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ABSTRACT

Histor lcally / the need for accurate and reliable cost
estimates prior to the actual design has proven to be
Invaluable. One technique being utilized by the
construction industry to fulfill this need is parametric
estimating. The objective of this paper is to develop a
parametric estimating model. In order to achieve this goal
the concepts and theory behind parametric estimating are
first explained and then demonstrated by the presentation of
two previously published parametric models. Lastly, a

parametric model developed to provide predesign estimates
for buildings is explained and tested.
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CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION

In today's world of shrinking budgets and complicated

financing schemes the first and most reoccurring question asked

by owners to their design personnel is HOW MUCH WILL IT COST?

In an attempt to accurately answer this question many techniques

have been developed and used to predict the cost of a project

prior to the actual design. One technique being utilized by the

construction industry is parametric estimating. In this paper

the concepts and methodology behind parametric estimating will be

described. Additionally, with the intent of giving the reader a

better understanding for processes involved in model development,

two separate parametric models that have previously been

published in the ASCE'S Journal of the Construction Division will

be presented and critique. Following this, the remainder of the

paper will be dedicated to the discussion of a parametric cost-

estimating model that was developed from data collected from

actual construction projects. This model and the procedures used

in it's formulation will be discussed in detail. Lastly the

accuracy of the developed model will be tested by its ability to

predict the cost of two buildings whose actual cost figures are

known.





1.2 PROBLEM STATEMENT

The need for an accurate and reliable cost estimate prior to

the actual project design has historically been essential to the

success of all construction projects. A look at the formative

stages in the building process, Figure 1.1, reveals that a

project is proposed for construction in an effort to fulfill an

identified need. This recognition of a need is the first step in

the building process [Halpin-Woodhead 80], From this need a

project is conceptualized. At this stage in the process a

decision as to whether or not it is feasible to proceed along

down the building process line must be made. This decision

process is commonly referred to as a feasibility analysis.

Although any sound feasibility analysis considers all pertinent

factors relevant to the project, the initial estimate as to the

total project cost is normally the most weighted factor used in

making the decision. As such, the initial estimate is used to

screen and eliminate unsound proposals and decide whether money

should be invested so that the project may proceed to the next

step in the process, design.

Although the value of an accurate predesign estimate is

enormous, it is usually performed without the benefit of:

detailed drawings and specifications, knowledge of what

construction methods are to be employed, time, and money.

Therefore, it is essential that fast, inexpensive, and reasonably

accurate methods to estimate a project, before the detailed plans





and specifications are prepared, be explored and developed

[Karshenas 84 ]

.

Consequently, the primary objective of this research is to

investigate the practicality and usefulness of developing a

predesign parametric estimating model based on historical cost

data

.

1 . 3 PROCEDURE

In an effort to efficiently accomplish the above objective,

the concepts of parametric estimating will first be discussed and

explained. This introduction to parametric techniques will be

followed by a presentation and analysis of two previously

published parametric models. Lastly, a parametric model

developed as the culmination of this research will be described

and tested.
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CHAPTER 2 PARAMETRIC ESTIMATING

2.1 INTRODUCTION

In this part of the text the concept of parametric

estimating will be introduced, defined and illustrated.

Additionally, the steps involved in the successful development of

a parametric cost-estimating model will be identified and

discussed individually.

2.2 PARAMETRIC ESTIMATING DEFINED

Parametric estimating is the process of estimating cost by

using mathematical equations that relate cost to one or more

physical or performance variables associated with the item being

estimated [Wyskida-Steward 87]. Used in its most simplest form,

a unit estimate that predicts the cost of a building based on its

square footage is a parametric estimate as it relates the cost of

the building to one physical variable - the square footage. As

an example of a unit cost estimate consider the following

fictitious cost data:

PROJECT 1

PROJECT 2

PROJECT 3

PROJECT 4

Totals

TOTAL BUILDING
COST ($)

100,000
145,000
190,000
225,000
660,000

TOTAL BUILDING
SQUARE FOOTAGE (sf

2, 000
3, 000
4, 000
5, 00Q
4, 000

Table 2.1 Fictional Building Costs
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From Table 2.1, the unit cost of a typical square foot for a

building can easily be calculated by:

UNIT COST = $660,000/14,000 sf = $47.14 per sf

Most often this is the way that unit prices are derived. Of

course the sample size used by published estimating manuals is

far greater than four, but in principal the procedure is the

same .

The obtained value of $47.14/sf can now be multiplied by the

total area of any proposed building to obtain an estimate of the

building's cost. This simple technique of multiplying the square

footage of a building by a unit cost is the most popular of all

preliminary estimating techniques [Ostwald 84].

A unit cost estimate is easily converted to a parametric one

by simply expressing the cost in the form of an equation in which

cost is related and dependent on one or more physical or

performance variables. In the case of the above example it can

easily be fitted to an equation of the form:

C = 47.14 * A (2.1)

where, C - Cost of the proposed building and is termed

a dependent variable since its value is

dependent on that of A.





A = The number of square feet in the proposed

building and is termed an independent

variable since its value does not dependent

on another variable.

47.15 is a parametric value based on the historical

data from Table 2.1 and is used to relate the

dependent variable (cost) to the independent

variable (square footage).

2.3 ORIGINS OF PARAMETRIC ESTIMATING TECHNIQUES

The first documented uses of the application of statistical

techniques to modeling occurred in the late 1950' s and was

initiated and pursued by the Rand Corporation in an attempt to

predict military hardware cost at very early phases of design.

Its use by Rand to obtain credible cost estimates, while projects

were still in the conceptual design phase, drew much attention

from both Government and the private sector. Both communities

were quick to recognize the derived benefits of having early

estimates that were not tim^ and labor intensive like previous

detailed techniques.

Through the years, the fields of business, macroeconomics

and social science have used parametric estimating as a means of





correlating observations of past events and occurrences to

predict future happenings. Recently, the proliferation of

computers and software has simplified the chore of maintaining a

data base and performing complicated statistical calculations and

analysis. As a result, today parametric estimating is be;ing used

to some degree in all fields where cost estimating and

forecasting take place. Professional organizations whose members

are involved in parametric estimating include the American

Association of Cost Engineers, the International Society of

Parametric Analysts, the National Estimating Society, and the

Institute of Cost Analysis.

2.4 DEVELOPMENT OF A PARAMETRIC COST ESTIMATING MODEL

Although there appears to be no set algorithm for the

development of an estimating model of this kind, review of past

work in this area as well as general readings on the subject have

revealed four reoccurring steps that appear to be essential to

the successful development of a parametric model. The four steps

in the order in which they should be performed are:

1. Parameter Selection

2. Data Collection and Normalization

3. CER Form Selection and Derivation

4. Measuring the Goodness of Fit/Model Testing





The remainder of this chapter will be dedicated to the discussion

of the above four steps.

2.4.1 PARAMETER SELECTION

As stated in section 2.2, a parameter is a physical or

functional characteristic upon which the total cost of the

project is largely dependent, (for the purposes of this paper the

project will be the construction of a building). Sometimes these

characteristics or parameters are called "cost drivers" as they

should be highly correlated with cost [Ostwald 84]. From

historical data, empirical coefficients are determined and fitted

in a cost equation. These cost equations that are used to model

the cost function are known as cost-estimating relationships

(CERs). After the development of a CER the actual value of the

physical characteristics of a proposed project are obtained from

the design, substituted into the CER and the estimated cost

calculated. Some examples of parameters applicable to building

construction are:

Gross Floor Area

Roof Area

Length of Building Perimeter

Height of Building.

Number of Floors





The success of any parametric model is dependent upon what

parameters are utilized. Some factors that should be considered

prior to selecting "cost drivers" are:

1. As stated, the characteristic should be highly

correlated to the building cost.

2. The developer must be assured that data concerning the

parameter is available from past projects. Additionally, if

the derived model is to be used as a predesign estimating

tool, the actual values for the parameter or at least a

rough estimate must be obtainable prior to actual design.

3. If the goal of the model is to develop a fast efficient

way to estimate the cost of a building, then the number of

parameters used should be kept at a minimum, with only those

characteristics necessary to define the essential cost

components of the building being used.

2-4.2 DATA COLLECTION AND NORMALIZATION

Once the parameters have been decided upon, the next step in

the model development process is data collection. This step,

although at times very tedious, is essential as a model's ability

to predict future costs based upon historical data is totally

dependent on the data base from which it was derived. As a





consequence, standard ground rules should be developed so that

all data is collected In the same manner. In the case of

developing a model to estimate building costs, plans and

specifications will have to be reviewed and the necessary values

of the physical characteristics chosen as parameters obtained.

After the values of the parameters are obtained cost data for the

project must be collected. This data must be similar for all

projects. That is to say, that the cost for certain non-common

items must be excluded from the total cost. For example, if all

buildings do not have shallow foundations (but the majority do),

the cost differences between the installed deep foundations and

what a shallow foundation would have cost should be subtracted

from the total cost of that particular building. Similarly,

rules need to be established for overhead, profit, and all other

similar items. In short, the key to good data collection is

consistency. The cost of certain items must be added or deleted

to a project to make it identical to the rest. This process is

called normalization and is essential to the model building

process. In addition to the above mentioned items, data must be

normalized for location, year built, quality and any other

factors that might differentiate a project from the norm. At the

completion of the normalization process one is left with a data

base containing buildings whose cost can accurately be compared

to one another.

10





2.4.3 SELECTION AND DERIVATION OF THE PROPER CER

2.4.3.1 COST-ESTIMATING RELATIONSHIPS

The end product of any parametric model is the cost-

estimating relationship. Although numerous possible mathematical

equation forms can be used for a cost-estimating relationship,

most cost data can be fit empirically using one of the forms

shown in Figure 2.1.

As discussed previously, the simplest CERs are no more

complicated than the unit cost example from section 2.2. Linear

relationships similar to equation 2.1 are of the form Y = AX.

Note that use of a form like equation 2.1 represents the

situation where no fixed costs are present (e.g., Land Purchase,

Mobilization, etc.). That is to say that when no square footage

of a building is built the cost is dollars. Another limitation

of the use of a linear equation of this form is that it fails to

account for the economies of scale inherent in the construction

industry. In short the principal of economies of scale as it

pertains to construction says that, in general, a large building

should cost less per square foot than a small one [Wyskida-

Steward 87]

.

One improvement to the basic CER expressed by equation 2.1

is the use of another linear equation form, namely: Y = A + BX.

Use of this form indicates the presence of both fixed and

variable costs. The fixed costs component is represented by the

11





A term while the variable cost component is the BX term. An

equation of this form may be obtained from the data in Table 2.1

by performing a simple linear regression utilizing the method of

least squares. The results of this regression analysis yield the

following equation:

C = 4 2A + 18,000 (2.2)

LINEAR CURVES

POWER CURVES

Y = A X b (B > II

__ _ - Y * A, A 2 X b
( O < B < 1)

Y = AX b fO<B<1)

Y = A X b (B < 1)

EXPONENTIAL CURVES LOGARITHMIC CURVES

Y = A, A 2 £ b*

Y • AE b* (B > 1, A >0)

Y • AE b » (B< 1. A >OI

Y - A 8 LNX

(8>OI

Y - A BLNX
( B<0 )

Figure 2.1 CER Function Shapes on Linear Coordinates

[Wyskida-Steward 87]
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Note that the regression equation has a positive y-intercept,

which from a practical standpoint makes sense since it represents

positive fixed costs. On the other hand, fixed cost values less

than zero are an unlikely situation and are usually indicative of

faulty data or that the equation model is suspect.

The use of linear CERs in the form of equations 2.1 and 2.2

guarantees that a change of one unit in the independent variable

,A, will be accompanied by a constant change in the dependent

variable ,C, as determined by the coefficients of the particular

equation. As previously discussed, equation 2.1 fails to take

advantage of economies of scale and thus estimates the same

dollar per square foot regardless of the size of the building.

