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1.1

ABSTRACT

The objective of this thesis is to develop a technique

and associated algorithms to extract the arrival time of modal

energy, using a vertical array, from broadband signals. Modal

energy arrival time is important to shallow water acoustic

tomography because low angle rays, which contain the majority

of acoustic energy, are often not resolvable. Tilt

compensation is included in the beamforming algorithm to

provide a virtual vertical array. A broadband modal filtering

technique is accomplished through weighting the frequency

components of phase encoded tomographic signals by the

spectrum of the mode shapes. A methodology of phase decoding

after beamforming was adopted to minimize processing. Initial

development and prototyping was done using a parabolic

equation model. Further testing was accomplished on real data

taken from the Barents Sea Polar Front Experiment, August

1992. Results show consistency over a number of transmitted

pulses. Mode energy travel time measurement is simplified due

to the distinct arrival structure of beamformed signals.

Based on these results, the modal beamforming algorithm should

be a useful tool for acoustic tomograpy.

IV



ified

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY CA 9394^101

CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Form Approved
OMB No 0704-0188

XT SECURITY CLASSIFICATION

JNCLASSIFIED
lb RESTRICTIVE MARKINGS

tITY CLASSIFICATION AUTHORITY

OSSIFICATION / DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution is unlimited.

IMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

OF PERFORMING ORGANIZATION

al Postgraduate School

6b OFFICE SYMBOL
(If applicable)

7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

iSS {City, State, and ZIP Code) 7b ADDRESS (C/ty, State, and ZIP Code)

OF FUNDING /SPONSORING
NIZATION

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ISS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

(include Security classification) bROALBAND MODAL BEAMFORMING OF ACOUSTIC TOMOGRAPHY
SIGNALS ACQUIRED BY A VERTICAL ARRAY

NAL AUTHOR(S)

nn A. Omans II

OF REPORT

ERS THESIS
13b TIME COVERED
FROM TO

14. DATE OF REPORT {Year, Month, Day)

September 1992
15 PAGE COUN1

120

EMENTARY NOTATION

THE VIEWS EXPRESSED IN THIS THESIS ARE THOSE OF THE AUTHOR AW) 00 NOT RERiCT UiE OfRUAl

HUB OR fSBBSt g THE OEMMieS Of MfEMSE OR THE 111 MBBBI
COSATI CODES

GROUP SUB-GROUP

18 SUBJECT TERMS {Continue on reverse if necessary and identify by block number)

ACOUSTIC TOMOGRAPHY, BROADBAND MODAL BEAMFORMING,

PHASE ENCODED SIGNALS

iACT (Continue on reverse if necessary and identify by block number)

jective of this thesis is to develop a technique and associated algorithms to

:t the arrival time of modal energy, using a vertical array, from broad band signals

energy arrival time is important to shallow water acoustic tonography because low

rays, which contain the majority of acoustic energy, are often not resolvable,

orrpensation is included in the beamforming algorithm to provide a virtual vertical

A broadband modal filtering technique is accomplised through weighting the

lincy components of phase encoded tomographic signals by the spectrum of the node

. A methodology of phase decoding after beamforming was adopted to minimize pro-

ig. Initial development and prototyping was done using a parabolic equation nodel.

ft testing was accomplished on real data taken from the Barents Sea Polar Front

.ment, August ]992. Results show consistency over a number of transmitted pulses.

;nergy travel time measurement is simplified due to the distinct arrival structure

informed signals. Based on these results, the nodal beamforming algorithm should

BUTION /AVAILABILITY OF ABSTRACT

LASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION

E S F. J?F_SPONSlBLE INDIVIDUAL
Miller

22b TELEPHONE (Include Area Code)

(408) 646-2384
22c OFFICE SYMBOL

EC/Mr

1473, JUN 86 Previous editions are obsolete

S/N 0102-LF-0J4-6603

SECURITY CLASSIFICATION Q* TH IS fAGE_

Unclassified



SECURITY CLASSIFICATION OF THIS PAGE

be a useful tool for acoustic tonography.

uwmm i&Haa m oq cm auuua up .0 320HI j«a , c .. •; ...ni m o^^aixj ev«itv jni

mmmw 21*m *q j:*m3o *g tw^tju^q 3ht « noma* w youw

DD Form 1473. JUN 86 (Reverse) security classification OF THIS



TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. THESIS SUMMARY 2

II. BARENTS SEA EXPERIMENT 4

III. NORMAL MODE PROPAGATION THEORY 10

A. ADIABATIC MODE THEORY 10

B. NORMAL MODES AND ACOUSTIC TOMOGRAPHY 12

IV. SIGNAL PROCESSING CONCEPTS 14

A. BROAD BAND MODAL BEAMFORMING 14

1. Beam Steering 15

2. Mode Filtering 16

B. MAXIMUM LENGTH PHASE ENCODED SIGNALS 18

C. SIGNAL PROCESSING SUMMARY 22

V. BARENTS SEA ARRAY 23

A. ARRAY COMPONENTS AND DESIGN 23

B. BARENTS SEA POLAR FRONT EXPERIMENT - MODAL

BEAMFORMER 24

1. Equipment Performance 24



2. Modal Decomposition 25

3. Normal Modes at the Vertical Array 26

4. Modal Beam Pattern 2 7

VI. EVALUATION OF BARENTS SEA DATA 40

A. DECODING OF RAW ACOUSTIC DATA 40

B. RESULTS FROM THE BROADBAND MODAL BEAMFORMER . . 41

VII. SUMMARY AND FUTURE WORK 52

A. CONCLUSIONS AND SUMMARY 52

B. RECOMMENDATIONS 53

APPENDIX 55

A. BROADBAND MODAL BEAMFORMER ALGORITHM 55

1. Program Parameters 55

2. Beamformer Source Code 57

B. MODAL DECOMPOSITION PROGRAM 85

C. MODAL EXTRACTION PROGRAM 100

D. MODAL DECOMPOSITION SAMPLE INPUT FILE .... 106

REFERENCES 109

INITIAL DISTRIBUTION LIST HI

VI



ACKNOWLEDGEMENTS

This work would not have been possible without the support

of my family, many dear friends and colleagues. I pay tribute

to my parents, who are responsible for making me look inward

to find the answers to life's mysteries. Thank you mother for

teaching me to believe in myself, and thank you father for

giving me your support. To the rest of my family, I give my

sincerest appreciation for always being there with love and

understanding

.

A special thank you to my advisor Jim Miller who inspired

me, placated my ego and occasionally zapped me with his

acoustic cattle prod when I started to slow down. My

sincerest appreciation goes out to my co-advisor Joshua Rovero

and second reader Ching-Sang Chiu for always answering my

sometimes misguided questions. I owe thanks to Jim Lynch,

Arthur Newhall, Rich Palowitz and the rest of the Woods Hole

Gang for taking me in to their select group and baptizing me

into the world of acoustic tomography.

For my loving wife, I know this process has been as much

a test for you as it has for me. Rebecca, thanks for standing

by me.

Vll





I . INTRODUCTION

A. BACKGROUND

Tomography signal processing requires the precise

measurement of acoustic travel time, which is the integral

along the raypath of inverse sound speed. Travel time of

acoustic signals has been well determined to be a function of

temperature, salinity, and pressure. Once time perturbations

for multiple arrival paths are known, ocean fluctuations can

be determined using mathematical inverse techniques [Ref . 1]

.

In addition to measuring time perturbations based on ray

arrival times, it is possible to measure perturbations based

on mode arrivals. There are two approaches to tomography

using modes: for continuous wave signals, the basic

measurement is the modal phase difference; for broad band

signals, the measurement used is modal travel time [Ref. 2]

.

Since coded signals (maximal -length sequence phase encoded

signals) are intrinsic broadband signals, modal travel time

measurement is germane to the work done in this paper. Where

ray theory is not applicable, or not convenient, it is

possible to extend tomographic techniques using both rays and

modes [Ref. 3]

.

The goal of my thesis is to develop a technique for

broadband modal beamforming for acoustic tomography. The



scope entails broadband modal beamforming with a vertical

array and decoding (m- sequence removal of phase encoded

signals) . In the process of my research several software

programs were developed. Most notable is the broadband modal

beamformer, which is an adaptation of the continuous wave

beamformer developed by Crocker [Ref . 4] . Specific goals of

research include:

• Develop a broad spectrum modal filtering technique given
the normal mode's eigen function and values.

• Evaluate compatibility for phase sequence removal prior to
and following beamforming.

• Minimize processing time, where possible, and provide for
a robust environment.

• Evaluate performance using both synthetic and in situ
data.

• Provide a virtual array based on, time varying array tilt,
array geometry and modal group speed.

• Incorporate a supporting cast of programs, including a
modal decomposition program for standardizing input to the
beamformer and to simplify and enhance future signal
processing.

B. THESIS SUMMARY

Chapter II, Barents Sea Experiment, is a summary of the

Barents Sea Polar Front Experiment (BSPFEX) . This experiment

is addressed because it provided real data to evaluate the

processing algorithms.

Chapter III, Acoustic Normal Mode Propagation Theory, is

an introduction to normal modes. Modal acoustic propagation



is addressed. The chapter is concluded with a section linking

acoustic ray and normal mode theory.

Chapter IV, Signal Processing Concepts, presents the

concepts and theory behind broadband modal beamforming.

Subjects include beam steering, mode filtering and phase

encoded signals. A plane wave beam steering approach is taken

to compensate for array tilt. Following tilt correction, my

modal filtering methodology is presented. Finally, a brief

introduction to m- sequence signal decoding is given. Phase

preservation after beamforming is addressed, supporting the

concept of decoding after beamforming.

Chapter V, Barents Sea Array, is a description of the

array used during the Barents Sea Polar Front Experiment

(BSPFEX) . Improvements made from previous vertical arrays are

discussed. Statistics on hydrophone performance as well as

the array modal beam patterns are addressed.

Chapter VI, Evaluation of Barents Sea Data, is a

presentation of results from the BSPFEX. Comparisons and

conclusions are drawn concerning the array's performance.

Chapter VII, Summary and Future Work, presents a summation

of conclusions and identifies areas requiring improvement.

The appendix contains the most significant algorithms I

developed in the course of research. Algorithms included are:

the broad band modal beamformer, modal decomposition program

and the supporting modal extraction program which formats the

input files for use in the beamformer.



II. BARENTS SEA EXPERIMENT

Concepts developed in this thesis were applied to real

data collected from the Barents Sea Polar Front Experiment

(BSPFEX) . During the BSPFEX, I developed and tested my

beamforming techniques and algorithms on synthetic data

modeled using the Finite Element Parabolic Equation (PE) Model

developed by Collins and Westwood [Ref. 5]. The synthetic

data was modeled for the anticipated location of the array for

the BSPFEX. Unfortunately, the array was deployed in a

different location from the model limiting any comparisons

drawn between the synthetic and BSPFEX data.

The BSPFEX was conducted during August of 1992. The

experiment comprised a joint effort between the Naval

Postgraduate School (NPS) , Woods Hole Oceanographic

Institution (WHOI) , and the Science Applications International

Corporation (SAIC) . The principal investigators for the

experiment are Professors Robert Bourke, Ching-Sang Chiu, and

James H. Miller from NPS, Dr. James F. Lynch and Dr. Al J.

Plueddemann from WHOI, and Dr. Robin Muench from SAIC. The

principal engineer for the vertical hydrophone array system

was Mr. Keith Von der Heydt from WHOI. The objectives of the

experiment as outlined by the Barents Sea Polar Front Group

1992 are:



1. Provide a detailed physical description of the polar
front

.

2. Enhance the understanding of dynamics of the front,
including frontogenesis and its influence on regional
oceanographic processes.

3. Assess the ability of acoustic tomography to define
frontal and associated mesoscale features.

4. Provide improved documentation of shallow water acoustic
propagation in this region and the effect of the environment
on acoustic ASW operations.

[Ref. 6]

This experiment is a milestone in acoustic tomography. It

is the first time that a vertical array has been used in a

shallow water environment to conduct acoustic tomography. A

sixteen hydrophone telemetered vertical array, with ten meter

spacing between hydrophones, was deployed during the

experiment. The source and array mooring locations are listed

in Table I. Table II describes the characteristics of the

deployed broadband sources

.

Table I MOORING LOCATIONS FOR THE 224 AND 400 HZ SOURCES
AND THE VERTICAL ARRAY.

Mooring Latitude Longitude Depth (m)

SE(a) VLA 74° 19.1512'N 23° 33.1438'E 275.0
SE(b) VLA 74° 19.1996'N 23° 32.2960'E 275.0
NE 224 Hz 74° 37.5535'N 23° 24.3755'E 142.0
NW 400 Hz 74° 32.9152'N 21° 44.1043'E 176.0
SW 400 Hz 74° 04.7337'N 22° 00.4605'E 380.0



Table II BSPFEX SOURCE CHARACTERISTICS.

Mooring NE sw NW

Freq (Hz) 224 400 400
SL (dB) 183 183 183
Duration (s) 118.25 132.86 132.86
BW (Hz) 16 100 100
Q (cyc/dig) 14 4 4

No. digits 63 511 511
Seq length 3.9375 5.11 5.11
No. sequences 30 24 +2 24 +2
Cycle (min) 2.5, 7.5 0, 10 ,20 ... 5,15 ,25

Overall, the experiment was a sterling success. The WHOI-

NPS vertical array was deployed on 12 August 1992. The array

performed flawlessly for fourteen hours when a failure in the

amplifier chip forced retrieval and repair of the array.

After repair, the array was redeployed without the adjustable

gain control making signal quantization from analogue to

digital less optimal. Following recovery and redeployment,

the array operated continuously for three days recording

signals from both the 224 Hz and 400 Hz sources. In all,

fifteen gigabytes of data were recorded.

One major disappointment was the failure of the NW 400 Hz

transceiver to transmit shortly after its deployment (see

Figure 1) . No attempt was made to recover and repair the

broken transceiver so as to not disturb the tomographic

deployment schedule, and in the hopes that the transceiver was

still able to receive acoustic data. Post experiment recovery

of the broken transceiver revealed that it was still able to



Figure 1 Deployment locations of the telemetered array
and sources, from the BSPFEX. SW - 224 Hz transceiver; SE
- 16 channel vertical array; NW/NE - 400 Hz transceivers
[Ref . 7]

.

receive and recorded three days of acoustic data. With the NW

transceiver still partially operational, three paths for

tomography are available; two across the polar front and one

along the front.

In addition to tomographic pulse receptions, other

acoustic observations were conducted. The ship dropped eight

SUS charges to measure reverberation and bottom properties.

Eighteen additional SUS charges were dropped from a P-3

aircraft along the southwestern and northern tracks, to be

used in evaluating propagation and bottom loss. One hour of

continuous wave (CW) 224 Hz transmission was made for use in



modal phase and matched field tomography, and to measure

temporal coherence for comparison with pulsed transmissions.

Other sensors used during the deployment include, over

three hundred Conductivity-Temperature-Depth (CTD)

deployments, two of three current meters (one failure) , and

acoustic doppler current profiler (ADCP) . Figure 2 denotes

the fine structure of the polar front present, as measured

from CTD deployments. Acoustic propagation was excellent

during the experiment. The 224 Hz and 400 Hz sources were

clearly audible at ranges over 50 kilometers, even without

signal processing. With such clear receptions and low noise

levels, the task of processing the data later will be much

simplified. The above summary was based on the preliminary

cruise report for the BSPFEX [Ref . 7]

.



Figure 2 Contour plot of the Barents Sea Polar Front
[Ref . 7]

.



III. NORMAL MODE PROPAGATION THEORY

A. ADIABATIC MODE THEORY

Normal mode propagation theory is a physical model whose

eigenfunctions, are solutions to the acoustic wave equation,

V2p = -±&R. (3.1)
c 2 dt 2

in a waveguide [Ref . 8] . The objective of normal mode theory

is to model the "local" pressure field as a linear combination

of vertical standing waves. The term local refers to the

range dependent sound speed structure and boundary conditions

at a certain range. The following development applies for a

slowly varying range dependent waveguide and is taken from

Shang [Ref. 2]

.

The acoustic pressure field can be expressed in terms of

local mode superposition,

p(z,z) .£ 5-lflialfifj., (3.2)

where ¥n (z,r) is the local solution or eigenfunction, and

describes the distribution of modal energy as a function of

depth. Fn (r) is the range dependent portion of the pressure

field, and the vr term describes the geometric transmission

losses caused by cylindrical spreading.

10



where k2 (r,z) is the acoustic wave number, k,,
2
(r) is the

vertical wave number, or the eigen value, associated with the

mode ¥„. p(z) is the depth dependent density. The range

dependent portion of the pressure field must satisfy,

Subject to the boundary conditions and orthogonality, the

local mode ¥„ must satisfy,

_a_

dz

S
1 di|r n

k p (z) dz
l—(k2 U,z) -k 2

n (r))$ n
= 0, (3-3)

p(z)

d 2Fm (

dr'- 4r 2

dFm

Fm = -YH2A^r) + Bmn (z)Fn]—f. (3.4)

A^, and B„ are coefficients describing the first and second

order coupling effects in the sound channel:

^"/ioir*- <jr ' r)
dtyn (z,r)

dr
dz, (3.5)

-/-snir*- ( *' r)
ffi|rn (g,r)

ar 2
dz. (3.6)

If mode coupling is weak enough, then coupling can be

neglected, and we have the adiabatic solution,

p(r, z) = e^VSicjr y\?Jz\0)ym (z\r)

ft?

j]km (R>)dR'

xe
(3.7)

11



B. NORMAL MODES AND ACOUSTIC TOMOGRAPHY

The travel time of each normal mode is dependent on the

ocean structure. It is possible to estimate mode travel time

from acoustic models, or it can be directly measured using

mode filtering techniques. The difference between measured

and estimated arrival times are the time perturbations for

each mode. Broadband modal acoustic tomography seeks to

exploit these time perturbations by applying inverse

techniques to infer information about the acoustic

environment

.

