
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1992-12

An investigation of memory latency reduction using

an address prediction buffer

Billingsley, Arthur Brooks, Jr.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/23712









i '



UNCI ASSIFIFR
CURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED 1b. RESTRICTIVE MARKINGS

a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;

distribution is unlimited
b. DECLASSIFICATION/DOWNGRADING SCHEDULE

. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

a. NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

6b. OFFICE SYMBOL
(if applicable)

ECE

7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School

c. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

a. NAME OF FUNDING/SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(if applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM
ELEMENT NO.

PROJECT
NO.

TASK
NO.

WORK UNIT
ACCESSION NO

1 . TITLE (Include Security Classification)

Kn Investigation of Memory Latency Reduction Using an Address Prediction Buffer (U)

2. PERSONAL AUTHQR(S)
^thur Brooks Billmgsley, Jr.

3a. TYPE QF REPORT
viaster sThesis

13b. TIME COVERED
FROM 05/92 TO 12/92

14. DATE OF REPORT (Year, Month, Day)

December 1992
15. PAGE COUNT

39

6. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the United States Government.

7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Memory latency, Computer Architecture, Cache Memory, Computei
FIELD GROUP SUB-GROUP

Performance, Latency Reduction, Cache Heirarchy

9. ABSTRACT (Continue on reverse if necessary and identify by block number)

Developing memory systems to support high-speed processors is a major challenge to computer architects. Cache

memories can improve system performance but the latency of main memory remains a major penalty for a cache-miss. A

novel approach to improve system performance is the use of a memory prediction buffer. The memory prediction buffer

(MPB) is inserted between the cache and main memory. The MPB predicts the next cache-miss address and pre-fetches

the data. The use of an MPB in a computer system is shown to decrease main-memory latency and increase system per-

formance.

>0. DISTRIBUTION/AVAILABILITY OF ABSTRACT
[| UNCLASSIFIED/UNLIMfTED [J SAME AS RPT. [J DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

>2a. NAME OF RESPONSIBLE INDIVIDUAL
Douglas routs

22b. TELEPHONE/7nc/ude Area Code)

(408) 646-2852
22c&mYMBOL

ID FORM 1473, 84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

T26021A



Approved for public release; distribution is unlimited

AN INVESTIGATION OF
MEMORY LATENCY REDUCTION

USING AN ADDRESS PREDICTION BUFFER

by

Arthur Brooks Billingsley Jr.

Lieutenant, United States Navy

B .S .EE , Auburn University, 1985

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1992



ABSTRACT

Developing memory systems to support high-speed processors is a major challenge to

computer architects. Cache memories can improve system performance but the latency of main

memory remains a major penalty for a cache-miss. A novel approach to improve system

performance is the use of a memory prediction buffer. The memory prediction buffer(MPB) is

inserted between the cache and main memory. The MPB predicts the next cache-miss address and

pre-fetches the data. The use of an MPB in a computer system is shown to decrease main-memory

latency and increase system performance.
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I. INTRODUCTION

The technological advances in high-speed, general purpose processors have outpaced the

support provided by main memory systems. In addition, software applications continue to grow in

processor and memory requirements. The major factors in the design of memory systems are size

of address space, bandwidth required, main-memory latency, and memory subsystem cost. Large

memory subsystems use dynamic random-access memories because of their low cost per bit.

Caching schemes, which employ high-cost, high-speed memories, are used to overcome main-

memory latency and increase bandwidth. However, main memory latency, which is the time (in

processor cycles) between the start of a memory fetch and the start of the transfer of requested data,

is significant and increasing [PRZYBY90]. Further gains in memory system performance are

possible through the use of different manufacturing processes (CMOS, BiCMOS, ECL and GaAs)

[VAGTS92] and stringent design of the memory hierarchy. One such memory performance

enhancement is the prediction of a cache-miss read address request to main memory. If the read

address is predicted and the data made available, then the overall system performance is improved.

Since current RISC processors far exceed the capability of main memory systems, the focus

for the computer systems architect is how to improve the performance of the memory hierarchy.