Equation 2.2 on the other hand, does improve on equation 2.1 in

this respect, as its cost per square foot of building does

decrease as the size of the building increases. This unit cost

reduction is the result of the fixed cost additive term being

spread over a larger area. Table 2.2 illustrates this fact by

showing the calculated total and unit costs for four proposed

buildings using both equation 2.1 and 2.2. The principle of

economies of scale will be discussed more fully in Chapter 3.

BLDG. PROPOSED BUILDING EQUATION 2.1 EQUATION 2.2
# SQUARE FOOTAGE ESTIMATE UNIT COST ESTIMATE UNIT COST

(SF) ($) ($/SF) ($) ($/SF)
1 2000 94,280 47.14 102,000 51
2 3000 141,420 47.14 144,000 48
3 4000 188,560 47.14 186,000 46.5
4 5000 235,700 47.14 228,000 45.6

TABLE 2.2 Demonstration of Equations 2.1 and 2.2

13





Unfortunately, the variable costs associated with most

construction projects usually do not behave in a linear manner.

In particular, it is common for the economies of scale in the

construction industry to be such that not only does the cost per

square foot of a building decrease with size, but. also so does

the unit increment of variable cost. Models exhibiting these

characteristics are of course non-linear and normally take the

form of power curves, exponential curves, or logarithmic curves

as shown in Figure 2.1.

The use of a power curve assumes a relationship between the

independent variables and cost, such that a percentage change in

the independent variables causes a relatively constant percentage

change in cost. The inset in Figure 2.2 demonstrates this by

showing that for these particular power curve coefficients,

successive 50% changes in the independent variable cause

successive 25% changes in cost. For a pure power curve in the

form Y = AX to
, the percent change in the dependent variable is a

constant percentage, whereas for a power curve of the form

v = Aa. + Aa 2 X to
, the change in the dependent variable will depart

from a constant percentage depending on the relative magnitude of

the Ai term [ Wyskida-Steward 871.

As with the power curve the exponential CER may or may not

have an additive term. Use of this form however, assures a

relationship between the independent variable and cost such that

a unit change in the independent variable causes a relatively

constant percentage change in cost. This is shown in Figure 2.3
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where, for Y = Ae" successive 1000 unit changes in x cause

successive 116% changes in cost.

2.4.3.2 CER SELECTION

The choice of which form from Figure 2.1 to use for a given

set of data can be accomplished by one of three possible methods.

Method 1 which is non-mathematical is based on the users

understanding of the cost-estimating relationships previously

described. A thorough knowledge of what each form physically

represents as well as the limitations of each, allows the

experienced model developer to chose the CER form to match his

data and the particular circumstance being modeled.

Method 2, on the other hand, is a graphical technique in

which the best equation form can be determined by discovering

what kind of graph paper, (linear-linear, linear-logarithmic, or

logarithmic-logarithmic), that best permits a straight line to be

drawn through a scatter plot of the data. If plotting the data

on linear-scaled graph paper produces a data pattern that can be

fitted well with a straight line the best fit CER will be of a

linear form either Y = AX or Y = A + BX depending on whether or

not fixed costs are present. If the best fit on linear paper is

a curve, then the data should be replotted on semi-logarithmic

paper and the best fit line redrawn. A straight line here

indicates that the best CER form will be either a exponential or

logarithmic equation. If the best fit on semilog paper is a

curve, replot the data on full log paper. A straight line here

16





indicates that a power curve is the most appropriate cost-

estimating form. In the last two instances, a slight curve on

either semilog paper or log-log paper may be correctable by the

addition of a constant to the CER equation [ Wyskida-Steward 87].

The third method for determining which equation to use for

the form of the CER is purely mathematical and involves using

results obtained from multiple regression analysis. In

particular, the coefficient of multiple determination defined as:

1 —X
R-squared = R 2 =

'

(2.3)

^ (tactual — Lavacatjai )

11

where, Ci represents the predicted cost of projecti using the

derived CER, C.atu.i is the actual cost of building i, Caw.*.,,

is the average cost of all the buildings used in the sample and n

is the total number of projects in the sample data.

The value of R-squared is a measure of the closeness of fit

of the regression equation to the observed points. An R-squared

value of 1 would indicate that the selected form and the derived

equation for the CER perfectly predicts the building cost.

Therefore, to use the R-squared value as a criterion for CER

selection multiple regression analysis must first be performed to

fit the normalized data to each of the possible CER form

candidates . After this is done and the R-squared values for

each CER are calculated, and CER selection can be accomplished by

simply choosing the form with the R-squared value closest to 1.

The use of the R-squared value in model development will be

discussed more fully in Chapter 3.

17





2 ,4 ,3.3 CER DERIVATION

After determining the equation form that is best suited for

the data, the next step is to derive the mathematical equation

for the CER (of course if method 3 from Section 2.4.3.2 is

employed as a means of selecting the CER form, then a

mathematical equation has already been derived). To accomplish

this task, statistical methods of multiple regression are

employed. Although graphical and hand algebra techniques do

exist to perform multiple regressions in which several

independent variables are related to an dependent variable, they

have largely been replaced by computer programs that use various

statistical methods to quickly and efficiently derive CER

equations. The most common of these methods used is called the

"method of least squares" and the reader is referred to any

college statistics text book for its derivation and use.

2.4.4 MEASURE OF GOODNESS OF FIT/MODEL TESTING

Several statistical criteria and variance analysis

techniques are used to measure the goodness of fit for any

regression analysis. Two of the more common techniques are the

R a value previously discussed and the standard error (S.E.).

The standard error measures the average amount by which the

actual costs differs from the calculated costs by:

18





i-i

S.E. = (2.4)
n - 1

where the variables are defined as in equation 2.3. Because it

is desirable to have a cost-estimating relationship that produces

calculated values that are very close to the actual costs, the

smaller the standard error the better. Notice that the units of

standard error are the same as C* and Ca.ioui.^.d and for the

purposes of this paper, as we are dealing with costs, it will

always be dollars ($).

In addition to the two above statistical techniques for

measuring the goodness of fit, the calculated residual values,

(C.atuai-Cpcadiatad), or the percent residuals,

(C.atu.i-Cpc.diotad/C.atuai ) , may be used as a feel for the

accuracy of any regression model. More practically, another way

to measure the appropriateness of any cost-estimating model, is

to put it to use and test the validity of its results. One way

to do this is to simply use the derived model to estimate a

sample of actual projects whose cost data are known but were not

used in the actual development of the CER . A comparison of these

project's actual cost with that of their estimated values may be

used as an indicator of the accuracy that can be expected from

the derived model.

19





CHAPTER 3 BACKGROUND WORK

3.1 INTRODUCTION

Although the practice of parameter estimating has been in

existence for over three decades, the use and acceptance of it by

the construction industry as a valid estimating technique is a

relatively recent event. As a result, much has been written on

the topic of parametric estimating in general, however, little

has been published having to do with the methodology involved in

the actual development of a parametric estimating model that

pertains to construction. Two such articles that do exist were

published in the American Society of Civil Engineers Journal of

the Construction Division . The first of the articles appeared in

December of 1974 and was written by V. Kouskoulas and E. Koehn

and was entitled "Predesign Cost Estimating Function for

Building". The second article on model development was published

in March of 1984 by Saeed Karshenas and was titled "Predesign

Cost Estimating Method for Multistory Buildings". Collectively,

the principles and procedures established by these two papers

form the foundation upon which the model presented in Chapter 4

of this paper was built.

In this chapter, each of the two authors' papers will be

summarized and presented. In the section immediately following

the explanation of both papers, each will be critique in an

effort to point out obvious weaknesses.

20





3.2 SUMMARY OF V. KOUSKOULAS AND E. KOEHN ' S MODEL

In their article the authors use a three phase approach to

the problem of model development [Kouskoulas-Koehn 751. The

first of the phases deals with the selection of the independent

variables upon which the cost of a building depends. After the

variables have been established, the second phase of the model

development is to chose the appropriate form of the cost-

estimating relationship that will properly relate the selected

independent variables to that of the dependent cost variable.

After the form is selected the mathematical relationship must

then of course be derived. Lastly, after the cost function has

been derived it must be tested as to its reliability and

acceptability for use. Taken collectively, the authors'

discussion of their rational and reasoning in each of these

phases make up their paper. As such, each of these areas will be

discussed in the following pages.

3.2.1 THE SELECTION OF THE INDEPENDENT VARIABLES

The authors state three basic criteria that they used to

select their independent variables. These criteria are listed

below:

1. The variable must physically describe the project

in some way, while also being a major contributor to

the total cost.
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2. The data for each variable must be available and

retrievable from both completed projects and for future

proposed projects.

3. The variables must be varied and general enough so

that any function derived with their use would be

applicable to a wide class of building projects at any

moment in time and for any place.

Guided by these three criteria the authors selected and

defined six independent variables. In their opinion, these six

variables are specific enough to adequately describe the building

while at the same time general enough to define a "global

predesign cost estimating function". The particular variables

describe the building by its location, time of realization,

function or type, height, quality, and technology. A description

of the variables, with the reasoning behind each, is given below:

1. C was selected to be the dependent variable representing

the cost. In this article however the C does not represent

a total cost but rather a unit cost for the building. That

is to say, that the value derived for C will have a dollars

per square foot term as its units.
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2. The locality variable, L/ Identifies the differences In

construction costs as a consequence of differences In the

style and cost of living between different cities as well as

wage differentials resulting from differences In labor

structures. The accompanying Table 3.1 was provided as one

possible source for a locality Index.

City Index, L
(1) (2)

Boston, Mass. 1.03

Buffalo. N.Y. 1. 10

Dallas, Tex. 0.87

Dayton, Ohio 1.05

Detroit, Mich. 1.13

Erie, Pa. 1.02

Houston, Tex. 0.90

Louisville, Ky. 0.95

New York, N.Y. 1.16

Omaha, Neb. 0.92

TABLE 3.1 Locality Index [Kouskoulas and Koehn 74]

3. The price Index variable, P, Is time dependent and used

by the authors to predict the future price Indexes from

historical data. From the data provided In Table 3.2, the

following expression was developed to define P:

lhP = 0.192 + 0.029t
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Note; to properly use this expression let t = 0, in 1963 and

increase it by one for each subsequent year. With this

expression the value of the price index at any time in the

future can be determined.

Year f Index, P
(1) (2) (3)

1963 1.66

1964 I 1.71

1965 2 1.76

1966 3 1 80

1967 4 1.93

1968 5 2.09

1969 6 2.30

1970 7 2.49

1971 8 2.76

1972 9 2.95

TABLE 3.2 Price Index (Kouskoulas and Koehn 74]

4. The type variable, F, specifies the type of building.

Table 3.3 provides a range of classes of buildings with

their corresponding relative cost values as provided by the

Department of Buildings and Safety Engineering of the City

of Detroit.
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Type Index, F
(1) (2)

Apartment 2.97

Hospitals 3.08

Schools 2.59

Hotels 3.08

Office building (fireproof) 2.95

Office building (not fireproof) 1.83

Stores 2.43

Garages 1.99

Factories 1.20

Foundries 1.49

TABLE 3.3 Relative Cost Index for Various Building Types

[Kouskoulas and Koehn 74]

5. The height index, H, measures the height of the building

by the number of stories it contains.

