

Calhoun: The NPS Institutional Archive

Long haul underwater fiber optic link

DeNap, Frank A.
http://hdl.handle.net/10945/23290

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

LONG HAUL UNDERWATER FIBER OPTIC LINK
by

Frank A. Denap

March 1988

Thesis Advisor:
J.P. Powers

Approved for public release; distribution is unlimited

REPORT DOCUMENTATION PAGE

ABSTRACT (Continue on reverse if necessary and identify by block number)
iis thesis presents the design, test and evaluation of a fiber optic mote monitoring system. Practical aspects of loss measurement, link lalysis, receiver design, and controller implementation are examined. e fundamental operation of the system relies on conversion of the ltage data to a variable frequency TTL pulse train. The pulse train dulates a 1300 nm laser, which transmits the telemetry data via single de fiber to the shore station. One of the two test voltages can be lected by the shore-based controller, via the bidirectional link. aboratory test results are included.

DISTRIBUTION/AVAILABILITY OF ABSTRACT GUNCLASIIFIED/UNLIMITED \square SAME AS RPT	\square DTIC USERS	21 ABSTRACT SECURITY CLASSIFICATIONUNCLASSIFIED	
NAME OF RESPONSIBLE INDIVIDUAL P. POWERS		$\begin{aligned} & \text { 22b TELEPHONE (Include Area Code) } \\ & (408) 646-2200 \end{aligned}$	22c. OFFIGE SYMBOL

Approved for public release; distribution is unlimited.

Long Haul Underwater Fiber Optic Link

> by

Frank A. DeNap
Lieutenant Commander, United States Navy B.S., University of Illinois, 1973

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL
March, 1988

ABSTRACT

This thesis presents the design, test and evaluation of a fiber optic remote monitoring system. Practical aspects of loss measurement, link analysis, receiver design, and controller implementation are examined. The fundamental operation of the system relies on conversion of the voltage data to a variable frequency TTL pulse train. The pulse train modulates a 1300 nm laser, which transmits the telemetry data via single mode fiber to the shore station. One of two test voltages can be selected by the shore-based controller, via the bidirectional link. Laboratory test results are included.

TABLE OF CONTENTS
I. INTRODUCTION 1
II. SYSTEM DESIGN 4
A. CHANNEL 4

1. Losses 4
Table 1. Fiber Parameters 7
2. Loss Measurement 10
3. Power Budget 15
B. RECEIVER 15
4. Detector 15
5. Current to Voltage Converter 19
6. Linear Amplifier 21
7. Coupling and Conditioning 22
8. Comparator 31
9. Logic Interface 32
10. System Risetime 32
C. SHORE CONTROLLER 35
11. GPIB 36
12. GPIB-410 38
13. Fluke 8840A Digital Multimeter 39
14. Wavetek Model 270 Function Generator 40
15. Photodyne Model 7750XR Optical Signal
Generator 40
D. UNDERWATER CONTROLLER 40
16. Timing Circuits 42
17. Switching 43
18. Modulating Circuitry 43
19. Power Consumption 43
III. TEST AND EVALUATION 46
IV. CONCLUSION AND RECOMMENDATIONS 48
APPENDIX A BIDIRECTIONAL CONTROL PROGRAM. 50
APPENDIX B SIMPLEX CONTROL PROGRAM. 54
APPENDIX C LABORATORY TEST RESULTS. 58
REFERENCE LIST 68
INITIAL DISTRIBUTION LIST 70

List of Figures

Figure 1. Preliminary System 2
Figure 2. Revised System 5
Figure 3a. Poor Fracture 9
Figure 3b. Poor Cleaves 9
Figure 4. Typical Poor Splices 11
Figure 5. Overall Fiber Loss 13
Figure 6. Splice Loss Measurement 14
Figure 7. Power Throughput Analysis Worksheet 16
Figure 8. Overview of Digital Receiver 17
Figure 9. Baud Rate vs Sensitivity 18
Figure 10. Transimpedance Design 20
Figure 11. Sensitivity of GO PIN-FET 21
Figure 12. AC Coupler 22
Figure 13. Differential Waveform 24
Figure 14. Comparison of Coupling Techniques 25
Figure 15. Differential Amplifier 27
Figure 16. V/F output 909 Hz Duty-cycle 0.85 28
Figure 17. V/F output 4.64 KHz Duty-cycle 0.66 28
Figure 18. V/F output 10 KHz Duty-cycle 0.20 29
Figure 19. Differential output Duty-cycle 0.85 29
Figure 20. Differential output Duty-cycle 0.66 30
Figure 21. Differential output Duty-cycle 0.20 30
Figure 22. Receiver Module 33
Figure 23. Logic Interface 34
Figure 24. GPIB Status Word 38
Figure 25. Underwater Circuitry 41
Figure 26. Modulating Circuitry 44
Figure 27. Power Consumption 45
Figure 28. Test Results 46

I. INTRODUCTION

Self generating sea water batteries are currently under development for applications in long life underwater sytems. Initial performance of prototypes indicates that the output voltage depends on oxygen content and ocean currents. Long term monitoring under specified environmental conditions is required prior to fleet introduction, particularly deep water testing of battery and converter systems. To achieve test conditions and maintain design flexibility a fiber opticbased system was developed to telemeter measurement information to shore [Ref. 1]. Figure 1 illustrates the overall concept of this system. The kernel of the preliminary system was conversion of the voltage data to a variable frequency TTL pulse train. The pulse train modulated an 820 nm GaAlAs LED which transmitted light through a $50 / 120$ micron fiber. The receiver detected the light and converted the TTL pulse train to a dc voltage; a computer-controlled recording system then recorded the voltage on disk. The system details are outlined in Reference 1. This initial design had a maximum range of 2.8 km and could only monitor a single voltage. Revised testing conditions specify a 30 km repeaterless link capable of monitoring the performance of the salt water battery and its voltage converter over a one year period. These specifications require design changes in the underwater

Figure 1. Preliminary System [From Ref. 1]
and shore-based subsystems. The fundamental operation of the proposed system relies on the shore-based subassembly, which directs the underwater system to activate, select and transmit one of the two test voltages; then to receive, demodulate, sort and store the data.

This thesis will explore the practical aspects of loss measurement, link analysis, receiver design and controller implementation. Particular attention will be paid to updating the receiver module and the data collection subsystems.

II. SYSTEM DESIGN

The revised system is illustrated in Figure 2 and includes the conversion of the original system to laser sources, bidirectional links, and controlled power and switching mechanisms. These revisions are required in order to extend the operational range to 30 km , to allow direct control of the underwater system and to conserve power. The quiescent power of the underwater subsystem is consumed by the receive module and control logic. When signalled from shore the control logic activates the laser module, the V / F converter and the data switching mechanism. The "desired" sample voltage is then selected, conditioned and used to modulate the laser source. The optical signal is transmitted with a 1300 nm laser through a bidirectional coupler over single mode fiber. If properly coupled and spliced, the fiber's reduced attenuation will support the required 30 km link.
A. CHANNEL

1. Losses

The fiber optic design process commences with the maximum tolerable system losses and the desired data rates. These two factors will dictate the type of fiber, receiver and transmitter to be used. Inherent losses due to absorption and scattering are a function of the fiber's molecular

Figure 2. Revised System
composition, lattice structure and impurities [Ref. 2: pp. 73-80]. These losses are beyond the designer's control but constitute major sources of attenuation. Table 1 from Reference 3 shows some general uses for various fiber types. The system installation losses must be minimized. Proper polishing, coupling and splicing techniques are critical with single mode fibers. These fibers have typical core diameters of 8-9 microns making them extremely susceptible to alignment losses. A variety of precision connectors are available; ST, Biconic, and FC connectors were considered, and the Biconic was chosen for this application. Biconic connectors are extremely popular, constituting approximately 60% of the long haul communication market. Their precision taper design yields a mean insertion loss of 0.5 dB and the silicon-loaded epoxy ferrule provides a thermal expansion coefficient similar to the glass fiber [Ref. 4: p. 20]. Extrinsic connecting losses are caused by:

1) longitudinal misalignment,
2) cleanliness of fiber ends,
3) angular misalignment, and
4) lateral offset (due to connector or fiber concentricity).

Biconic connectors minimize the angular and lateral misalignment, but are susceptible to increased losses due to improper fiber preparation. These connectors use springloaded plugs, which are butt mated through a precision

TYPE	CORE/CLAD mlorons	TYP BANDWIDTH ($\mathrm{MHz}-\mathrm{km}$) 0850 nm 01300nn		$\begin{aligned} & \text { Loss } \\ & (\mathrm{dB} / \mathrm{km}) \end{aligned}$		APPLICATION AREAS
Single-mode	9/125		$1000{ }^{\text {a }}$	2.0	$\begin{array}{r} 0.35-0.7 \\ (0.2-0.50 \\ 1550 \mathrm{~nm}) \end{array}$	very long dist telecon
Mulilimode	50/125	$\begin{aligned} & 200- \\ & 1000 \end{aligned}$	$\begin{aligned} & 350- \\ & 1300 \end{aligned}$	3.5-6	2.0-7.0	long-dist telcom \& looal networking
groded-Index	62.5/125	$\begin{array}{r} 100- \\ 500 \end{array}$	$\begin{array}{r} 300- \\ 600 \end{array}$	3-6	1.2-2.0	high speed local networking * links
	85/125	$\begin{array}{r} 100- \\ 500 \end{array}$	800	3.5-6	1.2-2.0	
	100/140	$\begin{array}{r} 100- \\ 400 \end{array}$	$\begin{array}{r} 100- \\ 300 \end{array}$	5-7	6	loool networking \& links
Mulitmode gloss/plostic	$200 / 230$ $400 / 440$	$\begin{aligned} & 17 \\ & 13 \end{aligned}$		6		low speed links high radiation environments
step-Index	600/650	9		6		
-assumes source linewidth of lonm. Bandwidth can be much larger at 1550 nm with narrower souroe IInewlith						

Table 1. Fiber Parameters
[From Ref. 3]
alignment sleeve. When these plugs are incorrectly polished the ferrule tips may be too long and unseat the sister plug, or they may be too short and create an air gap between the plugs causing increased Fresnel losses. [Ref. 4: p 20] To ensure minimum loss, a fiber optic polisher such as those manufactured by Buehler should be used and followed by a post polishing inspection with a fiberscope. AT\&T has recently introduced keyed biconic connectors, to ensure repeatable performance. Connecting losses should not be greater than 0.5 dB per connector [Ref. 4: p. 20].
An Orionics multimode fusion splicer and a

Sumitomo single mode fusion splicer were used to splice the fiber when cable strength members were required to be rejoined. After stripping the fiber cable materials and fiber jacket and cleaving the fiber, the ends should be cleaned and examined. A good cleaving tool is essential if minimum losses are to be achieved. The cleaving tool scribes the fiber and stress is applied to propagate the crack. Figure 3a shows a typical poor fracture. With a good cleave, the mirror zone will extend across the fiber, and the mist and hackle zones that contribute to scattering losses will be eliminated [Ref. 5: pp. 288-295]. The hand-held cleaving instrument used in this work yielded inconsistent quality and numerous attempts were required to achieve an acceptable cleave. Figure 3b illustrates some typical poor cleaves. If any of these discrepancies exist, a new cleave should be

Figure Ba. Poor Fracture [From Ref. 5]

Figure Bb. Poor Cleaves
performed. Once an acceptable cleave is achieved the fiber ends are aligned (retaining a slight air gap) in the splicer using the "x y z" alignment controls. Each fiber has its own melting characteristics which influence the current level and timing adjustment. As the fiber ends start to melt, the fibers are fed slowly together. The Sumitomo has an automatic feed feature, while hand control is required on the Orionics splicer. Some typical poor splices are illustrated in Figure 4. A good splice should have no more than a 0.1 dB loss.

