

Calhoun: The NPS Institutional Archive

Theses and Dissertations

Thesis Collection

1992-12

Model fan passage flow simulation

Myre, David D.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/23962

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

DUDLEY KNOY LIBRARY NAVAL PUBLICAL ATE SCHOOL MONTEREY CA 93943-5101

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

MODEL FAN PASSAGE FLOW SIMULATION

by

David D. Myre

December, 1992

Thesis Advisor:

Raymond P. Shreeve

Approved for public release; distribution is unlimited

Unclassified

SECURITY CLASSIFICATION OF THIS	PAGE					
	REPORT	DOCUMENTATI	ON PAGE			
1a. REPORT SECURITY CLASSIFICAT Unclassified	ION		1b. RESTRICTIVE N	ARKINGS		
2a. SECURITY CLASSIFICATION AUT	HORITY		3. DISTRIBUTION/A	VAILABILITY OF R	EPORT	
2b. DECLASSIFICATION/DOWNGRA	DING SCHEDU	ILE	Approved for pub	lic release; distribu	ition is unlimit	ted.
4. PERFORMING ORGANIZATION RE	PORT NUMBE	ER(S)	5. MONITORING O	RGANIZATION REF	PORTNUMBER	(\$)
6a. NAME OF PERFORMING ORGAN Naval Postgraduate School		6b. OFFICE SYMBOL (If applicable) 33	7a. NAME OF MOI Naval Postgradua	7a. NAME OF MONITORING ORGANIZATION Naval Postgraduate School		
6c. ADDRESS (City, State, and ZIP C	ode)	.1	7b. ADDRESS (City	, State, and ZIP Co	de)	
Monterey, CA 93943-5000			Monterey, CA 93	943-5000		
8a. NAME OF FUNDING/SPONSORI ORGANIZATION Naval Air Warfa Aircraft Division	NG re Center	8b. OFFICE SYMBOL (If applicable) PE 31	9. PROCUREMENT N6237692WR001	INSTRUMENT IDE	NTIFICATION	IUMBER
8c. ADDRESS (City, State, and ZIP Co	ode)		10. SOURCE OF FL	INDING NUMBERS		
P.O. Box 7176 Trenton NJ 08628-0176			Program Element No WR024	Project No	Task No. 001	Work Unit Accession Number
12. PERSONAL AUTHOR(S) David I	D. Myre			· · · · ·		
13a. TYPE OF REPORT Master's Thesis	13b. TIME C	OVERED	14. DATE OF REPOR	RT (year, month, da	y) 15. PAG	e count 173
16. SUPPLEMENTARY NOTATION The views expressed in this thesis a Government.	re those of the	e author and do not refle	ect the official policy o	or position of the De	epartment of I	Defense or the U.S.
17. COSATI CODES	10000110	18. SUBJECT TERMS (continue on reverse in	f necessary and ide	ntify by block	number)
FIELD GROUP SU	UBGROUP	Shock-Boundary Lay Estimation,Boundar	er Interaction, Trans y Layer Sepereation	onic Fan Simulatio	on, Fan Passag	ge Loss
19. ABSTRACT (continue on reverse	if necessary a	Ind identify by block nu	mber)			
Two-dimensional experimental and baseline data for the study of the ef- program, a probe and traverse syst measurements and multiple scans of boundary layer interaction were m positioned in similar locations by re- meaurements. The losses compare- distributions were also found to com	d numerical si fects of vortex em were desig of static press easured for a c otating the mo d favorably wi npare favorab	mulations of a transoni generating devices on f gned and constructed. A ure ports. Impact press design and one off-desig odel to a decreased flow ith a numerical Navier- ly with numerical resul	c fan blade passage w the suction surface sh a new data acquisition ure behind two mode m flow incidence in a incidence. Fan passa Stokes solution and o lts.	vere conducted at a lock-boundary laye in system was adap l fan passages and blow-down wind tu ge losses were obta ine engineering los	Mach number er interaction. ted to record d static pressure innel. The pas ained by integr is model. Stati	of 1.4 to provide In the experimenta ata from probe es across the shock- sage shocks were rating probe c pressure
20. DISTRIBUTION/AVAILABILITY O	FABSTRACT		21 ARSTRACT SEC		TION	
	ME AS REPORT		Unclassified			

SAME AS REPORT	DIICUSERS	Onciassified		
22a. NAME OF RESPONSIBLE INDIVIDUAL Raymond P. Shreeve		22b. TELEPHONE (Include A (408) 656-2593	rea code)	22c. OFFICE SYMBOL AA/SF
DD FORM 1473, 84 MAR	83 APR edition may All other edit	be used until exhausted ions are obsolete	SECURITY CLASSI Unclassi	FICATION OF THIS PAGE

Approved for public release; distribution is unlimited.

Model Fan Passage Flow Simulation

by

David D. Myre Lieutenant, United States Navy B.S.A.E., United States Naval Academy

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL December, 1992

ABSTRACT

Two-dimensional experimental and numerical simulations of a transonic fan blade passage were conducted at a Mach number of 1.4 to provide baseline data for the study of the effects of vortex generating devices on the suction surface shock-boundary layer interaction. In the experimental program, a probe and traverse system were designed and constructed. A new data acquisition system was adapted to record data from probe surveys and multiple scans of static pressure ports. Impact pressure behind two model fan passages and static pressures across the shock-boundary layer interaction were measured for a design incidence and one off-design incidence in a blow-down wind tunnel. The passage shocks were positioned in similar locations by rotating the model to a decreased flow incidence. Fan passage losses were obtained by integrating the probe measurements. The losses compared favorably with a numerical Navier-Stokes solution and one engineering model. Static pressure distributions were also found to compare favorably with numerical results.

TABLE OF CONTENTS

I.	INT	ROI	DUCTION	. 1
	А.	SH	OCK-BOUNDARY LAYER INTERACTION	.1
	В.	BO	UNDARY LAYER CONTROL	.2
	C.	2-D	FAN PASSAGE SIMULATION	.6
II.	EX	PER	IMENTAL SIMULATION	9
	A.	TR.	ANSONIC CASCADE WIND TUNNEL	.9
		1.	Wind Tunnel Description	9
		2.	Optical System1	3
	В.	TE:	ST SECTION INSTRUMENTATION1	4
		1.	Static Pressure Taps1	4
		2.	Impact Probe and Vertical Traverse1	5
	C.	DA	TA ACQUISITION AND ANALYSIS SYSTEM	8
		1.	Pressure Measurement System1	8
			a. ZOC-14 Data Acquisition System1	8
			b. Pressure Monitoring System1	9
			c. NF90 Stepping Motor Controller/Unislide	
			Motor Driven Assembly2	20

NAVAL POSTGRADUATE SCHOOL MONTEREY CA 93943-5101

		2.	Data Acquisition and Analysis Programs
			a. The Data Acquisition Program "SCAN_ZOC_06"
			b. The "READ_ZOC2" Data Reduction Program
III.	EX	PER	IMENTAL PROGRAM AND RESULTS
	A.	EX	PERIMENTAL PROGRAM
		1.	Initial Tests
		2.	Probe Surveys at Design Incidence (1.15 degrees)
		3.	Probe Surveys at -0.85 Degree Incidence
	В.	EX	PERIMENTAL RESULTS
		1.	Measurements at Design Incidence
		2.	Measurements at -0.85 degree Incidence
IV.	NU	MEF	RICAL SIMULATION
	A.	GR	ID GENERATION
	В.	CO	MPUTATIONAL SCHEME
		1.	The Solution Method
		2.	RVCQ3D Inputs
	C.	CO	MPUTATIONAL SOLUTION
		1.	Summary of Previous Numerical Results
		2.	Current Numerical Solution
		3.	Computational Results
			a. Suction Surface Pressure Profile

		с.	Shock Resolution	. 43
		d.	Loss Calculation	43
V.	DISC	USSIO	N OF RESULTS	44
	A. I	BLADE	SURFACE PRESSURE DISTRIBUTIONS	44
	В. (CASCA	DE LOSS ESTIMATION	46
VI.	CON	CLUSI	ONS AND RECOMMENDATIONS	49

APPENDIX A.	WIND TUNNEL INSTRUMENTATION	53
APPENDIX B.	PROBE AND TRAVERSE DESIGN	57
APPENDIX C.	ZOC-14 DAS PROGRAM DEVELOPMENT	73
APPENDIX D.	DATA ANALYSIS PROGRAM READ_ZOC2	.106
APPENDIX E.	SELECTED DATA	119
APPENDIX F.	SAMPLE RVCQ3D INPUT AND	
	SUMMARY OF RESTARTS	148
APPENDIX G.	SAMPLE CALCULATION USING	
	KOCH AND SMITH	149
LIST OF REFER	RENCES	.156
INITIAL DISTR	IBUTION LIST	.159

LIST OF TABLES

TABLE I.	Static Pressure Tap Locations14	ł
TABLE II.	UNISLIDE Lead Screw Parameters	1
TABLE III.	Scan Types Available	2
TABLE IV.	Experimental Program	6
TABLE V.	Summary of Solution Outputs)
TABLE VI.	Mass Averaged Quantities and Losses	5
TABLE VII.	Loss Model Inputs and Predicted Losses	7
TABLE VIII.	. Comparison of Loss Estimates42	8
TABLE IX.	Scan Types Available	5
TABLE X.	NF90 Commands Used in SCAN_ZOC_0677	7
TABLE XI.	Modifications to Program SCAN_ZOC_06	3
TABLE XII.	Summary of RVCQ3D Restart Inputs	3

LIST OF FIGURES

Figure 1	Shock Boundary Layer Interaction
Figure 2	Low Profile Vortex Generators [Ref. 2]
Figure 3	Vortex Generating Jets [Ref. 2]4
Figure 4	Passive Cavity Operation
Figure 5	Transonic Cascade Blade Geometry7
Figure 6	Wind Tunnel Laboratory Schematic9
Figure 7	Schematic of the Transonic Wind Tunnel10
Figure 8	Transonic Wind Tunnel
Figure 9	Back Pressure Valve
Figure 1	Test Section Schematic
Figure 1	Test Section
Figure 12	2 Optical System
Figure 1.	3 Impact Probe and Probe Holder
Figure 1-	Impact Probe and Probe Holder16
Figure 1	5 Probe Traverse Assembly
Figure 1	5 Data Acquisition System Schematic19
Figure 1'	7 NF90 and VELMEX UNISLIDE
Figure 18	Continuous Light Shadowgraph
Figure 19	9 Spark Light Shadowgraph

Figure 20	Lower Blade Surface Pressure Distribution ($P2/P1 = 2.04$)
Figure 21	Lower Blade Surface Pressure Distribution ($P2/P1 = 2.14$)
Figure 22	Loss Distribution at Design Incidence (1.15 degrees)
Figure 23	Lower Blade Surface Pressure Distribution
Figure 24	Middle Blade Side Plate Pressure Distribution
Figure 25	Loss Distribution at Off-Design Incidence (-0.85 degrees)
Figure 26	Viscous Grid
Figure 27	Viscous Grid Leading Edge
Figure 28	Viscous Grid Trailing Edge
Figure 29	RMS Density Residuals
Figure 30	Blade Surface Pressure Distribution
Figure 31	Skin Friction Coefficient (x1000)41
Figure 32	Velocity Profile at Shock Induced Separation
Figure 33	Particle Trace at Shock Induced Separation
Figure 34	Mach Number Contours
Figure 35	Surface Pressure Distributions
Figure A1	Side Plate Instrumentation
Figure A2	Window Blank Instrumentation
Figure A3	Lower Blade Instrumentation
Figure B1	Probe Traverse Assembly Drawing
Figure B2	Probe Traverse Assembly Drawing

Figure B3	Test Section Lower Black Modification
Figure B4	Fixed Block60
Figure B5	Sliding Block
Figure B6	Probe and Traverse Interface
Figure B7	Probe Mounting Block
Figure B8	Traverse Mounting
Figure B9	VELMEX UNISLIDE
Figure B1(Probe and Probe Holder68
Figure B1	Stainless Rod70
Figure B12	Plumbing Detail
Figure B13	Initial Probe Design
Figure C1	Program "SCAN_ZOC_06"85
Figure D1	Program "READ_ZOC2"106
Figure E1	Run 3, 16 Nov 1992119
Figure E2	Run 4, 19 Nov 1992
Figure E3	Run 2, 1 Dec 1992
Figure E4	Run 1, 7 Dec 1992
Figure G1	Loss Estimation by Koch and Smith Method149

ACKNOWLEDGMENTS

I would like to express my deep appreciation to those people who have assisted me in this study. Professor Raymond Shreeve has given me invaluable insight into the realm of scientific exploration while keeping me focused on my objectives. Professor Garth Hobson has helped me to understand the relationship between computational methods and experimentation and has always been a sounding board for my ideas. I am grateful to Rick Still for his amazing technical skill, creativity and steadying influence on my work. Without his tireless efforts this study would not have been possible. I would like to thank John Moulton for his skilled craftsmanship in manufacturing a probe and traverse system for the transonic wind tunnel and Don Harvey and Pat Hickey for their guidance in the design of the apparatus. Finally, I thank my wife Karla, whose patience, support and constant encouragement make it possible for me to reach any height.

I. INTRODUCTION

A. SHOCK-BOUNDARY LAYER INTERACTION

The demand for higher levels of thrust and the desire to limit the physical size of turbofan engines have combined to drive fan and leading compressor stage relative Mach numbers higher into the supersonic range. A shock system is inevitable in a transonic stage and "... the design principle is not the avoidance of shocks, but control of their locations and strengths so as to minimize aerodynamic losses." [Ref. 1] At operating conditions in such a stage, a shock forms at the leading edge of each blade and impinges on the suction side boundary layer of the adjacent blade. The resulting flow structure is illustrated in Figure 1. The subsonic portion of the boundary layer may not be able to negotiate the steep pressure gradient in the neighborhood of the shock and may separate locally and reattach at some point downstream. This results in a shock structure called a lambda-foot where the original normal shock branches into two oblique shocks near the wall. In a fan passage, reattachment must take place in a very small percentage of the chord to allow further diffusion to the design pressure ratio.

Characterization of the opposing loss mechanisms present in this flow regime are of interest to the designer. The size of the interaction will determine the normal shock losses and the behavior of the boundary layer. As the interaction is suppressed, high normal shock losses dominate. If the interaction region is large then the boundary layer

1

will thicken, mixing losses will increase and the design flow turning angles will not be achieved.

Figure 1. Shock-Boundary Layer Interaction

B. BOUNDARY LAYER CONTROL

Several promising methods for controlling the shock-boundary layer interaction have been examined recently [Ref. 2]. Among these are vortex generator jets (VGJ's), low-profile vortex generators and the passive cavity. The first two devices energize the low momentum flow nearest the wall with higher momentum flow via streamwise vortices. This provides the inner layer with enough momentum to overcome the adverse pressure gradient transmitted forward through the subsonic layer. The passive cavity induces suction downstream of the shock and injection upstream of the shock which reduces the separation region while increasing boundary layer thickness [Ref. 3].

Conventional vane-type vortex generators have been studied since the mineteen fifties. NACA first investigated their usefulness for controlling flow separation and shock-boundary layer interactions. The low-profile vortex generator is relatively new and offers promise of reducing separation with less parasitic drag than conventional vortex generators [Ref. 3]. Examples of such devices are the "Wheeler Doublet" [Ref. 4] and the "wishbone" profile low-profile vortex generators both examined by Linn, et al and shown in Figure 2 [Ref. 2]. These vortex generators are submerged in the boundary

Figure 2. Low profile Vortex Generators [Ref. 2]

layer many boundary layer thicknesses upstream of the shock-boundary layer interaction. For external flows over surfaces and internal flow in diffusers these wedge shapes would be easy to apply, but there may be more difficulty in applying them to fan blades with adequate precision.

VGJ's, shown in Figure 3, have been studied extensively by Johnston and Nishi as well as Johnston and Compton [Ref 5, 6]. VGJ's are pitched and skewed to the streamwise direction and can be passively or actively operated. In studies completed in subsonic flows they provide the largest vorticity when pitched at about forty-five degrees and yawed between forty-five and ninety degrees. These jets can be implemented in the fan application simply by drilling holes through blading. In passive operation the jet

Figure 3. Vortex Generating Jets [Ref. 2]

would pass high pressure air from the pressure surface to the suction surface. An alternative approach would be to actively provide air to the jets through the blade only in the transonic range of operation. In both cases blade strength would be an issue and in the active case, mechanical complexity would be added.

The passive cavity is illustrated in Figure 4. Passive cavity operation is described as follows. "The pressure rise across the shock induces a passive suction downstream of the shock, which tends to close down the separation bubble, and an injection of flow upstream of the shock, causing a series of compression waves to form (resulting in more isentropic compression) and the pressure rise to spread over a larger axial distance (which tends to suppress separation)." [Ref. 3]

Figure 4. Passive Cavity Operation

C. 2-D FAN PASSAGE SIMULATION

The effects of various flow control devices, including vortex generators, on the shock-boundary layer interaction have been examined by McCormick [Refs. 3, 7] in a round tube geometry. In the present work, it is planned to examine the most promising configurations shown in McCormick's results in a model simulation of the flow in a fan passage. The present work is an extension of studies performed by Golden [Ref. 8] and Collins [Ref. 9]. The wind tunnel used in the present work was designed by Demo [Ref. 10] and first used for blading studies by Hegland [Ref. 11]. The data acquisition system designed by Wendland [Ref. 12] was adapted and implemented in the course of the present study.

The geometry of the model was intended to generate a 2-D simulation of the relative flow on a stream surface through an advanced fan rotor at approximately 63% of the span. The geometry of the model is shown in Figure 5. The blade profile was approximated very closely as a wedge arc for ease of manufacture, and since streamline contraction could not be simulated in the experiment. Measurements made by Golden showed the flow through the model passage to be acceptably two dimensional [Ref. 8].

In the current study, an impact pressure probe and vertical traverse were designed and manufactured, and the "Zero Operate and Calibrate" (ZOC) Data Acquisition System (DAS) developed by Wendland [Ref. 12] was adapted to acquire data from probe surveys and multiple scans of static pressure ports in order to establish a baseline performance of the unmodified blade. This system was then implemented on the wind tunnel. With the

6

Figure 5. Transonic Cascade Blade Geometry

model at design incidence, surface pressure distributions and impact pressure distributions impact pressure distributions behind the lower and middle blade were measured. Cascade losses were obtained by integrating the probe measurements. When it was discovered that similar shock locations in the two passages could be obtained by rotating the model to a decreased flow incidence, static and impact pressure profiles were obtained at this condition. The measured behavior was analyzed and comparisons were made with computational simulations and one engineering loss model.

In the present report, the wind tunnel and model simulation, the probe design and DAS modification are described in Chapter II. In Chapter III, the experimental program and results are presented. A computational simulation of the blade geometry is presented in Chapter IV and in Chapter V, the experimental and numerical results are compared. Chapter VI provides conclusions based on the progress of the current study and recommendations for future work.

II. EXPERIMENTAL SIMULATION

A. TRANSONIC CASCADE WIND TUNNEL

1. Wind Tunnel Description

The wind tunnel used was a blow-down apparatus located in the Gas Dynamics Laboratory (Bldg. 216) at the Naval Postgraduate School. A schematic of the facility is shown in Figure 6. A schematic of the wind tunnel and a photograph of the tunnel are shown in Figures 7 and 8, respectively.

Figure 6. Wind Tunnel Laboratory Schematic

Figure 7. Schematic of the Transonic Wind Tunnel

Figure 8. Transonic Wind Tunnel

The wind tunnel inlet pressure was maintained by a pneumatically operated control valve. The test section back pressure required to simulate fan pressure ratios was adjusted using a hand-operated hydraulic flap valve mounted aft of the test section. The valve is shown in Figure 9. A convergent-divergent nozzle provided a Mach L4 flow to the test section inlet. A test section schematic and photograph are shown in Figures 10 and 11 respectively. Boundary layer scoops were provided on the upper and lower as

Figure 9. Back Pressure Valve

well as right and left sides of the test section in order to divert the boundary layers from the model. The test section modeled two fan passages, between three fan blades. The middle blade in the model was the only complete blade, while the upper and lower sections were half blades, modeling only lower and upper surfaces respectively. The incidence of the model could be varied. The blade upper surface was inclined 1.15 degrees to the freestream flow at the design condition, while the blade wedge angle was 3.5 degrees. Further details of the wind tunnel can be found in Ref. 9. Details of the back pressure valve design are contained in Ref. 8.

Figure 11. Test Section

2. Optical system

The optical system provided both schlieren and shadowgraph capabilities. A diagram of the arrangement used is shown in Figure 12. A continuous or spark light source was available from a combination unit. A parabolic lense collimated the light, directing it through the test section and into a parabolic mirror where the beam was reflected into the camera. Shadowgraph photos were made during selected tunnel runs to record the shock position and shock structure.

Figure 12. Optical System

B. TEST SECTION INSTRUMENTATION

1. Static Pressure Taps

Pressure taps were provide on side plates, window blanks and the lower blade as described by Golden [Ref. 8]. Two side plate pressure taps were used to measure the inlet and exit static pressures. The lower blade centerline pressure taps were used to measure the static pressures across the shock-boundary layer interaction region as well as to measure possible flow field disturbance caused by probe surveys. Aluminum window replacement blanks were instrumented in a fashion that would provide similar information to that of the lower blade. Table I summarizes the pressure tap locations. Drawings of the instrumented components are given in Appendix A.

Section	Ports	Location	Purpose
Side Plates	2	Upstream/down- stream of test section	Measure cascade pressure ratio
Lower Blade	25	Centerline of blade surface	Measure static pressure through shock
Window Blanks	8	Close to blade surface	N
Plenum	1	Plenum, aft of screen	Provide tunnel Reference pressure

TABLE I. STATIC PRESSURE TAP LOCATIONS

2. Impact Probe and Vertical Traverse

A probe was designed and mounted in a vertical traverse for conducting pressure surveys downstream of the cascade model. The probe was an impact tube with 0.02 inch internal diameter and a 0.032 inch external diameter. It was mounted in a probe holder designed to cause minimum disturbance to the flow. The probe and holder are shown in Figures 13 and 14. The probe holder was mounted on a solid shaft that passed out of the test section through a bearing surface and connected to a mounting block. This mounting block was then bolted to the mounting block of a VELMEX UNISLIDE Motor Driven Assembly. The entire assembly is shown Figure 15. The assembly consisted of a hardened aluminum dovetail base with an aluminum sliding element fitted with bonded bearing pads. A high precision lead screw converted rotational motion to linear motion for up to 6.6 inches of travel. Further details are given in Reference 13. Drawings for the probe and UNISLIDE assembly are contained in Appendix B.

Figure 13. Impact Probe and Probe Holder

Figure 14. Impact Probe and Probe Holder

Figure 15. Probe Traverse Assembly
C. DATA ACQUISITION AND ANALYSIS SYSTEM

1. Pressure Measurement System

The pressure measurement system consisted of three main elements; namely the "Zero Operate and Calibrate" (ZOC-14) Data Acquisition System (DAS) for recording pressure data, a continuous pressure monitoring system for setting pressure ratio prior to data taking and the VELMEX NF90 Stepper Motor Controller which operated the UNISLIDE Motor Driven Assembly to provide probe surveys behind the test section blading. A schematic of the pressure measurement system is shown in Figure 16. The present application of this system was an extension of the work done by Wendland [Ref. 12].

a. ZOC-14 Data Acquisition System

The Zero Operate and Calibrate (ZOC) Data Acquisition System (DAS) consisted of the HP9000 Series 300 Desk Top Computer System, three Scanivalve ZOC-14 Electronic Scanning Modules, the CALSYS2000 calibration standard and the HP6944A Multiprogrammer. The HP 9000 Series 300 Desktop Computer acted as the master controller for the system as well as a data storage and processing tool. Extensive documentation provided with this language is described further in Reference 12. The HP9000 is equipped with 10 mega-bytes of Random Access Memory and a 40 mega-byte hard drive as well as a 1.44 mega-byte floppy drive. HP Basic version 5.13 software was used. A comprehensive guide to the system is given in Reference 12.

Figure 16. Data Acquisition System Schematic

b. Pressure Monitoring System

The Pressure Monitoring System allowed the tunnel operator to set the pressure ratio across the cascade prior to recording data by providing a continuous display of the test section inlet (P1) pressure, exit pressure (P2) and exit to inlet pressure ratio (P2/P1) to the screen of the HP9000. This was implemented using two 100 PSID

transducers, multi-port signal conditioner, a Digital Voltmeter (HP3455A), Data Acquisition/Control Unit (HP3497A) and the HP9000 Series 300 Computer. The HP9000 provided program control for the controller and the voltmeter. Details on the programming of these devices are contained in Reference 14 and 15.

c. NF90 Stepping Motor Controller/Unislide Motor Driven Assembly

The VELMEX Stepping Motor Controller and the UNISLIDE Motor Driven Assembly provided a fully programmable and highly precise traverse mechanism. The NF90 Stepper Motor Controller could operate in a "stand alone" mode or an "interactive mode". A three wire serial RS-232C port allowed the host controller to enter commands and data, poll for status and read position information. It was capable of operating up to three stepper motors as well as being daisy-chained with multiple NF90's. It had a 400 step (0.9 degree) resolution, which equated to a 0.025 inch linear resolution for the lead screw that was used. Other features of interest in the present study were its programmable baud rate, speed control, poll for status, and return to zero position Further details concerning the NF90 Stepping Motor Controller are commands. contained in Reference 16. Though provided with IBM compatible controller software it was fully compatible with the HP9000 equipped with an RS-232C port. The serial port used was separate from the port used for the CALSYS2000 and was made available by installing the Asynchronous Serial Interface (HP98644A) expansion card into the HP9000 [Ref. 17].

The UNISLIDE Motor Drive Assembly was model number MB2509P40J with a Bodine #2010 (2410) Drive Motor. A precision roll-formed lead screw held by

preloaded ball bearings drove a low friction, adjustable anti-backlash nut. The lead screw provided in the model P40J allowed capabilities outlined in Table II. Installation and maintenance instructions for the VELMEX UNISLIDE are contained in Reference 13. The NF90 and UNISLIDE are shown in Figure 17.

UNISLIDE	Advance/	Advance/	Speed at 1000
Lead Screw	Revolution	Step	Steps/Second
P40.C	0.025 inches	0.0000625 inches	0.0625 inches/second

 Table II. UNISLIDE LEAD SCREW PARAMETERS

Figure 17. NF90 and VELMEX UNISLIDE

2. Data Acquisition and Analysis Programs

a. The Data Acquisition Program"SCAN_ZOC_06"

Program "SCAN_ZOC_06" was developed to provide the data acquisition options shown in Table III. The program was an adaptation and extension of the "SCAN_ZOC_05" program developed by Wendland [Ref. 12]. The extensions involved adding commands to provide continuous monitoring of the cascade pressure ratio prior to acquiring data with the ZOC system and commands to control the probe traverse. The development and description of the new software, program listing and operating manual are given in Appendix C.

Scan Type	Purpose	Options	Comments
0	Single Scan of all ZOC's	Number of Samples up to 1021	Original SCAN_ZOC_05 operation
1	Multiple Scans of all ZOC's	Number of Samples Avail. based on 1021/#Scans	Allows multiple Successive Observations
2	Probe Survey of Lower Blade	Scans = 33 Samples =10	Parameters "hard wired" to avoid probe damage
3	Probe Survey of Middle Blade	11	ų

 Table III.
 SCAN TYPES AVAILABLE

b. The "READ_ZOC2" Data Reduction Program

The "READ_ZOC2" program was an adaptation of the "READ_ZOC" utility program given in Reference 12. The previous version was developed to examine ZOC data to verify the ZOC-14 DAS performance. The current version was specifically developed to analyze data taken from the Transonic Cascade Wind Tunnel. "READ_ZOC2" converted the acquired ZOC voltage data to pressures in psia. It provided a print out of data indexed to each port and scan taken, saved pressure data to an ASCII file, plotted surface pressures normalized by inlet total pressure versus percent of chord, plotted displacement versus probe survey pressure and calculated the mass averaged loss coefficient. This program is listed in Appendix D. Output from this program is shown in Appendix E and referred to in Chapter III.