6. The quality variable, Q, stands for what it specifies.

It is the measure of: (a) The quality of workmanship and

materials used in the construction process; (b) the building

use; (c) the design effort; and (d) the material type and

quality used in various building components. In their

article the authors let this index be equal to the average

rating value of each separately ranked known building

component. An arbitrary 1 to 4 scale corresponding to fair,

average, good, and excellent Is used to grade each

component. Table 3.4 was provided to assist in the

Identifying and rating of building components on the basis

of their qualitative description.
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Component Fair Average Good Very good
(1) (2) (3) (4) (5)

Use Multitenancy Mixed, single

tenant, and

Multi-

tenancy

Single tenant Single tenant

with custom

requirements

Design Minimum de- Average de- Above aver- Many exlra de-

sign loads sign loads age design

loads

sign loads

Exterior wall Masonry Glass or Glass, curtain Monumental

masonry wall, pre-

cast con-

crete

panels

(marble)

Plumbing Below aver- Average qual- Above aver- Above average

age quality ity age quality quality

Flooring Resilient, Resilient, Vinyl, ceramic Rug. terrazzoRw

ceramics ceramics

and

tercazzo

tenazzo marble

Electrical Fluorescent Fluorescent Fluorescent Fluorescent

light, poor light, aver- light, above light, excellent

quality ceil- age quality. average qual- quality ceiling

ing suspended

ceiling

ity ceiling

Heating, venti- Below aver- Average qual- Above aver- Above average

lating, and air age quality ity age quality quality

conditioning

Elevator Minimum Above High High

required required speed speed

minimum deluxe

TABLE 3.4 Quality Index [Kouskoulas and Koehn 74]

7. The technology index variable, T, accounts for the extra cost

expended for special types of buildings or the labor and material

savings resulting from the use of new techniques in the process

of construction. For the usual/ordinary construction situation

this variable has the value of 1. For the situation that results

in extra costs T will be > 1 while if the employed technologies

result in a cost savings the value of T will be < T < 1 . This
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variable was designed to provide the engineer/estimator with

great flexibility to utilize the finally constructed cost

function for the most unusual cases and furthermore to consider

in his preliminary cost estimation a wide selection of technology

alternatives with minimum expended time and effort. Some data

regarding this variable was provided and is shown in Table 3.5.

Technology Index, T
(D (2)

Bank-monumental work 1.75

Renovation building 0.50

Special school building 1.10

Chemistry laboratory building 1.45

Telephone building-Wast resistant 1.60

County jails 1.20

Dental school 1.15

Hospital addition 1.05

Correctional center 1.20

Home for aged 1.10

TABLE 3.5 Technology Index [Kouskoulas and Koehn 741

In summary, six variables were chosen to identify any

proposed building. Of the six variables: location, year built,

type, height, quality, and technology, two are very subjective,

while four are quite objective. The two subjective variables,

quality and technology were provided to allow the estimator

latitude to utiMze his/her experience to adjust the estimate for

any given situation.
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3,2 ,2 SELECTION OF THE COST-ESTIMATING RELATIONSHIP

For the form of their CER the authors arbitrarily selected a

linear relationship. That is, they used techniques of multiple

linear regression, employing the method of least squares, to

correlate their data into the form of:

C = Ao + Ai(L) + Aa(P) + A 3 (F) + A«(H) + A B (Q) + A S (T) (3.1)

in which, Aic = a constant to be determined from the collected

data and the bold letters represent the variables previously

explained. The historical data used by the authors to derive

their cost function is presented in Table 3.6 and the resulting

cost equation is:

C = -81.49 + 23.93(L) + 10.97(P) + 6.23(F) + 0.167(H) +

5.26(Q) + 30.9(T) (3.2)
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Cm
dollars

per

square

Description foot v, v, v, v. v
>

v
*

(D (2) (3) (4) (5) (61 (7) (8)

Office building 36.00 090 2.76 2.95 40 1.0

Office building 25.00 0.87 2.49 2.95 18 1.0

Sank and office 68 50 1.02 2.76 2.95 6 I.7J

Housing apartment 31.90 1.03 2.49 2.97 8 1.0

College 36.50 1.10 2.49 2.59 II 1.0

Renovated office

building 23.30 1.13 2.95 2.95 5 0.5

Health science

building 40.00 0.95 2.30 308 14 1.0

Telephone center 56.UO 1.13 1.93 2.95 3 I.M)

Hospitai addition 40.00 1.05 2.09- 3.08 5 1 00

Small garage 21.70 1.13 2.09 1.99 1 1.00

Office building 42.00 1.00 2.76 2.95 4 I.OU

College building 45.81 1.16 2.49 2.59 1 1 10

Chemistry

laboratory 62.00 1.16 2.95 2.59 7 1.45

Hospital 85.00 1.00 2.95 3.08 6 2.25

Dental school 47 50 1.00 2.49 3.08 7 1.15

Home for aged 34.30 1.13 1.93 3.08 3 1.10

Office building 37.00 1.13 2.76 2.95 24 1.00

Office building 31.90 1. 13 2.30 2.95 10 1.00

Office building 40.00 1.13 2.30 2.95 22 1.00

Office building 49.50 1.13 2.95 2.95 27 1.00

Medical school 36.20 1.13 2.09 3.08 10 1.00

Union hall
,

24.00 1.13 2.76 1.83 1 1.00

Hospital addition 38.80 1.13 2.09 3.08 1 1.05

Office addition 20.00 1.08 1.93 2.95 4 l.OO

Coflege building 1880 1.13 1.93 2.59 2 1.00

Office building 34.70 1.13 2.09 2.95 5 1.00

Office building 15.10 1.13 1.93 1.83 2 1.00

School, high 18.10 1.13 1.22 2.59 3 1.00

County correc-

tional center 39 00 1.13 2.30 3.08 4 1.20

County jail 36.00 1.13 2.09 3.08 2 1.20

Coflege

dormitory 21.10 1.07 1.66 2.59 6 1.00

College

dormitory 24.30 1.07 1.93 2.50 6 1.011

Coucgc building 30.00 1.13 1.93 2.59 6 l.UU

Hospital addition 27.50 1.13 2.30 3.08 2 1 1.00

Foundry 11.30 1.00 2.09 1.49 1 1 1 (JO

Factory 14.50 1.02 2.09 1.20 1 2 l.tRi

Factory 10.00 1.0S 2.09 1.20 1 1 I.MI

Factory 14.75 0.92 2.30 1.20 1

<
I.MU

TABLS 3.6 Historical Cost Data Used In Model Development

(Kouskoulas and Koehn 74])
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3.2.3 MODEL TESTING

As a measure of their accuracy, the authors rely principally

on the coefficient of multiple determination, R 2
, as defined

below:

Z (Ci - c_)*

i-x
R 2 = (3.3)

> (C. - Q) 2

where

:

Cm = the actual cost of the project expressed in dollars per

square foot of the project (column (2) of Table 3.6).

C = the arithmetic mean of C.

.

Ci = the cost as estimated by the derived equation,

n = number of projects in sample.

From this definition it can be seen that a R 2 value of 1

would indicate that the estimated values match the actual values

perfectly. In general, the closer the R 2 value is to 1 the

better the fit of the regression. A R 2 value of would indicate

that the regression data is so scattered that no correlation or

fit at all could be made. The use of the R 2 value being used as

an indicator of the closeness of fit is an accepted test that is

also applicable to nonlinear functions. In Kouskoulas and

Koehn's paper the R 2 value is also called the measure of assumed

linearity since the closer the R 2 is to 1 the closer the points

are to the assumed linear plane.

For the above equation the authors obtained a R 2 value of
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0.998, indicating an almost perfect correlation of C with the six

variables. Additionally, the authors calculated the correlation

coefficients for each variable and proved that a simpler

expression with fewer variables but with an overall higher

correlation results was possible by eliminating L and H. This

however, according to the authors gave a poorer model in

comparison to the original one since a change in the sample data

towards taller buildings from a greater diversity of localities

may indeed give a higher correlation value to these variables if

the calculations were to be repeated. Additionally, the authors

stress that in view of the fact that they are deriving a global

predesign cost estimating function, the variables are necessary

and essential to account for projects from different localities

and involving varying building heights.

Lastly, the function was tested with an eleven story

apartment-office building in Los Angeles and a thirty-nine story

office building in Detroit. Quoting the authors, "the results

were amazing with the difference from the actual and the

estimated square foot values being only $0.10/sq ft and

$0.24/sq ft respectfully.

3.2.4 ARTICLE SUMMARY

In their summary the authors stress that the true value of

their work is not their actual cost function but rather the

general methodology used to obtain it. Additionally, other
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combinations of variables are experimented with in an effort to

obtain higher R 2 values. In particular, the authors attempt to

remove the subjective variables, T and Q,T respectively.

Elimination of T reduces the original R 2 value from 0.998 to

0.89, while elimination of T and Q reduces it further to 0.75.

Therefore, the authors conclude that subjective variables are

essential and that the estimators sound judgement coupled with a

thorough knowledge of the derivation are needed for the model to

be accurate

.

1*3 CRITIQUE OF KOUSKOULAS AND KOEHN ' S WORK

In an effort to be consistent, analysis of Kouskoulas and

Koehn's paper will follow the same format in which it was

presented

.

3.3.1 THE SELECTION OF THE INDEPENDENT VARIABLES

Of the six independent variables used by the authors,

(locality, year built, type, height, quality, technology) only

the height variable appears to be a true parameter. That is to

say that if we define a parameter as a "cost driver", a physical

characteristic of the building upon which the cost is largely

dependent, (see Chapter 2), the other five variables do not

conform. We have seen in Tables 3.1 through 3.5 that indexes do

32





exist that allow the estimator to deal with variations in

location, year built, type, quality, and technology.

Consequently, these factors, should not be used as variables but

rather as factors that allow the user to adjust:

(1) the data base from which the cost-estimating

relationship is derived so that all sample data is of the

same locality, year built, type, quality and relative

technology. This normalization of the data will serve to

provide a basis from which other projects can effectively be

estimated.

(2) a project after it has been estimated by a normalized

cost-estimating function. That is to say, that the obtained

value can be adjusted using indexes to correct for any

particular building peculiarities that do not conform with

the normalized data.

As an example of (2) above, suppose that prior to the

derivation of our cost function, we adjusted the costs of our

sample data projects to New York City in the year 1987.

Additionally, assume that all costs were adjusted for quality,

technology and type so that our data base consisted of office

buildings constructed using average quality and technology. Now

further suppose that we use our function to estimate a Houston,

Texas apartment building in the year 1988. The building
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apartment that is to be built is of average quality and

technology. To estimate this project without including

Kouskoulas and Koehn's five excess variables, we would first

estimate the cost of the project using a derived CER (f(some

independent variables) = cost ). For the purposes of this

example say that this value was $1,000,000. The next step is to

correct for the building being located in Houston verse New York

City. This is done by using the values obtained from a reputable

locality index. For this example Table 3.1 will be used to

obtain the following results:

0.9/1.16 * $1,000,000 = $775,862

From this simple computation we see that moving this

apartment from a high priced area like New York City to Houston

saves about $225,000. The next step in this adjustment process

is to adjust our cost for the year, since our estimating equation

estimates for 1987 and the project takes place in 1988. Using

the Construction Cost Index published by Engineering News Record

(Table 4.2 of this paper) we get:

1.0139 * $775,862 = $786,646

The last step in this process is to adjust for the fact the

proposed building is an apartment complex as opposed to an office

building. This is done by utilizing Table 3.3 to obtain:
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2.97/1.83 * $786,646 = $1,276,688

This value of $1,276,688 is now our final estimate for an Houston

apartment building. No further adjustments are necessary since

the quality and technology of the proposed apartments are

considered average, as is the normalized data base from which the

original estimate was derived. Therefore it has been

demonstrated that with the use of adjustment factors variations

in projects can properly be taken into account.