For a broadband source, the pressure field can be

described as a function of a continuous wave field modified by

the source signal spectrum,

CO

p(r,z,t) = |s(Q)pc„(r,z,G>)e-
J

'wtdG>, (3.8)
— oo

where s(o) is the signal spectrum of the source, and p_cw
is the

continuous wave field. The total pressure is the sum of the

pressures for every mode,

p(r,z,t) = Jp.(r,z,t)

,

(3.9)
m

where the modal pressure term is,

oo

Pm {X,Z,t) = fsM ^ (Z° )TM Z)
eJ(».(r)-*t) d(|)j (3 . 10)

V
Kmr

12



Taking the derivative of the phase with respect to frequency,

and it follows that the group speed must be,

*.--£. (3.12)
dK

BI

It has been shown that there is a unique travel time

associated with each mode for a given environment [Ref . 2] .

Acoustic tomography can be accomplished using the time

perturbations taken from the measured and estimated arrival

times. The remaining task is to develop a technique to

measure the modal arrival times, which is the subject of the

following chapter on signal processing.

13



IV. SIGNAL PROCESSING CONCEPTS

A. BROAD BAND MODAL BEAMFORMING

Wave propagation modeling can be used to extract temporal

and spatial characteristics for a propagating wave, and

through inverse techniques to infer information about the

acoustic medium. This is the essence of acoustic tomography.

In recent years, ocean modeling for acoustic tomography has

been dominated by acoustic ray theory. Ray theory is

attractive because it is simple to model and requires minimal

computer resources. Other modeling techniques simply were not

practical until recent years. Ray theory is a high frequency

approximation which fails to describe turning points,

diffraction leakage and caustics. Further, many ray arrivals

may not be resolvable, particularly in a shallow water

environment

.

A vertical array provides an added dimension to

tomography. Not only does it increase signal gain, it also

allows mode and plane wave beamforming as well as enhancing

resolvability of ray arrivals. The rest of this section will

be devoted to the concepts required for modal beamforming.

14



1. Beam Steering

Array tilt can be caused by a number of forces such as

waves, ocean currents, and external tensioning. Any tilt in

the array is undesirable, and must be corrected. A virtual

vertical array can be established using a plane wave beam

steering methodology.

There are essentially two approaches to plane wave

beam steering. The first applies phase shift delays to the

signal at the desired frequencies. The second uses true time

delays. Phase delay beam steering is well suited for CW

signals. However, this method is much less efficient for

broad band signals because it requires phase shifting for

every frequency of the broad band signal.

Time delay beam steering is more suitable for use with

broadband signals. Time shift delays are determined from

array geometry and sound speed. For a line array, the time

shift delay for the n^ element can be described as,

ndsin(6 ) {4±)T
»

=

where o is the tilt in the direction of the source, and d is

the element spacing [Ref . 9] . For normal mode beamforming, c

is the group speed, equation (3.16), for each mode. Equation

(4.1) is elementary in nature, and can be applied to any array

or signal. Applying shift delays to discrete time signals

15



requires interpolation incurring additional processing [Ref.

4] .

2. Mode Filtering

Plane wave beamforming does not account for the non-

uniform energy distribution in the wave guide as described by

normal modes. There are two types of modal beamforming,

continuous wave (CW) and broad band (BB)

.

For CW modal beamforming, the task is simple. The

time domain pressure field need only be weighted by the

eigenfunction corresponding to each element depth. This

method is not appropriate for broad band signals, because

normal modes are a function of both depth and frequency. For

BB beamforming, the frequency domain signal must be weighted

by the corresponding frequency component of the eigenfunction.

This requires that the mode shape be known at each frequency

of the Discrete Fourier Transform (DFT) for the pressure field

covering the desired bandwidth.

For encoded signals with long duration sequence lengths,

modal decomposition processing can be unsurmountable. The

nominal modal decomposition time is thirteen minutes for each

frequency. A 100 Hz bandwidth source with a sequence length

of 5.11 seconds has 1022 frequency components. With current

computer resources (SPARC 2) , it would take over nine days to

process the eigen functions for each frequency. Fortunately,

the mode shapes are continuous functions in depth and

16



frequency. Figure 3 shows how the mode amplitude, at a fixed

depth, varies slowly with frequency. The mode shapes can be

sampled as a function of frequency and then interpolated to

achieve and desired frequency increment within the band.

.082

210 215 220 225

frequency (Hz)

240

Figure 3 Mode twenty as a function of frequency at 12 6

meter fixed depth.

The next step is to weight the frequency domain

pressure field by the mode shape at depths corresponding to

the array elements. The following equation is the essence of

modal filtering.

aa (t) =^1\V 9 (z)P(znf f)Za (zaf f)^ (4.3)

17



where a,,,
2 is proportional to the intensity of mode m, and p is

the density in the water column. The only limitation of

equation (4.2) is that the Fourier Transforms are long enough

to accommodate the length of the entire coded sequence. The

pressure field frequency components are weighted by the

frequency domain normal mode at the appropriate array element

depths. The resultant is summed over depth, and an inverse

Fourier Transform is applied to achieve the time domain

beamformed signal.

The array gain (AG) exhibited by broadband modal

beamforming cannot be greater then conventional beamforming

theory,

AG = lOlog(tf) ,
(4.3)

[Ref . 10] . The theoretical array gain shown in equation (4.3)

assumes the noise between elements is uncorrelated. Signal

enhancement is strongly dependent on this correlation factor.

B. MAXIMUM LENGTH PHASE ENCODED SIGNALS

The objective of signal processing for broad spectrum

acoustic tomography is the measurement of travel time for

different raypaths and mode arrivals along a vertical cross

section of the ocean.

One method in which travel time can be measured is through
the use of explosive and implosive devices.
Unfortunately, explosive devices do not propagate
repeatable acoustic signals. A better method that has
been found employs the use of maximal -length sequences (m-
sequences) or pseudo- random noise are well suited for this

18



application because of their deterministic nature,
correlation properties, and simplicity [Ref. 11].

M- sequences are a sequence of binary bits having the property

of a maximum possible period for an r- staged shift register.

Shift registers are created from primitive polynomials. These

binary shift registers are mapped to a series of ones and

minus ones [Ref. 12] . The primary characteristic of the

maximum length shift register is its autocorrelation

properties. The self correlation of an m- sequence of length

N produces a triangular function of short duration as shown at

Figure 4

.

12

10

8

r>

4

2

-

-

;

i

2

^

_

3 n
:

/ \

5-4-3-2-1 1 2 3 A 5

Figure 4 Autocorrelation function for a m- sequence of
length N.

An m- sequence coded signal is formed using a simple

harmonic source and applying a phase shift from the m- sequence

register. A phase encoded signal has the form,

19



sit) = Acos(2izfct+M(t)$) , (4.4)

where A is the amplitude of the transmitted signal and M(t) is

the value of the shift register for a specified digit

duration. Q is an integer number of cycles (at carrier

frequency) per digit and is used to determine the digit

duration. The phase modulation angle <i> is chosen to optimize

signal-to-noise performance:

(J)
= tan-Mv/^) .

(4.5)

The one major drawback to using coded signals is that the

standard correlation requires N2 multiplications. Decoding

algorithms can over come this processing issue by using the

Fast Hadamard Transform (FHT) . The FHT is analogous to a FFT

and reduces processing to NlogN multiplications.

Decoding signals is a simple process. The first step is

to filter the input signal using a band pass filter covering

the frequencies containing the coded signal. After filtering

the signal is demodulated to remove the carrier frequency.

The demodulated signal is then correlated for different shift

versions using the FHT to reduce processing. Figure 5 is a

block diagram showing the Birdsall-Metzger (BM) decoding

process used in [Ref. 11].

20



A/D

F
s
= n*F

e

lO^ Order
Buttervorth
BP Filter.

cos (2uf c n/£ s )-( X ©X 1- sin(2nf n/f J

5*L Order
Chebychev
LP Filter.

5^ Order
Chebychev
LP Filter

Decimate
D„ : 1

Decimate
D. : 1

FHT FHT

Magnitude

Figure 5 Block diagram of m- sequence removal algorithm
[Ref. 11]
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C. SIGNAL PROCESSING SUMMARY

The first step in modal beamforming is the correction of

tilt to provide a virtual vertical array. This is

accomplished using plane wave beamforming techniques. True

time shift delays are used vice phase shift beamforming to

reduce processing. After tilt correction, mode filtering is

accomplished in the frequency domain. Modal beamforming

constitutes filtering the frequency domain signals by the mode

shapes, and then summing across the array elements. Post

beamforming, the signals are decoded using the BM phase

decoder algorithm.

The phase decoding process can be accomplished prior to

beamforming, but this would significantly increase signal

processing as a multiple of the array elements and is not

recommended. Further, the beamforming algorithm developed in

this thesis does not support this procedure. If at some point

it becomes desirable to process signals in this manner, the

beamformer program would have to be altered to except complex

data and to perform mode filtering about zero frequency offset

signals.
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V. BARENTS SEA ARRAY

A. ARRAY COMPONENTS AND DESIGN

The WHOI-NPS array contains sixteen hydrophone elements at

ten meter intervals. The telemetered vertical array was

moored to the bottom using a 1000 lb. cast anchor. The

distance from the anchor to the bottom hydrophone is

approximately 3 meters. A forty- eight inch bouyant syntactic

foam sphere suspends the array 166 meters above its mooring.

One meter below the sphere are the dual Benthos Interrogators

.

The interrogators were used to acoustically determine the

exact location of the tethered array and to measure array

tilt. Two inclinometers, one located two meters beneath the

interrogator and the second near the center of the array,

provided an additional means of determining array tilt.

Figure 6 is an illustration of the array design.

Nominal hydrophone sensitivity was -160 dB re 1 v//xPa with

a low frequency roll -off at 50 Hz. Data was preprocessed with

an 8 -pole Butterworth low pass filter at 500 Hz cutoff

frequency. A sampling rate of 1600 Hz was selected to achieve

twice Nyquist frequency of the highest frequency source 400

Hz. A sampling frequency four times carrier frequency is

required by the m- sequence removal algorithm to simplify
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Figure 6 Diagram of the WHOI-NPS vertical array used during
the Barents Sea Polar Front Experiment [Ref . 7]

.

signal processing. Data from the 224 Hz source had to be

resampled to 89 6 Hz sampling frequency for decoding. A single

data bus was used to sample all sixteen array channels and

created a 30 microsecond skew between elements. The

beamformer corrects for the sampling skew based on the

principles established for tilt compensation.

B. BARENTS SEA POLAR FRONT EXPERIMENT - MODAL BEAMFORMER

1 . Equipment Performance

The WHOI-NPS array was deployed in the Barents Sea on

12 August 1992. The array performed well with one minor
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mishap when the amplifier chip failed. The amplifier chip

failure effected adjustable gain control and degraded analogue

to digital quantization for much of the data collected. All

array elements operated without failure, and the array-

remained operational throughout its deployment.

A new mooring and tether design gave the array

increased stability. The mean measured array tilt was three

tenths of a degree. This is meaningful considering that

previous vertical arrays suffered tilt in excess of ten

degrees thereby degrading system performance.

2. Modal Decomposition

Mode filtering performance is highly dependent on

array geometry and the normal mode shapes . Modal

decomposition requires knowledge of upper and lower boundary

conditions, sound velocity, and density. The algorithm used

for modal decomposition is located at the appendix of this

thesis. [Ref. 13] The decomposition algorithm employs a

finite differencing routine to approximate the initial eigen

value problem. Implicit to the routine is the assumptions of

a pressure release surface and a perfectly rigid lower

boundary. The bottom is modeled using constant sound speed

and density characteristics. There is no limitation to the

quantity or complexity of bottoms except for processing time,

which increases as the square of the number of points in the

profile.
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Sound and density profiles used to calculate

eigenvalues and shapes for the Barents Sea were determined

from CTD data, and estimations of bottom sound speed and

density. All processing is based on a single bottom model

with a constant sound speed of 1667 m/s, and density of 1.83

g/cm3
, taken from Clay and Medwin [Ref . 14]

.

Figure 6 is the Barents Sea sound velocity profile at

the location of the array. The sound velocity indicates the

existence of a well defined mixed layer followed by a strong

negative sound speed gradient extending to the bottom. Due to

the negative sound speed gradient, the majority of acoustic

energy is expected to be trapped well below the surface with

significant bottom interaction.

3 . Normal Modes at the Vertical Array

Figures 7 to 12 are the mode shapes for the Barents

Sea array at the 224 Hz source center frequency. Modes one

through four have turning depths well beneath the surface and

are expected to contain the majority of acoustic energy based

on the strong negative sound speed gradient. Modes five

through ten also turn beneath the surface, but should have

less beamformed energy than the first four modes because there

is significant modal energy outside the array's aperture.

Modes ten through twenty interact with the surface. These

modes should have much less energy due to surface scattering

effects.
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Figure 7 Sound speed profile at the receiving array.
Bottom sediment starts at 275 meters modeled by constant p
1.83 g/cm3

, and sound speed 1677 m/s; The bottom is assumed
rigid below 420 meters.

4. Modal Beam Pattern

There are many measurements of performance for

classical arrays. Plane wave beamforming is a well understood

process, and performance of a plane wave beamformer can be
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easily determined through a multitude of available measures

including: theoretical array gain, estimated array gain, and

the steering beam pattern. Array gain experienced by modal

beamforming cannot exceed the theoretical gain for a classical

beamformer. However, there are additional issues to address

concerning tomographic resolvability for mode arrivals.

One such factor, is the cross talk, or the recognition

differential between modes. To quantify this affect,

synthetic signals modeled from individual modes were

beamformed. The modal signals are created using the frequency

domain eigen solutions at each hydrophone depth. To duplicate

the coded signals frequency structure, a Blackman Window is

applied to the modal signal's frequency components. The

square of the beamformed signal is proportional intensity of

the mode. The peak values of the beamformed modes are squared

and normalizing by the corresponding modal signal, forming the

modal recognition kernel. The transpose of the recognition

kernel gives the modal beam pattern.

Figures 13 to 18 are the modal beam patterns specific

to the Barents Sea array geometry and ocean structure. The

following is a summary of my conclusions and conjectures on

the Barents Sea array modal beam pattern:

• Modes one through three are well resolved.

• Modes four and above are not spatially well resolved due
to the size of the array's aperture.
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• Above mode three resolvability must be handled on a case
to case bases, taking into account the arrival structure
and relative intensity of each mode.

• Assuming there is no appreciable modal energy above mode
twenty, spatial aliasing effects are non-existent for this
array

.

• Above mode four, there is a recurring beam pattern which
indicates that the closest modes are the hardest for the
beamformer to differentiate. Mode four beam pattern shows
the transition from well resolved to less resolvable
arrivals.

• Increasing array length to 50 meters below the surface
would increase the coverage of the array's aperture and
guarantee that at least the first six modes are spatially
resolved. This can be accomplished through increasing the
number of hydrophones, or by expanding element spacing,
subject to spatial aliasing.
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VI. EVALUATION OF BARENTS SEA DATA

A. DECODING OF RAW ACOUSTIC DATA

The participants of the Barents Sea Polar Front Experiment

performed some near- real -time signal processing during the

experiment. Some of the signal processing included decoding

of the 224 Hz source. Figure 18 is the decoded signal taken

from the bottom hydrophone of the array.

xio- Acoustic time series after decoding

3.5

2J
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Figure 18 Acoustic time series after BM decoding for the
bottom hydrophone in the array [Ref . 7]

.

The BM sequence removal algorithm performed very well.

Theoretical decoding gain is based on the number of digits in

40



the coded signal. The 224 Hz source signal has a theoretical

decoding compression gain of 18 dB which compares favorably to

initial estimates. Signal gain estimates where determined by,

GAIN = 10 log
( SNRaftei

SNRbefore )

(6.1)

[Ref . 15] .

Coherent averaging is a useful method for determining the

acoustic arrival structure across the array. Figure 19 is the

coherently averaged signal across the array, post m- sequence

removal. The coherently averaged signal indicates the

presence of at least two separate arrivals. This effect is

most likely do to the time spreading of the signal between the

propagation paths. The first arrival has the bulk of acoustic

energy and a complex structure. Clearly this energy is formed

by the bottom bounce propagation path. The second arrival

lacks the energy and fine definition of the first caused by

increased bottom and surface interaction.

B. RESULTS FROM THE BROADBAND MODAL BEAMFORMER

The results from broadband modal beamforming of the

Barents Sea data are quite impressive. The mode arrival

shapes are very distinctive, which simplifies arrival time

estimation. All times for Figures 21-27 are relative to the

record tape, and do not represent the travel from source

emission. Figure 20 shows the mode one arrival structure for
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Figure 19 Coherent averaging after BM decoding for the
WHOI-NPS array [Ref . 7] .

the first four sequences of decoded pulses. Figures 21

through 23 are the first five modes pertaining to the first

four sequence arrivals of Figure 18. The first five modes are

the strongest arrivals. This is expected because the majority

of modal energy is within the array aperture. Mode three is

the strongest arrival indicating the majority of acoustic

energy is in the lower 125 meters of the water column. Mode

two is particularly interesting due to its multiple arrivals.

This pattern might be attributed to coupling caused by the

sharp change in sound speed gradient at the front . The mode

two arrival is both the smallest in total energy and the

earliest arrival of the first five beamformed modes.
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Modes six through ten, Figure 25, appear after the initial

arrival structure. These modes contain less energy and have

later arrival times. A large amount of modal energy exists

outside the array aperture and is at least a partial factor to

the decrease in beamformed energy.