Large, fully-associative caches are cost prohibitive, and direct-mapped caches offer an excellent

alternative [HILL88]. Direct-mapped caches have a higher miss rate than fully-associative or set-

associative caches. A disadvantage of cache memories, in general, is the miss

penalty[PATHEN90],[PRZYBYZ90]. The reduction of the miss rate and subsequent miss penalty

is the motivation for the memory prediction buffer (MPB).

Conceptually, the MPB is an enhancement for the data cache. The behavior of processors

utilizing separate data and instruction caches is noted in this research and

others[JOUPPI90],[PRZYBY90]. Examination of this behavior shows that instruction caches and

data caches behave differently. Instruction caches can improve effectiveness by simply prefetching

the next instruction. This approach is shown to be less effective for data caches

[PATHEN90],[JOUPPI90]. If this approach is used for data cache management, it contributes to

pollution of the cache and increases the number of capacity misses. Since most modern RISC



processors have separate instruction and data caches, and employ some prefetch mechanism for the

instruction cache, this research will focus on improving the effectiveness of the data cache by

inserting an MPB between the cache and its refill line (main memory, in most cases). Although this

organization is the focus for this research, it is not the only implementation possible for the

MPB[NOWICKI92].



n. MEMORY HIERARCHY AND LATENCY REDUCTION

The von Neumann architecture, used by most single-instruction-single-data
1 (SISD) and

single-instruction-multiple-data (SIMD) machines, has some baseline behavioral characteristics to

consider [HWANG84]. The characteristics of the memory subsystem provide the parameters for

optimization of the operational behavior of the memory subsystem in conjunction with the

processor and secondary storage. First, stored programs obey the principle of locality

[PATHEN90]. This principle has two components which state that programs, while executing,

favor only a portion of their address space at a given instant. The two components are:

• Spatial Locality - Programs tend to request data and instructions that have memory

addresses near the instructions and data currentiy being used. The von Neumann
architecture provides for the execution of sequential program instructions and programs use

related data items which are likely to be adjacently stored.

• Temporal Locality - Programs tend to use current information and data. That is, if an item is

referenced, it will probably be referenced again soon. The older the information, the less

likely it is that the program will again reference it. Temporal locality is especially evident in

the execution of program loops where instruction and data are used several times within a

short period of time.

With reference to these principles, high-speed buffers are inserted between the main memory

and the processor. These buffers are known as caches. The caches store portions of main memory

which are currently in use by the executing program. This allows rapid access by the processor of

the instructions and data needed to continue processing. Although the cache does a great job of

hiding main memory latency, a disadvantage of its use is the penalty for a cache miss. The

construction of the cache gives the following behavioral characteristics for a cache miss.

• Compulsory - cache misses that occur when a block is first accessed and the program is just

starting. These are sometimes called cold start misses since the cache has never held the

information requested.

• Capacity - cache misses that occur when discarded blocks are again referenced by the

executing program. These misses are inevitable since the cache size is less than main

memory size.

• Conflict - the block placement strategy dictates conflict misses. Conflict misses occur when

a block is discarded because too many incoming blocks map to the same set and the

1. Flynn's classification (1966) is based on the multiplicity of instruction streams and data streams

in a computer system [HWANG84].



discarded block is soon needed. This characteristic is evident in both set-associative mapped

and direct-mapped caches.

The structure of the memory subsystem is given in Figure 1 . Traversing down the hierarchy,

access time increases and the storage size increases. However, bandwidth decreases significantly

while traversing the hierarchy, top to bottom. Some nominal figures for size and bandwidth are also

given in Figure 1 . It is worthy to note that each level is a subset of the next lower level. That is, each

level contains only a subset of the information contained in the next lower level. This presents a

constraint of maintaining coherency (correct information) throughout the hierarchy. The MPB

receives its information from the next lower level of the hierarchy. In this research, the next level

of the hierarchy is the main memory. For the development of the concept of the MPB and for most

of the simulation described here, the MPB is not involved in the write policy of the cache. The MPB

always gets its data from the main memory which is kept up to date. Further research of the MPB

will study the implementation of a write-through policy for coherency. Write-back performance

will also be examined in follow-on research
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IH. PERFORMANCE METRICS

In order to investigate the performance of the memory subsystem, characteristics of the memory

subsystem must be developed. From the system perspective, work completed in time defines sys-

tem performance. Hence, system performance can be described analytically as Equation 1.