III. EXPERIMENTAL PROGRAM AND RESULTS

A. EXPERIMENTAL PROGRAM

The program of tests is summarized in Table VI. After initial tests to verify the probe and traverse mechanism, and data acquisition and control program operation, probe and surface pressure measurements were acquired with the model at design incidence and with incidence increased by 2 degrees. The latter condition was found to give similar shock patterns in the upper and lower passages at the design pressure ratio. Useful test data are given in Appendix E.

1. Initial Tests

Eleven preliminary tests were conducted with the model set at the design incidence. The shadowgraph system was adjusted optimally and experience was gained in operating the back pressure control valve to position the passage shocks in the model. Data acquisition procedures using the ZOC-14 DAS were exercised and verified by comparing with measurements reported in Reference 8. Also, multiple scans of blade surface taps revealed less than 1% uncertainty (see Figure E1, page 124). When shocks were positioned and data were taken, the pressure ratio across the blading was approximately two. The probe and traverse proved to be very rigid and no noticeable vibrations could be sensed external to the test section. The traverse was programmed to step 32 times and a probe measurement was recorded at each stop. At each stop, during a pause of one second, all 32 ZOC pressure ports were scanned ten times. One minute and

13 seconds were required to complete the traverse. Surveys were conducted at the exit of the lower passage while using the instrumented lower blade to provide surface static pressures across the passage normal shock. This shock was placed at the "design" location using a pressure ratio of approximately 2.04. Observation and measured data revealed that no significant disturbances or additional unsteadiness of the shock structure was present during probe surveys. Four such surveys were completed and a representative data set, together with a sample data reduction, is given in Appendix E.

2. Probe Surveys at Design Incidence (1.15 degrees)

Seven tunnel runs were conducted to survey across a full passage centered on the middle blade. The cascade was operated at a pressure ratio of approximately 2.14, at which the upper passage normal shock was located at the "design" location and the lower passage shock was slightly ahead of this location. The two shocks were within ten percent of chord of the same axial location on the blade suction surface. A typical data set is given in Appendix E. These and all subsequent surveys were taken at one inch downstream of the blade trailing edge.

3. Probe Surveys at -0.85 Degree Incidence

Five tunnel runs were conducted to examine various off-design incidence angles. The cascade model was rotated such that the incidence to the suction surface was varied by plus or minus 2 degrees. The setting which resulted in a suction surface incidence of -0.85 degrees caused the upper and lower passage normal shocks to move into approximately the same position within the passage at the same pressure ratio. Rotation in the opposite direction (increased incidence) had the opposite effect. Two

complete center blade surveys were conducted at -0.85 degrees incidence to examine the changes in the losses as well as in the blade surface pressure distributions. A set of survey data is given in Appendix E together with sidewall pressure measurements. Shadowgraph photographs of the flow at -0.85 degrees using continuous and spark light sources are shown in Figures 18 and 19 respectively.

Date	Runs	Measured	Purpose	Appendix E pages
4 Nov 92]1	Plenum, P2/P1. Blade Surface Static	DAS Testing	
6 Nov 92	1-7	Plenum, P2/P1, Blade Surface Static	DAS Testing	
16 Nov 92	1-4	Plenum, Impact P2/P1,Blade Surface Static	DAS/Probe tests and Preliminary Data	1-7 (Run 3)
19 Nov 92	1-5	Plenum, Impact P2/P1,Blade Surface Static	Center Blade Survey at Design i _{es}	8-14 (Run 4)
25 Nov 92	1-5	P2/P1,Blade Static	Vary i _{ss}	
1 Dec 92	1-2	Plenum, Impact P2/P1,Blade Surface Static, Plenum Temperature	Survey Center Blade at Off-Design i _{ss} = -0.85 deg	15-21 (Run 2)
7 Dec 92	1-3	Plenum, Impact P2/P1,Blade Surface and Side-wall Static, Plenum Temperature	Survey Center Blade at Off-Design $i_{SS} = -0.85 \text{ deg}$	22-29 (Run 1)

TABLE IV. EXPERIMENTAL PROGRAM

Figure 18. Continuous Light Shadowgraph

Figure 19. Spark Light Shadowgraph

B. EXPERIMENTAL RESULTS

1. Measurements at Design Incidence

The suction surface pressure distribution at a pressure ratio of 2.04, normalized by inlet total pressure, is shown in Figure 20. A very gradual expansion is seen as the flow approaches the shock-interaction region. The interaction is centered at approximately 40% chord and steady diffusion continues toward the trailing edge of the blade. It is significant to note that pressure ratios used to place shocks in the upper and lower passage (2.04 and 2.14 respectively) at design incidence did not change with the installation of the probe and the suction surface static pressure distribution was unaffected by the probe movement. At design incidence, shocks could not be positioned in the same location on the blade suction surface in the two passages. The upper passage normal shock was positioned in the design location (approximately 40% chord) at a pressure ratio of 2.14. The lower passage shock was then centered at 30% chord as determined by the surface pressure measurements. The lower blade surface pressure distribution at a pressure ratio of 2.14 is shown in Figure 21.

The loss distribution resulting from the probe survey conducted downstream of the center blade at a pressure ratio of 2.14 is shown in Figure 22 Exit static and plenum pressures during the probe survey are shown (dashed lines) with the impact pressure measurements against displacement. The shock losses experienced in the upper passage are higher than those experienced in the lower passage. The increased losses may be due to the lower passage normal shock which is now forward of the center blade leading edge. In addition, a slight reduction in loss is present just above the wake region, which

Figure 20. Lower Blade Surface Pressure Distribution (P2/P1 = 2.04)

Figure 21. Lower Blade Surface Pressure Distribution (P2/P1 = 2.14)

Figure 22. Loss Distribution at Design Incidence (1.15 degrees)

may be attributed to the shock-boundary layer interaction. This effect was also present in the lower passage (see Figure E1). The wake is mixed out to some degree as revealed by the level of the test section exit static pressure. The mass averaged loss coefficient, calculated by integration of the distribution across one blade space, was 0.10065 for the design incidence.

2. Measurements at -0.85 Degree Incidence

As can be seen by the shadowgraph photographs in Figure 18 and 19, the passage normal shocks were in approximately the same location in the two passages at a pressure ratio of 2.14. The lower blade surface pressure distribution and an upper passage sidewall pressure distribution are shown in Figures 23 and 24 respectively. These

Figure 23. Lower Blade Surface Pressure Distribution (-0.85 degrees)

Figure 24. Middle Blade Side Plate Pressure Distribution (-0.85 degrees)

data indicate that the shocks differed in position by no more than 2% of chord. The blade surface pressure distributions for the design cases showed a small acceleration prior to the shock interaction region. At the negative incidence, no such expansion is apparent. Also, the level of pressure prior to the shock in this case is 5-10% higher than for the design incidence, suggesting the presence of an oblique shock at the blade leading edge. Though the flow is eventually diffused to the same pressure in both cases, in the reduced incidence case the shock interaction region is reduced in length. The reduced incidence case shows the shock pressure rise occurring over approximately 15% of chord compared to 30% of chord at design incidence. This is consistent with having a lower Mach number at the shock (higher pressure) and a reduced region of separation and associated lambda structure.

The impact pressure survey shown in Figure 25 indicates that the wake was shed at a higher vertical location, as should be the case since the higher incidence was arrived at by rotating the test section. Shock losses for the two passages were closer to the same value and losses were in fact less overall for this incidence. The mass averaged loss coefficient for this case was calculated to be 0.07393. The loss distribution just above the wake (from the lambda interaction on the suction side) appears in Figure 25 to be quite similar to the design incidence case in Figure 22, but the passage shock loss above this interaction is not as uniform.

Figure 25. Loss Distribution at Off-Design Incidence (-0.85 degrees)

IV. NUMERICAL SIMULATION

A. GRID GENERATION

The numerical simulation was carried out on a C-grid generated with the GRAPE grid generation program. GRAPE (GRids about Airfoils using Poisson's Equation) was written by Sorenson [Refs. 18, 19] and revised by Chima [Ref. 20] to accommodate periodic cascades for turbomachinery. A flow solution was obtained on a grid of 250 x 49 points generated by Golden [Ref. 8]. This grid was non-dimensionalized for use in the latest version of the flow solver. The grid is shown in Figures 26 through 28. The existing grid has been optimized for this particular flow regime by adding more points at the leading and trailing edges and a finer grid at the walls to improve resolution of shocks and boundary layers.

B. COMPUTATIONAL SCHEME

1. The Solution Method

The numerical scheme used was RVCQ3D (Rotor Viscous Code Quasi-3D) developed by Roderick Chima at NASA Lewis Research Center in Cleveland, Ohio. RVCQ3D was specifically designed for the analysis of blade to blade flows in turbomachinery [Ref. 21]. The code is an explicit multistage Runge-Kutta scheme which solves either the Euler or Navier-Stokes (thin-layer) equations and features the following:

Figure 26. Viscous Grid

Figure 27. Viscous Grid Leading Edge

Figure 28. Viscous Grid Trailing Edge

- A spatially varying time step
- Second and fourth order artificial viscosity
- Implicit residual smoothing
- An ideal gas assumption
- A Baldwin-Lomax or Cebeci-Smith turbulence model
- Stream tube variation
- Rotation effects

A thin layer approximation is employed such that derivatives in the streamwise direction are dropped while calculating viscous derivatives. The Baldwin-Lomax turbulence model was used in all calculations. The code uses an initial guess and time marches to a steady-state solution. The code is second-order accurate in space due to central differencing and has been used up to a fifth-stage Runge-Kutta format providing fifth-order accuracy in time. All calculations herein were completed using a four-stage scheme. Version 3.7 of the code was used for the most current work. This version allows for almost completely dimensionless inputs and provides a powerful restart capability. This version was updated by Dan Tweedt of NASA Lewis [Ref. 22]. A complete mathematical description of RVCQ3D is contained in Reference 23 and a comparison of this scheme to other multigrid codes is given in Reference 24.

2. RVCQ3D Inputs

In the current simulation only 2-D cascade flow effects with no rotation, were modeled. An adiabatic wall temperature boundary condition was imposed. Reynolds number based on chord length and total conditions was input using a total temperature of 520 deg R or 15 deg C. A Courant number of 4.5 was used and allowed convergence in 7000 iterations (5.78 hours on a Silicon Graphics Iris Indigo). Residual smoothing was increased as much as 100% above recommended amounts early in the solution and reduced to the recommended values as the solution converged. A ratio of outlet static pressure to inlet total pressure was required. It was initially set above design to accelerate placement of shocks and reduced to an approximate design value as the solution converged. Further details concerning RVCQ3D inputs are contained in Reference 21. The restart capability now included in RVCQ3D allowed optimization of the quantities previously discussed, which saved time and improved performance. A sample RVCQ3D input file listing and a summary of restart inputs used to obtain the solution is contained in Appendix F.

C. COMPUTATIONAL SOLUTION

1. Summary of Previous Numerical Results

An "unsteady" solution was obtained by Golden [Ref. 8] in 4000 iterations. In this solution the "normal shock merges with the leading edge bow shock on the pressure surface and with the turbulent boundary layer on the suction surface." [Ref. 8] The lambda foot was not predicted, but some increase in boundary layer thickness was present. Boundary layer transition was predicted to be at ten percent chord and the flow incidence angle to the suction surface was predicted to be 2.53 degrees. (design incidence was 1.15 degrees) The results were "unsteady" because the convergence history showed that residuals increased late in the solution process and a steady state solution was not realized.

2. Current Numerical Solution

The inputs to the code represented conditions in the test section that gave a Reynolds number of about 8 million, and a nominal back pressure was specified (P2/Pt1 = 0.7). The inlet Mach number was set at 1.4 and the inlet flow angle to the "machine" axis (normal to the leading edge plane) was set for the design incidence case of 56.49 degrees. A constant CFL of 4.5 was used. The shock system was moved to the "on-design" condition by increasing the back pressure to about 0.76 of inlet stagnation pressure. The convergence history in Figure 29 shows a three order of magnitude drop in RMS density residuals in 7000 iterations. Other solution outputs such as incidence angle, Mach number, continuity and energy conservation are summarized below in Table V.

Figure 29. RMS Density Residuals

Quantity	Inlet	Exit	Global	Comments
Mach Number	1.378	0.633		For M1 guess = 1.4
β(deg)	57.518	52.609		For $i_{ss} = 2.178$
Loss Coefficient			0.1123	Mass Averaged
Mass Conservation			-0.0011	1-Mdot(out)/Mdot(in)
Energy Conservation			0.00091	1-Ht(out)/Ht(in)

TABLE V. SUMMARY OF SOLUTION OUTPUTS

3. Computational Results

a. Suction Surface Pressure Profile

The static pressure distribution given by RVCQ3D is shown in Figure 30. The current solution predicted the suction surface shock interaction starting at 30% chord extending to 55% chord. The flow expanded very slightly as it approached the interaction region, dipped after the shock induced compression and continued to subsonically diffuse across the remainder of the blade after the interaction region.

Figure 30. Blade Surface Pressure Distribution

b. Flow Separation

Separation was predicted at the leading edge, in the neighborhood of the shock and at the trailing edge. Figure 31 shows the skin friction coefficient distribution and Figure 32 shows the boundary layer in the normal shock region. Transition to turbulent flow was predicted to occur at about 5% chord. Flow detachment was predicted at 38% and reattachment at 45% chord. This separation was associated with the shock-boundary layer interaction. The trailing edge separation was predicted to start at 99% chord and was caused by the adverse pressure gradient caused by further

diffusion through the passage. The leading edge separation "bubble" was confined to very few points. Figure 33 shows a particle trace at the location of the shock induced separation. It shows a very flattened separation region which is a function of the turbulent shock-boundary layer interaction, but may also be caused by the inadequate boundary layer resolution afforded by the Baldwin-Lomax turbulence model.

Figure 31. Skin Friction Coefficient Distribution (x1000)

Figure 32. Velocity Profile at Shock Induced Separation

Figure 33. Particle Trace at Shock Induced Separation

c. Shock Resolution

Mach number contours are shown in Figure 34. The normal shock merges with the leading edge bow shock on the pressure surface causing the attendant separation bubble previously described. This configuration is similar to that observed in the experiment and would appear to be the "design condition".

Figure 34. Mach Number Contours

d. Loss Calculation

RVCQ3D predicted a mass averaged loss coefficient of 0.1123. This prediction will be compared to mass averaged losses calculated from experimental data as well as with a currently accepted empirical loss model.

V. DISCUSSION OF RESULTS

A. BLADE SURFACE PRESSURE DISTRIBUTIONS

The experimental and computational results for the surface pressure distribution on the blade suction side are shown in Figure 35. The numerical solution predicts the interaction region to be located about 2% chord upstream of where it was measured to be at the design incidence. The experimental results show a somewhat reduced Mach number upstream of the shock interaction and the shock induced compression does not reach the same peak value downstream as is shown in the numerical solution. However, the slope of the pressure rise in the interaction region and in the subsonic diffusion after the shock-boundary layer interaction compare favorably in the two simulations. It should be noted that the computational scheme generates a solution for what the inlet flow angle should be for the specified inlet Mach number (to allow periodic conditions through the cascade geometry). Thus the inlet air angle for the computation was 57.656 degrees, whereas it was 56.49 degrees in the experiment. Also, the outlet static-to-inlet total pressure was 0.704 in the computation and 0.68 in the experiment. A further difference between the experiment and computation was the unavoidable presence of side-walls in the experiment. While the RVCQ3D code has provisions for streamline contraction, in the experiment, determination of streamline contraction was not possible with the presently available instrumentation.

At the -0.85 degree incidence (an inlet flow angle of 54.49 degrees), which is further from the angle output by the computational solution than the design setting, the slope of the pressure rise across the shock is higher than for the design case. The sharper rise is followed by a near plateau through the passage throat and then a steeper rise over the curved surface. Since the pressure ahead of the shock is higher, corresponding to a lower Mach number, the steep rise through the shock suggests less or even the absence of separation. This contrasts with the design incidence case, at which the shock pressure rise (and interaction) is spread over 30% chord. The significant difference between the boundary layers entering the subsonic diffusion passage in the two cases, as deduced from the wake measurements, could account for the different rate of pressure rise.

Figure 35. Surface Pressure Distributions

B. CASCADE LOSS ESTIMATION

Mass-averaged pressures and losses derived from probe surveys are summarized in Table VI. It was of interest to compare these loss values with the predictions of current loss models, and with the losses predicted by the numerical simulation.

Case	Pt1ma (psia)	Pt2ma (psia)	Pt1-P1 (psia)	Ttave (deg R)	@_ma
Design	54.334	50.612	36.983	511	0.1006
Off-design	54.204	51.478	36.865	507.5	0.0739

TABLE VI. MASS AVERAGED QUANTITIES AND LOSSES

The Koch and Smith method [Ref. 25] was selected since it was recommended in a recent review sponsored by AGARD [Ref. 26]. This empirical method can provide an estimate of the design point efficiency potential of a multistage compressor, taking into account viscous loss, shock and leading edge bluntness losses as well as end-wall and part-span shroud losses. The intent here was to use only the relevant parts of this model, inputting experimental conditions and estimating those unavailable from the data. A sample calculation is contained in Appendix G. Only profile, shock and leading edge bluntness losses were appropriate for the present cascade flow. Both the design and off-design incidence cases were examined. Deviation angle was estimated using Equation 3.5 of Reference 25 in combination with Figure 160 of Reference 27 and by using Equations 268 and 269 of Reference 27. Table VII gives the inputs (and their sources) to the loss calculation and the predicted losses.

Parameter	Design	Off-design	Comments
Modified Carter Deviation (deg)	2.48	2.48	Based on Stagger Angle (used in loss estimate)
NASA SP-36 Deviation (deg)	2.11	2.07	Function of β1, Solidity, Shape and Thickness
Inlet Flow Angle β1 (deg)	56.49	54.49	Set in Test Section to 0.1 Degree
Outlet Flow Angle β2 (deg)	49.402	49.402	Function of Metal Angle and Deviation
Average Outlet Velocity V2(ft/sec)	717.183	753.384	Based on Measured Pt2, P2 Tt1
Average Inlet Mach Number M1	1.389	1.387	Based on Pt1, P1
Momentum Thickness to Chord θc	0.00656	0.00525	Corrected for Equivalent Diffusion, M1 and Surface Roughness
Trailing Edge Form Factor H _{TE}	2.414	2.229	и

TABLE VII. LOSS MODEL INPUTS AND PREDICTED LOSSES

(TABLE VII. is continued on the next page)

Parameter	Design	Off-Design	Comments
Shock Inlet Mach Number	1.4	1.36	Based on Surface Pressures
Profile Losses	0.02608	0.0225	
Normal Shock Losses	0.065	0.05	Based on Shock Inlet Mach number
L.E. Bluntness Losses	0.00855	0.0081	
Loss Coefficient	0.0996	0.0806	

TABLE VII. (continued)

A summary of the losses obtained by measurement, by the application of the Koch and Smith method and from the numerical simulation, is provided in Table VIII. There is seen to be a reasonable agreement between the measurements and the Koch and Smith model at both incidence angles. The slightly higher loss from the numerical simulation is consistent with there being a slightly higher Mach number at the shock.

TABLE VIII. COMPARISON OF LOSS ESTIMATES

Case	Measured	Koch and Smith	Numerical
Design	0.1006	0.0996	0.1123
Off-Design	0.0739	0.0806	

VI. CONCLUSIONS AND RECOMMENDATIONS

In the present study, the losses due to the shock-boundary layer interaction in a simulated fan blade passage were measured at design and one off-design flow angle. The results were compared with the losses predicted using the Koch and Smith loss model. Also, numerical results were obtained using a 2-D thin layer Navier-Stokes flow solver for blade-to-blade flows. Both surface pressure distribution through the interaction and losses predicted by the code were compared with the experimental results. A new data acquisition system and programmable probe and traverse system were implemented to obtain the measurements.

The following conclusions were drawn:

- The new data acquisition system was very successful and provided repeatable and accurate measurements. This was determined by comparing pressure levels to those measured in Reference 8 and by examining multiple scans of blade surface pressures.
- The new probe and traverse mechanism provided precise positional accuracy and pressure survey measurements
- As the back pressure was increased at the design incidence (a suction surface incidence of 1.15 degrees) the lower passage shock entered the cascade first and could be placed no closer than 10% chord to the upper passage shock.

- At a suction surface incidence of -0.85 degrees the upper and lower passage shocks were placed at approximately the same location at the same pressure ratio (P2/P1=2.1).
- At design incidence angle, blade surface pressures showed the shock-boundary layer interaction to be spread over 30% of chord. The slopes of the early shock compression and subsonic diffusion compared favorably with numerical predictions.
- At the reduced incidence angle blade surface pressures revealed a reduced Mach number prior to the shock, steep shock compression and a pressure plateau for 25% chord followed by a more rapid pressure rise over the back of the blade. The absence of significant separation would explain this change in behavior.
- Mass averaged losses were calculated from impact pressure measurements for both incidence angles and compared to predictions using the Koch and Smith loss model. The results compared favorably and each gave a twenty percent reduction in losses at the reduced incidence angle.
- The loss measurements at design incidence angle compared reasonably well with those given by the computational simulation.

Conclusions concerning the numerical simulation are:

- The flow solution is highly grid dependent. Repeated attempts to increase grid size to obtain more precise viscous solutions resulted in shock patterns, incidence angles and losses that did not reflect reality.
- The current numerical solution, using the latest version of RVCQ3D, predicted separation in the shock-boundary layer interaction region. It also predicted a small separation bubble on the leading edge and a slightly larger separated region at the trailing edge. On a similar grid, using the previous version of the code, separation was not predicted.
- The new version of the code demonstrated more rapid convergence on the present geometry than was observed previously with the earlier version. Placement of

shocks at a desired location could be accelerated by slightly increasing back pressure above anticipated levels. The restart feature in the present code is a very powerful aide in obtaining solutions.

The following recommendations are made concerning the apparatus and instrument-

ation:

- Obtain an additional CALMOD 2000 such that lower pressure (15PSID) ZOC-14 scanning modules can be calibrated concurrently with higher pressure (50PSID) modules, but with equal accuracy.
- Expand the ZOC-14 DAS to enable more test section pressures to be measured in one test.
- Acquire pressure data from the instrumented side plates ahead of the test section to more fully examine the upstream flow as incidence angle is changed.
- Systematically replace all model sections exposed to the flow with parts made of harder steel since erosion due to contamination is severe.
- Do not exceed plus or minus two degrees of rotation from the design incidence because of potential damage to the lower blade pressure tubing.
- Design a three sensor pressure probe for the present traverse apparatus and calibrate it to return Mach number and pitch angle.

Based on the understanding gained in the present program, the following steps are

proposed to achieve the stated goals of the project:

• Verify the absence of separation at the negative incidence using a surface injection technique.

- Experiment with "tailboards" to achieve similar flows (with separation) within the two passages at positive flow incidence angles.
- Obtain reference blade wake surveys at selected incidence angles using displacement increments of 1/32 inch (currently 1/16).
- Install a center blade with VGJ's and repeat the surveys with flow visualization.
- Install Wheeler Doublets on the lower and center blade (separately and then together), and repeat the surveys with flow visualization.
- Evaluate the results.

Figure A1. Side Plate Instrumentation (Right Side)

Figure A1. Side Plate Instrumentation (Left Side)

Figure A2. Window Blank Instrumentation (Left Side)

Figure A3. Lower Blade Instrumentation

Figure B1. Probe Traverse Assembly Drawing

Figure B2. Probe Traverse Assembly Drawing

Figure B3. Test Section Lower Block Modification

Figure B4. Fixed Block

Figure B5. Sliding Block

Figure B5. Sliding Block (Bottom View)

Figure B6. Probe and Traverse Interface

Figure B7. Probe Mounting Block

Figure B8. Traverse Mounting

Figure B8. Traverse Mounting (Auxiliary View)

Figure B9. VELMEX UNISLIDE

Figure B10. Probe and Probe Holder

Figure B10. Probe and Probe Holder (Rear View)

Figure B11. Stainless Rod

Figure B12. Plumbing Detail

Figure B13. Initial Probe Design

APPENDIX C. ZOC-14 DAS SOFTWARE DEVELOPMENT

1. Data Acquisition Program SCAN_ZOC_05

The ZOC-14 DAS software development integrated the ZOC-14 modules. CALSYS2000 and the HP6944A Multiprogrammer with the HP9000 series 300 Desktop Computer System and the HP6944A Computer Aided Test (CAT) software package. All programming was done in HP BASIC version 5.13. The HP6944A CAT software package provided software and documentation to configure and operate the HP6944A Multiprogrammer. This package formed the framework around which the main program, "SCAN_ZOC_05", was written. The CAT software provided routines which allow the programmer to integrate the operation of individual Multiprogrammer cards into powerful data acquisition tools. The A/D cards and Memory cards have been combined to operate as a data buffer and the Pacer and Counter cards combined to operate as a timer. The buffer stored raw strain gauge voltages in extremely fast RAM during acquisition and thus did not require transfer to the HP9000 RAM and finally to disk until the data run was complete. The timer function provided a square wave pulse at a prescribed pulse width and number of repetitions. The pulse width determined the scanning frequency and the number of repetitions (always a multiple of 32) determined the number of samples taken per scan of the 32 ZOC ports. The program generated three files for storage of raw data (prefix "ZW"), calibration data (prefix "ZC") and reduced data (prefix "ZR"). The files were labeled by the program in a fashion that is very useful

as illustrated below. With its file management system, multiple data runs could be

completed without stopping to reduce the data until tunnel operations were complete. The program made use of multiple subprograms and user defined functions for repetitive tasks affording a "top down" program structure. Further details on "SCAN_ZOC_05" program development are contained in reference 12.

2. Modified ZOC-14 DAS Software ("SCAN_ZOC_06")

"SCAN_ZOC_05" was modified to provide continuous monitoring of cascade pressure ratios prior to data acquisition, operate a probe traverse for cascade surveys and conduct a complete scan of all ZOC's at each new probe position. This version of the program was designated "SCAN_ZOC_06". The purpose of this section is to document modifications to the original program. The new program listing is contained in Figure C1. An updated operating procedure for the system including hardware interface is also contained in Appendix C. Changes from the previous operational procedures found in reference 12 are indicated.

The initial setup routine was modified to include options available in the new version of the program. These included the current day atmospheric pressure and the type of scan or "scan type". The options are illustrated below in Table III. The program is menu driven with additional user inputs clearly prompted by the program.

74

Other selections which include the frequency of data acquisition, ZOC's to be operated and CALMOD utilized have been retained.

Scan Type	Purpose	Options	Comments
0	Single Scan of all ZOC's	Number of Samples up to 1021	Original SCAN_ZOC_05 operation
1	Multiple Scans of all ZOC's	Number of Samples Avail. based on 1021/#Scans	Allows multiple Successive Observations
2	Probe Survey of Lower Blade	Scans = 33 Samples =10	Parameters "hard wired" in to avoid probe damage
3	Probe Survey of Middle Blade	u	19

Table IX.SCAN TYPES AVAILABLE

The operation of the Transonic Cascade Wind Tunnel required knowledge of the pressure ratio across the test section prior to data acquisition. A routine was adapted from the program "SCAN" listed in reference 8 to provide a continuous display of the inlet (P1), exit (P2) and exit to inlet pressure ratio (P2/P1). The routine initialized both the HP3497A Data Acquisition/Control Unit and the HP3455A Digital Voltmeter. It then repetitively commanded the HP3497A to set the correct signal conditioner port and triggered the voltmeter to read the voltage across the transducers connected to the signal conditioner. It input this data to variables, scaled them appropriately and printed out the two pressures in psia followed by the P2/P1 ratio. This process began upon pressing the function key F4 which initiated the "Data Preps" routine. Prior to the start of the continuous cascade of pressure ratios the probe traverse moved to its initial position (if "scan_type" was greater than 1) and the CALMOD was initialized.