Specialized channel losses must be considered. In the design of the link for this thesis, bidirectional couplers were used. These couplers exhibit two types of losses, insertion loss and excess loss. Insertion loss expresses the coupling ratio; excess loss represents the power which escapes the system [Ref. 6]. Couplers produced by Gould and Aster exhibit a 3 dB insertion loss and the excess loss ranges from 1.0 to 0.08 dB depending on the cost ($\$ 99$ to \$795).

2. Loss Measurement

A more precise isolation of splice, connector and intrinsic fiber losses is obtained using an optical time domain reflectometer. The 10 kilometer cable of SIECOR single mode fiber (provided by NOSC of San Diego) was analyzed with a Photon Kinetics 3100 model OTDR. The 3100 model OTDR's large display and plotter output feature

Figure 4. Typical Poor Splices
make this device easy to use, and the data was readily available. This OTDR is capable of accurately recording losses over 50 km ; this capability is vital for isolating a break in long haul links. The overall fiber losses are shown in Figure 5. The initial pulse (label 1) is the signal sent by the 3100 OTDR; its shape is independent of the fiber, which is being measured. At the end of the initial pulse, a pulse recovery (label 2) occurs before the OTDR can display the backscatter light. Useful measurement information is obtained after the pulse recovery. A splice appears in the fiber signature as a drop in the backscatter light (label 3). The local area containing the splice can be examined more closely for accurate splice loss measurements. Breaks in fiber will result in a reflected pulse similar to the end reflection (label 4). Reflected pulses are caused by connectors, mechanical splices and fiber termination. Past the end reflection the OTDR will indicate the noise floor (label 5). Precise measurement near the noise floor is difficult. Accurate measurement requires that the fiber's index of refraction be entered into the OTDR. The input is displayed along with the vertical and horizontal axis labels to the right of the graphic display. The distance, total losses and losses per km between the reference bar (label 6) and cursor are displayed within the graph. Figure 6 highlights the splice loss of the region near label 3 of Figure 5. The scale has been adjusted to 1 km and 1 dB per division.

Figure 5. Overall Fiber Loss

Figure 6. Splice Loss Measurement

In the "auto mode" the 3100 OTDR will automatically compute the splice loss. The splice loss and degree of accuracy are indicated in the upper right portion of Figure 6 .

3. Power Budget

A power throughput analysis worksheet compares known losses and transmitted power to the required receiver sensitivity [Ref. 3: p. 60]. This worksheet, Figure 7, was completed for three different optical sources for a 30 km link. The results show that the 820 nm LED range is restricted by its low coupled power, and the high attenuation of multimode fiber. The use of single mode fiber with long wavelength devices extends the range. The 1300 nm LED is marginally usable, while the 1300 nm laser source provides 21 $d B$ of excess power.
B. RECEIVER

The receiver design will vary with the signal format, transmitted power, and bandwidth/data rate. Digital formats, like the variable frequency TTL pulse train, simplify the design, but they require high slew rate, low noise amplifiers and comparators. A generic digital receiver consists of six main components assembled as in Figure 8.

1. Detector

The minimum detector signal level to achieve a specified bit error rate is the main criteria for detector selection. Figure 9 shows the typical minimum power versus Baud rate to achieve a bit error rate of 10^{-9} for common

	HFBR 1464 820 nm LED HFBR 2402 REC	MACOM LED LDT 60005 GO PIN-FET (REC)	LASERTRON QLM 1300 SM GO PIN-FET (REC)
AVE SOURCE COUPLED POWER	-17.5	-21 dBm	0 dBm
REC SENSITIVITY	-24.0 dBm	-53 dBm.	-53 dBm
TOTAL MARGIN $\left(P_{r}-P_{C}\right)$	-6.5	-32	-53
FIBER LOSS (30 km) @dB/km	$\begin{aligned} & 60 \mathrm{~dB} \\ & 2 \mathrm{~dB} / \mathrm{km} \end{aligned}$	$\begin{array}{ll} -15 \mathrm{~dB} \\ 0.5 \mathrm{~dB} / \mathrm{km} \end{array}$	$\begin{aligned} & -15 \mathrm{~dB} \\ & 0.5 \mathrm{~dB} / \mathrm{km} \end{aligned}$
CONNECTORS	$\begin{array}{ll} -8 & d B \\ (4 & \text { SMA } \end{array}$	$\begin{array}{ll} -8 & d B \\ (2 & \text { BICONIC }) \\ (2 & \text { BIDIR. }) \end{array}$	$\begin{array}{ll} -8 & d B \\ (2 & \text { BICONIC) } \\ (2 & \text { BIDIR. }) \end{array}$
ALLOWANCE FOR TIME AND TEMP DEGRADATION	$-6 \mathrm{~dB}$	$-6 \mathrm{~dB}$	$-6 \mathrm{~dB}$
SPLICE LOSS		$\begin{array}{ll} -3 & d B \\ (6 & \text { SPLICE) } \end{array}$	$\begin{array}{ll} -3 & d B \\ (6 & \text { SPLICE) } \end{array}$
EXCESS POWER(TM-TA)	$-67.5 d B$	0 dB	21 dB

Figure 7. Power Throughput Analysis Worksheet

Figure 8. Overview of Digital Receiver [From Ref. 7]

Figure 9. Baud Rate vs Sensitivity
[From Ref. 8]
receivers. While avalanche photodiodes are the most sensitive, they require a 20 to 200 reverse bias voltage. Additional circuitry is required to maintain this reverse bias over temperature variations and to prevent damage. Photodiodes (pin-fets) will provide adequate sensitivity at -32 dBm and overcome the drawbacks of the APD. [Ref. 9: p. 77]

2. Current to Voltage Converter

The low level current produced by the photodiode must be converted to a voltage signal in order to be processed by conventional means. The transimpedance preamplifier design offers an efficient current-to-voltage transformation, wide dynamic optical range, and a linear response which precludes the necessity of an equalization amplifier. The simplest transimpedance design is shown in Figure 10. The output voltage V is given in equation 2.1

$$
\begin{equation*}
V=\frac{-R_{F} I_{\text {diode }}}{1+j 2 \pi f R_{F} C / A} \tag{2.1}
\end{equation*}
$$

where R_{F} is the feedback resistance, A is the amplifier gain, f is the operating frequency and C is the input capacitance. To maintain linearity over the desired frequency range, the gain (A) must be much greater than $2 \pi R_{F} f C$, this dictates the requirement for high gain-bandwidth product amplifiers. [Ref. 2, pp. 420-424]

Figure 10. Transimpedance Design While high speed operational amplifiers are available, protoboard design is severely limited by stray capacitance. Fortunately many detectors are now manufactured incorporating the transimpedance stage into the package. The General Optronic long wavelength (1300 nm) receiver module "GO PINFET" is used in the final design. The GO PIN-FET uses an InGaAs tertiary detector which demonstrates an extremely low dark current of less than 10 nA , less than 0.6 pF capacitance and a typical responsivity of $0.65 \mathrm{~A} / \mathrm{W}$. The rated sensitivity of this module is shown in Figure 11.

```
Data Rate [Mbs] Typ.Power [dBm]
```

16	-53
34	-50
45	-49
90	-42
140	-40
280	-34

Figure 11. Sensitivity of GO PIN-FET [From Ref. 10]

A system data rate of 16 Mbs can easily be achieved with -53 dBm of optical power. The unit delivered had a transimpedance of 5200 ohms, a noise voltage of 101 microvolts, and was connected to one meter of $50 / 120$ micron multimode graded index fiber. This multimode fiber eases splicing constraints to the single mode system [Ref. 11: p. 128]. The output of the GO PIN-FET module is determined according to Equation 2.2:

$$
\begin{equation*}
V(\text { out })=(P)(R)(T) \tag{2.2}
\end{equation*}
$$

where P is the received optical power, R is the detector responsitivity and T is the transimpedance.

3. Linear Amplifier

The GO PIN-FET voltage output can be processed by conventional means. This processing starts with the third element of the basic system, the (ELANTEC 2006) linear amplifier. It must provide sufficient gain to elevate the
integrated detector output above the comparator's threshold. Tests of the prototype receiver show the threshold is 20 mV ; therefore, with a received optical power of -29.6 dBm , a third stage gain of 10 is required. The relatively high threshold is a function of the protoboard implementation which contributes to the noise input. This noise can also be significantly increased by high bandwidth amplifiers. As a general rule the amplifier's bandwidth should be limited to a level such that its noise contribution is less than 50% of the integrated detector's noise. The Elantec amplifier has a frequency dependent noise figure of $20 \mathrm{nv} /(\mathrm{HZ})^{\frac{1}{2}}$ below 1 MHz and $3 \mathrm{nV} /(\mathrm{HZ})^{\frac{1}{2}}$ above 1 MHz . It is designed for a gain of 10 with a 50 MHz bandwidth. The noise voltage is 41 microvolts.

4. Coupling and Conditioning

The Elantec amplifier's output is AC coupled to the differential stage. The coupler is formed by a simple RC circuit which maintains a 0.0 volt DC output. This results in the midpoint of the pulse extremes being shifted as the duty-cycle varies, as seen in Figure 12. One output of the

Figure 12. AC Coupler
differential circuit is a scaled replica of a coupled input; the second output is a mirror image of the first, inverted about the 0.0 volt DC axis. The inverted pulse serves as threshold to the comparator, Figure 13. The disadvantage of this circuit, seen in Figure 13, is that, as the duty-cycle changes, the separation between the original and inverted pulse decreases, making the system more susceptible to noise. The bit error rate is therefore a function of the signal-tonoise ratio and the duty-cycle. The signal-to-noise ratio is given in Equation 2.3, where $E_{\text {speak }}$ is the maximum voltage of

$$
\begin{equation*}
\mathrm{S} / \mathrm{N}=20 \log \mathrm{E}_{\text {speak }} / \mathrm{E}_{\mathrm{nrms}} \tag{2.3}
\end{equation*}
$$

the signal pulse and Enrms is the root mean square noise. The probability of bit error, P_{e}, for a 50% duty-cycle signal is given in Equation 2.4. As the duty-cycle changes, an

$$
\begin{equation*}
P_{e}=0.5 \operatorname{erfc}\left(E_{\text {speak }} / E_{\text {nrms }}\right) \tag{2.4}
\end{equation*}
$$

increase of $20 \log (0.5 / D)$ in the S / N ratio is required to maintain this bit error rate. Here D is equal to the dutycycle when the duty-cycle ranges from 0.0 to 0.5 , and D is equal to one minus the duty-cycle, when the duty-cycle ranges from 0.5 to 1.0 . If the duty-cycle is maintained at 50%, the differential circuit offers the minimum required S / N ratio to achieve a given BER. Other techniques for coupling the signal are compared in Figure 14. The common mode rejection

Figure 13. Differential Waveform
[From Ref. 7]

Single ended Maximum sensitivity
AC coupled
No Hysteresis

Requires continuous AC idle-channel-pattern and duty-cycle limits to reject noise as well as a reference voltage that tracks data baseline. No commonmode rejection.