Modes eleven through twenty, Figures 2 6 and 27, show a

sharp drop off in energy levels which cannot be completely

contributed to the array aperture. This sudden decrease of

beamformed energy is most likely caused by high transmission

loss caused by surface scattering. It is interesting to note

that arrivals for modes sixteen and seventeen indicate
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increased energy levels. This is a curious result that

presently eludes explanation.

Broadband modal beamforming of the BSPFEX data provided

extremely clear arrival structure that could easily be

mistaken for modeled data. Part of the reason that the

results are this good is the extremely high signal to noise

ratios and the low propagation loss. Clearly, the first ten

modes are the most significant to acoustic tomography. Mode

resolvability is dependent upon the mode's arrival time, the

modal beam pattern and spatial aliasing. Resolvability issues

have not yet been completely sorted out but may indicate that

only the first few modes are reliable enough to use in the

tomographic inverse.
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Figure 21 First arrival sequence for modes one through five
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Figure 22 Second arrival semmn^o -f^v- t*^^^^ ZZ , ra .i-vax sequence tor modes one through five
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Figure 23 Third arrival sequence for modes one through five
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Figure 24 Fourth arrival sequence for modes one through five
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Figure 25 Arrival structure for modes six through ten
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Figure 27 Arrival structure after beamforming for modes
fifteen through twenty.
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VII. SUMMARY AND FUTURE WORK

A. CONCLUSIONS AND SUMMARY

Preliminary results indicate that broadband modal

beamforming is a useful tool in shallow water acoustic

tomography. Ray acoustic tomography in shallow water is

complicated because the earliest ray arrivals, containing the

bulk of the acoustic energy, are unresolved. Unresolved ray

paths are well described by the lower mode arrivals of the

beamformed array. Broadband modal beamforming produces

distinct mode energy arrivals simplifying estimation of

arrival times.

Improvements made by WHOI and NPS to the vertical array

design proved very successful. The Dual Benthos interrogators

provided a more reliable source for measuring array geometry

than previous methods. Array stability was vastly improved by

its new moored design and should be used as a benchmark for

the design of future arrays. The measured array tilt during

the experiment was a nominal three tenths of a degree and

minimized the correction required for array tilt.

Based on recommendations from Crocker [Ref . 4], a fast

third order interpolation routine was implemented to reduce

processing time. The new interpolator was derived using the

Taylor Approximation for a third order polynomial [Ref. 16]

.
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This algorithm is approximately five times faster than

previous interpolator based on Neville' s algorithm

[Ref . 17]

.

B. RECOMMENDATIONS

The broadband modal beamformer requires each mode to be

processed individually. Most of the time incurred from

processing is due to the Fast Fourier Transform algorithm.

Processing all modes simultaneously would reduce the number of

Fast Fourier Transforms by the number of desired modes.

Significant savings in processing can be realized by adopting

this technique. Calculating the modal beam pattern was an

additional time sink. Since each mode pattern must be

processed for every mode, processing time goes as the square

of the number of modes desired in the beam pattern. For

twenty modes, the beamformer must be run four hundred times to

get the beam pattern for just one sound velocity profile. If

all the modes where processed simultaneously, the modal beam

pattern could be an added option to the program reducing the

processing required by the user.

Decoding of the m- sequence coded signal occurs after

beamforming. The decoding process could have been

accomplished prior to beamforming but would have increased

processing time by the number of elements in the array. The

output from the m- sequence removal algorithm is complex

numbers thereby doubling the amount of memory required to
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store data. Despite this, it may still be desirable to decode

the data first so that plane wave and modal beamforming can be

accomplished using the same data base. To perform sequence

removal prior to beamforming, the decoder algorithm must be

adapted to handle multi- channel data, and an interpolation

routine should be added to resample data prior m- sequence

removal. The modal beamformer will also need to be updated to

handle complex input and to perform mode filtering on

demodulated signals.

Design of the next vertical array should incorporate

estimations of the modal beam pattern. Modeling of the

acoustic environment will give an estimate of the modal beam

pattern. Using this information, the number of array elements

and geometry can be optimized to achieve the desired

performance level.

54



APPENDIX

A. BROADBAND MODAL BEAMFORMER ALGORITHM

The broadband modal beamformer was designed for a robust

environment. Program portability allows it to be used on any-

computer system supporting C or quick C software. The program

is flexible enough to cope with most vertical line array

designs. A large number of user parameters are incorporated

in the computer architecture to enhance portability. The

following is a summery of user parameters employed.

1. Program Parameters

• UNIX VERSION: a compiler flag used to determine the
operating system, either UNIX or ANSI.

• ASCII: ASCII and BINARY options determine the beamformed
output type. These options are inter -linked, and never
can be activated at the same time.

• SIGNAL: enables time series beamformed output. This
parameter should be left "ON"

.

• LOWER_SENSOR: enables lower sensor tilt data if available.

• VALIDATE: this option flags the program to output several
validation files. If selected, the program will output
files containing array geometry, steering delays,
hydrophone weights at the lowest frequency in the band,
and estimated mode speed.

• ERROR_ESTIMATE : flags to produce the estimated error
caused by interpolation. The error estimate is stored in
a file specified by the user.

• VERBOSE: if selected, this option will cause the program
to provide a status report during operation. Information
is sent to standard output. This option is useful for
debugging and for short data sets.

• ON/OFF: logical switches for program control.

55



• INTERPOLATE: specifies which interpolation routine to use.
The available interpolators are fastpoly3, polint and
ratint. Fastpoly3 is the fastest of the three
interpolators. Other interpolators can be added by the
user if desired.

• ORDER: determines the order for interpolation. Polint and
ratint are multi order algorithms, while fastpoly3 can
only perform third order interpolation. If the order of
interpolation is not three and the fastpoly3 interpolator
is selected, the program will terminate on a standard
error.

• STEP: indicates the number of points on either side of a
sequence for derivative estimates.

• TINY: smallest number allowed for floating point
operations.

• PI: trigonometric constant.

• RADIAN: degree to radian conversion constant.

• OFFSET: correction term for the difference between tilt
sensor depth and the depth of the first hydrophone.

• DELTA_R: array element spacing in meters.

• CTD_OFFSET: used to correct for offset caused by the CTD
measurement. This offset is reflected in the eigen
solutions

.

• SAMPLE_DELAY : corrects for sampling skew caused by
sampling data from a single data bus (ms)

.

• SSP_LENGTH: dimensioning term based on the maximum number
of points in a single eigen function.

• EIGVAL_LENGTH: dimensioning term based on the maximum
number of frequencies contain in the eigen value file.

• LOOK DIRECTION: desired direction for beamforming in
degrees true.

• TILT_BUFFER: dimensioning factor based on the maximum
number of tilt observations in the tilt input file.

• BUFFER_TIME: dimensioning term. Must be an integer and
greater then the FFT_TIME + 2.

• F_SAMPLE: the integer sampling frequency.
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• CHANNELS: total number of array elements.

• F_CARRIER: the desired carrier frequency to beamform.
Note that this should match the center frequency of the
eigen function and value input files.

• FFT_TIME: amount of data, in seconds, allotted to each
FFT. This should be the sequence length of the desired
beamformed signal.

• FFT_LENGTH: the radix two FFT size. The FFT_LENGTH must
be larger or equal to FFT_TIME*F_SAMPLE.

• SWAP: macro used by the FFT algorithm.

2 . Beamformer Source Code

* PROGRAM: BEAMFORMER vsn 5.0
* NAME : BBbeam .

c

* WRITTEN BY: Glenn A. Omans II / Steven Crocker
*

* PURPOSE: Broadband Modal Beamforming of a Vertical Array.

* LAST UPDATE: September 28, 1992

*

* This program takes input from various data files and the user. It
* outputs a data file. The inputs are a number of channels of digital
* acoustic data, and information regarding the physical characteristics
* and geometry of the receiving array. Additionally, environmental data
* in the form of normal mode eigenfunctions and eigenvalues at the
* receiving array are required to operate this beamformer. The output
* is a single channel of acoustic data.
*

**** /

#define UNIX VERSION /* either ANSI or UNIX */
#define ASCII ON /* select output mode ON or OFF */
ttdefine BINARY OFF /* select output mode ON or OFF */
#define SIGNAL ON /* either ON or OFF */
#define LOWER_SENSOR OFF /* either ON or OFF */
#define VALIDATE OFF /* either ON or OFF */
#define ERROR_ESTIMATE OFF /* either ON or OFF */
#define VERBOSE OFF /* either ON or OFF */
#define ON 1 /* logical "switch" */
#define OFF /* logical "switch" */
#define INTERPOLATE fastpoly3 /* either polint, fastpoly3 or ratint */
ttdefine ORDER 3 /* order of interpolator (odd)*/
#define STEP 1 /* number of steps for derivatives */
#define TINY 1.0e-25 /* prevents division by zero */
#define PI 3.14159265359 /* for freq to omega conversions */
#define RADIAN 57.2957795131 /* for degree to radian conversions */
#define OFFSET 0.0 /* dist btwn upper sensor and phone #1 */
#define DELTA_R 10.0 /* array element spacing */
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#define CTDJDFFSET 0.0
#define SAMPLE_DELAY 0.003
#define SSP_LENGTH 2500
ttdefine EIGVAL_LENGTH 230
#define LOOK_DIRECTION 270.0
#define TILT_BUFFER 120
#define BUFFER_TIME 7

#define F_SAMPLE 1600
#define CHANNELS 16
#define F_CARRIER 224.0
#define FFT_TIME 3.9375
#define FFT LENGTH 8192

/* diff btwn ctd depth inc & 1st depth
/* array sampling delay (ms)
/* max number of pts in eigunfunction
/* max number of eigenvalues *

/* direction from which signal arrives *

/* max length of tilt data vectors
/* input buffer length in seconds (int)*
/* sampling frequency (int)*
/* number of channels processed *

/* carrier frequency *

/* time alloted to each fft *

/* radix 2 <= (FFT TIME-2)*F SAMPLE *

#define SWAP (a, b) tempr= (a) ; (a) = (b) ; (b) =tempr

#include<stdio.h>
#include<malloc.h>
#include<math . h>

#if defined ( ANSI )

#include<float .h>
#include<stdlib.h>
int getlnput (void)

;

int putOutput (void)

;

int processTilt (float **x, float **y, float **z, float *delayClock)

;

int processModes (float **z, float **weight, float *ptrC)

;

int dydx (float *x, float *y, float *ddx, int points)

;

int fastpoly2 (float *xa, float *ya, int n, float x, float *y, float *dy)
int fastpoly3 (float *xa, float *ya, int n, float x, float *y, float *dy)

,

int polint (float *xa, float *ya, int n, float x, float *y, float *dy)

;

int ratint (float *xa, float *ya, int n, float x, float *y, float *dy)

;

int realft (float *data, int n, int isign);
int fourl (float *data, int nn, int isign);
int window (float *data, int N)

;

float *vector(int length);
float **matrix(int row, int col) ;

int free_matrix (float **m, int row);
void ExitOnError (char error_txt [] )

;

#elif defined ( UNIX )

int vector () ,

matrix () ,

getlnput () ,

putOutput ( )

,

processTilt ()

,

processModes () ,

dydxO ,

fastpoly2 () ,

fastpoly3 ,

polint () ,

ratint ,

dumpSpectrumO ,

window ( )

,

realft () ,

fourl () ,

free_matrix() ,

ExitOnError ()

;

#endif

/* Global Variable Declarations */
float **inSOUND, *outSOUND, *MeanSqError, Max=0.0, Min=1.0e25;
float fmax, fmin;
int LastDelay, Minute=l, firstBuffer=l

;
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FILE *fpInSound, *fpOutSound, *fpOutSpectrum, *fpMSE;

main (

)

{

char fileDelay [80] , fileModes [80] , fileArray [80] ;

FILE *fpVl;

int i, j, k, n, itime, ibuff, kount, *shift;

float **x, **y, **z, *indx, *samples, arg, ans, err, *delay,
*delta, **weight, *pwrSpectrum, Cgroup, *Xf,

*sumXf, **buffSOUND, df, freq, *delayClock;

double Time;

/* Memory Allocation and Tilt Data Processing */
x= (float**) matrix (CHANNELS, TILT_BUFFER)
y= (float**) matrix (CHANNELS, TILT_BUFFER)
z= (float**) matrix (CHANNELS, TILT_BUFFER)
delayClock= (float*) vector (TILT_BUFFER)

;

processTilt (x, y, z, delayClock);

/* printf ("\nDelay Clock Times\n\n")

;

for (i=0; i<=LastDelay; i++) printf ("%i\t%g\n" , i, delayClock [i] ) ; */

if (VALIDATE==ON)

{

printf ("\nEnter file name for array validation data: ");
if ( (scanf ("%s",fileArray) ) ==E0F)

ExitOnError ("Fatal error in scanf ()");

fpVl=fopen (fileArray, "wt")

;

if (fpVl==NULL) ExitOnError ("Error opening validation file");

fprintf (fpVl, "Channel\t\t X\t\t Y\t\t Z\n") ;

for (i=l;i<=LastDelay;i++)

fprintf (fpVl, "MINUTE: %i\n", i)

;

for (j=l;j<=CHANNELS;j++)
fprintf (fpVl, "%i\t %f\t %f\t

%f\n",j,x[j] [i] ,y[j] [i] ,z[j] [i] ) ;

} /* for */
fclose (fpVl)

;

} /* if */

/* Memory Allocation*/
weight= (float**) matrix (CHANNELS, FFT_LENGTH)

;

indx= (float*) vector (ORDER+1)
delay= (float*) vector (CHANNELS)

;

delta= (float*) vector (CHANNELS)

;

outSOUND= (float*) vector ( (BUFFER_TIME-1) *F_SAMPLE)

;

Xf = (float*) vector ( (FFT_LENGTH+1) *2)

;

sumXf= (float*) vector ( (FFT_LENGTH+1) *2)

;

buffSOUND= (float**) matrix (CHANNELS, (BUFFER_TIME-1) *F_SAMPLE+1)

;

inSOUND= (float**) matrix (CHANNELS, BUFFER_TIME*F_SAMPLE)

;

if ( (shift=(int*)malloc( (CHANNELS+1) *sizeof (int) ) ) ==NULL)
ExitOnError ("Memory allocation failure for shift [].");
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for (i=l; i<=ORDER+l; i++) indx [i] = (float) i

;

if (ERROR ESTIMATE = = ON)
MeanSqError= (float*) vector ( (BUFFER_TIME-1) *F_SAMPLE)

;

/* Mode Data Processing */
processModes (z, weight, &Cgroup)

;

/* Calculate delays, shifts, ect */
for (i=l; i<=CHANNELS; i++)

delay ti] =x[i] [Minute] /Cgroup + /* Time delay */
(float) (i-l)*SAMPLE_DELAY/1000. ; /* Sampling delay */

shift [i] = (int) (delay [i] * (float) F_SAMPLE) ; /* # of samples */
/* fraction of 1 sample

*/
delta [i] =delay [i] * (float) F_SAMPLE- (float) shift [i]

;

} /* for */

while (Minute<=LastDelay)
{

if (VALIDATE==ON)
{

if (firstBuffer)

{

printf ( "\nEnter file name for delay validation: ");
if ( (scanf ("%s" ,fileDelay) ) ==EOF)

ExitOnError ("Fatal error in scanf ()");

if ( (fpVl=fopen(fileDelay, "wt")) ==NULL)
ExitOnError ( "Error opening validation file.");

} /* if */
else
{

if ( (fpVl=fopen(fileDelay, "at")) == NULL)
ExitOnError ("Error opening validation file.");

} /* else */

fprintf (fpVl, "MINUTE: %i\n", Minute);

fprintf (fpVl,
"Channel\t delay\t\t int shift\t fraction of 1 shift\n");

for (i=l;i<=CHANNELS;i++)

fprintf (fpVl, "%i\t %e\t %i\t% e\n",
i , delay [i] , shift [i] , delta [i] ) ;

} /* for */
fclose (fpVl)

;

if (firstBuffer)

{

printf ("\nEnter file name for phone weights and group speed:

if ( (scanf ("%s" , fileModes) ) ==EOF)
ExitOnError ("Fatal error in scanf () ");

");

if ( (fpVl=fopen (fileModes, "wt")) == NULL)
ExitOnError ("Error opening validation file.\n");

fprintf (fpVl, "Group speed for F_CARRIER is:
%g\n\n\n" , Cgroup)

;
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} /* if firstBuffer */
else
{

if ( (fpVl=fopen(fileModes, "at") ) ==NULL)
ExitOnError ( "Error opening validation file.\n");

fprintf (fpVl, "\nHydrophone weights for minute Sri \n ", Minute ) ;

} /* else if not firstBuffer */

fprintf (fpVl, "Channel \tWeight\n")

;

for (i=l;i<=CHANNELS;i++)
fprintf (fpVl, "%i\t%e\n", i, weight [i] [1] ) ;

fclose (fpVl)

;

} /* if VALIDATE */

/* First second of time isTime = 1

;

chopped */
for (n=l; n<=60/ (BUFFER_TIME-2) ; n++) /* for one Minute */

{

getInput () ;

if (firstBuffer) /* Produce first output buffer */

{

if (VERBOSE) printf ("Interpolation first Buffer\n");
for (i=l; i<=F SAMPLE; i++)

{

outSOUND [i] =0.0;
if (ERROR_ESTIMATE==ON) MeanSqError [i] =0 . ;

} /* for i */
for (i=F_SAMPLE+l; i<= (FFT_TIME+1) *F_SAMPLE ; i++)

{

outSOUND [i] = 0.0;
if (ERROR_ESTIMATE==ON) MeanSqError [i] =0 . ;

Time+= (1/ (float) F_SAMPLE)

;

if (Time >= delayClock [Minute]

)

{

Minute++

;

/* Mode Data Processing */
processModes (z, weight, &Cgroup)

;

/* Calculate delays, shifts, ect */
for (k=l; k<=CHANNELS; k++)