As another fault of Kouskoulas and Koehn's work, one could

point to the lack of a variable that relates the buildings square

footage to its cost. In place of this Kouskoulas and Koehn chose

to make the units of the dependent variable, cost, dollars per

square foot so that their resulting estimated values are unit

costs instead of a total building cost estimate. The criticism

of this approach stems from the previous discussion on economies

of scale in Chapter 2 and something which this model fails to

consider and account. To better illustrate this point consider

two buildings of different size in Table 3.7, that, when

estimated utilizing the authors' approach, would render equal

unit costs.
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Building 1 Building 2

Height 100 ft 100 ft

# Floors 8 8

Typical
Floor Area 3000 sf 6000 sf

* Assume location, type, quality, technology and year build
are identical for both buildings.

TABLE 3.7 Example of Identical Unit Costs

In the above simplistic example, the unit cost of the two

buildings would be exactly the same despite of the fact that one

building is twice the size of the other. This approach is

considered to be quite unrealistic by this author since the

presence of fixed cost that do exist in the construction

industry, would automatically guarantee that the unit cost of

building decrease as the size of the building increases (provided

that the building costs are behaving linearly as Kouskoulas and

Koehn assume). As proof of this statement the following example

is provided:

£ BUILDING SF FIXED COSTS +VARIABLE COSTS =TOTAL COSTS UNIT COST

1 3000 $50,000 $500,000 $550,000 $183/9F

2 6000 $50,000 $1,000,000 $1,050,000 $175/SF

TABLE 3.8 Fictitious Building Costs
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In Table 3.8 the fictitious cost of two building are

compared. The first of the buildings is 3000 sf and the

associated costs are as shown. The second building is twice the

size of the first and as such has variable costs (assume linear

relationship) twice as large as the smaller building. The fixed

costs however, are by definition identical for the two buildings

and as a result the larger building has more area over which to

spread its fixed cost and thus has a smaller unit cost.

Kouskoulas and Koehn's models* failure to account for the

economies of scale is due in part to its failure to have a

parameter that accounts for building dimensions other than height

but also is a result of the use of a linear function to model

their data. This point will be discussed in greater detail in

the following section.

Another problem with Kouskoulas and Koehn's variable

selection deals with the way they chose to define H, the height

variable. Recall that this variable was defined to be the

building height in number of stories. Use of this variable in

this manner fails to account for buildings that have unusual

floor heights, or for warehouse/factory type buildings that have

only one story but building heights that may be 50 feet or

greater. A more appropriate way to define this necessary and

essential variable would be to let it represent the total height

of the building in feet.
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3.3.2 SELECTION OF COST-ESTIMATING RELATIONSHIP

The authors state in their article that the linear form of

representing the cost-estimating relationship was arbitrarily

selected. The arbitrarily selection of the cost relationship is

enough reason for many to disqualify their work as a valid model

based on definition alone. Strictly speaking, the formal

definition of a model tMcCuen 1985] says:

H A model is simply the symbolic form in which a physical

principal is expressed. It is an equation or formula but

with the extremely important distinction that it was built

by consideration of the pertinent physical principals,

operated on by logic, and modified by experimental judgement

and plain intuition. It was not simply chosen."

If this definition is used as a judging criteria, the

authors' work would not qualify as a model as its linear form was

simply chosen. A better approach to the selection of a

functional form would have been to have fit the data from Table

3.6 to as many of the functional forms described in Chapter 2 as

possible. If this had been done the authors then could have used

the calculated R 2 as a basis for selection, with the best form

for cost-estimating relationship being that with the R 2 value

closest to 1.
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3.3.3 CRITIQUE SUMMARY

In general the methods employed by Kouskoulas and Koehn to

derive their cost-estimating relationship are sound. However,

three critical formulation problems do exist and are as follows:

1. The height variable measures the number of stories in

the building as opposed the height of the building in feet.

2. The height variable is the only one in the derived

function that describes the physical dimensions of the

building.

3. The form for the cost-estimating relationship was

arbitrarily selected and not mathematically obtained. As a

result of use of a linear form, a negative fixed costs term

is included in the final CER. As mentioned in Chapter 2 the

existence of negative fixed costs is an unlikely situation

that normally is an indication of error.

The problems noted here were corrected in 1984 by a cost-

estimating model developed by Karshenas . This model is presented

and critique in the remaining sections of this chapter.
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3.4 SUMMARY OF S. KARSHENAS [ MODEL

3,4,1 THE SELECTION OF THE INDEPENDENT VARIABLES

Using Kouskoulas and Koehn's paper as a reference,

Karshenas developed a cost-estimating relationship to estimate

multistory, steel-framed office buildings [Karshenas 84]. Unlike

his predecessors, Karshenas felt that only two independent

variables, (height of building (ft) and the typical floor area

(sf)) were necessary to adequately described the building. The

other parameters that were used by Kouskoulas and Koehn in their

article were considered by Karshenas but deemed unnecessary for

the following reasons:

1. The type variable, T, was not needed as the author has

limited his model to include only steel framed office-

buildings. This approach was in fact a recommendation made

by Kouskoulas and Koehn in their article as they said "...if

the methodology is applied to a class of buildings instead

of to the whole population of buildings, one is bound to get

very good results."

2. The location variable, L, and the year variable, P, were

excluded since the author instead chose to use cost and

location Indexes to convert all projects to March 1982, New

York City cost scale. Thus, when estimating a building not
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in this time period or location, adjustments based on the

project specifics must be made. Using Kouskoulas and

Koehn's approach these adjustments were made as part of the

model

.

3. Lastly, the quality variable, Q, and the technology

variable, T, were omitted since the author chose only

"typical buildings" in his sample. That is to say that the

buildings that make up the data base do not have

extraordinary floor heights or unusually wide spans. For

example, an office building with a large auditorium was

excluded from the data. Furthermore, as certain items were

not common to all buildings, their cost was subtracted from

the total cost of the buildings. Specifically, the items

that were not included in the total cost are landscaping,

roads, open parking spaces, waste treatment facilities, and

special equipment. Thus the costs listed in column (7) of

Table 3.9 represent the cost of the building itself. As a

source for his cost data the author used parameter costs

published by Engineering News Record .
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^anosf BuMng Type* door anM. Adjusted total

Num- Ten* of of httatit in taat In sojuara lee* Total cost. cost. r.

ber Looton construction doors* (matart) (squar* metara) mooter* h doflars*

ID (2) (3) (4) (5) (6) (7) CS)
I Lexington. Mass Nov. 77/)an. 79 36 (10 8) 27.000 (2.511) 3.133.100 4.542. 0OU

: Southfield. Mich. Apr. 76/]une 78 15 187.5 (56.25) 17.690 (1.645) 11.645.000 17.271.000

3 Pociteflo, Idaho May 76/Sept. 77 36 6 (111 26.690 (2.502) 2.969 800 4.699.000

4 Dallas. Tex. Apr. 76/May 77 21 262.5 (78.7) 17.000 (1.581) 12.958,000 25.2S4.OUO
S Ondaie. Calif. Dec. 75/Nov. 76 72 (21.6) 15.800 (1.469.5) 2.781.480 4.5O6.0U0
6 Seattle. Wt«h Feb. 74/Dec. 76 36 468 (140 4) 22.200 (2-065) 36.470.000

70,022.000
7 Scottsdale. Am. Dec. 74/May 76 28 (8.4) 140.332 (13.051) 12.729.900

21.050.000

928.770

31.942 800

12.704.000

1 K/KBtville. Term. Aug 74/Apr. 75 25.3 (7.6) 9.986 (929) 446.500

9 Troy. Mich. Aug. 73/Oct 75 26 330 (99) 19.400 (1.804) 16.822.000

10 Birmingham, Ala. Oct. 74/Jan. 76 18 216 (65) 12.616 (1.173) 6.104.140

11 Franklin Park, m Mar. 74/Dec. 74 62.6 (18.7) 8.000 (744) 1.396.200

12 Beverly Hills, Calif. Nov 73/)ury 75 105.6 (31.7) 5.500 (511.5) 1.204.100 2.619 110

13 Houston. Tex. July 73/Jan. 75 13 175.5 (52.6) 29,920 (2.782) 10.408.000 2.175.000

14 Chicago. CD Dec. 73/Dec. 74
'

28 (8.4) 35.280 (3.31) 1.951.175 23.722.000

15 Detroit. Mkh. Aug. 71/Apr. 73 48 (14.4) 17.700 (1.646) 1.731.800 3.902.350

16 Warren. Mich. June 72/OcL 73 11 137.5 (41.2) 15.000 (1.393) 4.435.000 3.300.000

17 Weflesley. Man. Dec. 69/Sept. 70 48 (14.4) 18.800 (1.748) 1.763.000 9.275.000

18 Central. N.J. Nov 70/T-eb. 72 12 153 (45.9) 30.134 (2.802) 11.129.000 4.531.000
19 San Francisco. Calif. Oct. 66/May 68 33 429 (128.7) 17.212 (1.600) 14.455.000 26.932.000
20 New York. N.Y. Oct 61/Nov. 63 42 483 (145) 18.893 (1.757) 16.820.900 42.931.000
21 Oveiand. Ohio Feb. 63/Nov. 64 41 533 (160) 21.600 (2.009) 20.116.000

63.346.000
22 Columbus Ohio Dec. 63/Feb. 65 26 338 (101.4) 16.000 (1.488) 8.683 000

69.946.000
23 Pittsburgh. Pi. Apr 66/Apr. 68 126 (37.8) 16.833 (1.565) 3.871.000

31 817 000
24 Houston. Tex. Sept. 65/Aug. 66 50(15) 10.500 (977) 656.400

J 1 , <J 1 / i V-r^-^J

11.818.000
'Including basements. 2.646.100

TABLE 3.9 Historical Building Data (Karshenas 84]

3.4.2 SELECTION OF COST-ESTIMATING RELATIONSHIP

Unlike Kouskoulas and Koehn, who arbitrarily chose to

represent their function as a linear relationship, Karshenas

investigated the following types of functional forms: hyperbola,

power, exponential, and logarithmic. Utilizing the graphical

method described in Chapter 2, the author decided upon a power

function in the form of:

C = Z * A* * H*"

for his CER. In this equation the b , y, and z are constants and
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the final form of the equation, after regression analysis, using

the adjusted costs in column 8 of Table 3.9, is:

where, A = the typical floor area of the building (sf) and,

H = the height of the building (ft).

3.4.3 MODEL TESTING

To test whether the data was adequately described by the

regression equation, Karshenas also used the coefficient of

multiple determination, R 2
. The R 2 value for this model was

found to be 0.90 meaning that 90% of the variations in the

building costs listed in Table 3.10 are accounted for by the

regression equation. The remaining 10 % of the variations is due

to factors not included in the model such as the quality of

material and workmanship used in the building.

In the author's opinion, his power function is much more

accurate then Kouskoulas and Koehn's linear cost function that

expressed the square foot cost in terms of the same variables,

I.e., building type, height, location, and construction year.

The basis of this statement rests solely on the calculated R 2

values. In the case of Kouskoulas and Koehn, their R 2 value,

when the quality and technology variables were omitted, was 0.75.

On the other hand while using the power function form Karshenas

was able to obtained an R 2 value of 0.90.
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As a test of his model Karshenas compared the predicted

square foot costs of his model with that of Means/ Building

mr .m r.nst Guide . The square foot costs of four proposed

buildings, are shown in Table 3.10. Note that Means gives cost

values for the lower quartile, median and upper quartile as

shown. A comparison of the differences between the 25-percentile

and the 75-percentile estimates of the two methods reveals that

the proposed models' variabilities are considerably less than

Means'. The author states that the interval between the 25 and

75 percentiles are less In his model due to the fact that his

model estimates the cost in terms of two independent variables,

the building height and the typical floor area, while Means

estimates based solely on the total area of the building.

Number
of

Building

height.