Differential coupled.

No Baseline tracking required, common mode rejection.

Requires continuous AC idle-channel-pattern and duty-cycle limits to reject noise, sacrifice in sensitivity dependent on duty-cycle limits.

Single ended AC coupled with hysteresis.

Doesn't require continuous idlepattern and dutycycle limits for noise rejection.

Sacrifices 6 dB in sensitivity. Requires threshold which tracks data stream baseline. No common mode rejection.

Single ended edge type AC coupled with hysteresis.

Doesn't require idle-channel-pattern or duty-cycle limits to reject noise, doesn't require tracking reference voltage.

Sacrifices 8.2 dB in sensitivity. No common mode rejection.

Differential Edge-type AC coupled with hysteresis.

Doesn't require idle-channel-pattern or duty-cycle limits. Doesn't require tracking reference voltage, offers common mode rejection.

Sacrifices 8.2 dB in sensitivity.

Figure 14. Comparison of Coupling Techniques
[From Ref. 3]
and high sensitivity make the ac coupled differential circuit advantageous for low level signals. The differential circuit used (Figure 15) provides a single ended gain of 1.2, a calculated bandwidth of 70 MHz , and a wide dynamic range. The low noise figure of the CA 3127 transistors (typically 2.5 dB) and minimum gain prevent a significant contribution by the differential circuit to the system's noise.

The differential input signal originates from the underwater LM $331 \mathrm{~V} / \mathrm{F}$ converter. Figures 16 through 18 show the V / F output with a $1.0 \mathrm{~V}, 5.0 \mathrm{~V}$ and 10.0 V DC input, respectively. A one volt DC input produced the 909 Hz pulse train in Figure 16. This signal had a duty-cycle of 0.85. When the input was increased by a factor of 5 , the frequency of the output signal (Figure 17) responded linearly increasing to 4.64 KHz , while the duty-cycle decreased to 0.66 . With a 10 volt input the V / F output was a 10 KHz pulse train with a 0.25 duty cycle as seen in Figure 18. The effect of this duty-cycle variation on the differential output is shown in Figures 19 through 21. The outputs of the differential circuit with the $909 \mathrm{~Hz}, 0.85$ duty-cycle input is shown in Figure 19. The original pulse train has been shifted downward maintaining a 0.0 V DC level; the image of this pulse train serves as the comparator threshold. The smallest separation between the signal and the threshold is 0.051 V , providing a noise tolerance of 0.025 V . Figure 20 shows the outputs of the differential circuit with the $4.64 \mathrm{KHz}, 0.66$

Figure 15. Differential Amplifier [From Ref. 12]

Figure 16. Input 1 V Frequency 909 Hz Duty-cycle 0.85 1 V/Div $0.5 \mathrm{~ms} /$ Div

Figure 17. Input 5 Volts Frequency 4.64 KHz Duty-cycle 0.66 $1 \mathrm{~V} / \mathrm{Div} 0.050 \mathrm{~ms} / \mathrm{Div}$

Figure 18. Input 10 V Frequency 10 KHz Duty-Cycle 0.20 $1 \mathrm{~V} / \mathrm{Div} 0.05 \mathrm{~ms} / \mathrm{Div}$

Figure 19. Differential Output Duty-Cycle 0.85 $0.1 \mathrm{~V} / \mathrm{Div} 0.2 \mathrm{~ms} / \mathrm{Div}$

Figure 20. Differential Output Duty-Cycle 0.66 $0.1 \mathrm{~V} / \mathrm{Div} 0.2 \mathrm{~ms} /$ Div

Figure 21 Differential Output Duty-Cycle 0.20 $0.1 \mathrm{~V} / \mathrm{Div} 0.2 \mathrm{~ms} / \mathrm{Div}$
duty-cycle signal. The minimum separation of these outputs is 0.225 V , providing a noise tolerance of 0.11 V . The maximum noise immunity is obtained with a 0.50 duty-cycle signal which provides a noise tolerance of 0.16 V . Figure 21 shows the differential outputs for the 0.20 duty-cycle signal The noise immunity has been decreased to 0.06 V . The dutycycle variation from 0.2 to 0.85 requires a S / N ratio increase of 10.45 dB . A second stage voltage of 2.13 mV and noise of 0.15 mV yields an adjusted S / N ratio of 23.0 dB which supports a BER of 10^{-6}.

5. Comparator

The Linear Technology (LT 1016) comparator offers several advantages in fiber optic system applications. Its 10 ns rise time supports high data rate operations. This rise time is achieved by a unique output stage that provides active drive in both directions but avoids large current spikes normally found in "totem pole stages". An important feature is the low quiescent negative power supply (3 mA), which increases the system lifetime [Ref. 13]. The LT 1016 is extremely susceptible to oscillations caused by improperly bypassed power supplies. An inch of wire between the bypass capacitor and the LT 1016 may cause oscillations, and capacitors with good high frequency characteristics must be used. [Ref. 13] The receiver design was tested on a protoboard which contributes to the difficulty in preventing
oscillations of the LT 1016. Printed circuit board implementation should incorporate a grounding plane to minimize stray capacitance and inductance. The complete receiver model schematic is shown in Figure 22.

6. Logic Interface

The logic interface is an LM 331 configured as a frequency-to-voltage converter, as shown in Figure 23. The output voltage is calculated from Equation 2.5

$$
\begin{equation*}
v_{\text {out }}=f_{\text {in }}\left(2.09 v_{s}\right)\left(R_{L} / R_{s}\right) R_{t} C_{t}, \tag{2.5}
\end{equation*}
$$

and can be calibrated with the 5000 ohm potentiometer to respond with the same linearity as the modulating V / F converter, thereby offering an accurate reproduction of the modulating voltage. The DC output is read with a Fluke programmable multimeter that is triggered by the shore controller.
7. System Risetime

A NRZ signal requires the system risetime be less than 0.7 times the pulse width. The risetime is given in Equation 2.6:

$$
\begin{equation*}
t_{\text {sys }}=\left(t_{s}^{2}+t_{\text {mat }}^{2}+t_{\text {det }}^{2}+t_{\text {amp }}^{2}+t_{\text {comp }}^{2}+t_{\text {modal }}^{2}\right)^{1 / 2} \tag{2.6}
\end{equation*}
$$

where t_{s} is the source risetime, $t_{\text {mat }}$ is the material dispersion, $t_{w g}$ is the wave guide dispersion, $t_{\text {det }}$ is the detector module risetime, $t_{\text {amp }}$ is the linear amplifier risetime, $t_{\text {comp }}$ is the comparator risetime and $t_{\text {modal }}$ is the

Figure 22. Receiver Module

Figure 23. Logic Interface
[From Ref. 2]
modal dispersion [Ref. 10: pp 7-19]. Modal dispersion is not present in single mode fiber and at an operating wavelength of 1300 nm , material and waveguide dispersion offset each other [Ref. 10: pp 2-28]. The principal dispersive elements are the Lasertron source (0.5 ns), the GO PIN-FET receiver (2.5 ns), the EL 2006 amplifier (12 ns) and the LT 1016 comparator (10 ns). With these elements the system risetime is 15.8 ns , which supports an upper data rate of 44 Mbs .

C. SHORE CONTROLLER

The entire system is controlled by an IBM compatible computer through a GPIB bus interface. The controlling program (Appendix A) is written in BASIC, and interleaved with the GPIB subprograms provided with the National Instruments GPIB control card [Ref. 14]. Upon execution the user is requested to enter the sampling interval (1 to $59 \mathrm{~min}-$ utes). At each sample interval the program performs the following sequence:

1) commands the Wavetek function generator, which modulates the laser to output a DC signal,
2) triggers the Fluke multimeter,
3) records the multimeter response and date/time on drive A: in file BATDAT. DAT,
4) directs the function generator to output a 5 MHz TTL signal,
5) triggers the Fluke multimeter,
6) records the multimeter response and date/time on drive

A: in file CONVERT.DAT, and
7) waits for next interval.

Each multimeter response and date/time entry requires approximately 45 bytes, so that if data is taken at 1 minute intervals, a double sided double density disk can hold 2.7 days of information. To avoid unintentional activation of the U / W control system, the controlling program should be interrupted only during a wait period. At that time, the data disk can be replaced and the program restarted.

An alternate control program, Appendix B, was written to support a parallel development of a simplex system. In this design the underwater system remains dormant until activated by a microprocessor. At that time a reference signal, indicating which of two sampled voltages will modulate the V/F Converter, is transmitted [Ref. 15]. The shore system continuously monitors the link, determines which reference was transmitted, and records the data in the appropriate file. The modulating technique, receiver design, and GPIB multimeter interface are identical with the bidirectional design. The simplex approach offers simpler link design at the expense of control, and demonstrates the adaptability of using the GPIB as a controller.

1. GPIB

The National Instruments GPIB-PC2 control board
serves as the switching center for communications between the computer, multimeter and function generator. The control
board can handle up to 16 devices that receive instructions through the BASIC language interface programs. The most commonly needed I/O functions of the BASIC language interface are IBWRT and IBRD; they are used to write instructions and read data from attached equipment. An example of a call to IBWRT is:

WRT\$ = "foc2i" call IBWRT (BRD2\%, WRT\$)
where BRD2\% has been defined previously as the Wavetech generator. The bit string contained in WRT\$ directs the generator to shift to a zero hertz signal. In response to this call the device status and error number are updated and returned in IBSTA\% and IBERR\% respectively. The 16 bit "status word" IBSTA\% format is shown in Figure 24 . This format is also used by the command:

MASK\% $=\mathrm{H} 4800$. Call IBWAIT (BRD1\%,MASK\%) .
This instruction delays program execution until either a previously designated time has elapsed, or a service request is received.