{

delay [k] =x[k] [Minute] /Cgroup +

delay */

Sampling delay */

samples */

(float) (k-l)*SAMPLE_DELAY/l000.

shift [k] = (int) (delay [k] * (float) F_SAMPLE)

/* Time

/*

/* # of

/*
fraction of 1 sample */

delta [k] =delay [k] * (float) F SAMPLE- (float) shift [k]

;

} /* for */

} /* if (Need new shift delays) */

for (j=l; j<=CHANNELS; j++)
{
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if (delay [j ] >=0.0)

{

arg= (float) (ORDER+1) /2 .0+ (1 -delta [j] )

;

samples = &inSOUND [j] [i-shift [j] - (ORDER+1) /2] ;

} /* if */
else if (delay [j] <0.0)

{

arg= (float) (ORDER+1) /2 .0+delta[j]

;

samples = &inSOUND [j] [i-shift [j] - (ORDER+1) /2+1] ;

} /* else if */

INTERPOLATE (indx, samples, ORDER+1, arg, &ans, &err)

;

buf fSOUND [j] [i-F_SAMPLE] =ans;

if (ERROR_ESTIMATE==ON)
MeanSqError [i] =MeanSqError [i] +err*err

;

} /* for */
if (ERROR_ESTIMATE==ON)

MeanSqError [i] =MeanSqError [i] / (float) CHANNELS

;

} /* for */

} /* if */
else /* Produce subsequent output buffers */

{

if (VERBOSE) printf ("Interpolating subsequent output
buffers\n")

;

for (i=F_SAMPLE+l; i<= (FFT_TIME+1) *F_SAMPLE ; i++)

{

outSOUND [i - F_SAMPLE] =0.0;
if (ERROR_ESTIMATE==ON) MeanSqError [i -F_SAMPLE] =0 . ;

Time+= (1/ (float) F_SAMPLE) ; /* time processed with first
second chopped */

if (Time >= delayClock [Minute]

)

{

Minute++;

/* Mode Data Processing */
processModes (z, weight, &Cgroup)

;

/* Calculate delays, shifts, ect */
for (k=l; k<=CHANNELS; k++)

{

delay [k] =x[k] [Minute] /Cgroup + /* Time
delay */

Sampling delay */

samples */

(float) (k-l)*SAMPLE_DELAY/l000. ; /*

shift [k]=(int) (delay [k] * (float) F_SAMPLE) ; /* # of

/
*

fraction of 1 sample */
delta [k] =delay[k] * (float) F SAMPLE- (float) shift [k] ;

} /* for */

} /* if (Need new shift delays) */

for (j=l; j<=CHANNELS; j++)

if (delay [j] > = 0.0)

arg= (float) (ORDER+1) /2 . 0+ (1 -delta [j] ) ;
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samples = &inSOUND [j] [i- shift [j] - (ORDER+1) /2] ;

} /* if */
else if (delay [j] <0 .0)

{

arg= (float) (ORDER+1) /2 .0+delta [j]

;

samples = &inSOUND [j] [i-shift [j] - (ORDER+1) /2+1]

;

} /* else if */
INTERPOLATE (indx, samples, ORDER+1, arg, &ans, &err)

;

buffSOUND[j] [i-F_SAMPLE] =ans;
if (ERROR_ESTIMATE==ON)

MeanSqError [i-F SAMPLE] =MeanSqError [i-F_SAMPLE] +err*err;
J /* for */
if (ERROR_ESTIMATE==ON)

MeanSqError [i-F_SAMPLE] =MeanSqError [i-F_SAMPLE] / (float) CHANNELS;
} /* for */

} /* else */

/* take fft multiply by weights & sum in frequency domain */

df = (float) F_SAMPLE/ (float) FFT_LENGTH;
if (VERBOSE) printf (

" \nTaking FFT\n" )

;

for(i=l; i <=2*FFT_LENGTH; i++) sumXf[i]=0;

for
(
j =1 ;

j <=CHANNELS ;
j ++)

{

for(i=l;i<=FFT LENGTH; i++)

{

if (i <= FFT TIME*F SAMPLE)

{

Xf [2*i-l] =buffSOUND [j] [i] ;

Xf [2*i] =0;

}

else
{

Xf [2*i-l] =0;
Xf [2*i] =0;

}

} /* for i */
fourl (Xf , FFT_LENGTH, 1)

;

k=l;

for(i=l; i <=FFT_LENGTH-1; i+=2)

freq=df* (float) (i-l)/2;
if (freq>=fmin && freq<=fmax)
{

/* positive frequencies */
sumXf [i] =sumXf [i] +Xf [i] *weight [j] [k] ; /* real part */
sumXf [i + 1] =sumXf [i + 1] +Xf [i + 1] *weight [j] [k] ;

/* imag part */
/* negative frequencies */

sumXf [2*FFT_LENGTH-i] =sumXf [2*FFT_LENGTH-i] +Xf [2*FFT LENGTH-i] *weight [j]
[k] ;

sumXf [2*FFT_LENGTH-i+l] =sumXf [2*FFT_LENGTH-i+l] +Xf [2*FFT LENGTH- i+1] *wei
ght[j] [k] ;

k++;

} /* if (frequency within Bandwidth) */
} /* for i */
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} /* for j */
if (VERBOSE) printf ("\nTaking invFFT\n" )

;

four1 ( sumXf , FFT_LENGTH , - 1 )

;

if (firstBuffer) j =F_SAMPLE+1

;

else j = 1;
for(i=l; i <=F SAMPLE*FFT_TIME;i++)
{

outSOUND [j] = (1/ (float) FFT_LENGTH) *sumXf [2*i-l] ;

if (fabs(outSOUND[j] ) <Min) Min=fabs (outSOUND [j] ) ;

if (fabs (outSOUND [j] ) >Max) Max=fabs (outSOUND [j] ) ;

} /* for i */

/* clear summer for next set of data */
for(i=l; i <=2*FFT_LENGTH; i++) sumXf[i]=0;

if (VERBOSE) printf ("\nWriting Data to file\n");
if (SIGNAL==ON) putOutputO;
firstBuffer=0; /* set firstBuffer to false */

} /* for */

if (VERBOSE==ON)
printf ("\t%i minutes of input data processed. \n" , Minute);

if (VERBOSE==OFF && Minute==l)
{

printf ("\n\nAll user input has been accepted. \n" )

;

printf ("Program is in SILENT mode.\n");
printf ("If desired, put this job in background now.\n");

} /* if */

} /* while not next minute*/

if (VERBOSE==ON)

{

printf ("EXECUTION COMPLETE: End of tilt data encountered\n" )

;

printf ("Maximum magnitude encountered was: %e\n",Max);
printf ("Minumum magnitude encountered was: %e\n",Min);

}

fclose (fpInSound)

;

if (SIGNAL==ON) fclose (fpOutSound)

;

if (ERROR_ESTIMATE==ON) fclose (fpMSE)

;

exit (0) ;

x/******************************************************************/
/************************** END main ******************************/

* FUNCTION: getlnputO

This function handles all acoustic input. It also provide^
two normal process terminations available in the program. (The other
is located in main() .)

* This function handles all acoustic input. It also provides one of
*

*

* Arguments

:

none
*

* Return value

:
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Functions called:

Definitions called:

* Global variables called:

* Significant memory allocation
*

#if defined ( ANSI )

int getlnput (void)
#elif defined ( UNIX )

getlnput ()

#endif

vector ()

ANSI
F_SAMPLE
BUFFER_TIME
ERROR_ESTIMATE

inSOUND[] []

firstBuffer
fpInSound
fpOutSpectrum

diskBuffer []

ExitOnError ()

UNIX
CHANNELS
VERBOSE
SIGNAL

Min
Max
fpOutSound
fpMSE

{

int i, j, buffer, items;
float *diskBuffer;
char fileName [80]

;

if (firstBuffer)
{

printf ( "Enter file name for input acoustic data: ");

if ( (scanf ("%s", fileName) ) ==EOF)
ExitOnError ( "Fatal error in scanf ()");

printf ("\n\n")

;

if ( (fpInSound=fopen (fileName, "rb")) == NULL)
ExitOnError ("Error opening INPUT ACOUSTIC data file.");

} /* if */

/* Memory Allocation */
if (firstBuffer) buf fer= (2+FFT_TIME) *F_SAMPLE*CHANNELS

;

else buffer= (FFT_TIME) *F_SAMPLE*CHANNELS;
diskBuffer= (float*) vector (buffer) ;

items=fread( (char*) (diskBuffer+l) , sizeof (float) , buffer, fpInSound);
if (VERBOSE) printf ("items = %i\n" , items)

;

if (items==buffer) /*continue*/;
else if (ferror (fpInSound) != 0)

ExitOnError ("Error encountered while reading input acoustic data")

;

else if (feof (fpInSound) != 0)

{

if (VERBOSE==ON)

{

printf (
" \n\t**************************************************\n" )

;

printf ("\t End of File reached: EXECUTION COMPLETE\n" ) ;

printf ("\t\t%i minutes of data processed\n" ,Minute-l)

;

printf ("\t\t%i bytes of data discarded\n" , items*sizeof (float) )

;

printf ("\t\tMaximum magnitude encountered was: %e\n",Max)
printf ("\t\tMinimum magnitude encountered was: %e\n",Min)
printf ("\t End of File reached: EXECUTION COMPLETE\n" )

,

printf ("\t************+*************************************\n n).
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}

fclose (fpInSound)

;

if (SIGNAL==ON) fclose (fpOutSound)

;

if (ERROR_ESTIMATE==ON) fclose (fpMSE)

;

exit (0)

;

} /* else if */
else ExitOnError ( "Unknown error handling acoustic input file.");

for (i=l; i<=(2+FFT TIME) *F SAMPLE; i++)

{

for (j=l; j<=CHANNELS; j++)

{

if (firstBuffer)
{

inSOUND[j] [i] = diskBuffer [CHANNELS* (i-l)+j] ;

} /* if */
else
{

if(i<=2*F SAMPLE)

inSOUND[j] [i]=inSOUND[j] [i+(int) ( (float) FFT_TIME* (float) F_SAMPLE) ] ;

else
inSOUND[j] [i] =diskBuf fer [CHANNELS* (i -2*F_SAMPLE-1) +j ]

;

} /* else */

} /* for */

} /* for */

/* Deallocate Memory */
free ( (char*) diskBuffer)

;

return ( ) ;

/***** END getlnput *****/

/*•***
* FUNCTION : putOutput (

)

*

* This function handles all acoustic output. Additionally, it outputs
* the estimated mean squared error from the interpolators (if enabled)

* Arguments:
*

* Return value

none

* Functions called:
*

* Definitions called:

*

*

* Global variables called:

*

*

* Significant memory allocation: none
*

#if defined ( ANSI )

int putOutput (void)

#elif defined ( UNIX )

ExitOnError ()

ANSI
F_SAMPLE
ERROR_ESTIMATE
BINARY

outSOUND []

firstBuffer
fpMSE

UNIX
BUFFER_TIME
ASCII

MeanSqError []

fpOutSound
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putOutput ()

#endif
{

int i , cut

;

char fileName [80] , *mode;

if (firstBuffer)

{

if (ASCII==ON) mode="wt";
else if (BINARY==ON) mode="wb";

cut=l;
printf ("Enter file name for output data: ");

if ( (scanf ("%s", fileName) ) ==EOF)
ExitOnError ("Fatal error in scanf()");

printf ("\n\n")

;

if ( (fpOutSound=fopen (fileName, mode)) == NULL)
ExitOnError ("Error opening OUTPUT data file.");

if (ERROR ESTIMATE==ON)
{

printf ( "\nEnter file name for interpolator error estimate: "
)

;

if ( (scanf ("%s", fileName) ) ==EOF)
ExitOnError ("Fatal error in scanf");

if ( (fpMSE=fopen (fileName, mode)) == NULL)
ExitOnError ("Error opening error.dat");

} /* if */

} /* if */
else cut=2;

if (ERROR_ESTIMATE==ON)
{

if (ASCII==ON)

{

for (i=l; i<=(2+FFT_TIME-cut) *F_SAMPLE; i++)
fprintf (fpMSE, "%f \n" , MeanSqError [i] )

;

} /* if */
else if (BINARY==ON)

{

if (fwrite( (char*) (MeanSqError+1) , sizeof (float) , (2+FFTJTIME-cut) *F_SAMPLE,
fpMSE) == (unsigned) (2+FFT_TIME-cut) *F_SAMPLE) ;

else if (ferror (fpMSE) != 0)

ExitOnError ("Error encountered writing error data");
else ExitOnError ("Unknown error handling error file.");

} /* else if */

} /* if */

if (ASCII==ON)

for (i=l;i<=(2+FFT_TIME-cut) *F_SAMPLE; i++)
fprintf (fpOutSound, "%g\n", outSOUND [i]

)

;

} /* if */
else if (BINARY==ON)

{

if (fwrite ( (char*) (outSOUND+l) , sizeof (float)
, (2+FFT TIME-cut)*F SAMPLE,
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fpOutSound) == (unsigned) (2+FFT_TIME-cut) *F_SAMPLE) ;

else if (ferror (fpOutSound) != 0)

ExitOnError ("Error encountered writing output acoustic data");
else ExitOnError ( "Unknown error handling acoustic output file.");

} /* else if */
return ( )

;

/***** END putOutput *****/

* FUNCTION: processTilt

This function handles all array tilt data. It calculates the X, Y, Z
coordinates of each hydrophone as a function of time. The coordinate
system is oriented such that X points toward the signal "origin" and
Z points down.

Arguments

Return value

x[] []

z[] []

y[] []

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Functions called:

Definitions called:

ExitOnError () matrix ()

vector () free_matrix()

ANSI UNIX
DELTA_R LOWER_SENSOR
RADIAN CHANNELS
LOOK_DIRECTION OFFSET
TILT BUFFER

Global variables called:

Significant memory allocation:

LastDelay

xx[] []

zz[] []

angle []

ldepthf]

yy[] []

tilt[]
udepthf]
delayClock []

#if defined ( ANSI )

int processTilt (float **x, float **y, float **z, float *delayClock)
#elif defined ( UNIX )

processTilt (x,y, z , delayClock)
float **x, **y, **z, *delayClock;
#endif
{

int i , j , notEOF

;

float *tilt, *angle, *udepth, *ldepth, **xx, **yy, **zz, theta;
char fileName [80]

;

FILE *fpl, *fp2;

/* Open Data Files */
printf ("Enter file name for upper tilt sensor data: ");

if ( (scanf ("%s", fileName) ) ==E0F)
ExitOnError ("Fatal error in scanf()");

printf ("\n\n")

;

if ( (fpl=fopen (fileName, "rt")) == NULL)
ExitOnError ("Error opening UPPER TILT data file.");
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if (LOWER_SENSOR==ON)

{

printf ("Enter file name for lower tilt sensor data: ")

if ( (scanf ("%s" , fileName) ) ==EOF)
ExitOnError ("Fatal error in scanf ()");

printf ("\n\n")

;

if ( (fp2=fopen (fileName, "rt")) == NULL)
ExitOnError ("Error opening LOWER TILT data file.");

ldepth= (float*) vector (TILT_BUFFER)

;

} /* if */

/* Memory Allocation */
tilt= (float*) vector (TILT_BUFFER)

;

angle= (float*) vector (TILT_BUFFER)

;

udepth= (float*) vector (TILT_BUFFER)

;

xx= (float**) matrix (CHANNELS, TILT_BUFFER)
yy= (float**) matrix (CHANNELS, TILT_BUFFER)
zz= (float**) matrix (CHANNELS, TILT_BUFFER)

i=l; /* read upper tilt data */
notEOF=l;
while (notEOF)

{

if (fscanf (fpl, "%g %g %g\n" , &tilt [i] , &angle [i] , &udepth [i] ) != EOF)
i++;

else notEOF=0;
}

if (LOWER_SENSOR==ON)

{

j=l; /* read lower tilt data */
notEOF=l

;

while (notEOF)

{

if (fscanf (fp2, »%g\n" , &ldepth [j] ) !=EOF) j++;
else notEOF=0;

} /* while */
if (i<=j) LastDelay=i-l;
else LastDelay=j -1

;

}

else LastDelay=i-l

;

/*** get Delay Clock Times in Seconds ***/

delayClock[0] = 0.0;
for (i=l; i<=LastDelay; i++) delayClock [i] = (float) i*60 . ; /* Delay

Execution Times */

/************This is the assumed array geometry: LINEAR***********/
for (j=l; j<=CHANNELS; j++)

for (i=l; i<=LastDelay; i++)

xx [j] [i] =DELTA_R* (float) (j -1) *cos (angle [i] /RADIAN)

*

sin (tilt [i] /RADIAN)

;

yy[j] [i]=DELTA_R* (float) (j -1) *sin (angle [i] /RADIAN) *

sin (tilt [i] /RADIAN)

;
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zz[j] [i] =DELTA_R* (float) (j -1) *COS (tilt [i] /RADIAN) +

OFFSET*cos (tilt [i] /RADIAN) +udepth [i]

;

} /* for */

} /* for */
/it*****************************************************************/

theta= (360. 0-LOOK_DIRECTION) /RADIAN; /* coordinate rotation */
for (j=l; j<=CHANNELS; j++)

{

for (i=l; i<=LastDelay; i++) /* points x into signal */

{

x[j] [i]=xx[j] [i] *cos (theta) -yy [j] [i] *sin (theta)

;

y[j] [i]=xx[j] [i] *sin (theta) +yy[j] [i] *cos (theta)

;

Z[j] [i]=22[j] [i] ;

} /* for */

} /* for */

/* Memory Deallocation */
if (LOWER_SENSOR==ON) free ( (char*) 1depth)

;

free( (char*) tilt)

;

free ( (char*) angle)

;

free ( (char*)udepth)

;

free_matrix(xx, CHANNELS)
free_matrix(yy, CHANNELS)
free_matrix(zz, CHANNELS)
fclose (fpl)

;

if (LOWER_SENSOR==ON) fclose (fp2)

;

return ( )

;

/***** END processTilt *****/

/*****
* FUNCTION: processModes (

)

*

* This function handles the normal mode data. It calculates hydrophone
* weights and group speed. The user must insure that the depth vector
* and eigenfunction vector are of equal length.