In feet

(meters)

(2)

Typical floor

area, In

square feet

(square meters)

(3)

Estimated Cost,* In

Dollars per Square

Foot, Eq. 8

Estimated Cost," in

Dollars per Square

Foot, Means

stories

(1)

025

(4)

Median

(5)

0.75

(6)

0.25

(7)

Median

(8)

0.75

(9)

5

10

11

20

60 (18.3)

120 (36.5)

132 (40)

240 (73)

10,000 (929)

5,000 (464.5)

23.500 (2,181)

13,000 (1,207)

47.5

48.2

57.4

58.2

51.6

52.4

62.3

63.2

56.0

56.9

67.7

68.6

36.94

36.94

43.4

43.4

57.46

57 46

68.87

68.87

91.6

91.6

89.03

89.03

'Unit cost in New York City, March 1982.

' Means' Building System Cost Guide, 1982.

Table 3.10 Comparison of Predicted and Cost Book Estimates

[Karshenas 841
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3.5 CRITIQUE OF KARSHENAS ' PAPER

As stated previously, Karshenas, in his model corrected the

principal faults of Kouskoulas and Koehn's work and as a result

appears to have developed a very sound cost-estimating

relationship. However, two problem areas do exist with his model

and they are as follows:

1. Although Karshenas did include a parameter to account

for the area of the building, he chose to let this variable,

A, represent the typical floor area as opposed to the gross

building area. As an alternative had Karshenas explored the

possibility of adding the number of floors as another

independent variable, or in place of the typical floor area

and the number of floors variables, just have used a

variable for the buildings gross floor area, better results

may have been obtained.

2. When comparing his model to that of Kouskoulas and

Koehn's, Karshenas claims superiority since the R 3 value of

his model was 0.90 while that of his predecessors was only

0.75 when the same independent variables were used. The

author attributes this to his use of a non-linear function

and claims it to be the more appropriate representation of

the building costs. It is the opinion of this author, that

no conclusions can be drawn as to the best functional form,

since different data bases were used in their derivation and
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the form which best fits one set of data may not be the best

fit for the next. This criticism relates back to the

discussions in Chapter 2 on data collection. As stated

previously, this step in the model development process is

critical and inconsistencies at this scage could skew any

subsequent results. In the case of the two articles, the

data was collected independently from different sources and

it is therefore possible that one set is more valid than the

other and thus naturally gives better results.

3.6 CHAPTER SUMMARY

In this chapter two different cost-estimating models for

buildings were presented. In the first article by Kouskoulas and

Koehn, the authors expressed the unit cost of a building to that

of six independent variables using a linear relationship. This

approach was found to have its faults and was improved upon by

the Karshenas' model. Karshenas • approach greatly simplified the

CER by relating the cost to two independent variables through a

non-linear relationship.

Together the two articles provide a solid framework for

future model development. Therefore, having noted the faults of

each, it is proposed that an accurate and useful cost-estimating

relationship, that corrects their weaknesses, while incorporating

their strengths, can be derived from historical data. The

remainder of this text will be dedicated to the development,

derivation and testing of this model.

46





CHAPTER 4 COST-ESTIMATING MODEL

4.1 INTRODUCTION

In the previous two chapters the concept of parametric

estimating has been introduced and demonstrated. Attentive

reading of these chapters reveals that the concepts of parametric

estimating are easily understood and relatively straightforward.

In fact one might conclude, as this author did, that with the use

of computer software, an accurate and usable parametric model can

easily be derived.

To test this hypothesis, the four steps of model development

from Chapter 2 were followed and a cost-estimating relationship

was derived from data obtained from three military installations

in the State of Georgia.

This chapter is the description of the developed model. The

format of the chapter follows that of the four steps of model

development, with the content of each section being the

explanation of how and why each step in the development process

was handled.

4.2 PARAMETER SELECTION

As a result of the recommendations of the authors' work

presented in Chapter 3, it was decided to collect cost data for

only steel-framed office buildings. Using the criteria stated in
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Chapter 2 as a guide, an initial list of over seventy parameters

was narrowed to the following six:

1. Contract Duration

2. Amount of Liquidated Damages

3. Height of Building

4. Number of Floors

5. Typical Floor Area

6. Gross Floor Area

These parameters, as defined below, were examined/explored as

possible candidates for use as cost-drivers in the final derived

cost-estimating relationship.

CONTRACT DURATION (D) -is the number of days that the contractor

has to complete and deliver the building. This number was

thought to be significant as the inherent costs of a required

accelerated construction schedule would certainly have a direct

bearing on the bid price offered by any contractor.

LIQUIDATED DAMAGES (L) -is the amount of money ($/day) the

contractor is accessed per day for not completing the building by

the contracted completion date. As this value is an indicator of

the risks being assumed by the contractor it was believed that it

would be highly correlated with costs.
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height of building (H) -ls the total height measured In feet.

This parameter was used by both Karshenas and Kouskoulas-Koehn in

their models and will be used in the derived model as common

sense dictates that the cost of a building is strongly related to

its height.

NUMBER OF STORIES (S) -is the number of stories in the building.

This parameter was thought to be important as it is another

indicator of the size of the building.

TYPICAL FLOOR AREA (

A

fa ) -measured in square feet, this parameter

helps to further define the size of the building.

GROSS FLOOR AREA (

A

a ) -measured also in square feet, the value of

this parameter is the result of multiplying the number of floors

by the typical floor area. The use of this one variable will be

explored as a substitute for the above two variables.

Although many other candidates, most of which helped to

physically describe the building, were originally considered,

most were eliminated because it was felt that either:

(1) the data for this particular parameters would not be

available in the predesign stages of the project, or

(2) although it was a contributor to cost it was not sig-

nificant enough to be used in the model. Examples of some

of these parameters are:
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1. Type of Roof

2. Type of Exterior Finish

3. Linear Foot of Interior Walls

±±2 DATA COLLECTION AND NORMALI ZATTON

4 , 3,1 DATA COLLECTION

Having decided upon what data was to be used the next task

was the actual data collection. As a source of the building and

cost information the following military installations were

utilized:

1. Dobbins Air Force Base, Marietta, Georgia.

2. Fort Gillera (Army), Atlanta, Georgia.

3. Kings Bay Naval Submarine Base, Kings Bay, Georgia.

Like Karshenas, it was attempted to collect data on steel-

framed office buildings only. Unfortunately, the total number of

office buildings at these bases did not provide a large enough

sample size to obtain significant results. As a result the

search for data was expanded to include "typical" buildings from

other classes. Used in this context the word "typical" is meant

to mean buildings that do not contain unusual features for that

particular type of building. For example a warehouse would not

be excluded because it had large open areas for storage as this

is typical for this class of building whereas, an office building

with unusually large open areas would be excluded as being not
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typical

.

With the cooperation and assistance of the personnel in the

construction offices of the above installations the plans and

specifications for new buildings awarded in the 1980's were

reviewed and considered as possible candidates. In the end,

those buildings that did not contain many unusual features or

specialized equipment, (that might invalidate its cost figures),

were included in the sample. A summary of the data collected is

contained in Table 4.1 and is self explanatory with the exception

of the following:

1. The costs contained in column (7) of Table 4.1 are

not in all cases the actual awarded contract prices, as

the cost for unusual items, not typical for a

particular building type, were subtracted from the

original bid costs. For example, the cost of a large

auditorium was subtracted from the cost of an office

building. Additionally, the figures are for the

complete project and do include landscaping, parking,

overhead, profit etc.. However, no change order costs

are included.

2. The costs in column (8) represent the values from

column (7) after adjustments corrections for year

built, location, and building type have been applied.
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3. As some of the buildings had varying heights for

different sections, the value in column (11) is the

average building height.

Lastly, as conmon features, (in addition to those being made

common by adjustment), do exist between the data points, any CER

developed from them will be restricted for use on buildings

having the same common features listed below:

a. Competitively bid buildings on military bases.

b. Steel-framed buildings.

c. Buildings with no basements.

d. Buildings with shallow foundations only.

e. Buildings not greater than three stories in

height.
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4.3.2 DATA NORMALIZATION

As described previously, normalization is the process of

adjusting the data for any and all factors that differ from the

norm. The norm or base for the developed model is steel-framed

office buildings built in Atlanta during 1988. As a result, it

was necessary to adjust data from Table 4.1 for the year built,

location and building type.

The normalization of Table 4.1 was accomplished with the

use of derived adjustment factors. For example to adjust for any

cost differences caused by inflation due to buildings being

awarded in different years, the cost was adjusted by using the

Construction Cost Index published in the March 17, 1988 issue of

ENR magazine. Using the indexes from this article the following

adjustment factors were obtained:

MULTIPLY ORIGINAL

TO CONVERT COST FRQM YEAR TO YEAR COST BY:

1987 1988 1.0139

1986 1988 1.0389

1985 1988 1.0636

1984 1988 1.0762

1983 1988 1.0974

1982 1988 1.1665

TABLE 4.2 Cost Adjustment Factors for Year Built
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To adjust for cost differences caused by varying material

and labor prices that are the sole result of location, the

projects from Kings Bay Georgia were adjusted, (moved to

Atlanta), by using the City Cost Index from R. S. Means' Building

Construction Cost Data . Applying this index resulted in the cost

of the Kings Bay projects' being multiplied by 1.0241 to

compensate for the cheaper material and labor prices in that part

of the State.

Lastly, the buildings were adjusted for building type

function by creating adjustment factors from a relative cost per

square foot index for various building types. Using the data

published in [Adrian 82] the following factors were developed

(making office buildings the base):

TYPE OF BUILDING MULTIPLY COST BY

Apartments 1.2899
Banks 0.7131
Churches 1.1589
Department Stores 1.4933
Dormitories 0.9759
Factories 1.5669
Hospitals 0.6515
Libraries 1.1201
Office Buildings 1.0
Schools 1.1237
Shopping Centers 1.4172
Warehouses 1.7659

TABLE 4.3 Adjustment Factors for Building Type/Function
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Using these factors each project that was not in and of itself an

office type building was multiplied by the appropriate factor to

adjust its costs (up or down) to account for and price variations

due solely as a result of the buildings' function or type.

Additional adjustment factors that were discussed in

relation to Kouskoulas and Koehn's paper, that have not yet

accounted for, are the buildings quality and the technology

employed during construction. In the construction of this model,

no adjustments were made for these two items as it is assumed

that the quality of all stateside military construction,

regardless of the service branch, is roughly the same as

procurement of this type is rigidly controlled and all buildings

are built in compliance with the same Federal Specifications.

Similarly, it has been assumed that the level of technology

employed on all these projects has been roughly the same and that

in general it was average.

4.4 CER SELECTION

The following four forms were investigated as possible

candidates for use as the derived cost-estimating relationship:

1. Linear

2. Power

3. Exponential

4. Logarithmic

Previously these forms were explained in Chapter 2 and shown in

Figure 2.1. The criteria used in selecting the best form was R-
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squared values which were obtained from the multiple regression

results. The software program used to perform the regression

analysis was entitled Statgraphics and is marketed by the

Statistical Graphics Corporation [Statgraphics 861. This

package, although fully capable of performing multiple linear

regressions, was unable to adequately perform non-linear multiple

regression. As a result, in order to estimate the equation for

the nonlinear tested models, logarithms were used to convert the

nonlinear forms to linear equations. As an example, consider the

following form of the power function :

C = kA~H*- (4.1)

in which k, x, and y are constants whose value is determined from

regression analysis and A and H represent variables for area and

height respectively. Taking the natural logarithms of both sides

converts the original non-linear expression in equation 4.1 to

the linear form expressed by equation 4.2 below:

ln(C) = ln(k) + xln(A) + yln(H).., (4.2)

After converting the power function to its linear equivalent, the

computer is capable of applying an extension of the method of

least squares to perform multiple linear regression analysis and

calculate the value of the coefficients. To perform such a

procedure for this example, the natural logarithm would have to

be first calculated for the data of each of the three variables,

C, A, and H. Entering the converted values into the computer

58





yields the proper regression values for k, x, and y. It is

important to note however, that as a result of the natural

logarithm transformation, the constant value yielded for k is in

reality the natural log of k making it necessary to first take

the anti-natural log of the obtained value prior to using it in

the final equation.

