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ABSTRACT

This thesis analyzes the sway, yaw, and roll dynamic stability of neutrally

buoyant submersibles. Utilizing the hydrodynamic coefficients for a Mark

IX Swimmer Delivery Vehicle (SDV) as a base-line model, the linearized

equations of motion for the decoupled steering and roll systems are

compared to the coupled system. Two different configurations of

hydrodynamic coefficients are considered along with the effects of varying

the vertical (Zg ) and longitudinal (Xg) centers of gravity of the vehicle while

the longitudinal center of buoyancy (Xb) is held constant. Results

demonstrate the significant effects on stability of coupling the steering and

roll equations of motion, and the importance of Zg and X g selection in

minimizing those effects while retaining stability. Perturbation analysis

results confirm the essential dependence of the linearized coupled

equations on the separation of Xg and Xb-
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I. INTRODUCTION

A. GENERAL

As the missions for submersibles become more complex and

demanding, the requirement for a highly stable platform becomes

increasingly important so the operator(s) can concentrate on matters other

than station-keeping. Submersible simulators have not been employed to

any great extent thus far, since the actual system is relatively inexpensive

and the dynamics are usually very non-linear and difficult to model. The

analysis of a submersible can be significantly more complex than the

analysis of a conventional submarine or aircraft, since the presence of

ancillary equipment such as manipulators, video devices, and tethers

introduce extra cross-coupling terms usually absent in other, more

symmetric, vehicle dynamic analyses. [Ref. 1] Additionally, all

mathematical models include simplifying assumptions and errors in the

models hydrodynamic coefficients.

Submersibles typically have a variety of complex dynamic interactions

that can severely inhibit maneuverability and control performance. The

goal of this thesis is to present an understanding of the coupling effects on

straight lira motion stability in the horizontal plane using a linearized

model, and the primary means of minimizing these effects. Development of

the mathematical models for both the coupled and uncoupled maneuvering

and roll equations of motion is presented in Chapter IT. Utilizing two

different configurations of hydrodynamic coirfTiripmt.s, the degree of stability,

regions of stability, and linear simulations for the coupled and uncoupled



systems are presented in Chapter III. A Hamming method nonlinear

simulation [Ref. 2], which is similar to a fourth order Runge-Kutta

integration technique, is conducted on both configurations to compare with

the results obtained for the linearized models. Chapter IV develops a

perturbation analysis to demonstrate the strong degree of dependence on

the separation between the longitudinal centers of buoyancy and gravity to

the solution of the linearized coupled equations of motion. Chapter V

summarizes the results and provides recommendations for future

submersible modelling research. Appendix A contains the computer

programs utilized for the linear and nonlinear simulations.

B. PARAMETER DEFINITION

The values for the hydrodynamic derivatives and vehicle dimensions

are from Smith, Crane, and Summey [Ref. 3], with the following exceptions:

• Yr - the force in sway due to a change in yaw rate

• Nv - the moment due to a change in sway velocity.

These two coefficients were modified to produce two different models that

would have one eigenvalue change sign for a reasonable range of

longitudinal and vertical centers of gravity. A comparison between the

actual non-dimensional values and those used in this thesis is as follows:

X.

Configuration 'A'

Configuration *B'

Actual SDV

-3.500E-02

-5.940E-02

2.970E-02

Nv_
-1.484E-03

-1.484E-03

-7.420E-03



The effects of changing these coefficients are illustrated in Figures 1 and 2

on the following pages. Additionally, the analysis presented herein is

conducted in dimensional form; hence the nominal forward longitudinal

velocity *U' appears in the equations of motion. All calculations and

simulations utilize a value of 5 ft/sec for 'U'. The coordinate system

convention is the standard body-fixed, right -hand orthogonal axis system

employing the Euler angle approach.

1. Variables

x, y, z Distances along the body fixed principal axes.

u, v, w Translational velocity components of model relative to

fluid along body axes.

p, q, r Rotational velocity components of model along body axes.

X, Y, Z Hydrodynamic force components along body axes.

K, M, N Hydrodynamic moment components along body axes.

\j/, 6, (j) Yaw, pitch, and roll angles; positive values following the
right-hand rule.

Xg , Yg , Zg Center of gravity coordinates along principal axes.

Xb, Yb, Zb Center of buoyancy coordinates along principal axes.

Ixx. Iyy> Izz Moments of inertia about the principal axes.

XnoSe» Xtaii Distances from body center along the longitudinal axis

used in the crossflow force and moment integrals.

Values are located within the nonlinear computer
simulation program in Appendix A.

h(x), b(x) Model width and height values used in the crossflow

force and moment integrals. Values are located

within the nonlinear computer simulation program
in Appendix A.
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II. STABILITY OF MOTION

A. EQUATIONS OF MOTION

The horizontal plane, nonlinear equations of motion for a submersible

as developed by Smith, Crane, and Summey [Ref. 1] are shown below in

Equations (2.1).

Sway: m[v + ur- wp + Xg(pq + r)- Yg(p2 + r
2

) + Zg(qr-p)] =

(2.1a)

[Ypp + Yrr + Ypqpq + Yqrqr] +[Yvuv +

Y

vwvw +

Y

5ru
2
5r] +

[Yvv + Ypup+ Yrur+ Yvqvq + Ywpwp + Ywrwr] + (W - B)cos 6 sin -

J" [CDyh(x)(v + xr)
2 + CD2 b(x)(w-xq)2

l

(v + xr)
dx

Ucf(x)

Yaw: lat + (I
yy

-Ixx)pq
- I^p2^2

) - Iy
Z
(pr+q) +

(2.1b)
I xz (qr-p) + m[Xg(v + ur-wp) - Yg(u-vr+wq)] =

[Npp + Nr f + Npqpq + Nqr qr] +

[NyV + Npup + N rur + N vqvq + Nwpwp +Nwrwrj +

[Nvuv + Nvwvw + Ngj-u^rj + (XgW-XbB)cos sind) + (YgW-YbB)sinO

J [CDyh(x)(v + xr)
2 + CDzb(x)(w-xq) 2

]

(v+xr)
(x) dx + u2N

Ucf<x)
prop



Roll: IxxP+qrdzz -Iyy) + I Xy(pr-q)-Iyz(q -r 2
)-

(2.1c)

Ixz(pq +r) + m[Yg (w-uq + vp)-Zg (v + ur-wp)] =

[Kpp +Krf + Kpqpq + Kqr qr] +

[Kvv +Kp
up +K rur+ Kvqvq + Kwpwp+K wrwr] +

[K vuv+Kvwvw] + (YgW-YbB)cos6cos(t) -

(ZgW-ZbB)cos 6 sin <j) +u 2Kprop

B. SIMPLIFICATIONS

In order to obtain the linearized equations of motion about a level flight

path, the following simplifications were utilized:

• The translational velocity (w) and acceleration (w ) in the z-direction

are zero.

• The rotational velocity (q) and acceleration (q) in the y-direction are

zero.

• The acceleration in the longitudinal direction (li ) is zero.

• The cross-products of inertia are zero by virtue of a body-centered
coordinate system.

• The submersible is neutrally buoyant so B = W.

• The longitudinal center of buoyancy (Xb) and the vertical center of

buoyancy (Zb) are located at the origin of the body-fixed coordinate

system.

• The lateral center of buoyancy (Yb) and the lateral center of gravity

(Yg ) are located at the origin of the body-fixed coordinate system.

• Dynamic stability analysis is performed with all controls fixed;

hence, all forces and moments due to control surfaces are zero.

