lights are green.

In contrast, the sequence seq2 of state symbols depicted in Fig. 9c violates R1. It is

not generated by the single sequence method because its probability is P2= T(seq2)=

4.639731359753094E-11 is smaller than P1.

The alpha and gamma methods are capable of generating the later sequence,

thereby enabling our suggested weighted-assertion architecture to detect the violation of

R1 failure with a non zero probability. Fig. 10 shows the distribution of ` and for seq1

and seq2. Note how the ` method generates identical distributions when the observation

sequences seq1 and seq2 agree, because when the observation sequences agree on the

HMM state qt=st, then given that state, the observation Ot is independent of prior

observations and states. In contrast, the method depends on future observations too,

and Ot is not necessarily independent of those.

a. Timeline diagram of sequence of a observables O

 17

b. Timeline diagram of seq1, the most probable state sequence that explains O according

to the single sequence method. This sequence conforms to requirement R1

c. Timeline diagram of seq2, a less probable state sequence due to the time interval

[95,99]; this sequence violates requirement R1

Figure 9. Scenarios that discriminate between the weighted-probabilistic assertion

architecture and the deterministic assertion architecture

a. The distribution of ` for seq1

b. The distribution of ` for seq2

c. The distribution of for seq1

d. The distribution of for seq2

Figure 10. The distribution of ` and for seq1 and seq2

The second alternative architecture, denoted the monolithic architecture, contains

no standalone RV module. Rather, the HMM itself, being a probabilistic state machine,

performs the RV tasks.

 18

With this approach, the assertions are combined with the symbol decoding HMM

inducing a much larger HMM.

Two primary drawbacks of this approach are:

a. The overall RV system is hard to read and maintain; with no separation of concerns

within the HMM, it is effectively performing two distinct jobs: (i) decoding hidden

symbols from visible ones, and (ii) monitoring or verifying a requirement such as R1 or

R2.

b. The HMM is the monolithic architecture, being larger and harder to read, will be

harder to learn using the experimental approach discussed in section 5.

11. CONCLUSION

We have demonstrated a technique for performing RV in the presence of hidden

evidence. We plan on applying this technique to the verification of aerospace

applications, in which the evidence is provided as telemetry files that often do not contain

the artifacts asserted about by the formal specifications. We also plan on applying this

technique to automatic pattern detection within large volumes of cyber data, in an effort

to identify malicious or dangerous behavioral patterns.

We are currently building a special StateRover code-generator that generates

weighted/probabilistic implementation code for statechart assertions.

Considering the TLC example, one might wonder how the TLC itself is

implemented to conform with requirement R1, given that the Speed variable is hidden. In

other words, wouldn’t TLC developers face the same difficulties when implementing the

TLC as the quality assurance team faces when asserting about it? Indeed, in on-going

research we are investigating the use of the proposed technique for controllers that

operate in difficult environments where some of the inputs are not directly observable, as

often the case in hostile environment.

12. REFERENCES

[Da] K.H. Davies, R. Biddulph, and S. Balashek, (1952) Automatic Speech Recognition

of Spoken Digits, J. Acoust. Soc. Am. 24(6) pp.637 - 642

[D1] D. Drusinsky, Modeling and Verification Using UML Statecharts – A Working

Guide to Reactive System Design, Runtime Monitoring and Execution-based Model

Checking, Elsevier, 2006.

[D2] D. Drusinsky, Practical UML-based Specification, Validation, and Verification of

Mission-critical Software, DogEar Publishing, 2011.

[D3] D. Drusinsky, “The Temporal Rover and the ATG Rover,” in Proc. SPIN 2000

Workshop, 2000, LNCS 1885, Springer-Verlag, pp. 323-329.

[DMS] D. Drusinsky, J.B. Michael and M. Shing, “A Visual Tradeoff Space for Formal

Verification and Validation Techniques,” IEEE Systems Journal, Vol. 2, No. 4, Dec.

2008, pp. 513-519.

[DMOS] D. Drusinsky, B. Michael, T. Otani, M. Shing, Validating UML Statechart-

Based Assertions Libraries for Improved Reliability and Assurance,. Proceedings of

http://www.amazon.com/Practical-Specification-Validation-Verification-Mission-critical/dp/1457504944/ref=sr_1_2?s=books&ie=UTF8&qid=1318451905&sr=1-2
http://www.amazon.com/Practical-Specification-Validation-Verification-Mission-critical/dp/1457504944/ref=sr_1_2?s=books&ie=UTF8&qid=1318451905&sr=1-2

 19

the Second International Conference on Secure System Integration and Reliability

Improvement (SSIRI 2008), Yokohama, Japan, 14-17 July 2008, pp. 47-51. Best

paper award.

[DS] D. Drusinsky and M. Shing, “Verification of Timing Properties in Rapid System

Prototyping”, Proc.14th IEEE International Workshop in Rapid Systems

Prototyping, 9-11 June 2003, pp. 47-53.

[DDS] K. Demir, D. Drusinsky, and M. Shing, “Creation and Validation of Embedded

Assertions Statecharts”, Proc 17
th

 IEEE International Workshop on Rapid Systems

Prototyping, Chania, Greece, June 2006, 17-23.

[Ha] D. Harel, Statecharts: A visual formalism for complex systems. Science of

Computer Programming, 8(3):231–274, June 1987.