The practice of using natural logarithms to convert

nonlinear forms to linear ones can easily be extended for use

with exponential and logarithmic functions. Table 4.4 below

summarizes the required transformation, the required input data,

and the regression coefficients obtained for each of the four

forms

.

Linear Power Exponential Logarithmic

Equation form y » a Mi + *>*i J m <****i 1 ' a**"'*"" y a + A, In x, + b^ In x.

desired

Linear f » a + b|X, > fc>*i In y • In a + 9, la x, + frj In xj la y = In a + b,x, + b^xj y * a * b, In x, + bj In xj

equation

form

Req'd. input x,,Xj, / In x,. In x,, In y x,. x,. In y lnx,,lnxj, y

data

transform

Regression a, b,, bj In a, b,, 5} In a, £>,, i> 2 a, b u t^

coclficienu

obtained

Coefficient None antiln (In a\, bu *, jniiln (In j), b,, b. None

reverse

transform

itq'd.

Final a, b,, bj a. b,, bj a. bu bj a , b,. b,

coclficienu

'More Ltuo two independent variables ait simple extensions of two variable equations.

TABLE 4.4 CER Equation Forms (Two Independent Variables)*
(Wyskida-Steward 87 1
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Using the adjusted costs from column (8) of Table 4.1 as the

dependent variable, multiple regressions were performed, (after

the appropriate linear logarithmic transformations), attempting

to fit the selected independent variables to each of the four

forms. For the selection process, only two sets of independent

variables were used. The selected variables were chosen because

they defined physical building dimensions and it was believed

that they would serve as a good predictors as to how the rest of

the data would behave. The adjusted R-squared values that

resulted from these regressions are summarized in Table 4.5.

From the results, the power function was selected as the form of

the final cost-estimating relationship as its R-squared values

were noticeably higher for both sets of independent variables.

ADJUSTED R-SQUARED'

EQUATION FORM

VALUES FOR THE DEPENDENT VARIABLE COST VS
THE INDEPENDENT VARIABLES:

GROSS AREA GROSS AREA & HEIGHT

Linear

Power

Exponential

Logarithmic

0.3083

0.6120

0.3485

0.3619

0.6693

0.7173

0.6178

0.6021

TABLE 4.5 Results From Initial Regression Analysis

* Adjusted R-squared values have been modified to account for the

degrees of freedom. The actual R-squared values as described by

equation 2.3 is slightly higher.
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4.5 CER DERIVATION

Having selected the power function as the final form for the

CER, the next step in the process is to decide which of the six

independent variables should be used in the estimating equation.

To accomplish this tasks multiple regressions were performed

on various combinations of the six independent variables. The

adjusted R-squared results obtained from the analysis are shown

in Table 4.6. From the R-squared values no firm conclusions

could be made as to what combination of independent variables

gave the best results. However, as trials 6 and 13's adjusted

R-squared values were the highest they were considered to be the

best candidates. A comparison of their actual R-squared values

revealed that trial 6 was a slightly better fit with an actual R-

squared value of 0.8239.

Given this, the residual values obtained from using the

regression results from trial 6 were calculated and are shown in

Table 4.7. The CER used to calculate the predicated values is:

C = 0.0861*H X - a.««*s-°* »a»*D 1
-
4B9 *L°- a " 3 *A,° 2aa

- (4.3
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NUMBER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

PREDICTED VALUES

$757,948.84

$896,215.83

$1,203,238.02

$490,021.43

$2,276,419.08

$622,847.74

$2,750,138.32

$2,091,127.25

$6,411,379.82

$2,742,451.79

$2,949,996.06

$4,836,002.17

$3,344,401.14

$10,602,394.74

$6,690,813.91

$2,550,941.38

$10,179,293.29

$4,639,665.07

$12,653,070.37

$3,485,399.92

RESIDUALS ^RESIDUALS

$347,051.16 31.41%

$48,738.97 5.16%

$437,809.86 26.68%

($203,485.33) 71.02%

($426,658.36) 23.07%

$142,804.93 18.65%

($1,608,134.82) 140.82%

($280,301.85) 15.48%

($617,176.25) 10.65%

($917,391.14) 50.27%

($560,787.25) 23.47%

($335,546.58) 7.46%

$565,968.44 14.47%

($2,330,761.16) 28.18%

($714,475.44) 11.96%

$187,838.48 6.86%

($2,314,667.37) 29.43%

$8,757,905.25 65.37%

$877,858.46 6.49%

$4,464,786.20 56.16%

AVERAGE RESIDUALS 32.15%

STANDARD DEVIATION 31.48%

TABLE 4.7 Residual Results for Equation 4.3
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Review of the residual results given by Table 4.7 shows that

an average error of 32.15% occurred when equation 4.3 was used to

calculate the predicted costs. Further observation shows that

project number 7 contained by far the highest residual percentage

(140.82%). Therefore, in an effort to investigate whether better

results might be obtained using these same five independent

variables, a regression analysis was repeated after the data for

project 7 was eliminated from the data base.

The results from this regression yielded an actual R-squared

value of 0.8808 and the following CER:

C = 0.0016*H1 - :L42 *S- o - 3 * s *D 2 - sos *L o - :L
'7O *A o - :L2S (4.4)

Using equation 4.4 to calculate the predicted cost values gives

the residuals shown in Table 4.8.

The resulting higher R-squared value and the lower average

percent residual value (25.74%) makes it appear that project 7

was a bad data point that introduced statistical inaccuracies

into the data base. Similarly, review of the residual values

contained in Table 4.8 reveals one extreme percentage (Project 14

8 78.61%) whose removal from the data base and the subsequent

regression analysis on the revised data yields an actual R-

squared value of 0.9074 and the following CER coefficients:

C = .00001155*H 1 -* B '7 *S- Q -* 3fi *D :i - s '7O *L o - 12a *A<3- *
'730 (4.5)
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NUMBER PREDICTED VALUES RESIDUALS ^RESIDUALS

1 $873,144.43 $231,855.57 20.98%

2 $1,132,400.62 ($187,445.82) 19.84%

3 $1,329,716.37 $311,331.50 18.97%

4 $431,228.15 ($14 4,692.06) 50.50%

5 $2,604,594.72 ($754,834.00) 40.81%

6 $653,878.63 $111,774.04 14.60%

7

8 $2,089,498.34 ($278,672.94) 15.39%

9 $6,670,866.47 ($876,662.90) 15.13%

10 $2,572,846.75 ($747,786.10) 40.97%

11 $2,498,236.17 ($109,027.36) 4.56%

12 $3,950,545.91 $549,909.67 12.22%

13 $4,520,744.97 ($610,375.40) 15.61%

14 $14,773,559.31 ($6,501,925.73) 78.61%

15 $5,695,811.82 $280,526.66 4.69%

16 $2,547,008.62 $191,771.24 7.00%

17 $9,485,065.91 ($1,620,439.98) 20.60%

18 $5,033,269.75 $8,364,300.57 62.43%

19 $13,389,081.72 $141,847.11 1.05%

20 $4,364,954.94 $3,585,231.18 45.10%

AVERAGE RESIDUALS 2 5.7 4%

STANDARD DEVIATION 20.77%

TABLE 4.8 Residual Results for Equation 4.4
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The residual results for equation 4.5 are shown in Table

4.9. The value for the average residual percentage using this

equation was improved to 24.21% with a noticeably lower standard

deviation of 14.63V. Review of the percent residuals in Table

4.9 provides no new candidates for data elimination since no

single residual percentage is clearly above the others.

Additionally, further elimination of data points could severely

handicap the usefulness of the model by decreasing the sample

size to a statistically insignificant number. Consequently,

equation 4.5 is the final form of the cost-estimating

relationship derived from the data.

NUMBER PREDICTED VALUES RESIDUALS %RESI DUALS

1 $809,838.64
2 $1,194,959.13
3 $1,299,857.42
4 $392,737.55
5 $2,842,727.84
6 $586,111.14
7

8 $2,331,560.21
9 $7,649,521.51

10 $2,206,936.28
11 $2,397,969.59
12 $3,794,558.74
13 $5,269,765.15
14
15 $4,942,961.47
16 $2,829,506.28
17 $9,301,047.44
18 $6,262,144.99
19 $16,787,750.26
20 $5,273,896.47

$295,161.36
($250,004.33)
$341,190.45
($106,201.45)
($992,967.11)
$179,541.53

($520,734.81)
($1,855,317.94)

($381,875.64)
($8,760.78)

$705,896.84
($1,359,395.57)

$1,033,377.00
($90,726.42)

($1,436,421.52)
$7,135,425.33
($3,256,821.44)
$2,676,289.65

AVERAGE RESIDUALS

STANDARD DEVIATION

26.71%
26.46%
20.79%
37.06%
53.68%
23.45%

28.76%
32.02%
20.92%
0.37%

15.69%
34.76%

17.29%
3.31%

18.26%
53.26%
24.07%
33.66%

24.27%

14.63%

TABLE 4.9 Residual Results for Equation 4.5
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4.6 MEASURE OF GOODNESS OF FIT/MODEL TESTING

As stated previously, the R-squared values for the

derivation of equation 4.5 was 0.9074. This number indicates

that approximately 91% of the cost variations are accounted for

by the derived model. Initially it appears that the fit for our

model is pretty good. However, from the residuals in Table 4.9

it is noted that average error (24.27%) and standard deviation

(14.63%), are too high, even for predesign estimating.

In an effort to put the model to a test, two projects, bid

in mid August of this year, at the Kings Bay Naval Submarine were

estimated using equation 4.5. The data for these projects,

(which was not used to derive equation 4.5), as well as the

predicated values are summarized in Table 4.10. Note that, where

appropriate, the calculated cost values were adjusted for

location, building type, and year. Also shown in the table are

the actual high and low bids submitted by prospective

contractors. For a comparison the same two projects were

estimated using the median square foot costs from R. S. Means.

The results along with the calculated percent residuals using

both methods are also shown in Table 4.10. The table shows that

the developed model performed outstandingly well in predicting

the cost of the Library Building, however the results of its use

in estimating the Chapel were so poor that it severely discredits

the model. Its accuracy appears to be inconsistent and thus its

use as an effective estimating model is doubtful.
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Comparing the results obtained by equation 4.5 to those

of Means makes it appear the derived model may not be total loss.

However, although the Means' estimate was always at least 35%

off, the main advantage it has over equation 4.5 is its

consistency. This precision is necessary for any estimating

method and appears to be severely lacking in the derived model.
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PROJECT NAME

PROJECT NUMBER

LOCATION

YEAR BID

DURATION (DAYS)

LIQUIDATED DAMAGES ($/DAY)

HEIGHT (FT)

GROSS FLOOR AREA (SF)

NUMBER STORIES

LIBRARY BUILDING CHAPEL COMPLEX

N68248-88-C-8052 N68248 -84-C-413

KINGS BAY, GA. KINGS ]BAY, GA.

