
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1988-06

Document generator software design that supports

Turkish alphabet

Akinci, Metin

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/23181

DHPLSY KKC:^' LIBBABY
ElAVAL P03TG-P.^.D1JATE SCHOOL
MOITTBREY, C/ii.n''ORNIA 93G43-5008

NAVAL POSTGRADUATE SCHOOL

Monterey , California

P 533i<05

THESiS

DOCUMENT GENERATOR SOFTWARE DESIGN
THAT SUPPORTS TURKISH ALPHABET

by

Me tin Akinci

June 1988

Thesis Advisor Daniel Davis

Approved for public release; distribution is unlimited

T238667

j-RiTY CLASSiPiCATjQN o^ -k- s =ag;

REPORT DOCUMENTATION PAGE

REPORT SECURI'V ClASSiFiCA' ON

Unclassified
SECURITY Ci-ASSiFiCATlOM Auii-ORi'Y

0£C.ASS'F;CAT ON DOVV,\G=^ADiNu SCnEDULE

>£R?ORMI\G ORGANiZATlOiM REPORT \UW3ER{S)

NAME OF PERFORMING ORGANIZATION

aval Postgraduate School

60 OFFiCE SYMBOL
(If applicable)

Code 52

ADDRESS {City, State, and ZIP Code)

onterey, California 93943-5000

Id RESTRICTIVE MARKINGS

3 Distribution .AVAILABILITY OF report

Approved for public release ;

distribution is unlimited

5 MONITORING ORGANIZATION REPORT NuMBERlS/

7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

NAME OF FUNDING' SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

ADDRESS (City. State, and ZIP Coae)

7b ADDRESS (Gry, State, and ZIP Code)

Monterey, California 93943-5000

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

vVORK UNIT
ACCESSION NO

TITLE (Include Security Classification)

OCUMENT GENERATOR SOFTWARE DESIGN THAT SUPPORTS TURKISH ALPHABET

PERSONAL AUTHOR(S)

kinci, Me tin

a. TYPE OF REPORT

[aster's Thesis
13b TIME COVERED
-ROM TO

14. DATE OF REPORT (Year, Month. Day)

1988 June
.

15 PAGE COUNT

,. SUPPLEMENTARY NOTATION

'he views expressed in this thesis are those of the author and do not reflect the official

)Olicy or position of thp nenar tTnpnr of npfpncp or rhp TT 9 nnvprnTnpnr

COSATi CODES ' '

" ' " ' "

FIELD GROUP SUB-GROUP

18 SUBJECT TERMS {Continue on reverse if necessary and identify by block number)

EGA, CGA, TSR, ADT, Information hiding. Abstraction

3. ABSTRACT (Continue on reverse if necessary and identify by block number)

The objective of this study is to design and implement software for an automatic document

generator supporting the Turkish alphabet. The implementation in this study in mainly based

)n IBM personal computers and dot matrix printers.

>0 DISTRIBUTION/ AVAILABILITY OF ABSTRACT

[j^ UNCLASSIFIED/UNLIMITED D SAME AS RPT Q DTIC USERS

I2a NAME OF RESPONSIBLE INDIVIDUAL

Prnf. D;im'p1 n^ivi q

DD FORM 1473, 84 mar

21 ABSTRACT SECURITY CLASSIFICATION

TTnrlnq-^ifipd
22b TELEPHONE f/nc/ude Area Code)

(408) 646-3091
z2c OFFICE SYMBOL

Code 52Dv

33 APR edition may oe used until exhausted

All Other editions are obsolete

SECURITY CLASSIFICATION OF THIS ^AGE

UNCLASSIM!-£S)G'»»«'"'"«"' Pflntms Office: 1986—«08-24.

Approved for public release; distribution is unlimited.

Document Generator Software Design that Supports Turkish

Alphabet

by

Metin Akinci

Lieutenant J.G.' Turkish Navy

B.S., Turkish Naval Academy . 1982

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1988

ABSTRACT

The objective of tliis study is to design and implement software for an automatic

document generator supporting the Turkish alphabet. The implementation in this study

is mainly based on IBM personal computers and dot matrix printers.

m

TABLE OF CONTENTS

I. INTRODUCTION . .

A. PURPOSE

B. SCOPE

C. ORGANIZATION

II. SYSTEM OVERVIEW AND OBJECTIVES

A. INTRODUCTION

B. SYSTEiM OVERVIEW AND USER REQUIREMENTS
C. OVERALL DESIGN CONSIDERATIONS ,

D. HARDWARE REQUIREMENTS
E. PROGRAM COMPONENTS

III. DESIGN AND IMPLEMENTATION .

A. INTRODUCTION

OVERALL PROGRAM DESIGN CONSIDERATIONS

PROGRAMS IN THIS PROJECT

1. TEMPLATE.C:

EDITOR.C: .

B.

C.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

DBASE.C: .

USERINT.C:

SYSTEM. C:

PRINTER.C:

MYMAIN.C:

DLADT.C: .

LLADTC: .

EGACHR.C:

CGACHR.C:

D. PORTABILITY AND REUSABILITY ISSUES

1

1

2

2

3

3

3

4

4

5

. 6

. 6

. 6

. 8

. 8

II

12

13

13

13

15

15

17

17

17

17

IV. IMPLEMENTATION OF SPECIAL CHARACTERS IN TURKISH

APHABET 20

IV

A. TO CREATE SPECIAL CHARACTERS ON SCREEN 20

B. PRINTING SPECIAL CHAR.-\CTERS ON PRINTER 23

V. USING THE DOCUMENT GENER.ATOR 27

VI. CONCLUSIONS AND RECOMMENDATIONS 29

APPENDIX A. TURKISH APHABET 30

APPENDIX B. USER MANUAL 31

A. INTRODUCTION 31

B. REQUIREMENTS 31

C. GETTING STARTED 32

1. ENTERING EXTRA CHAR.^CTERS IN THE TURKISH ALPHA-

BET 33

2. USING DOCUMENT GENERATOR 33

a. PREPARING DOCUMENT 33

b. BROWSING ANY DOCUMENT FROM DATABASE 35

c. ENTERING INCOMING DOCUMENT LOG 35

d. PRINTING INCOMING DOCUMENT LOG 35

e. EXIT TO DOS 36

3. HOW TO PREPARE NEW TEMPLATE 36

APPENDIX C. PROGRAM LISTINGS .38

APPENDIX D. EXAMPLE TEMPLATE AND PROGRAM OUTPUT DOCU-

MENT 121

LIST OF REFERENCES 123

INITIAL DISTRIBUTION LIST 124

LIST OF FIGURES

Figure 1. Program Components 7

Figure 2. Data Structure for Template.C Program Module 10

Figure 3. Data Structure for Dbase.C Program Module 14

Figure 4. Data Structure for Double Linked List Abstract Data Type 16

Figure 5. Data Structure for Linked List Abstract Data Type 18

Figure 6. Memory and Screen Representation of Character for CGA 22

Figure 7. Memory and Screen Representation of Character for EGA 24

Figure 8. Character Representation for Printer 26

Figure 9. Field Components , 37

VI

I. INTRODUCTION

Technological advances in computer hardware and software of the past decade has

been rapid enough to be called a revolution. The wider the use of computers has been

spread, the more newer application areas have evolved. The need for the use of the

computers for the Turkish Navy has grown rapidly in recent years. However, the ab-

sence of the computer technology has limited the variety of areas where computers can

be used. One aspect of the absence of this technology is the inability to use some char-

acters in the Turkish alphabet. Because of this, computers are not widely being used for

text processing purposes.

Although the Turkish Navy has begun to use computers in a variety of areas in re-

cent years, lower level organizations such as ships and administrative offices have been

doing business without the use of computers. One significant example of these jobs is

to generate and to process official documents.

Questions we plan to address are: Can we use microcomputers to generate and store

official documents in computers and will this reduce the amount of paper work? Does

current technology allow us to use our own alphabet to generate documents? If the

answer is 'yes', what is the most suitable hardware for these purposes?

This research attempts to find answers to these questions and investigate the current

microcomputer technology to determine the feasiblity of text processing on different

character sets not available on the system. To apply this to a specific area, we will de-

sign and implement software that meets the requirements for the specific application, in

order to generate and process official documents.

A. PURPOSE

We investigate the current microcomputer technology in order to be able to design

and implement a software that allows us to display and print extra characters in the

Turkish alphabet.

This study is a design and implementation of software which can be used in ship

bureaus to generate and process unclassified documents which includes all characters in

the Turkish alphabet. By using microcomputers on this particular area, the amount of

paper work, the loss of manpower and the negative impact of the lack of personnel can

be reduced. It also saves space by allowing us to get rid of files that are used to keep a

record of correspondence.

B. SCOPE

The objective of this study is to design and implement software for automatic doc-

ument generator supporting the Turkish alphabet. This software is to be for general

purpose so that it can be used in different bureaus that require various form of docu-

ments. Since the needs for different bureaus are almost identical and the only thing that

differs is the forms of documents , it should allow the user to define his own templates

easily. The software should remain the same, but form definitions that meet user needs

should be easy to prepare. The software should be compatible with the computer

hardware and printers used in the Turkish Navy.

C. ORGANIZATION

This study consists of five main chapters followed by conclusions and recommen-

dations. The first chapter provides a brief introduction by defining the research objec-

tives and its associated scope of effort, outline and organization of this thesis. Chapter

II presents the system overview and objectives. The user requirements, overall design

considerations, hardware requirements, and program components are also presented in

this chapter. Design and implementation of the program will be discussed in Chapter

III. The implementation of extra characters on the screen and printer will be presented

in Chapter IV. Using the document generator is presented in Chapter V. This thesis

concludes in Chapter VI by stating the conclusions and recommendations inferred by

this study. The Turkish alphabet is presented in Appendix A. A user manual is pre-

sented in Appendix B. Appendix C will contain the program hsting. Example template

definition and program output document will be presented in Appendix D.

