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ABSTRACT

The numerical experiments, carried out through the use of the vorticity-

stream function equations and their finite difference form, on sinusoidally-

oscillating as well as co-existing flows (sinusoidal oscillation plus steady mean

flow) at low and intermediate Keulegan-Carpenter numbers are described. A

third-order in time, second-order in space, three-level predictor-corrector finite-

difference scheme has been used. The Poisson equation for the stream function

was solved by a Fast Poisson Solver based on the High Order Difference

Approximation with Identity Expansion (HODIE) and the Fast Fourier

Transform (FFT) methods provided by the National Center for Atmospheric

Research for the solution of separable elliptic partial differential equations with a

non-square grid. The analysis has produced force-transfer and fluid-damping

coefficients comparable to those obtained experimentally for both types of flows

(i.e., with and without current) and to those obtained with a square grid through

the use of the IMSL library.
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NOMENCLATURE

A = amplitude of sinusoidal oscillations

a = transformation parameter

Cjl = inline force coefficient

Cl = transverse force coefficient

Cj = Fourier-averaged drag coefficient

-m inertia coefficient = 1 + k^

D = diameter

Fjl = inline force

Fl = transverse force

K = Keulegan-Carpenter Number = UmT/D

K+ = K by current = K(l + U /Um) = K + U T/D

kV. = Fourier-averaged added mass coefficient

n = order of polynomial (see Eq 17)

ps
= pressure on cylinder

Poo = pressure at outer boundary

ps
= pressure coefficient = (p s

- p^,) / pUoo

R = cylinder radius

Re = Reynolds number VU/v, or UmD/v

IX



Re+ = Re modified by current = Re(l + U /Um ) = Re + U D/v

r = radial distance

T = period of oscillations

t = time

U = time dependent velocity

Um = maximum velocity in pure sinusoidal flow

Uo = collinear steady current velocity

V = constant velocity reached at the end of the acceleration period

V r
= current ratio = U /Um

p =D2/vT = Re/K

Aa = disturbance oscillation applied to the ambient flow, (in degrees)

Ac, = computational grid spacing

Q = relative displacement of fluid during the acceleration period

= (S/R)v = 0.5 (dU/dt) tJ/R = 0.5 V tv /(R)

]i = dynamic viscosity

v = kinematic viscosity

p = density

= angular position

\\f = stream function

co = vorticity
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I. INTRODUCTION

Numerical experimentation in fluid dynamics, through the use of

finite-difference, finite-element, and discrete-vortex methods, has attracted

considerable attention during the past two decades and produced laminar

flows difficult to measure and turbulent flows hard to verify and impossible

to generalize. The reasons for this are relatively simple. Numerical solutions

based on the full Navier-Stokes equations are not stable at high Reynolds

numbers and the instability is non-linearly related to the particular flow,

input parameters and the discretization conditions. Also, the real flow at the

computed Reynolds numbers may be turbulent, at least in some regions of

the flow, and the numerical experiment does not imitate the physical

experiment. Furthermore, the observed physical and numerical instabilities

do not necessarily correspond to each other. Assuming that the calculations

for a given flow are carried out at sufficiently small Reynolds numbers, where

the flow is known to remain stable and laminar, one quickly discovers that it

is practically impossible to measure, to any credible degree of accuracy, most

or all of the predicted quantities (except the Strouhal number and the

photographs of the flow patterns).

Evidently, one's view of the state of the numerical modelling depends to

a large extent on one's objectives. For example, if the objective is to obtain

some approximate answers and flow kinematics, one might be perfectly

satisfied with the existing codes. If the objective is to match the measured and

calculated results (e.g., lift and drag coefficients), one might achieve the

desired objective by fine tuning a number of model parameters (e.g., the order



of approximation of the velocity and /or vorticity gradients, particularly near

the wall, mesh size, time step, type of discretization, outer boundary, just to

name a few). If one's objectives are to perform numerical experiments for

sake of numerical experiments, with no concern with the compatibility of the

numerical and experimental results, then one can objectively asses the model

instead of attempting to attribute to it artificial powers of prediction.