1988 1988

365 480

325 585

15.5 21.75

16697 20960

1 1

PREDICTED COST
USING EQUATION (4.5) $1,775,317.73 $8,717,588.01

PREDICTED COST
R. S. MEANS

ACTUAL BID RESULTS
HIGH BID
LOW BID

PERCENT RESIDUALS
FOR EQUATION (4.5)

HIGH BID
LOW BID

PERCENT RESIDUALS
FOR R.S MEANS

HIGH BID
LOW BID

$1,097,004.92

$2,013,500.00
$1,688,400.00

11.83%
5.15%

45.52%
35.03%

$1,402,588.70

$3,169,700.00
$2,587,000.00

175.03%
236.98%

55.75%
45.78%

TABLE 4.10 Summary of Model Testing Results
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CHAPTER 5 MODEL PROBLEMS

Lil REVIEW OF THE DERIVED EQUATION'S COEFFICIENTS

In Chapter 4 a cost-estimating relationship was derived

from historical cost data to test the ease of application of

parametric estimating. The results of the multiple regression

yielded the following power function:

C = O.OOOOllS^^-^^S-^^^D^^^L^^^A,- - 0,730

Use of this equation to estimate two buildings at the Kings

Bay Naval Submarine Base provided mixed results indicating that

the model may be flawed. A closer look at the individual

coefficients confirms this belief as it appears that the some of

the selected parameters are not correlated to the total cost in

the manner that was originally Intended when they were selected.

Looking at the coefficients for each variable individually

reveals that:

1. Both the height and the liquidated damages variables

appear to be functioning properly as they both have positive

coefficients that causes the cost of the building to go up

when either the height or the amount charged for damages are

increased.
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2. The coefficient for the number of stories is negative.

As a result, as the number of stories increases the value of

this variable becomes a smaller and smaller fraction thus

reducing the total cost. At first thought this appears to

be incorrect as the cost of the building should be

increasing as the number of stories are increased, however

this variable may be one of the ways in which the principle

of the economies of scale has manifested itself in the

model

.

3. A look at the coefficient for duration reveals the

largest positive value in the model. Consequently, as the

number of days are increased the cost of the project is also

increased. Originally, this parameter was considered for

use in the model to account for the increased costs

resulting from the contractor not being allowed adequate

time to complete the project. It was intended for this

parameter to be negatively correlated with cost so that as

the number of days to complete the work decreased the cost

of the contract increased. In actuality, the regression

analysis saw that the projects that had longer durations

cost more and thus related the two directly. Since this

parameter is not being used in the derived model as

originally defined, its inclusion as a valid parameter is

suspect

.
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4. Lastly, the coefficient for the gross floor area is

incorrectly a small negative number. This becomes clear by

simply assigning fixed values to all variables except the

gross area, which is increased. The values computed for

this component of the equation decrease as the square

footage increases, thus making the total cost of the project

decrease as the gross square footage is increased.

As a result of 3 and 4 above, it must be concluded that the

model does not perform in a realistic manner that reflects the

true nature of building cost, therefore its use as a valid means

of estimating is not recommended.

5.2 SOURCE OF ERROR

In Chapter 3 we saw, the concepts of parametric estimating

could be successfully applied to data gathered from published

sources to develop a relationship to estimate buildings.

However, when applied to actual data collected from the field

this technique provided erratic results. As a consequence, it is

believed that the principle source of the problems incurred by

the model derived in Chapter 4 occurred at the data collection

stage of the process. In general the exactness of data

collection required by parametric estimating is its chief

limitation. More specifically, with regards to the developed

model, the most demanding step in its development was the data
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selection and subsequent collection. Great care was taken in

reviewing the plans and specifications of all data point

candidates so that the cost for non-common items could be

eliminated. In retrospect it appears that the task of reviewing

hundreds of sheets of drawings and thousands of pages of

specifications for projects, with the hopes of uncovering the

majority of non-common features, was unrealistic. Possibly if

the reviewer had been involved in the construction or design of

the buildings, a task of this kind could successfully be

undertaken. Not surprisingly the source of the data for both

articles from Chapter 3 came from published sources and thus

eliminated the need for the authors to review plans and

specifications

.
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CHAPTER $

SUMMARY . CONCLUSIONS. AND RECOMMENDATIONS FOR FUTURE RESEARCH

6.1 SUMMARY

This paper has introduced parametric estimating as a fast,

inexpensive, reasonable accurate, alternative method of

estimating the cost of a building before the detailed plans and

specifications are available. The methodology for the

development of a parametric model was found to be:

1. Parameter Selection

2. Data Collection and Normalization

3. CER Form Selection and Derivation

4. Measuring the Goodness of Fit/Model Testing

The use and actual application of . these four steps was

illustrated by the presentation and critique of two previously

published cost-estimating models.

In an effort to test the ease of application of this

estimating technique, a parametric estimating model was developed

from cost data collected from three Georgia military

installations. The resulting cost estimating function related

the total cost of a building to the following five independent

variables: gross floor area, number of stories, length of

contract, liquidated damages, and height. Test of this derived
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estimating relationship indicted that problems with its

formulation did exist and as result the model was not suitable

for use.

6.2 CONCLUSIONS

In theory, the concepts behind parametric estimating are

straightforward and relatively easily understood thus making it

appear that the development of an accurate and effective

estimating model is easily accomplished. In principle this is

true, however, in actuality this technique provides many

opportunities for error that make it quite difficult for a usable

model to be developed. In the case of the model developed in

Chapter 4, a data base containing both inaccurate cost data and

too few data points, as well as poor parameter selection was the

apparent cause of the model's failure.

Although the two models presented in Chapter 3 were derived

from published data it is believed that this technique can still

be accurately applied to actual field data if the steps in the

development process are followed properly. However, to

successfully accomplish this it is felt that a person, who is not

only knowledgeable of parametric estimating and the statistics

behind it, but also one who is intimately familiar with the

projects being considered and selected for entry in the data

base, is needed to undertake the effort. This is thought to be

true as only a person with this background has the necessary

knowledge to:
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1. Properly select parameters that are known to have a high

correlation with cost for the particular type projects being

reviewed

.

2. Effectively and consistently exclude projects from the

data base due to abundance of non-common features or

specialized equipment.

3. Properly subtract individual costs, (from the total

project cost), for those atypical items that are not severe

enough to have the data excluded from the data base.

In summary, the method of parametric estimating is not as

simplistic as it appears from the surface. As such its use

appears to be limited to the experienced estimator, who is both

knowledgeable of parametric techniques and the projects in the

data base. Use of this technique by others to create a model

providing predesign building estimates will probably yield poor

results

.

i^3 RECOMMENDATIONS FOR FUTURE RESEARCH

Of apparent interest to this field would be a study

attempting to identify where in the construction industry

parametric estimating is being successfully employed. Included

in this study would be the finding of what was being estimated,

76





the methods of application, and the accuracies being obtained.

From these findings the development of subsequent parametric

models would be greatly simplified with much better results being

attainable

.
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Model fitting results for: cost

Independent variable coefficient std. error t- value slg. level

CONSTANT
grossarea

1.89491E6
63.941855

1.10118E6
20.781781

1.7208
3.0768

0.1024
0.0065

R-SQ. (ADJ.) * 0.3083 SB= 3339904.557930 MAE= 2374672.021137 DurbWat= 1.502
Previously: 0.6177 0.638822 0.415485 2.259
20 observations fitted, forecast(s) coaputed for alsslng val. of dep. var

.

Model fitting results for: cost

Independent variable coefficient std. error t -value sig. level

CONSTANT
LOG grossarea

-2.523631B7
2.900656E6

8.661035B6
8.452223B5

-2.9138
3.4318

0.0093
0.0030

R-SQ. (ADJ.) - 0.3619 SB» 3207707.543219 MAS- 2254962.225363 DurbWat- 1.358
Previously: 0.3083 3339904.557930 2374672.021137 1.502
20 observations fitted, forecast(s) coaputed for alsslng val. of dep. var.





Model fitting results for: cost

Independent variable coefficient std. error t-value slg. level

CONSTANT
LOG grossarea
L03 height

-3.178494E7
1.481162E6
6.548626E6

7.093808E6
7.83732B5

1.898232B6

-4.4807
1.8899
3.4499

0.0003
0.0759
0.0031

R-SQ. (ADJ.) = 0.6026 SE=« 2531458.727405 MAE= 1825708.782268 DurbWat= 1.253
Previously: 0.7173 0.549373 0.388413 2.343
20 observations fitted, forecast(s) computed for aisslng val. of dep. var

.

Model fitting results for: LOG cost

Independent variable coefficient std. error t-value sig. level

CONSTANT
grossarea
height

12.772223 0.433986
0.000011 4.330651B-6
0.062483 0.016894

29.4300
2.5354
3.6985

0.0000
0.0213
0.0018

R-SQ. (ADJ.) * 0.6177 SB- 0.638822 MAE= 0.415485 DurbWat= 2.259
Previously: 0.6026 2531458.727405 1825708.782268 1.253
20 observations fitted, forecast(s) computed for missing val. of dep. var.
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Model fitting results f or : LOG cost

Independent variable coefficient std. error t-value sig. level

CONSTANT
LOG grossarea

5.291483
0.936093

1.761701
0.171923

3.0036
5.4448

0.0076
0.0000

R-SQ. (ADJ.) * 0.6012 SE = 0.652465 MAE» 0.494621 DurbWat- 2.032
Previously: 0.3485 0.833996 0.627420 1.799
20 observations fitted, forecast(s) conputed for aisslng val. of dep. var

.

Model fitting results for: LOG cost

Independent variable coefficient std. error t-value sig. level

CONSTANT
grossarea

14.175622 0.274972
0.000017 5.189346E-6

51.5530
3.3409

0.0000
0.0036

R-SQ. (ADJ.) 0.3485 SB* 0.833996 MAE- 0.627420 DurbWat- 1.799
Previously: 0.6012 0.652465 0.494621 2.032
20 observations fitted, forecast(s) computed for missing val. of dep. var.
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Hodel fitting results for: cost

coefficient std. errorIndependent variable t-value slg. level

CONSTANT
grossarea
height

-4.337302E6
35.71032

2.774729BS

1.569211E6
15.658821
6.108554E4

-2.7640
2.2805
4.5424

0.0133
0.0357
0.0003

R-SQ. (ADJ.) =» 0.6691 SE= 2309858.492943 MAB= 1712919.982550
Previously: 0.3485 0.833996 0.627420
20 observations fitted, forecast(s) computed for aissing val,

DurbWat* 1.372
1.799

of dep. var

.

Model fitting results for: LOG cost

Independent variable coefficient std. error t-value slg. level

CONSTANT
LOG grossarea
LOG height

4.098287
0.677454
1.193194

1.539485
0.170084
0.411951

2.6621
3.9831
2.8964

0.0164
0.0010
0.0100

R-SQ. (ADJ.) * 0.7173 SE- 0.549373 HAE- 0.388413
Previously: 0.6691 2309858.492943 1712919.982550
20 observations fitted, forecast(s) computed for missing val

DurbWat

of dep.

2.343
1.372

var

.
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Model fitting results for: LOG cost

Independent variable coefficient std. error t-value slg. level

CONSTANT
LOG height

8.248058
2.054638

1.531454
0.473755

5.3858
4.3369

0.0000
0.0004

R-SQ. (ADJ.) =» 0.4838 SB* 0.742328 MAS= 0.490956 DurbWat* 2.013
Previously: 0.6177 0.638822 0.415485 2.259
20 observations fitted, forecast(s) computed for alsslng val. of dep. var

.

Model fitting results for: LOG cost

Independent variable coefficient std. error t-value slg. level

CONSTANT 5. 291483 1.761701 3.0036 0.0076
LOG grossarea 0.936093 0.171923 5.4448 0.0000

R-SQ. (ADJ.) » 0.6012 SB- 0.652465 MAB- 0.494621 DurbWat- 2.032
Previously: 0.4838 0.742328 0.490956 2.013
20 observations fitted, forecast(s) computed for alsslng val. of dep. var.
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Model fitting results for: LOG cost

Independent variable coefficient std. error t-value sig. level

CONSTANT
LOG floorarea
LOG height
LOG duration
LOG stories

2.629389
0.469548
1.258547
1.476282
0.125657

4.419562
0.232104
0.498316
0.994645
0.427073

-0.5949
0230
5256
4842
2942

0.5607
0.0613
0.0233
0.1585
0.7726

MAE'R-SQ. (ADJ.) = 0.7285 SB= 0.538414
Previously: 0.7080 0.558287
20 observations fitted, forecast(s) computed for

0.349413
0.390893

missing val,

DurbWat- 2.374
2.385

of dep. var

.