Routines to operate the NF90 Stepping Motor Controller were added to the software such that a probe mounted on the VELMEX UNISLIDE Motor Driven Assembly could be initially positioned prior to taking data, survey behind a cascade passage and finally return to its original position. As mentioned above the NF90 would be placed on line and the probe would move to its initial position during the "Data Preps" phase of ZOC operations, provided a scan type of 2 (Lower Blade) or 3 (Middle Blade) was chosen. When the cascade pressure ratio was at the appropriate value the function key F5 was pressed to begin collecting data. After each scan (after the subprogram "Scan_zocs" was called) was completed the subroutine "Traverse" was called which stepped the traverse a preset linear distance that was "hard-wired" into the program (a program edit was required to change this parameter) to avoid inadvertent damage to the probe. The probe moved after each pressure measurement, but ceased to move after the final measurement. The system completed 33 scans causing the probe to move 32 times at 0.0625 inches each time for a total of two inches traversed. More detailed surveys could be completed by changing the number of steps per scan (currently 1000) to a smaller value. After pressure measurements were completed another routine included in the "Collect Data" phase of the program moved the probe back to its starting position out of the flow and placed the NF90 off-line. A summary of the ASCII commands transmitted to the NF90 via the serial RS-232C port is provided in Table IV.

76

Command	Definition	Purpose	Comments
"FN"	On-line & Zero Motors	Place NF90 on-line	Used at the beginning of traverse ops
"Q"	Quit	Take NF90 off-line	Used at the completion of traverse ops
"C"	Command	Alerts NF90 to new command	Used at the beginning of each command
"S1M1000"	Speed of Motor One at 1000 Steps/Second	Set motor speed	1000 steps/sec is the optimum speed of operation
"I1M1000"	Index Motor One 1000 steps	Moves UNISLIDE 1000 steps	500 steps is equivalent to 1/32 inches

 Table X. NF90 COMMANDS USED IN SCAN_ZOC_06

In making first time probe surveys in the Transonic Cascade Wind Tunnel, measurements were required to determine the significance of disturbances caused by the probe itself. The procedure was modified so that it was possible to measure a portion of the cascade pressure field at each survey point. "SCAN_ZOC_05" was modified such that it would perform one scan of all ZOC's for each new position of the probe. This required the addition of the traverse routines described above and the modification of the following routines listed in Table V. These changes essentially added a "global loop" around the entire acquisition process (with the exception of the transfer of data to the HP9000, gathering of calibration data and final data reduction) thus enabling the system to scan all ZOC pressure ports, including the port reserved for the probe, multiple times while still taking multiple samples. These operations were limited by the HP6944A buffer space such that the number of scans times the number of samples times 32 ZOC ports had to be less than 32,672.

Table XI. ROUTINES MODIFIED IN SCAN_ZOC_06

Routine	Purpose	Modifications	Comments
Initialize_spac	Initializes variables	 Added parameter "Itrav" for total number of scans/traverse points Added one column to "Zoc_cal" arrays for storage of additional program inputs 	See "Collect_data" for more on "Itrav"
Key_menu	Prints ZOC operating menu	1. Changed "F4" selection to "Final Checklist and P2/P1 Cascade"	
Input	Provides Program inputs	 Added input for Atmospheric Pressure and Type of scan desired. Replaced LIF Hard Drive selection with LIF Floppy Drive for data storage 	Inputs stored in Zoc_cal array and Cal file in "Initial_cal"
Data_prep	Initializes CALMOD and probe traverse and prints out pressure ratio	 Added routine to preposition the probe traverse depending on "Scan_type" selected in "Input" Added routine that prints continuous cascade of pressure ratios (P2/P1) 	"P2p1" routine starts after probe is in position.

(TABLE XI. is continued on the next page)

TABLE XI. (continued)

Routine	Purpose	Modifications	Comments
Collect_data	Scans ZOC's desired number of times	 The variable "Iscan" is now passed to SUB "Scan_zocs". When Iscan is greater than one the HP6944A buffer will not reinitiate such that data from all scans will be stored. SUB "Traverse" is now called after each measurement and moves the probe vertically down at a set increment. At completion of measurements a routine returns the probe to its initial position. 	See SUB "Scan_zocs" for use of variable "Iscan" and also see SUB "Traverse"
Initial_cal	Initializes arrays necessary for storage of calibration data	 Additional program inputs are now stored in "Zoc_cal" arrays for current data run. New inputs included are "Scan_type", number of scans ("Itrav"), traverse "Increment" and atmospheric pressure. Variable "Iscan" is reset to one so that buffers initiate for storage of calibration data. 	All inputs are stored in the calibration file which is read later during data analysis.
Collect_cal_dat	Collects raw calibration data for each CALSYS pressure	 Variable "Iscan" added to call of SUB "Scan_zocs". Since Iscan reset to one the HP6944A buffer initializes to store calibration data only. 	
Reduce_data	Reduces raw calibration and measured data	1. Replaced LIF Hard Drive option with LIF Floppy Drive .	SEE SUB "Raw_red_ dat"

(TABLE XI. is continued on the next page)

TABLE XI. (continued)

Routine	Purpose	Modifications	Comments
View_files	Displays filenames from storage media	1. Replaced LIF Hard Drive option with LIF Floppy Drive .	
SUB Scan_zocs	Operates HP6944A for scanning ZOC's	 Program passes additional variable "Iscan" . Conditional "IF" statement skips reinitiating of HP6944A buffer if Iscan greater than one. 	
SUB Traverse	Steps probe traverse a preset distance when "Scan_type" is greater than one	 Increments for upper and middle blade survey can be varied with program edit. Routine verifies probe move- ment complete by awaiting "^" char- acter from NF90 Stepping Motor Controller. 	Survey increment "hard-wired" into program to avoid probe damage
SUB Raw_dat	Collects raw data from memory for storage on disk drive	 The number records read into the HP9000 memory and stored on disk drive were multiplied by the factor "Itrav". CREATE BDAT, Input_iblock and CONTROL statements were affected. 	"Itrav" is the total number of scans.
SUB Cal_dat	Stores calibration data on disk drive	 Data file size and size of file buffer were increased to account for additional column in Zoc_cal array. CREATE BDAT and CONTROL statements were changed. 	Zoc_cal array size increased to hold amplifying information.
SUB Raw_red_dat	Loads raw data and cal data from disk, reduces data and stores on drive	 Add outer loop to account for multiple scans now implemented. Repetitively set read pointer to second element of each scan in raw data file. 	

OPERATING THE ZOC-14 DAS PROGRAM

1. Start-up

- Turn on HP6944A, CALSYS2000, ZOC Enclosures, HP3497A, HP3455A, NF90, and HP9000.
- Verify traverse assembly is in correct position for desired survey if applicable. Also, ensure lead screw is lubricated to avoid motor stall.
- From main menu shown type F7 and set time and date in the following format: Time 10:25:45 (hours:minutes:seconds); Date 17 Dec 1992. If entries are correct enter "Y" when prompted.
- Type F2 to enter HP6944A directory menu.

2. Calibration

- From this menu type F2 again to calibrate individual transducers. 100PSID transducers 1 and 2 are on ports 0 and 4 of the signal conditioner. Set zero calibration and then range scale calibration using test pressure. Set range to one-half (1/2) actual test pressure for 100PSID transducers.
- Type an out of range value in calibration menu to reenter HP6944A menu.
- Type F1 to proceed to ZOC-14 Modules menu.
- Ensure the nitrogen gas supply is connected to the CALSYS2000 and 90 psi is set on the regulator.
- CALSYS2000 regulators: Set the high, medium and low pressure regulators over a range of pressures to be measured. If specific levels are known, set regulators close to those levels.
- WARNING: Do not over pressurize ZOC's that are not rated for the higher pressures such as the 15PSID ZOC's.
- CALSYS2000 verification: Select F4 from the ZOC Modules menu and verify pressure settings.

- **NOTE:** This should always be completed when the CALSYS2000 is first energized to ensure the RS-232C line is clear and ZOC's are initialized.
- Type F2 to return to ZOC menu.

3. SCAN_ZOC_06 Set Up

- Type F1 to load and run "SCAN_ZOC_06". NOTE: HP6944A must be energized to run this program.
- An introduction screen is displayed which indicates the program is waiting for a function key input. Function key options are listed at the bottom of the screen. Typing F1 displays the introduction screen again. Typing F2 will display a menu screen with same function key options listed at the bottom the screen.
- NOTE: Typing F4 or F5 at this time results in an error.
- Type F3 to supply set-up inputs to the program. All inputs are prompted and a list of these inputs is provided below:

a. Input atmospheric pressure in psia.

b. Select data storage drive (0 is HFS hard drive ":,700,0" and 1 is LIF floppy drive ":,700,1")

c. Select "Scan_type" as described in Table IX above. The number of samples available is determined by this selection.

d. Select the number of samples based on selection of "Scan_type".

e. Select the number of ZOC's (1-3) for recording data.

f. Select the CALMOD assigned to each ZOC by entering 1 or 2 when prompted. (currently only one is available).

4. Data Collection Preparations ("Final Checklist and P2/P1 Cascade")

- Verify nitrogen is supplied to CALSYS2000 at 90 psi.
- Verify wind tunnel is prepared for operation:
 - a. Back pressure valve is wide open.

- b. Control air is supplied to the pneumatic regulator valve.
- NOTE: The next step is to type F4 for final preparations and checklist, but the outcome will vary depending on Scan_type selected.
- If Scan_type 0 or 1 is chosen, type F4 prior to commencing wind tunnel operations. This will provide a continuous display of tunnel pressure ratio.
- If Scan_type 2 or 3 is selected, type F4 just prior to opening tunnel inlet valve by coordinating with the operator. This will avoid placing probe in unsteady initial tunnel flow and save run time by positioning probe in an expeditious manner.
- WARNING: Probe motion is "hard-wired" into program. Ensure probe is positioned such that current settings will not damage the probe or traverse.

5. Data Collection

- When prompted, and when tunnel pressure ratio is at desired level, type F5 to commence data collection. The HP9000 will display "Collecting raw pressure data."
- The HP9000 will display "Raw data collection complete." and then store raw data to the disk drive selected. At this time the wind tunnel can be secured if desired. The HP9000 will also take and store raw calibration data at this time and display all filenames for raw data and raw calibration data storage.
- At this point there are several options available. Type F4 to repeat the previous data run. Type F3 to reset program set up. Type F6 to reduce the current day raw data, or F8 to exit program.

6. Data Reduction and File Listing

- Typing F7 will list all current day data files on the storage drive. The program prompts the user if copying files to the floppy drive (":,700,1") is desired.
- Type F6 to reduce current day raw data. It is recommended that all data be reduced the day it is taken.
- NOTE: Data reduction of large data files (multiple scans required for probe surveys) takes several minutes.

• Type F8 to exit the program and return to the ZOC menu.

7. Data Analysis with READ_ZOC2

- Typing F2 enters the program "READ_ZOC2" for data analysis.
- A menu is displayed with various choices for data analysis. Typing F1 prompts the user for the ZOC number, date (YMMDD) and run number from that day. It then prompts the user for the storage drive where this data is saved (must be the HFS hard drive or LIF floppy drive). This will read the reduced pressure and calibration data from the files generated by "SCAN_ZOC_06".
- NOTE: All other function key selections will result in an error before entering the ZOC data (typing F1).
- Functions available by typing the function key shown are as follows:
 - F1 Read ZOC data stored on disk drives
 - F2 Save pressure data array in psia to an ASCII file
 - F3 Print pressure data to CRT or printer
 - F4 Plot P/Pt and Mach number distributions and print out P/Pt and Mach number for multiple scans.
 - F5 Plot vertical displacement against probe pressures and calculate mass averaged losses.
 - F8 Exit READ_ZOC2
- NOTE: ASCII file size is "hard-wired" into the program and must be changed with a program edit.
- The program is currently configured to read the first 25 ZOC ports into the arrays for plotting surface pressure and Mach number distributions. Other distributions are possible with a simple program edit.

```
----
  10
       1 Program: SCAN ZOC.06
  20
       1 by Richard Wendland
  30
       I modified for traverse operations by David live
  10
  50
       1 Description: Application program to operate HE6944A collecting pressure
 60
                      readings from 1-3 ZOR-14 32 port podules using the CALSYS
 70
                      2000 to provide calibration data, reduce inw pressure data
 g<sub>(A</sub>)
       Т
                      and store data to the hard drive.
 90
 100
      -E
        Handware:
                   (1) HE6944A Multi-processors
 110
                     - (3) 500 HHz A/B Cands (HDB9/29A)
 120
      1
                       (3) High Speed Hemory Coulds (UPR92910)
 130 1
      Т
                     - (1) Timer/Pacer Caril (HEB973GA)
 110
                     - (1) Counter Card (MP53775A)
 150
                    (1) HISCAN COLSYS 2000 Paltbration Hodula
 160
                    (3) 700-14 37 port Electronic Pressure Semining Hodules
 170
      н
                    (A) VELMEX NE90 series stepping actor controller
 180
 190
      1 Notes: 1. This program ultilizes up to three (3) 7oc Hodules storing data
 200
               of each Zoc into a seperate buffer Henory System (HEGOTAIA).
 210
      Т
               2. COM /Names/ line and BDAF File 200 (OBFIG 04 must match for
 220
      ÷.
               this program to operate.
 230
     1
               3. CALSYS2000 requires a short period to stabilize before reading
 240
     1
               the pressure valves. The Pause for statement sets (fine 470) this
               walt period in seconds. Adjustment of the variable by be required
 250
      Ŧ
 260
               as additional Zocs are integrated into the Unio Acquisition System
     1
               4. CALSYS2000 currently configured for one (1) calibrator. This
 270
      Ŧ
 280
               program is written to operate one (1) or two (2) calibrators.
 290
 300
      1 Buffer Memory: 65536 16-bit data words in NE69791A per system
310
      | Timer: Maximum 32676 counts for one HP69775A
320
      I Max apead of HP system is Period=0.000002 sec. or 500 Hts.
330
      ł.
340
      COM /Issacom/ INTEGER X(1:1105)
350
      COM /Isss_heap/ Isss heap(1000)
360
      COM /Names/ Bufferl,Adet,Buffer2,Ade2,Buffer5,Ade3,limer
370
      Configure("Menu_off","ZOC_CONFIG_05")
380
      !Configure("Ask_me","200_CONFIG_05")
390
      Ł
400 Key_label: I----- KEY LABEL ASSIGNMENT
                                                                           . _ . . . . . . .
410
120
      KEY LABELS ON
      ON KEY I LABEL "Intro" GOTO Intro
430
410
      ON KEY 2 LABEL "Key
                               Menu" GOTO Key menur
      ON KEY 3 LABEL "Set-up" GOTO Input
450
                               Prepa" 5010 Data prep
      ON KEY 4 LABEL "Data
160
      ON KEY 5 LABEL "Collect Data" GOTO Collect data
470
      ON KEY & LABEL "Reduce
                               Data" 6010 Reduce data
480
                               Copy" GOTO View_files
490
      ON KEY 7 LAREL "LIST
      ON KEY 8 LABEL "Exit" GOTO Finish
500
510
      £
520 Initialize_spac: !---- ASSIGN MENORY SPACE ------
                                          I Wait time for CALSYS2000 stabilizatio
530
      Pause_form1.5
n
     I COM assigns calibration data array for 32 Zoc ports and standard values.
540
      COM /Zoc_dat/ REAL Zoc_celt(33,11) BUFFER,Zoc_cal7(33,11) BUHFER,Zoc_cal3(
550
33,11) BUFFER
      COM /Stats/ REAL Pulse, Sample_number, Pause_for, HHIEGER Cal mod_HHC3), Dates
560
[6],Run,Itrav
      COM /Files/ Files(1:99,1:9)(14),Data_drive$t24) (Data file & storage drive
570
```

Figure C1. Program "SCAN_ZOC_06"

580 590 DIM Command modes(1:7)[2] 600 Command mode\$(1)="NH" 610 Commend modes(2)="NM" 620 Command mode\$(3)="NL" 630 Command modes(4)="ZO" 640 Command_mode\$(5)="PL" 650 Command_mode\$(6)="PM" 660 Command_mode\$(7)="PH" 670 1 680 Run=0 690 Data reduced=0 700 1 710 Intro: I----- INTRODUCTION SCREEN -----720 1 730 CLEAR SCREEN 740 PRINT "Introduction. Program SCAN_ZOC_05:" 750 PRINT PRINT " - Scans 1-3 Zoc-14 Modules simultaneously (32 pressure sensing po 760 rts each)." PRINT " 770 - Uses Zero Operate Calibrate (ZOC) principal:" PRINT " 780 - Collects naw pressure data (Zero Operate)" PRINT " 790 - Collects calibration data (Calibrate)" PRINT " 800 - Reduces and stores data on selected hard or floppy drive." PRINT " - CALSYS2000 Calibration Module used for the reference pressure s 810 tandard." 820 PRINE * - - Raw pressure data reduced using calibration data from CALSYS200 0" 830 PRINT * and Zocs in the calibration mode." 840 PRINT 850 PRINT "Input variables: Hard and Floppy drive for data storage" 860 PRINT " Sample frequency per port (1-50,000 Hz)" 870 PRINT " Samples per Port (1-1021)" PRINT " 880 Number of Zocs and their capacity" 890 PRINT 900 1 Note: HFS Files limited to 14 characters, LIF Files limited to 10 char. 910 Output files have a length of 10 characters to support LIF files. 1 920 1 Hard drive format is HFS Files. 930 1 Floppy drive format is LIF Files. PRINT "Output files! Raw data => ZW(Zoc#)(Date YMMDD)(Run#)" 940 PRINT " Calibration => ZC(Zoc#)(Date YMMDD)(Run#)" 950 Reduced data => ZR(Zoc#)(Date YMMDD)(Run#)" 960 PRINT * DISP "Select F2 key for Key Menu, F3 for system inputs, or F6 for data red 970 uction." 980 Hold: 1 990 GOTO Hold 1000 1 1010 Key_menu: |----- KEY MENU ------1020 1 1030 CLEAR SCREEN 1040 PRINT "ZOC-14 Operating Menu." 1050 PRINT -Function Key" 1060 PRINT "Function 1070 PRINT E1" 1080 PRINT * Introduction 1090 PRINT " Operating Menu Systèm_Satrup - (a F2" F3" 1100 PRINT F4" 1110 PRINT Final checklist and P2/P1 Cascade 1120 PRINT * F5" Data Collection F6" 1130 (PRINT * Data Reduction F7" 1140% PRINT List Files (Copy files to Floppy)

. .

Figure C1. (cont) Program "SCAN_ZOC_06"

```
1150 PRIM
                                                     f'Ω"
 1150 PRINT " Exit
 1170 1
 1180 GOTO Hold
1190 1
1200 Input: !---- ENPUT VARIABLES
1210
          1
1220
     I Some array initialization and TIMEDALE value.
1230
     1
1240
     MAI 70c_call- (0)
     MAT 700 0012= (0)
1250
1260
     MAT Zoc_cal3m (0)
1270
     MAT Filos+ ("-")
1280
     Dates=FNDates(TIMEDATE)
1290
     1
     1300
1310
     I The following provides inputs for current run.
1320
     1330
     1
1340
     CLEAR SCREEN
1350
     PRINT "System Set-up."
1360
     PRINT
     INPUT "Input the Atmospheric Pressure in FSIA:", Point
1370
1380
     1
1390
     | Hard drive or LIF floppy slection
1400
     1
     INPUT "Select Hard drive for storing data (0-:,700 1-:,700,1)", Dry
1410
1420
     IF Drv=@ THEN
1430
       Data_drives=":,700.0"
1440
     ELSE
      Data_drive$=":,700,1"
1450
1460
     END IF
1470
     1
         Further inputs
1480
     1
1490
     1
     INPUT "Enter data sampling rate (1-50Hlz):",Hr
1500
     PRINT "Data acquisition rate: "(TAB(50))Hz;" Hz"
1510
1520
     1530
     Input the type of scan made
1540
     1550 Type_scan: |
1560 PRINT
1570
     PRINT
     PRINT "Enter the type of scan desired."
1580
1590 PRINT
1600
     PRINT "0 for a single scan."
     PRINT "I for a multiple scans."
1610
1620
     PRINT "2 for LOWER BLADE survey."
     PRINT "3 for MIDDLE BLADE survey."
1630
1640
     PRINT
     INPUT "The desired scan type is:", Scan_type
1650
     PRINT The scan type is:"(TAB(50))Scan_type
1660
1670
         Selection of scan type routine
1580
     ŧ
1690
    SELECT Scan_type
1700
1710
    CASE Ø
```

Figure C1. (cont) Program "SCAN_ZOC_06"

1720 Itrav=1 1730 INPUT "Number of samples per port (1-1021): ",Sample number 1740 PRINT "Number of samples per port:";TAB(50);Sample_number 1750 CASE 1 1760 PRINT "You have chosen the multiple scans option." 1770 PRINT "The number of scans chosen will determine the maximum 1780 PRINE "number of samples per port as 1021/#scans. 1790 PRINT 1800 INPUT "Number of scans desired:", Itrav 1810 PRINT 1820 PRINT "The scans desired is:"(TAB(50))Itrav 1830 PRINE "The max number of samples per port:":TAR(50):1023/Itrav 1840 PRINT 1850 INPUT "Number of samples per port: ".Sample number 1860 PRINT "Number of samples per port:"(IAB(50):Sample number 1870 PRINT 1880 CASE 2 1890 [trav=33 1900 Sample_number=10 1910 Increment=1000 1920 CASE 3 1930 Itrav=33 1940 Sample_number=10 1950 Increment=1000 1960 CASE ELSE 1970 REEP PRINT "YOU DONE SCREWED UP PARDI TRY AGAINIT" 1980 1990 GOTO Type_scan 2000 END SELECT 2010 2020 2030 1 ZOCS AND CALMOD COMBINATION UTILIZED 2040 2050 - E INPUT "Number of Zoc's connected to Multi-programer", Zoc_number 2060 2070 PRINT "Number of Zocs to be scanned:"(TAB(50));Zoc_number 2080 Cal_mod_id(0)=Zoc_number 2090 FOR Zoc_case=1 TO Zoc_number 2100 SELECT Zoc case 2110 CASE 1 2120 Run=1 2130 CALL File(1) INPUT "Enter Calibration Module number set for Zoc #1 (Enter 1 or Z):" 2140 .Cal_mod_id(1) 2150 CASE Z 2160 Run=1 2170 CALL File(2) INPUT "Enter Calibration Module number set for Zoc #2 (Enter 1 or 2):" 2180 ,Cal_mod_id(2) 2190 CASE 3 2200 Run=1 2210 CALL File(3) INPUT "Enter Calibration Module number set for Zoc #3 (Enter 1 or 2):" 2220 ,Cal_mod_id(3) END SELECT 2230 2240 NEXT Zoc_case 2250 1 Period=1/Hz 2260 Pulse length of HP69735A trigger signal Pulse=Period/2 2270 2280 1

Figure C1. (cont) Program "SCAN_ZOC_06"

2230 PRINE "Total naw data acquisition time: : TARCADiltrav+Period+Sample number r+311" sec." 2300 PRINE "Total calibration data acquisition time:"(TAB(SO):For idd:SESER(7-Pa use for)1" sec." 2310 FRINI 2020 PRINT "Pata storage disc = "iPata drijes 2330 PRINE "Data will be stored in the following files beginning with bun # iPu 11 2.740 PR PH 2350 FUR I-1 TO Zoc number 2350 1-(1-1)+3 2370 PRINE "Raw data file: "FETERSPORT TIES PPINI "Calibration data file: ":Filet(Pun, 141) 2380 PRINE "Reduced data file: File*(Bun, 113) 2390 2400 PRINT 2410 DEXT I 2120 -E 2430 DISP "Select F4 key to begin data aquisition" GOTO Hold 2110 2450 1 2450 Data prep: 1---- PREPARE FOR DATA COLLECTION 2470 CLEAR SCREEN 2480 PRINT "Data Collection Preparation." 2490 FRINT 2500 - 1 2510 2520 F ERROR TRAP IF NO INITIAL PROGRAM SETTINGS CONCLETED. 2530 2540 2550 IF Run=0 THEN 2560 PRINT "Frogram not initialized for data collection. 2570 DISP "Select F3 to initialize Set-up" 2580 GOID Hold 2590 END FF 2500 2610 FINAL CHECKLIST PRIOR TO STARTING DATA RUN 2620 2630 2640 -F 2650 FRINT "Check list:" PRINT " - HiScan CALSYS2000 on-line" 2660 PRINT " - CALMOD supply line valve is OPEN (on back of CALSYS2000)" 2670 2680 PRINT " - CALSYS2000 (Nitrogen) pressure source at 90 psi" 2690 ÷. 2700 2710 | PLACING TRAVERSE IN INITIAL LOCATION HERE 2720 2730 1 2740 IF Scan_type<2 THEN Skip_traverse 2750 PRINT 2760 PRINT " - The Probe traverse is now moving to its initial position." 2770 PRINT 2780 1 2790 DIM Travend\$[1] (Select code for 2nd serial card 2800 Sc2-10 "Assign a path to the seclar card 2810 ASSIGN @Traverse 10 Sc2 2820 CONTROL Sc2, 14:30 Place stepping motor on line 2830 OUTPUT @Traverse; "FN" 2840 2850 IF Scan_type⇒Z THEN

Figure C1. (cont) Program "SCAN ZOC 06"
2860 OUIPUL @Inavorse:"C.SIM1200.IIM35520.R" HOWEP BLADE Traverse 2870 FESE 1880 OUTPUT @fraverset"C,SINI200,LUNS3000,R" INTODLE BLADE Tra. orsa 2890 END 1F 2900 1 2910 Pre posit: 1 2920 ENTER @Inaverse USING "#,-F": Fravend& Decense actnowledge from stepper IF travemd#<>"^" THEN Fre posit 2930 llf en receipt, try again. 2940 FOUTPUT @Traverse:"X" 2950 JENTER @Inaverse USING "#,80"; Fre pos 2960 1 2970 1 2980 Skip_Traverse: 1 2990 1 3000 3010 I INITIALIZE CALMOD HERE 3020 3030 1 3040 PRINT 3050 PRINT " You will have the CALMOD(s) cycle while it initiates. 3060 PPINE 3070 ł 3080 CONTROL 9,513 I Set DIP & PIS to Active for CALSYS2000 3090 OUTPUT 9:VAL\$(+):"IC":(CHR\$(13):END) Initialize (althrator nodule #1 3100 OUTPUT 9:VAL#(2):"IC"(CHR*(13):END) Initialize Calibrator module #2 L Allow CALSYS2000 to set Zons 3110 WAIT Pause for 3120 1 3130 3140 ISTEADY STATE P2/P1 ROUTINE HEPE 3150 3160 3170 DISP "Monitor Pratio and select F5 to start data acquisition." 3180 1 3190 1 3200 P2p1:1 3210 - 1 3220 I Initialize devices 3230 Dacum709 3240 Dvm=720 3250 ASSIGN @Dacu TO Dacu 3250 ASSIGN ODVM TO DVM 3270 ASSIGN @Instruments TO Dvm.Dacu 3280 CLEAR @Instruments IDCV Autorange HathOff AutocalOff 3290 OUTPUT @Dvmi"FIR7M3A0H0T3" HiresOff.IntogerNamual 3300 3310 Ratio_loop: | FOR Id=0 TO 4 STEP 4 3320 GOSUB Read_stdy 3330 3340 SELECT Id 3350 CASE Ø 3360 P1=P_stdy+1000+P_atm 3370 CASE 4 3380 P2=P_stdy+1000+P_atm 3390 END SELECT 3400 NEXT Id 3410 Pratio=P2/P1 3420 PRINT " P2 "," P1 ","Pratio"

3430 PRINE P2, P1, Pratio 3440 GOTO Fratte Loop 3450 1 3460 Read stdy: 1 3470 CLEAR @Dacu 3480 Ac\$="AC" 3490 HH#=UAL#(IH) 3500 OUTPUT @Dacu:Ac#&IHT 3510 Intal-0 3520 FOR 1-1 10 5 3530 IRIGGER @Dvm 3540 ENTER ROVMIP stdy 3550 Total=Total+P_stdy 3560 NEXT I 3570 CLEAR RDacu 3580 P_stdy=Tola1/5 3590 P stdy=2+P stdy - IScaled for 100 poid transducer 3500 RETURN 3610 CLEAR @Instruments 3620 ASSIGN @Dacu TO . 3630 ASSIGN ODVM TO . 3640 ASSIGN @Instruments TO . 3650 6010 Hold 3660 1 3700 1 3710 CLEAR @Instruments 3720 ASSIGN @Dacu TO + Deallocate paths used in stdy state read sys 3730 ASSIGN ODVM TO + 3740 ASSIGN @Instruments TO * 3750 1 3760 3770 I ERROR TRAP IF NOT INITIALIZED 3780 3790 IF Run=0 THEN 3800 "PRINT "Program not initialized for data collection." 3810 DISP "Select F3 to initialize Set-up" 3820 GOTO Hold 3830 END IF 3840 1 3850 1 3850 3870 1 DATA COLLECTION (CALLS Scan zocs AND Traverse) 3080 3890 1 3900 CLEAR SCREEN 3910 PRINT 3920 PRINT "Collecting raw pressure data." 3930 I Set Count as function of sample number Count-Sample_number=32 3940 1 and number of port readings (32) on 3950 I Zoc for raw data collection. 3960 3970 ! The scan loop for all scan types is here 3980 1 3990 FOR Iscan=1 TO Itrav