An example of a call to IBRD is:
RD\$=SPACE (14) CALL IBRD (BRD\%,RD\$).
RD\$ contains the number of bytes in the character string to be received and the actual character string upon return. The BASIC command "NUM" is then used to convert the string value to its numerical equivalent. IBRD also updates IBSTA\% and IBERR\%. [Ref. 14: pp 4A1-4A99]

DESCRIPTION	MNEMONIC	BIT.POS.	HEX. VALUE
GPIB error	ERR	15	8000
Time limit exceeded	TIMO	14	4000
GPIB-PC detect END or EOS	END	13	2000
SRQ on	SRQI	12	1000
Device requesting service	RQS	11	800
I/O completed	CMPL	8	100
GPIB-PC in Lockout State	LOK	7	80
GPIB-PC in Remote State	REM	6	40
GPIB-PC Controller in charge	CIC	5	20
Attention is asserted	ATN	4	10
GPIB-PC is Talker	TACS	3	8
GPIB-PC is Listener	LACS	2	4
GPIB-PC in Device Trigger	DTAS	1	2
GPIB-PC in Device Clear	DCAS	0	1

Figure 24. GPIB Status word
[From Ref. 14]
2. GPIB-410

The bus activity was monitored with an IBM personal computer through a GPIB-410 interface board. This interface not only allows continuous monitoring but also direct manipulation of the bus using sixteen simulated switches. The status, and simulated switches are displayed in the monitor window. Below the monitor window the "analyzer window" is displayed. In this window four screens which interface with the bus may be called:

1) Capture Settings Screen; used to specify the quantity and methodology of recording data.
2) Trigger Setting Screen; used to enter action to be taken when a specified pattern is required.
3) Capture Display Screen; used to display the captured data for analysis
4) Pattern Generator Screen; used for high speed transmission of data from the GPIB-410 to the bus.

In early development the Capture screen was most useful in isolating program errors. For example the following command was sent to the multimeter:

WRT\$="NO17E+2PIFIRST3?": CALL IBWRT (BRD\%,WRT\$)
This command, among other things, instructs the multimeter to set the request service bit (SRQ) when the data is stable. The GPIB-410 was directed to capture data when the SRQ bit was set or Data transfer occurred. This proved an easy method to trace the sequence of events, determine data validity, and monitor the control program. Rapid identification of bus and program errors were made possible with this interface and monitoring of IBSTA\%. [Ref. 16]

3. Fluke 8840A Digital Multimeter

The Fluke 8840A multimeter is a fully programable true RMS meter capable of $D C$ resolution from 1 microvolt to 1000 volts. The programmable command set duplicates front panel buttons and allows easy construction of command strings. The multimeter was set in a talk/listen mode and externally triggered by the control program. The data was read by the control program and stored on disk.

4. Wavetek Model 270 Function Generator

The model 270 Wavetech is a fully programmable 0.01
Hz to 12 MHz multifunction generator. Each function, frequency and operating characteristic can be accessed through the GPIB bus. The generator was directed to shift between a 5 MHz and 0 Hz output. This signal was used to modulate a Photodyne 1300 nm LED optical signal generator during system test.
5. Photodyne Model $7750 \times \mathrm{R}$ Optical Signal Generator The Photodyne LED optical generator was used during controller and receiver evaluation. Its optical output is peaked at 1300 nm and launches approximately 50 microwatts into 50/125 micron fiber. The front panel allows external TTL frequency control as high as 20 Mbs .

D. UNDERWATER CONTROLLER

The underwater circuitry, Figure 25, monitors and implements instruction from the shore-based controller. The receiver module is a replica of Figure 22 . The receiver output is fed through a high pass filter allowing only the 5 Mbs control signal to pass. A momentary drop of this control signal activates the switch, V/F converter and laser module. The length of active period is determined by LM 555 timers, during this period the control signal is used to select the desired voltage. The voltage is prescaled and serves as the input to LM $331 \mathrm{~V} / \mathrm{F}$ converter which modulates the laser.

Figure 25. Underwater Circuitry

1. Timing Circuits

How long power is made available to the laser source is determined by a LM 555 timer which is triggered from the shore controller. The controlling signal is a $5 \mathrm{Mbs}, 50 \%$ duty cycle pulse train transmitted continuously by the shore station. The output of the underwater receiver is fed through a high pass filter, rectified and compared to a 0.7 V threshold. The rectified 5 Mbs control signal will have sufficient amplitude to cross the threshold and activate the comparator. The comparator and timer outputs are combined by an "OR" function. The output of the constructed OR gate serves as the trigger for the LM 555. Feeding back the timers' output in essence disconnects the control signal from the trigger mechanisms when the timers are on. If both timers are off, the drop in the 5 Mbs control signal will force the OR gate output low, and trigger the timers. Two timers, both triggered simultaneously, are used. The first timer, set for 5 seconds output, is buffered and switches the Claire relays open providing 5 and 15 volt sources to the transmitting circuitry. In addition the buffered output is inverted and connected to the inhibit pin of the CD 4051 multiplexer. When the first timer is off, the buffered output inhibits all input channels and maintains the multiplexer at its lowest current drive (5 microamps maximum).

The second timer (set for 7 seconds) provides a margin of safety for the control signal to be reestablished to prevent system oscillation.

2. Switching

During the first timer's ON period, the control signal is used to select the desired voltage. The switching mechanism is a CD 4051 multiplexer activated by the LM 555 timer; the control signal is connected to the select pin via the threshold comparator. This allows direct control of the CD 4051 output by the shore station.

3. Modulating Circuitry

The modulating circuitry in Figure 26 includes the prescaling input amplifier (LM 123J) which is required to elevate the 0.1 to 1 volt sampled voltage to a 1 to 10 volts. The TTL output frequency of the LM 331 is varied linearly from 1 KHz to 10 KHz and is given by Equation 2.7:

$$
\begin{equation*}
f_{\text {out }}=\frac{10 \mathrm{~V}_{\text {in }} R_{s}}{2.09 \mathrm{~V}_{\mathrm{cc}} \mathrm{R}_{1} \mathrm{R}_{t} \mathrm{C}_{t}} \tag{2.7}
\end{equation*}
$$

where R_{S}, R_{1} and R_{t} are the source, load and timing resistances [Ref. 2: pp 11-14]. The LM 331 frequency output has a ± 3 percent linearity with the voltage input, but suffers the frequency to duty-cycle limitations previously discussed.

4. Power Consumption

In the quiescent state the underwater system
requires 56 mA of current from the 5 volt source. Once deployed, the bidirectional system lifetime is dependent upon

15 V

Figure 26. Modulating Circuitry
this quiescent current. For continuous operation the LED or laser drive current becomes the limiting factor. A comparison of the two approaches is show in Figure 27. The power savings of the proposed system offers a 92% reduction of the 12 volt battery requirements. While this is a significant improvement, 62 six volt batteries would still be needed for a single year's operation.

CONTINUOUS SHORE ACTIVATED

SOURCE	6 volt	12 volt	6 volt 12 volt	
AMP HR RATE	8	6.5	86.5	
CURRENT REQ.	66 mA	14 mA	56 mA 14 mA	
LIFE EXPECTED	120 hr	464 hr	140 hr 5568 hr	

Figure 27. Power Consumption

III. TEST AND EVALUATION

Laboratory tests were designed to evaluate the receiver and data recording system. LED sources were employed as laser drive circuits were under parallel development.

The input pins (1 and 13) of the multiplexer, Figure 25, were connected to two variable power supplies, simulating test data. Pin 13 was varied from 0.5 V to 0.1 V ; pin 1 was varied from 1 V to 0.5 V , thereby testing the battery range. The system was deactivated while test voltage adjustments were made; this allowed the Fluke multimeter to be used to measure the input data and avoid calibration errors.

The extreme sampling intervals of the recording system, 1 and 59 minute sampling intervals, were conducted. The results are in Appendix C, and summarized in Figure 28.

INPUT	AVERAGE OUTPUT	
(VOLTS)	(VOLTS)	AVERAGE ERROR
1.000	1.050	
0.908	0.945	$+5.0 \%$
0.788	0.817	$+4.0 \%$
0.694	0.715	$+3.6 \%$
0.587	0.611	$+3.0 \%$
0.510	0.521	$+4.0 \%$
0.396	0.394	-2.1%
0.301	0.294	-2.3%
0.206	0.190	-7.7%
0.145	0.129	-11.0%

Figure 28. Test Results

The system demonstrated an overall accuracy of 4.7% with decreased accuracy on low end data, a 0.1V input could not be
recorded and a 0.14 V input resulted in a 11% error. Performance degradation was attributed first to the 80 ohm input resistance of the multiplexer which resulted in a slight voltage drop, second, to nonlinearity of the LM 331 and third, to improper adjustment of the prescaling amplifier. Measurement at the multiplexer input and output showed a minimal voltage drop across the internal 80 ohm resistor. The poor performance at the low end was mainly attributed to an improperly adjusted prescaler. The LM 331 requires an input voltage of at least one volt for proper operation, with a 0.1 volt input the prescaling amplifier only provided a 0.91 V output. This effect combined with the V / F converter calibrated at the high end, resulted in larger data errors for low voltage inputs.

IV. CONCLUSION AND RECOMMENDATIONS

The original 2.8 km system range limitation was overcome by using longwave length laser sources and single mode fiber. This provided minimum fiber losses, but attention to splice, coupling and connector preparations become vital with single mode fiber to minimize installation losses. The data format itself raised the required signal to noise ratio due to the LM 331 frequency to duty-cycle dependence. An alternate V / F converter which maintains a 50% duty-cycle should be substituted.

The designed system takes advantage of the frequency bandwidth of fiber optics by using a method of frequency separation to transmit the activating switching signals. The simple design allowed the selection between only two voltages; this should be expanded for growth as new data requirements are presented.

The data collection system, based on the GPIB bus interface, proved to be an efficient and versatile system. The ease of programming and high speed interface with up to 15 devices extends system capability beyond simple microprocessor controllers. The controlling program, written in BASIC was easily modified, however, a compiled language may be required when higher recording rates are desired.

Routing these files to floppy disks increased the transportability of data, high density or hard disk drives should be used for extended unattended operation.

The design does fall short of extending the system lifetime. The 56 mA of drive current for the receive module would still require 62 six volt storage cells. A simplex system, with the underwater component controlled by a low power microprocessor and clock, would sufficiently extend the lifetime, but sacrifice controllability. The next development should combine these two techniques, the underwater components incorporating the receive circuitry, the low power clock activating a receive window, and instructions passed to the microprocessor during this interval.

APPENDIX A

This appendix contains the source listing of the program named GPRM3. This interactive program is written in BASIC and is used in conjunction with a GPIB interface card to control the operation of a Fluke programmable multimeter and a Wavetek function generator. The multimeter, function generator, and control program form the nucleus of a bidirectional control system.