II. SYSTEM OVERVIEW AND OBJECTIVES

A. INTRODUCTION

This chapter consists of three sections : system overview, system objectives, pro-

gram considerations, hardware requirements and program components.

System design is the process of planning a new system or one to replace or comple-

ment the existing system. But before this can be done, the system must thoroughly be

understood and the following things must be taken into considerations. Who will make

use of the system? What will the system do? How is it operated? What are the user

requirements? How portable will it be? Will it be suitable for existing hardware ?

B. SYSTEM OVERVIEW AND USER REQUIREMENTS

This section presents a system overview providing a more complete understanding

of what will be required. This will help explain how the software to be developed can

be designed to best satisfy the user reqirements.

Each destroyer has a bureau where correspondence is performed and documents are

prepared. Generally one petty officer and one seaman are assigned to perform this job.

Typewriters are the only equipments used to fulfill these tasks. Each ship has its own

preprinted document forms and reports. The personnel assigned to ship administrative

ofiices are in charge of filling out documents submitted by related department personnel

and delivering them to the appropriate places. Both difficulty in supplying preprinted

forms and ease of mistyping make the bureau's task harder. Additionally, one copy

along with the records of incoming and outgoing documents must be retained. There

are two reference values to access the document or find the document stored in note-

books; reference by date and reference by document number (which is unique). The

document number consists of three letters which indicates the class of document and the

order number within the class of document and last two digit of the current year.

In order to answer the question 'who' , we must take the seamen into consideration.

In other words we should assume that the system will be used by an illiterate user com-

munity. No computer knowledge should be required.

The system should respond to the user requirements. It should provide the follow-

ing properties.

1. Users should be able to fill out documents as described in the template definition.

Thev should not be allowed to change the form of the document.

The system should meet the requirements of diflerent forms. It should be easy for

users to defme new forms.

The system should be user friendly therefore easy for training personnel.

It should also provide a 'Small Turkish Word Processor' property. In other words

it should allow the user to edit something without format.

Records of incoming and outgoing documents must be provided within the system.

It should store the documents requested by the user.

It should provide an ability to browse documents. The documents stored in data-

base can be browsed but not changed.*o*

C. OVERALL DESIGN CONSIDERATIONS

The following assumptions have been made in the design of this project.

1. No user knowledge of computers is required. User will be responsible for filling

predefmed spaces on screen as in form of document. The program will prevent the

user from overwriting on non-fiUable fields on the form of document.

2. There will not be any limit for the number of document forms to be used. Tem-
plates should be easy to defme.

3. Since no user knowledge is required, program should be user friendly as much as

possible.

4. The most significant assumption is that all template definitions will be entered

correctly. Program wiU not check the templates. It will assume they were entered

correctly.

5. The key to database search is by the document number which is unique. It is as-

sumed that keywords to the database will be entered correctly.

D. HARDWARE REQUIREMENTS

In order to make use of this program, the following hardware requirements should

be met by the machine on which this program is running. I mainly focused on IBM

personal computers and its compatibles. Following hardware components must exist

on the system in addition to the system itself

1. The machine on which this program is running has to have a fixed disk in order to

store documents in the database.

2. To meet one of the user requirements which is usage of extra characters in the

Turkish alphabet, the system has to have either a Color Graphics Adapter or En-
hanced Graphics Adapter. These conditions will be checked by the program during

the installation process. If these requirements are not met by the system, program
will exit by prompting user.

3. The extra character set in the Turkish alphabet to be printed is designed with re-

spect to dot matrix printer. Since there is no way to check printer type, program
will assume that an appropriate printer is attached to the system.

No further hardware components are required.

E. PROGRAM COMPONENTS
The program consists of seven modules. Modules have been determined according

to the meaning of the task performed. The program modules and the files related to

them are hsted below. The detailed e.xplanation will be presented in Chapter III. The

program consists of following modules.

1. Database Module

2. Editor Module

3. Template Module

4. User Interface Module

5. System Functions Module

6. Printer Routines Module

7. EGA Character Generator Module

8. CGA Character Generator Module

9. Main module

10. Linked List Abstract Data Type

11. Double Linked List Abstract Data Type

III. DESIGN AiND IMPLEMEiNTATION

A. INTRODUCTION

There are several phases to software design. The purpose should not be merely to

meet the user requirements. In the design of the software, software engineering concepts

should be taken into consideration. These concepts are modularity, abstraction,

reusabilty and information hiding. Especially in big projects, application of these con-

cepts makes the software easy to construct, to maintain and test.

The choice of the programming language is also a major factor in achieving the goal.

I chose the C language to implement this program. The programs in this thesis have

been written in the C language by using a TURBO C compiler [Ref. 1]. The features

offered by the C language made it easier to apply the concepts stated above. Although

this is not a big project, it attempts to use these concepts by taking advantage of the

features offered by the C language.

In this chapter, I will explain how this program was designed and implemented un-

der the light of these concepts. This chapter will provide explanations on design and

implementation of the program, reusabilty and portabilty issues, and the program mod-

ules.

B. OVERALL PROGRAM DESIGN CONSIDERATIONS

In the design of this program, I took a top-down design approach. The main tasks

required to meet the user requirements led me the modules of the program. Once the

program is modularized then it is easy to construct the entire program by stepwise re-

finement method. Stepwise refinement helps us to easily apply the process of abstraction

[Ref. 2: p 1053-1058]. Well modularized program also helps us to easily apply the

process of abstraction [Ref. 3: p 1-43], information hiding [Ref. 4: p 339-344].

I constructed the program modules according to the tasks to be performed. By us-

ing C language's feature, each module has been designed and compiled separately.

Then, each module has been integrated to other modules after completion and testing

of separate modules, by using structured programming and the stepwise refinement

technique. Overall program construction, together with the module, is shown in Figure

1. This program consists of the following program modules.

1. TEM PLATE. C: Template generator routine.

pnsrstQr
©iSriSr

n;^v^iSln

K^iBiBBHwn^aaMMlBan
I

• 8«5ssr

1 fai**^

dbess systssTi

Lkt^t.o

Figure 1. Program Components

2. EDITOR.C: Editor module.

3. USERINT.C: User interface module.

4. DBASE. C: Database module.

5. PRINTER.C: Printer module that contains printer related functions.

6. MYMAIN.C: Mam module.

The main decision in the design of the modules is to provide functional interface

among the modules. To hide the internal structure of each module, therefore to apply

information hiding principle, modules are interfaced by means of predetermined function

calls and overall design assumptions. Another design decision is the visibility of the

program buffers among the modules.

In addition to program modules listed, there are four other modules. These are

1. SYSTEiM.C: Contains system dependent functions

2. DLLADT.C: Doubly linked list abstract data type.

3. LLADT.C: Linked list abstract data type that is used by database program module.

4. EGA.C: Memory resident program that creates extra characters in the Turkish al-

phabet for EGA.

5. CGA.C: Memory resident program that creates extra characters in the Turkish al-

phabet for CGA.

From the portabilty point of view, I collected all hardware and operating system

dependent functions in a separate module. When the program is ported, all functions

in this module should be replaced with the appropriate ones. The second module, doubly

linked list abstract data type, is the general purpose doubly linked list abstract data type.

It is designed so that it is totally reusable. This is also an example of information hiding,

abstraction and resuable program module. The portabilty and reusabilty issues will be

presented later in this chapter. The last two modules are totally independent from the

program. These modules are themselves independent programs which handles character

generation on CGA and EGA. Since these programs contain TSR instructions, they

have to be independent programs. These are compiled and run outside of integrated de-

velopment environment.

C. PROGRAMS IN THIS PROJECT

In this section, program modules are explained separately. Each program module

will be described functionally and together with its own structure. The complete source

program and make file is presented in Appendix C.

1. TEMPLATE.C:

This module contains all function definitions that are related to template gen-

eration. It provides functional interface to other modules on the data structure chosen.

Data structure to hold information is doubly linked list and all operations on data

structure and needed by other modules are defined as a function. Therefore other

modules are not dependent on the data structure used within this module. Since the

template definition for each document form is a set of fields, each node of linked list

holds the information about one field on the form. This module performs all operations

on data structure by using DLLADT.C module. This module is a general purpose

doubly linked list abstract data type. Module TEMPLATE.C is not required to know

the internal data structure of this module. It only sends a pointer to the data to be in-

serted into linked list. The implementation details for DLLADT.C will be explained

later. Figure 2 shows the general data structure for the template generator module.

PsgePIr
TiM!?LMl.£

7

2

!

—

mylist

Head

Curr

Tali

Field 9 O 9

«> • 9 •

Figure 2. Data Structure for Template.C Program Module

10

Since creation of the extra characters in the Turkish alphabet requires graphics

mode for color graphics adapter and text mode for enhanced graphics adapter, my design

decision is to use only one video page for both video modes. Throughout the program

the IBM PC default video page which is zero has been used. Instead of usmg scroll up

and down functions on the screen, I used an IBM mainframe XEDIT-like,editor with

defined keys. When new page is requested by user, screen is cleared and a new page is

written. This page sw^apping operation is handled by template generator routine. Since

all template definitions for each document format are defined wqth respect to coordinates

on the page, functions that responds to the requests to these coordinates from other

module hide this fact and returns the coordinate values as if they are defined with respect

to screen.

When requested by main module, this module converts all information in the

data structure to ASCII text file format, text file format and holds them in a global

buffer. This buffer is also visible to other related modules.