Figure C1. (cont) Program "SCAN_ZOC_06"

4000 CALL Scap zoes(Count, Pulse, Lapan) / Collect row data into Neonix System 1010 TE Scan type)! AND Iscan Itray THEN GOSUP Training 4020 HEYT Hagan 4030 1 1040 1 4059 IF Shan Typer2 THEN Filse 4060 FRINE "Zero-ing traverse and taking stepping ofter sif line 4070 DUFFIHE OFraverset"C STM1000 FIMO P. 4080 OUTFULE @lraverset"Q" 4090 ASSIGH Minaverse HD . 1100 Elsn: 1 4110 1 4120 PRIME 4130 PRINT "Raw data collection complete. 4140 BEEP 4150 1 4160 GOID Raw data sfer 4180 | TRAVERSE OPERATIONS FOR VELNEX NEGO STEPPING HOLDR CONTROLLER 4200 Traverne: 1 4210 SFLECT Scan_type 4220 CASE 2 4230 OUTPUT @Travense: "C.SH11000.1181-1000.P 4240 CASE 3 4250 OUTPUT @Traverse: "C.SIM1000,I111-1000.R" 4260 END SELECT 4270 . 4280 Posil: 1 4290 ENTER @Traverse USING "#,-K" (Travend® IE Travends<>">" THEN Posit 4300 4310 WATT Ø 4320 HOHIPUT @Inaverset"X" JENTER @Traverse USING "#,8D"(Pos 4330 4340 RETURN 4350 Ł 4360 1 4370 Raw_data_xfec: ---- TRANSFER RAW DATA FU NEMORY SYSTEM TO HAPD DISC ----4380 PRINT 4390 1 E Collect raw data, reduce data and 4400 FOR Zoc_case=1 TO Zoc_number L and storie reduce data on hard drive 4410 SELECT Zoc_case 4420 CASE 1 4430 CALL Raw_dat(Buffer1,1) 4440 CASE 2 4450 IF Runst THEN 4460 Run=Run=1 4470 END IF 4480 CALL Raw dat(Buffer2,2) 4490 CASE 3 4500 IF Runo F THEN 4510 Run=Run=1 4520 END IF 4530 CALL Raw_dat(Buffer3,3) 4540 END SELECT 4550 NEXT Zuc.case 4560 1

Figure C1. (cont) Program "SCAN_ZOC_06"

```
4570 Instial calst---- CALIBRATION SET-UP
 4580 | Calibration data array for each Zec: Zow wai (11,11)
 1590 | Format:
 4500 E
        Fer ports imi to 35
 4610 1
            Row 0, column 0: Period
 4570 1
            Row P. column 1: Sample number
 4530 1
            Pow Q, column 2: 705 #
 4640 1
            Row 0, column 3: Calibrator module HD (1:50 ps) 7 10 priv
            POM 0: _____ NU MI NE ZO PL PH FU Coressine Hg.
 4650 1
 4660 1
            Row 0-3, column 11: Sean type Itra: Increment F atm
            Row 1: A0 AL A2 A3 HH MH ML 70 PL PH FULLS coof prost wolfs)
4570 1
         LS coef are Least Squares curve fit coef for third order polynomial.
4580 1
4690 1
4700 PRIM
4710
      PRINT "Collecting calibration data."
4720
      REAL Call(1120), Cal2(1120), Cal3(1120)1 Calibration data array
4730
      Iscan=1.0
4740 Count=32=5
                                         I Set count to collect calibration data
4750
4760
     MAT Zoc_call= (0)
4770
     MAT Zoc cal2= (0)
     MAT Zoc_cal3= (0)
4780
4790
      Zoc_call(0,0)=Period
4800
     7oc_call(0,1)=Sample_number
4810 Zoc_calt(0,2)=1
4820
     Zoc_call(0,3) * Cal mod (d(1)
4830
     Zec_call(0,11)=Scan_type
     Zoc_call(1,11)=Itrav
4840
4850
     Zoc_call(2,11)#Increment
4860
      Zoc_call(3,11)=P_atm
4870
      Zoc_cal2(0,0)-Period
4880
      Zoc_cal2(0,1)=Sample_number
4890
      Zoc_cal2(0,2)=2
4900
     Zoc_cal2(0,3)=Cal_mod_id(2)
4910 Zoc_cal2(0,11)=Scan_type
4920 Zoc_cal2(1,11)-Itrav
4930 70c_cal2(2,11)=Increment
4940 20c_cal2(3,11)-P_atm
4950 Zoc_col3(0,0)=Period
4960 Zoc cal3(0,1)=Sample number
4970
     Zoc_cal3(0,2)*3
4990
     Zoc cal3(0,3)=Cal mort id(3)
4990
     Zoc_cal3(0,11)=Scan_type
5000
     Zoc_cal3(1,11)=Itrav
5010
     Zoc_cal3(2,11)=Increment
5020
     Zoc cal3(3,11)=P_atm
5030
5040 Collect_cal_dat: ---- COLLECT RAW CALIBRATION DATA
5050 1
5050 / Collect raw calibration data for each COLSYS2000 setting
5070
      FOR Index#1 TO 7
        CALL Cal2000(Command_mode%(Index), Index)
5080
5090
        CALL Scan_zocs(Count,Pulse,Iscan)
        FOR Zoc_case=1 TO Zoc_number
5100
          SELECT Toc_case
5110
5120
          CASE 1
            Input_rblock(Buffer1,Call(+),160,(Index-1)+160+1)
5130
```

Figure C1. (cont) Program "SCAN_ZOC_06"

5140 CASE 2 5150 Input_rblock(Buffer2,Cal2(*),160,(Index-1)*160+1) 5160 CASE 3 5170 Input_cblock(Buffer3.Ca)3(+).150.(Index=1)+150+1) 5180 END SELECT 5130 NEYT Zoc case 5200 NEX1 Index 5210 1 5720 I Store collected calibration data 5230 FOR Zoc_case=1 TO Zoc_number SELECT Zoc_case 5240 5250 CASE 1 5260 CALL Cal_dat(Call(+),Zoc_call(+)) 5270 CASE Z 5280 CALE Cal_dat(Cal2(+),Zoc_cal2(+)) 5290 CASE 3 5300 CALL Cal_dat(Cal3(+),Zoc_cal3(+)) 5310 END SELECT 5320 NEXT Zoc_case 5330 1 5340 PRINE 5350 PRINT "Calibration data collection complete." 5360 BEEP 5370 WALL .25 5380 BEEP 5390 OUTPUT 9:VAL\$(1):"IC":CHR\$(13):END! Initialize Calibrator module #1 5400 OUTPUT 9:VAL\$(2):"IC":CHR\$(13):END! Initialize Calibrator module #2 5410 PRINT 5420 PRINT "+++ Secure Calibrator pressure valve to conserve Mitrogen +++" 5430 PRINT 5440 PRINT "CALSYS2000 Calibration modes and pressures (in Hg):" 5450 Fmt1: IMAGE / ,5X ,K , 10X ,K , 10X ,K ,10X ,K PRINT USING Fmtl: "Node", "Zoc #1", "Zoc #2", "Zoc #3" 5460 5470 Fmt2: IMAGE 6X,K, 10X, 3D. 4D, 8X, 3D. 4U, 8X, 3D. 4D 5480 FOR 1-4 TO 10 5490 PRINT USING Fmt2:Command_mode\$(I-3).Zoc_cal1(0,1).Zoc_cal2(0,1).Zoc_cal3 (0.1)5500 NEXT I 5510 DISP "Select F4 for another data run, or F6 to reduce data" 5520 GOTO Hold 5530 1 5540 Reduce_data: +---- REDUCE DATA AND STORE ON HARD DRIVE ------5550 | Routine loads raw and calibration data from storage drive, reduces the 5560 L data, and stores the data to the storage drive. 5570 1 5580 CLEAR SCREEN 5590 PRINT "Calibration and Raw data reduction and storage." 5600 PRINT 5610 IF Run=0 THEN INPUT "Enter the date of data for reduction (YMMDD):" Date\$ 5620 INPUT "Number of Zoc's connected to Multt-programer", 7or number 5630 INPUT "Select data storage drive (0=:,700 1=:,700,1)",Drv case 5640 SELECT Dry_case 5650 5660 CASE Ø 5670 Data_drive\$=":,700,0" 5680 CASE 1 5690 Data_drive\$=":,700,1" END SELECT 5700

-

```
5710 END IF
 5720 1
 5730 MAI Files= ("-")
 5740
      FOR Zoc_case=1 TO Zoc_number = 1Assign files from storage to File$(*)
 5750
         SELECT Zoc_case
 5760
        CASE 1
 5770
           CALL File scan(1)
 5780
        CASE 2
 5790
          CALL File_scan(2)
 5800
        CASE 3
 5810
          CALL File_scan(3)
 5820
        END SELECT
5830 NEXT Zoc_case
5840 1
5850 PRINT "Current files on storage disc ":Data_drive1:" for date ":Date1
5860 PRINT
5870 FOR Rn=1 TO Run
5880
        FOR Znml TO Zoc_number
5890
          FOR In1 TO 3
5900
            PRINT USING "3X,K,#"(File$(Rn,(7n-1)*3+1))
5910
          NEXT I
5920
          PRINT USING "+,L"
5930
        NEXT Zn
5940
     NEXT Rn
5950 PRINT
5960 1
5970 FOR Run_red-1 TO Run
                                      I Reduce data routine.
5980
        FOR Zoc_case=1 TO Zoc_number
5990
          SELECT Zoc_case
6000
          CASE 1
6010
            CALL Raw red_dat(1,Run red)
6020
          CASE 2
6030
            CALL Raw_red_dat(2,Run_red)
6040
          CASE 3
6050
            CALL Raw_red_dat(3,Run_red)
6060
          END SELECT
6070
        NEXT Zoc_case
6080 NEXT Run_red
6090 Run=0
6100 Data reduced=1
6110 BEEP
6120 DISP "Select F3 reinitialize set-up for data collection, or FB to Exit"
6130 GOTO Hold
6140
     1
6150 View_files: I----- VIEW FILES ON STORAGE DRIVE
6160 | Routine loads files from storage drive and displays file names.
6170 1
6180 CLEAR SCREEN
6190 PRINT "List Raw, Calibration and Reduced data files."
6200 PRINT
6210 IF Data reduced=1 THEN Print_files
6220
     IF Run=0 THEN
        INPUT "Enter the date of data for for reduction (YMMDD):",Date$
6230
        INPUT "Number of Zoc's connected to Multi-programer", Zoc_number
6240
        INPUT "Select data storage drive (0=:,700 l=:,700,1)",Drv_case
6250
       SELECT Drv_case
6260
6270
       CASE Ø
```

Figure C1. (cont) Program "SCAN_ZOC_06"

6280 Data_drive\$=":,700,0" 6290 CASE 1 6300 Data_drive\$=":,700,1" 6310 E'ID SELECT 6320 END 1F 6330 Print_files: 1 6340 PRINT "Data storage drive name = _ ":Data driveF 6350 1 6360 MAT File\$= ("-") 6370 FOR Zoc_case=1 TO Zoc number - IAssign files from storage to File\$(+) 6380 SELECI Zoc_case 6390 CASE 1 6400 CALL File scan(1) 6410 CASE 2 6420 CALL File_scan(2) 6430 CASE 3 6440 CALL File_scan(3) 6450 END SELECT 6460 NEXT Zoc_case 6470 | 6480 PRINT 6490 PRINT "Current files on storage disc for date ":Date® 6500 PRINT 6510 FOR Rn=1 TO Run Print the files listing on the 6520 FOR Zn=1 TO Zoc number Idesignated storage drive. 6530 FOR IHI TO 3 6540 PRINT USING "3X_K_#"(File\$(Rn_(Zn-1)*3+1) 6550 NEXT I PRINT USING "/" 6560 6570 NEXT Zn 6580 NEXT Rn 6590 1 6600 IF Drv_case<2 THEN INPUT "Do you want to copy files from the Hand drive to Fleppy? (0=No 1= 6610 Yes)",Copy_h_to_f 6520 IF Copy_h_to_f=0 THEN End_view 6630 ON ERROR GOSUB View_error 6640 PRINT PRINT "WARNING: Any duplicate existing files on the Floopy will be copie 6650 d over!* (Copy the files from the designated 6660 PRINT thand drive to the floppy drive. 6670 FOR Rn=1 TO Run FOR Znal TO Zoc_number 6680 6690 FOR 1=1 TO 3 6700 Fis=Files(Rn,(Zn-1)+3+1) COPY Fi\$8Data_drives TO Fi\$8":,700,1" 6710 IF FISC>"-" THEN 6720 6730 PRINT "File ";Fi\$;" copied to Floppy" 6740 END IF 6750 NEXT I 6760 NEXT Zn 6770 NEXT Rn 6780 PRINT PRINT "Files have been copied from ":Data_drive%;" to Floppy :,700,1" 6790 6800 END IF 6810 GOTO End view 6820 View error: 6830 SELECT ERRN File does not exist, then continue. 6840 CASE 56

6850 CLEAR ERROR 6860 FRROR RETURN (Return to line following COPY) 6870 CASE 54 Huplicate file exist on the floppy, 6880 TURGE F198": ,700,1" Ithen purce the dup file, retrun to 6890 CLEAR FRROR 6900 RETURN Ithe time COPY and copy the file. CASE ELSE 6910 6920 DISP ERRMS 6930 PAUSE 6940 END SELECT 6950 ÷ 6960 .1 6970 End view: 1 6980 Run=0 6990 DISP "Select F2 to return to menu, on F8 to Fait" 7000 GOTO Hold 7010 1 7020 Finish:1 7030 LOAD "ZOC_MENU",10 7040 1 7050 END 7070 | Function to return todays date for input into file names 7080 DEF FNDates(Seconds) 7090 Julian=Seconds DIV 86400-1721119 7100 Year=(4+Julian-1) DIV 146097 7110 Julian=(4+Julian-1) MOD 146097 7120 Day=Julian DIV 4 7130 Julian=(4+Day+3) DIV 1461 7140 Day=(4+Day+3) MOD 1461 7150 Day=(Day+4) DIV 4 7160 Month=(5+Day-3) DIV 153 1 Month 7170 Day=(5+Day-3) MOD 153 7180 Day=(Day+5) DIV 5 1 Day 7190 Year=100+Year+Julian 7200 IF Month<10 THEN 7210 Month=Month+3 7220 ELSE 7230 Month=Month+3 7240 Year=Year+1 END IF 7250 Years=VAL\$(Year) 7260 7270 IF Month<10 THEN 7280 Months="0"&VAL\$(Nonth) 7290 ELSE 7300 Months=VAL\$(Month) 7310 END IF 7320 IF Day<10 THEN 7330 Days="0"&VAL\$(Day) 7340 ELSE 7350 Days=VAL\$(Day) 7360 END IF 7370 D\$=Year\$[4]&Month\$&Day\$ 7380 RETURN D\$ 7390 FNEND 7400 1-----_____ I Subroutine to build file names as required by Run number for a specified 7410

```
7420
       I Zoc, and assign existing files to the file* matrix.
 7430
       SUB File(Zn)
 7440
         CoM /Stats/ REAL Pulse,Sample_number,Pause_for,INTEGER Cal nod id(3),Dat
 e$,Run.ltray
 7450
         CON /Files/ File$(*),Data_drive$
 7460
         DIM Data_discl$[23],Data_disc2$[23],Data_disc3$[23]
 7470
         ON ERROR GOID Error
 7480
         J=(Zn-1)+3
 7490 Assign file:
 7500
         Filel=0
7510
         Data_file1$="ZW"&VAL$(7n)&Uate$&VAL$(Run)
7520
         Data_discl$=Data_file1$&Data_drive$
7530
         ASSIGN @Chack_path1 10 Data_disc1$
                                               Ifhed for existance of ZW .
7540
         File$(Run,J+1)=Data_file1$
                                               IAssign 70, to matrix.
7550
         FileI=I
                                               Flag to ID file exists.
7560
        1
7570
        File2=0
7580
        Data_file2$="ZC"&VAL$(Zn)&Date$&VAL$(Run)
7590
        Data_disc2$=Data_file2$&Data_drive$
7600
                                               Check for existance of ZC .
        ASSIGN @Check_path2 10 Data_disc2$
        Filo#(Run,J+2)=Data_file2$
                                               Assign ZC to matrix.
7610
7620
        File2=1
                                               Flag to ID file exists.
7630
7540
        Data_file3$="ZR"&VAL$(Zn)&Date$&VAL$(Run)
7650
        Data_disc3$=Data_file3$&Data_drive$
7660
        ASSIGN @Check_path3 TO Data_disc3$
                                               (Check for existance of ZR_.
7670
                                               lAssign ZR_ to matrix.
        File$(Run,J+3)=Data_file3$
7580
        1
7690
        Run=Run+1
                                               llf ZW_ exist, reassion Run #
7700
        ASSIGN @Check_path! TU .
7710
        ASSIGN @Check_path2 TO .
7720
        ASSIGN @Check_path3 TO *
7730
                                               ICheck storage disc again.
        GOIO Assign_file
7740 Error: | Subroutine if ERROR=56, files donot exist for Run and Zoc
7750
        IF ERRN<>56 THEN
7760
          PRINT ERRM$
7770
          PAUSE
7780
        ENO IF
7790
                                               File ZW_ doesnot e-ist, exit
        IF Filel=0 THEN Fin
7800
                                               File ZW_ evists
        IF File!=! THEN
                                               IFile ZC_ doesnot e-ists, therefore
7810
          IF File2=0 THEN
7820
            ASSIGN @Chack_path1 TO .
7830
            PURGE Data_discl$
                                               Idelete ZW .
7840
          ELSE
                                               IFile 7W & ZC_ exist, step Run
            Run+Run+1
7850
7860
          END 1F
                                               land continue.
7870
        END IF
7880
        ASSIGN @Check_path1 TO +
7890
        ASSIGN @Check_path2 TO .
7900
        ASSIGN @Check_path3 TO .
7910
        GOTO Assign_file
7920 Fin:
            1
7930
        ASSIGN @Check_path1 TO .
        ASSIGN @Check_path2 TO .
7940
7950
        ASSIGN @Check_path3 TO +
        Oata_file2s="ZC"&VAL$(Zn)&Date$&VAL$(Run)
7960
        Data_file3$="ZR"&VAL$(Zn)&Date$&VAL$(Run)
7970
                                              (Create ZW_ to matrix.
7980
        File$(Run, J+1)=Data_file!$
```

```
Figure C1. (cont) Program "SCAN_ZOC_06"
```

```
File$(Run,J+2)=Data_file2$
 7990
                                             ICreate 71 to matrix.
 8000
         File$(Run,J+3)=Data file3$
                                             Assign 7P to matrix.
 8010
       SUBEND
 8020
       . . . . . . . . . .
 8030
       1 Submonitime to operate the HP6944A Multi-programmer for scanning Zocs.
 8040
       SUB Scan_zocs(Count_Fulse_Iscan)
 8050
        COM /Names/ Buffer1,Adc1,Buffer2,Adc2,Buffer3,Adc3,Timer
 8050
        Wait time=Count*2*Pulse+10.0
                                        - 1 Set Timer wait time to +10 secs.
 8070
        Init(Timer)
                                        I Initialize limer system
 HORO
        Set_timeout(Timer_Wait_time)
                                        I Set Pause for period of --- secs.
 8090
        Set_count(Timer_Count)
                                        1 Set Count number into liner
 8100
        Set period(Timer, Pulse)
                                        1 Set Eimer pulse length in secs.
 8110
        IF Iscan>1 THEN Naintain_point / If scanning:1 then den't reset pointer
 0120
        Init(Bufferl)
                                        f Initialize Buffer for data storage
 8130
        Init(Buffer2)
 8140
        Init(Buffer3)
 8150 Maintain point:
                        1
8160
        Start(Timer)
                                        I Start data sample collection
8170
        Wait_for(Timer)
                                        1 Data samples stored in Memory System
8180
      SUBEND
8190 1
8200 1------
8210 | Subroutine to collect naw pressure data from Homory System and store
8220 | onto the hard drive for future data reduction.
8230
     SUB Raw_dat(Buff,Zn)
8240
        COM /Stats/ REAL Pulse,Sample_number,Pause_for,INTEGER Cal_mod_id(3),Dat
es,Run,Itrav
8250
        COM /Files/ File$(+),Oata drive$ | Data file listing for 99 runs.
8260
        ON ERROR GOTO Error
8270
        INTEGER Raw_data(32672) BUFFER || Integer raw data buffer for 32+1021
8280
                                        I data samples. Integer format for
8290
                                        I mininum transfer time to storage.
8300
        DIM Data_disc$[25]
8310
        It=Itrav
8320
        SnaSample number
                  1
9330 Assign file:
8340
        Data_files=Files(Run_(Zn-1)+3+1) | Raw data file
8350
        Data discs=Data file$&Data drive$
8360
        CREATE BDAT Data_disc$,32*It*Sn+1*It,2 | Create BDAT file w/2 hyte recor
ds.
8370
        ASSIGN @Data path TO Data disc$ | Assign path to hard drive
        ASSIGN @Buffer_path TO BUFFER Raw_data(*);FORMAI OFF
8380
8390
        Input_iblock(Buff,Raw_data(*),It*Sn*32+1*It,1) | Lond data samples
8400
8410
        IPRINTER IS 702
8420
                                   - I Block print naw data for test
        (PRINT Raw data(*)
8430
        IPRINTER IS CRT
8440
        1
8450
        CONTROL @Buffer_path,4:32+2+It+Sn+2+It
                                                I Close buffer when full
        TRANSFER @Buffer_path TO @Data_path ____ Inansfer data Data_disc
8460
8470
        ASSIGN #Buffer_path TO #
8480
        ASSIGN @Data_path TO +
       PRINT "Rew pressure data: Run#";Run;", Zoc#":/n:", storage drive file ":
8490
Data_file$&Data_drive$
8500
       GOTO Fin
8510 Error: 1
       IF ERRN<>54 THEN
8520
         PRINT ERRMS
8530
8540
         PAUSE
8550
       ENO IF
```

8550 EF FRRN-54 THEN I Pun step routine when coupeling RimeRun+1 8570 I multiple data runs without data 8588 CALL File(7n) Creduction. 8590 FIND IF 8600 GUID Assign_file 8610 Fin: I 8620 SUBEND 8630 1----8640 | Subroutine controls calibration mode and reads pressure from Fressure 8650 | Standard into Zoc_cal(+) array. 8660 SUB Cal2000(Command\$,1) 8570 CON /log_dat/ REAL log_call(+) BUFFEP, log_all(+) BUFFEP log_call(+) BUF FER 8680 COM /Stats/ REAL Filse, Sample number Pause for , HIRGER Cal mont (d(3), Dat #\$ Run Itrav 8690 DIN Pressure\$[5] 1 Pegunied to read data stream 8700 OUTPUT 9:UAL\$(1):Command\$(CHR\$(13):FHD | Sets catibrater #1 mode 8710 DUTPUT 9:VALS(2):Command\$:CHR\$(13):END 1 Sets cattheater #2 mode 8720 WALL Pause for 1 ALLOW COLSYSTOPO to stabilize 8730 FOR Y-1 TO Cal_mod_id(0) L Poad CALSYS2000 cal press 8740 SELECT K 8750 CASE 1 8760 OUTPUT 9:VAL\$(Cal_mod_td(1));"RP";(HR\$(13);END) 8770 ENTER 9 USING "#,SU.SDE522,K"+Zoc_call(0,113),Pressuref 8780 CASE 2 8790 OUTPUT SIVALS(Cal mod (d(2)); "RP"; CHR\$(13); FHD ENTER 9 USING "#, SD. SDESZZ, K" (Zoc_cal2(0,1+3), Pressures 8800 8810 CASE 3 8820 OUTPUT 9;VAL\$(Cal_mod_td(3));"RP";CHR\$(13);END 8830 ENTER 9 USING "#,SD.SDESZZ,K":Zoc_cal3(0,1+3),Pressure® 8840 END SELECT 8850 NEXT K 8860 IF 1K#3 THEN I Account for positive pressures used 8870 Zoc_call(0,1+3)=-Zoc_call(0,1+3) ! by CALSYSZOOD in the NH.UN, & NL mo de. 8888 Zoc cal2(0,1+3)=-Zoc cal2(0,1+3) 8890 Zoc_cai3(0,1+3)=-Zoc_cai3(0,1+3) 8900 END IF 8910 SUBEND 8920 |-----8930 / Subroutine stores calibration data collected from Nemory System and 8940 | CALSYS2000 calibration pressure data onto the hard drive. 8950 | Zoc_cal_ is then stored onto the hard drive. 8950 SUB Cal_dat(REAL Cal(+),Zoc_cal(+) BUFFFR) 8970 COM /Stats/ REAL Pulse, Sample_number, Pause_for, INTEGER Cal_mod id(3), Dat e\$, Run, Itrav COM /Files/ File\$(*)_Data_drive\$ / Data file listing for 93 runs. 8980 8990 1 9000 | Converting Cal(*) to Zoc_cal(*) FOR J=4 TO 10 9010 I Cal runs: NH.NH.NL.70.PT.FH.FH 9020 FOR 1-1 TO 32 1 Zoc ports per calibration run 9030 FOR KHØ TO 4 I Number of samples per run 9040 Zoc_cal(1,J)=Zoc_cal(1,J)+Cal(1+K+32+(J-4)+(50) 9050 NEXT R Zoc cal(I,J)=Zoc cal(I,J)/S 1 Average of 5 samples per port 1 9060 9070 NEXT I 9080 NEXT J 9090 1 9100 | Transfer calibration data to hard drive. 9110 ON ERROR GOSUB Purge_file 1 Define string for data file name 9120 DIN Data_disc\$[23]

```
9130
         in=Zoc cal(0,2)
                                        I Define Zoc number
 9140
         Data_file$=File$(Run,(Zn-1)+3+2) ! Calibration data file
 9150
         Data_disc$=Data_file$&Data_drive$
 9160
         CREATE BOAT Data_disc$,33,8+12 | Create BDA1 file of 12+8 hyle
 9170
         ASSIGN @Data_path TO Data_disc$ ! Assign path to hard drive
 9180
         ASSIGN @Buffer_path TO BUFFER Toc_cal(+); EOPMAL OFF
 9190
         CONTROL @Buffer_path,4:8:12:33 15et data file length
 9200
         TRANSFER @Buffer_path TO @Data_path!Store cal data on hard drive
 9210
         ASSIGN @Buffer_path TO +
                                        I Close path
 9220
         ASSIGN @Data_path TO +
                                        I Close path
 9230
         PRINT "Calibration data: Run#":Run:", Zoc#":Zn:", storage drive file ":D
 ata_disc$
 9240
         GOTO Fin
 9250 Purge_file:
                    T.
 9260
         IF ERRN=54 THEN
 9270
           PRINT "Error occured in SUB Cal_dat. Error:":ERRD
 9280
           PAUSE
 9290
        END IF
 9300
        RETURN
9310 Fin:
                       1
     SUBEND
9320
9330
      9340
      ! Subroutine loads raw and calibration data from the storage drive,
9350
      I reduces the data, and stores the data onto the storage drive.
9360
      I Calibration data is reduced using the Least Squares Curve fit to obtain
9370
      I coefficients for a third-order polynomial. The naw pressure data is
9380
      I reduced using these coefficients.
9390
      I Buffer arrays are replaced with standard arrays for data manipulation.
9400
      I Utilization of Buffers and the TRANSFER routine results in lost of the
9410
      I first several data bytes when data is transformed from floppy media to
9420
      I the buffer: Utilization of OUTPUT, ENTER, and arrays results in no
9430
      I data lost with floppy media. Hard disc media works well with either
9440
      I data manipulation technique using buffers or standard arrays.
9450
      SUB Raw_red_dat(In,Rn)
9460
        COM /Names/ Buffer1,Adc1,Buffer2,Adc2,Buffer3,Adc3,Timer
9470
        COM /Stats/ REAL Pulse,Sample_number,Pause_for,INTEGER Cal_mod_id(3),Dat
es[6],Run,Itrav
9480
        COM /Files/ File$(+),Data_drive$
                                           IData file listing for 99 runs.
        Data_file16=File6(Rn.(Zn-1)=3+2)
9490
                                           | Calibration data file
9500
        Data_file2$=File$(Rn,(Zn-1)+3+1)
                                           I Raw data file name
9510
        Data_file3$=File$(Rn,(Zn-1)+3+3)
                                           I Reduced data file name
9520
9530
        IF Data_file3$<>"-" THEN
                                           1 Continue if Reduce data file
9540
          GOTO Fin
                                           1 doesnot exist.
9550
        END 1F
9560
9570
        IF Data_file1s="-" THEN
          PRINT "Calibration file doesnot exist for Run#":Rn:", Zoc#":Zn
9580
9590
          GOTO Fin
9600
        END 1F
9610
        T.
9620
       ON ERROR GOSUB Error
9630
        DIM Data_disc1$[23]
9640
        DIM Data_disc2$[23]
9650
        DIM Data_disc3$[23]
9660
       Data_discl$~Data_file1$&Data_drive$
                                         IArray to handle calibration data
9670
        REAL Zoc_cal(32,11)
9680
        1
9690 Data_reduction:
                      - t
```