	CLEAR ,59300! ' BASIC Declarations
6	IBINIT1 $=59300$!
11.	IBINIT2 $=$ IBINIT1 +3 ' Lines 1 through 6 MUST be include in your program.
16	BLOAD "bib.m", IBINIT1
21	CALL IBINIT1 (IBFIND, IBTRG, IBCLR, IBPCT,IBSIC,IBLOC IBPPC, IBBNA, IBON ,IBRSC,IBSRE, IBRSV, IBPAD, IBSAD, IBIST, IBDMA, IBEOS, IBTMO,IBEOT,IBRDF ,IBWRTF)
26	CALL IBINIT2(IBGTS,IBCAC,IBWAIT,IBPOKE,IBWRT,IBWRTA IBCMD, IBCMDA, IBR, IBRDA, IBSTOP, IBRPP, IBRSP, IBDIAG, IBXTRC,IBRDI,IBWRTI,IBRDIA, IBWRTI, IBSTA $\%$, IBERR\%, IBCNT\%)
31	REM Optionally include the following declarations in your program.
36	REM They provide appropriate mnemonics by which
41	REM to reference commonly used values. Some mnemonics (GET\%, ERR\%,
46	REM END\%, ATN\%) are preceded by "B" in order to distinguish them from
51	REM BASIC keywords.
56	REM
61	REM GPIB Commands
66	UNL\% = \& H3F \quad ' GPIB unlisten command
71	UNT\% = \& H5F \quad ' GPIB untalk command
76	GTL\% = \&H1 ' GPIB go to local
81	SDC\% = \&H4 ' GPIB selected device clear
86	BGET\% = \&H8 ' GPIB group execute trigger
91	TCT\% = \&H9 - GPIB take control
96	LLO\% = \&H11 ' GPIB local lock out
101	DCL\% = \&H14 ${ }^{\text {c }}$ (GPIB device clear
106	PPU\% = \&H15 ' GPIB ppoll unconfigure
111	SPE\% = \&H18 ' GPIB serial poll enable
116	SPD\% = \&H19 ' GPIB serial poll disable
121	PPE\% = \&H60 ' GPIB parallel poll enable
126	PPD\% = \&H70 ' GPIB parallel poll disable
131	REM
136	REM GPIB status bit vector
141	REM global variable IBSTA\% and wait mask
146	BERR\% = \&H8000 ' Error detected
151	TIMO\% = \& H4000 ${ }^{\text {l }}$ Timeout
156	BEND\% = \&H2000 ' EOI or EOS

161
$\mathrm{SRQI} \%=\$ \mathrm{H} 1000$
SRQ detected by CIC
RQS\% = \&H800 ' Device needs service
CMPL\% = \&H100 ' I/O completed
LOK\% = \&H80 ' Local lockout state
REM\% $=$ \&H40 \quad ' Remote state
$\mathrm{CIC} \%=\& \mathrm{H} 20 \quad$ ' Controller-In-Charge
BATN\% = \&H10 ' Attention ăsserted
TACS $=\& H 8 \quad$ ' Talker active
LACS $=$ \& H4 \quad ' Listener active
DTAS $=8$ H2 \quad ' Device trigger state
DCAS $=$ \&H1 \quad ' Device clear state
REM
REM Error messages returned in global variable IBERR\%
EDVR\% = 0 \quad, DOS error
ECIC\% = 1 ' Function requires board to be CIC
ENOL = 2 ' Write function detected
no Listeners
EADR\% = 3
EARG\% = 4
ESAC\% = 5
$\mathrm{EABO} \%=6$
ENEB\% = 7
EOIP\% = 10
ECAP\% = 11
EFSO\% = 12
EBUS\% = 14
ESTB\% = 15
ESRQ\% = 16
REM
REM EOS mode bits
BIN\% = \&H1000 ' Eight bit compare
XEOS\% $=\& H 800$ ' Send EOI with EOS byte
REOS\% = \&H400 ' Terminate read on EOS
REM
REM Timeout values and meanings
TNONE\% = 0 ' Infinite timeout (disabled)
TlOUS $=1 \quad$ ' Timeout of 10 us (ideal)
T3OUS $=2$ ' Timeout of 30 us (ideal)
TlOOUS $=3 \quad$ ' Timeout of 100 us (ideal)
T3OOUS $=4 \quad$ ' Timeout of 300 us (ideal)
T1MS = 5 ' Timeout of 1 ms (ideal)
T3MS $=6 \quad 1$ Timeout of 3 ms (ideal)
T1OMS $=7$ ' Timeout of 10 ms (ideal)
$\mathrm{T} 30 \mathrm{MS} \%=8 \quad$ ' Timeout of 30 ms (ideal)
TlOOMS $=9$ ' Timeout of 100 ms (ideal)
$\mathrm{T} 300 \mathrm{MS} \%=10 \quad$, Timeout of 300 ms (ideal)
T1S\% = 11 ' Timeout of 1 s (ideal)
T3S\% = $12 \quad$ ' Timeout of 3 s (ideal)
$\mathrm{T} 10 \mathrm{~S} \%=13$ ' Timeout of 10 s (ideal)
$\mathrm{T} 30 \mathrm{~S}=14$ - Timeout of 30 s (ideal)
Tl00S $=15$ ' Timeout of 100 s (ideal)
T300S\% = 16 ' Timeout of 300 s (ideal)
T1000S\% = 17 ' Timeout of 1000 s (maximum)
REM
REM Miscellaneous
S\% = \&H8 \quad Parallel Poll sense bit
$\mathrm{LF} \%=\& \mathrm{HA} \quad$ ' Line feed character
REM
REM Application program variables passed to
REM GPIB functions
REM
CMD\$ = SPACE\$(10) ' command buffer
RD\$ = SPACE (255) ' read data buffer
WRT\$ = SPACE\$(255) ' write data buffer
BNAME = SPACE\$(7) ' board name buffer
BDNAME\$ $=$ SPACE $(7) \quad$ board or device name buffer
FLNAME $=$ SPACE $\$(50)$, file name buffer
INPUT "Enter sample period in minutes, 59 min. max.
" , PERIOD
BDNAME\$ = "gpibo"
CALL IBFIND (BDNAME\$,BRDO\%)
BDNAME\$ = "flukemm"
CALL IBFIND (BDNAME\$,BRD1\%)
BDNAME\$ = "funcgen"
CALL IBFIND (BDNAME\$,BRD2\%)
$\mathrm{V} \%=13$
CALL IBTMO (BRD1\%,V\%)
CALL IBTMO (BRD2\%,V\%)
MEAS = 1
FILE\$ = "a:batdat.dat"
OPEN FILE\$ FOR APPEND AS 3
FLE\$ = "a:convert.dat"
OPEN FLE F FOR APPEND AS 1
WHILE MEAS
WRT\$ = "f5c2i": CALL IBWRT (BRD2\%,WRT\$)
SEC= VAL (MID\$(TIME\$,7,2))
MIN = VAL (MID\$(TIME\$,4,2))
WRT\$ = "f5000000c2i" : CALL IBWRT (BRD2\%,WRT\$)
GOSUB 670
WEND
$J=0$
RECORD $=1$
WHILE RECORD
CALL IBCLR (BRD1\%)
WRT\$ = "*NO.17E+2 P1F1R3T3?" : CALL IBWRT (BRD1\%,WRT\$)
MASK\%= \&H4800 : CALL IBWAIT (BRD1\%,MASK\%)
PRINT IBSTA\%
RD\$ = SPACE\$(14) : CALL IBRD (BRD1\%,RD\$)
NUM $=$ VAL(RD\$)
PRINT NUM
TIM\$ = TIME\$

730
740
745
750
755
756
758
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
851
852
853
854
855
860
865
870
875
880
885
895
900
905
910
915
920
925
930
935 RETURN
940 END
WEND
WEND
WEND
WEND
END
DAT $\$=$ DATES
IF (IND=1) THEN PRINT \#1,NUM;" volts ";" ";DAT\$;"
";TIM\$
IF $J=3$ THEN RECORD $=0$
NUM $=$ NUM $/ 10$
PRINT \#I,NUM;" volts ";" ";DAT\$;" ";TIM\$
WRT\$ = "fOc2i" : CALL IBWRT (BRD2\%,WRT\$)
$J=0$
RECORD = 1
WHILE RECORD
CALL IBCLR (BRD1\%)
WRT\$ = "*NO.17E+2 P1F1R3T3?" : CALL IBWRT (BRD1\%,WRT\$)
MASK\%= \&H4800 : CALL IBWAIT (BRD1\%,MASK\%)
PRINT IBSTA\%
RD\$ = SPACE (14) : CALL IBRD (BRD1\%,RD\$)
NUM $=$ VAL(RD\$)
PRINT NUM
TIM\$ = TIME \$
DAT\$ = DATE\$
$J=J+1$
IF $J=3$ THEN RECORD $=0$
NUM $=$ NUM $/ 10$
PRINT \#3,NUM;" volts ";" ";DAT\$;" ";TIM\$
WRT\$ = "f5000000c2i": CALL IBWRT (BRD2\%,WRT\$)
PRINT MIN
MINA $=\operatorname{VAL}($ MID $(T I M E \$, 4,2))$
SECA = VAL (MID\$ (TIME\$,7,2))
DIFMIN $=1$
WHILE DIFMIN
IF ((MINA-PERIOD) $=$ MIN) THEN DIFMIN $=0$
IF (MINA+60-PERIOD) $=$ MIN THEN DIFMIN $=0$
MINA $=$ VAL (MID\$(TIME $(4,2)$)
DIFSEC = 1
WHILE DIFSEC
IF (SECA>SEC) OR (MINA> $(M I N+5))$ THEN DIFSEC $=0$
SECA = VAL (MID\$(TIME\$,7,2))
MINA $=$ VAL (MID\$(TIME $\$, 4,2))$

APPENDIX B

This appendix contains the source listing of the program GPREM2. This program is written in BASIC and is used in conjunction with a GPIB interface card to control the operation of a Fluke programmable multimeter. The multimeter and control program form the nucleus of a remote monitoring system.