Arguments

:

z[] []

ptrC
weight [] []

* Return value

*

*

*

*

*

*

*

*

*

Functions called:

Definitions called:

Global variables called:

Significant memory allocation:

vector ()

INTERPOLATE (

)

ANSI
PI
EIGVAL_LENGTH
CHANNELS

Minute

depth []

OnOff []

Kr[]

ExitOnError ()

dydxO

UNIX
SSP_LENGTH
ORDER
F CARRIER

Zn[]
w[]
dwdK

#if defined ( ANSI )

int processModes (float **z, float **weight, float *ptrC)
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#elif defined ( UNIX )

processModes (z, weight, ptrC)
float **z, **weight, *ptrC;
#endif
{

int i, j, k, ptsEigVal, set, notEOF, deadPhones, we ightNotAssigned;
int items, moreData=ON;
static int ptsDepth, ptsEigFun;
float *w, *Kr, *dwdK, *Work, err, df, freq;
static float depth [SSP_LENGTH+1] , Zn [SSP_LENGTH+1] [EIGVAL_LENGTH+1]

,

OnOff [CHANNELS+1] ;

char key, fileName [80]

;

FILE *fpl, *fp2;

if (firstBuffer==l)
{

w= (float*) vector (EIGVAL_LENGTH)

;

Kr= (float*) vector (EIGVAL_LENGTH)

;

dwdK= (float*) vector (EIGVAL_LENGTH)

;

Work= (float*) vector (EIGVAL_LENGTH)

;

printf ( "Enter file name for normal mode data (eigenfunction) : ")

;

if ( (scanf ("%s", fileName) ) ==EOF)
ExitOnError ( "Fatal error in scanf ()");

printf ("\n\n")

;

if ( (fpl=fopen (fileName, "rb")) == NULL)
ExitOnError ("Error opening NORMAL MODE data file

(eigenfunction) .

")

;

printf ( "Enter file name for normal mode data (eigenvalues) : ")

;

if ( (scanf ("%s", fileName) ) ==EOF)
ExitOnError ("Fatal error in scanf ()");

printf ("\n\n")

;

if ( (fp2=fopen (fileName, "rt")) == NULL)
ExitOnError ("Error opening NORMAL MODE data file

(eigenvalues) .

")

;

i=l; /* read normal mode eigen values */
notEOF=l

;

while (notEOF)

if ( fscanf (fp2, "%g %g \n", &w[i], &Kr[i]) != EOF) i++;
else notEOF=0;

}

ptsEigVal=i-l;

/* read normal mode data Zn */
set=(ORDER+l) /2;
j-i;
df=2*PI* (float) F_SAMPLE/ (float) FFT_LENGTH

;

while (moreData)

items=fread (Work, sizeof (float) ,ptsEigVal+l, fpl)

;

if (items==ptsEigVal+l) /* continue */;
else if (ferror (fpl) !=0)
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ExitOnError ("Error encountered while reading Eigenfunction
File") ;

else if(feof(fpl) !=0) moreData=OFF ; /* EOF */
else ExitOnError ( "Unknown error handling Eigenfunction data");

depth [j] =Work[0] ;

/* perform "quick" 2nd order polynomial interpolation between
frequencies */

freq=df

;

k=l;
i=l;
set=0;
while (freq<=w[ptsEigVal]

)

if (freq>=w[l] && ( (float) i/ ( (float) k+2) < (w [k+1] -w [k] ) /df ||

k+2 == ptsEigVal)

)

{

fastpoly2 (&w[k-set] , &Work [k-set] ,
- (ORDER+1) ,freq, &Zn[j] [i] , &err) ;

i++;
freq+=df

;

} /* if */
else if (w[k+l] <freq) k++;
else freq+=df;

} /* while frequency in range */
j++;

}

/* while (moreData) */

fmin=w[l] /(2*PI) ;

fmax=w[ptsEigVal] /(2*PI)

;

printf ("\nProcessing Bandwidth is from %g to %g Hz
.
\n\n" , fmin, fmax)

;

ptsEigFun=i-l;
ptsDepth=j -1;

for (i=l;i<=ptsDepth;i++) depth [i] =depth[i] +CTD_OFFSET;

for (i=l;i<=CHANNELS;i++) OnOf f [i] =1 . ;

printf ("Do you want to turn off any hydrophones? ");

if ( (scanf ("%s",&key) )==EOF)
ExitOnError ("Fatal error in scanf()");

if(key=='y' || key=='Y')

printf ("\nHow many hydrophones must be secured? "
)

;

if ( (scanf ("%i", &deadPhones) ) ==EOF)
ExitOnError ("Fatal error in scanf()");

for (i=l ; i<=deadPhones ; i++)

printf ("\nEnter hydrophone number to secure: ");

if ( (scanf ("%i", &j))==EOF)
ExitOnError ("Fatal error in scanf ()")

;

if (j>CHANNELS
| |

j<l)
ExitOnError ("Bad hydrophone identification");

OnOff [j]=0.0;
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} /* for */

} /* if */

} /* if */

for (i=l ;i<=LastDelay;i++)
{

if (depth [ptsDepth] <z [CHANNELS] [i]

)

{

printfC'Max eigenfunction depth is: %f \n" , depth [ptsDepth] )

;

printf ("at depth[] index of: %i\n"
,
ptsDepth) ;

printfC'Max depth of phone number %i is: %f\n\n"

,

CHANNELS, z [CHANNELS] [i] ) ;

ExitOnError ("Fatal data set error")

;

} /* if */

} /* for */

for (i=l; i<=CHANNELS; i++)

{

if (OnOff [i]

)

{

for (k=l;k<=ptsEigFun;k++)
{

weightNotAssigned=l

;

j=i;
while (j<=ptsDepth && weightNotAssigned)

if (z [i] [Minute] <0.0 || depth [j] <0 . 0)

{

printf ("i=%i\n",i)

;

printf ("j=%i\n",j)

;

printf ("Minute=%i\n" , Minute)

;

printf ("z [i] [Minute] is: %f\n", z [i] [Minute] )

;

printf ("depth [j] is: %f \n" , depth [j] ) ;

printf ( "Depth less than zero encountered in
processModes .

"

)

orientation")

;

printf ("\n\n")

;

ExitOnError ( "Check

} /* if */

input depths for coordinate

z [i] [Minute]

if (depth [j] <z [i] [Minute] && depth [j+l] >z [i] [Minute])

set=(ORDER+l) /2

;

INTERPOLATE (&depth [j -set] , &Zn[j-set] [k] , ORDER+1,

&weight [i] [k] , &err)
weightNotAssigned=OFF;

} /* if */

if (depth [ j ] = = z [i] [Minute]

)

{

weight [1] [k]=Zn[j] [k]
;

weightNotAssigned=OFF;
} /* if */

}
/* while */

} /* for k */

}
/* if OnOff */

/* for i */
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/* set weights to zero if phone turned off */

for (i=l; i<=CHANNELS; i++)

{

if (OnOff) /* do nothing */;
else

for (k=l; k<=ptsEigFun; k++) weight [i] [k] =OnOff [i] *weight [i] [k]

;

} /* for */

if (Minute==l)

{

dydx(Kr,w, dwdK,ptsEigVal)

;

for (i=l;i<=ptsEigVal;i++)
{

if (w[i] <2.0*PI*F CARRIER && w [i + 1] >2 . 0*PI*F CARRIER)

{

set=(ORDER+l) /2

;

INTERPOLATE (&w[i- set] , &dwdK [i -set] ,0RDER+1,
2.0*PI*F_CARRIER,ptrC,&err)

;

} /* if */

} /* for */

free ( (char*) w)

;

free( (char*)Kr) ;

free ( (char*) dwdK)

;

} /* if */
return ( )

;

/***** END processModes *****/

* FUNCTION: dydx (

)

*

* This function estimates derivatives.

* Arguments:
*

* Return value

:

* Functions called:
*

* Definitions called:
*

* Global variables called:

* Significant memory allocation:
*

#if defined ( ANSI )

int dydx (float *x, float *y, float *ddx, int points)
#elif defined ( UNIX )

dydx (x, y , ddx, points)
float *x, *y, *ddx;
int points;
ttendif

{

int n;

for (n=l;n<=points;n++)

x[]
ddx[]

y[]
points

ExitOnError ()

ANSI
STEP

UNIX

none

none
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if ( (n>=STEP) && (n<=points-STEP) ) /*center*/
ddx[n] = (y[n+STEP] -y [n-STEP] ) /(x[n+STEP] -x[n-STEP] ) ;

else if (n<STEP) /*beginning*/
ddx [n] = (y [n+STEP] -y [1] ) / (x [n+STEP] -x [1] ) ;

else if (n>points-STEP) /*end*/
ddx[n] = (y [points] -y [n-STEP] ) / (x [points] -x [n-STEP] ) ;

else
ExitOnError ("Index error in dydx"); /* sanity check */

} /* for */
return ( )

;

/***** END dydx *****/

* FUNCTION: fastpoly2()
*

* This function performs second order polynomial interpolation for
interpolating
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

•

between modal frequency.

Arguments

:

Return value

:

Functions called:

Definitions called:

Global variables called:

Significant memory allocation:

xa[] ya[]
n X
y dy

vector () ExitOnError ()

ANSI UNIX

none

d[] c[]

#if defined ( ANSI )

int fastpoly2 ( float *xa, float *ya, int n, float x, float *y, float *dy)
#elif defined ( UNIX )

fastpoly2 (xa,ya,n,x,y, dy)
float *xa, *ya, x, *y, *dy;
int n;
#endif
{

int i ;

float dif, dx;

if (abs(n) != 4)

ExitOnError ("USER error, fastpoly3 interpolater can only be ORDER
3 " ) ;

dx = xa[l] -xa[0] ;

if (n == 4) /* FIND CLOSEST POINT */

if (x <= xa[3]+dx/2 && x > xa[3]-dx/2) i=2
else if (x <= xa[3]-dx/2 && x > xa[2]-dx/2) i = l
else if (x <= xa[2]-dx/2 && x > xa[l]-dx/2) i=0
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else
ExitOnError ("Error in routine FASTP0LY2 " )

;

}

else i=l;

dif=x-xa [i]

;

*y=ya[i] ;

*y-= dif*(3.*ya[i] - 4.*ya[i+l] + ya [i+2] ) / (2 . *dx)

;

*y+= dif*dif*(ya[i] - 2.*ya[i+l] + ya [i+2] ) / (2 .*dx*dx)

;

*dy=0; /* error term to be installed later */

return (0)

;

/***** END fastpoly2 *****/

* FUNCTION: fastpoly3()

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

This function performs Third Order polynomial interpolation.

Arguments

:

Return value

:

Functions called:

Definitions called:

Global variables called:

Significant memory allocation:

xa[] ya[]
n X
y dy3

vector () ExitOnError ()

ANSI UNIX

none

none

#if defined ( ANSI )

int fastpoly3 ( float *xa, float *ya, int n, float x, float *y, float *dy3)
#elif defined ( UNIX )

fastpoly3 (xa,ya,n,x,y,dy3)
float *xa, *ya, x, *y, *dy3

;

int n;
#endif
{

int i ;

float dif, dx, yo;

if (abs(n) != 4)

ExitOnError ("USER error, fastpoly3 interpolater can only be ORDER
3 "

) ;

i = 1;
dx = xa[i+l] -xa[i] ;

dif = x - xa[i-l] ;

yo= 4*ya[l] - 6*ya[2] + 4*ya[3] - ya[4]
;

*dy3 = -ya[l] + 3.*ya[2] - 3.*ya[3] + ya[4];

*y = yo + (dif/dxM -13 . /3 . *ya [1] + 9.5*ya[2] -7.*ya[3] + 11 . /6 . *ya [4] +
(dif/(2.*dx)*( 3.*ya[l] - 8.*ya[2] + 7.*ya[3] - 2.*ya[4] +
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(dif/(3.*dx)*( *dy3 ))))));
return (0)

;

/***** END fastpoly3 *****/

* FUNCTION: polintO
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

This function performs polynomial interpolation.

Arguments: xa[]
n
y

Return value

:

Functions called: vector ()

Definitions called: ANSI

Global variables called: none

Significant memory allocation: d[]

ya[]
x
dy

ExitOnError ()

UNIX

c[]

#if defined ( ANSI )

int polint ( float *xa, float *ya, int n, float x, float *y, float *dy)
#elif defined ( UNIX )

polint (xa,ya,n,x,y, dy)
float *xa, *ya, x, *y, *dy;
int n;
#endif
{

int i, m, ns=l;
float den, dif, dift, ho, hp, w;

float *c, *d;

n=abs (n)

;

dif =fabs (x-xa [1] )

;

c= (float*) vector (n)

;

d= (float*) vector (n)

;

for (i=l; i<=n; i++)

if ( (dift=fabs (x-xa [i] ) ) < dif)

{

ns=i;
dif=dift;

} /* if */
c [i] =ya[i] ;

d[i] =ya [i] ;

} /* for */
*y=ya [ns - - ] ;

for (m=l; m<n; m++)

{

for (i=l; i<=n-m; i++)

{
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ho=xa [i] -x;
hp=xa [i+m] -x;
w=c [i+1] -d[i] ;

if ( (den=ho-hp) ==0.0)
ExitOnError ("Error in routine POLINT");

den=w/den;
d[i] =hp*den;
c [i] =ho*den;

} /* for */
*y += (*dy=(2*ns < (n-m) ? c[ns+l] : d[ns--]));

} /* for */
free ( (char*) d)

;

free ( (char*) c) ;

return ( ) ;

/***** END polint ****/

/*****
* FUNCTION: ratintO
*

* This function performs rational function interpolation.

* Arguments

:

*

*

*

* Return value

xa[]
n
y

ya[]
X
dy

vector ()

ANSI
TINY

ExitOnError ()

UNIX

* Functions called:

* Definitions called:
*

*

* Global variables called: none
*

* Significant memory allocation: d[] c[]
*

***** I

#if defined ( ANSI )

int ratint ( float *xa, float *ya, int n, float x, float *y, float *dy)
#elif defined ( UNIX )

ratint (xa,ya,n,x,y, dy)
float *xa, *ya, x, *y, *dy;
int n;
#endif
{

int m, l, ns=l;
float w, t, hh, h, dd, *c, *d;

n=abs (n)

;

c= (float*) vector (n)

;

d= (float*) vector (n)

;

hh=fabs (x-xa [1] )

;

for (i-1; i<=n; i++)

h=fabs (x-xa[i] ) ;

if (h==0.0)

*y=ya[i] ;

*dy=0.0;
free ( (char*)d) ;
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free ( (char*) c)

;

return ( )

;

} /* if */
else if (h<hh)

{

ns=i ;

hh=h;
} /* else if */
c[i] =ya[i] ;

d[i] =ya[i]+TINY;
} /* for */
*y=ya [ns - -

] ;

for (m=l;m<n;m++)

{

for (i=l; i<=n-m;i++)
{

w=c [i+1] -d[i] ;

h=xa [i+m] -x;
t=(xa[i] -x)*d[i]/h;
dd=t-c[i+l] ;

if (dd==0.0)
ExitOnError ("Error in routine RATINT");

dd=w/dd;
d[i]=c[i+l] *dd;
c[i] =t*dd;

} /* for */
*y += (*dy=(2*ns < (n-m) ? c [ns+1] : d[ns--]));

} /* for */
free ( (char*) d)

;

free ( (char*) c)

;

return ( ) ;

/***** END ratint ****/

* FUNCTION: window (

)

*

* This function applies a Blackman window to a vector.
*

* Arguments: data [] N
*

* Return value

:

*

* Functions called: none
*

* Definitions called: ANSI UNIX
* PI
*

* Global variables called: none

* Significant memory allocation: none

***** I

#if defined ( ANSI )

int window (float *data, int N)

#elif defined ( UNIX )

window ( data, N )

float *data;
int N;
#endif
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int n;

for (n=0; n<N; n++)

{

data[n+l]=data[n+l] * (0 .42+0 . 5*cos (2 .0*PI* (float) (n-N/2) /(float) (N-l)

)

+0.08*cos (4 .0*PI* (float) (n-N/2) / (float) (N-l) ) )

;

} /* for */
return ( ) ;

\ /****** + *•* * *********** I

/***** END window *****/

* FUNCTION: realftO
*

This function calculates FFT's

Arguments

:

Return value

:

Functions called:

Definitions called:

data[]
isign

fourl ()

ANSI

n

UNIX

* Global variables called: none

* Significant memory allocation: none
*

#if defined ( ANSI )

int realft (float *data, int n, int isign)
#elif defined ( UNIX )

realft (data, n, isign)
float *data;
int n, isign;
#endif
{

int i, il, i2, i3, i4 , n2p3

;

float cl=0.5, c2, hlr, hli, h2r, h2i;
double wr, wi, wpr, wpi, wtemp, theta;

theta=3 .141592653589793/ (double)n;
if (isign==l)

{

c2 = -0.5;
fourl (data, n, 1)

;

} /* if */
else
{

C2=0.5;
theta = -theta;

} /* else */
wtemp=sin(0 .5*theta)

;

wpr = -2 .0*wtemp*wtemp;
wpi=sin (theta)

;

wr=1.0+wpr;
wi=wpi

;

n2p3=2*n+3;
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for (i=2; i<=n/2; i++)

{

i4=l+(i3=n2p3- (i2=l+ (il=i+i-l) ) )

;

hlr=cl* (data til] +data [i3] )