_, - Instructions Completed , ,

.

System Performance = — ,_. (1)
Elapsed Time

This definition of system performance does derive the ubiquitous MIPS units. This unit of mea-

surement should not be used in comparison of different systems performing the same task

[PATHEN90]. However, for characterization of a specific system performing the same task, this

unit of measure is useful. This measure of performance can be focused in terms of processor

cycles. Efficiency is a product of the number of instructions executed, the number of clock cycles

per instruction and the clock speed (Equation 2).

E = I CPI f (2)

Expanding this model, the number of cycles per instruction executed is the metric that is

directed influenced by the memory subsystem. Statistically, a more stable metric is the effective

CPI. The effective CPI is the statistical average of several measurements. The effective CPI is

CPI
CPI£" = L-r (3)

The number of cycles per instructions is largely determined by processor architecture and regis-

ter/cache structure(effectiveness). With a focus toward the memory structure, the effective access

time of the memory subsystem is the best metric to indicate memory subsystem performance. This

parameter depends on the cache access time and the main memory access time. By decreasing the

number of cycles per instruction, the system performance is improved. The speedup in system per-

formance is modelled by Equation 4.

_ CPlEFF -CPlEFF{MPB) CPIeff(mpb) ,£.

CPIeff CP'eff



The nominal figures for the number of cycles per instruction in high performance processors is

1.2-2.0 CPI. If we assume that the processor can execute instructions at the bandwidth of the mem-

ory subsystem, the speedup becomes a function of the effective access time of the memory sub-

system. Equation 5 determines the speedup of a given system by reference to the effective access

time with the MPB and without the MPB.

5=1- Tea
1
MPB)

(5)
1 EA

The effective access time measures the memory hierarchy performance. The effective access

time is therefore, a function of the cache performance and main memory performance as noted in

Equation 6.

TEA = TCS + CHR TCF + ( l ~ CHR) (
TCS + TMR + T

Cf"> (6)

This relationship can be simplified by noting the time for a cache tag search Tcs is very small. In

addition, the cache tag search and cache fetch are much smaller than the time to read/fetch data

from main memory, Tm . The effective access time can then be approximated as in Equation 7.

tea " chr tcf + ( 1 - chr) (7W (7)

This approximation can be used only for comparison between simulation models. The descrip-

tion given by Equation 6 must be used for evaluation of the simulation model with respect to

implementation performance.



IV. MEMORY PREDICTION BUFFER

The memory prediction buffer(MPB) was conceived to predict the next cache-miss address

and prefetch the data before the request is made by the processor. The MPB can be inserted between

the cache and its refill line as depicted in Figure 2. Another possible configuration could be the use

CENTRAL PROCESSING UNIT

MAIN MEMORY

MEMORY SUBSYSTEM

Figure 2: MPB With Cache Implementation



of smaller MPBs attached to individual memory chips (DRAMs). This implementation is realized

in recent work by Nowicki[NOWlCK92]. A block diagram of this approach is given in Figure 3. In

CENTRAL PROCESSING UNIT

PROCESSOR

REGISTER FILE

\/

MPB MPB MPB MPB

I
Q

i
a Q

S
a
Q

MAIN MBVIORY

MEMORY SUBSYSTEM

Figure 3: MPB With Main Memory Implementation

the early research of this idea, efforts turned instinctively toward statistical methods for prediction.

The area of digital signal processing was explored for possible solutions to the prediction

requirement[HAMMIN83],[THERRI92]. Kalman filters, Wiener filters and other adaptive

techniques for prediction were proposed and investigated. However, further characterization of the

problem provided more specifications for possible solutions.