As far as the turbulent flows are concerned, some or all of the predictions

of the numerical calculations for a given flow depend on the closure model

used. Some models do better than others for some flows and worse than

others for other flows. No model, however sophisticated, has a corner on the

numerical market. Among the numerous theoretical, numerical, and

experimental investigations, impulsively-started steady flow about a circular

cylinder has occupied a prominent place partly because of its intrinsic interest

towards the understanding of the evolution of separation, vortex formation,

growth, and partly because it provided the most fundamental case for the

comparison and validation of various numerical methods and codes. In

recent years, attention has turned to a broader class of relatively manageable

time-dependent flows about bluff bodies: Non-impulsively-started flows,

sinusoidally oscillating flows, co-existing flows (uniform flow plus oscillating

flow), flow from one steady state to another (at a lower or higher Reynolds

number through the use of prescribed changes in velocity), and so on. The

solution of these problems at sufficiently high Reynolds numbers will have

far reaching theoretical and practical consequences. As noted above, this is

not yet the case, and the solutions must necessarily be confined to cases where

the accurate prediction of physical experiments and the instant gratification



are not the real objectives. However, it is hoped that even the approximate

solutions will have enough information to elucidate the physics of the

phenomenon.

The hydrodynamic loading situations which are well understood are

those which do not involve flow separation. Thus, they are amenable to

nearly exact analytical treatment. These concern primarily the determination

of the fluid forces on large objects in the diffraction regime where the

characteristic dimension of the body relative to the wave length is larger than

about 0.2. The use of various numerical techniques is sufficient to predict

accurately the forces and moments acting on the body, provided that the

viscous effects and the effects of separation for bodies with sharp edges are

ignored as secondary.

The understanding of the fluid-structure interactions which involve

extensive flow separation and dependence on numerous parameters such as

Reynolds number, Keulegan-Carpenter number, relative roughness, relative

motion of the body, proximity effects, hydroelastic response, etc. is far from

complete (Sarpkaya & Isaacson 1981). There are several reasons for this. First,

although the physical laws governing the motion (the Navier-Stokes

equations) are well understood, valid approximations necessary for

numerical and physical model studies are still unknown. Even the

unidirectional steady flow about a bluff body remains theoretically

unresolved. Much of our understanding of vortex shedding behind bluff

bodies came from steady-flow experiments, highly idealized models, and

limited numerical solutions. Most of the numerical studies based on the use

of the Navier-Stokes equations and some suitable spatial and temporal



differencing schemes are limited, out of necessity, to low Reynolds number

flows. A second reason why progress has been slow is that the bluff body

problems involving wake return are an order of magnitude more complex

and there has been only a handful of limited applications of the methods

based on Navier-Stokes equations.

The formation of a wake gives rise not only to a form drag, as it would be

the case if the motion were steady, but also to significant changes in the

inertial forces. The velocity-dependent form drag is not the same as that for

the steady flow of a viscous fluid, and the acceleration-dependent inertial

resistance is not the same as that for an unseparated unsteady flow of an

inviscid fluid. In other words, the drag and inertial forces are interdependent

as well as time-dependent. These effects are further compounded by the

diffusion and decay of vortices and by the three-dimensional nature of

vorticity due to turbulent mixing, finite spanwise coherence, and the random

nature of the vortices (which give rise to cycle-to-cycle variations and

numerous flow modes even under controlled laboratory conditions). The

stronger and better correlated the returning vortices, the sharper and more

pronounced the changes are in pressure distribution on the body and in the

integrated quantities such as the lift, drag, and inertia coefficients.