• The angle of pitch (6) is sufficiently small for sin(0) to equal zero.



• From Smith, Crane, and Summey [Ref. 1] the propeller coefficients

Kprop and Npr0p are zero.

C. COUPLED STABILITY EQUATIONS

When the simplifying assumptions from the preceeding section are

applied, the resulting linearized equations are:

(2.2a) Sway: m[v +ur + Xg (r)-Zg (p)] = Yf

(2.2b) Yaw: I^r + mX
g (v+ur) = Nf

(2.2c) Roll: Ixxp - mZg (v+ur) = Kf

where the force and moment representations are given by:

(2.3a) Sway Force: Yf = Yv v +Yvv + Yj.r + Yr r + Ypp + Ypp

(2.3b) Yaw Moment: Nf = Nvv +Nvv + Nr f + Nr r +

N

pp + N
pp + (X

g
W-Xb B)(p

(2.3c) Roll Moment: Kf = K^v + Kvv + K^r + Kr r + Kpp + Kpp+ (Z
g
W-ZbB)cp

Equations 2.2 and 2.3 may be combined to form the state space

representation:

Ax = Bx (2.4a)

where x = [p v r] (2.4b)



Ixx-Kp -(Kv + MZg) -Kr10
-(Yp+MZg) M-Yv MXg-Yr

-NP MXg-Nv Izz-NrJ

(2.4c)

KPU ZbB-ZgW KvU U(MZg +Kr)10
YpU YvU U(Yr-M)

NPU XgW-XbB NvU U(Nr-MXg).

(2.4d)

The stability of the coupled, linearized system depends on the location of the

four eigenvalues of det(B - XA) = 0, which has a characteristic equation of

the form

A?i4 + BX3 + C?i2 + D?i + E = 0, (2.4e)

where the coefficients are complicated permutations of the elements in

matrices A and B. The values for A, B, C, D, and E are given in Equations

(2.4f - 2.4j) in terms of lower case letters that represent entries in matrices A

and B; they are explicitly defined in Table 1.

A = a(j-u - 1-r) + d-(u-h + o-l) - f-(r-h + o-j) (2.4f)

B = e-(uh + o-l) - d-(u-i - w-h + o-m - p-1) - a-(j-w + k-u - 1-x - r-m)

- b-(j-u - 1-r) + f-(r-i - x-h + o-k - p-j) - g-(r-h + o-j) (2.4g)

C = a(kw - mx) + b(jw + k-u - 1-x - r-m) + g(ri - x-h + ok - pj)

+ c(ju - 1-r) - d-(q-l - w-i + m-p) - e(ui - w-h + om - p-1)

+ f-(q-j - x-i + p-k) (2.4h)



D = g-(qj - x-i + pk) - f-q-k + d-q-m - e-(ql - wi + mp) - b(k-w - mx)

- c-(j-w + ku - lx - r-m) (2.4i)

E= c(kw - mx) + e-q-m - g-q-k (2.4j)

TABLE 1 COEFFICIENT DESCRIPTOR VALUES

a = Lcx-Kp b = K PU c = ZgW-ZbB d = MZg+Kv

e = KvU f = Kf g = MZgU h = MZg + Yp

i = YPU j = M-Yv k = YvU 1 = MXg-Yr

m = U(Yr-M) o = N P p = N PU q = XbB-XgW

r = MXg-Nv U = Izz - Nr W = U(Nr-MXg) x = NvU

D. UNCOUPLED STABILITY EQUATIONS

Using matrices A and B from the preceeding section (Equations 2.4c and

2.4d), uncoupling the steering and roll equations is straightforward:

STEERING EQUATIONS
M-Yv MXg-Y/

MXg-Nv Ia-Nt.

YvU U(Yr-M)

LNvU U(Nr-MXg)JLrJ (2.5a)

ROLL EQUATIONS
Ixx-Kp

1

KpU ZbB-ZgW

1

P

L <!>J (2.5b)

10



The characteristic equations for the uncoupled steering and roll equations

are much simpler than that for the coupled system, and are given as

Equations (2.5c and 2.5d) in terms of the hydrodynamic parameters rather

than the descriptors used in the previous section.

The steering characteristic equation form is: Al^
2
+ BlA. + Cl = 0, where

AL = (M-Yv )(Izz-Nr ) - (MXg -Yr )(MXg -Nv)

BL = -[azz-Nr )(YvU)+(M-Yv )(Nr -MXg )(U)+ (2.5c)

(Yr -MXNv -MXg )(U)+(Yr -MXg )(NvU)]

CL = (YvU2
)(Nr -MXg ) - (NvU2

)(Yr -M)

The roll characteristic equation form is: ArA. + Br?i + Cr = 0, where

Ar = Lex -Kp

Br = -KpU

Cr = z
g
w

(2.5d)

11



III. RESULTS AND DISCUSSION

A. DEGREE OF STABILITY

The effects of changing the longitudinal and vertical centers of gravity

(while keeping the center of buoyancy fixed at the vehicle center) on the

degree of stability for configuration 'A' is illustrated in Figure 3. Degree of

stability as utilized in this thesis is defined as the maximum real value of all

characteristic roots, with negative values indicating a stable situation. The

degree of stability for the uncoupled system is represented by the dashed line.

It can be seen that the critical value of Xg for which motions become unstable

is clearly a function of the metacentric height Zg , whereas the uncoupled

system predicts a constant value ofXg . Figure 4 displays the variation of the

imaginary part of the root value for configuration 'A'.

Figures 5 and 6 are analogous to Figures 3 and 4 for configuration 'B';

they show the degree of stability for varying Xg and Zg values. For this

configuration, the degree of stability has a stronger dependence on the

location of Xg and the value of Zg . For almost all positive values of Xg , the

complex conjugate roots are increasing in value and eventually becoming

positive; this indicates an oscillatory response that diverges when the degree

of stability is positive.

B. REGIONS OF STABILITY

Figure 7 shows the region of stability for configuration 'A', with the

uncoupled system represented by a dashed line. The uncoupled system

predicts stability for all values of Xg greater than 0.18 ft, while the coupled

system predicts an additional region enclosed by the triangular area to the

12
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left of the dashed line. Figure 8 is analogous to Figure 7 for configuration 'B'.

The large discrepancies between the predicted regions of stability in this case

occur for Zg values less than 0.045 ft. For small values of Zg , there are

corresponding small regions of Xg where stability is predicted by the coupled

equations but not by the uncoupled equations. The root values in this region

are complex conjugates with very small real parts. Figures 9(a) and 9(b)

illustrate the effect of co-locating Xb and Xg . This results in a degree of

stability for the coupled system that is nearly identical to the uncoupled

system.

C. INTERPRETATION OF RESULTS

It may be shown by applying Routh's criterion [Ref. 4: pp. 211-218] that

for a fourth order equation of the form A?i
4
+ BX + C^.

2
+ DX + E to have

roots with all negative real parts the following must apply:

i.) BCD - AD 2
- EB 2

>

ii.) E > 0.

If the quantity 'E' is less than zero, the system will become unstable and the

resulting motion will be a simple divergence. If, however, the value of the

quantity BCD - AD2
- EB2

is negative, the resulting instability will result in

an oscillatory motion due to the presence of complex conjugate roots with

positive real parts.

For the coupled system of equations, the condition E = yields:

Zg
= Xg .[Kv(YrM)/(YvNr - Nv(Yr-M))].

while the uncoupled system of equations reduces to a constant term

expression for Xg:

Xg = [(MYv)/(YvNr - Nv(YrM))].