Figure C1. (cont) Program "SCAN_ZOC_06"

ī

```
9700
         PPINT "Data reduction: Run#"(Rni", Zoc#":7n
  9710
         J
  9720
         ASSIGN @Data_path1 TO Data_discl$rFORMAL_OFT
  9730
         97.10
         ASSIGN @Data_path1 TO +
  9750
         1
 9760 1 Calibration data reduction using Least Squares Polynominal fitting.
 9770
         REAL A(3,3),B(3),C(3),Sum_x(6),A_inv(3,3)! Least Square reduction arrays
         FOR K=1 TO 32
 9780
                               1 Loop for each port
 9790 1
 9800
           MAT C= (0)
 9810
           MAT SUM x= (0)
 9820 1
 9830
          FOR JEL TO 6
           FOR 1=4 TO 10
                                  I Routine to reduce individual port cal
 9840
                                  I data into elements to a power - 1
 9850
              Sum_x(J)=Sum_x(J)+Zoc_cal(K,1)"J
 9860
            NEXT I
 9870
          NEXT J
 9880 1
 9890
          FOR I=0 TO 3
                                  | | Derive A array
 9900
           FOR J≍0 TD 3
 9910
              A(I,J)=Sum_×(I+J)
 9920
           NEXT J
 9930
          NEXT I
 9940
          A(0,0)-7
 9950 1
 9960
          FOR J=0 10 3
                                 | Derive C array
 9970
            FOR 1=4 TO 10
 9980
              C(J)=C(J)+Zoc\_cal(K,I)^J+Zoc\_cal(0,I)
 9990
           NEXT I
 10000
          NEXT J
 100101
 10020
          MAT A inv= INV(A)
 10030
          MAT B= A_inv+C
                                  1 8 array is matrix of Least Square
 100401
                                    coefficients a0,a1,a2,& a3 for polynomial
 100501
                                    equation fitting calibration data for a
 100601
                                    specified port
100701
100801 Collect Least Square coefficients
          Zoc_cal(K,0)=B(0) / Coefficient a0
10090
10100
          Zoc_cal(K,1)=B(1)
                                  |Coefficient al
10110
          Zoc_cal(K,2)=B(2)
                                 Coefficient a2
10120
          Zoc_cal(K,3)=B(3)
                                 |Coefficient a3
101301
10140
        NEXT K
10150
        10160
        ASSIGN @Data_path1 TO Data_discis;FORMAT OFF
10170
        OUTPUT @Data_path1;Zoc_cal(*) IStore reduced calibration data
10180
        ASSIGN @Data path1 TO +
10190
        -1-
10200
       PRINT "Calibration data reduced and transferred to "iData_file1$
10210
        1
10220
        I Recover new data, convert to real, reduce then store in blocks
10230
        / of samples (32*ports scanned per block)*ltrav
10240
        1
10250
        Itrav=Zoc_cal(1,11)
10260
        Sn=Zoc_cal(0,1)
                                         - ISample number.
```

10270 ALLOCATE INTEGER Data integer(1:32) (Array to handle raw integer data. 10280 ALLOCATE REAL Data_real(1:32), Data(32) [Arrays to handle raw and reduced 10290 Mata_diac2\$=Data_file2\$&Data_drive\$!real_data. 10300 Date_file3s="ZR"&VAL\$(Zn)&Date\$&VAL\$(Rn) | Fedured data file name. 10310 Data_disc3\$=Data_file3\$&Data_drive\$ 10320 CREATE BOAT Data_disc3\$, Sniltray, 8:33 (RDA) File of 33:9 byte records. 10330 ASSIGN PDate_path2 TO Data_disc2\$;FORMA1 OFF 10340 ASSIGN @Data path3 TO Data disc3\$(FORMAT OFF 10350 Ł 10360 Step point=2 10370 Step_increment=32+Sn+1 10380 FOR Group=1 TO Itrav 10390 1 10400 CONTROL @Data_path2.5;Step_point 1Set read pointer to 2nd record 10410 Fin naw integer data file. 10470 Step_point=Step_point+Step_increment ||Increment pointer start point. 10430 10440 FOR Block=1 TO Sn 10450 ENTER @Data path2;Data integer(*) !Load naw data into array. 10460 SELECT Zoc cal(0.2) [Translating naw interger data into 10470 CASE 1 traw real data. 10480 Translate(Adc1,Data_integer(*),Data_real(*)) 10490 CASE 7 10500 Translate(Adc2,Data_integer(+),Data_real(+)) 10510 CASE 3 10520 Translate(Adc3,Data_integer(+),Data_real(+)) 10530 END SELECT 10540 1 10550 1 Data check steps commented out. 10560 1 10570 **PRINTER IS 702** 10580 (PRINT "Integer data" PRINT Data_integer(*) 10590 10500 **IPRINT** "Real data" 10610 IPRINT Data real(+) 10620 **IPRINTER IS CRT** 10630 106401 Routine to reduce raw real data: 106501 Data = a0 + al*x + a2*x^2 + a3*x^3 106601 106701 106801 where a0,a1,a2, & a3 are Least Square coefficients, and v is 106901 the individual port raw data value. 107001 I Store reduce data sample number. 10710 Data(0)=Block 10720 FOR K=1 TO 32 Data(K)=Zoc_cal(K,0)+Zoc_cal(K,1)+Data_real(K)+Zoc_cal(K,2)+Da 10730 ta_real(K)^2+Zoc_cal(K,3)+Data_real(K)^3 10740 NEXT K 107501 10760 10770 **PRINTER 15 702** 10780 (PRINT Data(+) I Print bloack for test commented out. 10790 IPRINTER IS CRT 10800 1 IStore block of reduced data into 10810 OUTPUT @Data_path3:Data(+) linto the file on the designated drive. 10820 NEXT Block 10830 NEXT Group

```
10840
         1
 10850
        ASSIGN PData path3 TO .
 10860
        ASSIGN @Data path2 TO +
 10870
        PPINE "Raw data reduced and transferred to "iData file7%
 10880
        PRINT
        GOTO Fin
 10890
10900 Error:
                                          Routine to trap error in program.
 10910
        PRINT EPRMs
 10920
        PAUSE
 10930
        RETURN
10940 Fin: 1
10950 SUBEND
109601------
10970 1 Subroutine to load existing files required by Run number for a specified
10980 / Zoc, and assign existing files to the Files matrix for Data reduction
10990 | and List files routines.
11000 SUB File_scan(Zn)
11010
        CON /Stats/ REAL Pulse, Sample, number, Pause for, INTEGER Cat_mod id(3), Dat
e$,Run,ltrav
11020
        COM /Files/ File$(+),Data_drive$
11030
        OIM Data_disc1$[23],Data_disc2$[23],Data_disc3$[23]
11040
        Rn=1
11050
        Loop+1
        File_in_storage=0
11060
11070
        ON ERROR GOTO Error
11080
        J=(Zn-1)+3
11090
        WHILE Loop=1
11100
          File1-0
11110
          Data file19="ZW"&VAL9(Zn)&Date$&VAL$(Pn)
11120
          Data_discl$=Data_file1$&Data_drive$
          ASSIGN @Check_path1 TO Data_disc1$ [Check for existence of ZW_.
11130
11140
          File$(Rn,J+1)=Data_file1$
                                            Assign ZW_ to matrix.
11150
          File1=1
11160
        Ł
11170
          Data_file2$="ZC"&VAL$(Zn)&Date$&VAL$(Rn)
11180
          Data_disc26*Data_file2$&Data_drive$
          ASSIGN @Check_path2 TO Data_disc2$ !Check for existance of ZC_.
11190
                                             tAssign ZC_ to matrix.
11200
          File$(Rn,J+2)=Data_file2$
11210
       1
11220
          Data_file3$="ZR"&VAL$(Zn)&Date$&VAL$(Rn)
117.30
          Data_disc3$=Data_file3$&Data_drive$
          ASSIGN @Check_path3 TO Data_disc3$ |Check for existance of 7R_.
11240
                                            lAssign ZR_ to matrix.
11250
          File$(Rn,J+3)=Data_file3$
11260
                                              (Check slorage disc again,
11270
          GOTO Assign_file
11280 Error: | Subroutine if ERROR=56, files donot exist for Rn and Zoc
11290
          IF ERRN<>56 THEN
11300
            PRINT ERRMS
11310
            PAUSE
11320
          END IF
11330 Assign_file:1
                                             ISwitch to exit program
          IF File1=1 THEN
11340
11350
            File_in_storage=1
11360
          END IF
11370
          IF FILe1=0 THEN
           IF File_in_storage=1 THEN
11380
11390
              L000=0
11400
           END IF
```

11410	END IF			
11420	ASSIGN @Check path!	1 10 +		
11430	ASSIGN @Check path2	2 10 •		
11440	ASSIGN @Chack path3	3 10 #		
11450	IF Rn=100 THEN			
11460	1000=0			
11470	END IF			
11480	Pin-Rn+1			
11490	END WHILE			
11500	Fin: I			
11510	Run=Rn-2			
11520	SUBEND			
11530			S	

APPENDIX D. DATA ANALYSIS PROGRAM "READ ZOC2"

1.67 1 Program: READ 2002 I Description: Reads specified data compiled from program Stall 200 05. 20 1 by Rick Wendland 30 10 I moultfield by David Nyrn 50 1 modtfied 5 Nov 1992 GO LEEAR SCREEN 201 90 PRIMEP IS OPT 90 Pariable definition and dimension 100 CONTZPIOL INDELSZ REAL YO, YE, YO, YE, DV, DV, LEFTHERINGE, X TABULTEROF & TABULSE 501 110 HILFGER Disk_drive.Zoc.Run.View.Sample nin Sample mar.Forf min 120 INTEGER Port_max.Scan max.Avo 1.30 REAL HI NZ 140 (Variable initialization 150 P_atm=14.696 1Standard day atmospheric pressure Conv-. 491154 160 (Conversion from in Hg to psi-170 Gamman1.4 IRatio of specific lients 190 Sc+.0025 ISub Square sizing 199 Allocated=0 200 EDimension string variable for data location: 210 Pill Deta discisi231 220 DIM Data_disc2\$1231 230 I. 210 250 THOT KEY ROUTINES AND THITTAL SCREEN THISPLAY 260 270 1 ON KEY I LABEL "ZOC INPUT ON KEY 2 LABEL "SAVE AS ASCII ON KEY 3 LABEL "PRINT DATA 280 THFUT * 6010 Lonul " 6010 Save 290 " GOIO Print 300 ON KEY 4 LABEL "Cp " GOTO Cr 310 FLOT " GUID P+ 320 ON KEY 5 LABEL "PE FLOI ON KEY 6 LABEL " * 6010 Held 330 ON REY 7 LABEL 340 * 6010 Hold 350 ON KEY 8 LABEL 'EXIT PROG ' GOID Finish 360 370 386 INITIAL SCREEN DISPLAY 390 400 1 410 Reset: 4 420 CLEAR SCREEN PRINE 430 440 PRINT PRINT " READ ZOC DATA AND DISPLAY AS SHOWN 450 460 PRINE T F 170 PRINT * Input ZOC information and read data PRINT * 12 Save reduced data to an ASCII file 480 PRINT * E 31 Print data to CRT or PRIMIER 190 E tr 500 **URINE** " Plot and Print F/Pt PRINE * 15" Plot Pt data/Print Losses 510 520 PRINT 530 PRINT PRINE " 1.9. 549 Exit Proprem 550 PRINT 560 570 Hold: 1

Figure D1. Program "READ_ZOC2"

٢

580 5010 Hold 590 1 600 610 **TINEUT DAT INFORMATION** 620 630 ł 640 Input: 1 650 660 IF Allocated=1 THEN GOSUB Dealtocate 670 680 CLEAR SCREEN 690 INPUT "Enter Zoc # (1,2,3), date (YMMDD), and run #:", Zoc.Dates.Run 700 FRINT 710 PRINT 720 PRINT 730 PRINT "Enter the dish drive where data is stored as below. 740 PRINT " 0 is HFS format or 700,0" 750 PRINT " 1 is LIF floppy or 700,1" 760 PRINT 770 INPUT "Enter Disc where data is located:" Disk drive 780 PRINT 790 800 810 FILE/DISK PATH ASSIGNED 820 830 840 Data_file1\$="ZC"&VAL\$(Zoc)&Date\$&VAL\$(Run) 850 Data file2\$="ZR"&VAL\$(Zoc)&Date\$&VAL\$(Run) 860 SELECT Disk_drive 870 CASE Ø 880 Data_disclf=Data_file1\$&":,700,0" 890 Data_disc2\$=Data_file2\$&":,700,0" 900 CASE 1 910 Data_disc1%=Data_file1%&":,700,1" 920 Data_disc2\$=Data_file2\$&":,700,1" 930 END SELECT 940 ASSIGN @Data_path1 TO Data_discl® ASSIGN @Data_path2 TD Data_disc2\$ 350 960 Ł 970 980 DETERMINE NUMBER OF RECORDS AND ENTER DATA. 990 1000 I Determine number of records 1010 STATUS @Data path1,3:N1 I Determine number of records 1020 STATUS @Data_path2,3:N2 1030 ALLOCATE REAL Cal(N1-1,11) I Define REAL array of records 1040 ENTER @Data_path1:Cal(*) 1050 Period=Cal(0,0) 1060 Hz=1/Period 1070 Sample_number = Cal(0,1) 1080 Zoc=Cal(0,2) 1090 Scan_type=Cal(0,11) 1100 Scan_max=Cal(1,11) 1110 Increment=Cal(2,11)*.0000625 !Convert steps to inches. 1120 P_atm=Cal(3,11) 1130 1 1140 ALLOCATE REAL Data(1:N2,0:32) |Allocate real data array

1150 ENTER @Data_path2:Data(*) 1160 JF Scan_max18_THEN 1170 ALLOCATE REAL Pa(1:32,1:7) 1180 FLSE 1190 ALLOCAIF REAL Pa(1:32,1:Scan max) 1200 END JE 1210 1 1220 Allocated-1 1 Allows reallocation of paths. 1230 1240 1250 IPEADS AVERAGE OF ALL SAMPLES TO AFRAYS 1260 1270 Ŧ 1280 Read: Reads reduced data to array. 1290 t 1300 Sample_min=1 I First sample 1310 Sample_max=Sample_number / Last sample 1320 1 1330 FOR Scan=1 TO Scan max 1340 1 1350 FOR Port_number=1 TO 32 1360 1 1370 Pg_sum≠0 1380 FOR Sample=Sample_min TO Sample max 1390 Pg∈Data(Sample,Port number) | | Data read from reduced dåta. 1400 Pg_sum*Pg_sum+Fg 1410 NEXT Sample 1420 1430 Pa_avg=(Pg_sum/Sample_number)*Conv+P_atm Pa(Port_number,Scan)=Pa_avg 1440 1450 NEXT Port_number 1460 1470 Sample_min=Sample_min+Sample_number 1480 Sample_max=Sample_max+Sample_number 1490 ł 1500 NEXT Scan 1510 DISP "Data read from disk and transferred to array. 1520 WAIT 2 1530 GOTO Reset 1540 1 1550 1560 ROUTINE STORES DATA TO AN ASCII FILE 1570 1580 1 1590 Save: 1 1600 1610 CLEAR SCREEN 1620 INPUT "Store on hard on floppy drive (0=:,700, 1=:,700,1):",Drv 1630 PRINT "Storing data please wait" 1640 IF Drv=0 THEN 1650 Drv\$=":,700" ELSE 1660 1670 Drv\$=":,700,1" END IF 1680 1690 Asc\$"A" 1700 Filename%=Data_file2\$&Asc\$&Orv\$ 1710 CREATE ASCII Filename\$,10 1720 ASSIGN @Path_1 TO Filename\$

```
1730 OUTPUT @Path_HiPa(*)
 1740 ASSIGN @Path 1 TO .
 1750 PRINE
 1760 FRINT "Data stored to ASCII file called"; Filename®
 1770
     WALT 2
 1780
      GOID Reset
 1790
      1
1800
      1810
      PRINTS DATA TO PRINTER OF OPT SCREEN AS DESTRED
1820
      1830
      1
1840 Print:1
1850
          CLEAR SCREEN
1860
          1
1870
     INPUT "Print results to screen or printer (0-" icon 1-Printer)", Unew
1880 IF View=1 THEN PRINTER IS 702
1890
     1
1900
     4
1910
     "PPINE "Data Print Out for Zoc #";Zoc;", Run #":Pune", file: Data_file2#
1920 PRINT TAR(5); "Period between samples (sec): ": [priod
1930 PRINT TAR(5); "Sample collection rate (Hz): ";Hz
1940 PRINT TAB(5); "Number of samples per port: ":Sample, number
1950
     PRINT TAB(5); "Length of data run (sec):
                                             ":Period:31:Sample number:Scan
max
1960
     PRINT TAB(5): "The scan type is:
                                              ":Scan_type
     PRINT TAB(5); "Number of scans/traverses:
1970
                                              ":Scan_max
1980 PRINT TAB(5); "Increment of traverse:
                                              ";Increment;" Inches"
                                              "iP atmi" psia"
1990 PRINT TAB(5); "Atmospheric pressure is:
2000 PRINT TAB(5); "Tunnel Pressure Ratio is:
                                             ";Pa(30,1)/Pa(29,1)
2010
     PRINT
2020
     PRINT
2030
2040 Formatl: INAGE 20,6X,20.30,4X,20.30,4X,20.30,4X,20.30,4X,20.30,4X,20.30,4X
,20.30
2050 Format2: INAGE 20.5X.20.30.4X.20.30.4X.20.30.4X.20.30.4X.20.30.4X.20.30.4X.20.30.4X.
,2D.3D
2050 1
2070 IF Scan_max>7 THEN
2080 FRINT "Scan","
                          Port Number"
2090 PRINT " ," 1"," 2"," 3"," 4"," 5"," 6"," 7"
2100
     PRINT
     FOR I=1 TO Scan_max
2110
         PRINT USING Format1:1, Pa(1,1), Pa(2,1), Fa(3,1), Pa(4,1), Pa(5,1), Pa(6,1),
2120
Pa(7,1)
2130 NEXT I
2140
     FOR J=1 TO 3
2150
     PRINT
2160
     NEXT J
2170
     PRINT "Scan","
                         Port Number"
     PRINI " "," 8"," 9","10","11","12","13","14"
2190
2190
     PRINT
     FOR I=1 TO Scan_max
2200
         PRINT USING Formatlil, Pa(8,1), Pa(9,1), Pa(10,1), Pa(11,1), Pa(12,1), Pa(13
2210
,I),Pa(14,I)
2220 NEXT I
2230 FOR J=1 TO 3
2240 PRINT
2250 NEXT J
     PRINT "Scan","
2260
                         Port Number"
2270 PRINT " ,"15","16","17","18","19","20","21"
```

2280 PRINT 2290 FOR T-1 TO Scan_max 2300 PRINT USING Formatl: [,Pa(15,1), Pa(15,1), Pa(17,1), Pa(19,1), Pa(19,1), Pa(20,1),Pa(21,1) 2310 NEXT 1 2320 FOR J=1 TH 3 2330 FRINE 2340 NEXT J 2350 PRINT "Scan"," Port Humber" 2360 PRINT ","22","23","24","25","26","27","28" 2370 PRINT 2380 FOR 1=1 10 Scan_max 2390 PRINT USING Formatl:1, Pa(22, D), Pa(23, D), Pa(24, D), Pa(25, D), Pa(25, D), Pa(27.1),Pa(28.1) 2400 NEXT 1 2410 FOR J=1 10 3 2420 PRINT 2430 NEXT J 2440 PRINT "Scan"," Port Number" 2450 FRINI " ","29","30","31","32" 2460 PRINT 2470 FOR Int TO Scan_max 2480 PRINT USING Formattil, Pa(29,1), Pa(30,1), Pa(31,1), Pa(32,1) 2490 NEXT [2500 - E 2510 ELSE 2520 2530 PRINT "Port"," Scan Number" FRINT " ","1","2","3","4","5","6","7" 2540 2550 PRINT 2560 FOR I=1 TO 32 2570 PRINT USING Format2; I.Pa(I,1), Pa(I,2), Pa(I,3), Pa(I,4), Pa(I,5), Pa(I, 6),Pa(1,7) 2580 NEXT I 2590 END IF 2600 PRINTER IS CRT 2610 GOTO Reset 2620 - E 2630 1 2650 PLOT AND PRINT Cp DATA AND SAVE TO ASCII FILE 2670 1 2680 Cp: 1 2690 1 2700 ALLOCATE INTEGER Pen(1:25) 2710 ALLOCATE REAL X(1:25) 2720 ALLOCATE REAL P_Iocal(1:25,1:Scan_max) 2730 ALLOCATE REAL P_inf(1:Scan_max) 2740 ALLOCATE REAL P ref(1:Scan max) 2750 ALLOCATE REAL M_inf(1:Scan_max) 2760 1 2770 HIF Scan_max<7 THEN 2780 | ALLOCATE REAL B(1:25,1:7) 2790 | ALLOCATE REAL Cp(1:25,1:7) 2800 1 ALLOCATE REAL M_local(1:25,1:7) 2810 | ALLOCATE REAL P_normal(1:25,1:7) 2820 IELSE

```
Figure D1. (cont) Program "READ_ZOC2"
```

```
29.30
         ALLOCAIE REAL B(1:25,1:Scan_max)
         ALLOCATE REAL Cp(1:25,1:Sdam_mas)
 2940
 2850
         ALLOCATE PEAL M. Local(1:25,1:Scan.ma.)
 2860
         ALLOCATE REAL F_normal(1:25,1:Scan max)
 2870 TEHD TE
 2880 1
 2890 RESTORE
 2900 1
 2910 DATA 0.1667,0.25,0.3333,0.3467,0.36,0.3733,0.7967,0.4,0.4113,0.4267,0.4400.
0.4533,0.4667,0.4800,0.4933,0.5067,0.52,0.5333,0.56.0.5867,0.6133,0.6400,0.75
 2920 DATA 0.8333.0.9167
2930 1
2940 READ X(*)
                                        Read in avial location of ports
2950 1
2960 / Calculate reference parameters.
2970 1
2980 FOR I=1 TO Scan_Max
2990
        P_inf(I)=Pa(29.1)
                                        lifet P inf for all scans.
3000
         P_nef(I)=Pa(31,I)
                                       lGet P ref for all scans.
3010
         M_inf(I)=SORT(2/(Gamma-L)*((P_ref(I)/P_inf(I)))((Gamma-L)/Gamma)=L))
3020 NEXT I
3030 1
3040 + Calculate local flow parameters.
3050 1
3060 FOR I=1 TO 25
3070
         FOR J=1 TO Scan_max
3080
             P_local(I,J)=Pa(I,J)
                                      IGet P_local for all scans.
3090
             P_normal(I,J)=P_local(I,J)/P_ref(J) = !Normalized pressure
3100
             Cp(I,J)=(2/(Gamma+M_inf(J)^2))+((P_local(I,J)/P_inf(J))-))
3110
             N_local(I,J)=SQRT(2/(Gamma-1)*((P_ref(J)/F_local(I,J))^((Gamma-1)/G
amma)-1))
3120
       NEXT J
3130 NEXT I
3140 1
3150 [Plot Cp or M local vs x/c below:
3160 1
3170 Plot_cpmach: 
3180 1
3190 CLEAR SCREEN
3200 1
3210 PRINT "
                 POST PROCESSING OF Static Pressure Data"
3220 PRINT
3230 PRINT
3240 1
3250 PRINT "
                 The following routine will plot and print P/Pt or Mach Number"
3260 PRINT "
                 for a single scan desired or a set of seven scans."
3270 PRINT
3280 PRINT "
                 The selections are as follows.."
3290 PRINT "
                 1. Plot Cp (then provide scan or scaus desired)"
3300 PRINT "
                     Plot Mach Number (provide scans as above)"
                 2.
3310 PRINT
3320 INPUT "
                 Input the parameter to plot(0=P/Pt,1=Mach)",Flot_case
3330 INPUT "
                 Input the first scan to be plotted", First_scan
3340 INPUT "
                 Input the last scan to be plotted" Last_scan
3350 INPUT "
                 Dump plots to Laser or Thinkjet (TJ=0,LJ=1)", Dump
3350 1
3370 IF Dump=1 THEN
       DUMP DEVICE IS 9
3380
3390 ELSE
```

3400 DUMP DEVICE IS 702 3410 END IF 3420 1 3430 [Initialize graphics environment parameters 3440 1 3450 Xo=0 3160 YF=1 3470 Dx-10 3480 Dy=10 3490 MAT Pen= (-1) - Pen control parameter "Fen down before moving". 3500 Pen(1)≈-2 3510 Pen(25)=-2 - Pen control parameter "Pen up before moving". 3520 1 3530 SELECT Plot case 3540 CASE 0 3550 Titles="Normalized Pressure vs. Percent Chord" 3560 X_label\$="x/c" 3570 Y_label\$="P/Pt" 3580 Yo=0 3590 Y f = 13600 CASE 1 3610 Titles="Mach number vs. Percent Chord 3620 X_label\$="×/c" 3630 Y label\$="Mach Number" 3640 Yo=Ø 3650 Yf = 23660 END SELECT 3670 E 3680 LINE TYPE 1 / First line type 3690 N=3 ISecond line type 3700 1 3710 CALL Plot ISets up graphies had pround 3720 FOR J=First_scan TO Last_scan 3730 FOR I=1 10 25 SELECT Flot_case 3740 3750 CASE Ø FLOT X(I),P_normal(I,J),Pen(I) 3760 3770 CASE 1 3780 PLOT X(I), M. local(I,J), Pen(1) 3790 END SELECT 3800 NEXT I LINE TYPE N 3810 3820 11=11+1 3830 NEXT J 3840 1 3850 PAUSE 3960 1 3870 CLEAR SCREEN 3880 1 3890 INPUT "Would you like to make another plot (Y=yes,N=no)?",Got 3900 IF Gos="Y" THEN Plot cpmach 3910 1 3920 The following routine will print P/Pt on Mach number for the scans selecte d. 3930 1 3940 FOR P=1 TO 5 3950 PRINI 3960 NEXT P 3970 PRINT "The following will print P/Pt or Mach Number data for scans selected . •