It is clear from the foregoing that the objectives of the present

investigation are to carry out extensive numerical experiments through the

use of the vorticity-stream function form of the Navier-Stokes equations and

their finite difference form, on co-existing flows (sinusoidal oscillation plus

steady mean flow). The expectations are that the results will point out the

strengths and weaknesses of the code, for the particular type of formulation



used, explain the reasons between the various numerical predictions of the

same problem, and, hopefully, shed some light on the physics of flows

heretofore uncalculated.



II. BACKGROUND STUDIES

A finite difference analysis of the Navier-Stokes equations for a

sinusoidally-oscillating ambient flow about a circular cylinder at K (Keulegan-

Carpenter Number) = UmT/D = 5 (Re = 1000) and K = 7 (Re = 700) has been

attempted by Baba & Miyata (1987). Their results have shown that the

calculations can be carried out only for short times (less than two cycles of

flow oscillation) with a non-super computer. Murashige, Hinatsu and

Kinoshita (1989) have used a similar method to analyze three cases (K = 5, 7,

and 10) at higher Reynolds numbers around 104 . The flow was perturbed by

artificial means to trigger an asymmetry. At K = 10, a transverse vortex street

appeared, in agreement with experimental observations. The numerical

simulation of steady flow past a circular cylinder undergoing in-line and/or

transverse oscillations through the use of two-dimensional unsteady Navier-

Stokes equations was undertaken by Lecointe et al. (1987) for relatively small

amplitudes (A/D = 0.13). Justesen (1991) presented extensive results obtained

from a numerical solution of a vorticity-stream function formulation of the

Navier-Stokes equations for the flow around a circular cylinder in planar

oscillating flow at small Keulegan-Carpenter numbers in the subcritical

Reynolds number range. Justesen introduced a straining parameter "a" in

order to better resolve the large gradients near the cylinder surface. This is in

addition to the logarithmic straining, commonly used as part of the

transformations, for a better resolution of the gradients near the body.



Evidently, Justesen's transformation for a = defaults to the logarithmic

straining. However, "a" becomes another disposable parameter, dependent

on at least K and Re. Justesen had to choose judiciously the value of the

straining parameter for each K in order achieve drag and inertia coefficients

in satisfactory agreement with those obtained experimentally. A systematic

numerical variation of the governing parameters for an arbitrary U(t) is

extremely difficult.

The in-line oscillations of a cylinder in uniform flow (or the sinusoidally

oscillating flow with a steady mean flow) has been the subject of intense

interest in recent years (see, e.g., Sarpkaya & Isaacson, 1981 and Sarpkaya &

Storm, 1985) in connection with the understanding of the behavior of hot-

wire anemometers and the fluid loading of structures subjected to currents,

gusts and other types of unsteady flows. The biassing of the shedding of the

vortices by the current causes profound changes in both the drag and inertia

coefficients, relative to their no-current values. The mobile separation points

undergo large excursions, as much as 120 degrees during a given cycle of

oscillation over a circular cylinder (Sarpkaya and Butterworth, 1992). These

effects are further compounded by the diffusion and decay of vortices and by

the three-dimensional nature of vorticity due to turbulent mixing, reduced

spanwise coherence, mutual-induction instability, and the random nature of

vortices which give rise to cycle-to-cycle variations and numerous flow

modes even under controlled laboratory conditions. It is because of these

reasons that the present work is dedicated to the numerical analysis of such

flows.



III. NUMERICAL REPRESENTATION

A. COMPUTATIONAL METHOD

Here only a brief description of the computational method is presented.

A more in depth description is given by Wang (1989) and Putzig (1991).

The fluid is assumed to be two-dimensional, incompressible and viscous.

The governing equations for the solution are the Navier-Stokes equations,

with the stream function and the vorticity as independent variables. To

achieve a higher density of mesh points near the cylinder surface, the

computational domain is transformed from the physical plane in Fig. 1 to a

rectangular plane in Fig. 2 (see Appendix). In the rectangular plane, the mesh

is maintained at a uniform grid spacing. It is necessary to have more mesh

points closer to the cylinder surface because in this region the gradients of

both the vorticity and the stream function are the largest.