18
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This explains the differences in the regions of stability illustrated in Figure 7,

since the above equations show a linear relationship between Zg and Xg for

the coupled equations and a constant value for Xg for the uncoupled

equations. When the value for Xg coincides with the value for Xt>, the

constant term 'E' in the coupled equations is reduced to that of the constant

associated with the uncoupled equations, and the resulting predicted degree

of stability no longer depends on the value of Zg . Substituting the coefficient

values for 'E' serves to clearly illustrate the reduction:

E = (ZgW)[(YvU
2
)(NrMXg ) - (NvU2

)(Yr-M)] +

(KvU2
)(Yr-M)(XbB-XgW) - (MZgUXYvUXXbB-XgW).

When Xb = Xg and B = W for the neutrally buoyant case, the second and third

terms are reduced to zero. When 'E' is then set equal to zero (the condition

for determining where the real roots change from negative to positive), the

dependence on the value Zg is removed and the expression for Xg is the

constant given for the uncoupled equations. This reduction is the explanation

for the appearance of Figures 9(a) and 9(b). When the longitudinal centers of

buoyancy and gravity coincide for a neutrally buoyant vehicle, the degree of

stability for the coupled system of equations covering all metacentric height

values is equivalent to the uncoupled system of equations.

A simple reduction of the equation resulting from Routh's criterion to

determine when a pair of complex conjugate roots crosses the zero axis is not

easily accomplished. Figure 10 is presented as confirmation that the

locations of Xg for which BCD - AD 2
- EB2

= matches the locations given

graphically in Figure 5.
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D. LINEAR SIMULATIONS

Figures 11 through 14 present comparisons of the coupled and uncoupled

system responses for configuration 'A'. For the stable cases Xg
= 0.40 ft and

for the unstable cases Xg
= -0.20 ft, while Zg is 0.20 ft for both. The unstable

coupled case (Figure 11) illustrates a simple divergence for both angle of drift

and roll angle. This is expected since the roots are not complex conjugates.

The unstable, uncoupled case accurately predicts the divergence in angle of

drift, but the roll response is predicted to be stable. This may be explained by

examining the uncoupled equation of motion in roll:

(J)'*
- 0' (KpU)/(Ixx -Kp ) + (ZgW)/(Ixx -Kp) = o.

Substituting values for configuration 'A' yields:

0" +
(J)'

(1.475) +
(J)
(0.720) = 0.

The solution of this equation results in a natural frequency of 0.85 rad/sec

and a damping factor of 0.869. This is an underdamped case, since both roots

have negative real parts and are complex conjugates. Substituting values for

configuration 'B' yields:

0" + 0' (1.475) + (0.144) = 0.

The solution for this case results in a natural frequency of 0.380 rad/sec and a

damping factor of 1.941, which represents an overdamped situation. This

also demonstrates that a vehicle's natural frequency in roll may be increased

by increasing the metacentric height. The effects of the underdamping may

be seen in Figures 12 through 14.

Figures 15 through 20 provide a comparison between the coupled and

uncoupled equations for configuration 'B'. The effects of the overdamping are

evident in figures 15 through 17. This set of figures demonstrate the

24
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Xg 0.20 0.20

Roll Stable Y Y

Drift Stable Y N

magnitude of the discrepancies when the coupling effects are not considered.

The comparison below summarizes the results of the figures representing

simulations for configuration 'B\ where 'C stands for coupled and 'UC' for

uncoupled.

Q UC Q UC Q H£

1.00 1.00 1.50 1.50

N Y N Y

N N N Y

As was seen before, the effects of the coupling on the system results in

complex conjugate eigenvalues with positive real parts. Therefore, the larger

values of Xg result in increasingly divergent oscillations instead of the

stability predicted by the uncoupled system.

Figure 21 is a three-dimensional presentation of the roll amplitude vs

time for configuration 'B' as Xg varies from 0.15 ft to 1.50 ft. This mesh

capability of MATLAB allows a comparative view of several solutions, and

the behavior of the roll response for the coupled system is easier to discern.

E. NON-LINEAR SIMULATIONS

In order to provide a measure of the accuracy of the results obtained

utilizing the linearized equations of motion, a simulation program for the

non-linear equations of motion was developed using Hamming's method

[Ref. 2]. Hamming's method utilizes a Milne predictor and incorporates a

modifier step prior to the correction step. The primary advantage of using

Hamming's method is that only two derivative function evaluations are
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required per step rather than the four or more normally required by other

popular methods. The local error is of the same order of magnitude (h
4
) as a

more time consuming process such as a fourth order Runge-Kutta, but the

reduction in function evaluations results in a faster simulation. The formula

is presented below, and may also be found in the nonlinear computer

program simulation in Appendix A.

HAMMING'S METHOD

yG+Dpredicted = y(i-3) + (4h/3)[2fli) - fli-1) + 2fli-2)]

y(i+l)modified = y(i+Dpredicted - (112/12 l)[y(i)predicted - jKi Corrected]

ytf+Dcorrected = d/8)[9y(i) - y(i-2) + 3h{fU+l Modified + 2f(i) - fli-l)}]

y(i+l) = Vft+Dcorrected + (9/121)[y(i+l)predjcted " y(i+Dcorrected]

The first four values must be determined by another method; the Euler

linear solution with a small step size *h' proved sufficient.

Figure 22 represents the simulation for the unstable representation of

configuration 'A'. Rather than the exponentially increasing roll angle and the

-90 angle of drift computed with the linear simulation, the nonlinear solution

predicts an angle of drift that reaches -15 degrees, and then slowly diverges.

The roll angle reaches a steady state value of approximately three degrees.

Figures 23 and 24 are the nonlinear simulation results for stable

configurations of 'A' and 'B', respectively. They are nearly identical to the

results obtained using the linear simulation and displayed as Figures 12 and

18.

Figure 25 is the simulation for an unstable configuration *B\ Quite

notable are the steady state roll angle and angle of drift after approximately

250 seconds rather than the exponentially increasing divergence apparent in

37
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the corresponding linear simulation. Figure 26 provides a comparison

between the linear and nonlinear solution for angle of roll. The enlarged

view of the steady state region provided in Figure 27 better illustrates the

constant limits of oscillation. By plotting the roll angle versus the angle of

drift, an elliptical trajectory is apparent in Figure 28. This result is similar

to the results obtained by Schmidt and Wright in their analysis of high

performance aircraft wing-rock [Ref. 5]. They postulate that a possible

explanation for the limit cycle is the inertial coupling between a stable

longitudinal and an unstable lateral mode. Similar results in the work are

attributed to dynamic as well as hydrodynamic coupling. Figures 25 and 28

indicate that the nonlinear interactions for the unstable conditions of

configuration 'B' provide a significant amount of damping to the rolling

motion. The limiting of the rolling motion accomplished by including the

nonlinear terms then serves to limit the buildup of the angle of drift and the

result is an eventual stable limit cycle.