Which template to be loaded is determined by the user interface module and

requested from this module by means of the order number of template in file. As will

be explained in user manual, each template definition must start with a header line

whose first character is '#'. When the user requests to fill out any document, all docu-

ment definitions are displayed by reading the template file and seeking every line begin-

ning with '#' character. Then the user is asked to enter the number of the document

form and template definition for the requested form is read into the data structure with

respect to this number. According to the number of the template definition entered, it

displays the document form and then answers requests from other modules by providing

a functional interface to the data structure.

2. EDITOR.C:

This module is a small editor. It consists of two functions. Function getreplyf)

performs editing operations on each field of the form. This function gets the address of

the message and reply field and the coordinates for those fields. It allows the user to edit

each field by using defined keys. In case it is asked to edit an already edited field, first

it copies everything from the address sent into its own buffer, clears everything in ori-

ginal address then performs editing operations on this buffer. Before exiting the current

field, it copies everything into original buffer whose address is sent as a parameter to the

function. It does not allow the user to overwrite to the uneditable part of the fields on

the screen. When the user is trying to overwrite to undesirable field or to use undefined

11

keys, it warns the user by beeping. Defined keys and the explanation on how to use the

editor will be presented in the user manual in Appendix B.

This function also performs one more task. It interprets the keys assigned for

extra characters in the Turkish alphabet. The keyboard interpreter routine is embedded

in this function. It interprets the defined keys for editor and combination of ALT keys

assigned for extra characters.

The second function that takes place within this function is edit_page(). It

performs operations for editing the entire page. It determines the next step according

to a return code from function getreplyf). This way it calls approppriate functions from

template generator module. Return codes from function getreplyf) are the keys which

cause an end to editing each field. The user is allowed to jump back and forth among

the fields via up and down arrow keys or he may request a change to the video page.

Function edit_page() determines where to go according to these return codes. It is in-

voked by the main module. It gets everything it needs by means of appropriate function

Ccills from the template generator module.

3. DBASE.C:

This module performs operations in order to store documents requested by user.

In order to access documents in database, an index sequential access method has been

used.

The main assumption for this module is that the buffer that holds document in

text form is visible to this module. In the implementation, each text to be stored is

treated as a big string. It assumes that it terminates with null character which is the

indication of the end of the string in C language. To store or retrieve any document

from database, a global buffer is used. The files related to this module are shown below.

1. DBASE. FIL: Data base file. It is used to store documents.

2. INDEX. FIL: File that is used to keep keywords for database access.

3. TExVIPLATE.FIL: File in which template definitions take place.

The key to database is a unique document number. When any document is

saved, a keyword is entered by the user. The user interface module prompts the user to

enter the ke\avord, gets the entry and stores it in a global buffer assigned for keword.

This buffer is known bv the database module. The database module gets the ke\'word

from the buffer and inserts it into a hnked list which is data structure for holding

keywords and index for each record. An index value for each record is the position in

the linked list. When a document is requested, keyword is searched in the linked list, if

12

it is found according to position in the linked list, index sequential access is applied to

the database file and the requested document is copied into a global bufTer. The data

structure is shown in Figure 3.

When the program is first run, kev-words and implicit index values are read into

the the data structure. During the execution of the program, all additions and deletions

are performed on the linked list. When the program terminates, the last position of the

linked list is written back into the index file in the same order in the linked list.

The appearance of the database file is a sequence of documents with a decimal

number which indicates the size of each document and the document following it. The

recently stored document is appended to the end of database file and the ke\"word asso-

ciated with it is inserted at the end of the linked list.

4. USERINT.C:

All the user interface part of this program is performed by this module. It

contains the function definitions for operations that require input or output. By using

the field editing function, it allows the user to edit input and at the same time it permits

the extra characters in the Turkish alphabet to be entered. All input operations that are

limited to a certain size of characters are indicated by color and the input is checked by

the field editor function. The simple error handling routine also takes place within this

module. This is a general purpose error handling routine. When it is invoked by

modules, this routine warns the user according to an error code determined by the calling

module.

5. SYSTEM.C:

This module contains all hardware and operating systen dependent function

definitions. From the portability point of view, all system dependent function calls take

place within this module. BIOS video functions have been chosen so that they will op-

erate both in video mode and text mode. All function and related service numbers for

BIOS routines are defined in header files. Keyboard scan codes are defined within

KEYDEF.H, BIOS functions and services are defined in BIOSLIB.H file. These two

files are included in SYSTEM.H file.

6. PRINTER.C:

This module contains all function definitions for printer related functions.

When printing any document is requested, it filters the text, seeks the ASCII codes as-

signed for extra characters in the Turkish alphabet. If any special character is trapped.

it calls the appropriate function that prints the font associated with that characters.

13

index list

key2 keyn

-- ^4-

sizel document 1 a size2 o o o o o o document n

Database file

Figure 3. Data Structure for Dbase.C Program Module

There are two functions that are known by other modules. These are

print_page () and printJVe(). The design assumption for these module is that when any

14

document is requested to be printed, this module knows that it is stored in a global

bufTer. As in the database module, each document in the buOer is treated as a big string.

So in order to print a page which is either already edited or retreivcd from the database

to browse , function print_page ^ j gets the characters from buITer, prints them out by

filtering the ASCII codes for special characters.

Function printJ^le() is designed in order to be able to print the file which is

used to keep record of incoming documents. This function performs the same oper-

ations by filtering and printing out special characters. The only difference is that this

function gets the characters from file until the end of file rather than encountering the

null character.

The user is allowed to print out any document up to eight copies. The number

of copies requested is entered interactively by user. By considering that the user may

want to fill out any document,wanting to store rather than printing it out, zero will im-

ply no printer output. Printing a file is limited to only one copy. Design of the special

characters will be explained in Chapter IV,

7. MYMAIN.C:

This module constitutes the top of the program structure. It is the mirror of

how the entire program is structured. In top-down design approach, this is the first step

I took.

This module contains only function calls rather than functions themselves. It

knows the tasks performed by each module and interfaces modules according to logical

order that is neccessary to perform the task.

8. DLADT.C:

This module is a general purpose double linked list implementation. Imple-

mentation details are hidden from application side. The user of the module has to pro-

vide some functions neccessary to apply abstract data type. The application side does

not have to know the internal structure of the module. The functions that will be pro-

vided by application side are the comparison functions and appropriate requests from

module.

The main idea in the design of this general purpose abstract data type is to have

totally reusable module. It is implemented by taking advantage of the C language's

features. It is written by using C language's generic pointer feature. The detailed ex-

planation on the implementation of the module has been given along the source program

as the comment. The data structure for double linked list is shown in Figure 4.

15

Double linked list abstract data type

tail

curr

head ^
^- ^

^ mAA - - "̂*? ^

^ T y r

dats data data

t

data

Pointer to double linked list

Application side

Figure 4. Data Structure for Double Linked List Abstract Data Type

16

9. LLADT.C:

This module is a general purpose linked list abstract data type implementation.

It has been implemented by using C language's generic pointer feature. It is a totally

reusable module. In this project, it is used by Dbase.C program module to hold

kewords in order to implement index sequential access method for database access.

The data structure for this module is shown in Figure 5.

10. EGACHR.C:

This program is separate from the program modules defined above. It is de-

signed to create the extra characters in Turkish alphabet on the Enhanced Graphics

Adapter. It is a memory resident program and it is run seperately from the main pro-

gram. The detailed explanation on the implementation of extra characters will be pre-

sented in Chapter IV.

11. CGACHR.C:

This is also memory resident program and designed to create the extra charac-

ters on the Color Graphics Adapters. The detailed explanation on how to implement

these extra characters will be presented in Chapter IV.

D. PORTABILITY AND REUSABILITY ISSUES

This particular application program is system dependent. In other words it is not

portable to other systems. However, throughout this study, in order to make the pro-

gram easy to port to other systems, in the design of the program these issues have been

taken into consideration. PRPORT.H project portability header file is used for these

purposes. Within this file, all portabihty issues considered throughout the project are

defined. When this program is ported this file should be updated.

From portability point of view, designer must think about the following things. C

compiler dependency and system dependency. This program has been written in

TURBO C. All built-in language functions used within the program are defined using

ANSI standards and provided by all other C language compilers. None of the functions

is unique to TURBO C. However, some reserved words that are not provided by other

compilers such as 'void' take place in the PRPORT.H file and are replaced with appro-

priate ones according to defined compiler in the same file.

The second thing considered for the portability is the system dependency of the

program. This dependency may show up in two different stiuations. First the repre-

sentation of the data types in the language differs from system to system. The second

is the presence of the system dependent function calls within the program. To eliminate

17

Llr.:^cd list sDstract data type

tail

curr

head

t^ - k~

m

7 ^r

m (D CB tu

(flaUa (fisdai ^fflUffl

Pointer to linked list

Appllcstlon side

Figure 5. Data Structure for Linked List Abstract Data Type

the impact of the representation of data types, I defined my own data types within the

PRPORT.n iicader lilc by taking advantage of C language's typedef Icature. In tiic

program, I used my own data type cver}'where that is dependent upon tlie representation

of data types on machine. And by forcing the compiler type casting on my own data

type, I aimed to eliminate the impact of the representation of the data type on different

machines. Before this program is ported to another system, user defined data types must

18

be redefined according to the new system. There is no need to make change within the

program.

This program contains many BIOS routine calls. These calls are specific to IBM

PC and compatibles. 1 collected all BIOS and OS dependent functions within a single

program component namely SYSTEM. C. Before the program is ported, all functions

that take place within the SYSTEM.C program component must be replaced with the

appropriate ones so that function name and the order of the parameters will remain the

same.