;

hli=cl* (data [i2] -data [i4] ) ;

h2r = -c2* (data[i2] +data[i4] ) ;

h2i=c2* (data [il] -data [i3] )
,-

data [il] =hlr+wr*h2r-wi*h2i

;

data [i2] =hli+wr*h2i+wi*h2r

;

data [i3] =hlr-wr*h2r+wi*h2i

;

data[i4] = -hli+wr*h2i+wi*h2r;
wr= (wtemp=wr) *wpr-wi*wpi+wr

;

wi=wi*wpr+wtemp*wpi+wi

;

} /* for */
if (isign==l)

{

data [1] = (hlr=data [1] ) +data [2] ;

data [2] =hlr-data [2] ;

} /* if */
else
{

data [1] =cl* ( (hlr=data [1] ) +data [2] )

;

data [2] =cl* (hlr-data [2] )

;

fourl (data,n, -1) ;

} /* else */
return ( ) ;

/**********************/
/***** encj realft *****/
/**********************/

*****/
* FUNCTION: fourl (

)

* This function calculates FFT's
*

* Arguments

:

*
data[]
isign

nn

* Return value

:

*

* Functions called:
*

* Definitions called:
*

none

ANSI
SWAP

UNIX

* Global variables called: none
*

* Significant memory allocation: none
*

*****/
#if defined ( ANSI )

int fourl (float *data, int nn, int isign)
#elif defined ( UNIX )

fourl (data, nn, isign)
float *data;
int nn, isign;
#endif

int n, mmax, m, j, istep, i

;

double wtemp, wr, wpr, wpi, wi,
float tempr, tempi;

theta;
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n=nn << 1;

for (i=l; i<n;

{

if (j > i)

{

i +=2)

SWAP (data [j] ,data[i] ) ;

SWAP (data [j+1] ,data[i + l] ) ;

} /* for */
m=n > > 1

;

while (m >= 2 && j > m)

{

j -= m;
m >>=1;

} /* while */

j += m;

} /* for */
mmax=2

;

while (n > mmax)

{

istep=2*mmax;
theta=6. 28318530717959/ (isign*mmax)

;

wtemp=sin(0 .5*theta)

;

wpr = -2 . 0*wtemp*wtemp;
wpi=sin(theta)

;

wr=l . ;

wi=0.0;
for (m=l; m<mmax; m+=2)

{

for (i=m; i<=n; i+=istep)

{

j =i+mmax;
tempr=wr*data [j] -wi*data [j+1] ;

tempi =wr*data [j+1] +wi*data [j] ;

data [j] =data [i] -tempr;
data [j+1] =data [i+1] -tempi;
datati] += tempr;
data [i+1] += tempi;

} /* for */
wr= (wtemp=wr) *wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi

;

} /* for */
mmax=istep;

} /* while */
return ( )

;

/***** en(j fourl *****/

* FUNCTION: vector ()

*

* This function allocates memory for UNIT OFFSET vectors
*

* Arguments: length
*

* Return value: *v
*

* Functions called: ExitOnError ()
*

* Definitions called: ANSI UNIX
*
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* Global variables called: none
*

* Significant memory allocation: v[]
*

#if defined ( ANSI )

float *vector(int length)
#elif defined ( UNIX )

vector (length)
int length;
#endif
{

float *v;

if ( (v= (float*) malloc( (length+l) *sizeof (float) )
) ==NULL)

ExitOnError ( "Memory allocation failure in vector ().");
#if defined ( ANSI )

return v;
#elif defined ( UNIX )

return (long int)v;
#endif
\ /A*********************/
/***** END vector *****/

* FUNCTION: matrix ()
*

* This function allocates memory for UNIT OFFSET 2-D arrays.
*

* Arguments: row col
*

* Return value: **m
*

* Functions called: ExitOnError ()

*

* Definitions called: ANSI UNIX
*

* Global variables called: none
*

* Significant memory allocation: m[] []

#if defined ( ANSI )

float **matrix(int row, int col)
#elif defined ( UNIX )

matrix (row, col)
int row, col;
#endif
{

int i ;

float **m;

if ( (m= (float**) malloc( (unsigned) (row+1) *sizeof (float*) )) ==NULL)
ExitOnError ("Allocation failure 1 in matrixO");

for (i=l; i<=row; i++)

if (
(m[i] = (float*)malloc( (unsigned) (col+1) *sizeof (float) )

) ==NULL)
ExitOnError ("Allocation failure 2 in matrixO");

} /* for */

#if defined ( ANSI )

return m;
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#elif defined ( UNIX )

return (long int)m;
#endif

/***** END matrix *****/

* FUNCTION: free_matrix ()

*

* This function deallocates memory from UNIT OFFSET 2-D arrays

* Arguments: m[] [] row

* Return value

:

* Functions called:
*

* Definitions called:
*

* Global variables called:

none

ANSI

none

UNIX

* Significant memory allocation: none
*

*****/
#if defined ( ANSI )

void free_matrix (float **m, int row)
#elif defined ( UNIX )

free_matrix (m, row)
float **m;
int row

;

#endif
{

int i ;

for(i=row; i>=l; i--)
free ( (char*)m[i] ) ;

free ( (char*)m)

;

return ( ) ;

/***** END free matrix *****/
/•A*************************/

/*****
* FUNCTION: ExitOnError (

)

*

* This function performs an abnormal process termination.

* Arguments

:

error_txt []

Return value

:

none

Functions called: none

Definitions called: ANSI UNIX

Global variables called: none

Significant memory allocation: none*

#if defined ( ANSI )

void ExitOnError (char error_txt []

)
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#elif defined ( UNIX )

ExitOnError (error_txt)
char error_txt [] ;

#endif
{

fprintf (stderr, "Program run-time error . ..Xn'^-
fprintf (stderr, "%s\n" ,error_txt)

;

fprintf (stderr, ".. .now exiting to system. .. \n")

;

fclose (fpInSound)

;

if (SIGNAL==ON) fclose (fpOutSound)

;

if (ERROR_ESTIMATE==ON) fclose (fpMSE)

;

exit (0)

;

\ /***************************/
/***** END ExitOnError *****/
/***************************/

B. MODAL DECOMPOSITION PROGRAM

This program performs modal decomposition for a specified

bandwidth and frequency increment. Inputs to the program

include sound speed and density profiles. An example input

file can be found at section D of this Appendix. This program

also uses a complex eigen solver called as an external

subroutine. Output from this program is a direct access

binary file containing the eigen solutions evaluated at the

specified frequencies.

* Last Updated by G.A. Omans II
* on 30 July 1992
*
**********************************************************************
*****
* MODAL DECOMPOSITION PROGRAM
*

* Program to calculate eigenmodes and eigen values given the sound
* & density profile
* Output is to a DIRECT ACCESS Binary file "modes .dabin"
* Program used to extract Neccesary Data for Beam Forming is
"CWextract.f

"

* or "BBextract .f " . CWextract creates input to the Continuous -Wave
* beamformer. BBextract creates input files for use in the Broadband
* beamformer.
************************************************************************
*****
* FILES:
* afreqmode.in - Input file containing sound & density profiles,
* depth increment dz , hard bottom depth Hdepth,
* center frequency fc (Not used in computations)

.
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* Profiles need not be complete, they will be inter-
* polated to correct number of points. However, the
* profile depth spacing must be greater than dz at all
* points.
*

* modes. dabin - Direct access, binary output file. This file can be
* accessed by "mextract.f" to extract modal information
* for beamforming, or for inspecting mode shapes &
* eigenvalues

.

*

* mode . sys - This file is used as a check on how well the eigen
* solver "eigrf" and the eigen subroutine itself are
* doing. A fair amount of information is output to
* this file, including sound & density profiles, the
* eigen matrix a, the number of trapped modes & their
* eigenvalues; to name a few. If VERBOSE parameter
* option is selected, then even more information is
* displayed.
*

* standard output - Information sent to standard output is very-
limited.
* The user is provided with just enough information to
* indicate where the program is currently running, and
* any significant problems if encountered. If you
* have selected VERBOSE prior to compiling the program,
* then the amount of information will overwelmingly
* increase, and will be impossible to keep track of in
* the interactive mode. In this case the program should
* be run in the background and standard output should
* be redirected to a file. In any case, the program
* has a significant run time do to the recursive eigen
* solver routine, and should be run in the background
* most of the time

.

*****************************************************************
*****
QUIRKS

:

* Because of the recursive operations performed by IMSL subroutine
* eigrf, a large amount of memory is required. To accomadate the
* memory needs of the subroutine, in the main program the arrays Z
* and kc have been demensioned larger than required by eigrf itself.
* This extra cusion of memory significantly improves the solutions
* from the eigen solver and increases the number of trapped modes found.
************************************************************************
*****
* a - (array) eigenvalue coefficients from difference eqn.
* (small dz approx.)
* buff - (array) profile buffer for input into READP subroutine
* c - (array) sound speed, interpolated from input file
* depth - (par) used to define the soft depth; This parameter
* does not effect calculations, however, it is used for
* testing the reliability of trapped eigen solutions at
* the silt.
* df - (par) frequency increment used in evaluating band
* dz - (var) depth step read from input file
* efun - (array) eigen functions
* eigen - SUBROUTINE to calculate eigenfunctions and eigen values
* EX - (log) switch used for testing the existance of a file
* f - (var) frequency (Hz)
* fc - (var) center frequency; serves no purpose except as identifier
* fdate - (char) used for printing start and end times
* filename - (char) holds the name of a file for error messages
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(par) maximum frequency in band to evaluate
(par) minimum frequency in band to evaluate

- (var) depth of channel + the sediment depth
ie . depth of hard bottom
- (var) frequency counter
- (var) number of terms read from profile for input into buff
- (parameter) size of temporary array used for interpolating

NOTE: isize must be > IFIX(1.5 + ZMAX profile/DZ)
(var) record number for direct access file
(var) passed by subroutine eigen indicates number of trap modes

(par) jump is the maximum number of "Trapped" Modes DESIRED
jump is also used to jump to certain records in the direct

file,
(array) eigenvalues or the square of Kn for each mode
(par) number of modes to be calculated; for best results,

this should be isize-1
(var) total number of frequencies to calculate nf =

n)/df
total number of eigen solutions for a particular frequency

to direct access output file, (minimum between itrap & jump)
(var) number of eigenvalues, profile points, & eigenvalue

(var) number of points in svp (includes surface point, which

not required for eigenvalue since the value is zero at the

- (var) pi itself in double precision
(var) record length of direct access file (important to

- (array) density array, contained in input file mode . in
(array) a working array used in subroutines readp and

eigen temp is called mstor
(var) radial frequency (rad/s)

- (log) Gives User full Status Report on All Eigen Solutions
* and Profiles; Good For Trouble Shooting But Maybe
Overwhelming
************************************************************************

* fmax
* fmin
* Hdepth
*

* ifreq
* icount
* isize
profile
*

* irec
* itrap
found
* jump
*

access
*

* k
* m
*

* nf
1+ (fmax-fmi
* nmodes -

written
*

* nz
length
* nzpl
is
*

surface)
* pi
* rcl
mextract . f ]

* rho
* temp
eigen; in
*

* w
* VERBOSE

*

*

*

**
**

C
c
c

NOTE: The input profiles are double precision.
Profiles are changed to double precision in READP subroutine.
Profiles in the input file need not be in double precision.

**********************************************************************
***

SYSTEM PARAMETERS

real* 8 df, depth
logical ON, OFF, VERBOSE
parameter (0N=1 , OFF=0)

USER PARMAMETERS

parameter (VERBOSE=OFF)
parameter

(
jump=2 0)

parameter (fmin=208 , fmax=240 , df =1)
parameter (isi ze=2 11, m= (isize-1)

)
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parameter (depth=276 .

)

implicit real*8 (a-h,o-z)
real*8 k(m),w,f,fc
real* 8 Hdepth,dz
real*8 pi
integer irec,nmodes, rcl
character*24 fdate, filename
logical EX
DIMENSION c(isize) ,rho(isize) ,temp(isize)
DIMENSION buff (isize,2)

C
C EIGEN SUBROUTINE VARIABLES
C

DIMENSION ea (isize, isize) , work (2* (isize+2) *isize)
DIMENSION kc (isize+4 0) , z (isize+4 0, isize+40) , efun (isize, m)

C
C FILES
C

OPEN (UNIT=1 , STATUS= ' OLD ' , FILE= ' afreqmode . in'

)

C
c
c MORE open statements
c
c
C OPEN MODE. SYS
c

INQUIRE (FILE= ' mode . sys ' , EXIST=EX)
IF (EX) THEN

OPEN (UNIT=13,FILE=' mode. sys' , STATUS='OLD'

)

CLOSE (13, STATUS =' DELETE'

)

ENDIF
OPEN (UNIT=9 , FILE= ' mode . sys '

,

1 FORM=' FORMATTED' ,STATUS='NEW ,ERR=2003)

C
C OPEN MODES. DABIN
C

nf = 1+ ( (fmax-fmin) /df

)

IF (m.LE. isize. AND. (nf+2) .LE. isize) then
rcl=isize*8 + 8*21

ELSEIF( (nf+2) .LE.m) then
rcl=m*8 + 8*21

ELSE
rcl=(nf+2)*8 + 8*21

ENDIF
INQUIRE (FILE='modes. dabin' ,EXIST=EX)
IF (EX) THEN

OPEN (UNIT=14,FILE=' modes. dabin' , STATUS='OLD'

)

CLOSE ( 14 , STATUS= ' DELETE '

)

ENDIF
OPEN (UNIT=4,FILE=' modes. dabin' ,ACCESS=' DIRECT' ,RECL=rcl,
1 FORM=' UNFORMATTED' ,STATUS='NEW ,ERR=2005)

C
C DECLARE PI IN DOUBLE PRECISION
C
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pi = 4. dO * datan(l.dO)

C
C Give START TIME
C

write (6,*) fdateO
write (6,*) '\n'

WRITE ( 6 ,*)' RECORD LENGTH : ' , rcl

C
C INITIALIZE BUFFER VARIABLE
C

do 10 i=l,isize
do 20 j=l,isize

buff(j,i) = 0.0
20 continue
10 continue

c
c
c Read in ocean/model parameters
c

read(l,*) Hdepth
write (6,*) 'depth w/ sediment = ', Hdepth
read(l,*) dz
readd,*) fc
write (6,*) 'dz =' ,dz
write (6,*) 'frequency (Hz) = ' , f

c

C
C DETERMINE NUMBER OF POINTS IN PROFILES
C

nzpl =1.5+ Hdepth/dz
nz = nzpl - 1

c
c Read in and interpolate sound velocity profile
c Read Sound Velocity Profile into Buffer Variable & Print
c

i =

do 30 WHILE(buff (i,l) -NE.-l .AND . i .LT. isize)
i = i+1

readd,*) (buf f (i, j ) , j=l, 2)

30 continue
icount = i-1
write (6,*) 'SVP icount = ', icount

C
C Read and interpolate SVP
C

CALL READP (dz, nzpl, isize, c, temp,buff

)

C
C CLEAR BUFFER
C

do i=l, isize
buff (i,D=0
buff (i,2)=0

enddo

C
C Write the interpolated SVP to the screen
C

if (VERBOSE) then
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do 60 j=l, (nzpl+1)
write(6,*) dz*(j-l), c(j)

60 continue
endif

C
C READ IN DENSITY PROFILE
C

i =

DO 31 WHILE(buff (i,2) .NE. -1 .AND . i .LT. isize)
i = i + 1

read(l,*) (buff (i, j) , j-1,2)
31 continue

icount = i-1
write (6,*) 'Density icount = ', icount

C
C Read and interpolate DENSITY
C

CALL READP (dz,nzpl, isize, rho, temp, buff)
c
c Write the interpolated DENSITY to the screen
c

if (VERBOSE) then
do 61 j=l, (nzpl+1)

write(6,*) dz*(j-l), rho(j)
61 continue

endif

C
C CLEAR WORKING ARRAY TEMP FOR USE AS MSTOR IN EIGEN SUBROUTINE
C

do j=l, isize
temp(j) =

enddo
C
C CALCULATE EIGEN FUNCTIONS & EIGEN VALUES
C FOR ALL FREQUENCIES

C ** nf = 1+ ( (fmax-fmin) /df )
** CALCULATION PRIOR TO OPENING DATA FILE

f = fmin
write (6,*) 'nf =',nf,' df =',df

c
Q ****************************************************************

WRITE (4,REC=1) fc, fmin, fmax, df ,nf , dz ,m, nzpl, jump, rcl
WRITE(4,REC=2) c
WRITE(4,REC=3) rho

c *******************************************************

c
irec=4

do 100 ifreq = l,nf

C
C CONVERT TO RADIAL FREQUENCY
C

w = 2 * pi * f
write (6, *)

' \n\n** ***************************** ***********'
write(6,*) 'f =',f,' (Hz) ifreq =', ifreq
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write(6,*) 'w=',w,' (rad/s)

'

C
C INITIALIZE VARIABLES
C

do i=l,nz-l
k(i)=0
kc(i)=0
do j=l,nz-l

if(j.LT.m) efun(i,j)=0
z (i, j) =0

enddo
enddo

C
C CALL EIGEN SOLVER SUBROUTINE
C

CALL eigen (c, rho,dz,nz,efun,m,k,kc, w, z,ea,
& depth, work, temp, ifreq, isize,
& itrap, VERBOSE)

c
Q *************************************************

write (4,REC=irec) w,itrap,k

c
if (jump.GT.itrap) then

nmodes = itrap
else

nmodes = jump
endif

do 7 im=l, (nmodes)
irec=irec+l

c **************************************************
write (4,REC=irec) (efun(i, im) ,i=l,nz)

Q **************************************************

70 continue
irec= (jump+2) *ifreq + 4

100 f=f+df

go to 2500

c - --

c close statements
c
2003 filename='mode.sys'

goto 2010
2005 " filename=' modes .dabin'
2010 write (6,3000) filename

GOTO 2500

2500 close (9)

close (4)

close (1)

C
C FORMAT STATEMENTS
C
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3000 formatC ERROR OPENING FILE : ' ,A)

C
C END TIME
C

write (6, *) 'Program End Time: ',fdate()

stop
end

************************************************************************
*****
************************************************************************
*****

C SUBROUTINE EIGEN
********************************************************************
*****
* INCLUDING DENSITY AND SOUND SPEED VARIATION
* NORMALIZED
* : eigenvalues, k and eigenvectors, z are complex
*

* compute m normal modes z(i,m) and wavenumbers k(i)
* for a given sound-speed profile c(i),
* a given frequency w,
* a given density profile
* and a given step size dz

.