The ocean environment can be expected to introduce many combinations

of disturbance forces, which may or may not be periodic. A preferred method

for simulating many disturbances such as sensor noise, ocean current

fluctuation, and vehicle acceleration fluctuations is to model them as 'white

noise'. Figure 29 is presented to demonstrate the effects of including

constant, zero-mean disturbances in sway and yaw on the marginally stable

system of configuration 'B '. The disturbances are developed using MATLAB's

random number generator with a uniform distribution. Che rnndom numbers

are then scaled to simulate values that may be expected. The variance of the

sway and yaw acceleration disturbances, respectively, for Figure 29 are 0.003

(ft/s
2
)

2
and 0.002 (rad/s

2
)

2
. The resulting simulation bears little resemblance
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to Figure 24, although the initial conditions and values for X
g and Z

g are the

same. With even these relatively minor disturbances acting on the system of

configuration 'B\ a rather large, non-symmetric oscillation in both roll and

angle of drift is evident. Although the system is still stable, with the mean of

both the roll angle and angle of drift equalling zero, a limit cycle similar to

that of the unstable configuration (Figure 25) has developed. As the angle of

drift fluctuates between positive three degrees and negative four degrees, the

angle of roll varies between positive and negative two degrees. Increasing

the scaling (which increases the variance) for the disturbances would be

expected to increase the fluctuations until stability is lost. Similarly, it is

true that the small disturbances acting in Figure 29 have a greatly reduced

effect on the system of configuration 'A', which has greater stability.
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IV. PERTURBATIONANALYSIS

A. BACKGROUND

The previous section demonstrates that knowledge of the separation

between longitudinal centers of buoyancy and gravity is critical in

determining system stability. If this quantity is the dominant factor in a

stability analysis, then an approximation for the degree of stability may be

developed by applying perturbation theory. Although perturbation results

are only approximations, their advantage over numerical methods is in

illustrating the degree to which a solution depends on the variable(s)

involved. From the fundamental theorem of perturbation theory [Ref. 6], we

seek a solution to the characteristic equation AX4
+ BX + CX + DX + E = of

the form:

n=oo

Me) = X an e
n

(a i)
n=0

'

where e is the variable of interest and the solution approximates the

numerical solution in the region where e is smaEl. The constant coefficients

(ao, ai, ..., an ) axe all independent of £, and are alltequal to zero for small e.

B. PERTURBATIONFORMULATION

Recalling Equations 2.4f - 2.4j, which defhned the coefficients of the

quartic characteristic equation, it would obviously be desirable to simplify the

equations as much as possible prior to formulating the perturbation
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approximation. The variable of interest will be defined as:

e = Xg
- Xb (4.2)

where the nominal value for Xb is zero and the perturbation will be

performed around e = 0. By comparing Figures 30 and 31 it is clear that by

allowing the hydrodynamic coefficients Kv, Kf-, Yp , Np , Yp , and 1^> to equal

zero a very good approximate solution to Equation (2.4e) is obtained for both

configurations 'A' and 'B\ This simplification reduces the descriptor

coefficients T , T, 'o', and 'p' from Table 1 to zero, which simplifies the

coefficients of the coupled equations of motion to Equations (4.3a) - (4.3e)

below.

A = (Ixx- Kp)[(M-Yv)(I zz -N,)-(MX g -Y,)(MX g -Nv)] +

(MZg )
2
(I zz -Nr ) (4.3a)

B = (K vU)(MZg XIzz -N,) + (MZg )

2(N r -MX g )(U)-

(MZg)(MZg +K r)(MX g -Nv)(U)-axx-Kp)[(M-Yv)(N r -MX g )(U) +

(YvUXI zz -Nr )-(NvU)(MX g -Yr)-(MX g -N v )(Yr -M)(U)]-

(KpU)[(M-Yv )(Izz-Nr )-(MX g -Yr )(MX g -N v )]
(4.3b)

C = (Ixx -Kp )[(YvU
2XN r -MX g )-(N vU 2)(Yr-M)

]
+

(Z gWX(M-

Y

v )(Izz -Nr)-(MXg -Yr)(MXg -Nv )] +

(KpU)[(M-Yv)(Nr -MXg)(U) + (YvU)(I„ -Nr )
-

(NyUXMXg-Yt) - (MX g -Nv)(Yr -M)(U)] +

(MZg)[(XgV/XMXg -Y, WNvU2)(MZg + K r ) + (K vU2XNr -MX g )]



D = -(ZgW)[(M-Yv)(Nr -MX g )(U) + (YvU)(Izz -N,)-

(NvUXMXg - Yr ) - (MX g - Nv)(Yr - M)(U)] -

(KpU
3
)[(Yv )(Nr -MXg )-(N v )(Yr -M)] + (K vU)(XgW)(MX g

- Yr)-

(MZg )(XgW)(U)(Yr - M) - (MZg +K r)(U)(XgW)(M -Yv )
(4 3d)

E = (Z gW)[(YvU 2 )(N r -MXg )-(N vU2 )(Yr -M)] - (KvXgWU2
)(Yr -M) +

(YvX gWU2 )(MZg+ K r )
(4>3e)

Recalling the definitions of the coefficients for the uncoupled systems:

AL = (M-Yv)(Izz-N r ) - (MX g -Yr )(MX g -Nv)

BL = -[(I zz -Nr)(YvU) + (M-Yv )(N r -MX g )(U) +

(Yr -M)(Nv -MX g )(U) + (Yr - MXg )(NvU)]

CL = (YvU
2XN r -MX g ) - (NvU2XYr -M)

AR = Ixx-Kp
BR = -KpU CR = ZgW

Substituting in Equations (4.3a) - (4.3e) yields:

A = ARAL + (MZg)
2
(I zz -Nr ) (4.4a)

B = ARBL + BRAL + (MZg)2(Nr -MX g )(U) +
(4>4b)

(MZgXdzz -N r )(K vU)-(MZg +Kr )(MXg -N V )(U)]

C = ArCl + CrA l + BrBl + (MZg)[(XgW)(MXg-Yr ) +

(K vU2XNr - MXg ) - (NvU2)(MZg + Kr )]
(4.4c)

D = CrBl + CLBR + (KvU)(XgW)(MX g -Yr )
-

(MZg + KrXXgW)(U)(M-Yv) - (MZg)(XgW)(U)(Yr -M) (4.4d)

E = CrCl + (YvU
2
)(XgWXMZg + Kr) - (K vXgWU2

)(Yr -M)
(4 4g)
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In order to further simplify these coefficients, terms of order (Zg ) and (Xg )

will be neglected; the effects of doing this are small and may be seen in

Figures 32 and 33. This reduces the coefficients to:

A = ARAL (4.5a)

B = ARBL + BRAL + a (Xg) + Kl (4.5b)

C = ArCl + CrAl + BRBL + (3 (Xg) + K2 (4.5c)

D = CRBL + CLBR + Y(Xg) (4.5d)

E = CRCL + 6(Xg) (4.5e)

where: a = -M 2
ZgKrU (4.6a)

(3 = -(MZg )[(WYr) + (MKvU2
)] (4.6b)

Y = (WUXMZg(Yv-Yr )+ KrYv-KrM-KvYfl (4.6c)

8 = (WU^tCYyXMZg+Kr) - (Kv)(YrM)] (4.6e)

Kl = (MZg )[(Izz-Nr)(KvU) + (NvKrU)] (4.6£)

K2 = (MZgU2
)(NrKv - NvK,-) (4.6g)

Carrying through the computations results in the following expressions:

(ArAl) ao
4
+ (ArBl+BrAl+K1) a

3
+ (ArCl+CrAl+BrBl+K2) a

2
+

(CrBl+ClBr) a + CRCL = (4.7a)

_ -(aa
3
+ (3a

2
+ ya + 8) __ (4 ?1 .