19

IV. IMPLEMENTATION OF SPECIAL CHARACTERS IN TURKISH

APHABET

A. TO CREATE SPECIAL CHARACTERS ON SCREEN

Programmers writing for the monochrome display adapter(MDA) and the color

graphics adapter (CGA) are stuck with the character sets provided in those board's

ROMs. If you want a different character set, for instance as APL users do, you have

to replace the ROM. But there are various commercially available adapters today. On

the Enhanced Graphic Adapter things are different. Fonts are "soft", meaning that al-

though the ROM character generator is used by default, it can be replaced by a char-

acter set of our choosing. In fact, EGA can support four different character sets.

In this section, we will examine how to design our own custom fonts. For different

adapters creation of special characters will be discussed.

Only the monochrome adapter cannot display characters of programmer's own de-

sign. The color card allows 128 user defmed characters. PC jr allows 256, EGA allows

1024, of which 512 may be on line at once. On the color graphic adapter, in text modes

character sets in ROM are used by the system. There is no way to change this or replace

by new fonts. But CGA allows user to define own custom character sets on graphics

modes. In graphics mode, ROM contains data to draw first only 128 characters in the

ASCII set (numbers 0-127). The second 128 characters can be redefined for our own

purposes. System finds the table containing data drawing graphics characters via inter-

rupt vector IF [Ref. 5: p. 1-91].

Characters on graphics card and PC jr's are designed within a box that is 8x8 pixels.

Eight bytes hold the data for each character. Each byte holds the setting for a row of

pixels, starting with the top row, and the high bit corresponds to the leftmost pixel of

the row. When the bit equals 1, the pixel shows. To design a character, the bit patterns

for eight bytes must be determined and placed in sequence in memory pointed by inter-

rupt vector IF. Figure 6 shows how extra characters in the Turkish alphabet are de-

signed for CGA. To place user defined character table in memory, interrupt vector 1

F

must be redirected so that INT IF will point to the user defined new character table.

This can be achieved either by some built-in function calls provided by some high level

languase or writing assemblv language routine. In case that this is done with assembly

language, we also need to make our table memory resident. But if this is implemented

20

in any high level language (in this study the C language), the new table can be held in

an array and INT vector can be set to point to the array that contains the user defined

character set data.

In my approach, I implemented the character generator programs in the C language.

These are memory resident programs and install our own characters. We need to defme

only 12 extra characters in the Turkish alphabet. Therefore, first I copied system de-

fmed graphics character table into array, then my own character table into an array.

Before doing this we need to save the old interrupt vector value so that when program

terminates we can have the system resume the original state. The next step is to change

the interrupt vector so that it will point the array holding the character table data. But

there is one significant point here. As stated above there is no way for us to use these

characters in normal text mode. Therefore we need to change the video mode. In this

particular example for IBM PC or compatibles, it should be set to video mode 6 which

is black and white mode. In this program I utihzed the built-in Turbo C language

functions setvect(), geivectf) to get old interrupt vector value and to change the inter-

rupt vector to the user defined character table. Since the user defined character table

will be held in an array and it will be in memory during the execution of program, I did

not make this routine memory resident.

The Enhanced Graphics Adapter is much more complicated and much more versa-

tile. When a text mode is initialized, one of the two character sets (8x8 or 8x14) is

copied from EGA ROM onto bit map 2 of the video buffer. This part of the buffer is

treated as if it were broken into blocks, and the standard character set is placed in block

0. Providing the EGA adequate memory, three more blocks of character data may be set

up. The size of the block depends on the number of scan lines used in the character.

Characters that are 8x8 need 8 times 256, or 2048 bytes. When more than one block

of characters is enabled, bit 3 of the attribute byte determines which block will be used.

Enhanced Graphics Adapter gives the user the abiUty to define his own character

set. New character set can be placed at whatever position user chose within any block.

And even if it overwrites the standard character set, it can be replaced at any time from

ROM data.

The most beautiful part of the things offered by EGA is that it gives the ability to

replace the standard character set in text mode with one of chosen by the user. The

EGA has BIOS support for the loading of an alternate character set through interrupt

lOh, function llh, subfunction [Ref 6: p 4-1). We can make a call to this function

21

0x4Q \J X 'J U \r'K'L^IU OkCC 0;iCC OxCC 0^7C 0:<00

'\

V \

7
' \ U 1 n 1

//

5 »

1
1

1
1
f

1

4

1

i

n .'-N

Vv
1
1 1

}
1
i] I

1
1 1

1
*

1

5 i J

<

(
i

3 _/ /
I' V.'

fi __/

Figure 6. Memory and Screen Representation of Character for CGA

with ES:BP pointing to table containing our own font in a format thiat will be explained

below, DX set to the ASCII ordinality of the first character of our character set, CX set

to the number of the characters in user defined character set (maximum 256), BH set

to the number of the bytes per character, and BL set to the block to load. These pa-

rameters provide the BIOS with suHicient information to load the new fonts defined by

the user.

22

Figure 7 contains data and the way that extra characters in Turlcish alphabet are

plotted. This figures assumes an enhanced color display in 25-line mode, in which each

character is 14 scan lines high and 8 pixels wide. For EGA character box is limited 8

pixels wide but can be defined up to 32 scan lines high.

B. PRINTING SPECIAL CHARACTERS ON PRINTER

In this section, I will explain how we can print out our own characters on the

printer. First of all I would like to emphasize that by saying printers, I mean commer-

cially available dot matrix printers. In this research I did not take bit map systems and,

therefore, some printers called image writers into consideration.

There are hundreds of printers available today. Although most of the commercially

available printers offer various features, for this specific application area, we will not be

using most of the features offered. The need for a different character set is partially met

by those features. Most of the dot matrix printers provide user some character set rather

than standard character set. These characters can be utilized by sending appropriate

printer commands. For this application, we could make use of some of these characters

namely international character set, provided by printer manifacturers. But this would

not meet our needs for extra characters in Turkish alphabet. Therefore we have to find

a way to print out some user defined characters which are not available in the printers

ROM. This goal can be achieved by exploiting one of the features provided by printers.

To print out characters which are not available in printers ROM, I took the fol-

lowing steps. First, dot matrix printers offer the ability to print graphics. This shows

us anything can be printed as defined by user. Before starting to explain the way I print

out my own characters, we need to take a closer look at where dots are printed and how

we can control them. When any character is sent to printer, it prints that character us-

ing the dot pattern stored in its memory. In case that we want to print a pattern of dots

that the printer does not have in its memory, we should control then the individual dots

that are printed. Printer head usually consists of nine pins stacked one above the other.

The print head therefore can print the columns of up to nine dots at a time. As plotted

in creation of characters on screen section, if we plot the characters that will be printed

we can print them column by column. Since print head will be printing column by col-

umn, we need to first send the byte that defines first column of character box. When

we draw our own characters, each strike of pins on the print head will be represented

by I's. This technique is called dot graphics. In dot graphics, the line length and dot

spacings are not fixed. We should tell the printer three things. First, which pins to print

23

i

c5 CD 00 uu 00

\

7/
/

s
OjOiO r f^ rr n

//

/

Jl

uio *J r^ Jj u Ti

-"^

-_ -.J^ •u"

p f n
- ' 1 i-' 1 A u
•-

r ' ^" <"-

<
n n

"-
rs

Ij A 1 jl

I

i _i !> u
t
i. I G V n 5

X i

? J t> (J 1

n I^
%,• 1

i i {J (i A
<

A

It -

-*
; ? T

L* tj

fi e "J
•^
E <

2"'

ij

f- r-f ^-j f- f- • f>

/

DOI&JG G a.; U / 1

9

.

Figure 7. iMemory and Screen Representation of Character for EGA

in each column, second, how closely to space the columns, and third how many columns

there will be in the line. To tell all these things, appropriate printer commands, which

are actually ESCAPE sequences, must be sent to the printer.

After having briefly explained how we can use printers to print out some characters

that are not available in printers' mcmor>", now I can explain the approach taken in this

24

program. Figure 8 shows how extra characters in Turkish alphabet are plotted for

printer.

First step is to define characters on a 8x8 matrix. Second step is to calculate the values

corresponding each column either in hex or decimal. There are two printer graphics

mode: line and block graphics mode. I picked the line graphic mode. Since each char-

acter is 8x8 dot matrix (therefore it will be 8 dots wide), I defined line length as 8 in line

graphics mode. ESC sequences to tell printer these should contain the following values,

number of dots per inch, line length. By sending the following command to the printer,

we can tell the printer that leading 8 bytes will be printed column by column, in other

words they will not be interpreted as regular ASCII characters.

ESC 'K' nl n2

If we interpret this, ESC 'K' means ' do not interpret the leading bytes as ASCII

characters, and the Une length is nl + (256'''-n2) [Ref 7: p. 6-47]. This is a general

purpose command. Since we are going to use it to print our own characters the line

length should be eight. If the hexadecimal or decimal values which corresponds the

column values of new characters are sent to printer after following escape sequence, the

character that is defmed by user wlU be printed. After line length bytes printer resumes

its previous mode. Since characters are printed in fixed dot density, even though letter

quality is set to anything, they will be printed in fixed dot density defined by user. For

this appUcation program I picked the dot density as sixty dots per inch and regular

characters will be printed standard mode. To make sure that printer is operated in

standard mode, program sends the ESC sequence that sets the printer to standard mode.

TelHng printer which character will be printed as special character is under program re-

sponsibility and the printer module handles everything.

25

\ ^

\ \
\
\,\

^\ /
\

1 ; J
i I

fj i

a

I

1

J

1
i

1
3

n 1
1

n

n ;--, ~>

1

i
1 I

i

J

f-.