3980 PRINT "Select 7 scans to bracket data plotted above or any others. 3990 PRINT 4000 PRINE "The scans selected for printing must be available in the data" 4010 PRINT "ie starting at scan 5 when only scans 1-7 available will results" 4020 PRINT "in ERROR 17." 4030 FRINI 4040 INPUT "Would you like to print the P/Pt or Mach Number Data (inves.Nens)?", 601\$ 4050 IF Gols-"H" THEN Ship print 4060 1 4070 INPUT "Would you like to print P/Pt or Mach Number (0-P/Pt,1-(Ach)?",Cp_m 4080 INPUT "Input the first of seven scans to be printed.", Fo 4090 INPUT "Print to CRT or printer(0=CRT,1=Printer)?", "how 4100 1 4110 IF Cp_m=0 THEN 4120 MA1 B= P_normal 4130 ELSE 4140 MAT B= M_local 4150 END IF 4160 1 4170 IF View=1 THEN PRINTER IS 702 4180 1 4190 PRINT "Port"." Scan Number" 4200 PRINT 4210 PRINT " ",Fs,Fs+1,Fs+2,Fs+3,Fs+4,Fs+5,Fs+6 4220 PRINT 4230 FOR 1=1 TO 25 4240 PRINT USING Format2:1,B(I,Fs),B(I,Fs+1),B(I,Fs+2),B(I,Fs+3),B(I,Fs+4),B (I,Fs+5),B(I,Fs+6) 4250 NEX1 J 4260 1 4270 PAUSE 4280 Skip_print: 4 4290 PRINTER IS CRT 4300 DEALLOCATE Cp(+) 4310 DEALLOCATE B(+) 4320 DEALLOCATE P_local(*) 4330 DEALLOCATE P_normal(*) 4340 DEALLOCATE P_inf(*) 4350 DEALLOCATE P ref(+) 4360 DEALLOCATE M inf(*) 4370 DEALLOCATE M_local(*) 4380 DEALLOCATE X(*) 4390 DEALLOCATE Pen(+) 4400 KEY LABELS ON 4410 1 4420 GOTO Reset 4430 1 4450 IPLOT Pt DATA AND LOAD INTO ARRAY(S) TO SAVE TO ASCII FILE 4470 1 4480 Ft: 1 4490 1 4500 CLEAR SCREEN 4510 1 4520 PRINT " POST PROCESSING OF TOTAL PRESSURE DATA" 4530 PRINT 4540 PRINT

```
4550 PRINI "
                 This routine will plot vertical position vs. Pt from
4560 FRINT
                 the probe impact pressure and integrate losses normalized
4570 PPINT
                 by inlet dynamic pressure to calculate a loss confficient.
4580 FRINT
4590 PRINT
4600 INPUT "
                 Dump plots to Laser or Thinklet (0-11,1-1,J).",Dump
4510 INPUT "
                 Maximum Recorded Flenum Temperature in deg F. 11tmax
4620 INPUT "
                 Mininmum Recorded Plenum Temperature in deg F. 1.1+min
4630 FRINT "
                 Type F2 to continue inc other inputs necessary (vet)!"
4540 PAUSE
4650 1
4560 IF Bung=t THEN
4670 DUMP DEVICE 1S 9
4680 ELSE
     DUMP DEVICE IS 702
4690
4700 END 1F
1710 1
4720 Pollocate all real variables
4730 1
4740 ALLOCATE INTEGER Pen2(1:Scan max)
4750 ALLOCATE REAL P. ref(1:Scan max)
4760 ALLOCATE REAL P_inf(1:Scan_ma+)
4770 ALLOCATE REAL P_exit(1:Scan_ma.)
4780 ALLOCATE REAL Y(1:Scan max)
4790 ALLOCATE REAL Pt(1:Scan_max)
4800 ALLOCATE REAL M_inf(1:Scan_max)
4810 ALLOCATE REAL M_exit(1:Scan_max)
4820 ALLOCATE REAL Mal(1:Scan_max)
4830 ALLOCATE REAL Ma2(1:Scan_max)
4840 ALLOCATE REAL Ma3(1:Scan max)
4850 ALLOCATE REAL Ma4(1:Scan_max)
4860 ALLOCATE REAL Q(1:Scan_max)
4870 1
4880 Plot_pt:1
4890
            - I
4900 |Initialize plot parameters
4910 LINE TYPE 1
4920 Title$="Verticle Distance Traversed vs. Pt"
4930 X label$="Total Pressure (psia)"
4940 Y_label$="Vertical Distance (in)"
4950 Xo=30
4960 Xf=60
4970 Yo=2
4980 Yf=0
4990 Dx=30
5000 Dv=32
5010 MAT Pen2= (-1)
5020 Pen2(1)=-2
5030 Pen2(Scan_max)=-2
5040 1
5050 CALL Plot
                             ISets up graphics environment
5060 1
5070 [Flow quantities calculated and total pressure plotted.
5080 1
5090 Gc-32.2
5100 Rgas=53.3
5110 Ttmax=Ttmax+450
5120 Itmin=Itmin+460
5130 Tt=(Ttmax+Ttmin)/2
```

```
Figure D1. (cont) Program "READ_ZOC2"
```

```
5140 1
5150 FUR 1-1 TO Scan_max
5160
         F_inf(I)=Pa(29,I)
5170
         P mrit(I)=Pa(30,I)
5180
          P_ref(1)=Pa(31.1)
5190
         Pt(I)=Pa(32,I)
5200
         1
5210
         Rhot1=144*P_ref(I)/(Paas*It)
5220
         Rhot2=144*Pt(I)/(Roas*It)
5230
5240
         M_inf(I)=SQRT((2/(Gamma-F))*((P_ref(I))P_inf(I))*((Gamma=L)/Gamma)=1))
5250
         M_exit(I)=SORT((2/(Gamma-1))*((Pt(T):P_exit(T)) ((Gamma-1)/Gamma)-1))
5260
5270
         Tl=Tt/(1+((Gamma+1)/2)*(M_inf(I)) ?)
5280
         T2=Tt/(1+((Gamma-1)/2)*(M_exit(I))^2)
5290
         1
5300
         A1=SQRT(Gamma*Rgas+T1+6c)
5310
         A2=SQRT(Gamma*Rgas*T2*Gc)
5320
         1
5330
         VI=Al+M inf(I)
5340
         V2=A2+M exit(I)
5350
5360
         Rhol=Rhotl*(l+((Gamma-1)/2)*M inf(l))*(-(l/(Gamma-1)))
5370
         Rho2=Rhot2*(1+((Gamma-1)/2)*M_exit(1))*(-(1/(Gamma-1)))
5380
         1
5390
         Mal(I)=Rho1+V1
5400
         Ma2(1)=Rho2+V2
5410
         Ma3(I)=Rho1+V1+P ref(I)+144
5420
         Ma4(I)=Rho2*V2*Pt(I)*144
5430
         i
5440
         Q(I)=P_ref(I)-P_inf(I)
5450
5460
         Y(I)=(I-1)+Increment
5470
         PLOT Ft(I),Y(I),Pen2(I)
5480 NEXT 1
5490 1
5500 FOR I=1 TO Scan max
5510 PLOT P_ref(I), Y(I), Pen2(I)
5520 NEXT I
5530 1
5540 FOR I=1 TO Scan max
5550 PLOT P_exit(I),Y(I),Pen2(I)
5560 NEXT I
5570 1
5580 PAUSE
5590 1
5600 INPUT "Would you like to make another plot (Y=yes,N=no)?",Got
5610 IF Gos="Y" THEN Plot pt
567.0 1
5630 CLEAR SCREEN
5640 1
5650 PRINT
5660 PRINT
5670 DISP "Now calculating cascade loss coefficient"
5680 1
5690 Rhov1=0
                                  Initialize totaling variables
5700 Rhov2=0
```

```
5710 RSovpt1-0
5720 Rhovp+2=0
5730 Qin=0
5740 L
5750 FOR 1-1 10 Scan_Mak
                                Hotal Mass a craining quantities
5760 Rhovl=PhovlEMal(I)
5770
         Rhov2-Rhov2+Ma2(I)
5760
         Rhovpt1-Rhovpt1+Ma3(1)
5790
         Rhovpt2=Rhovpt2+Ma4(I)
5900
         0 n = 0 t n + 0 (1)
5810 NEXT I
5820 1
5830 Avgl=Phov1/Scan max
5840 Avg2=Rhov2/Scan max
5850 Avg3=Rhovet1/Scan_max
5860 Avg4=Rhovpt2/Scan mar
5870 Avg5=Qin/Scan_max
5880 1
5890 Ptmal=Avg3/(Avg1+144)
5900 Ptma2=Avg4/(Avg2+144)
5910 Qavo=Avo5
5920 W bar=(Ptmal-Ptma2)/Qavo
5930 E
5940 INPUT "Print Losses to CRT or Printer (0-CRE,1-PRINTER)",Lossp
5950 IF Losspal THEN PRINTER IS 702
5960 1
5970 FOR 1-1 TO 5
5980 PRINT
5990 NEXT 1
5000 1
6010 PRINT "
                 The cascade loss coefficient based on inlet
6020 PRINT "
                 dynamic pressure as calculated using
6030 PRINT "
                 mass averaged quantities as shown helow."
6040 PRINT
6050 PRINT
6060 PRINT
6070 PRINT "
                 Ptmal = ";Ptmal;" PSIA"
6080 PRINT "
                 Ptma2 = ":Ptma2:" PSIA"
6090 PRINT
6100 PRINT "
                 Pt1-P1 = ":Qavg:" PSIA"
5110 PRINT "
                Ttavg = ";Tt;" deg R"
5120 PRINT
6130 PRINT "
                 W bar = ";W bar
5140 PRINT
6150 DISP "
                Type F2 to return to main menu"
6160 PAUSE
6170 (Deallocate all real variables)
5180 L
6190 DEALLOCATE Pen2(*)
6200 DEALLOCATE P inf(*)
6210 DEALLOCATE P_exit(*)
6220 DEALLOCATE F_ref(+)
6230 DEALLOCATE M inf(+)
6240 DEALLOCATE M exit(*)
6250 DEALLOCATE Mal(+)
6260 DEALLOCATE Ma2(+)
6270 DEALLOCATE Ma3(+)
```

Figure D1. (cont) Program "READ_ZOC2"

6280 DEALLOCALE Ha4(+) 5290 DEALLOCATE Q(+) 5300 DEALLOCATE PH(+) 6310 DEALLOCATE Y(*) 6320 PEY LABELS ON 6330 PRINTER IS ORT 6340 1 6350 6010 Reset 6360 1 6380 LEYTE PROGRAM AND DEALLOCATE ALL PUEFERS AND FAILS 6400 1 6410 Deallocate: 1 6420 ASSIGN @Data_path1 TO + 6430 ASSIGN @Data_path2 TO * 6440 DEALLOCATE Cal(*) 6450 DEALLOCATE Data(*) 6460 DEALLOCATE Pa(+) 6470 RETURN 6480 1 6490 Finish: H 6500 IF Allocated=1 THEN GOSUB Deallocate 6510 PRINTER IS CRT 6520 LOAD "ZOC MENU",10 6530 END 6540 1 6550 ISUBROUTINE TO SET UP GRAPHICS WINDOW 6560 6570 6580 1 6590 SUB Plot 6500 1 6610 Subroutine to display plot screens, less the plot of any curves 6620 Ifor the specified variables in the COM/Plot_labels/ line. 6630 E 6640 COM /Plot_labels/ Xo,Xf,Yo,Yf,Dx,Dy,Title\$,X_label\$,Y_label\$ 6650 CLEAR SCREEN 5660 KEY LABELS OFF 6670 GINIT [Initialize graph routine 6680 X_range=Xf-Xo Lenoth of S-akis 6690 Length of Y-avis Y_range=Yf-Yo ICharacter ref pt:ton center 6700 LORG 6 6710 MOVE 100+RATI0/2.100 HMove curson to screen lon for labels 6720 CSIZE 3 **USizes** labeling 6730 LABEL Title\$ Plot title 6740 MOVE 100+RATI0/2,0 Hove cursor to bottom center screen 6750 LORG 4 ICharacter ref pt:bottom center 6760 LABEL X_label\$ IX-axis label 6770 DEG IDesig degrees for LDIR 15ets Ymaris label on end 6780 LDIR 90 6790 LORG 6 6800 MOVE 0,50 6810 LABEL Y_label\$ IY-axis label 6820 IReset label to horizontal orienlation LDIR Ø 6830 LORG 2 IChr ref pt:left center 6840 VIEWPORT 10,90*RATIO,10,90 ISets graph screen size

6850 FRAME 18ox laround viewport 6850 WINDOW Xo,Xf,Yo,Yf List exis lengths in VIEUCORT 6890 GRID & range/Dx,Y_range/Dv.Ko,to,Dx,Dy,.001 5900 CLIP OFF 150 labels can print outside MIEMPORT CSI7E 3.0..4 6910 thres label sime 6920 1006 6 Humber & a. I 5930 FOR Invo ID XE STEP & range D 694Ø HOVE L.ro-.01+Y mange 6950 A ABEL PSING "#.K"+I 6960 NERTI 6970 LORG 8 6980 FOR I=Yo ID YE STEP Y range Dy 6990 IF ABS(I)(1.0E-5 THEN 1-0. 7000 MOVE Ko-.01+X_range,L LABEL USING "#,K" #I 7010 7020 NEXT I 7030 CLIP ON 7040 1 7050 SUBEND 7060 7070 SUB Square(Xo,Xf,Yo,Yf,Sc) 7080 [Subroutine to plot squares around the local crigin designated by the PLOT statement. 7090 7100 Xd=Sc+(Xf-Xo) 7110 Yd=Sc*(Yf-Yo)*RATIO 7120 RPLOT -Xd,Yd,-2 7130 PPLOT Xd, Yd, -1 7140 RPLOT Xd,-Yd,-1 7150 RPLOT -Xd,-Yd,-1 7150 RFLOT -Xd,Yd,2 7170 SUBEND

SN	ample colle umber of sa	ection rate imples per	e (Hz): 30 port: 10	10 10			
l. T	ength of de	ita run (se	ac): 34	1.1			
1	ne scan typ	e 15:	6.				
14 T	umber of se	ans/traver	15651 Ju				
	tworement of	traverse		1025 Inche	15		
Т	unnel Prace	uce Ratio	. 3+ 14 1e+ 7	0300433465	7.7		
			13. 2.	0001400041	10		
Scan		Port Num	her				
	1	Ĩ.	3	.1	5	5	7
1	17.386	16,838	17.049	17.616	19.135	21.167	23.343
2	17.335	15.784	17.137	17.687	19.714	22.121	24.331
3	17.365	16.730	17.093	17.738	19.564	22.414	24.279
4	17.447	16.849	17.104	17.596	19.225	21.701	23.497
5	17.335	16.741	17.071	17.667	19.614	21.764	23.487
6	17.365	16.827	16.927	17.281	18.696	20.569	23.219
7	17.417	16.784	17.026	17.281	19.155	21.921	23.229
8	17.233	16.676	16.960	17.372	18.536	20.423	22.601
9	17.335	16.784	16.993	17.433	18.856	21.607	23.466
10	17.345	16.687	16.905	17.251	18.496	20.087	22.303
11	17.345	16.773	16.971	17.525	19.175	21.576	23.137
12	17.345	16.773	17.004	17.423	18.866	21.083	23.065
13	17.294	16.752	16.882	17.454	19.065	21.796	23.898
14	17.314	16.719	16,938	17.332	19.045	20.936	22.828
15	17.273	16.687	16.905	17.393	19.065	20.517	21.912
16	17.314	16.665	16.882	17.342	19.025	21.030	22.848
17	17.253	16.687	16.960	17.433	19.025	21.219	23.497
18	17.243	16.698	16.938	17.484	18.826	20.810	22.818
19	17.314	16.676	16.893	17.240	18.397	20.863	21.870
20	17.171	16.665	16.893	17.504	19.205	21.083	22.210
21	17.222	16.655	16.871	17.230	18.655	21.041	23.209
22	17.243	16,709	16.860	17.281	18.615	20.454	22.159
23	17,263	16.622	16.871	17.383	18,736	21.293	23.023
24	17.089	16.525	16.916	17.444	18.636	20.265	01.973
25	17.130	16.633	16,794	17.118	18.526	20.485	21.901
26	17.273	16.644	16.794	17.220	18,616	20.590	21.912
27	17.345	16.752	16.794	17.139	18.496	20.328	21.600
28	17.294	16.730	16.882	17.342	19.936	20.585	27.251
29 70	17.284	16.676	16.860	17.352	18.705	20.319	22.415 no coi
21	17 202	16.601	15.849	17.342	10,410	20.538	61.331 A.7.7 CC
ו כ ריד	17.202	10.087	16.805	17.153	10.247	20.000	73 (344
12 77	17.170	10.044	16.305	17.042	10 514	20.012	23.044

Figure E1. Run 3, 16 Nov 1992 (Raw Data)

Caap		D A. H	to a				
SCAIL	ß	Fort Nur q	itter 10	11	1.2	1.5	1 d
1	75 040	10.000	1111 DE 4	5-7 F (5 7			
1	1.5.048	19-918	7.054	27.503	27.917	28.284	63.424
6. 	24,934	25.459	26.479	27.234	27.792	29,021	28.28
3	25.670	26.247	27.128	27.340	27.754	29.147	78.58 ^L
4	25.483	25.383	26.804	27.282	27.965	28.176	28.452
5	24.571	25.505	26.609	27.089	27,869	28.157	28.538
6	24.809	26.066	26.962	27.465	27.591	27.939	28.481
7	24.519	25.188	25.868	26.743	27.360	27.834	28.034
8	24.001	25.804	26.192	26.955	27.465	27.958	28.395
9	24.706	24.907	26.025	26.772	27.744	28.708	28.346
10	24.115	25.351	26.090	27.003	77.562	27.853	28.024
11	24,498	24.961	26.294	27.291	27,859	28.081	28.315
12	24.343	25.296	28.322	27.128	27.533	28.005	28.281
13	24.913	25.496	26.072	26.839	27.619	28.005	28.414
14	24.540	26.166	26.637	27.128	27.821	27.787	27.967
15	23.762	24.925	26.229	26.897	27,591	27.806	28.125
16	24.343	25.496	26.730	27.465	27.783	28.128	28.224
17	24.374	25.668	26.294	26.916	27.475	27.920	28.376
18	24.042	25.405	26.137	26.541	27.303	27.929	28.243
19	23.026	23.667	25.181	26.435	27.303	27.967	28.357
20	23.856	25.794	26.201	26.859	27.216	27.560	27.948
21	25.069	26.302	26.480	27.176	27.629	27.986	28.186
22	24.208	26.220	26.693	27.051	27.619	28,043	28.443
23	24.364	25.405	26.007	26.474	27.312	27.863	28.471
24	23.493	24.961	25.534	26.301	26.957	27.304	27.910
25	23.368	24.907	25.914	26.849	27.293	27.550	27.986
26	24.156	25.831	26.674	27.070	27.485	27.806	28.148
27	22.736	24.499	26.174	27.349	27.581	27.787	28.395
28	23.203	24.835	25,775	26.685	27.139	27,304	27.540
29	24.250	25.514	26.489	27.109	27.4.27	27.654	27.901
30	23.887	24.690	25.775	26.753	27.312	27.474	27.568
31	24.073	25.677	26.433	27.147	27.677	27.977	28.129
32	24.612	25,858	26.544	26,916	27.447	27.683	27.910
		24.000	20.047	26.040	27 255	27 853	27 996

Figure E1. (cont) Run 3, 16 Nov 1992 (Raw Data)

adan		PORTINUE	nner				
	15	16	17	19	19	20	.24
1	28.732	28.870	29.052	29.180	29,820	30.267	30.563
2	28.553	28.905	29.104	29.345	30.049	30.295	30.504
3	28.722	28.922	29.061	29.337	29.951	30.139	30.413
4	28.722	29.054	29.312	29.475	29.996	30.368	30.579
5	28.862	28.861	28.905	29.189	29.917	30.194	30.413
6	28.623	28.975	29.104	29.267	30.058	30.184	30.496
7	28.712	29.054	29.269	29.206	29,811	30.386	30.563
8	28.613	28.922	29.382	29.285	29.758	30.267	30.771
9	28.752	29.019	29.156	29.250	29.846	30.065	30.488
10	28.244	28.528	28.775	29.206	19.973	30,194	30.353
11	28.702	28.878	29.026	29.016	29.599	29.955	30.313
12	28.483	28.826	28.957	29.232	29.820	30.038	30.338
13	28.643	28.791	28.983	29.189	29.767	30.111	30.446
14	28.174	28.659	29.061	29.163	29.476	29.790	30.213
15	28.293	28.545	28,957	29.180	29.590	30.156	30.496
16	28.513	28.686	28.957	29.215	29.732	30.028	30.246
17	28.493	28.686	29.009	29.033	29.820	30.074	30.254
1.8	28.662	28.826	28.983	29.154	29.705	30.038	30.388
19	28.573	28.624	28.870	29.128	29.643	30.285	30.346
20	28.423	28.554	28.983	29.163	29.626	30.276	30.288
21	28.473	28.598	29.052	29.120	29,687	29.982	30.396
22	28.333	28.642	28.705	28.815	29.590	29.982	30.196
23	28.214	28.466	28.671	29.120	29.679	29.973	30.246
24	28.293	28.388	28.723	29,059	29.476	29.680	30.213
25	28.383	28.878	29.165	28,894	29.493	30.028	30.354
26	28.353	28.449	28.723	28.390	29.785	30.010	30.113
27	28.772	28.808	28.827	29.224	29.802	30.001	30.321
28	28.293	28.554	28.827	29.085	29.732	30.138	30.379
29	28.124	28.528	28.766	28,809	29.802	30.010	30.395
30	27.824	28.379	28.870	28.990	29.617	30.065	.50.338
31	28.463	28.466	28.792	29.076	29.537	23.318	30.24b
32	28.204	28.493	28.766	29.120	29.590	30.010	30.313
33	28.313	28.624	28.861	28.825	29.617	29.845	30.163

Figure E1. (cont) Run 3, 16 Nov 1992 (Raw Data)

acan		Port Bur	1000				
	72	23	7.4	25	26	27	28
1	30,920	31.615	32.730	34.161	24.450	27.505	23.366
2	30.988	31.735	32.815	34.352	25.028	27,924	23.719
3	30.887	31.777	32.858	34.352	24.711	27.664	23.299
4	31.038	31.752	32.807	34.334	24.135	27.462	23.215
5	30.871	31,667	32.764	34.280	23.963	27.401	22.929
6	30.745	31.667	32.738	34.298	23,993	27.559	23.324
7	30.837	31.718	32.730	34.180	23.729	27.295	23.181
8	30.963	31.658	32.747	34.216	23.750	27.234	22.803
9	30.770	31.581	32.687	34.216	23.242	27.015	22.560
10	30.787	31.615	32.764	34,152	24.592	27.506	23.072
11	30.610	31.505	32.678	34.152	23.679	27.173	22.308
12	30.762	31.573	32.627	34.170	23.811	27.664	23.072
13	30.594	31.752	32.670	34.152	23.638	26.681	22.299
14	30.778	31.564	32.713	34.134	23.577	27.085	22.551
15	30.678	31.581	32.695	34.180	23.851	27.120	22.484
16	30.761	31.650	32,661	34.052	24.135	27,295	22.719
17	30.669	31.471	32.670	34.043	24.186	27.146	22.845
18	30.644	31,479	32.670	33.988	23.587	26.532	22.224
19	30.543	31.752	32.653	34.189	23.293	26.936	22.224
20	30.627	31.479	32.584	34.099	23.669	27.067	22.501
21	30.845	31.624	32.601	34.125	23.618	27.146	22.518
22	30.585	31.692	32.524	33.943	23.466	27.304	22.686
23	30.711	31.650	32.507	34.079	23.719	27.024	22.375
24	30.669	31.650	32.413	33.988	22.847	27.120	21.980
25	30.602	31.684	32.541	34.034	22.634	26.637	21.955
26	30.661	31.547	32.567	33.943	23.080	26.953	22.366
27	30.627	31.650	32.721	34.107	23.557	28.980	22.560
28	30.585	31.530	32.601	34.180	22.603	26.752	22.039
29	30.636	31.598	32.661	34.189	24,044	27.304	22.677
30	30.585	31.505	32.644	34.125	23.851	27.164	22.686
31	30.736	31.539	32.653	34.199	23.100	26.945	22.257
32	30.694	31.505	32.576	34.098	23.760	27.331	22.803
33	30.585	31.513	32.464	34.043	24.328	27.374	22.963

Figure E1. (cont) Run 3, 16 Nov 1992 (Raw Data)

วิติสิท				
,	29	30	31	···· 3 •·· •·
i	17.552	35.788	54.558	51 851
2	17.614	35.845	54.645	51.950
3	17.623	35,854	54 573	52 210
4	17.614	35.853	54.680	57,561
15	17.561	35,807	54.671	57 505
6	17.561	35.798	54.584	52.77F
7	17.561	35,882	54.636	57.075
8	17.472	36.024	54.576	52.776
9	17.561	35.769	54.593	57,673
10	17.499	35.722	54.497	52.201
11	17.543	35.693	54.576	51,413
12	17,534	35.778	54.515	48.987
13	17.525	35.684	54.544	46,850
14	17.534	35.722	54.575	44.132
15	17.561	35.684	54.515	40.756
16	17.517	35.599	54.480	38.864
17	17.481	35.618	54.428	37.395
18	17.561	35.712	54.445	36.567
19	17.543	35.655	54.420	35.963
2.04	17.508	35.608	54.375	35.675
21	17.534	35.551	54.462	35.585
22	17.428	35,561	54.436	35.576
23	17.366	35.693	54.793	35.649
24	17.357	35.608	54.793	35.558
25	17.419	35.514	54.536	35.549
26	17.445	35.570	54.584	35.594
27	17.588	35.504	54.519	35.594
28	17.677	35.684	54.549	35.648
29	17.632	35.551	54.471	35.558
30	17.597	35.665	54.410	35.549
31	17.543	35.627	54,488	35.558
32	17.543	35.636	54.567	35.513
33	17.481	35.580	54.340	35.486

Figure E1. (cont) Run 3, 16 Nov 1992 (Raw Data)

Figure E1. (cont) Run 3, 16 Nov 1992 (P/Pt Distribution)

Figure E1. (cont) Run 3, 16 Nov 1992 (Loss Distribution)
Ni Li Ni Ir	umber of s angth of d ne scan typ umber of so ncrement of	amples per ata run (s be is: cans/traves f traverse	port: ec): rses:	300 10 34.1 33 0525 Jucht			
A	Emospheric	pressure	15:	14.75 psta			
11	innel Press	sure Ratio	15: 2	2.1400325978	3		
Scan		Port Nur	nher				
	1	2	3	-1	5	£	ī
1	17.201	16.711	25.960	25.681	77.411	28.041	28.3
-79 4.	17.222	16.647	75.882	28.549	17.452	27.779	28.1
3	17,191	16.647	25.860	26.620	17.341	27.695	28.0
4	17.232	16.679	25.971	26.722	27.351	27.926	28.2
5	17.242	16.668	25.860	26.569	27.391	27.789	28.2
6	17.048	16.625	25.794	26.569	27.331	27.728	29.1
7	17.099	16.722	25.993	26.823	27,492	27.810	28.0
8	17.181	16.701	26.048	26.671	27.351	27.947	28.4
9	17.303	16.754	26.026	26.813	27.522	27.968	28.2
10	17.140	16.787	25.993	26.701	27.270	27.758	29.20
11	17.171	16.668	26.070	26.742	27.361	27.737	28.2
12	17.120	16.765	25.015	26.793	27.502	27.873	29.2
13	17.130	16.711	26.015	26.803	27.613	27.852	28.1
15	17,150	10.711	25.971	26.661	27.181	27.768	28.20
10	17 000	10.701	25.882	26.518	27.170	27.584	28.20
17	17.089	10.073	25.915	26.793	27.502	27.925	28.3
10	17.130	10.770	20.170	20.003	27.442	27.810	28.12
10	17 701	10.000	20.700	20.132	77 741	27.052	7.8.0
20	17 170	16.733	20.101	20.742	27.241		20.10
21	17.059	16.737	23,320	20.701	27.401	27 700	20.10
27	17 120	16 679	20.207	26.004	27 361	27.799	20.10
23	17 059	16.625	25 860	26.712	27 361	27 900	28 17
24	17.099	16.744	26.037	26 773	27 462	27 894	78.25
25	17,181	16.744	25.926	26.600	27.351	27.999	28.18
26	17.079	16.528	26.148	26.742	27.361	27.842	28.11
27	16,987	16.776	25,993	26.569	27.220	27.590	28.11
28	17.120	16.690	25,849	26,691	27,381	27.779	28.22
29	17.008	16,754	25.860	26.651	27.462	27,789	28.14
30	17.008	16,765	26.070	26.630	27.311	27.800	28.11
31	17.150	16.916	26.203	26.945	27.552	27.852	28.33
32	17.038	16.776	25.070	26.630	27.351	27.653	28.07
33	17.059	16.701	25.025	26.651	27.371	27.789	28.10