1
(4A)a 3 +3(B-aXg )ao

2 +2(C-pXg)a + (D-YX g )

-ai
2(C-pX 8 ) - ai

2a (6A+B-aXg) - Klapai2
- 3oeao 2

ai-2fiaoai-Yai
&2 " (4A)a 3 + 3(B-aX g )ao

2 + 2(C-|3Xg)ao+(D-YXg)

(4.7c)
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The characteristic equation AX 4
+ BX + CX + DX + E = may now be

expressed in terms of a second order perturbation which depends on a single

variable e as:

X(e) = ao + ai e + a2 e
2

(4.8)

Figures 34 through 37 depict the results for both first and second order

perturbation analysis about Xg close to zero. Results for both configurations

'A' and 'B' demonstrate that this method for representing the degree of

stability in the vicinity of a nominal (Xg - Xb) is quite satisfactory, provided

the roots have no complex conjugates. In the region where the roots become

complex, the problem is no longer a regular perturbation, and methods to

solve the singular perturbation must be developed.
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V. CONCLUSIONS AND RECOMMENDATIONS

When considering an inherently stable situation for an analysis of sway,

yaw, and roll response, the linear simulations compare favorably with

the nonlinear simulations. For a marginally stable or unstable system,

only the nonlinear simulation can predict the existence and extent of any

non-zero steady states or limit cycles that may occur.

Obviously, in the design of a submersible, careful attention must be paid

to selection of both the metacentric height and the separation between the

longitudinal centers of gravity and buoyancy. Instability associated with

the dynamic coupling effects can be minimized by increasing the

metacentric height. The uncoupled system stability predictions are not

reliable when there is separation between Xg and Xb.

It can be concluded from the analysis that the coupling of roll into sway

and yaw for the linearized equations of motion is not very significant

when Xg equals Xb.

Recommendations for future modelling research include an expansion

to incorporate coupling effects between the vertical and horizontal planes.

It is well known that the coupling between translation and attitude is a

severe limitation in the design of submersibles.

The effects of varying hydrodynamic derivatives and initial conditions, as

well as incorporating disturbances in the nonlinear simulations deserve

more attention. Additionally, the complexity of the nonlinear system

resulting from including the vertical plane is greatly increased. More

studies of the nonlinear system resulting from this union are also

required.
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APPENDIX A

NONLINEAR SIMULATION PROGRAM:

****************************************************

% THIS PROGRAM USES HAMMING'S METHOD TO SOLVE A SYSTEM
% OF NONLINEAR EQUATIONS. SIMILAR TO A FOURTH ORDER
% RUNGE-KUTTA IN TERMS OF LOCAL ERROR, IT REQUIRES ONLY
% TWO FUNCTION CALCULATIONS PER STEP VICE FOUR.

function[v,phi] = nonlinsim_hamming(UO,Xg,Zg)

% VEHICLE PARAMETERS FOLLOW

W = 12000.0; Ixx = 1760.0; Iyy = 9450.0; Izz=10700.0; L = 17.425;

RHO=1.94; G=32.2; M = W/G; BUOY = W; Zb=0.0; Xb = 0.0;

ZZ = 0.5*RHO*LA2;

% SWAY HYDRODYNAMIC COEFFICIENTS
Ypdot = 1.270E-04*ZZ*LA2; Yrdot = 1.240E-03*ZZ*LA2;
Ypq = 4.125E-03*ZZ*LA2; Yqr = -6.510E-03*ZZ*LA2;
Yvdot = -5.550E-02*ZZ*L; Yp = 3.055E-03*ZZ*L;

Yvq = 2.360E-02*ZZ*L; Ywp = 2.350E-01*ZZ*L;

Ywr = -1.880E-02*ZZ*L; Yv = -9.310E-02*ZZ;

Yvw = 6.840E-02*ZZ;

% NOMINAL VALUE FOR Yr = 2.970E-02*ZZ*L
% CONFIGURATION 'A': Yr = -3.500E-02*ZZ*L
% CONFIGURATION 'B': Yr = -5.940E-02*ZZ*L

CC = inputCenter model configuration choice; either 1 for A or 2 for B')

if CC<2
Yr = -3.500e-02*ZZ*L;

else

Yr = -5.940e-02*ZZ*L;

end

ROLL HYDRODYNAMIC COEFFICIENTS
Kpdot = -1.01E-03*ZZ*LA3; Krdot = -3.37E-05*ZZ*LA3;
Kpq = -6.93E-05*ZZ*LA3; Kqr = 1.68E-02*ZZ*LA3;
Kvdot = 1.27E-04*ZZ*LA2; Kp = -1.10E-02*ZZ*LA2;
Kr = -8.41E-04*ZZ*LA2; Kvq = -5.115E-03*ZZ*LA2;

Kwp = -1.27E-04*ZZ*LA2; Kwr = 1.39E-02*ZZ*LA2;
Kv = 3.055E-03*ZZ*L; Kvw = -1.87E-01*ZZ*L;
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YAW HYDRODYNAMIC COEFFICIENTS
Npdot = -3.370E-05*ZZ*LA3; Nrdot = -3.400E-03*ZZ*LA3;
Npq = -2.110E-02*ZZ*LA3; Nqr = 2.750E-03*ZZ*LA3;
Nvdot = 1.240E-03*ZZ*LA2; Np = -8.405E-04*ZZ*LA2;
Nr = -1.640E-02*ZZ*LA2; Nvq = -9.990E-03*ZZ*LA2;
Nwp = -1.750E-02*ZZ*LA2; Nwr = 7.350E-03*ZZ*LA2;
Nv = -1.484E-02*ZZ*L; Nvw = -2.670E-02*ZZ*L;

% THE FOLLOWING ARE USED FOR EVALUATING THE INTEGRALS
% IN THE SWAY AND YAW EQUATIONS OF MOTION. <X' IS THE
% DISTANCE IN FEET ALONG THE LONGITUDINAL AXIS AND 'HH'
% IS THE VEHICLE HEIGHT. ALL VALUES ARE IN FEET.

X(l)=-105.9/12;

X(4)=-94.3/12;

X(7)=-66.3/12;

X(10)=79.2/12;

X(13)=91.2/12;

X(16)=101.2/12;

X(2)=-104.3/12;

X(5)=-87.3/12;

X(8)=-55.8/12;

X(ll)=83.2/12;

X(14)=95.2/12;

X(17)=102.1/12;

X(3)=-99.3/12;

X(6)=-76.8/12;

X(9)=72.7/12;

X(12)=87.2/12;

X(15)=99.2/12;

X(18)=103.2/12;

HH(1)=0.0/12;

HH(4)=13.96/12;

HH(7)=29.36/12;

HH(10)=30.00/12;

HH(13)=21.44/12;

HH(16)=9.12/12;

HH(2)=2.28/12;

HH(5)=19.76/12;

HH(8)=31.85/12;

HH(11)=27.84/12;

HH(14)=17.12/12;

HH(17)=6.72/12;

HH(3)=8.24/12;

HH(6)=25.1/12;

HH(9)=31.85/12;

HH(12)=25.12/12;

HH(15)=12.0/12;

HH(18)=0.00/12;

% THE INITIAL CONDITIONS ARE SET PRIOR TO INTEGRATION
% BY CALLING A LINEAR INTEGRATION PROGRAM NAMED
% 'EULER'. THE ERRORS ASSOCIATED WITH USING LINEAR
% SOLUTIONS FOR THE FIRST FIVE TIME INTERVAL STEPS ARE
% SMALL AND DO NOT AFFECT THE NONLINEAR SOLUTIONS.