Cache simulation was achieved using Mark Hill's DINEROm cache simulator. The model

cache is a direct-mapped, 8K data, 8K instruction with a 32 byte line size. Using various ATUM

traces[GRIMSR92] and DEC traces[BORG90], cache miss addresses were

investigated[AGARWL86]. Review of the traces show that spatial locality and temporal locality are

valid for all processes. Since no curves are noted in the traces, prediction should employ linear

methods. The physical construction of the memory prediction buffer is given in Figure 4. The

ADDRESS FROM CACHE TO CACHE

LINE1

LINE 2

LINE 3

LINEm

/ / / / / / /
COMPARATOR ADDRESS TAGS

1

BYTE 1 BYTE 2 BYTEn/
/

/

COMPARATOR ADDRESS TAGS BYTE 1 BYTE 2 BYTE/?

COMPARATOR ADDRESS TAGS BYTE1 BYTE 2 BYTEn

BYTE 2COMPARATOR ADDRESS TAGS BYTE1 BYTEn/

FROM MAIN MEMORY

Figure 4: Memory Prediction Buffer

simulation was configured to give the number of cache hits before a miss is encountered. The

average of these miss events give the constraint of time available to predict and prefetch a miss

address. Since the average of cache-hits before a cache-miss is 4-6, it is possible that some 6-10

cycles are available for prediction and prefetch. In addition, the system bus bandwidth must be

considered for prefetch solution. These constraints were responsible for the development of a

10



simpler prediction algorithm. The prediction algorithm yields a bias for the ensuing prefetch. The

algorithm is implemented in C for simulation.

If the current address is larger than the past address, then the bias is positive (negative

otherwise). The algorithm for the MPB is given in Figure 5. The determination and application of

receive address request from processor

determine block address (boundary)

fetch address requested from main memory

send requested data to processor

compare address requested with previous address
request and calculate bias

apply bias to last address to obtain predicted address

fetch data at predicted address

Figure 5: Memory Prediction Buffer Algorithm

the bias is central to the algorithm. The bias is simply the difference in address boundaries (if word

aligned) of the previous address and the current address. If the address requested is greater than 32K

away, another address stream bias is established. The corresponding address stream bias is used to

predict the next requested address. The bias may be positive or negative, that is, ascending or

11



descending in memory. The correct address stream bias is determined using a simple but fast binary

search. The search time can be reduced further using a fully associative algorithm.

The structure of the memory prediction buffer is similar to a conventional fully-associative

cache. The MPB is composed ofm lines of n byte blocks. For the cache used in this research, the

MPB has 16-256 lines of 32 byte blocks. The blocks are aligned on the same address(word)

boundaries as the first level cache. The block size is dependent on the block size of the first level

cache. The optimal size of the MPB is 64-256 lines. This size is due to the fan-out requirements (and

costs) for the construction of a fully associative cache and the number of lines (sets) needed to allow

effective use of the replacement policy used (random replacement vice LRU, FIFO, etc.). If a LRU

replacement policy is used instead of random replacement, a smaller MPB can be used to give the

same performance improvement.

12



V. MEMORY PREDICTION BUFFER PERFORMANCE

A. MPB THEORECTICAL PERFORMANCE

The memory prediction buffer determines the future cache miss address using previous cache

miss addresses. For this analysis, only the data cache is given a MPB. The instruction cache is set

to prefetch instructions. Given a model cache with a hit ratio of 93.2%, if the MBP is found to be

correct on 33% of its predictions, an increase of 2. 1% is realized for the cache hit rate. The effective

cache hit ratio is improved to 93.2% from 95.3%. The graph of Figure6 gives the effective cache
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O.SS
, - - a

•

0.96 -
o

M O j

-

*

0.9«
-

o /
a /

0.92 - « -

M
M o

0.9 <

•

O.SS - a yf -

o

O
O.S6

i

•

o.a-i

a. 92 - / -

20 *0 60 SO 1 OO

tmmory Pr«aietion Buflar £ff«ctiv«n«*s

Figure 6: MPB Performance Graph

hit rate as a function of MFP effectiveness. There are four cache models that are compared. One

model has an 80% initial hit rate, another model has an 85% hit rate and so on. A sample reading is

shown for a base cache hit ratio of 80% with an MPB effectiveness rating of 20%. The resulting

effective cache hit ratio for this sample is 84%. This is an increase of4% in the effective cache hit

ratio. The resulting system performance achieves a speedup of 9%.