*

* nz*dz is the depth of the ocean
* be: pressure release surface.
* rigid bottom with soft sediment interface
* input: nz,m,dz,w,c
* output : w
* m,nz
* c,k,z (freq., sound speed, eigenvalues, eigenvectors)
* (note: eigenfunctions, z have two less points than c;
* recall z(0) is and z (nz) =z (nz-1)

.

* internal: a, work; one must set iw=l5*n
*
*************************************************************************
*

* UPDATES /CORRECTIONS:
*

* 1) UPDATED - OUTPUT ONLY TRAPPED MODES BASED ON
* K AT THE BOTTOM & ELIMINATES EVANESCENT
* SOLUTIONS. 15 JUN 92
* 2) CORRECTION - EIGENMODE NORMALIZATION NOW REFLECTS
* INVERSE OF THE DENSITY VS. DENSITY MULTIPLICATION.
* 18 JULY 92
* 3) UPDATED - REORDER EIGEN SOLUTIONS BY MODE NUMBER.
* REORDERING IS ACCOMPLISHED BY SORTING BY EIGENVALUE
* FROM HIGHEST TO LOWEST. THIS WILL EFFECTIVELY ORDER
* ALL MODES FROM LOWEST TO HIGHEST. 24 JULY 92
* 4) UPDATED/CORRECTED - REALIGNS TRAPPED MODES TO HAVE THE
* SAME SIGN OR PHASE. REFERENCE IS A NEGATIVE SIGN AT
* THE BOTTOM. 29 JULY 92
* 5) UPDATED - CHECKS FOR BAD EIGENFUNCTION SOLUTIONS BY
* EVALUATING THE EXISTANCE OF MODAL ENERGY AT THE BOTTOM.
* 30 JULY 92
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*************************************************************************
a
all
c
cb

d
depth
dterm

calculating
*

dz
dz2
dz2inv -

dz2inv2
efun
eigrf
ext
itrap

ijob

ik
im
isize
jlast
k
kb2
kc
k_trap -

k_last -

m
mode . sys
mreal
mstor

nz
size
* nzpl
* pi
* VERBOSE
* w
* work

finite difference matrix or "eigen matrix"
- integer defining domain of eigen solutions

sound speed profile for an individual station
- value of the sound speed at the bottom of the water column

sediment
density profile for an individual station

- depth of soft bottom, used to test for energy at bottom
a term used in the finite difference equation for

the eigen matrix
- depth increment of input
- dz squared, used in finite difference EQ

inverse of dz2
- two times the inverse of dz2
- eigenfunction matrix (Eigen Vectors) Represents Modes
- IMSL matrix eigenvalue solver subroutine
- Minimum value for sign testing of eigen function
- counter used in conjunction with mstor to save only

trapped modes (FINAL itrap IS TOTAL TRAPPED MODES)
- = 1 : calculate k

= 2 : calculate k & z

= 3: calculate k,z & performance index
- simular use as im
- used as a modal incrementer
- a demensioning term
- integer variable used to check number of modes realigned

real eigenvalue vector, k = Kn**2
- eigenvalue at the bottom of water column sediment squared
- complex eigenvalue matrix

variable used to relay trapped Kn's
test variable used in reordering eigen solutions
number of modes Evaluated from eigrf output

- System file for subroutine, make sure you check "p index"
- Number of Modes Realigned (CURRENTLY DOESN'T WORK)
- array used to keep track of only modes which are trapped

efun are then stored as a function of mstor
- nzpl-1, number of depth points; also is eigen function

- number of physical points (including free surface)
- itself pi, in double precision
- logical switch for print out control

frequency (2*pi*f)
- internal work space: require for IMSL routine "eigrf"

* z - eigenfunction matrix output from eigrf subroutine
*************************************************************************
*************************************************************************

SUBROUTINE eigen (c, d, dz , nz , efun, m, k, kc, w, z,a,
& depth, work, mstor, ifreq, isize,
& itrap, VERBOSE)

logical ON, OFF
parameter (0N=1 , OFF=0

)

implicit real*8 (a-h,o-z)
real* 8 k (m) , k_trap, k_last, kb2

,
pi, depth

integer i, j , ik, jlast , im, itrap, all
complex*16 kc(nz) , z (nz,nz)
dimension c(isize) ,d(isize) ,a(nz,nz) ,work(2* (2+isize) *isize)
dimension efun (isize, m)
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dimension mstor(isize)
logical VERBOSE, FLAG
data ijob/2/

C
C INITIALIZE ARRAY A
C

DO 10 i=l,nz
DO 20 j=l,nz

a(i,j) = O.dO
20 CONTINUE
10 CONTINUE

C
C INITIALIZE WORKING ARRAY
C

DO i = l, ( (2+isize) *isize*2)
work ( i ) = 0.0

ENDDO
C
C DEFINE COMPUTATIONAL DOMAIN
C

nzpl = nz +1

C
C PRINT HEADER
C

if (ifreq.eq. 1) then

write (9,*) 'NMODE PROGRAM INITIATED'
write (9,*) 'TOTAL MODES EVALUATED m = ',m
write (9,*)' dz(m)=',dz,' nz=',nz
write (9,*)
write (9 ,*)' sample input sound speed profile at ir=l,itr=l'
write (9, ' (4 (i4,lx,f8.3) )') (iz,c(iz) , iz=l,nzpl, 2)
write (9, *)' sample input density profile at ir=l,itr=l'
write (9, ' (4 (i4, lx, f 8 .3) )

' ) (iz,d(iz) , iz=l,nzpl, 2)
endif

C
C DEFINE PI

pi = 4. dO * datan(l.dO)

c INPUT geometries parameters
c
c frequency is in hertz*2*pi=radians/sec
C
c dz given in m
C

dz2inv = l.d0/dz**2
dz2inv2 = 2.d0*dz2inv
dz2 = dz*2.d0

write (6,*) 'CALCULATING A MATRIX'

do 11 iz=2,nzpl

c set up the operator matrix a in band symmetric mode
if (iz.lt. nzpl) then

dterm = (dlog (d(iz+l) ) -dlog(d(iz-l)
) ) /dz2
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else
dterm = O.dO
endif

if (iz.lt.nzpl) a(iz-l,iz) = dz2inv- dterm
if (iz.gt.2) a(iz-l,iz-2) = dz2inv+dterm

11 a(iz-l,iz-l) = (w/c(iz))**2 - dz2inv2
c soft upper b.c. incorporated above
c hard lower b.c.

a(nz,nz-l) = dz2inv2
C
C FOR FIRST FREQUENCY OR IF VERBOSE ON, OUTPUT EIGEN MATRIX
C

if (ifreq.eq.l .OR. VERBOSE) then

write (9, *)
' \n check input array A (1,1 1,5)'

write (9,*)

'

write (9,*)

'

write (9,*)

'

write(9,*)' (5,1 5,5)\n'

do i=l,5
write (9,*) (a (i, j ) ,

j=l, 5)

enddo
write (9, *)

' \n check input array A(nz-5,nz-5 n-5,n)

'

write (9,*)

'

write (9,*)

'

write (9,*)

'

write(9,*)' (nz,nz-5 nz,nz)\n'
do i= (nz-5) ,nz
write(9,*) (a(i, j) , j= (nz-5) ,nz)

enddo
endif

c
c find the k*k's and the z's
c
c ijob = 1, calculate k only
c ijob = 2, calculate both k and z

c ijob = 3, calculate k, z, and performance index

write (6,*) 'SOLVING FOR EIGEN VALUES & FUNCTIONS'
CALL eigrf (a,nz,nz, ijob,kc, z,nz, work, ier)

write (9, *)
' \n ifreq = ',ifreq,' w = ',w

write (9,*) ' \n p index =',work(l)

if (work(l) .ge.50 . ) then
write (6,*)

' \n\nWARNING WARNING WARNING WARNING'
write(6,*)'P INDEX' , work (1)

,
' IS TOO LARGE'

write (9,*)
' \n\nWARNING WARNING WARNING WARNING'

write(9,*)'P INDEX' , work (1) ,
' IS TOO LARGE'

endif
C
C YOU DON'T REALLY WANT TO LOOK AT THIS, IT'S BORING
C
C if (VERBOSE) then
C write (9,*) 'complex first eigenvector'
C do iz=l,nz,2
C write (9,*) iz,z(iz,l)
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C enddo
C endif

C
C TEST K'S FOR TRAPPED MODES
C

C DTERMINE K AT THE BOTTOM

write (6,*) 'DETERMINING TRAPPED MODES'

Cb = 1677.0
kb2 = (w/cb)**2
itrap =
write (9,*)

' \n MODE FREQ: ' , w/ (2*pi) ,

' \n'

C DEFINE DOMAIN OF EIGEN SOLUTIONS

if (nz.lt. m) then
all=nz

else
all=m

endif

C TEST FOR TRAPPED MODES

do 14 im=l,all
IF(abs(dimag(kc(im) ) ) .GT.O.dO .OR.

& dreal (kc(im) ) .LT.kb2) then
IF (VERBOSE) THEN

WRITE (*,*) 'MODE at im = ' , im, ' AT FREQ' , w/ (2*pi)

,

& ' Hz IS NOT TRAPPED'
IF(abs(dimag(kc(im) ) ) .GT.O.dO) WRITE (*,*)

& 'K
A
2 IMAG =' ,dimag(kc(im)

)

IF (dreal (kc ( im) ) . LT . . dO ) WRITE (
*

, *

)

& 'K
A
2 (NEG) =', dreal (kc(im)

)

IF (dreal (kc(im) ) .LT.kb2 .AND. dreal (kc (im) ) .GT.O.dO) WRITE (*,*)

& 'K
A
2 REAL < KB

A
2 =', dreal (kc (im) ), ' <',kb2

ENDIF
ELSE

itrap = itrap + 1

mstor(itrap) = im
k_trap = dreal (kc (im)

)

write (9, *) 'Mode Evaluated at im =',im,
& ' is TRAPPED'

write (9,*) 'eigen value: Kn =' , sqrt (k_trap)
ENDIF

14 continue

c ************************************************
WRITE (9,*) 'NUMBER OF MODES \n', itrap

c *************************************************

if (ipram.eq.l) goto 330

C
C NORMALIZE EIGENFUNCTION (normalize the z's, store in efun)
C
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im=l
mreal=0
jlast=0

do 13 WHILE (im.LE.itrap)
k_trap=0

IF(im.EQ.l) THEN
do ik=l,itrap

if (dreal (kc (mstor (ik) ) ) .GT.k_trap) then
k_trap=dreal (kc (mstor (ik) )

)

j=ik
endif

enddo
ELSE

do ik=l,itrap
if (dreal (kc (mstor (ik) ) ) .GT.k_trap.AND.

& dreal (kc (mstor (ik) )) .LT.k_last) then
k_trap=dreal (kc (mstor (ik) )

)

j=ik
endif

enddo
ENDIF

COUNT REALIGNED MODES

if (j .NE . (
jlast+1) ) mreal = mreal+1

k(im) = k_trap
k_last = k_trap
orthnorm = 0.0

do i=l,nz
orthnorm =orthnorm +

& (1.0/d(i+l) )* (dreal (z(i, mstor (j) )
)**2 +

& dimag(z (i, mstor (j) )) **2)
enddo

orthnorm =dsqrt (orthnorm*dz)

TAKE REAL PART AND STORE IN EFUN ARRAY

do i=l,nz
efun(i,im) = dreal (z (i, mstor (j ))) /orthnorm
enddo

jlast=j
13 im = im + 1

write (9, 999) mreal
999 format (i4,' modal realignments made.')

c
c eigenfunction alignment (refr. radial dependency)
c method: test for significant value (>0)

c test for sign change in gradient
c save sign of first extremum
c
c set up standard of comparison
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mreal=0
FLAG=ON

DO 250 im=l,itrap
ext = .002
iz = nz

do 251 while (dabs (efun(iz, im) ) .LT. ext .AND. iz.GT.l)
251 iz = iz-1

C TEST FOR ZERO ENERGY AT BOTTOM (FAULTY EIGENFUNCTIONS)

if (dfloat (efun ( ifix (depth/float (dz) ) , im) ) .EQ. . ) then
if (FLAG) then

write (*,*) '\nWARNING! WARNING!\n'
write(9,*) ' \nWARNING! WARNING!\n'
FLAG=OFF

endif
write (*, 1002) im
write (9, 1002) im

endif

C ALIGN ALL EIGENFUNCTIONS TO BE NEGATIVE AT THE BOTTOM

if (dsign(l .d0,dreal (efun(iz, im) ) ) .GT.0) then
mreal=mreal+l
do j=l,nz

efun(j,im) = -efun(j,im)
enddo

endif

250 CONTINUE

write (9,1001) mreal
1001 format (i4,' modal sign changes made.')
1002 format (' \tMode' , i3, ' May Have a Faulty Eigen Function')

C
C OUTPUT SAMPLE OF EIGEN FUNCTIONS TO MODE . SYS
C IF VERBOSE SET TO ON
C

if (VERBOSE) then
J = 1
write (9, 1003 )j,k(j) , (efun(iz, j) ,iz=l,nz)
j = 20
write (9 ,1003) j,k(j) , (efun(iz, j) ,iz=l,nz)
j =25
write (9, 1003 )j,Mj) , (efun(iz, j) ,iz=l,nz)

endif

1003 formate mode',!,' eval = ' ,dll .5/' efun:',
& 5(2x,dll.5)/22(6x,5(2x,dll.5)/)

)

330 write (6,*) ' \n FINISHED CALCULATING EIGENMODES'
return
end

****************************************************************
C Subroutine READP
C
C PROFILE READER. INTERPOLATES TO FILL IN PROFILES VALUES BETWEEN
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C INPUTS

.

C
C DZ - VERTICAL STEP SIZE
C M - NUMBER OF POINTS IN VERTICAL ARRAY
C N - NUMBER OF POINTS IN WORKING ARRAY
C MUST BE > OR = ZMAX (PROFILE) /DZ +1.5
C AF - FINAL VALUES OF INTERPOLATED PROFILE ARRAY
C A - WORKING ARRAY OF VALUES
C NOTE: ACTUAL PROFILE VALUES MUST BE > -100.0
C OR INITALIZATION VALUES MUST BE CHANGED
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE READP (DZ,M, N, AF, A, IN)
REAL*8 A,DZ,AI,ZI,AF,IN
INTEGER k
DIMENSION A(N) ,AF(M) ,IN(N,2)
ILAST = -1

C
C initialize output array
C

DO 7 I=1,M
AF(I) = 0.0
7 CONTINUE

C
C INITIALIZE WORKING ARRAY
C PROFILE VALUE MUST BE LESS THAN INITALIZATION VALUE
C

DO 1 I=1,N
A(I)=-100.0

1 CONTINUE

k=l
ZI=IN(k,l)
AI=IN(k,2)
A(1)=AI
I=1.5+ZI/DZ
A(I)=AI

2 IF (ILAST .LT. 0) THEN
k = k+1
ZI=IN(k,l)
AI=IN(k,2)

ENDIF

IF(ZI .GE. (M-1)*DZ) ILAST=1.5+ZI/DZ
C
C EXIT LOOP IF DONE READING PROFILE
C PROFILE MORE THAN ONE PAST THE BOTTOM
C OR HAS REACHED THE LAST POINT INPUTED
C

IF(ZI.LT.O.O) GO TO 3

I=1.5+ZI/DZ
C
C ENSURE THAT N HAS BEEN DEFINED LARGE ENOUGH
C

IF (I .GT. N) THEN
WRITE (*,*) 'N DEFINED TOO SMALL: N MUST BE > NZ+2 '

,

& ' IN INPUT PROFILE, N = ',N, ' I = ',1
ELSE

A(I)=AI
ENDIF
IF ( ILAST. GE.0) GO TO 3
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GO TO 2

C
C SET A(M+2) EQUAL TO THE LAST VALUE IN THE PROFILE
C VALUES AT DEPTHS BELOW THE LAST DEFINED POINT
C ARE GIVEN THE SAME VALUE AS THE LAST DEFINED POINT
C UNLESS A POINT DEEPER THAN THE BOTTOM IS GIVEN
C

3 IF(ILAST .LT. 0) A(M+2)=A(I)
1=1
J=l

4 1=1+1
C
C FIND NEXT DEFINED PROFILE VALUE (FIRST VALUE ALREADY GIVEN)
C NOTE: PROFILE VALUES MUST BE LESS THAN INITIALIZATION VALUE
C

IF (A (I) .LE.- 100.0) GO TO 4

C
C IF TWO CONSECUTIVE PROFILE POINTS ARE GIVEN, NO INTERPOLATION IS
NEEDED
C

IF(I-J.EQ.l)GO TO 6

C
C INTERPOLATE IN BETWEEN THE TWO DEFINED PROFILE VALUES TO FIT NEW GRID
C

DO 5 K=J+1,I-1
A(K)=A(J)+FLOAT(K-J)*(A(I) -A (J) ) /FLOAT (I -J)

5 CONTINUE
C
C RESET J VALUE TO THE LAST DEFINED POINT INTERPOLATED TO
C

6 J=I
IF(ILAST.GE.O) THEN

IF(J.LT.ILAST)GO TO 4

ELSE
IF(J.LT.M+2)GO TO 4

ENDIF
C
C WRITE COMPUTED ARRAY INTO OUTPUT ARRAY
C OUTPUT ARRAY MUST HAVE NO MORE THAN M VALUES:
C MUST BE SMALLER THAN WORKING ARRAY
C

DO K=1,M
AF(K)=A(K)
ENDDO
RETURN
END

C. MODAL EXTRACTION PROGRAM

This program, written in Fortran F77, takes the binary

output of the modal decomposition program, and puts it into a

usable format for modal beamforming. The output from this

program is in two files. The first is an ASCII file
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containing the eigen values with corresponding frequencies.