1	CLEAR ,59300! ' BASIC Declarations
6	IBINIT1 $=59300$!
11	IBINIT2 $=$ IBINITI +3 ' Lines 1 through 6 MUST be
	included in your program.
16	BLOAD "bib.m",IBINIT1
21	CALL IBINITI (IBFIND, IBTRG,IBCLR,IBPCT,IBSIC,IBLOC, IBPPC, IBBNA, IBONL, IBRSC, IBSRE, IBRSV, IBPAD, IBSAD, IBIST, IBDMA, IBEOS, IBTMO, IBEOT, IBRDF, IBWRTF)
26	CALL IBINIT2 (IBGTS, IBCAC, IBWAIT,IBPOKE,IBWRT,IBWRTA, IBCMD, IBCMDA, IBRD, IBRDA, IBSTOP, IBRPP, IBRSP, IBDIAG, IBXTRC, IBRDI, IBWRTI, IBRDIA, IBWRTIA, IBSTA $\%$, IBERR\%,IBCNT\%)
31	REM Optionally include the following declarations in your program.
36	REM They provide appropriate mnemonics by which
41	REM to reference commonly used values. Some mnemonics (GET\%, ERR\%,
46	REM END\%, ATN\%) are preceded by "B" in order to distinguish
51	REM them from BASIC keywords.
56	REM
61	REM GPIB Commands
66	UNL\% = \&H3F \quad ' GPIB unlisten command
71	UNT\% = \& H5F \quad, GPIB untalk command
76	GTL\% = \&H1 ' GPIB go to local
81	$\mathrm{SDC} \%=\& \mathrm{H} 4 \quad 1$ GPIB selected device clear
86	BGET\% = \&H8 \quad ' GPIB group execute trigger
91	TCT\% = \&H9 ' GPIB take control
96	LLO\% = \&H11 ' GPIB local lock out
101	DCL\% = \&H14 \quad, GPIB device clear
106	PPU\% = \&H15 ' GPIB ppoll unconfigure
111	$\mathrm{SPE} \%$ \% ${ }^{\text {H18 }}$ (GPIB serial poll enable
116	SPD\% = \&H19 \quad ' GPIB serial poll disable
121	PPE\% = \&H60 ' GPIB parallel poll enable
125	PPD\% = \&H70 ' GPIB parallel poll disable
131	REM
136	REM GPIB status bit vector
141	REM global variable IBSTA\% and wait mask
146	BERR\% $=$ \& H8000 ' Error detected
151	TIMO\% = \&H4000 1 Timeout
156	BEND\% $=\& \mathrm{H}^{\text {2 }} 0000$ ' EOI or EOS detected
161	SRQI\% = \&H1000 ' SRQ detected by CIC

166
171
176
181
186
191
196
201
206
211
216
221
226
231
236
241
246
251
256
261
266
271
276
281
286
291
296
301
306
311
316
321
326
331
336
341
346
351
356
361
366
371
376
381
386
391
396

RQS\% = \&H800 ' Device needs service
CMPL\% = \&H100 ' I/O completed LOK\% = \&H80 ' Local lockout state REM\% = \&H40 1 Remote state

CIC\% = \& H 20	Controller-In-Charge
BATN\% = \& H 10	Attention ásserted
TACS\% = \& H 8	Talker active
LACS\% = \& ${ }^{\text {H }} 4$	Listener active
DTAS\% = \& H 2	Device trigger state
DCAS\% = \&H1	Device clear state
REM	
REM Error me	es returned in global

EDVR\% = $0 \quad$ ' DOS error
ECIC = 1 ' Function requires board to be CIC
ENOL\% = 2 ' Write function detected no
Listeners
EADR\% = 3
EARG\% = 4
ESAC\% = 5
EABO\% = 6
ENEB\% = 7
EOIP\% = 10
Interface board not addressed correctly

- Invalid argument to function call
previous operation completed
ECAP = 11 , No capability for operation
EFSO\% = 12 ' File system operation error
EBUS $=14$, Command error during device call
ESTB\% = 15 ' Serial poll status byte lost
$\mathrm{ESRQ}=16$ ' SRQ remains asserted
REM
REM EOS mode bits
BIN\% = \&H1000 ' Eight bit compare
XEOS\% = \&H800 ' Send EOI with EOS byte
REOS\% = \&H400 ' Terminate read on EOS
REM
REM Timeout values and meanings
TNONE\% = 0 ' Infinite timeout (disabled)
T10US $=1 \quad 1$ Timeout of 10 us (ideal)
T3OUS $=2$ ' Timeout of 30 us (ideal)
T100US $=3$ ' Timeout of 100 us (ideal)
T3OOUS $=4 \quad 1$ Timeout of 300 us (ideal)
T1MS = 5 ' Timeout of 1 ms (ideal)
T3MS = 6 ' Timeout of 3 ms (ideal)
T1OMS $=7$ ' Timeout of 10 ms (ideal)
T30MS $=8 \quad$ ' Timeout of 30 ms (ideal)
T100MS $=9 \quad$ ' Timeout of 100 ms (ideal)
$\mathrm{T} 300 \mathrm{MS} \%=10 \quad$ ' Timeout of 300 ms (ideal)
T1S\% = 11 ' Timeout of 1 s (ideal)
$\mathrm{T} 3 \mathrm{~S} \%=12$ ' Timeout of 3 s (ideal)
TlOS\% $=13$ ' Timeout of 10 s (ideal)
$\mathrm{T} 30 \mathrm{~S}=14 \quad$ ' Timeout of 30 s (idea T100S\% = 15 ' Timeout of 100 s (ideal) $\mathrm{T} 300 \mathrm{~S} \%=16$ ' Timeout of 300 s (ideal) $\mathrm{T} 1000 \mathrm{~S} \%=17 \quad$ ' Timeout of 1000 s (maximum) REM
REM Miscellaneous
S\% = \&H8 \quad Parallel Poll sense bit
$\mathrm{LF} \%=\& \mathrm{HA} \quad 1$ Line feed character
REM
REM Application program variables passed to
REM GPIB functions
REM
CMD\$ = SPACE\$(10) ' command buffer
RDS = SPACE (255) ' read data buffer
WRT\$ = SPACE\$(255) ' write data buffer
BNAME = SPACE\$ (7) ' board name buffer
BDNAME $=$ SPACE (7) ' board or device name buffer
FLNAME $\$=$ SPACE (50) ' file name buffer
BDNAME\$ = "gpib0"
CALL IBFIND (BDNAME\$,BRDO\%)
BDNAME\$ = "flukemm"
CALL IBFIND (BDNAME\$,BRD1\%)
WRT\$ = "rem"
$\mathrm{V} \%=13$
CALL IBTMO (BRD1\%,V\%)
MEAS = 1
$J=1$
MEAS = 1
FILES = "a:batdat.dat"
OPEN FILE F FOR APPEND AS 3
FLE\$ = "a:convert.dat"
OPEN FLE $\$$
WHILE MEAS
CALL IBCLR (BRD1\%)
WRT\$ = "*NO.17E+2 P1F1R3T3?" : CALL IBWRT (BRD1\%,WRT\$)
MASK\% = \&H4800 : CALL IBWAIT (BRD1\%,MASK\%)
PRINT IBSTA\%
RD\$ = SPACE\$(14) : CALL IBRD (BRD1\%,RD\$)
NUM $=$ VAL(RD\$)
ISREF = 0
ISDATA $=0$
PRINT NUM
NOTREF = 1
WHILE NOTREF
IF (NUM >1.18) AND (NUM<1.21) THEN ISREF = 1 : REF = NUM : FIL= 3
IF (NUM > 9.899999) AND (NUM < 10.1) THEN ISREF= 1 :
REF= NUM : FIL = 1
WRT\$ = "*NO.17E+2 P1F1R3T3?" : CALL IBWRT (BRD1\%,WRT\$)
MASK\% = \&H4800 : CALL IBWAIT (BRD1\%,MASK\%)
PRINT IBSTA\%
RD\$ = SPACE\$(14) : CALL IBRD (BRD1\%,RD\$)

644
NUM $=$ VAL (RD\$)
645 IF (NUM<>1.2) OR (NUM < > 10) THEN ISDATA $=1$
646 IF (ISDATA=1) AND (ISREF=1) THEN NOTREF=0
647 WEND
649
PRINT FIL
TIM\$ = TIME\$
DAT\$ = DATE\$
IF FIL $=3$ THEN PRINT \#3,NUM; " VOLTS " ;" ";DAT\$;" ";TIM\$
IF FIL =1 THEN PRINT \#1,NUM; " VOLTS " ;" ";DAT\$;" ";TIM\$
680 WEND
690 END

APPENDIX C

Test data for bidirectional link.

TEST DATA
 BATDAT. DAT

Test commenced at time 09:30, with an applied voltage of .5106 V .
Sample interval set for 1 minute.

.00003	volts	$12-31-1987$	$09: 29: 40$
.64320	volts	$12-31-1987$	$09: 30: 04$
.52306	volts	$12-31-1987$	$09: 31: 04$
.52168	volts	$12-31-1987$	$09: 32: 04$
.52134	volts	$12-31-1987$	$09: 33: 04$
.52151	volts	$12-31-1987$	$09: 34: 04$
.51443	volts	$12-31-1987$	$09: 35: 04$
.51791	volts	$12-31-1987$	$09: 36: 04$
.52107	volts	$12-31-1987$	$09: 37: 04$
.52093	volts	$12-31-1987$	$09: 38: 04$
.52274	volts	$12-31-1987$	$09: 39: 04$
.52224	volts	$12-31-1987$	$09: 40: 04$
.52302	volts	$12-31-1987$	$09: 41: 04$
.53044	volts	$12-31-1987$	$09: 42: 04$
.53783	volts	$12-31-1987$	$09: 43: 04$
.53488	volts	$12-31-1987$	$09: 44: 05$
.53082	volts	$12-31-1987$	$09: 45: 04$
.52701	volts	$12-31-1987$	$09: 46: 04$
.52318	volts	$12-31-1987$	$09: 47: 04$
.52085	volts	$12-31-1987$	$09: 48: 04$
.52008	volts	$12-31-1987$	$09: 49: 04$
.52001	volts	$12-31-1987$	$09: 50: 04$
.52002	volts	$12-31-1987$	$09: 51: 04$
.51998	volts	$12-31-1987$	$09: 52: 04$
.51995	volts	$12-31-1987$	$09: 53: 04$
.5199	volts	$12-31-1987$	$09: 54: 04$
.51985	volts	$12-31-1987$	$09: 55: 04$

Average error for this segment +2.1\%

Time 10:00 test voltage adjusted to . 39602V.
. 39521 volts 12-31-1987 10:00:37
. 39498 volts 12-31-1987 10:01:04
. 39486 volts 12-31-1987 10:02:04
.39472 volts 12-31-1987 10:03:04
.39453 volts 12-31-1987 10:04:04
.39441 volts 12-31-1987 10:05:04
.39435 volts 12-31-1987 10:06:04

.39428	volts	$12-31-1987$	$10: 07: 04$
.39424	volts	$12-31-1987$	$10: 08: 04$
.3942	volts	$12-31-1987$	$10: 09: 04$
.39413	volts	$12-31-1987$	$10: 10: 04$
.39411	volts	$12-31-1987$	$10: 11: 04$
.39411	volts	$12-31-1987$	$10: 12: 04$
.39406	volts	$12-31-1987$	$10: 13: 04$
.39402	volts	$12-31-1987$	$10: 14: 04$
.39398	volts	$12-31-1987$	$10: 15: 04$
.39396	volts	$12-31-1987$	$10: 16: 04$
.39394	volts	$12-31-1987$	$10: 17: 04$
.39397	volts	$12-31-1987$	$10: 18: 04$
.39398	volts	$12-31-1987$	$10: 19: 04$
.39398	volts	$12-31-1987$	$10: 20: 04$
.39395	volts	$12-31-1987$	$10: 21: 04$
.39392	volts	$12-31-1987$	$10: 22: 04$
.39389	volts	$12-31-1987$	$10: 23: 04$
.39384	volts	$12-31-1987$	$10: 24: 04$
.39381	volts	$12-31-1987$	$10: 25: 04$
.39381	volts	$12-31-1987$	$10: 26: 04$
.39381	volts	$12-31-1987$	$10: 27: 04$

Average error for this segment -. 50%.

Time 10:27 test voltage changed to . 301 V .