[p,pdot,v,vdot,r,rdot,phi,phidot] = euler(dt);

p(l:5)=p;

pdot(l:5)=pdot;

pdotmod(5)=pdot(5);

v(l:5)=v;

vdot(l:5)=vdot;

vdotmod(5)=vdot(5);
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Kl:5)=r;
rdot(l:5)=rdot;

rdotmod(5)=rdot(5);

phi(l:5)= phi;

phidot(l:5)= phidot;

phidotmod(5)=phidot(5);

% THE TIME INTERVAL IS 'dt\ THE FINAL TIME IS 'tfinal', AND A
% VALUE CALLED 'stopnumber' IS SET TO ALLOW ACCESS TO THE
% DATA AFTER THIS NUMBER OF ITERATIONS. THE VALUE FOR
% 'stopnumber MAY BE CHANGED WHILE THE KEYBOARD IS
% ACTIVE TO ALLOW SUBSEQUENT PROGRAM INTERACTION.
% RETURN TO THE PROGRAM IS ACHIEVED BY TYPING 'return'

% FOLLOWED BY THE 'enter' KEY.

dt = inputCenter the time interval step size')

tfinal = inputCenter the final time')

stopnumber = inputCenter the value for stopnumber')

% THIS SECTION ALLOWS FOR RANDOM DISTURBANCES IN SWAY
% AND YAW

rand('uniform')

vdotdist = rand(l,(tfinal/dt)+l);

vdotdist = 0.05*(vdotdist - mean(vdotdist));
rdotdist = rand(l,(tfinal/dt)+l);

rdotdist = 0.04*(rdotdist - mean(rdotdist));

% THIS SECTION PROVIDES FOR CONTINUATION OF SOLUTIONS.
% IF THE MATRICES BECOME VERY LARGE, IT IS RECOMMENDED
% THAT THE CURRENT VALUES BE SAVED AND A NEW
% SIMULATION BEGUN AS MATLAB SLOWS NOTICEABLY WITH
% LARGE MATRICES.
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vcorr(5)=
;

rcorr(5)=

pcorr(5)=
;

phicorr(5)=

% vpred(5)=
;

rpred(5)=
% ppred(5)=

;
phipred(5)=

% pdotmod(5)= ; rdotmod(5)=
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% COMMENCE INTEGRATION

forj = 6:(tfinaI/dt) + l;

% THIS SECTION USES A HAMMING PREDICTOR-CORRECTOR TO
OBTAIN VALUES

vpred(j)=v(j-4)+(4*dt/3)*(2*vdot(j-l)-vdot(j-2)+2*vdot(j-3));

rpred(j)=r(j-4)+(4*dt/3)*(2*rdot(j-l)-rdot(j-2)+2*rdot(j-3));

ppred(j)=p(j-4)+(4*dt/3)*(2*pdot(j-l)-pdot(j-2)+2*pdot(j-3));

phipred(j)=phi(j-4)+(4*dt/3)*(2*p(j-l)-p(j-2)+2*p(j-3));

ifj<7
vmod(j) =

rmod(j) =

pmod(j) =

phimod(j):

else

vmod(j)=
rmod(j)=
pmod(j)=
phimod(j)=

end

vpred(j);

rpred(j);

ppred(j);

phipred(j);

vpred(j )-(l 12/12 l)*(vpred(j-l)-vcorr(j-l));

rpred(j)-(112/121)*(rpred(j-l)-rcorr(j-l));

ppred(j)-(112/121)*(ppred(j-l)-pcorr(j-l));

phipredCJ )-( 1 12/12 1 )*(phipred(j- 1 )-phicorr(j- 1 ));

tmplmod=vmod(j); tmp2mod=rmod(j);
[SWAYMOD,YAWMOD]=crossflowintmod(tmplmod,tmp2mod,X,HH);

vdotmod(j)= (l/(M-Yvdot))*((Ypdot+M*Zg)*pdotmod(j-l)+...

Yp*UO*pmod(j)+(Yrdot-M*Xg)*rdotmod(j-l)+...
Yv*U0*vmod(j)+(Yr-M)*U0*rmod(j)+SWAYMOD);

vcorr(j)= 0.125*(9*v(j-l)-v(j-3)+3*dt*(vdotmod(j)+2*vdot(j-l)-...

vdot(j-2)));

rdotmod(j)= (l/(Izz-Nrdot))*(Npdot*pdotmod(j-l)+...

(Nvdot-M*Xg)*vdotmod(j)+Np*U0*pmod(j )+. .

.

(Nr-M*Xg)*UO*rmod(j)+Nv*UO*vmod(j)+...
Xg*W*sin(phimod(j))+YAWMOD);

rcorr(j)= 0.125*(9*r(j-l)-r(j-3)+3*dt*(rdotmod(j)+2*rdot(j-l)-...

rdot(j-2)));

pdotmod(j)= (l/(Ixx-Kpdot))*((Kvdot+M*Zg)*vdotmod(j)+...

Krdot*rdotmod(j)+Kp*UO*pmod(jW...
(Kr+M*Zg)*UO*rmod(j)+Kv*UO*vmod(j)-...
Zg*W*sin(phimod(j)));
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pcorr(j)= 0.125*(9*p(j-l)-p(j-3)+3*dt*(pdotmod(j)+2*pdot(j-l)-...

pdot(j-2)));

phicorr(j)= 0.125*(9*phi(j-l)-phi(j-3)+3*dt*(pmod(j)+2*p(j-l)-...

p(j-2)));

v(j)= vcorr(j)+(9/121)*(vpred(j)-vcorr(j));

r(j)= rcorr(j)+(9/121)*(rpred(j)-rcorr(j));

p(j)= pcorr(j)+(9/121)*(ppred(j)-pcorr(j));

phi(j)= phicorr(j)+(9/121)*(phipred(j)-phicorr(j));

beta(j) = -atan(v(j)/5)*180/pi;

% THIS SECTION HAS THE NON-LINEAR EQUATIONS OF MOTION.
% REMEMBER TO REMOVE THE DISTURBANCES FROM THE SWAY
% AND YAW DERIVATIVES IF THEY ARE NOT DESIRED.

tmpl=v(j); tmp2=r(j);

[SWAY.YAW] = crossflowint(tmpl,tmp2,X,HH);

vdot(j)= ((l/(M-Yvdot))*((Ypdot+M*Zg)*pdot(j-l)+Yp*UO*p(j) +...

(Yrdot-M*Xg)*rdot(j-l)+Yv*UO*v(j)+(Yr-M)*UO*r(j)+...
SWAY))+vdotdist(j);

rdot(j)= ((l/(Izz-Nrdot))*(Npdot*pdot(j-l)+(Nvdot-M*Xg)*vdot(j)+...

Np*UO*p(j)+(Nr-M*Xg)*UO*r(j)+Nv*UO*v(j)+...
Xg*W*sin(phi(j))+YAW))+rdotdist(j);

pdot(j)= (l/(Ixx-Kpdot))*((Kvdot+M*Zg)*vdot(j)+Krdot*rdot(j)+...

Kp*UO*p(j)+(Kr+M*Zg)*UO*r(j)+Kv*UO*v(j)-...
Zg*W*sin(phi(j)));

ifj == stopnumber
keyboard
end

end
return
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LINEAR SIMULATION PROGRAM:

************************************************************************

% THIS PROGRAM IS THE LINEAR EQUATION OF MOTION
% INTEGRATION EMPLOYING A SIMPLE EULER METHOD TO
% OBTAIN STARTING VALUES FOR THE NONLINEAR SIMULATION.

function[p,pdot,v,vdot,r,rdot,phi,phidot] = euler(dt)

% THE MATRIX 'A CORRESPONDS TO THE DAMPING MATRIX AND
% MATRIX 'B' CORRESPONDS TO THE MASS MATRIX.