The model system for this investigation has 10ns cache memory and 80ns main memory. This

model memory hierarchy is used by the simulation study also. The cycle time of the main memory

is not considered but would add to the effectiveness of the MPB.
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B. BASELINE SYSTEM PERFORMANCE

In order to compare the performance of the MPB to existing latency reduction strategies,

several measurements of the baseline system had to be collected and examined. This baseline

system was constructed using the cache simulator, DINEROHI. The system simulates separate 8K

direct-mapped data and 8K direct-mapped instruction caches.

Table 1: BASELINE SYSTEM PERFORMANCE

Process
Cache
Size

HRL HRC HRsyS Speedup

8K FIRST LEVEL CACHE BASE-SYSTEM PERFORMANCE

SPICE 8192 96.51 96.51 96.51 -0-

Pascal 8192 91.57 91.57 91.57 -0-

LISP 8192 92.44 92.44 92.44 -0-

FORTRAN 8192 93.88 93.88 93.88 -0-

Tree 8192 98.66 98.66 98.66 -0-

SOR 8192 90.50 90.50 90.50 -0-

12K FIRST LEVEL CACHE PERFORMANCE

SPICE 12288 97.16 97.16 97.16 3.66

Pascal 12288 94.40 94.40 94.40 12.46

LISP 12288 96.32 96.32 96.32 17.76

FORTRAN 12288 95.11 95.11 95.11 6.03

Tree 12288 97.43 97.43 97.43 (-7.87)

SOR 12288 91.16 91.16 91.16 2.77

8K FIRST LEVEL CACHE (DM) WITH 4K SECOND LEVEL CACHE (FA)

SPICE 4096 24.46 96.51 97.37 4.84

Pascal 4096 36.91 91.57 94.68 13.69

LISP 4096 75.59 92.44 98.16 26.18

FORTRAN 4096 32.58 93.88 95.81 9.46

Tree 4096 68.32 98.56 99.44 4.99

14



Table 1: BASELINE SYSTEM PERFORMANCE

Process
Cache
Size

HRL HRC HRsyS Speedup

SOR 4096 23.84 90.50 92.77 9.54

C. MPB SIMULATION PERFORMANCE

The theoretical study of the MPB was realized when implemented using trace-driven

simulation (TDS)[GRIMSR92] with the DINEROIII cache simulator (provided by Mark Hill). As

with any TDS research, address traces and their accuracy are critical to proper simulation. For this

research, ATUM traces [AGARWL86] and DEC Titan[BORG90] traces were used. Some

behavioral characteristics of the simulation are graphically illustrated in the appendix. Table 2 gives

Table 2: MEMORY PREDICTION BUFFER PERFORMANCE(DEC)

Process
MPB
Lines

Blocks

per line
HRMPB HRC HRSYs Speedup

TREE1 128 32 69.89 97.87 99.37 9.14

TREE 2 128 32 59.57 98.01 99.20 7.31

SOR1 128 32 12.77 90.51 91.79 5.38

SOR 2 128 32 10.20 90.29 91.35 4.42

a summary of MPB performance for two processes and two runs of each. SOR is Renato Deleones

'

successive over-relaxation algorithm that uses sparse matrices. TREE is Joel Bartletts' program

which builds a tree data structure and searches for the largest element in the tree. His program is a

variant of LISP. Both of these process traces were provided by DEC WRL. The model system is a

RISC processor with separate 8K instruction and 8K data caches. There are 32-byte blocks in the

cache and in the MPB. The cache is direct-mapped for reasons given by [HTLL88]. The initial cache

hit rate CHR was before the insertion of the MPB. The local hit rate for the MPB is given under