A third-order in time, second-order in space, three-level predictor-

corrector finite-difference scheme is used to solve the vorticity-transport

equation. A Fast Poisson Solver automatically discretizes the separable

elliptic equation which is then solved by a generalized cyclic reduction

algorithm. One of the solvers was provided by the FMSL mathematics library,

for the solution of separable elliptic partial differential equations with a

square grid, and the other by the National Center for Atmospheric Research,

for the solution of separable elliptic partial differential equations with a non-

square grid.
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The unsteady Navier-Stokes equations in the polar coordinates, as

defined by the vorticity transport equation and the vorticity/stream-function

equation are,

3co_l

at r

— (CO—-) (CD—-)
dr ae ae ar

= vV2
co

(1)

and

where

V2
v = co

(2)

n2 a
2

i a i a
2

v = —=•+— +
ar

2 rar r
2
ae

2
(3)

co and \j/ are the vorticity and the stream function, v is the kinematic viscosity,

t is the time and, r and are polar coordinates directions (see Fig. 1). The

velocity components in the r and directions are defined by

1 3\i/ 3w
u = — v = —-

r 30 and 3r (4)

The boundary conditions for the physical problem are:

(1) no slip and zero normal velocity on the surface of the cylinder

\i/ = -^ = on r = R
* (5)

and (2) the potential flow at infinity is defined as

w = U(r )sin0
r (6)

and co = at r = co. u is the external flow and R is the radius of the cylinder.



The coordinate transformations required to go from the physical domain

to the computational domain are:

r = R exp(a^) and 6 = arj (7)

where R is the radius of the cylinder and 'a' is a transformation parameter.

The transformation of the non-dimensionalized vorticity-stream

function equations and their finite difference form through the use of the

central difference approximation for vorticity and a two-step, three-level,

predictor-corrector scheme, with a third order accuracy in time, are described

in detail in Wang (1989), in Fredrickson (1990) and in Putzig (1991) and will

not be repeated here.

B. CALCULATION OF THE FORCE COEFFICIENTS

The in-line and transverse force coefficients are determined from the

combined contributions of the shear and pressure forces acting on the

cylinder. The viscous forces are calculated from t s
= fico. The total in-line

force then reduces to

fil = -Jo
K
Ps cos(8)Rd6 -

/o

K
M.cosin(co)Rde

(g)

and the total lift force as

Fl = -J
2n
p s

sin(e)Rde-
j

27t
uxocos(co)Rde

(9)

After dividing the in-line and the lift-force equations by (0.5 pU2 D) and defining

10



- _ 2(ps
-

Poo)
Ps

"
tt2

(10)

the force coefficients reduce to

C IL
= -ij 27C

ps
cos(6)Rde-— J

2n
^a5sin(co)Rde

2 Re (11)

and

CL
=-ij 2n

ps
sin(6)Rde-—

j

2n
pLC0cos((0)Rde

(12)

The pressure coefficient is determined from the Navier-Stokes

equations in terms of dimensionless vorticity. Once integrated with respect to

0, one has

ps <e) = ps (0) + A£?*(^l de
Re J VarJr=1 (13)

Equation (13) is substituted into equations (11) and (12) to determine the

numerical scheme for the in-line and transverse force coefficients,

CIL =
2 f2K

Re Jo\\\Jo J(

Ydco^

H 3r
de

A=i

cos(8) + G)sin(8)ki8

(14)

and

Ref{ de
A=i

sin(e) + wcos(e)^de (15)

11



The radial derivative of the vorticity on the surface of the cylinder,

appearing in Equations (14) and (15), is determined through the use of discrete

pointwise approximations of various orders, ranging from second to tenth

order. For a second order approximation, one has

^tQj
"] = -3o)i + 4coi+1 -coi+2

, 0(^2)
^ 3r Jr=1 2Ac,

(16)

For higher order polynomials Equation (16) may be written as

fay Aco, + Bco1+1 + Ccoi+2 + Dcoi+3 + Eco1+4 + .