The second contains the eigen function, or mode shapes for

each frequency stored in a direct access binary format.

*********************************************************
* PROGRAM: "CWextract .

f

"

*

* CREATED BY GLENN A. OMANS II
* WRITTEN 30 JDN 1992
* LAST UPDATE 18 JULY 1992
*

*

*
PURPOSE: TO EXTRACT MODE DATA FOR USE IN BB BEAMFORMING

INPUT: DIRECT ACCESS BINARY DATA CREATED BY ALLFREQ.F
FILENAME IS USUALLY modes. dabin

OUTPUT: TWO FILES CONTAINING THE EIGEN FUNCTION (Z) FOR
ALL FREQUENCIES AND THE EIGEN VALUES Kn's

EIGEN FUNCTION OUTPUT IS A SEQUENTIAL BINARY FILE
EIGEN VALUE OUTPUT IS AN ASCII FILE

*********************************************************************
LISTING OF VARIABLES, ARRAYS & PARAMETERS

buff

df
dz
efun
eval
EX
fc
fmax
fmin
fnamel
fname

2

fname

3

ifreq
irec
itrap
izmax

zpl-1)
jump
kn
m

(array) vector holding input eigen functions for a specific
frequency
(var) frequency increment
(var) depth increment
(array) depth by freq. matrix holding eigen function vectors
(array) eigen value vector for all frequencies & some mode #
(log) switch defining a files existance
(var) carrier/center frequency, Not used
(var) maximum frequency in band
(var) minimum frequency in band

(char) Holds binary input filename
(char) Holds eigen function filename
(char) Holds eigen value filename
(var) frequency counter
(var) Points to record being read from
(var) Total number of trapped modes for a single frequency
(var) Maximum Number of Depth Points; the min(zmax/dz and

(var) from input file, defines number of modes stored
(var) SQRT (Eigenvalue) for specific mode & frequency

(par) Maximum Number of eigen values ie. modes
[Must be larger then stored modes]

mi (var) Total number of solutions evaluated by eigen solver
mintrap (par) Defines Maximinimum for trapped/saved modes
mode (var) Input from STD 10 defining mode # to extract
n (par) Maximum Eigen Function Length

[Must be larger then stored frequencies]
nf (var) Total number of frequencies in file
Nfc (var) Defines the "ifreq" for the Center Frequency-
pi (var) PI itself in double precision
rcl (var) Record Length, defined by input file
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* w (var) Radial Frequency, part of eigen value output
* z (array) Depth at each frequency
* zmax (par) depth cutoff for eigen function

implicit real*8 (a-h,o-z)
parameter ( zmax=4 2 )

parameter (n=210,m=50)
character*20 fnamel, fname2, fname3

real*8 w,fc,dz,df ,kn,efun,z
real*8 pi
real*4 fmin,fmax
integer jump, rcl, irec, i zmax
LOGICAL EX
DIMENSION eval (m) , efun (n+1 , m) , buff (n)

C
C DECLARE PI IN DOUBLE PRECISION
C

pi = 4. dO * datan(l.dO)
C
C PRINT HEADER
C

write (* *) '\n\n\n'
write (*,*) '\n\t\t\t\t\t\tPROGRAM WRITTEN: 3 AUGUST 1992'
write (*,*) '\t\t\t\t\t\t BY: Glenn A. Omans II'
write (*,*)

' \n\n'
write (*,*) '\t*** EXTRACT EIGEN FUNCTIONS AND ',

& 'VALUES FOR BB BEAMFORMING ***'

write (*,*) '\n\nNOTE:'
write (*,*) 'INPUT FILE IS DIRECT ACCESS BINARY',

& '\n\tUSUALLY CALLED: modes. dabin'
write (*,*) '\t\tCREATED FROM MODAL DECOMPOSTION PROGRAM'
write (*,*) '\t\t\tCALLED allfreq.f
write (*,*) '\n\n\n'

C
C READ MODE NUMBER FROM OPERATOR
C

write (*,*)' \n INPUT MODE NUMBER TO BE EXTRACTED \n'
read ( *

, * ) mode
C
C READ IN FILE NAMES FROM KEYBOARD
C

write (*,*)' \nENTER NAME OF BINARY INPUT FILE:\n'
read(*,*) fnamel
INQUIRE (FILE=fnamel , EXIST=EX)
IF (.NOT. EX) GOTO 2001
write (*,*) '\nENTER NAME OF EIGEN FUNCTION OUTPUT FILE:\n'
read(*,*) fname2
write (*,*)' \nENTER NAME OF EIGEN VALUE OUTPUT FILE:\n'
read(*,*) fname3

C
C OPEN INPUT AND OUTPUT FILES WITH ERROR MSG
C

OPEN (UNIT=2 0,FILE=fnamel, STATUS=' OLD' , FORM= ' UNFORMATED
'

,

& ACCESS=' DIRECT' , RECL=1700 , ERR=2000)
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C *** ABOVE FILE WILL BE CLOSED & REOPENED ONCE CORRECT ***
C *** RECORD LENGTH HAS BEEN OBTAINED ***

INQUIRE (FILE=fname2 , EXIST=EX)
IF (EX) GOTO 2005

C OPEN EIGEN VALUE DATA FILE AFTER RECORD SIZE DETERMINED

OPEN (UNIT=21, STATUS =' NEW , FORM= ' FORMATED
' , FILE=fname3 ,

& ERR=2010)

C
C READ IN DATA FROM INPUT FILE
C

read (UNIT=2 , REC=1 ) fc , fmin , fmax, df , nf , dz , mi , nzpl
,
j ump , rcl

write (*,*) 'RECORD SIZE:', rcl
write(*,*) 'fc =' ,fc
write (*,*) 'fmin =',fmin,' fmax =',fmax
write (*,*) 'df =',df,' nf =',nf
write (*,*) 'dz =',dz,' Max Mode Eval =',mi,' Eigen Size =',nzpl

C
C CLOSE DATA FILE & REOPEN w/ CORRECT RECORD LENGTH
C

CLOSE (2 0)

OPEN (UNIT=20,FILE=fnamel,STATUS=' OLD' , FORM= ' UNFORMATED '

,

& ACCESS=' DIRECT' , RECL=rcl , ERR=2000)

C ENSURE SELECTED MODE NUMBER IS IN BOUNDS

if (jump.LT.mi) then
mintrap=jump

else mintrap=mi
endif

C ERROR OUT ON NOT ENOUGH MODES STORED

if (mode. GT. mintrap) GOTO 2 02

C ERROR OUT IF VARIABLES ARE DIMENSIONED TOO SMALL

if(m.LT.nf) then
GOTO 2030

endif
if (n . LT . (nzpl - 1 ) ) then

GOTO 204
endif

C
C EXTRACT EIGEN VALUES
C

do 100 ifreq=l,nf

irec= (jump+2) * (ifreq-1) + 4

read (UNIT=20 , REC=irec) w, itrap, eval

C ERROR OUT ON "MODE NOT STORED"

itrap=itrap+l
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if (mintrap .GT. itrap) mintrap=itrap
if (mode. GT.i trap) goto 2020

C OUTPUT EIGEN VALUE TO FILE

kn = sqrt (eval (mode)

)

write(21,*) w,kn

100 CONTINUE

C
C LOAD EIGEN FUNCTION MATRIX
C

do 300 ifreq=l,nf
irec = (jump+2) * (ifreq-1) +4+mode
read(UNIT=20,REC=irec) buff

do 200 iz=l, (nzpl-1)
efun (iz, ifreq) = buf f (iz)

200 continue
300 continue

C
C WRITE DEPTH VECTOR TO efun(iz,0)
C

i =

z =

do 350 iz=l, (nzpl-1)
if (z .LE . zmax) then

i=i + l
efun (iz , 0) =z

endif
350 z = z+dz

izmax=i

C
C OPEN EIGEN FUNCTION DATA FILE
C

OPEN (UNIT=22,FILE=fname2,ACCESS=' DIRECT' ,RECL=4* (nf+1)

,

& FORM= ' UNFORMATED ' , STATUS=' NEW ,ERR=2005)

C
C WRITE EIGEN FUNCTION MATRIX TO BINARY FILE
C

CALL efunOUT (efun, temp, n,m,nf, i zmax)

GOTO 2050

C
C ERROR MESSAGES
C

2000 write(*,*) '\n ERROR OPENING INPUT FILE: ',fnamel
write(*,*) '\n INPUT FILE MUST BE BINARY'
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write (*,*) '\n CHECK RECORD SIZE'
GOTO 2050

2001 write (*,*)' \n ERROR INPUT FILE ',fnamel,' DOES NOT EXIST!!'
GOTO 2050

2005 write (*,*)
' \n ERROR OPENING EIGEN VALUE DATA FILE: ' , fname2

write (*,*) '\n FILE MAY ALREADY EXIST'
GOTO 2050

2010 write (*,*)
' \n ERROR OPENING EIGEN FUNCTION DATA FILE: ' , fname3

write(*,*) ' \n FILE MAY ALREADY EXIST'
GOTO 2050

2020 write (*,*)
' \n ERROR ERROR ERROR ERROR ERROR\n'

write (*,*) 'NUMBER OF MODES SELECTED' , mode,
& ' EXCEEDS STORED MODES' ,mintrap
GOTO 2045

2030 write (*,*)
' \n ERROR ERROR ERROR ERROR ERROR\n'

write (*,*) 'DIMENSION ERROR, m =' ,m
write (*,*) 'MUST BE GREATER THEN', jump
GOTO 2045

2040 write (*,*)
' \n ERROR ERROR ERROR ERROR ERROR\n'

write (*,*) 'DIMENSION ERROR, n =',n
write (*,*) 'MUST BE GREATER THEN',nf

2045 close (21, STATUS =' DELETE '

)

Close (22 , STATUS =
' DELETE '

)

GOTO 2060

2050 close (21)
close (22)

2060 close (20)

STOP
END

************************************************************
**********************************************************************
* SUBROUTINE efunOUT (efun, temp, n,m,nf , izmax)
*

* WRITE TO DIRECT ACCESS FILE
*

**********************************************************************
SUBROUTINE efunOUT (efun, temp,n,m,nf , izmax)

real*8 efun
real*4 temp
integer iz,n,m,nf, izmax
dimension efun (n+l,m) , temp (nf+l)

C
C INITIALIZE TEMP BUFFER
C

do ifreq=l,nf
temp(iz) =0.0

enddo

do 500 iz=l, izmax
do 400 ifreq=0,nf

temp(ifreq+l) = float (efun (iz, ifreq)

)

400 continue
write (22, rec=iz) temp

500 continue

RETURN
END
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D. MODAL DECOMPOSITION SAMPLE INPUT FILE

395 . OdO depth (m)

2.0d0 dz (m)

224 .dO Center Freq (Hz)
.0000000e+00 1 .4790844e+03

8 .0000000e+00 1 .4798710e+03
1 .0000000e+01 1 .4798281e+03
1 .2000000e+01 1 .4797952e+03
1 .4000000e+01 1 .4797784e+03
1 .6000000e+01 1 .4797665e+03
1 . 8000000e+01 1 .4798083e+03
2 .0000000e+01 1 .4798116e+03
2 .2000000e+01 1 .4796737e+03
2 .4000000e+01 1 .4787948e+03
2 .6000000e+01 1 .4752782e+03
2 .8000000e+01 1 .4738331e+03
3 .0000000e+01 1 .4731201e+03
3 .2000000e+01 1 .4714027e+03
3 .4000000e+01 1 .4711126e+03
3 .6000000e+01 1 .4703097e+03
3 .8000000e+01 1 .4698482e+03
4 .0000000e+01 1 .4690343e+03
4 .2000000e+01 1 .4687429e+03
4 .4000000e+01 1 .4687005e+03
4 .6000000e+01 1 .4684512e+03
4 .8000000e+01 1 .4682411e+03
5 .0000000e+01 1 .4681399e+03
5 .2000000e+01 1 .4679103e+03
5 .4000000e+01 1 .4678015e+03
5 .6000000e+01 1 4676039e+03
5 .8000000e+01 1 4673772e+03
6 0000000e+01 1 .4672268e+03
6 2000000e+01 1 .4671120e+03
6 4000000e+01 1 .4669098e+03
6 6000000e+01 1 .4668384e+03
6 8000000e+01 1 .4666859e+03
7 0000000e+01 1 .4665955e+03
7 2000000e+01 1 .4665304e+03
7 4000000e+01 1 .4665222e+03
7 6000000e+01 1 .4664575e+03
7 8000000e+01 1 .4663630e+03
8 0000000e+01 1 .4662527e+03
8 2000000e+01 1 .4661536e+03
8 4000000e+01 1 .4661243e+03
8 6000000e+01 1 .4661243e+03
8 8000000e+01 1 .4661387e+03
9 0000000e+01 1 .4661316e+03
9 2000000e+01 1 .4661271e+03
9 4000000e+01 1 .4657917e+03
9 6000000e+01 1 .4657545e+03
9 8000000e+01 1 .4656872e+03
1 0000000e+02 1 .4656550e+03
1 0200000e+02 1 .4656384e+03
1 0400000e+02 1 .4655749e+03
1 0600000e+02 1 .4655615e+03
1 0800000e+02 1 .4655545e+03
1 1000000e+02 1 .4655444e+03
1

1

1200000e+02
.1400000e+02

1

1

.4654871e+03

.4654259e+03
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1.1600000e+02
1.1800000e+02
1.2000000e+02
1.2200000e+02
1.2400000e+02
1.2600000e+02
1.2800000e+02
1.3000000e+02
1.3200000e+02
1.3400000e+02
1.3600000e+02
1.3800000e+02
1.4000000e+02
1.4200000e+02
1.4400000e+02
1.4600000e+02
1.4800000e+02
1.5000000e+02
1.5200000e+02
1.5400000e+02
1.5600000e+02
1.5800000e+02
1.6000000e+02
1.6200000e+02
1.6400000e+02
1.6600000e+02
1.6800000e+02
1.7000000e+02
1.7200000e+02
1.7400000e+02
1.7600000e+02
1.7800000e+02
1.8000000e+02
1.8200000e+02
1.8400000e+02
1.8600000e+02
1.8800000e+02
1.9000000e+02
1.9200000e+02
1.9400000e+02
1.9600000e+02
1.9800000e+02
2.0000000e+02
2.0200000e+02
2.0400000e+02
2.0600000e+02
2.0800000e+02
2.1000000e+02
2.1200000e+02
2.1400000e+02
2.1600000e+02
2.1800000e+02
2.2000000e+02
2 .2200000e+02
2 .2400000e+02
2 .2600000e+02
2 .2800000e+02
2 .3000000e+02
2 .3200000e+02
2 .3400000e+02
2 .3600000e+02

1.4652586e+03
1.4651952e+03
1.4651795e+03
1.4650894e+03
1.4650565e+03
1.4649848e+03
1.4648727e+03
1.4648223e+03
1.4647187e+03
1.4646833e+03
1.4646635e+03
1.4645808e+03
1.4645149e+03
1.4644538e+03
1.4642631e+03
1.4642143e+03
1.4641319e+03
1.4640558e+03
1.4639944e+03
1.4638786e+03
1.4638155e+03
1.4637510e+03
1.4636782e+03
1.4636094e+03
1.4635256e+03
1.4633304e+03
1.4632558e+03
1.4632098e+03
1.4631657e+03
1.4629990e+03
1.4629380e+03
1.4629091e+03
1.4628036e+03
1.4627138e+03
1.4626069e+03
1.4625955e+03
1.4625605e+03
1.4624790e+03
1.4624430e+03
1.4624121e+03
1.4623541e+03
1.4622126e+03
1.4621396e+03
1.4620576e+03
1.4619457e+03
1.4618913e+03
1.4618832e+03
1.4618745e+03
1.4617301e+03
1.4616586e+03
1.4615538e+03
1.4615089e+03
1.4614916e+03
1.4614802e+03
1.4614468e+03
1.4613521e+03
1.4613124e+03
1.4611986e+03
1.4611175e+03
1.4609844e+03
1.4607806e+03
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2

2

2

2

2

2

2
2

2

2

2

2

2

2

2
2

276
278
280
326
328
395
-1,

2.3800000e+02
2.4000000e+02
2.4200000e+02

4400000e+02
4600000e+02
4800000e+02
5000000e+02
5200000e+02
5400000e+02
5600000e+02
5800000e+02
6000000e+02
6200000e+02
6400000e+02
6600000e+02
6800000e+02
7000000e+02
7200000e+02
7400000e+02

1677.0

1

272
274
276
278
300
302.0
384.0
395.0

1,-1

1677.0
1677.0
1677.0
1677.0
1677.0

1

1

1

1

1

1

1

1

1.4606755e+03
1.4605276e+03
1.4598254e+03
1.4594292e+03
1.4591842e+03
1.4590498e+03
1.4587578e+03
1.4587161e+03
1.4587252e+03
1.4587113e+03
1.4587202e+03
1.4587130e+03
1.4586958e+03
1.4586952e+03
1.4586926e+03
1.4583988e+03
1.4572621e+03
1.4572621e+03
1.4572621e+03

83
83
83
1.83
83
83

z (m) rho(cm/g A
3)
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