Figure E2. Run 4, 19 Nov 1992 (Raw Data)

Scan		Port Nu	aber				
	9	9	1.12	11	12	1.3	1 1
1	23.408	28.656	28.970	29.279	29.764	2d'dr.,	50.215
2	28.419	28.792	29.063	29.394	29.810	30.071	30.083
3	28.419	28.592	29.072	29.318	29.879	30.138	10.388
4	28.429	28.819	29.081	29.356	29.869	30.033	30.283
5	28.471	28.828	29.146	29.337	29.802	30.119	30.378
6	28.356	28.674	29.026	29,279	29.840	30.005	30.273
7	28.336	28.538	29.026	29.414	29.860	30.214	30.426
8	28.585	28.819	28.942	29.097	29.831	30.147	30.321
9	28.481	28.810	28.942	29.385	29.898	30.037	30.369
10	28.564	28.910	29.127	29.298	29.677	29,900	30.283
11	28.481	28.873	29.127	29.241	29.696	29.881	30.064
12	28.471	28.846	28.961	29.231	29.860	29.805	30.150
13	29.408	28.638	29.035	29.308	29.812	30.129	30.159
14	28.491	28.828	29.137	29.212	29.648	29.976	30.235
15	28.429	28.855	28.998	29.250	29.725	29.672	30.254
16	28.502	28.728	28.979	29.222	29.648	29.814	30.150
17	28.419	28.674	28.933	29.327	29.620	29.900	30.159
18	28.439	28.647	29.137	29.385	29.975	30.014	30.311
19	28.512	28,719	29.109	29.366	29.773	29.957	30.150
20	28.315	28.665	29.118	29.318	29.773	30.005	30.273
21	28.263	28.629	28.942	29.183	29.773	29,976	30.016
22	28.419	28.647	28.970	29.126	29.716	29,919	30.216
23	28.429	28.710	28.933	29.250	29.850	29.814	30,159
24	28.419	28.783	28.914	29.270	29.725	29.795	30.073
25	28.356	28.620	28.886	29.241	29.581	29.643	29.949
26	28.408	28.601	29.090	29.318	23.620	29,891	54.968
27	28.419	28.765	28.961	29.231	29.600	29.795	30,188
28	28.491	28.828	29.090	29.116	29.524	29.962	30.235
29	28.253	28.592	28.979	29.356	29.773	29,929	30.150
30	28.471	28.701	28.970	29.250	29.764	30.052	30.264
21	28.077	28.837	29.081	29.087	29.543	29.767	30.111
22	28.419	28.728	29.072	29.154	29.820	5 8 .835	30.102
55	28.311	28.574	23.062	23.000	29.011	29.97h	50.140

Figure E2. (cont) Run 4, 19 Nov 1992 (Raw Data)

Scan		Port Nur	ber				
	15	16	1.7	18	19	20	11
1	30.333	30.593	30.706	31.016	31.636	52.189	32.302
2	30.523	30.584	30.979	31.008	31,495	31.913	77.369
3	30.453	30.750	31.044	31.008	31.433	32.005	32.444
4	30.343	30.900	30.965	30.938	51.676	32.051	32.260
5	30.513	30.576	30.792	31.016	31.477	31.931	32.444
6	30.583	30.654	30.879	31.034	31.451	31.885	32.461
7	30.623	30.803	30.879	30.999	31.654	72.216	32.544
ġ	30.363	30.514	30.671	30.999	31.530	32.038	32.595
g	30.423	30.725	31.079	31.190	31.689	32.069	32.377
10	30.543	30.681	31.035	31.129	31.459	31.876	32.318
11	30.393	30.584	30,879	31.025	31.583	32.005	32.394
12	30.393	30.505	30.801	30.869	31,583	31.894	32.327
13	30.403	30.584	30.853	31.051	31.565	32.051	32.427
14	30.603	30.725	30.905	30.790	31.433	32.134	32.427
15	30.583	30.733	30.957	31.042	31.495	31.720	32.158
16	30.383	30.523	30.706	30.929	31.530	31.950	32.394
17	30.363	30.514	30.714	30.947	31.451	31.958	32.268
18	30.523	30.444	30.714	30.999	31.433	31.830	32.352
19	30.293	30.479	31.018	30.921	31.474	31.950	32.335
20	30.273	30.593	30.896	30.938	31.565	31.859	32.2215
21	30.373	30.663	30.740	30.903	31.549	32.014	32.344
27	30.373	30.567	30.740	30.808	31.5.9	31.775	32.218
23	30.383	30.523	30.749	30.764	31.504	31.413	32.311
24	30.353	30.584	30.801	30.850	51.592	31,954	32+377 77 15*
25	30.204	30.418	30.706	30.877	31.380	31.922 11.070	22.151
26	30.263	30.383	30.402	30.955	51.256	31.850	21 775
27	30.323	30.444	30.558	30.877	31.247	01. (90 TL 200	01.000
28	30.443	30.628	30.775	30.843	31.548	21.021	27 1502
29	30.393	30.523	30.836	30.912	31.504	31.331	22.133
30	30.493	30.479	30.723	30.877	31.203	31.193	72 310
31	30.393	30.654	30.957	31.016	21.415	31.894	27 77
32	30.353	30.453	30.792	31.050	31.335	31.931	22.235
33	30.643	30.453	30.853	31.051	51-285	52.014	36.220

Figure E2. (cont) Run 4, 19 Nov 1992 (Raw Data)

Scan		Port Num	ber				
	22	23	24	25	7.6	27	2.8
1	37 775	37 100	34 261	75 547	70 000	70 777	75 005
2	37 601	33.193	34.201	22,342	20.010	20.200	20.000
7	32.301	33.194	34+233	35.007	20.070	70.700	25.070
4	37 637	33.154	34 300	35.710	20 120	30 210	23.070
c ·	32 657	33 177	34.210	JS.305 ZE E00	20.120	30.200	25 945
с С	32.037	33 160	34.210	35.303	20.221	30.200	20.040 75.070
7	37 000	33.100	34 440	JJ.44J 7E 600	20.414	30.000 70 E14	20.070
0	32.303	33 202	34.443	30.000 75 500	20.414	30.014	20.071
0	77 750	33.202	34.330	35.330	20.211 70.444	30.400	
10	37 640	37 174	34.330	35.707	20.444	20.400	20.702
1 1	32.040	33.734	74.233	35.301	מניר.ס.	20.403	28 071
17	37 500	33 134	34.330	72 222	20,00.	30 307	25 952
13	37 615	37 147	34.200	35 500	28 323	30.305	25 852
14	32 766	33 151	74 755	35.380	78 383	30 350	25.054
15	32 564	33.779	34.279	35 680	28 323	30.330	25.004
16	37 759	33 169	34 364	35.500	28 242	30.200	25.920
17	37 615	33 195	34 355	35 607	28 471	30.456	25 760
19	32.013	33 219	34 796	75 170	28 191	30 254	25 953
19	72 598	33 262	34 321	35 652	28 312	30.377	26.012
20	32.716	33.049	34 364	35.525	28.287	30.430	25.878
21	72.724	33.075	34.317	35.543	28.302	30.315	25,903
22	32.707	33,168	34.295	35.589	28.383	30.342	25.920
23	32.657	33.092	34.304	35.416	28.353	30.236	25.651
24	32.615	33.109	34.286	35.470	28.292	30.500	25.861
25	32.573	33,109	34.381	35.680	28.373	30.377	25.970
26	32.472	33.143	34.149	35.489	28.130	30.025	25.785
27	32.463	33,066	34.201	35,407	28.302	30.307	25.869
28	32,564	33,117	34,209	35.388	28.333	30.254	25,668
29	32.480	33.049	34.338	35.534	28.515	30.227	25.945
30	32,623	33,126	34.312	35.479	28.211	30.421	26.037
31	32.606	33.219	34.346	35.398	28,434	30.315	25.617
32	32.724	33.109	34.235	35.552	28.292	30.430	25.777
33	32,581	33,134	34.209	35.716	28.535	30.455	25.928
00	04.007						

Figure E2. (cont) Run 4, 19 Nov 1992 (Raw Data)

	Port Nur	iber	
29	30	31	52
17.289	36.999	54.332	50.809
17.316	37.066	54.430	50.619
17.253	37.056	54.279	50.637
17.280	37.113	54.279	50.619
17.351	36.999	54.341	50.755
17.405	36.980	54.323	50.546
17.485	36.999	54.323	50.691
17.342	37.046	54.270	50.692
17.333	37.075	54.395	50.791
17.298	36.951	54.359	50.854
17.369	37.018	54.421	51.181
17.298	36.941	54.323	51.325
17.351	36.951	54.359	51.199
17.369	36.913	54.296	50.429
17.218	37.056	54.430	48.165
17.431	36.884	54.305	45.594
17.307	37.037	54.510	43.377
17.396	37.018	54.359	43.640
17.333	36.970	54.323	49.052
17.467	36.941	54.456	51.588
17.351	36.855	54.350	51.679
17.405	36.884	54.474	51.733
17.324	36.846	54.332	51.543
17.476	36.941	54.341	51.570
17,307	36.874	54.243	51.561
17,235	36.989	54.003	51.461
17.333	36.760	54.181	51.516
17.431	36.817	54.376	51.733
17.360	36.827	54.314	51.606
17.449	36.865	54.456	52.014
17.387	36.769	54.323	51.878
17.405	36.865	54.483	51.670
17.253	37.094	54.056	50.972
	29 17.289 17.316 17.253 17.280 17.351 17.405 17.485 17.342 17.369 17.369 17.369 17.369 17.369 17.369 17.369 17.3736 17.3751 17.396 17.351 17.405 17.360 17.333 17.431 17.360 17.351 17.360 17.351 17.360 17.351 17.360 17.351 17.360 17.351 17.360 17.351 17.360 17.387 17.387 17.387 17.405 17.253	293017.289 36.999 17.316 37.066 17.253 37.056 17.280 37.113 17.351 36.999 17.405 36.999 17.405 36.999 17.485 36.999 17.342 37.046 17.369 37.018 17.298 36.951 17.369 37.018 17.369 36.913 17.369 36.913 17.369 36.913 17.3707 37.037 17.396 37.018 17.396 37.018 17.396 37.018 17.351 36.970 17.467 36.941 17.351 36.884 17.324 36.884 17.325 36.941 17.307 35.874 17.333 36.760 17.431 36.817 17.360 36.827 17.449 36.865 17.387 36.769 17.405 36.865 17.253 37.094	29303117.289 36.999 54.332 17.316 37.066 54.430 17.253 37.056 54.279 17.280 37.113 54.279 17.351 36.999 54.323 17.405 36.999 54.323 17.485 36.999 54.323 17.342 37.046 54.270 17.333 37.075 54.389 17.298 36.951 54.359 17.298 36.951 54.359 17.369 37.018 54.421 17.369 36.913 54.296 17.369 36.913 54.296 17.369 36.913 54.296 17.307 37.037 54.510 17.396 37.018 54.359 17.307 37.037 54.510 17.396 37.018 54.323 17.467 36.941 54.323 17.467 36.941 54.323 17.351 36.855 54.350 17.307 37.037 54.510 17.333 36.970 54.323 17.467 36.884 54.474 17.324 36.884 54.474 17.325 36.989 54.003 17.333 36.760 54.181 17.431 36.817 54.376 17.360 36.827 54.314 17.373 36.769 54.323 17.449 36.865 54.483 17.387 36.769 54.323 17.405 36.865 54.483 17.387

Figure E2. (cont) Run 4, 19 Nov 1992 (Raw Data)

Figure E2. (cont) Run 4, 19 Nov 1992 (P/Pt Distribution)

Figure E2. (cont) Run 4, 19 Nov 1992 (Loss Distribution)

Data Print Out for Zoc # 1 , Pun #	E 2 , FileZB1212012
Period between samples (sec):	.00333333333333333
Sample collection rate (Hz):	300
Number of samples per port:	10
Length of data run (sec):	34.1
The scan type is:	.7
Number of scans/traverses:	53
Increment of traverse:	.0625 Inches
Atmospheric pressure is:	14.725 psia
Tunnel Pressure Ratio 15:	2,09968174398

Scan		Port Nur	iber:				
	1	2	3	4	t _n	ß	7
t	18.311	18.602	18,663	20.067	23.040	25.375	27.196
2	18.321	18.591	18.697	19.757	22.820	25.114	26.168
3	18.372	18.655	18.619	19.828	22.181	24.643	26.373
4	18.331	18.666	18.619	19.747	22.361	25.124	26.435
5	18.311	18.591	18.486	19,076	21.652	24,643	26.785
6	18.331	18.613	18,541	19.330	22.231	24,674	26.795
7	18.362	18.613	18.686	19.696	22.331	24.464	25.931
8	18.331	18.591	18.486	18.853	21.205	23.543	25,818
9	18.300	18.602	18.541	19,218	21.672	24.381	25.900
10	18.300	18.570	18.486	19.279	22.002	24.433	26.209
11	18.280	18.602	18.430	19.076	21,793	24.339	26.332
12	18.259	18.462	18.563	19.584	22.102	24.391	26.127
13	18.219	18.516	18.552	19.371	22.231	24.779	26.229
14	18.270	18.580	18.508	19.493	22.251	24,234	26.137
15	18.259	18.559	18.552	19.1.37	21.872	24.224	26.107
16	18.311	18.623	18.586	19.005	21.074	23.270	05.620
17	18.229	18.570	18.508	19.239	21.293	23.826	25.750
18	18.208	18.495	18.441	19.229	21.732	24.527	20.201
19	18.290	18.537	18.452	18.995	21.263	23.815	25.833
20	18.259	18,473	18.519	19.422	21.922	24,412	20-127
21	18.188	18.548	18.630	19.269	21.642	24.758	20.022
22	18.219	18.441	18.530	19.290	22.421	24.727	ממשיםן
23	18.188	18.409	18.419	19,117	21.503	23.794	25.767
24	18.147	18.484	18.475	19.188	21.682	23.920	23.643
25	18.126	18.441	18.419	18.914	51.583	24.349	20.072
26	18.147	18.559	18.386	19.158	21.523	24.014	25.300
27	18,188	18.323	18.408	19.117	21.602	23.351	20.077
28	18.106	18.462	18.430	19.005	21.902	24.116	
29	18.085	18.301	18.475	19.747	22.421	24.307	201004
30	18,147	18.323	18.464	19.290	21.052	24.105	26.000
31	18.075	18.452	18.552	19,615	22.001	23.02	20.404
32	18.004	18.312	18,408	19.210	.1.480	24.000	25.014
55	18.0/5	18.430	10.237	0,0.61	66.201	541170	20.000

Figure E3. Run 2, 1 Dec 1992 (Raw Data)

Scan	Port Number						
	8	9	10	ΕT	Η Έ	1 3	F 1
1	27.965	28.331	28.827	29.653	79.807	30.196	20.473
2	27.903	28.638	29.031	29.489	29.836	30.101	30.188
3	27.768	28.376	28.836	29.307	29.816	30.139	30.369
4	27.550	28.349	28.883	29.432	29.855	30.215	30.416
5	27.768	28.313	29.040	29.432	29.740	30.034	30.330
6	27.747	28.267	28.660	29.125	29.817	29.987	10.140
7	27.311	28.385	28.725	29.144	29.702	30.129	30.235
8	27.456	28.159	28.799	29,441	29.740	30.044	70.235
9	27.083	27.842	28.697	29.345	29.759	29.977	30.168
10	27.373	28.041	28.697	29.297	29.530	29.982	30.130
11	27.363	27.896	28.660	29.297	29.606	29.944	29.940
12	27.415	28.267	28.920	29.336	79.740	30.053	30.292
13	27.311	28.095	28.577	29.230	29.779	30.006	30.168
14	27.166	27.887	28.651	29.230	29.510	29.844	30.188
15	27.249	28.285	28.957	29.211	29.597	29,958	30.226
16	26.917	27.797	28.651	29.297	29.558	29.949	30.083
17	27.207	28.077	28.354	28,971	29.453	29.797	30.111
18	27.332	28.132	28.818	29.211	29.463	59.80B	29.940
19	27.145	28.059	28.632	29.317	29.530	29.673	.30.035
20	27.073	27.697	28.493	28.942	39.415	29.740	24.944
21	27.508	28.258	28,781	29.067	29.300	29.835	30.064
22	26,969	27.851	28.744	29.067	29.625	29.711	30.064
23	27.176	27.887	28,595	29.115	29.577	29.683	30.083
24	26.875	27.670	28.521	29.077	29.491	29.730	29.911
25	27.093	27.824	28.679	29.134	29.472	29.740	30.111
26	27.052	27.716	28.363	28.952	29.549	29.806	30.018
27	27.104	27.860	28.372	29.009	58.308	29.730	30.006
28	27.000	28.077	28.706	29.048	29.290	29.607	30.178
29	26.574	27.942	28.632	29.067	29.453	29.683	30.083
30	27.581	27,915	28.632	29.144	29.443	29.806	70.064
31	27.259	28.050	28.679	29.019	29.434	29,901	20.054
32	26.813	27.562	28.512	29.153	29.204	29.797	30.197
33	27.581	28.105	28.456	29.000	29.510	29.749	29.673

Figure E3. (cont) Run 2, 1 Dec 1992 (Raw Data)

.

Scan		Port Nu	iber				
	1 1 2	16	17	18	1 ()	0	24
1	30.470	30.664	30.618	30.808	201.914	31.090	30.988
2	30.470	30.542	30.514	30.678	20.958	30.998	31.180
3	30.550	30.656	30.705	30.765	30,905	31.090	31.205
4	30.530	30.585	30.627	30.652	30.914	30.989	31.071
5	30.421	30.533	30.644	30.634	30.852	30.861	30.938
6	30.421	30.340	30.523	30.582	30.888	31.017	31.029
7	30.351	30.533	30.505	30.695	30.755	31.008	30.988
8	30.371	30.384	30.505	30.634	30.755	30.600	30.988
9	30.431	30.340	30.497	30.634	30.667	30.909	30.887
10	30.321	30.375	30.366	30.652	30.641	30.251	30.913
11	30.091	30.340	30.340	30.521	30.623	30.741	30.946
12	30.351	30.358	30.419	30.556	30.667	30.824	30.913
13	30.291	30.279	30.314	30.513	30.729	30.933	30.879
14	30.271	30.349	30.288	30.443	30.703	30.704	30.745
15	30.261	30.445	30.332	30.591	30.667	30.787	30.954
15	30.281	30.419	30.462	30.565	30.676	30.851	30.779
10	30.171	30.366	30.358	30.695	30.782	30.870	30.862
10	20.121	30.270	30.271	30.435	30.447	30.576	30.712
13	30.221	30.323	30.375	30.365	30.676	30.796	30.938
20	30.171	30.349	30.445	30.400	30.650	30.577	30.845
21	30.181	30.270	30.358	30.400	30.685	30.741	30.737
22	30.331	30.445	30.375	30.435	30.782	30.750	30.963
20	30.221	30.435	30.497	30.530	30.773	30.787	30.996
24	20.111	30.375	30.235	30.608	30.606	30.295	30,821
20	29.992	30.121	30.297	30.339	30.641	30.714	30.587
20	30.251	30.200	30.253	30.339	30.667	30.677	30.896
20	20 151	30.252	30.080	30.452	30.675	30.548	30.704
20	30.131	30.103	30.410	30.348	30.441	30.795	30.795
20	30.121	30.165	201.235	30.374	-9.5db	30.550	30.762
31	20.211	70 170	20.184	30.617	30.504	30.645	30.796
27	23.332	30.130	30.210	30.374	341.412	30.741	30.570
32	30.101	20,131	30.219	30.408	30.332	30.575	30.720
55	50.101	50.210	20.071	30.322	30.505	30.558	30.553

Figure E3. (cont) Run 2, 1 Dec 1992 (Raw Data)

Scan		Port Nur	nber				
	77	23	24	25	26	27	:'n
1	31.347	31.630	33.022	35.091	27.019	29,084	25.704
2	31.178	31.622	33.099	35.109	16.370	29.001	26.637
3	31.162	31.605	33.201	35.008	26.613	29.151	26.738
4	31.204	31.647	33.141	34.981	25.421	29.045	25.780
5	31,120	31.664	33.141	35.063	26.410	29.090	26.569
6	31.120	31.579	33.107	34,963	26.431	29.846	26.477
7	31.036	31.528	33.099	34.944	26.441	29.099	26.653
8	31.061	31.460	32.953	34,862	76.005	28.881	26.118
9	31.162	31.537	32.842	34.890	26.259	28.899	26.536
10	30.985	31.418	33.064	35.036	26.421	28.994	26.485
11	30.884	31.520	33.056	34.844	26.279	28.793	26.418
12	30.960	31.375	33.073	34.963	26.329	28.785	26.190
13	31.111	31.596	33.133	34.963	26.340	28.627	26.477
14	30.884	31.622	33.022	34.935	26.198	28.819	26.392
15	31.002	31.613	33.082	34.954	26.279	28,915	28.451
16	30,867	31.435	32.945	34.881	26.350	28.872	26.460
17	30.926	31.418	32.987	34.835	26.167	28.828	26.460
18	30.910	31.248	32.910	34.871	26.117	28.645	26.207
19	31.002	31.486	33.064	34.900	26.238	28.715	26.266
20	30.943	31.469	33.047	34.780	26.188	28.662	26.233
21	30.977	31.562	32.833	34.835	26.238	28.706	25.477
22	30.952	31.392	33.013	34.771	26.228	28.592	26.392
23	31.010	31.528	32.987	34.963	26.309	28.654	26.350
24	30.985	31.571	32.928	34.890	26.289	28.846	26.350
25	30.775	31.256	32.970	34.771	26.096	28.785	26.342
26	31.027	31.537	32.945	34.698	26.147	28.697	26.367
27	30.792	31.503	32.808	34.826	26.036	28.514	26.123
28	30.851	31.180	32,868	34.716	25.894	28.654	26.334
29	30.867	31.239	32.782	34.835	26.157	28.645	26.308
30	30.985	31.324	32.851	34.899	26.218	28.523	26.233
31	30.809	31.392	32.936	34.680	25.975	28.558	26.106
32	30.691	31.239	32.756	34.707	26.177	28.697	26.275
33	30.800	31.477	32.859	34.634	26.198	28.793	26.207

Figure E3. (cont) Run 2, 1 Dec 1992 (Raw Data)

Scan		Port Num	iber	
	29	30	31	32
1	17 765	10 000		57 194
, ,	17 237	36 529	54 340	57 003
د ۲	17 372	36 471	54 243	51 940
A	17 354	ZE 518	54.245	51 795
5	17 319	36 423	54.420	51 669
a	17 363	36.471	54.478	51.674
7	17.372	36.461	54.787	51.732
R	17.345	36.365	54.252	52,031
9	17.353	36.357	54.287	52.202
10	17.292	36.366	54.173	52.239
11	17.328	36.290	54.147	51.361
12	17.363	36.347	54.322	48.695
13	17.301	36.281	54.182	45.189
14	17.337	36.328	54.278	42.759
15	17.345	36.395	54.252	46.273
16	17.408	36.414	54.331	51.587
17	17.363	36.328	54.270	52.293
18	17.345	36.290	54.217	52.266
19	17.345	36.290	54.305	52.248
20	17.319	36.338	54.472	52.320
21	17.425	36.243	54.103	52.194
22	17.399	36.205	54.357	52.248
23	17.292	36.309	54.155	52.257
24	17.328	36.271	54.103	52.211
25	17.328	36.224	54.190	52.229
26	17.337	36.186	54.120	52.193
27	17.390	36.309	54.041	52.220
28	17.301	35.939	53.936	52.302
29	17.417	36.024	53.821	52.275
30	17.452	36.129	53.927	52.428
31	17.212	35.986	54.059	52.184
32	17.230	35.882	53.901	52.031
33	17.221	36.214	54.138	51.081

Figure E3. (cont) Run 2, 1 Dec 1992 (Raw Data)

Figure E3. (cont) Run 2, 1 Dec 1992 (P/Pt Distribution)

Figure E3. (cont) Run 2, 1 Dec 1992 (Loss Distribution)

г.е 5а	ample colle	action rate	(11z):	.0055755551097 300	han a tha she		
141	ander of 38	mpies per	port:	7.4.4			
С. С . Т.	angta or de	nta run (se	*C):	34.1			
1 T 6-1	ie scan typ	De is:		j) mm			
E41	imper of 50	ansvtraver	15851	35 0575 1 1			
11	icrement or	traverse:		.9625 Inche	5		
T.	unal Prass	pressure i una Ratio	.5+	14+725 DS18 1.0701700470	· · · · · · · · · · · · · · · · · · ·		
11.			15.	1.002+202427	-,		
Scan		Port Num	iber				
	I	74	3	4	5	5	
1	18.654	18.899	19.720	22.161	25.184	26.894	28.
	18.613	18.824	19.787	22.669	25.095	26.926	28.
3	18.654	19.856	19,798	22.151	24.345	26.204	27.
4	18.613	18.845	19.610	21.755	24.805	26.769	29.
5	18.593	18.835	19.676	22.212	24.535	26.654	27.
6	18.623	18.813	19.643	Z1.846	24.755	26.643	28.
7	18.644	18.813	19.367	21.927	24.685	26.496	27.
8	18.542	18.792	19.500	22.110	25.005	25.905	
9	18.623	18.813	19.820	22.262	24.755	26.579	£1.
10	18.552	18.781	19.489	21.543	24.625	25.501	
11	18.522	18.835	19.544	21.622	24.545	26.082	27.
12	18.603	18.802	19.522	21.450	23.757	26+135	27.1
1.4	10.511	10.004	17.004	21+477	24+201 27 DOF	20.040	27.
14	10.044	10.004	13.383	21.202	24 115	בהואים:	27.0
15	18.481	10.735	13.544	21+770	191110 77 000	20.000	77 6
17		10.743	13.312	41.J45 71 E71	221700 74 DEE	201905 70 900	27 1
10	10.573	10.700	10.070	21.201	24.000	76.305	77.
10	10.522	10.733	10 366	21,001	24.105	76 287	27 0
10	10 451	10.700	10 745	21,000	24+240	26.207	27 5
21	10 - 401	10.307	19.100	21.307	24.625	26.277	27.5
27	10 527	19 705	19 544	21.066	24 245	26 714	27 -
27	10.321	19 620	19 500	21.000	24 055	26.507	77.0
23	10.450	19 706	19 532	21.014	24.000	26.057	77.5
25	18 440	18 609	19 422	21.338	24.195	26.319	27.5
26	18 491	18.673	19.334	21.582	24.425	26.695	27.9
27	18.389	18.530	19 334	21.338	24.185	26.277	27.1
78	18 440	18 663	19 224	21 043	23.905	26.036	27.5
29	18.318	18.523	19.378	21.439	23.495	25.733	27.2
30	18,430	18.523	19.213	21.409	24.065	26.475	27.5
31	18.399	18.566	19.202	21.673	24.075	25.805	27.0
32	18.287	18.555	19.312	21.255	23.665	25.774	27.5
33	18.318	18.502	19,213	21.124	24.775	25.685	27.6

Figure E4. Run 1, 7 Dec 1992 (Raw Data)