Model fitting results for: LOG cost

Independent variable coefficient std. error t-value sig. level

CONSTANT
LOG floorarea
LOG height
LOG damages
LOG stories

3.416948
0.510061
1.315547
0.346612
0.065366

1.850099
0.20313

0.483769
0.206078
0.426913

1.8469 0,,0846
2.5110 0. 0240
2.7194 0,,0158
1.6819 ,1133
0.1531 0,,8804

DurbWat- 1,,824R-SQ. (ADJ.) = 0.7380 38= 0.528877 MAE= 0.348011
Previously: 0.7285 0.538414 0.349413 2.374
20 observations fitted, forecast(s) computed for missing val. of dep. var.
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Model fitting results for: LOG cost

Independent variable coefficient std. error t-value slg. level

CONSTANT
LOG grossarea
LOG height
LOG damages
LOG stories

R-SQ. (ADJ.) » 0.7380 SB= 0.528877 MAE= 0.348011 DurbWat= 1.824
Previously: 0.7080 0.558287 0.390893 2.385
20 observations fitted, forecast(s) computed for missing val. of dep. var.

3 416948 1.850099 1 8469 0846
510061 0.20313 2 5110 0240

1 315547 0.483769 2 7194 0158
346612 0.206078 1 6819 1133
444695 0.37557 -1 1841 2548

Model fitting results for: LOG cost

Independent variable coefficient std. error t-value slg. level

CONSTANT 3.30561 1.951729 1.6937 0.1097
LOG floorarea 0.703099 0.176919 3.9741 0.0011
LOG height 1.389347 0.508565 2.7319 0.0148
LOG stories 0.445931 0.382152 1.1669 0.2604

R-SQ. (ADJ.) 0.7080 SB- 0.558287 MAS- 0.390893 DurbWat- 2.385
Previously: 0.7380 0.528877 0.348011 1.824
20 observations fitted, forecast(s) computed for alsslng val. of dep. var.





Model fitting results f or: LOG cost

...-w^^iiuca: variable coefficient std. error t-value sig . level

CONSTANT
LOG grossarea
LOG height

4.098287
0.677454
1.193194

1.539485
0.170084
0.411951

2.6621
3.9831
2.8964

0.0164
0.0010
0.0100

R-SQ. (ADJ.) = 0.7173 SB» 0.549373 MAS- 0.388413
Previously: 0.6012 0.652465 0.494621
20 observations fitted, forecast(s) coaputed for aissing val,

Durbwat* 2.343
2.032

of dep. var

.

Model fitting results for: LOG cost

independent variable coefficient std. error t-value sig. level

CONSTANT
LOG floorarea
LOG height
LOG stories

3.30561
0.703099
1.389347
0.445931

1.951729
0.176919
0.508565
0.382152

1.6937
3.9741
2.7319
1.1669

0.1097
0.0011
0.0148
0.2604

HAB'R-SQ. (ADJ.) 0.7080 SB- 0.558287
Previously: 0.7173 0.549373
20 observations fitted, forecast(s) coaputed for

0.390893 DurbWat- 2.385
0.388413 2.343

aissing val. of dep. var.
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Model fitting results for: LOG cost

Independent variable coefficient std. error t-value slg. level

CONSTANT 4.643577 1.551994 2.9920 0.0086
LOG grossarea 0.509965 0.205666 2.4796 0.0247
LOG height 1.021675 0.420434 2.4300 0.0272
LOG daaages 0.274175 0.199245 1.3761 0.1878

R-SQ. (ADJ.) = 0.7314 SB* 0.535480 NAB- 0.377196 DurbWat- 1.851
Previously: 0.7610 0.505154 0.310643 1.795
20 observations fitted, forecast(s) computed for aisslng val. of dep. var

.

Model fitting results for: LOG cost

Independent variable coefficient std. error t-value slg. level

CONSTANT 3.30561 1.951729 1.6937 0.1097
LOG grossarea 0.703099 0.176919 3.9741 0.0011
LOG height 1.389347 0.508565 2.7319 0.0148
LOG stories -0.257168 0.378583 -0.6793 0.5067

R-SQ. (ADJ.) - 0.7080 SB- 0.558287 NAB- 0.390893 OurbWat- 2.385
Previously: 0.7314 0.535480 0.377196 1.851
20 observations fitted, forecast(s) computed for aissing val. of dep. var.
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Model fitting results for: LOG cost

Independent variable coefficient std. error t-value sig. level

CONSTANT
LOG grossarea
LOG height
LOG duration
LOG daaages
LOG stories

2.447128
0.281229
1.187055
1.45837

0.343226
•0.528533

147869
243078
469328
933259
,196846
,362714

5900
1569
5293
5627
7436

-1.4572

5646
2667
0241
1404
1031

0.1671

HAS =R-SQ. (ADJ.) « 0.7610 SB* 0.505154
Previously: 0.7431 0.523728
20 observations fitted, forecast(s) coaputed for

0.310643
0.337207

ilssing val

DurbWat

of dep.

1.795
1.751

var

.

Model fitting results for: LOG cost

Independent variable coefficient std. error t-value sig. level

CONSTANT
LOG floorarea
LOG height
LOG duration
LOG daaages
LOG stories

2.447128
0.281229
1.187055
1.45837

0.343226
0.247304

4.147869
0.243078
0.469328
0.933259
0.196846
0.45421

-0.5900
1.1569
2.5293
1.5627
1.7436

-0.5445

0.5646
0.2667
0.0241
0.1404
0.1031
0.5947

R-SQ. (ADJ.) » 0.7610 SB- 0.505154 MAS- 0.310643
Previously: 0.7610 0.505154 0.310643
20 observations fitted, forecast(s) coaputed for aissing val,

DurbWat- 1.795
1.795

of dep. var.
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Model fitting results for: LOG cost

Independent variable coefficient std. error t-value sig. level

CONSTANT
LOG grossarea
LOG height
LOG duration

-1.008183
0.459237
1.015749
1.330099

4.044117
0.230859
0.422668
0.977996

.2493 8063
1 .9893 0641
2 .4032 0287
1 .3600 1927

DurbWat = 2 262
2 385

. of dep. var

MAE =R-SQ. (ADJ.) » 0.7307 SB* 0.536138
Previously: 0.7080 0.558287
20 observations fitted, forecast(s) computed for

0.353695
0.390893

aisslnq val

Model fitting results for: LOG cost

Independent variable coefficient std. error t-value sig. level

CONSTANT
LOG grossarea
LOG height
LOG duration
LOG damages

0.212314
0.31268
0.863144
1.257218
0.259483

3.995615
0.25102

0.428546
0.95693

0.195193

1

2

1

1

0531
.2456
0141
.3138
3294

0.9583
0.2320
0.0623
0.2087
0.2036

DurbWat" 1.751R-SQ. (ADJ.) - 0.7431 SE« 0.523728 MAE- 0.337207
Previously: 0.7307 0.536138 0.353695 2.262
20 observations fitted, forecast(s) computed for alssing val. of dep. var

.
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Model fitting results for: LOG cost

Independent variable coefficient std. error t-value slg. level

CONSTANT
LOG grossarea
LOG height
LOG daaages
LOG stories
LOG duration

2.447128
0.281229
1.187055
0.343226
0.528533
1.45837

147869
243078
469328
196846
362714
933259

-0.5900
1.1569
2.5293
1.7436

-1.4572
1.5627

0.5646
0.2667
0.0241
0.1031
0.1671
0.1404

MAE'R-SQ. (ADJ.) » 0.7610 SE- 0.505154
Previously: 0.7380 0.528877
20 observations fitted, forecast(a) computed for

0.310643
0.348011

ilasing val,

DurbWat* 1.795
1.824

of dcy. var

.

Analysis of Variance for the Pull Regression

Source Sua of Squares DP Mean Square P-Ratlo P-value

Model
Error

16.7110
3.57253

5 3.34220 13.0974
14 0.255181

.0001

Total (Corr.) 20.2835

R-squared 0.82387
R-squared (Adj. for d.f.) = 0.760967

19

Stnd. error of est. =» 0.505154
Durbln-Watson statistic 1.79532
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Model fitting results for: LOG cost

Independent variable coefficient std. error t-value slg. level

CONSTANT
LOG floorarea
LOG height
LOG damages
LOG stories
LOG duration

R-SQ. (ADJ.) - 0.7610 SE= 0,

Previously: 0.7610 0.505154 0.310643 1.795
20 observations fitted, forecast(s) computed for Biasing val. of dep. var.

-2.447128 4.147869 -0 5900 5646
0.281229 0.243078 1 1569 2667
1.187055 0.469328 2 5293 0241
0.343226 0.196846 1 7436 1031

-0.247304 0.45421 -0 5445 5947
1.45837 0.933259 1 5627 1404

505154 MAE= 0.310643 DurbWat- 1 795

Analysis of Variance for the Full Regression

Source Sua of Squares DF Mean Square F-Ratlo P-value

Model
Error

16.7110
3.57253

5

14
3.34220 13.0974

0.255181
.0001

Total (Corr.) 20.2835 19

R-squared « 0.82387 Stnd. error of est. » 0.505154
R-squared (Adj. for d.f.) - 0.760967 Durbin-Watson statistic « 1.79532
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APPENDIX C

REGRESSION RESULTS FOR EQUATIONS 4.4 AND 4.5
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Model fitting results for: LOG cost

Independent variable coefficient std. error t-value sig. level

CONSTANT
LOG height
LOG stories
LOG duration
LOG damages
LOG grossarea

R-SQ. (ADJ.) «= 0.8688 SE= 0,

Previously: 0.0000 0.000000 0.000000 0.000
18 observations fitted, forecast(s) conputed for alssing val. of dep. var

.

11.368987 4 103352 -2 7707 0169
1.456829 380506 3 8287 0024

-0.435654 280232 -1 5546 1460
3.668582 941766 3 8954 0021
0.128104 158814 8066 4356

-0.073767 210801 -0 .3499 7325

375837 MAE= 0.260125 DurbWat" 2 499

Analysis of variance for the Full Regression

Source Sua of Squares DF Mean Square F-Ratlo P-value

Model
Error

16.6112
1.69504

5

12
3.32223 23.5196

0.141254
.0000

Total (Corr.) 18.3062 17

R-squared » 0.907406 Stnd. error of est. » 0.375837
R-squared (Adj. for d.f.) = 0.868825 Ourbln-Watson statistic - 2.49927
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Hodel fitting results for: LOG coat

Independent variable coefficient std. error t-value slg. level

CONSTANT
LOG height
LOG stories
LOG duration
LOG damages
LOG grossarea

-6.435863
1.141143
0.344412
2.604581
0.17013

0.125289

3.77868
0.392649
0.310998
0.891645
0.176986
0.211495

7032
9063
1074
9211
9613
5924

1123
0123
2882
0119
3540
5637

R-SQ. (ADJ.) = 0.8348 SE= 0.422211 MAE = 0.257693 DurbWat= 1.906
Previously: 0.0000 0.000000 0.000000 0.000
19 observations fitted, forecast(s) computed for lsslng val. of dep. var

.

Analysis of Variance for the Full Regression

Source Sua of Squares DP Mean Square F-Ratio P-value

Model
Error

17.1089
2.31740

5 3.42178 19.1952
13 0.178262

.0000

Total (Corr.) 19.4263

R-squared 0.880708
R-squared (Adj. for d.f.) - 0.834826

18

Stnd. error of est. 0.422211
Durbln-Watson statistic * 1.90562
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