,- .- -.

u 3

1 i
"j n 1

1

'
;^

?
4 i />

'-
4" \ i'^

Figure <S. Cliamctcr Representation for Printer

26

V. USING THE DOCUMENT GENERATOR

In Chapter III, the design and implementation details of this program have been

discussed. In this chapter, what we have designed will be presented. This chapter briefly

explains how to use the document generator software from user's point of view. The

detailed explanation is presented in Appendix B as User Manual.

The entire project tends to use microcomputers on board for tasks performed by

ship bureaus. It allows the user to fill out document forms and to store them in a da-

tabase, including the ability of using extra characters in the Turkish alphabet. All op-

erations performed by this software appear in the main menu. The user can select one

of these operations. These operations are:

1. Preparing any document.

2. Browsing any document from database.

3. Entering incoming document log.

4. Printing incoming document log file.

5. Quit

This program tends to be user friendly. User is prompted for each step to be taken.

All operations performed by this program take place within main menu. Main menu is

the starting and ending point of each operation displayed in main menu. The program

will be executed until the user enters the Quit option.

In order to prepare any document, option one should be selected. User will be

prompted to enter appropriate form number after program displayed all templates that

exist in TEMPLATE. FIL. If there is more than one screen full template definition,

program automatically provides user to view one screen full at a time. The form that

corresponds to the number entered by user will be displayed and the editing session will

start. User will be allowed to edit each field displayed on screen and to go back and

forth among the field. User will not be allowed to overwrite non fillable fields during

the editing session. He will be warned by sound in any attempt at overwriting. After

completion of editing session, user will be prompted if he wants to print it out. If he

wants to print out, program will print out the currently edited document with as many

copies as requested. Zero implies no printer output. Next step is to get user request if

he wants to store it in database. If it is requested to store it in database, after getting

27

the document id for document (which is key to database access), it will be stored in da-

tabase file and program will go back to main menu for next operations.

Another operation is to browse any document previously edited and stored in data-

base. When this option is requested, user will be prompted to enter document id asso-

ciated with request. Program will access database file according to keyword entered by

user and retrieve the document into program buffer then display it one screen full at a

time. User will be allowed to print the document browsed and he will be promted for

print option as in option one. Zero will imply no printer output and program will go

back to main menu for next operations.

There is no feature for retyping all incoming documents. Program will only provide

a mechanism to keep records of all incoming documents. In option three, user can enter

all information about incoming document. He is allowed to edit. The user input then

will be appended to DOCLOG.FIL.

The fifth option provides user to print all incoming document information entered

by option three. User will not be promtped for the number of copies. Program will print

only one copy of the DOCLOG.FIL.

Program terminates after option five is selected. All document id's entered during

the execution of program will be updated before program terminates.

The detailed explanation on operations performed by this program will be presented

in Appendix B, User Manual.

28

VI. CONCLUSIONS AND RECOMMENDATIONS

The objective o[this study is to design and implement a software for an automatic

document generator supporting extra characters in the Turkish alphabet. In this study,

I mainly focused on IBM personal computers to create our own characters. Being able

to use the Turkish alphabet on computers was only one part of the project. There were

several goals in the design and implementation of the program. The first part is to be

able to use extra characters in the Turkish alphabet. This part includes two different

hardware components. The system on which program is running and the printers to be

used to print characters. This part of the problem is totally hardware dependent.

Throughout this study, I focused on IBM personal computers to create extra characters

in the Turkish alphabet on the screen. For printers I took the dot matrix printers. Since

the dot matrix printers vary among themselves according to manifacturers, I considered

three main types of dot matrix printers. These three types of printers are commercially

available and widely used, respectively EPSON, IBM proprinter, OKIDATA dot matrix

printers.

To expand this project, the hardware dependency of creating extra characters on

screen can be reduced by expanding this study to other systems that are available today.

The second part of the problem is to meet user needs to generate and process doc-

uments. This program is designed to generate documents with only a single page length.

This program can be developed so that there will be no limitation for the length of the

document format. To process documents, to store them in database and to meet user

needs, in database implementation of this project, the index sequential access method

has been used to retrieve any document from database. To expand this project, data-

base routine should be implemented by using a B-tree to achieve better disk access to the

database.

29

APPENDIX A. TURKISH APIIABET

abccdefgghiijkl
ABCCDEFGGHIIJKL

m n o o p r 5

M N ? R S

t u u V y z

T a U Y Y Z

30

APPENDIX B. USER MANUAL

A. INTRODUCTION

This program attempts to provide all operations performed by ship administrative

offices to generate and process documents. It is designed so that it will be user friendly

and interactive program. Basic features provided by the program are displayed in the

main menu. The main menu is the starting and ending point of each operation until

Quit option is entered by user. User will be prompted during the execution of each op-

tion on the main menu according to logical sequence of the operation performed in real

time.

B. REQUIREMENTS

This program is designed for IBM personal computers and DOS environment. The

following conditions must be checked before the execution of program:

1. All program files must be in the same directory. Program files and their de-

scriptions are as follows.

a. YAZIBURO.EXE: Main executable program file. This is the file to be run.

b. TEMPLATE. FIL: File in which all template and form defmitions take place.

This file must exist in order to be able to fill out some documents. The absence

of this file implies that there is no template definition for program to display.

c. INDEX. FIL: This file is used to keep keywords for database access. It does

not have to exist when program is first run. However, it must exist along with

DBASE. FIL if there is any document edited and stored in database. The pres-

ence of either INDEX. FIL or DBASE. FIL will imply that there was at least one
document stored in database file and one of these files is missing.'»•

d. DBASE. FIL: This file is main database file and it is used to store all documents
requested to be stored.

e. EGACHR.EXE: Executable file that creates extra characters in the Turkish al-

phabet. It can be used independently in order to prepare new templates by us-

ing any word processor. It will be installed by program when it is used for

document generator purposes.

f CGACHR.EXE: Executable program that creates extra characters in the

Turkish alphabet. Its usage is the same with EGACHR.EXE.

2. Maintenance of the program files is under user responsibilty.

3. System should be equipped with either CGA or EGA in order to be able to display

extra characters in the Turkish alphabet. Program will automatically terminate if

these conditions are not met bv the svstem.

31

4. All template definitions must be entered correctly. Detailed explanation on how-

to prepare template will be presented later.

5. Printer attached to the system should be a dot matrix printer.

C. GETTING STARTED

The complete list of the program files has been presented in section B. The execut-

able program name (YAZIBURO) must be entered in DOS command line in order to

run this program. Main menu will be displayed as soon as program is run. Main menu

contains all operations performed by this program. User can choose the operation from

main by simply entering the number associated with the request after the program

prompt. The logical sequence of the events to perform any operation on main menu are

as follows:

L PREPARING ANY DOCUMENT

a. Choose the document form and enter the choice after program prompt.

b. The form of document will be displayed.

c. Fill out document.

d. Print it out. If the printer output is not requested, zero will imply no printer

output.

e. Do you want to save it? If the answer is 'yes', enter the keyword for the docu-
ment to be saved after program prompt.

f Go back, to main menu.

2. BROWSING ANY DOCUMENT FROM DATABASE

a. Enter the keyword associated with the document.

b. If attempt is succesful, browse the document.

c. User may want to obtain print out. He will be prompted to enter the number
of copies to be printed. Zero will imply no printer output as in option one.

d. Go back to main menu.

3. ENTERING INCOMING DOCUMENT LOG.

a. Prompts the user by displaying the fields in incoming document log.

b. Enter the information about the incoming document.

c. After hitting the RETURN key, go back to main menu.

4. PRINTING INCOMING DOCUMENT LOG

a. When option four is selected, program will automatically generate one copy of

printer output of incoming document file.

b. Go back to main menu.

32

5. EXIT TO DOS

a. This option is used to terminate tiie execution of tiie program.

User will be prompted according to logical sequence of the events presented above

during the execution of the program. Each operation will be explained m detail below.

1. ENTERING EXTRA CHARACTERS IN THE TURKISH ALPHABET
There is a one to one relation between extra characters in the Turkish alphabet

and the ones in English. In the design of this program, by taking advantage of this

similarity, extra characters in the Turkish alphabet will be entered as ALT key and the

similar letter in EngUsh combination. CAPS LOCK and the SHIFT keys on the regular

keyboard layout will function same way.

1. ALT-c : will display the letter c.

2. ALT-C : will display the letter (^.

3. ALT-g : will display the letter g.

4. ALT-G : will display the letter G.

5. ALT-i : will display the letter i.

6. ALT-I : will display the letter 1.

7. ALT-o : will display the letter 6.

8. ALT-O : will display the letter O.

9. ALT-s : will display the letter s.

10. ALT-S : will display the letter $.

11. ALT-u : will display the letter ti.

12. ALT-U : will display the letter U.

2. USING DOCUMENT GENERATOR
a. PREPARING DOCUMENT

Option 1 provides user to fill out any document whose definition takes place

in TEMPLATE.FIL. All templates that take place in TEMPLATE. FIL will be dis-

played. User will be asked to enter the number of his choice. Program will automat-

ically provide a mechanism for user to view all templates available. When there are more

than one screen full template names, program will display one screen full template names

at a time. The form of the document requested by user will be displayed. Program will

automatically color the spaces to be filled out by user. Cursor will be on the first field

to filled out. Program will prevent user from overwriting on non-fiUable fields of docu-

ment form. Cursor will automatically go to the next editable field after the user hits the

33

RETURN key. User is allowed to go back and forth among the fields by using defined

keys in order to correct typos.

Program defined keys and the editing features provided by program are as

follows.

1. ESC key: Will cancel all input for the current field.

2. HOME key: Will take the cursor to the beginning of the current field

3. CTRL-END: When the combination of CTRL-END keys is entered, it will termi-

nate the editing session.