MHR. The overall hit rate for the cache and MPB combined is listed under NHR. The speedup is

listed for the overall system. For these examples, each line of the MPB consists of 32-byte

lines(blocks) and 128 lines. Each line is boundary aligned in the same way as the cache. That is, just

as the cache may use word aligned blocks, so does the MPB. This MPB simulation used a random

15



replacement policy for the removal of lines. Toward the end of this research effort, a MPB was

simulated using a least-recendy used (LRU) replacement policy. Several simulations using this

replacement policy showed that the number of lines in the MPB could be reduced while maintaining

the effectiveness of the MPB. In particular, 64 lines were shown to perform nearly as well as 128

lines. For the simulation results of Table 2, the speedup numbers are modest but, the cost of this

implementation is minimal when compared to a 256K next level cache[PATHEN90].

In addition to the simulations using the DEC traces, simulations were also done using ATUM

traces. Table 3 list results of simulation using ATUM traces. The model system is the same as used

Table 3: MEMORY PREDICTION BUFFER PERFORMANCE (ATUM)

Process
MPB
Lines

Blocks

per line
HRMPB HRC HRSYs Speedup

Spice 128 32 33.50 93.22 95.27 6.75

Pascal 128 32 47.35 95.62 97.45 9.80

LISP 128 32 69.75 92.68 97.72 23.33

FORTRAN 128 32 40.11 94.22 96.90 13.36

in the DEC trace simulation. These simulation results can be used to motivate further research.

ATUM traces are relatively short for cache modelling and behavior analysis. Each trace is

approximately 400,000 addresses. This number of addresses is marginally adequate for a 32K cache

simulation and larger cache-size simulation would require a larger number of addresses for proper

and accurate simulation.

For the preceding research, a random-replacement policy was used by the MPB. An early

implementation of the MPB using a least-recently-used (LRU) policy shows improved performance

over the random-replacement algorithm. . Table 4 lists the results of this research using the process

Table 4: MEMORY PREDICTION BUFFER PERFORMANCE (LRU)

Process
MPB
Lines

Blocks

per line
HRMPB HRC HRSYs Speedup

TREE 128 32 79.11 97.91 99.98 12.64

16



"tree". Results of this implementation using other processes were not yet accomplished at the time

of the report. As evidenced by all these simulation studies, the MPB is shown to be a favorable

architectural concept for consideration in systems where the highest possible performance is desired

and systems costs are constrained.

17



VI. CONCLUSIONS

The memory prediction buffer is proposed as a component for high performance computer

systems. The widening gap between processor speed and memory subsystems require the

investigation of alternative architectures for reducing main memory latency while restraining costs.

The MPB outperforms prefetch always strategies by allowing addressing in the up and down

direction. In addition, the MPB does not contribute to pollution of the cache. Effective memory

latency reduction must be addressed at the time of system design. In addition, as the requirements

for a larger address space grows, memory heirarchy design and implementation will continue to

increase in complexity. The implementation of a MPB is less expensive than a next-level cache and

delivers a comparable performance enhancement. In addition, the algorithm used can be tailored to

the proposed system environment to provide a more effective latency reduction structure. The MPB

is shown to improve overall system performance and provide reasonable gains in speedup.

18



VH. RECOMMENDATIONS FOR FUTURE RESEARCH

The memory prediction buffer is studied and simulated for enhancement of the data cache of

a uniprocessor. Its use or enhancement in a multiprocessor environment is not yet known. In

addition, the question of whether the MPB can be used to significantly enhance the performance of

the instruction cache has not fully been explored. The algorithm for the MPB of this research

focused on a random replacement policy for discarding lines. The LRU replacement policy showed

an improvement over random however, the effect of other replacement policies is available for

discussion. Simulation and study of the memory bandwidth required to support an architecture with

a MPB and without a MPB is needed. A comparison of the amount of bandwidth required by the

base architecture (cache and processor) with the bandwidth required by the architecture with a MPB

installed, is useful. The cache write-back policy and its effect on systems performance with and

without an MPB is an area open for study.
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