At
+ 0(A^n

) (17)

in which the coefficients A -K are given in Table 1 below.

12



Table 1: Coefficients of the Polynomial in Eq. (17)

n=2 n=4 n=6 n=8 n=10

A -3/2 -25/12 -49/20 -761/280 -7381/2520

B 2 4 6 8 10

C -1/2 -3 -15/2 -14 -45/2

D 4/3 20/3 56/3 40

E -1/4 -15/4 -35/2 -105/2

F 6/5 56/5 25^5

G -1/6 -14/3 -35

H 8/7 120/7

I -1/8 -45/8

J 10/9

K -1/10

13



C CALCULATION OF THE DRAG AND INERTIA COEFFICIENTS

If one were to associate the total force with a velocity-square-dependent

drag force and an acceleration-dependent inertial force then the coefficient

associated with the latter may be interpreted as some measure of the added

mass. But one must bare in mind that such a decomposition is far from being

unique.

It has been customary to express the fluid force acting on a body moving

in a fluid otherwise at rest as

F(t) = ipCS A
p
|{(U + U(t)}|{(U + U(t)} +pkH V^jp (18)

where Uo represents the steady velocity; U(t), the time-dependent

oscillations; Cj , the Fourier-averaged drag coefficient and k^ , the Fourier-

averaged added-mass coefficient. It is customary to use an inertia coefficient

Cm for a fluid in motion about a body at rest through the use of Cm = 1 + kV.

.

The Fourier averages of the drag and added-mass coefficients over a

period of T may be calculated by multiplying both sides of Equation (8) once

with U(t) and once with dU/dt to yield

T

2jF(t)U(t)dt

Q =—
T

s
(19)

pA
p J|{(U

+U(t)}|{(U +U(t)}U(t)dt

14



and

T
dUft)

dt
fF(t)^dt

(Cm - 1) = k^ =—^ (20)

pvJ[dU(t)/dt]dt

which may be evaluated readily provided that sufficiently reliable data are

available for F(t), U , U(t), and dU(t)/dt.

A simple dimensional analysis of the flow under consideration

shows that the time-averaged force coefficients (CjJ and kV
1
- ) are functions of

a relative amplitude or Keulegan-Carpenter number, Mach number,

Reynolds number, and a parameter involving Uo (e.g., UoT/D or

Uo/[U(t)]max)- There are numerous possibilities regarding the definitions of

the relative amplitude or Keulegan-Carpenter number and the Reynolds

number. The purpose of the search for a more suitable Keulegan-Carpenter

number and /or Reynolds number is to enhance the correlation of the data to

reduce the number of the governing parameters, possibly eliminating UoT/D

as an independent parameter. The list of possible Reynolds numbers and

Keulegan-Carpenter numbers is long and will not be given here. Suffice it to

note that the two force-coefficients for the flow about a cylinder may be

written as

Cu

u

d
=f

i
(K / Re /VK) (21)

k
ij
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or as

= f
i
(K

+
,Re

+,VK) (22)

in which

K = UmT/D , Re = UmD/v , VK = U T/D

K+ = K(l + Uo/Um ) = K + U T/D

Re+ = Red + Uo/Um ) = Re + U D/v (23)

The purpose of the present calculations was not to provide a detailed

comparison between the measured and calculated forces but rather to attempt

to establish a relationship between the shedding of vortices and the relative

magnitude of the current. The particular values of K and Vr chosen for the

calculations (K = 4 - 6, Vr = 0.0 - 1.2) was one for which some experimental

data were available at comparable p, Re, and Vr values.
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IV. DISCUSSION OF RESULTS