4. DEL key: allows deleting character at the cursor position.

5. LEFT ARROW: Moves the cursor to the left.

6. RIGHT ARROW: Moves the cursor to the right.

7. UP ARROW: When UP ARROW key is hit, editing session of the current field

will terminate and this key will allow user to go one editable field back. If there is

no editable field to go, user will be warned by sound and cursor will stay at the

same field.

8. DOWN ARROW: will terminate the editing session for current field, and will move
the cursor to next editable field. If there is no field to go, user will be warned by
sound and cursor will stay at the same field.

9. SPACE BAR: Will either move cursor or make room for characters to be inserted.

10. PAGE UP: Will display the previous video page. If the current page is the first

page, user will be warned by sound and current page will remain active.

11. PAGE DOWN: Will display the next video page. If the current video page is the

last page, user will be warned by sound and current video page will remain active.

User can edit each field by using program defined keys listed above. Editor

is always in insert mode. After having filled out all necessary spaces on the form of

document, user can press CTRL-END to terminate editing session. User will be

prompted for printer request as next step. Program prompt for printer request :

Howmany copy do you want = = > _

Zero implies no printer output !

User will enter the number of copies he wants to print out after the program prompt

shown above. Program will execute the user request and then prompt user if he wants

to store the currently edited document in database. If user wants to store the document

in database, he should enter the keyword after program prompt. User is allowed to edit

all entries by using program defined keys presented in section 2. Program will go to

34

main menu for next operation after saving thie document in database. If user requests

more than one copy of printer output,

program will print out up to maximum eight copies by automatically pT0\\(Xm2.form feed.

b. BROWSING ANY DOCUMENT FROM DA TABASE

Program allows user to view any document previously edited an,d stored in

database. This can be done by selecting Option 2 from main menu. Appropriate

keyword must be entered in order to browse any document from database. User will be

asked to enter keword for the document to be viewed. User is allowed to edit his entry

as in section two. All keys defined can be used. Program will get the document id and

retrieve the document and then display it one screen full at a time. User will be

prompted to see next page.

This operation will allow user to view rather than edit or change the con-

tents of the document. However user can print it out as many copies as he wants.

Program will prompt the user and print the document according to user request. Zero

will imply no printer output as in Option 1. Program will go to main menu after per-

forming request by user.

c. ENTERING INCOMING DOCUMENT LOG
Program provides a mechanism to keep record of all incoming documents.

Since there is no use to retype all incoming documents, it basically allows user to enter

all information about incoming documents. This can be done by Option 3. When this

option is selected by user, program will display the following;

ENTER ALL INFORMA TION ABOUT THE INCOMING DOCUMENT
DOCUMENT ID FROM DATE

User will fill out the spaces as indicated above. All program defined keys can be used

to enter the information about the incoming document. It is under user responsibility

to format the entry. Program will save the entry as it was entered.

d. PRINTING INCOMING DOCUMENT LOG

Option 4 provides user to print out all informations about incoming docu-

ments. Program will print one copy of DOCLOG.FIL which holds all informations

about incoming documents entered by Option 3. User will not be prompted for the

35

number of the copies. Program will print only single copy of this file and then go back

to main menu.

i. EXIT TO DOS

Option 5 terminates the program and takes user back to DOS command

line. Program updates the program files before it terminates.

3. HOW TO PREPARE NEW TEMPLATE

In this section, how to prepare new template will be explained. This program

will run for the template definitions already existing in Template. Fil. User can easily add

new templates to the system according to what they need. User should not forget that

program always assumes template definitions have been entered correctly. All templates

must be defined to the system as described below.

All template definitions take place in TEMPLATE.FIL. New templates can be

added to already existing ones by using any word processor. Before starting to explain

rules on defining new template to the system, it is better to give a brief explanation on

terminology used here.

Each document form consists of fields. A field is the smallest unit on this form.

A field consists of a field message and a field reply. Field message is the string appeared

on the blank form of the document. Each entry that user will fill out constitutes ei field

reply. A field can be either editable or noneditable.

The noneditable fields are the ones the user is not allowed to edit. The location of each

field is given by the coordinates with respect to page format. Each field has to have row,

column and width values associated with itself

Figure 9 shows the components that are necessary to define any field.

In order to prepare a template the following steps should be taken. Each form

of document should be broken into fields. The components of each field must be de-

termined. All components of a field must be appended to Template. fil according to the

following rules.

1. Each template definition must have unique name and its name must be defined

prior to field definitions. All template names must start with '#' character and in

the first column. Program will display all template names by checking if their first

characters are '#' or not.

2. Each field must be entered in a single line.

3. User is allowed to put comments anywhere in the file as long as it starts with '*'

and it starts in the first column. All lines whose first character are '*'
will be

skipped by program.

36

Figure 9. Field Compoftents

4. The order of tlie field component values is very important. The order must be as

follows:

Field row column width editable @ field message @

5. Field messages must begin and end with the special character '@'.

6. Field width must be determined so that it will be large enough to hold both the field

message and the field reply that will be entered by user when it is editable.

7. Field status can be either one or zero. One should be entered for the ones that user

is allowed to edit. Otherwise it will be zero.

8. The order of each field is not important. It can be entered in any order. However
the order of the field components must be entered as in the example.

* Tins is a comment line.

* row column width editable field message

5 50 20 I @Date: @
Example field definition defined according to rules above indicates a field start-

ing at row 5, column 50, total width 20 characters and field message is Date:

This shows that field message will be displayed on specified coordinates and user will fill

out width - message length= 14 characters length space. Example template definition

and program output document arc presented in Appendix D.

37

APPENDIX C. PROGRAM LISTINGS

Source listings of program modules are given in the following order. Relation

among the program files can be found in MAKEFILE. The order of program listings

is according to program structure. All program files are listed after program modules.

MAKEFILE UTILITY

MYMAIN.C

TEMPLATE.H

TEMPLATE.C

EDITOR.H

EDITOR.C

DBASE.C

PRINTER.C

SYSTEM.H

SYSTEM.

C

DLADT.C

LLADT.C

EGACHR.C

PRPORT.H

KEYDEF.H

MYASCII.NUM

EPSON.DAT

EXTRA.FNT

38

MAKEFILE FOR PROJECT

The order to search for rules and files is specified by . SUFFIXES
FFIXES : . exe . obj . c

program files and their dependencies,

mymain. obj: prport.

h

template, obj; template, h prport. h keydef . h bioslib.h

editor, obj: editor, h prport. h keydef . h bioslib.h myascii. num

userint.obj: prport. h *

dbase. obj: prport. h

printer, obj: prport. h myascii. num extra, fnt epson.dat

system, obj: system, h prport. h keydef . h bioslib.h

dladt.obj: prport. h

lladt.obj: prport. h

0= Files
FILES= system template editor mymain userint printer dbase dladt lladt

// Object files
OBJS= system, obj template. obj editor. obj mymain. obj
userint. obj printer, obj dbase. obj dladt. obj lladt. obj

Libraries
LIBS= emu math$(MDL) c$(MDL)

Model definition is SMALL for Turbo-C
MDL = s

/> make is :

MAKE = ndraake

pi ink is :

PLINK = tlink

39

all: Yaziburo. exe

Yaziburo.exe: $(OBJS)
tlink cO$(MDL) $(FILES) ,$^S $'^ $(LIBS)

c. obj

clean:

tec -c -ra$(MDL) $''''•

del mymain. obj
del system. obj
del template. obj
del editor. obj
del printer. obj
del dbase. obj
del userint. obj
del dladt. obj

40

y'VfiV'iV'jViV^'jVVrVfVrTV'jV^ViV^V'sV^ViV'sVVc^V'jtVcVciV^VAVfiViVVc'sVVrVf^VciViVVrVfiViV'jVVfVf^VfVryf'jVi^

MODULE

VERSION

AUTHOR

DATE

MYMAIN.

C

1.

Metin AKINCI

31 MAY, 1988

EXPLANATION:
Main project module.

Interfaces modules and prepares program buffers.

CHANGE LOG:

•k'ff'/ci(rh'f(if'ferh'krkivif'itrhi(ifi(itii'f(ieififi«iei(irirf<-i«it'^i(irkific'ifit'f«ifiriciiifi(i(i(ifici«^^ ,

/include "prport. h'

/Hnclude <stdio. h>
//include <mem. h>

/* External Function Definitions */

extern Void editpage();
extern Void start_up();
extern Void print_page();

extern Char '''con_text();

extern Int getrequest();

extern Bool ifsave();
extern Void enterlog();
extern Void deallocate();

extern Void allocate();
extern Bool loadtemplate(Int);
extern Int gettemplate();

/* Buffer pointers which are visable to other program modules */
Char ''^TEXTBUF;

Char ^KEYWORD;

/* Define Size of Program Buffers */
//define KEYSIZE 12

//define BUFSIZE 3500

/">'' Define function prototypes */
Void allocbufO;
Void deallocbuf ();

Void f lushbuf fers();

41

main(

)

(

Char ch;

Bool done;

done=FALSE;

allocbuf ();

loadindex();

while (! done)
{

switch (getrequest())

/" initialize the modules */

(

case 1: tempinitC); /* Prepare document
if (! loadteraplate(gettemplate())

)

*/

error((Int) 2);
break;

case 2:

case 3:

case 4:

case 5:

}

start_up();

editpageO;
con„text();

print_page();
if (ifsaveO)

savedoc();

deallocateC);

break;

getkey2db();
if (browseO)
print_pageO;

break;

enter log();

break;
print_f ile();

break;

done=TRUE;
break;

default: break;

f lushbuffers();

}

updateindexf();

deallocbuf ();

/* Browsing a document */

/* Entering an incoming document*/

/* Printing incoming doc file "/

/* Return to DOS */

42

ALLOCBUF(): Allocates program buffers.