Scan		Port Nur	nher				
	8	9	10	11	12	1 3	1.4
1	70 790	70 401	70.075	70 4 20	10 500	203 7 4 10	14 4/10
	20.700	23,431	23,000	29.409	0.504 70.0077	30.719	51.029
1	10 117	20.017	27.374	30.380	0.657	V0.400	31.191
A	20-100	20.044	30.103	30.620	чи, чин та цин	SØ, 476	31.077
'+ C	20.707	23.232	20.020	30.438	2011.23.3	31.014	31.096
C	20.004	20 470	29.850	30.245	30.714	11.05.2	31.096
7	20.044	23.436	30.094	30.391	30.539 30.777	39.377	50.982
G	20.010	23.744	20.048	30.524	10.777	31.014	31.077
O Q	20.013	23.303	20.974	30.274	20.518	30.867	30.972
10	20.004	23.431	23.072	20.200	30.858	30.966	30.9.5
11	20.703	20 676	23.170	30.361	20.020	30.938	31.153
12	79 799	23.330	23.364	30.304	20.676	20.414	30.991
13	28 870	29.002	23.044 70 COC	30.JT	201.1547 701.1100		21.003
14	78 777	79 270	23.000	30.200	20.494	20.275	201.210
15	28 456	29 328	29.742	30 205	20 520	30.750	34.934
16	28 456	29 048	29.779	30.225	30 E G G	30 2777	31.010
17	28 601	29 346	29.779	30 246	30.000	20 677	30.007
18	28.839	29.084	29 668	30 274	30.542	30 815	30 953
19	78.829	29.554	29.000	30 159	30 620	30.011	30 949
20	28.777	29 455	29.742	30 217	30 590	30 202	30 090
21	28 672	29 192	29 742	30.159	30.494	30.107	31 050
22	28 694	29.720	29 714	30 207	30 494	30.630	30 963
23	28.300	29 192	29 751	30.198	30 417	30 607	30.773
24	28.694	29.427	29 547	79 957	30 398	30 541	30.895
25	28.393	28.705	20.047	30 217	30.632	30.571	30 858
26	28.725	29.346	29 807	30 217	30 494	30 597	30 887
27	28,487	29.256	29.733	30 217	30.436	30 642	31.039
28	28.300	29,183	29.584	30.011	30 435	30 626	30.763
29	28,383	28,903	29.464	29 890	30 408	30 607	30.725
30	28.331	29.220	29.547	30.111	30.551	30.512	30.678
31	28,394	29.057	29,473	30.284	30 573	30 531	30.715
32	28,819	29,129	29.510	29,919	30.436	30.777	30.787
33	28.580	28.994	29.557	29,890	30.235	30.399	30.640

Figure E4. (cont) Run 1, 7 Dec 1992 (Raw Data)

Scan		Fort Num	her				
	15	16	1.7	19	1.1	្តព្	21
1	31.008	31.105	31.198	31.219	31.137	31.251	22.350
2	31.187	31.202	31.337	31.419	31.295	31.494	22.731
3	31.337	31.220	31.111	31.298	31.163	31.307	21.729
4	31.277	31.220	31.181	31.428	71.330	31.242	22.193
5	31.247	31.185	31.103	31.237	11.049	31.297	21.605
6	31.088	31.132	31.051	31.185	31.183	31.325	21.183
7	31.158	31.150	31.155	31.237	31.274	31.196	21.713
8	31,178	31.158	31.120	31.245	31.181	31.270	21.572
9	31.018	31.071	30.964	31.280	31,216	31.408	21.323
10	31.237	31.193	31.051	31.115	31.137	31.233	21.290
11	30.938	31.079	30.998	31.159	31,198	31.334	21.025
12	31,128	31.106	31.051	31.159	30.987	31.150	20.918
13	31.098	31.044	30.981	31.272	31.128	31.104	21.257
14	31.029	31.193	30.955	31.107	31.181	31.068	20.479
15	31.068	31.185	31.111	30.985	30.996	31.159	20.992
16	31.088	30.957	30.842	30.985	30.881	31.095	20.239
17	30.868	30.992	30.860	31.211	31,198	31.085	21.117
18	31.038	30.974	31.051	31.157	31.101	30.994	21.108
19	30.958	30.878	30.964	31.211	31.093	31.058	20.876
20	30.898	31.088	30.929	31.072	30.978	30.976	20.777
21	31.108	31.009	30.998	31.080	30.996	31.068	20.595
22	30.928	31.001	31.094	31.072	31.075	31.077	20.852
23	30.938	31.036	30.860	30.968	30.881	31.003	21.282
24	30.938	30.869	30.868	31.072	30.864	30.875	20.868
25	31.018	30.790	30.851	31.115	30.899	30.893	20.587
26	30.829	30.834	30.834	30.985	30.837	30.875	20.934
27	31.098	30.904	30.929	30.994	30.943	31.049	21.166
28	30.898	30.904	30.704	30.907	31.031	10.930	21.199
29	30.848	30.694	30.721	30.881	10.844	30.902	20.222
30	30.779	30.790	30.825	31.063	30.908	31.022	21.539
31	30.779	30.764	30.851	30.811	30.807	30.755	21.448
32	30.809	30.939	30.730	31.089	30.934	30.829	21.199
33	30.749	30.878	30.652	30.863	30.776	30.847	21.497
				٠			

Figure E4. (cont) Run 1, 7 Dec 1992 (Raw Data)

Scan		Fort Nur	nher				
	12	23	2.4	25		.7	.13
1	27.184	29.624	30.967	31.219	31.517	31, 34	31.003
- 1	27.512	29.437	30.864	31.055	31.570	31., 2.20	31.020
3	27.218	29.565	30.864	31.055	31.300	51.135	70.970
4	27.478	29.539	30.787	31.073	31.410	51.231	.10.935
5	27.159	29.497	30.958	21.201	71.501	31.231	30.970
6	27.058	29.531	30.864	31.091	51.451	51.205	31.020
7	26.849	29.318	30.735	31,128	31.750	31.119	30.936
8	26.949	29.182	30.615	30.991	31.350	31.126	30.810
9	27.025	29.225	30.795	31.119	31.131	31,257	30,987
10	26.622	28.928	30.392	30.772	31.157	31,100	31.020
11	26.647	28.919	30.409	30.790	31.309	31.214	30.902
12	26.748	29.131	30.658	31.027	31.269	31.039	30.944
13	26.874	29.327	30.701	30.954	31,279	31,153	30.944
14	26.160	28.775	30.444	30.854	31.248	31.100	30.793
15	26.605	29.106	30.658	30.936	31.259	31.030	30.793
16	26.504	29.106	30.547	30.772	31,198	31.091	30.869
17	26.874	29.098	30.581	30,964	31.188	30.908	30.751
18	26.614	28.953	30.401	30.845	31.168	31.048	30.793
19	26.311	28.860	30.452	30.909	21.588	30.969	30.827
20	26.135	28.741	30.358	30.790	31.157	30.899	30.810
21	26.050	28.766	30.341	30.809	31,218	31.030	30.818
22	26.261	28.775	30.349	30.827	31.157	30.925	30.818
23	26.823	29.225	30.547	30.863	31.168	30,950	30.810
24	26.244	28.817	30.324	30.745	31.015	30.873	30.760
25	26.546	28.826	30.118	30.654	31.056	30.960	30.642
26	26.244	28.707	30.478	30.827	31.157	30.934	30.709
27	26.412	28.715	30.349	30.708	31.026	30.890	30.718
28	26.681	28.996	30.504	30.763	31.158	30.873	30.650
29	26.001	28.605	30.298	30.763	31.056	30.724	30.718
30	26.958	29.208	30.607	30.790	31.117	30.917	30.701
31	26.706	28.919	30.444	30.617	31.127	31.065	30.559
32	26.597	29.030	30.281	30.553	.30.925	30.938	30.726
33	26.907	28.698	30.143	30.626	30.975	30.807	30.659

Figure E4. (cont) Run 1, 7 Dec 1992 (Raw Data)

Scan		Port Nur	Port Number		
	29	30	31	32	
1	18,945	35.604	55.220	52,948	
2	19.025	36.709	55.094	52.804	
3	18.980	36.651	55.346	52.921	
4	18.954	36.604	55.238	52.921	
5	18,972	36.594	55.328	52.930	
6	18.888	36.661	55.337	52.921	
7	18,954	36.585	55.346	52.948	
8	18.883	36.471	55.256	52.939	
a	18,389	36.594	55.382	53.192	
10	19,176	36.604	55.031	52.894	
1.1	18.998	36.423	55,229	51.179	
12	18.954	36.547	55.319	47.399	
13	19.060	36.547	55.229	43.675	
14	18.936	36.499	55.319	44.027	
15	18,972	36.528	55.292	50.359	
16	19.016	36.395	55.238	53.075	
17	18.945	36.585	55.283	53.138	
18	18,972	36.385	55.283	53.183	
19	18.954	36.556	55.364	53.174	
20	19.025	36.556	55.220	52,984	
21	18,954	36.471	55.220	53.100	
22	18.998	36.395	55.103	53.111	
23	18.990	36.328	55.094	53.021	
24	19.069	36.414	54.896	53.057	
25	18.865	36.271	55.166	53.084	
26	18.954	36.376	55.067	53.156	
27	18.954	36.347	55.094	53.219	
28	18.900	36.290	55.040	53.174	
29	18.989	36.357	54.887	53.084	
30	18.874	36.252	54.914	53.255	
31	18.785	36.139	54.941	53.201	
32	18.972	36.091	54.941	53.057	
33	18.891	36.177	54.716	52.154	

.

Figure E4. (cont) Run 1, 7 Dec 1992 (Raw Data)

Figure E4. (cont) Run 1, 7 Dec 1992 (Upper Passage P/Pt Distribution)

Figure E4. (cont) Run 1, 7 Dec 1992 (Loss Distribution)

APPENDIX F. SAMPLE RVCQ3D INPUT AND SUMMARY OF RESTARTS

1. Sample RVCQ3D Input File:

'GAS DYNAMICS LAB TRANSONIC FAN CASCADE'

&n11 m=250, n=49, mt1=50, mi1=112 &end

- &n14 amle=1.40,alle=56.49,bete=53.0,prat=0.704,g=1.4, p0in=1.00000,t0in=1.00000 &end
- %n15 ilt=2,jedge=30,renr=17.83e6,prnr=0.71,prtr=0.90, tw=0.0,vispwr=0.83500,cmutm=14.0 &end

&n16 omega= 0.000000,nblade= 1,nmn=0 &end

2. Summary of RVCQ3D restart inputs:

TABLE XII. SUMMARY OF RVCQ3D RESTART INPUTS

Iterations	P2/Pt1	Residnai Smoothing (i-direction)	Residual Smoothing (j-direction)
0-500	0.76	0.55	0.65
510-1000	0.74	0.55	0.65
1010-1500	0.72	0.55	0.65
1510-2000	0.71	0.45	0.55
2010-2500	0.71	0.45	0.55
2510-3000	0.71	0.35	0.45
3010-4000	0.71	0.35	0.45
4010-5000	0.71	0.3	0.4
5010-7000	0.704	0.3	0.4

APPENDIX G. SAMPLE CALCULATION USING KOCH AND SMITH

The following is a loss estimate based on the Koch and Smith model [Ref. 25]. Experimental results will be used as inputs where possible and estimates of other quantities will be input elsewhere. Blade and passage geometry is determined. The deviation angle is estimated using NASA SP-36 [Ref. 27] and AGARD-R-745 [Ref. 26]. The loss estimate is obtained using relations, figures and tables from reference 33 and 34.

A. The cascade and passage geometry for the a suction surface incidence of 1.15 degrees is presented.

Variable geometry:	$\Delta i_{ss} = 0 \deg$	
Blade Camber:	φ = 6.66773-deg	
Maximum Thickness:	t _{max} = 0.22866 in	
Chord:	c .= 6 in	Icmax = tmax
Thickness (LE)	$t_{\rm LE} = 0.015$ in	С
Vanax:	tcmax = 0.03811	
Blade Spacing:	s = 3·in	$\sigma = -$
Solldity:	$\sigma = 2$	S
Slagger Angle:	ξ = 51.84·deg	
Wedge Angle:	wedge = 3.5 deg	
Vietal angles:	$K_{1m} = \frac{1}{2} wedge + \xi$	K _{1m} = 53.59 • deg
	$K_{2m} = K_{1m} - \phi$	$K_{2m} = 46.92227 \cdot deg$

Suction Surface Incidence:

$$i_{ss} = 1.15 \text{ deg} + \Delta i_{ss}$$

Suction Surface Metai Angle:

```
K_{1s} := K_{1m} + \frac{1}{2} \cdot \text{wedge}K_{1s} = 55.34 \cdot \text{deg}
```

Blade Incidence Angle:

$$i_{m} = i_{ss} + (K_{1s} - K_{1m})$$

$$i_{m} = 2.9 \cdot deg$$

$$\beta_{1} = i_{m} + K_{1m}$$

Inlet Flow Angle:

$$\beta_1 = 56.49 \cdot deg$$

Figure G1. Loss Estimation by Koch and Smith Method

B. Deviation angle Is estimated using three methods. The first two are from NASA SP-36 and the third Is a modified Carter rule taken from AGRARD-R-745.

Using NASA SP-36 two "methods" can be used to find deviation angle which yield similar results:

Method 1 (EQN 268)

Method 2 (EQN 269)

Figure 166

1. Zero camber deviation for 10% thick 65 series airfoils as a function of injet flow angle In Figure 161

 $\delta_{0.10\%} = 2.5 \, deg$

2. Slope function as taken from Figure 168 as a function of injet flow and solidity.

m = 0.185

3. Corrections to zero camber deviation for C-series airfoils and thickness. The thickness correction ts from Figure 172 as a function of t/c.

K _{&sh_C_series} := 1.1

 $K_{81} = 0.32$

4. Corrected zero camber deviation from equation 271,

 $\delta_{0} = K_{\delta sh_{C_{series}} K_{\delta t} \delta_{0} 10\%}$

5. Estimated deviation angle from equation 268.

 $\delta_1 = \delta_0 + \mathbf{m} \phi$ $\delta_1 = 2.11353 \cdot \deg$

 $m_{\sigma 1} = 0.305$

2. Solidity exponent taken form Figure 164.

1. Slope function for solidity of 1 taken from

b = 0.72

3. Using equation 269 and the zero camber deviation from method 1, the deviation can be estimated.

$$\delta_2 = \delta_0 + \phi \left(\frac{m_{\sigma_1}}{\sigma} \right)$$

 $\delta_2 = 2.11463 \cdot \deg$

Fgure G1. (cont) Loss Estimation by Koch and Smith Method

Method 3 (Modified Carter's Rule)

1. Carter's rule slope function as taken form Figure 160 in NASA SP-36: $\xi = 51.84 \cdot deg$

m_{c_ca} := 0.33 m_{c_pa} = 0.275

2. Carter's rule: (EQN 270 In SP-36)

$$\delta_{car_ca} = \frac{m_{c_ca} \phi}{\sqrt{\sigma}} \qquad \qquad \delta_{car_pa} = \frac{m_{c_pa} \phi}{\sqrt{\sigma}}$$
$$\delta_{car_ca} = 1.55588 \cdot deg \qquad \qquad \delta_{car_pa} = 1.29657 \cdot deg$$

3. Modified Carter's rule relation from AGARD-R-745 (EQN 3.5)

$$\delta_3 = -1.099379 + 3.0186 \cdot \delta_{car_Pa} - 0.1988 \cdot \delta_{car_Pa}^2$$

 $\delta_3 = 2.48024 \cdot deg$
 $\delta = \delta_3$

Now, outlet flow angle can be estimated using the deviation angle(s) found above.

 $\beta_2 \coloneqq \delta + K_{2m}$ Total flow turning is.. $\epsilon = \beta_1 - \beta_2$ $\beta_2 = 49.40251 \cdot \deg$ $\epsilon = 7.08749 \cdot \deg$

C. Cascade losses are calculated using the Koch and Smith model outlined in AGARD-R-745 and described In "Loss Sources and Magnitudes In Axiai-Flow Compressors" by C. C. Koch and L.H. Smith, Jr.

- 1. Profile Losses:
 - a. The first step is to calculate the following parameters:

Velocities and Mach numbers will be taken as the average value and it should be noted that for the actual machine these would be relative velocities:

$$V_{1avg} = 1306.60877 \cdot \frac{ft}{sec}$$
 $V_{2avg} = 717.18277 \cdot \frac{ft}{sec}$

 $M_{1avg} = 1.38862$

Figure G1. (cont) Loss Estimation by Koch and Smith Method

Radiris values must be determined to completely utilitze the model, but there effect cancels out for the 2-D case so the radius shown is artitrary.

$$r_1 = 10 \cdot in$$
 $r_2 = 10 \cdot in$
 $r_{mean} = \frac{r_1 + r_2}{2}$ $r_{mean} = 10 \cdot in$

Other constants defined for use in this model are as shown:

$K_1 = 0.2445$	$K_2 = 0.4458$
K 3 := 0.7688	K. ₄ := 0.6024

Velocity diagram parameters:

$$\begin{split} \beta_{mean} &\coloneqq \frac{\beta_1 + \beta_2}{2} \qquad \beta_{mean} = 52.94626 \text{ deg} \\ M_{z1} &= M_{1avg} \cos(\beta_1) \qquad M_{z1} = 0.76663 \\ V_{\theta 1} &= V_{1avg} \sin(\beta_1) \qquad V_{\theta 1} = 1089.43665 \text{ } \frac{n}{\text{sec}} \\ V_{\theta 2} &\coloneqq V_{2avg} \sin(\beta_2) \qquad V_{\theta 2} = 544.55674 \text{ } \frac{n}{\text{sec}} \end{split}$$

Annulus parameters of questionable value:

$$A_{a1} := s \cdot sin(\xi) \cdot (r_2 - r_1) \qquad A_{a1} = 0 \cdot in^2$$

$$A_{a2} := A_{a1}$$

$$A_{p} := \left(1 - \frac{K_2 \cdot \sigma \cdot \frac{r_{max}}{c}}{\cos(\beta_{mcan})} \right) \cdot \left(1 - \frac{A_{a1} - A_{a2}}{3 \cdot A_{a1}} \right) \qquad < this term = 1.0$$

A p = 0.94361

Density and circulation paramters:

$$\Gamma_{star} = \frac{r_{1} \cdot V_{01} - r_{2} \cdot V_{02}}{r_{mean} \sigma \cdot V_{1avg}} \qquad \Gamma_{star} = 0.20851$$

$$P_{star} := 1 - \left(\frac{M_{z1}^{2}}{1 - M_{z1}^{2}}\right) \left(1 - A_{p} - K_{1} \cdot \frac{\tan(\beta_{1})}{\cos(\beta_{1})} \sigma \cdot \Gamma_{star}\right)$$

$$P_{star} = 1.31723$$

Equivalent diffusion factor:

$$U_{eq} \coloneqq \frac{V_{lavg}}{V_{2avg}} \left[\left(\sin(\beta_1) - K_1 \cdot \sigma \cdot \Gamma_{star} \right)^2 + \left(\frac{\cos(\beta_1)}{A_p \cdot \rho_{star}} \right)^2 \right]^2 \cdot \left(1 + K_3 \cdot \frac{t_{max}}{c} + K_4 \cdot \Gamma_{star} \right)$$

$$D_{eq} \simeq 1.80124$$

b. The next step is to use the quantities above as well as flow quantities in the figures contained in the Koch and Smith paper. The quantities obtained will be used in equation 2 of AGARD-R-745. (which is equation 264 of SP-36)

With Deq and Intel Re, figures 2a and b can be used to find Momentum thickness to chord and Trailing edge boundary tayer form tactor.

Re lavg := mean(R_{e1}) Re lavg = 9 10881 \cdot 10⁴ D_{eq} = 1.80124 θ_{c1} := 0.0075 II_{TE} := 1.57

A correction for inlet Mach Number Is provided by Figure 3 as a function Deg and M1.

 $M_{1avg} = 1.38862$ $\theta_{M1} = 0.7$ $H_{M1} = 1.23$

A correction for stream tube correction based on h1/h2 is given, but is impossible to estimate in the current experimental configuration.

A Re/roughness Momentum Thickness correction is provided using ks from Appendix 2 and Figure 5 both of the Koch and Smith paper.

Assuming a surface roughness of ASTM Paper number 180

$$k_{CLA} := 7.0866 \cdot 10^{-4} \text{ in } k_{B} := 6.2 \text{ } k_{CLA}$$

 $k_{B0} = \frac{k_{B}}{\sigma_{Re}} \qquad k_{B0} = 0.00073$

Then Figure 5 provides corrections as a function of Re

Figure G1. (cont) Loss Estimation by Koch and Smith Method

The corrected momentum thickness per chord and wake form factor are

$$\theta_{c} = \theta_{M1} \theta_{ks} \theta_{c1}$$
 $\theta_{c} = 0.00656$
11 = $H_{M1} H_{ks} H_{1E}$ 11 = 2.41388

Now, using equation 2, the profile losses can be determined

$$m_{\text{har, profile}} = 2 \cdot \left(0_{\text{c}}\right) \cdot \frac{\sigma}{\cos(\beta_2)} \cdot \left(\frac{\cos(\beta_1)}{\cos(\beta_2)}\right)^2 \cdot \frac{\frac{2 \cdot 11}{3 \cdot 1 - 1}}{\left(1 - \theta_{\text{c}} \cdot \frac{\sigma \cdot 11}{\cos(\beta_2)}\right)^2}$$

¹⁰ bar_profile = 0.02608

2. Shock losses and leading edge blummess losses can be calculated as follows:

a. Shock losses obtained from Figure 7 of Koch and Smith

⁰⁰ bar_shock := 0.065

b. Leading edge bluntness tosses obtained as shown:

$$\Delta s := R \left[-\ln \left[1 - \frac{t_{LE}}{\left(s \cdot \cos\left(\beta_{1}\right) \right)} \left[1.28 \cdot \left(M_{1avg} - 1 \right) + 0.96 \cdot \left(M_{1avg} - 1 \right)^{2} \right] \right] \right]$$

$$P_{t_{tatio}} := e^{\frac{-\Delta s}{R}}$$

$$\Delta P_t := P_{t1ma} (1 - P_{t_{table}})$$

$$\infty_{\text{bar}_LE} = \frac{\Delta P_{l}}{q_{1avg}}$$
 $\infty_{\text{bar}_LE} = 0.00855$

3. Finally, the total cascade tosses estimated by the model are. .

 ∞ bar '= ∞ bar_rvofile + ∞ bar_shock + ∞ bar_LB ∞ bar = 0.09963

Figure G1. (cont) Loss Estimation by Koch and Smith Method

LIST OF REFERENCES

- 1. Hill P. G., and Peterson C. R., <u>Mechanics and Thermodynamics of Propulsion</u>, 2nd ed., p. 346, Addison-Wesley, 1992.
- Linn, J. C., Selby, G. V., and Howard, F. G., "Exploratory Study of Vortex Generating Devices for Turbulent Flow Separation Control", AIAA Paper 91-0042, January 1992.
- 3. McCormick, D. C., "Shock-Boundary Layer Interaction Control with Low-Profile Vortex Generators and Passive Cavity", AIAA Paper 92-0064, January 1992.
- 4. Wheeler, G. O., <u>Means for Maintaining Attached Flow of a Flowing Medium</u>, United States Patent 4,455,045, June 1984.
- 5. Johnston, J. P., and Nishi, M., "Vortex Generator Jets-Means for Flow Separation Control", AIAA Journal, v. 28, pp. 989-994, June 1990.
- 6. Compton, D. A., and Johnston, J. P. "Streamwise Vortex Production by Pitched and Skewed Jets in a Turbulent Boundary Layer", AIAA Paper 91-0638, January 1991.
- 7. United Technologies Research Center Report R90-957946, Transonic Fan Shock-Boundary Layer Separation Control, April 1990.
- Golden, W. L., <u>Static Pressure Measurements of the Shock-Boundary Layer</u> <u>Interaction in a Simulated Fan Passage</u>, M.S.A.E. Thesis, Naval Postgraduate School, Monterey, California, March 1992.
- Collins, C. C., <u>Preliminary Investigation of the Shock-Boundary Layer Interaction in</u> <u>a Simulated Fan Passage</u>, M.S.A.E. Thesis, Naval Postgraduate School, Monterey, California, March 1991.
- Demo, Jr., W. J., <u>Cascade Wind Tunnel for Transonic Compressor Blading Studies</u>, M.S.A.E. Thesis, Naval Postgraduate School, Monterey, California, June 1978.

- 11. Hegland, M. G., <u>Investigation of a Mach 1.4 Compressor Cascade with Variable</u> <u>Back Pressure Using Flow Visualization</u>, M.S.A.E. Thesis, Naval Postgraduate School, Monterey, California, 1986.
- 12. Wendland, R. A., <u>Upgrade and Extension of the Data acquisition System for</u> <u>Propulsion and Gas Dynamic Laboratories</u>, M.S.A.E. Thesis, Naval Postgraduate School, Monterey, California, June 1992.
- 13. UNISLIDE Motor Driven Assemblies, <u>Installation and Maintenance Instructions</u>, VELMEX Incorporated, August 1990.
- 14. Operating Manual, <u>HP3455A Digital Voltmeter</u>, Hewlett Packard Company, 1984.
- 15. HP 3497A Data Acquisition and Control Unit, <u>Operating, Programming and</u> <u>Configuration Manual</u>, Hewlett Packard Company, 1982.
- 16. NF90 Stepping Motor Controller, <u>NF90 Series User's Guide One</u>, <u>Two and Three</u> <u>Axis Stepping Motor Controller/Drivers</u>, VELMEX Incorporated, March 1991.
- 17. HP98644A Asynchronous Serial Interface, <u>Reference Manual</u>, Hewlett Packard Company, 1985.
- NASA TM-81198, <u>A Computer Program to Generate Two-Dimensional Grids</u> <u>About Airfoils and Other Shapes by use of Poisson's Equation.</u>, Sorensen, R. L., 1980.
- Steger, J. L., and Sorensen, R. L., "Automatic Mesh Point Clustering Near a Boundary in Grid Generation with Elliptic Partial Differential Equations", <u>Journal of</u> <u>Computational Physics</u>, v. 33, no. 3, pp. 405-410, December 1979.
- 20. Chima, R. V. "Revised GRAPE Code Input for Cascades", NASA Lewis Research Center, June 1990.
- 21. Chima, R. V., "RVCQ3D (Rotor Viscous Code Quasi-3-D) Documentation", NASA Lewis Research Center, August 1990.

- 22. Phone Conversations between Dan Tweedt, NASA Lewis Research Center, and David D. Myre, Naval Postgraduate School.
- Chima, R. V., "Explicit Multigrid Algorithm for Quasi-Three Dimensional Viscous Flows in Turbomachinery", <u>Journal of Propulsion and Power</u>, v. 3, no. 5, pp. 397-405, September-October 1987.
- NASA TM-88878, <u>Comparison of Three Explicit Multigrid Methods for Euler and Navier-Stokes Equations</u>, by Chima, R. V., Turkel, E., and Schaffer, S., January 1987.
- Koch, C. C., and Smith, L. H., "Loss Sources and Magnitudes in Axial-Flow Compressors", <u>Transactions of the ASME</u>, Journal of Engineering for Power, pp. 411-424.
- AGARD-R-745, <u>Application of Modified Loss and Deviation Correlations to</u> <u>Transonic Axial Compressors</u>, by Cetin, M., Ucer, A. S., Hirsch, Ch., Serovy, G. K., 1987.
- 27. NASA SP-36, Aerodynamic Design of Axial-Flow Compressor, 1965.

INITIAL DISTRIBUTION LIST

1.	Defense Technical Information Center Cameron Station Alexandria, VA 22304-6145	2
2.	Library, Code 52 Naval Postgraduate School Monterey, CA 93943-5002	2
3.	Department of Aeronautics and Astronautics Naval Postgraduate School Monterey CA, 93943-5002 ATTN: Chairman ATTN: Code AA/SF	1 5
4.	Commanding Officer Naval Air Warfare Center Aircraft Division Trenton, NJ 08628-0176 ATTN: CR1	1
5.	Office of Naval Research 800 North Quincy Street Arlington, VA 22217 ATTN: Spiro Lykoudis	1
6.	NASA Lewis Research Center Cleveland, Ohio 44135 ATTN: Dan Tweedt	1
7.	United Technologies Research Center East Hartford, CT 06108 ATTN: Duane McCormick	1

 David D. Myre Program Executive Office Cruise Missiles Project and Unmanned Aerial Vehicles Joint Project Washington, DC 20361-1014

2

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY CA 93943-5101