The numerical experiments were carried out through the use of a VAX-

2000, a VAX-3520, a CRAY Supercomputer. The solution procedure and

technique have been validated for several types of unsteady flows, i.e.,

impulsively-started, suddenly-stopped, and uniformly-decelerated flows

before applying it to co-existing flows (oscillatory flow or sinusoidally-

oscillating flow with mean velocity). Excellent agreement with flow

visualization and experimentally determined drag and lift coefficients has

been obtained for both symmetric and asymmetric wake solutions. It is this

validation that led to the exploration of the characteristics of sinusoidally-

oscillating flows superimposed on a mean velocity. The oscillation was

specified by U = U +Um sin(27ct/T) in which U is the steady mean velocity

and Um is the amplitude of sinusoidal oscillations.

The flow was perturbed by changing the direction of the ambient flow

sinusoidally (with an amplitude of one-half of a degree) during the first cycle

of the oscillation. The amplitude of the sine wave was the only free

parameter. It is worth noting that this type of disturbance gradually returns

the perturbed quantity to its initial state.

Numerical experiments have been carried out in the range of K = 1-4, (3

= 200, Re = 200-800, At = 0.00025-0.0005 and for various values of V r = U /Um,

as shown in Table 2.
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Table 2 The range of the governing parameters

(P = 200)

Vr / K= 1 2 2 4

0.0 X X X X

0.60 X

0.65 X

0.70 X

Evidently, this is a rather limited exploration of a highly complex

problem and requires much more numerical and experimental work. The

purpose of the present calculations was not to provide a detailed comparison

between the measured and calculated forces but rather to attempt to establish

a relationship between the shedding of vortices and the relative magnitude of

the current.

Figures 3 through 6 show for K = 1, £ = 200, Vr = 0.0, and At = 0.00025, the

in-line force and streamlines. The calculated force coefficients are Cd = 2.18

and Cm = 2.15. The corresponding theoretical values are Cd = 2.2 and Cm = 2.1

(Wang 1968). Figures 7-13 show the in-line force, the streamlines and the

streaklines, for K = 2, p = 200, and Vr = 0.0. The calculated force coefficients

are Cd = 1-35 and Cm = 2.13. The corresponding theoretical and experimental

values are, respectively, Cd (th) = 0.95, Cd (exp) = 1.50 and Cm (th) = 2.02 and Cm

(exp) = 2.0. The differences between the calculated, experimental, and

theoretical values are due to the fact that the theoretical values do not

account for the flow separation. Figures 14-24 show the in-line force and

18



detailed streakline plots for K = 3, (3 = 200, and Vr = 0.0. The calculated force

coefficients are Cd = 1.35 and Cm = 2.02. The corresponding experimental

values (Bearman et al. 1985) are Cd = 1.45 and Cm = 2.10. There are no

theoretical values to compare with for the reasons just cited. Figures 25-31

show the in-line force and the streaklines for K = 4, p = 200, and Vr = 0.0. The

calculated force coefficients are Cd = 1-38 and Cm = 1.92. The corresponding

experimental values (Bearman et al. 1985) are Cd = 1-45 and Cm = 1.95. It is

clear from the foregoing that for the no-current case the calculated force-

transfer coefficients are in very good agreement with those obtained

experimentally. For the cases for which a comparison is possible, the

calculated values also agree reasonably well with the theoretical values of

Wang (1968).

Figures 32-38 show the in-line and transverse forces, the streamlines and

the streaklines for K = 4 and Vr = 0.6 (with Cd= 1.17, Cm = 1.65); and Figs. 39-41

show the in-line and transverse forces and a single streakline plot for K = 4

and Vr = 0.65 (with Cd= 1.16, Cm = 1.63); and finally, Figs. 42-43 show a

streamline and a streakline plot for K = 4 and Vr = 0.7 (with Cd= 1.15, Cm =

1.63).