.39367	volts	$12-31-1987$	$10: 28: 04$
.2955	volts	$12-31-1987$	$10: 29: 04$
.29516	volts	$12-31-1987$	$10: 30: 04$
.29509	volts	$12-31-1987$	$10: 31: 04$
.29495	volts	$12-31-1987$	$10: 32: 04$
.29474	volts	$12-31-1987$	$10: 33: 04$
.29476	volts	$12-31-1987$	$10: 34: 04$
.29467	volts	$12-31-1987$	$10: 35: 04$
.29462	volts	$12-31-1987$	$10: 36: 04$
.29453	volts	$12-31-1987$	$10: 37: 04$
.2945	volts	$12-31-1987$	$10: 38: 04$
.29449	volts	$12-31-1987$	$10: 39: 04$
.29445	volts	$12-31-1987$	$10: 40: 04$
.29446	volts	$12-31-1987$	$10: 41: 04$
.29447	volts	$12-31-1987$	$10: 42: 04$
.2944	volts	$12-31-1987$	$10: 43: 04$
.29439	volts	$12-31-1987$	$10: 44: 04$
.29434	volts	$12-31-1987$	$10: 45: 04$
.29432	volts	$12-31-1987$	$10: 46: 04$
.29434	volts	$12-31-1987$	$10: 47: 04$
.29428	volts	$12-31-1987$	$10: 48: 04$
.29428	volts	$12-31-1987$	$10: 49: 04$
.29428	volts	$12-31-1987$	$10: 50: 04$
.29419	volts	$12-31-1987$	$10: 51: 04$
.29427	volts	$12-31-1987$	$10: 52: 04$

```
.29426 volts 12-31-1987 10:53:04
.29424 volts 12-31-1987 10:54:04
.29419 volts 12-31-1987 10:55:04
Average Error for this Section -2.3%
```

Time 10:55 test voltage adjusted to . 206 V .
. 19117 volts 12-31-1987 10:58:32
. 19106 volts 12-31-1987 10:59:04
. 19108 volts 12-31-1987 11:00:04
. 19102 volts 12-31-1987 11:01:04
. 19094 volts 12-31-1987 11:02:04
. 19087 volts 12-31-1987 11:03:04
.19085 volts 12-31-1987 11:04:05
.19082 volts 12-31-1987 11:05:04
. 19075 volts 12-31-1987 11:06:04
. 19076 volts 12-31-1987 11:07:04
.19075 volts 12-31-1987 11:08:04
. 19075 volts 12-31-1987 11:09:04
. 19071 volts 12-31-1987 11:10:04
. 19072 volts 12-31-1987 11:11:04
. 19067 volts 12-31-1987 11:12:04
. 19065 volts 12-31-1987 11:13:04
. 19063 volts 12-31-1987 11:14:04
. 19061 volts 12-31-1987 11:15:04
. 1906 volts 12-31-1987 11:16:04
. 19058 volts 12-31-1987 11:17:04
. 19056 volts 12-31-1987 11:18:04
. 19055 volts 12-31-1987 11:19:04
. 19056 volts 12-31-1987 11:20:04
. 19051 volts 12-31-1987 11:21:04
. 19054 volts 12-31-1987 11:22:04
. 19056 volts 12-31-1987 11:23:04
. 19052 volts 12-31-1987 11:24:04
. 19053 volts 12-31-1987 11:25:04
.19051 volts 12-31-1987 11:26:04
.19048 volts 12-31-1987 11:27:04
.19049 volts 12-31-1987 11:28:04
.19046 volts 12-31-1987 11:29:04
.1904 volts 12-31-1987 11:30:04
Average error for this section -7%.

Time 11:30 test voltage adjusted to . 101 V .
.00018 volts 12-31-1987 11:31:04
.00018 volts 12-31-1987 11:32:04
.00019 volts 12-31-1987 11:33:04
.00019 volts 12-31-1987 11:34:04

.00019	volts	$12-31-1987$	$11: 35: 04$
.00018	volts	$12-31-1987$	$11: 36: 04$
.00019	volts	$12-31-1987$	$11: 37: 04$
.00019	volts	$12-31-1987$	$11: 38: 04$
.00019	volts	$12-31-1987$	$11: 39: 04$
.00019	volts	$12-31-1987$	$11: 40: 0.4$
.00019	volts	$12-31-1987$	$11: 41: 04$
.00019	volts	$12-31-1987$	$11: 42: 05$
.00019	volts	$12-31-1987$	$11: 43: 04$
.00019	volts	$12-31-1987$	$11: 44: 04$
.00019	volts	$12-31-1987$	$11: 45: 04$
.00019	volts	$12-31-1987$	$11: 46: 04$

. 1 VOLT unreadable probable causes, non-linearities of LM331, prescaler amplifier misadjusted, and 80 ohm resistence of the multiplexer.

Time 11:45 adjusted test voltage to . 145 V .

.13068	volts	$12-31-1987$	$11: 49: 11$
.13034	volts	$12-31-1987$	$11: 50: 04$
.1301	volts	$12-31-1987$	$11: 51: 04$
.12982	volts	$12-31-1987$	$11: 52: 04$
.12958	volts	$12-31-1987$	$11: 53: 04$
.12944	volts	$12-31-1987$	$11: 54: 04$
.12925	volts	$12-31-1987$	$11: 55: 04$
.12916	volts	$12-31-1987$	$11: 56: 04$
.12902	volts	$12-31-1987$	$11: 57: 04$
.12896	volts	$12-31-1987$	$11: 58: 05$

Average error for this section -11%.

Time 12:00 to 12:30 test delayed for system measurements.

.00019	volts	$12-31-1987$	$12: 00: 16$
.00019	volts	$12-31-1987$	$12: 01: 04$
.00019	volts	$12-31-1987$	$12: 02: 04$
.00019	volts	$12-31-1987$	$12: 03: 04$
.00019	volts	$12-31-1987$	$12: 04: 04$
.00019	volts	$12-31-1987$	$12: 05: 04$
.00019	volts	$12-31-1987$	$12: 06: 04$
.00019	volts	$12-31-1987$	$12: 07: 04$
.00021	volts	$12-31-1987$	$12: 08: 04$
.00019	volts	$12-31-1987$	$12: 09: 04$
.00019	volts	$12-31-1987$	$12: 10: 04$
.00018	volts	$12-31-1987$	$12: 11: 04$
.0002	volts	$12-31-1987$	$12: 12: 05$
.0002	volts	$12-31-1987$	$12: 13: 04$
.00019	volts	$12-31-1987$	$12: 14: 04$

.0126 volts 12-31-1987 12:15:05
.0126 volts 12-31-1987 12:16:05
.0126 volts 12-31-1987 12:17:05
.01259 volts 12-31-1987 12:18:05
.01259 volts 12-31-1987 12:19:05
.01258 volts 12-31-1987 12:20:05
. 01259 volts 12-31-1987 12:21:05
. 01258 volts 12-31-1987 12:22:05
.01258 volts 12-31-1987 12:23:05
.01258 volts 12-31-1987 12:24:05
.01257 volts 12-31-1987 12:25:06
.01258 volts 12-31-1987 12:26:05
.01257 volts 12-31-1987 12:27:05
.02165 volts 12-31-1987 12:28:05
-. 00014 volts 12-31-1987 12:29:05
. 10364 volts 12-31-1987 12:30:04
. 10359 volts 12-31-1987 12:31:04
.10355 volts 12-31-1987 12:32:04
.10352 volts 12-31-1987 12:33:04
.1035 volts 12-31-1987 12:34:04

Time 12:35 sample interval adjusted to 59 minutes, test voltage adjusted to . 5 V .
.1035 volts 12-31-1987 12:35:04
. 5077 volts 12-31-1987 12:40:14
.5069 volts 12-31-1987 13:39:04
.50709 volts 12-31-1987 14:38:04
.50729 volts 12-31-1987 15:37:04
TEST COMPLETE

> TEST DATA
> CONVERT.DAT

Test commeced at 09:30, sample inerval adjusted to 1 minute, test voltage adjusted to 1.009 V .

.00005	volts	$12-31-1987$	$09: 29: 37$
1.05319	volts	$12-31-1987$	$09: 30: 02$
1.05134	volts	$12-31-1987$	$09: 31: 02$
1.05395	volts	$12-31-1987$	$09: 32: 02$
1.054	volts	$12-31-1987$	$09: 33: 02$
1.05414	volts	$12-31-1987$	$09: 34: 02$
1.05402	volts	$12-31-1987$	$09: 35: 02$
1.05408	volts	$12-31-1987$	$09: 36: 02$
1.05398	volts	$12-31-1987$	$09: 37: 02$
1.05398	volts	$12-31-1987$	$09: 38: 02$
1.05405	volts	$12-31-1987$	$09: 39: 02$
1.05404	volts	$12-31-1987$	$09: 40: 02$
1.0534	volts	$12-31-1987$	$09: 41: 02$
1.05398	volts	$12-31-1987$	$09: 42: 02$
1.0539	volts	$12-31-1987$	$09: 43: 02$
1.05389	volts	$12-31-1987$	$09: 44: 02$
1.05392	volts	$12-31-1987$	$09: 45: 02$
1.05392	volts	$12-31-1987$	$09: 46: 02$
1.05382	volts	$12-31-1987$	$09: 47: 02$
1.05391	volts	$12-31-1987$	$09: 48: 02$
1.05387	volts	$12-31-1987$	$09: 49: 02$
1.05385	volts	$12-31-1987$	$09: 50: 02$
1.05379	volts	$12-31-1987$	$09: 51: 02$
1.0538	volts	$12-31-1987$	$09: 52: 02$
1.05373	volts	$12-31-1987$	$09: 53: 02$
1.05364	volts	$12-31-1987$	$09: 54: 02$
1.05364	volts	$12-31-1987$	$09: 55: 02$
Average	error for	this section	$+5 \%$.

Time 10:00 test voltage adjusted to . 9086 V .
.94607 volts 12-31-1987 10:00:35
.94631 volts 12-31-1987 10:01:02
.94609 volts 12-31-1987 10:02:02
.94596 volts 12-31-1987 10:03:02
.94587 volts 12-31-1987 10:04:02
.94582 volts 12-31-1987 10:05:02
.94579 volts 12-31-1987 10:06:02
.94567 volts 12-31-1987 10:07:02
. 94557 volts
.94556 volts
. 94546 volts
.94539 volts
12-31-1987 10:08:02
12-31-1987 10:09:02
12-31-1987 10:10:02
12-31-1987 10:11:02

.94547	volts	$12-31-1987$	$10: 12: 02$
.94538	volts	$12-31-1987$	$10: 13: 02$
.94529	volts	$12-31-1987$	$10: 14: 02$
.94524	volts	$12-31-1987$	$10: 15: 02$
.94519	volts	$12-31-1987$	$10: 16: 02$
.94519	volts	$12-31-1987$	$10: 17: 02$
.945189	volts	$12-31-1987$	$10: 18: 02$
.94511	volts	$12-31-1987$	$10: 19: 02$
.94509	volts	$12-31-1987$	$10: 20: 02$
.94508	volts	$12-31-1987$	$10: 21: 02$
.94502	volts	$12-31-1987$	$10: 22: 02$
.94506	volts	$12-31-1987$	$10: 23: 02$
.94496	volts	$12-31-1987$	$10: 24: 02$
.94492	volts	$12-31-1987$	$10: 25: 02$
.94490	volts	$12-31-1987$	$10: 26: 02$
.94495	volts	$12-31-1987$	$10: 27: 02$

Average error for this section $+4 \%$.