A(l,l) = Kp*U0
A(l,3) = Kv*U0:
A(2,l)=1.0;

A(2,3) = 0.0;

A(3,l) = Yp*U0
A(3,3) = Yv*U0
A(4,l) = Np*U0
A(4,3) = Nv*U0

A(l,2) = -((Zg*WHZb*B));
A(l,4) = (Kr+(M*Zg))*U0;
A(2,2) = 0.0;

A(2,4) = 0.0;

A(3,2) = 0.0;

A(3,4) = (Yr-M)*U0;
A(4,2) = ((Xg*W)-(Xb*B));

A(4,4) = (Nr-(M*Xg))*U0;

B(l,l) = Ixx-Kpdot;

B(l,3) = -(Kvdot+(M*Zg));

B(2,l) = 0.0;

B(2,3) = 0.0;

B(3,l) = -(Ypdot+(M*Zg));

B(3,3) = M-Yvdot;
B(4,l) = -Npdot;

B(4,3) = (M*Xg)-Nvdot;

C = [inv(B)*A];

% INITIAL CONDITIONS

B(l,2) = 0.0;

B(l,4) = -Krdot;

B(2,2) = 1.0;

B(2,4) = 0.0;

B(3,2) = 0.0;

B(3,4) = (M*Xg)-Yrdot;

B(4,2) = 0.0;

B(4,4) = Izz-Nrdot;

timed) = 0.0;

p(l) = 0.0;

phi(l) = 1.0*pi/180;

psi(l) = 0.0;

v(l) = 0.0;

r(l) = 0.0;

x(l) = 0.0;

xdot(l) = 0.0;

tfinal = 1;

pdotd) = 0.0;

phidot(l) = 0.0;

psidot(l) = 0.0;

vdot(l) = 0.0;

rdot(l) = 0.0;

y(l) = 0.0;

ydot(l) = 0.0;

67



% THIS SECTION ALLOWS FOR RANDOM DISTURBANCES IN SWAY
% AND YAW FOR THE LINEAR EQUATIONS AS WELL. MATLAB
% ALLOWS FOR EITHER A UNIFORM OR NORMAL DISTRIBUTION
% OF RANDOM NUMBER.

rand( uniform')

vdotdist = rand(l,(tfinal/deltat)+l);

vdotdist = 0.05*(vdotdist - mean(vdotdist));

rdotdist = rand(l,(tfinal/deltat)+l);

rdotdist = 0.04*(rdotdist - mean(rdotdist));

% COMMENCE EULER INTEGRATION

for j = 2:(tfinal/deltat) + 1;

P(j) = P(j-D + pdot(j-l)*deltat;

phi(j)= phi(j-l) + phidot(j-l)*deltat;

psi(j)= psi(j-l) + psidot(j-l)*deltat;

v(j) = v(j-l) + vdot(j-l)*deltat;

beta(j)= -atan(v(j)/U0);

r(j) = r(j-l) + rdot(j-l)*deltat;

x(j)= x(j-l) + xdot(j-l)*deltat;

y(j)= y(j-l) + ydot(j-l)*deltat;

pdot(j) =

phidot(j)=

vdot(j) =

rdot(j) =

psidot(j)

:

xdot(j) =

ydot(j) =

time(j) =

end
return

C(l,l)*p(j) + C(l,2)*phi(j) + C(l,3)*v(j) + C(l,4)*r(i)

C(2,l)*p(j) + C(2,2)*phi(j) + C(2,3)*v(j) + C(2,4)*r(j)

C(3,l)*p(j) + C(3,2)*phi(j) + C(3,3)*v(j) + C(3,4)*r(j)

C(4,l)*p(j) + C(4,2)*phi(j) + C(4,3)*v(j) + C(4,4)*r(j)

r(j)*cos(phi(j));

U0*cos(psi(j)) - v(j)*sin(psi(j))*cos(phi(j));

UO*sin(psi(j)) + v(j)*cos(psi(j))*cos(phi(j));

(j*deltat) - deltat;
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CROSSFLOW INTEGRAL PROGRAM:

************************************************************************

% THIS IS A NUMERICAL INTEGRATION PROGRAM TO CALCULATE
% THE DRAG FORCES IN THE HORIZONTAL PLANE UTILIZING THE
% TRAPEZOIDAL RULE. THE CALL TO 'crossflowintmod' IS

% IDENTICAL, ONLY USING DIFFERENT VARIABLE NAMES AND
% VALUES FOR THE MODIFICATION PORTION OF HAMMING'S
% METHOD.

function[SWAY,YAW]=crossflowint(tmpl,tmp2,X,HH)

RHO = 1.94; CDy = 0.35; SWAY = 0.0; YAW = 0.0;

v = tmpl; r = tmp2;

fork =1:18;

ifabs(v+X(k)*r)<le-6

UCF(k) = 0.0;

else

UCF(k) = (v+X(k)*r)/(abs(v+X(k)*r));

end
CFLOW(k) = CDy*HH(k)*((v+X(k)*r)A2);

SWAYl(k) = CFLOW(k)*UCF(k);
YAWl(k) = CFLOW(k)*X(k)*UCF(k);
end

jj = 1:17;

SWAY = -0.25*RHO*sum((SWAYl(jj)+SWAYl(jj+l)).*(X(jj+l)-X(jj)));

YAW = -0.25*RHO*sum((YAWl(jj)+YAWl(jj+l)).*(X(jj+l)-X(jj)));

return

EIGENVALUE CALCULATION PROGRAM;

************************************************************************

% THIS PROGRAM DETERMINES THE FOUR ROOTS FOR THE ROLL
% COUPLED EQUATIONS OF MOTION OVER A RANGE OF Xg.

function[all_roots,xg] = findroots(UO,Xgmin,stepXg,Xgmax)

W= 12000.0; Ixx = 1760.0; Iyy = 9450.0; Izz=10700.0;

L= 17.425; RHO=1.94; G=32.2; M = W/G;
BUOY = W;Zb=0.0;
ZZ = 0.5*RHO*LA2;
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% SWAY HYDRODYNAMIC COEFFICIENTS
Ypdot= 1.27E-04*ZZ*LA2; Yrdot= 1.24E-03*ZZ*LA2;
Yvdot = -5.55E-02*ZZ*L; Yp = 3.055E-03*ZZ*L;
Yv = -9.31E-02*ZZ;

CC = inputCenter model configuration choice; either 1 for A or 2 for B')

if CC<2
Yr = -3.500e-02*ZZ*L;

else

Yr = -5.940e-02*ZZ*L;

end

% ROLL HYDRODYNAMIC COEFFICIENTS
Kpdot = -1.01E-03*ZZ*LA3; Krdot = -3.37E-05*ZZ*LA3;
Kvdot = 1.27E-04*ZZ*LA2; Kp = -1.10E-02*ZZ*LA2;
Kr = -8.41E-04*ZZ*LA2; Kv = 3.055E-03*ZZ*L;

% YAW HYDRODYNAMIC COEFFICIENTS
Npdot = -3.370E-05*ZZ*LA3; Nrdot = -3.400E-03*ZZ*LA3;
Nvdot = 1.240E-03*ZZ*LA2; Np = -8.405E-04*ZZ*LA2;
Nr = -1.640E-02*ZZ*LA2; Nv = -1.484E-02*ZZ*L;

rows=(abs(Xgmax-Xgmin)/stepXg)+ 1;

all_roots = zeros(rows,4); xg = zeros(rows,l);