The calculation with current were carried out for the expressed purpose of

substantiating the previous findings that for K = 4, within a narrow range of

V r values, the width of the wake increases and the vortices begin to arrange

themselves along three rows. In order to make sure that this finding was not

a consequence of the sensitivity of the code to grid shape and size and the

time-interval used, a more comprehensive series of calculations were

19



undertaken through the use of a non-square grid. Not only were the

previous conclusions substantiated but also additional facts were uncovered.

A comparison of Fig. 38 (for V r = 0.60), with Fig. 41 (for Vr = 0.65), and Fig. 43

(for Vr =0.7) shows that the wake is comprised of three rows of heterostrophic

vortices. They differ only in detail from one Vr to another in the narrow

range of Vr values from about 0.6 to 0.7. At lower Vr values, the inner pair of

vortices are closer to the wake axis. As Vr increases toward 0.7, the inner pair

reaches the edges of the outer pair (Fig. 43), and the inner and the outer

vortices form an interesting quadruple. The vortex pairs on one side of the

street may propel themselves (as a Kelvin oval) away from the wake axis, or

become part of a larger scale instability. In either case, it will be difficult to

predict the behavior of such a special wake at larger times because it is rather

difficult to distinguish between the naturally occurring instabilities and those

occurring numerically due to truncation errors. Nevertheless, it is gratifying

to note that the flow visualization of the early stages of the wake for K = 4, at a

representative value of Vr = 0.65, yielded results in excellent agreement with

those presented herein.

Table 3 shows a comparison of the calculated and experimental (Moe &

Verley 1980) drag and inertia coefficients for K = 4 for representative values of

V r . As expected, the inertia coefficients agree extremely well. As far as the

drag coefficients are concerned, the agreement is not as good but certainly

better than expected in view of the fact that (3 was 200 in the calculations and

about 600 in the experiments. Nevertheless, the trend of the data is well

predicted.
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Table 3. Comparison of the Measured and Calculated Force

Coefficients for K = 4 and Three Values of Vr

Vr : 0.60 0.65 0.70

Cm (exP> 1.68 1.63 1.60

C" (cal)m 1.65 1.63 1.63

Cjj (exp) 0.93 0.98 1.05

C" (cal) 1.17 1.16 1.15
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V. CONCLUSIONS

The investigation reported here warranted the following conclusions:

1. Even the higher order finite difference formulations of the governing

equations based on the vorticity/stream-function formulation of the

Navier Stokes equations can be solved for only relatively small

Reynolds numbers. This is primarily due to stability and computer
constraints.

The numerical experiments with pulsating flows (oscillation plus

steady mean flow) for K = 4 yielded force-transfer coefficients in good
agreement with those obtained experimentally.

For K = 4 and relative current velocities of about 0.6-0.7, the vortices

shed nearly symmetrically at each cycle and gave rise to a most
unusual three-row vortex street, where each row is comprised of a

pair of heterostrophic vortices. For relative current velocities larger

than about one, the vortex wake returned to the asymmetric mode, as

is encountered in a regular Karman vortex street. The use of a non-

square grid in lieu of a square grid in solving the Poisson's equation

did not alter the results.

The foregoing numerical experiments could not have been possible

had it not been due to the availability of a VAX-3520 and a CRAY
supercomputer. It is fully realized that numerical instabilities versus

fluid dynamical instabilities have different and at times competing
mathematical and computational demands. It is because of this

reason that calculations at higher Reynolds numbers (while

preserving flow stability) and calculations at very small Keulegan-
Carpenter numbers (while preserving numerical stability) require

extremely large CPU times even on a supercomputer.
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Figure 8. Streamlines, K = 2, Re =400, Vr = 0.0, t/T = 4.0
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Figure 9. Streamlines, K = 2, Re =400, V r = 0.0, t/T = 5.0
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Figure 10. Streamlines, K = 2, Re =400, V r = 0.0, t/T = 6.0
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