[E] S. Easterbrook, R. Lutz, R. Covington, J. Kely, Y. Ampo and D. Hamilton,

“Experiences using lightweight formal methods for requirements modeling”, IEEE

Transactions on Software Engineering, 24(1), pp. 4-11, Jan 1998.

[Ha] D. Harel, “Statecharts: A Visual Formalism for Complex Systems”, Science of

Computer Programming 8, 1987, 231-274.

[HP] K. Havelund and T. Pressburger, “Model Checking Java Programs using Java

PathFinder,” Int’l J. Software Tools for Technology Transfer, vol. 2, no. 4, pp. 366-

381, 2000.

[HR] K. Havelund and G. Rosu, “An Overview of the Runtime Verification Tool Java

PathExplorer,” Formal Methods in System Design, vol. 24, Springer Netherlands,

pp. 189-215, 2004.

[HWU] J. E. Hopcrofthttp://www.amazon.com/Introduction-Automata-Theory-

Languages-Computation/dp/0201441241, R.

Motwanihttp://www.amazon.com/Introduction-Automata-Theory-Languages-

Computation/dp/0201441241, J. D. Ullmanhttp://www.amazon.com/Introduction-

Automata-Theory-Languages-Computation/dp/0201441241, Introduction to

Automata Theory, Languages, and Computation, Addison Wesley, 2006.

[JU] JUnit, http://www.junit.org

[KJ] Z. Kohavi and N. K. Jha, Switching and Finite Automata Theory, Cambridge

University Press, 2009.

[Ma] T.P. Mann. Numerically stable hidden markov model implementation. An HMM

scaling tutorial, 2006.

[Pi] John Pierce (1969). Whither Speech Recognition. Journal of the Acoustical Society

of America.

[Ra] L. W. Rabiner, A Tutorial on Hidden Markov models and Selected Applications in

Speach Recognition, Proc. of the IEEE, Vol 77, No. 2, 1989.

[Rä] Rätsch, Gunnar; Sonnenburg, S; Srinivasan, J; Witte, H; Müller, KR; Sommer, RJ;

Schölkopf, B (2007-02-23). "Improving the C. elegans genome annotation using

machine learning". PLoS Computational Biology 3 (2): e20.

doi:10.1371/journal.pcbi.0030020. PMC 1808025. PMID 17319737.

http://www.amazon.com/John-E.-Hopcroft/e/B001IOH9GA/ref=ntt_athr_dp_pel_1/192-8271722-4308529
http://www.amazon.com/John-E.-Hopcroft/e/B001IOH9GA/ref=ntt_athr_dp_pel_1/192-8271722-4308529
http://www.amazon.com/Rajeev-Motwani/e/B001IODIPG/ref=ntt_athr_dp_pel_2/192-8271722-4308529
http://www.amazon.com/Rajeev-Motwani/e/B001IODIPG/ref=ntt_athr_dp_pel_2/192-8271722-4308529
http://www.amazon.com/Rajeev-Motwani/e/B001IODIPG/ref=ntt_athr_dp_pel_2/192-8271722-4308529
http://www.amazon.com/Jeffrey-D.-Ullman/e/B000APLJT6/ref=ntt_athr_dp_pel_3/192-8271722-4308529
http://www.amazon.com/Jeffrey-D.-Ullman/e/B000APLJT6/ref=ntt_athr_dp_pel_3/192-8271722-4308529
http://www.amazon.com/Zvi-Kohavi/e/B001HMLAWC/ref=sr_ntt_srch_lnk_1?qid=1319212598&sr=1-1
http://www.amazon.com/Switching-Finite-Automata-Theory-Kohavi/dp/0521857481/ref=sr_1_1?s=books&ie=UTF8&qid=1319212598&sr=1-1
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1808025
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1808025
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1371%2Fjournal.pcbi.0030020
http://en.wikipedia.org/wiki/PubMed_Central
http://www.pubmedcentral.gov/articlerender.fcgi?tool=pmcentrez&artid=1808025
http://en.wikipedia.org/wiki/PubMed_Identifier
http://www.ncbi.nlm.nih.gov/pubmed/17319737

 20

[SLS] U. Sammapun, I. Lee, and O. Sokolsky, “RT-MaC: Runtime Monitoring and

Checking of Quantitative and Probabilistic Properties,” in Proc. 11th IEEE Int’l

Conf. Embedded and Real-Time Computing Systems and Applications, 2005, IEEE,

pp. 147-153.

[SR] The StateRover, http://www.time-rover.com

[Si] S. Singh (1999). The Code Book: The Science of Secrecy from Ancient Egypt to

Quantum Cryptography. London: Fourth Estate. pp. 143–189. ISBN 1-85702-879-1.

http://www.time-rover.com/
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/1-85702-879-1

 21

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School

Monterey, California

3. Research Sponsored Programs Office, Code 41

Naval Postgraduate School

Monterey, CA 93943

4. Dr. Robert Kehlet,

 Defense Threat Reduction Agency (DTRA) -

 8725 John J Kingman Rd., Stop 6201 (RD-BAT),

 Fort Belvoir VA 22060-6201

5. Professor Doron Drusinsky

Naval Postgraduate School

Monterey, California