Void
allocbuf (

)

(

KEYVORD=(Char ''-)malloc(KEYSIZE);
TEXTBUF=(Char ") raalloc(BUFSIZE);
if ((! KEYWORD) || (ITEXTBUF))

printf(" there is no enough memory, program exiting.");
exit(O);

memsetC KEYWORD,' O' ,KEYSIZE);
memsetCTEXTBUF,' O' ,BUFSIZE);

DEALLOCBUFC): Deallocates program buffers.

Void
deallocbuf(

)

{

free (KEYWORD);
free(TEXTBUF);

)

FLUSHBUFFERSC): Clears program buffers.

Void
flushbuffers(

)

memset(KEYWORD,' O' ,KEYSIZE);
memsetCTEXTBUF,' O' ,BUFSIZE);

}

43

I'lV^^V^V'A'iV'^V'jVVfiV'jV^ViV'friViV'jViV'jV^VVrVf^V^^ViViViV^VTV^V'jViV'jVVf^VTV'jV'/r'jV'jViViVVf'sV'sV'jVi^

MODULE

VERSION

AUTHOR

DATE

TEMPLATE.

H

1.0

Metin AKINCI

15 MAY, 1988

EXPLANATION:
Contains all definitions and declarations

for TEMPLATE. C Module.

CHANGE LOG:

ififi(ifif^icititif->'ci(ieit'kif'Jfici(iticit'k')'fifieitititici(ici^iritififififiei(iciticiti(i(ifirifi^

//include "prport. h"
#include "keydef . h"
//include "bioslib.h"

//include
//include
//include
//include
//include
//include

<stdlib.h>
<alloc. h>
<conio. h>
<stdio. h>
<mem. h>
<string. h>

/* program defined header files*/

/* Compiler header files. */

char * TEMPLATE_FILE="temp late, f il";
/* define filename for templates */

pedef

Int

struct Field„record

row;
Int column;
Int width;
Char -msg;
Char *reply;
Bool editable;

/* field start row number
/''' field start column number
/* field width
/" pointer to message buffer
/" pointer to reply buffer
/''' If 1 then editable else not

*/

"/

} Field;

Field *PagePtr[3]
;

GLOBAL Int PG;

/* Video page pointer array
/* Video page counter

typedef char dlist;
dlist "mylist;

/* generic pointer to dllist

44

GLOBAL extern Char '''TEXTBUF /''= pointer to buffer Vc/

/* Function prototypes ,v/

extern Void putcur(Int , Int);
extern Void clrscrn();
extern Void ring_bell();
extern Void writea(Int , Int);

/' Function prototypes for DLADT, C */

extern Field *dl_find(char *, Field *,int (* fieldcomp)());

extern Bool *dl„add(char *, Field *,int (* fieldcompK));
extern Bool '''dl_delete(char *, Field •'^jint (* fieldcompK));

extern char *dl_alloc();
extern Bool ''''dl_free(char *);
extern Field ''='dl_next(char ''0;

extern Field '>dl_prior(char *);
extern Field '''dl_first(char *);
extern Field '''dl_last(char *);

extern Field '''dl_curr(char *);

45

MODULE : TEMPLATE. C

VERSION: 1.

AUTHOR : Met in AKINCI

DATE 15 FEB, 1988

EXPLANATION:
This module contains the data structure

holding template informations and provides the
other modules functional interface by hiding
the data structure. All operations on data
structure are defined as a function within

this module.

CHANGE LOG:

^/iinclude <template. h>

Void dispPage(Int);

TEMPINITO : Initiliaze the module variables.

Void
terapinit(

)

{

PagePtr[0] =NULL
PagePtr[1] =NULL
PagePtr[2] =NULL
PagePtr[3] =NULL
PG=0;

mylist=dl_alloc();

if (! mylist)
exit(O);

/* initialize page pointers

/* initialize page counter

/* create double linked list

/" if fail to create dllist '7

46

FGETLINEO : Read line from file. Returns if eof.

Int
fgetline(fp,s , limit)

FILE '^fp;

Char "s;

Int limit;
{

}

int c,i;
i=0;
while (i<limit-l || !feof(fp))

c=fgetc(fp);
if (c=' n')

return(i);
s[i]=(Char) c;

++i;
}

if (feof(fp))
return(O);

return(i);

FIELDCOMPO: Compares two field. Used by DLADT. C.

int
fieldcompC fieldl, field2)

Field *fieldl,*field2;
(

if (fieldl->row!=field2->row)
return(fieldl->row - f ield2->row);

returnC fieldl->column - f ield2->column);
}

47

PARSELINEC):
This function gets input line and parses it in order to find

field message string defined within two special characters ((?..(§).

Returns the message string without (9 character.

Char -'"^

parseline(line, fb)
Char ''''line;

Char *fb;
{

Char *walkptr;

walkptr=line;

while (-'walkptr! ='(§•)

-H-walkptr;
-H-walkptr;
while (*walkptr!='@')

(

*fb=^-walkptr
;

-H-fb;

-H-walkptr;

return(fb);

/* set walkptr V

/*

/* skip all characters until the*/
/* beginning mark of msg string */
/" skip (§ mark "/

/* get message characters until */
the end mark of message field"/

48

SHOWTEMPLATESC): Displays all template names in template. fil.
Assumes all lines whose first character is i^

are template names. Displays string after //.

Provides --more-- facility if there is more than
one screen full template names.

Void
showtemplates(

)

FILE *fptr;
int tnum;
Char ''^line, "readline;

fptr=fopen(TEMPLATE_FILE ,

"r")

;

if (! fptr)

error((Int) 1);
return;

}

readline=(Char *) malloc(80);
memset(readline, ' 0',80);
line=readline;
tnum=l;
while (fgetlineC fptr, line, (Int) 80))

{
/* while not EOF read lines */

if (line[0]='#') /* if new template definition -^f

{
/'='' display it with order number "/

printfC" n%d %s n",tnum,(line+1));

tnum=tnum+l;
}

if (!(tnum % 12)) /* control scrolling */

printf(" n%s"," to see more hit any key ");

getcheO;

memset(readline, ' O' ,80);
line=readline;

printf(" n n%s n","---- to continue hit space bar ----");

free(readline);
getcheO;
fclose(fptr);

49

LOADTEMPLATEC):
Gets the template information from file line by line,

all field information into data structure. Cooperates with
DLADT. C. In case of failure returns false.

Bool
loadtemplate(request)

Int request;
(

FILE 'ffptr; /* pointer to template in file */
Char ch;

Char "readline,*line;
Int ljr,c,w,e,i;
Field "temp;
Bool flag, done, neof;

fptr=fopen(TEMPLATE_FILE ,

"r");

if (! fptr)
returnC FALSE);

if (request=0)
returnC FALSE);

/* prepare buffer for input line-'/

readline=(Char *) malloc(80);
memset(readline, ' 0',80);
line=readline;

i=0;
do
{

}

flag= fgetlineC fptr, line, (Int) 80);
if (!flag)

returnC FALSE);
if (line[0]=V/')

i=i+l;

/* if EOF then return NULL */

/* if template definition */

while (i<request);
done=FALSE;
while (!done)

{

if (! fgetlineC fptr, line, (Int)80))
/* read line from template file */

returnC TRUE);
/" if not eof then

switch Cline[0]) /* evaluate the line
(

case

case

default

'#'

break; /" skip comment line

done=TRUE; /''f new template definition
break;

/* load the field definition
temp=C Field ''OmallocCsizeofCField));
if C ! temp)

{

printfC" n out of memory n");
printfC" n program exiting..");
exitCO);

50

/* return to DOS */

sscanf (1 ine , "%d%d°^d%d" , &r , &c , &w , 5ce)

;

temp->row=r;
/"'" row number of field */

temp->coluinn=c;
/" column number of the field -/

terap->width=w;
/^- width of the field */

temp->editable=e;
I'-' flag for if it is editable "'

I

/" dynamically allocate buffer -/

/^' for both message and reply ''V

temp->msg= (Char ")malloc(w+l);
meraset(temp->msg, ' 0',w+l);
parseline(line, temp->msg);
temp->reply= (Char ")malloc(w+l);
memset(terap->reply, ' 0',w+l);

/* add the field record to list */
dl_add(mylist jtemp, f ieldcomp);

/" set video page pointer */
if (PG=0)
{

PagePtr[0] =terap;

PG=PG+1;
}

else if (PG>3)
{

error((Int) 4);
return(FALSE);
}

else if (r/(PG^'25))
{

PagePtr[PG]=temp;
PG=PG+1;

}

break:

memset(readline, ,80);
line=readline;

}

free(readline);
fclose(fptr);
return(TRUE);

}

51

GO_PRIOR():
Set the current field pointer to the prior field.

If there is no field to go, warns user maintains current field.
•iir!tii^ii•:'^•;^^'^i;•l'ci^y^•>k^'-•>'c•>;•J'^i'Tif•ki^i(i^it}'^icl'c''ci(ic•l^

Void
go_prior()

Field ''curr ,'^'temp;

curr=dl_curr(mylist); /* save the current field */
temp=dl_prior(ray list);
while (temp)

if (PG>0 5c5c temp<PagePtr[PG])

PG=PG-1;
dispPage(PG);
return;

if (tenip->editable) /"^ if there is no field to go */
return;

temp=dl_prior(mylist);
} /* do it until next editable field'"^/

ring_bell(); /* warn the user and */
dl_find(mylist jCurr,fieldcomp);

/•'' resume the original position '''^f

return;

GO„NEXT()

:

Set the current field pointer to the next fillable field.
If there is no field element to go, warns the user by sound.