Test voltage adjusted to . 7888 V .

.78507	volts	$12-31-1987$	$10: 28: 02$
.81858	volts	$12-31-1987$	$10: 29: 02$
.81832	volts	$12-31-1987$	$10: 30: 02$
.81824	volts	$12-31-1987$	$10: 31: 02$
.81811	volts	$12-31-1987$	$10: 32: 02$
.81805	volts	$12-31-1987$	$10: 33: 02$
.81792	volts	$12-31-1987$	$10: 34: 02$
.81786	volts	$12-31-1987$	$10: 35: 02$
.81785	volts	$12-31-1987$	$10: 36: 02$
.81777	volts	$12-31-1987$	$10: 37: 02$
.81772	volts	$12-31-1987$	$10: 38: 02$
.817730	volts	$12-31-1987$	$10: 39: 02$
.81762	volts	$12-31-1987$	$10: 40: 02$
.81768	volts	$12-31-1987$	$10: 41: 02$
.81767	volts	$12-31-1987$	$10: 42: 02$
.81771	volts	$12-31-1987$	$10: 43: 02$
.81759	volts	$12-31-1987$	$10: 44: 02$
.81753	volts	$12-31-1987$	$10: 45: 02$
.81753	volts	$12-31-1987$	$10: 46: 02$
.81756	volts	$12-31-1987$	$10: 47: 02$
.81744	volts	$12-31-1987$	$10: 48: 02$
.81745	volts	$12-31-1987$	$10: 49: 02$
.81723	volts	$12-31-1987$	$10: 50: 02$
.81715	volts	$12-31-1987$	$10: 51: 02$
.8172	volts	$12-31-1987$	$10: 52: 02$
.8172	volts	$12-31-1987$	$10: 53: 02$
.81715	volts	$12-31-1987$	$10: 54: 02$
.81714	volts	$12-31-1987$	$10: 55: 02$

Average error for this section $+3.6 \%$.

Test voltage adjusted to . 694 V .
.71623 volts 12-31-1987 10:58:30
.71649 volts 12-31-1987 10:59:02
.71632 volts 12-31-1987 11:00:02
. 71617 volts 12-31-1987 11:01:02
. 71605 volts 12-31-1987 11:02:02
.716 volts 12-31-1987 11:03:02
. 71592 volts 12-31-1987 11:04:02
. 71586 volts 12-31-1987 11:05:02
.71577 volts 12-31-1987 11:06:02
.71574 volts 12-31-1987 11:07:02
.71563 volts 12-31-1987 11:08:02
.71561 volts 12-31-1987 11:09:02
. 71558 volts 12-31-1987 11:10:02
. 71559 volts 12-31-1987 11:11:02
. 71555 volts 12-31-1987 11:12:02
. 7156 volts 12-31-1987 11:13:02
.71563 volts 12-31-1987 11:14:02
. 71548 volts 12-31-1987 11:15:02
.71545 volts 12-31-1987 11:16:02
.71545 volts 12-31-1987 11:17:02
.71543 volts 12-31-1987 11:18:02
.71548 volts 12-31-1987 11:19:02
.7154 volts 12-31-1987 11:20:02
. 71534 volts 12-31-1987 11:21:02
.7153 volts 12-31-1987 11:22:02
.71534 volts 12-31-1987 11:23:02
.71531 volts 12-31-1987 11:24:02
.71532 volts 12-31-1987 11:25:02
.71531 volts 12-31-1987 11:26:02
.71528 volts 12-31-1987 11:27:02
.71531 volts 12-31-1987 11:28:02
.71528 volts 12-31-1987 11:29:02
.71527 volts 12-31-1987 11:30:02 Average error for this section $+3 \%$.

Test voltage adjusted to .587 V .

.60379	volts	$12-31-1987$	$11: 31: 02$
.60331	volts	$12-31-1987$	$11: 32: 02$
.60299	volts	$12-31-1987$	$11: 33: 02$
.60272	volts	$12-31-1987$	$11: 34: 02$
.60247	volts	$12-31-1987$	$11: 35: 02$
.60234	volts	$12-31-1987$	$11: 36: 02$
.60223	volts	$12-31-1987$	$11: 37: 02$
.60211	volts	$12-31-1987$	$11: 38: 02$
.60204	volts	$12-31-1987$	$11: 39: 02$

.60197	volts	$12-31-1987$	$11: 40: 02$
.60187	volts	$12-31-1987$	$11: 41: 02$
.60174	volts	$12-31-1987$	$11: 42: 02$
.60171	volts	$12-31-1987$	$11: 43: 02$
.60163	volts	$12-31-1987$	$11: 44: 02$
.60157	volts	$12-31-1987$	$11: 45: 02$
.60155	volts	$12-31-1987$	$11: 46: 02$
.61724	volts	$12-31-1987$	$11: 49: 09$
.61742	volts	$12-31-1987$	$11: 50: 02$
.61737	volts	$12-31-1987$	$11: 51: 02$
.61728	volts	$12-31-1987$	$11: 52: 02$
.61721	volts	$12-31-1987$	$11: 53: 02$
.61718	volts	$12-31-1987$	$11: 54: 02$
.61714	volts	$12-31-1987$	$11: 55: 02$
.61712	volts	$12-31-1987$	$11: 56: 02$
.61704	volts	$12-31-1987$	$11: 57: 02$
.617	volts	$12-31-1987$	$11: 58: 02$
.61651	volts	$12-31-1987$	$12: 00: 13$
.61632	volts	$12-31-1987$	$12: 01: 02$
.6167	volts	$12-31-1987$	$12: 02: 02$
.61673	volts	$12-31-1987$	$12: 03: 02$
.61676	volts	$12-31-1987$	$12: 04: 02$
.6167	volts	$12-31-1987$	$12: 05: 02$
.61666	volts	$12-31-1987$	$12: 06: 02$
.61666	volts	$12-31-1987$	$12: 07: 02$
.61667	volts	$12-31-1987$	$12: 08: 02$
.61661	volts	$12-31-1987$	$12: 09: 02$
.6166	volts	$12-31-1987$	$12: 10: 02$
.61656	volts	$12-31-1987$	$12: 11: 02$
.61659	volts	$12-31-1987$	$12: 12: 02$
.61658	volts	$12-31-1987$	$12: 13: 02$
.61655	volts	$12-31-1987$	$12: 14: 02$
Average	error for	this section	$+4 \%:$
	vis		

Test interupted for system measurements.
.05978 volts 12-31-1987 12:15:02
.05978 volts
.05978 volts
.05978 volts
.05978 volts
.05977 volts
.05977 volts
.05977 volts
.05977 volts
.05977 volts
.05977 volts
.05978 volts
.05978 volts

$12-31-1987$	$12: 16: 02$
$12-31-1987$	$12: 17: 02$
$12-31-1987$	$12: 18: 02$
$12-31-1987$	$12: 19: 02$
$12-31-1987$	$12: 20: 02$
$12-31-1987$	$12: 21: 02$
$12-31-1987$	$12: 22: 02$
$12-31-1987$	$12: 23: 02$
$12-31-1987$	$12: 24: 02$
$12-31-1987$	$12: 25: 02$
$12-31-1987$	$12: 26: 02$
$12-31-1987$	$12: 27: 02$

.05978 volts 12-31-1987 12:28:02
-.00018 volts 12-31-1987 12:29:03
.57832 volts 12-31-1987 12:30:02
.57829 volts 12-31-1987 12:31:02
.57828 volts 12-31-1987 12:32:02
. 57824 volts 12-31-1987 12:33:.02
.57822 volts 12-31-1987 12:34:02
.5782 volts 12-31-1987 12:35:02

Test resumed time 12:39, sample interval
59 minutes, test voltage . 9617 V .
. 99972 volts 12-31-1987 12:40:12
.99898 volts 12-31-1987 13:39:02
.99908 volts 12-31-1987 14:38:02
.999269 volts 12-31-1987 15:37:02
Test cmpleted

REFERENCE LIST

1. Gibson, R., An Underwater Seawater Battery Monitor and Telemetry Recording System, M.S. Thesis, Naval Postgraduate School, Monterey, California, December 1986.
2. Gowar, J., Optical Communication Systems, Prentice Hall, 1984.
3. Storozum, S., "Fiber Optic Systems: Practical Design (III)", Photonics, November 1985.
4. Jalbert, K., "Recognizing Connector Variations and Their Fiberoptic Applications", Fiberoptic Product News, September 1987.
5. Bisbee, D.L., Smith, G.P., and Chinnocke, L., "Optical Fiber Technology", IEEE Press 1975.
6. Gould Electronics, Fiber Optic Technical Notes, Passive Components, Technical Note No. 1, February 13, 1986.
7. Mirtich, V., "Designers Guide to Fiber-Optic Data Links -Part 1", EDN, June 20, 1980.
8. Powers, J.P., Notes for EC 3550, Naval Postgraduate School, Rev. May 1986.
9. Storozum, S., "Fiber Optic Systems: Practical Design [11]", Photonics, October 1985.
10. General Optronics Cnrporation, Long Wavelength Receiver Module Go Pin-Fet Product Specifications, Undated.
11. Cook, J., "Making Low-Loss Single-Mode Connectors", Laser Focus, October 1983.
12. ADC Fiber Optics Corporation, ADC Fiber Optic Transceiver Evaluation Kit Instruction Manual \#8-90002-8300, 1986.
13. Linear Technology Corporation, Linear Applications Handbook. A Guide to Linear Circuit Design, 1987.
14. National Instruments, GPIB-PC User Manual, Part \# 320014-01, October 1984.
15. Gallager, J.G., Long Haul Underwater Fiber-Optic Communications, M.S. Thesis, Naval Postgraduate School, Monterey, California, December 1987.
16. National Instruments, Model GPIB-410 User Manual, Part \# 320053-01, December 1986.

No. copies

1. Library, Code 0142

Naval Postgraduate School
Monterey, California 93943-5002
2. Defense Technical Information Center

2
Cameron Station
Alexandria, Virginia 22304-6145
3. Department Chairman, Code 62

1
Department of Electrical and Computer Engineering Naval Postgraduate School
Monterey, Caiifornia 93943-5000
4. Professor S. Michael, Code 62Mi

1
Department of Electrical and Computer Engineering Naval Postgraduate School
Monterey, California 93943-5000
5. Lieutenant Commander Frank A. DeNap, USN

2 \#l Birchwood Drive
Litchfield, Illinois 62056
6. Commander
Space and Naval Warfare System Command
Attn: Code PMW-180-43
Washington, DC. $20363-5100$

Thesis
D32 DeNap
C. 1 Long haul underwater fiber optic link.