Zg = inputCenter value for Zg')

a = (Ixx-Kpdot); b = (Kp*U0); c = (Zg*W)-(Zb*BUOY);
d = (M*Zg)+Kvdot; e = Kv*U0; f = Krdot;

g = (M*Zg*U0) + (Kr*U0); h = Ypdot + (M*Zg);
i = Yp*U0; j =M - Yvdot; k = Yv*U0;
= Npdot; u = Izz - Nrdot; p = Np*U0;
m = (Yr*U0) - (M*U0); x = Nv*U0;

Xg = Xgmin:stepXg:Xgmax;
Xb = inputCenter either 0.0 or Xg for value of Xb);

1 = (M*Xg) - Yrdot; q = (Xb.*BUOY)-(Xg*W);
r = (M*Xg)-Nvdot; w = (Nr*U0)-(M*Xg*U0);

A = (((a).*(j
+u-l.*r)+(d).*(u*h+o.*l)-(f).*(r.*h-rO*j));;

B = ((e).*(u*h+o.*l)-(d).*(u*i-w.*h+o.*m-p.*l)-(a).*...

(j.*w+k*u-l.*x-r.*m)-(b).*(j*u-l.*r)+(f).*(r.*i-x...

.*h+o*k-p*j)-(g).*(r.*h+o*j));

70



C = ((a).*(k.*w-m *x)+(b) *(j.*w+k*u-l.*x-r.*m)+(c).*...

(j*u-l.*r)-(d).*(q.*l-w.*i+m.*p)-(e).*(u*i-w.*h+...

o.*m-p.*l)+(f).*(q.*j-x*i+p*k)+(g).*(r.*i-x.*h+o*k...

-P.*j»;

D = ((g).*(q.*j-x.*i+p*kHf.*q*k>+(d *q.*m>-(e).*(q.*l...

-w.*i+m.*pHc).*(j.*w+k*u-l.*x-r*m)-(b).*(k*w-m.*x));

E = ((c) *(k *w-m.*x)+(e.*q.*m)-(g.*q.*k));

z = [A* B' C J)' El;

j = lrrows; poly(j,:)=z(j,:); rts = roots(poly(jj,:))';

for jj = l:rows;

all_roots(jj,l:4) = eval(rts)';

end

xg=Xg';

end;

return

FIRST AND SECOND ORDER PERTURBATION
APPROXIMATION COMPUTER PROGRAM,
*****************************************************************

% THIS PROGRAM DEVELOPS THE 1ST & 2ND ORDER PERTURBATION
% APPROXIMATION SOLUTIONS FROM SECTION IV

function[xlocation,perturbrootl,perturbroot2,xg] =perturbanalysis(UO)

W = 12000.0; Ixx = 1760.0; Iyy = 9450.0; Izz=10700.0;

L= 17.425; RHO=1.94; G=32.2; M = W/G;
BUOY = W; Zb=0.0; Xb = 0.0;

ZZ = 0.5*RHO*LA2;

% SWAY HYDHODYNAMIC COEFFICIENTS
Ypdot= 0.0; Yrdot^ 1.24E-03*ZZ*LA2;

Yvdot = -5.55E-02*ZZ*L; Yp =0.0;
Yv = -9.31E-02*ZZ;

CC = inputCenter model configuration choice; either 1 for A or 2 for B')

if CC<2
Yr = -3.500e-02*ZZ*L:
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else

Yr = -5.940e-02*ZZ*L;

end

% ROLL HYDRODYNAMIC COEFFICIENTS
Kpdot = -1.01E-03*ZZ*LA3; Krdot = 0.0;

Kvdot = 0.0; Kp = -1.10E-02*ZZ*LA2;
Kr = -8.41E-04*ZZ*LA2; Kv = 3.055E-03*ZZ*L;

% YAW HYDRODYNAMIC COEFFICIENTS
Npdot = 0.0; Nrdot = -3.400E-03*ZZ*LA3;
Nvdot = 1.240E-03*ZZ*LA2; Np = 0.0;

Nr = -1.640E-02*ZZ*LA2; Nv = -7.42E-03*ZZ*L;

Zg = input( enter value for Zg')

% THIS PERTURBATION PROGRAM SOLVES FOR THE SOLUTION
% ABOUT Xg=0

Xg = 0.0;

index = 1;

for Xg = -1.0:0.05:0.2;

a = (Ixx-Kpdot);

d = (M*Zg);

b = (Kp*U0);

e = Kv*U0;
g = (M*Zg*U0)+(Kr*U0); h = Ypdot 4 <M*Zg);

j = M - Yvdot; k = Yv*U0;
m= (Yr*U0) - (M*U0); o = Npdot;

q = (Xb*BUOY)-(Xg*W); r = (M*Xg)-Nvdot;
w = (Nr*U0)-(M*Xg*U0); x = Nv*U0;

c=(Zg*WHZb*BUOY);
f= Krdot;

i = Yp*U0;
1 = (M*Xg) - Yrdot;

p = Np*U0;
u = Izz - Nrdot;

Al = (j*u)-(l*r); Bl = -((u*k)+(j*w)-(m*r)-(l*i)); CI = (k*w)-(x*m);

Ar = a; Br = -b; Cr = c;

Kl = d*u*e + d*Nvdot*Kr*U0;
K2 = d*((Nr*Kv*U0A2KNv*Kr*U0A2));

alpha = -M*M*Zg*Kr*U0;
beta = -d*((W*Yrdot)+(M*Kv*U0*U0));
gamma = (d*W*U0*(Yvdot-Yr))+(W*U0*(Kr*Yvdot-Kr*M-Kv*Yrdot));
delta = g*Yv*W*U0 - m*Kv*W*U0;
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% P Q R S &T SOLVE THE 4TH ORDER POLYNOMIAL FOR aO

P = Ar*Al;

Q = Ar*Bl + Br*Al +K1;
R = Ar*Cl +Cr*Al +Br*Bl +K2;
S = Cr*Bl + Cl*Br;

T = Cr*Cl;

A = P;

B = Q+alpha*Xg;
C = R+beta*Xg;
D = S+gamma*Xg;
E = T+delta*Xg;

z = [ABODE]; templ(index,l:4) = roots(z)';

xg(index,l) = Xg; index = index + 1; end

zz = [P Q R S T]; temp2( 1,1:4) = roots(zz)';

a0 = temp2(l,4)

% THIS PART SOLVES FOR al IN THE 1ST ORDER PERTURBATION

numl = -(alpha*(aOA3)+beta*(aO A2)+gamma*aO+delta);
denl = (4*P*(aOA3)+3*Q*(aOA2)+2*R*(aO)+S);
al = numl/denl

% THIS PART SOLVES FOR a2 IN THE 2ND ORDER PERTURBATION

num2a=-(al A2*(6*P*aO*aO+Q*aO+R)+al*(gamma+2*beta*aO+...
3*alpha*a0*a0));

a2 = num2a/denl

index = 1;

for X = -0.8:0.04:0.4;

% PERTURBROOT1 IS 1ST ORDER PERTURBATION APPROXIMATION
perturbrootl(index) = aO + al*X;

% PERTURBROOT2 IS 2ND ORDER PERTURBATION APPROXIMATION
perturbroot2(index) = aO + al*X + a2*X*X;

xlocation(index) = X;

index = index+1;

end
return
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