Void
go_next()

{

Field *curr,*temp;

curr=dl_curr(mylist); /* save the current field */
temp=d l„next (my 1 is t)

;

while (temp)

if (PG<3 && temp==PagePtr[PG+1]

)

PG=PG+1;
dispPage(PG);
return;

}

if (temp->editable) /* seek for next editable field */
return;

temp=dl_next(mylist);

ring_bell();
dl_f ind(mylist jCurr, f ieldcomp);

/* seek next editable field */

52

/* if there is no field to go */

return; /'''' resume the previous position ""'V

53

GFWIDTHC): Returns the field width (range of field)

Int
fwidth(

)

Field "temp;
teinp=dl_curr(mylist);
return(temp->width);

GFCOL(): Returns current field column number.

Int
gfcoK)

(

Field *temp;
temp=dl_curr(mylist);
return(temp->column);

GFROW(): Gets field starting row number and returns it.

Int
gfrow(

)

Field *temp;
temp=dl_curr(mylist);
return((Int) (temp->row) % 25);

GFREPLY(): This function returns the field entry edited by user
It is going to be used when it is needed to be reedited.

Char *

gfreplyO

Field *temp;
temp=dl„curr(mylist)

;

return(temp->reply)

;

54

GFMSG(): Returns the field prompt

Char *

gfmsgO

Field "temp;
temp=dl_curr(mylist);
return(temp->msg)

;

FILLABLEO:
Returns TRUE if current field is editable otherwise FALSE.

Bool
fillableO
{

Field " temp;
temp=dl_curr(mylist);

if (temp->editable)
return(TRUE);

returnC FALSE);

55

DISPPAGEC):
This function displays the document format on screen page by page.
It is invoked by sending appropriate pade number.

Void
dispPage(pagenum)

Int pagenum;

Int r,CjW;
Field ^temp;

clrscrn();

dl„find(ray list ,PagePtr[pagenum] , fieldcomp);

while ((dl_curr(mylist)!=NULL) &&
(dl_curr(mylist)! =PagePtr[pagenum+1])

)

r=gfrow();
c=gfcol();
w=gfwidth();
putcur(r jC);

cputsCgfmsgO);
if (fillableO)

{

writea((Char) ATTR,(Int) (w-strlen(gfmsg())));

putcur(gfrow() jgfcolC)+strlen(gfmsg()));
putstr(gfreplyO);

dl_next(mylist)

;

/* set current field pointer */
/* to first editable field ''-/

temp=dl_f ind(mylist jPagePtr[PG] ,fieldcomp);
while (! (temp->editable))

temp=dl_next (my 1 is t)

;

56

PAGE_DOWN(): Displays the next page.

Void
psge_ciown()

(

if ((PG>3) II (PagePtr[PG+l]=NULL))
{

ring_bell();
return;

PG=PG+1;
dispPage(PG);

PAGE_DOWN(): Displays the previous page.

Void
page„up(

)

if (PG=0)
{

ring_bell();
return;

}

PG=PG-1;
dispPage(PG);

CON„TEXT(): This function converts the contents of data
structure into text format and stores it global buffer 'TEXTBUF*.
Returns the address of buffer.

Char *

con_text(

)

Int i ;

Bool newline;
Int lasted, lastrow, Ic;

Int mfw,rfw,ccol,crow;
Field '^temp;

Char '"'pp; /* pointer to global buffer */

lastrow=0;
lastcol=0;

temp=dl_f irst(mylist); /''^ start from first element */

pp=TEXTBUF; /''« pointer to global buffer */

for (i=lastrow; i< temp->row ;-H-i)

(
/* handle vertical tab */

'-pp=(Char) CR;

++pp;
^^pp=(Char) LF;

H-lastrow
;

4-fpp;

57

}

while (temp) /* process each field */

ccol=temp->column;
crow=temp->row;
mfw=str len(ternp->msg)

;

rfw=strlen(temp->reply);

if (crow > lastrow)
{

lastcol=0;
newline=TRUE;

for (i=lastrow ; i<crow ;++i)

*pp=(Char) CR;
-H-pp;

*pp=(Char) LF;

++pp;
-H-lastrow;

if (newline)
(

for (i=lastcol; i<ccol; -H-i)

{

^'pp= (Char) BLANK;
-H-pp;

++lastcol;
}

newline=FALSE;
}

strcpy(pp,terap->msg);
pp=pp+strlen(temp->msg);
lastcol=lastcol+mfw;

if (fillable()=TRUE)
(

strcpy(pp , temp->reply)

;

pp=pp+strlen(temp->reply);
lastcol= lasted + rfw

;

}

for (i=rafw+rfw ; i<(temp->width); ++i)

'''pp= (Char) BLANK;
++pp;
-H-lastcol;

}

temp=dl_next(mylist); /* advance to next field */
}

''fpp=(Char) CR; /* put end of document mark */

++pp;
^'ppKChar) LF;

++pp;
"pp=' O' ;

/''' treat each document as string"''/

58

}

return(pp);

/ V*Vv y?V'V?V?Vv y?Vry?VfVrVcV*VrVr Vc"y?y'VfV'V?VfVrVry?VfyfVf Vc"VfVf VcV?VfVcVr

DEALLOCATE(): This function frees memory space already allocated
to doubly linked_list we should free memory when user is done
or he wants to make another page in order to be able to load
new template file and load it into linked list.
^y. .t.y. >J^ y^ ^'^ >f^y^y.y.y«y.y^y^y.y^y^ .1^y^ y.y.y. ^'^y^y^y^y^y«y.^^y.^, «r«^^^« ^,y< .t« ..f^ ^f^^^^^^^ .j. .i<^<^,^^y. «r^ ,j^ ,j^^«^. ^^ ,j^.j«^«y^^^ jl. .j, .j^ »f^^^y.

Void
deallocate(

)

/

(

Field •''ftemp;

temp=dl_first(mylist);
while (! temp)

{

free(temp->msg);
free(temp->reply);
free(temp);
terap=dl_next(mylist);

/* first free data in the list */

j Ja wJUmJ*/*»ljJU^J^3^mJ^ ^fj^Jm/aJLmJgmf^^j/><JL^j^^m3^aS^mimJffV*»)f
afm^U/*^f^U wl< >JU^y^^^/m^m^*^mJUJm^^JfaJfJgiUy*yp^J^mJmmlm^S^mJm/»»lpJmJmmJmaJUy^y»y*TtCfCVf

START_UP() :

In order to start filling out the form displayed on screen,
displays first page and sets the current field pointer to first
fillable field in the list. Initialize PG counter.

Void
start_up(

)

{

PG=0;
dl_first(mylist);
dispPage((Int) 0);
while (fillable()=FALSE)

dl_next(mylist);

/* set page numbet to zero */
/* set the pointer to first field */
/* start to display first videopage*/
/''f proceed to first editable field'''/

^*Vf****vc***Vf****yfVf***yf*VfVf******v?*Vf*****VfVcVc*Vfyf*Vf********VfVfVfyfVc***

MODULE : EDITOR. H

VERSION

AUTHOR

DATE

1.

Metin AKINCI

15 MAR, 1988

EXPLANATION:
Contains declarations and definitions for
EDITOR. C module

CHANGE LOG:

59

*iV'sViV^iVVciV>V'!ViV')V'A''5ViV^ViViV'5ViV'5V^V'5V^ViViV^V'5V'5ViVVf'5V'>V-!V'3V^V^V'5ViV'5ViV'5ViV^VVr7V^V ,

//include "prport. h"
//include "keydef. h"
//include "bioslib. h"
//include "rayascii. num"

//include <ctype. h>
//include <mem. h>
//include <stdio. h>
//include <conio. h>

/'> Program Defined Header Files "'=/

/* Compiler Header Files

/* Function prototypes for system.

c

*/

extern Void putcur(Int ,Int);
extern Void readcur(Int ''fjint *);
extern Void writec();
extern Void writea();
extern Void writeca(Char , Int , Int);
extern Bool shift_pressed(Void);
extern Int putstr(Char ''^);

extern Void ring_bell();

/,v Function prototypes for template.

c

*/

extern Void go_next();
extern Int gfrow();
extern Int gfcol();
extern Int gfwidth();
extern Char '^gfrasg();

extern Char *gfreply();

60

/y'y?V'yfVfV*VfVr'^VfVr^V'VrTVVrVcVrVfVfV*y'VrV'V'VryfVfVfVrVfVfy'yrVryfVfVfV'V^

MODULE : EDITOR.

C

VERSION

AUTHOR

DATE

1.

Met in AKINCI

15 MAR, 1988

EXPLANATION:
This module gets the user responds for

each field on the form specified by template
and also allows the user to edit his input.
Prevent user from overwriting on non fillable
fields and field message.

CHANGE LOG:

ycVcT^V :'Mfiei(itMtiric'icirici<iei<i{i(ie'k'icicieiciti«icieiti

#include "editor, h"

GETREPLYC):
Gets user response for currently edited field , returns it.

Allows user to edit field by defined keys. Interprets the key
combinations for our own characters.

-

Int
get reply(row, col, width, msg, reply)

Int row, col, width;
Char -msg;
Char -reply;

Int k;

Int n,len;
Int mfw;
Int rfw;
Int ccol;
Char *cp

;

Char '"'trap;

Char ^buffer;

/''' window location and width */
/" field message */
/* input buffer */

/''' message field width */
/* response field width */
/* visible cursor column '"''/

/* Character pointer to buffer*/
/">'" temporary character pointer'''^/

/* Edit Buffer for response */

if (msg!=NULL)
mfw=strlen(rasg);

else
/•- Get message field width */

61

in£w=0;

putcur(row,col+mfw); /''^ Place the cursor at the very
first character location in
the field to be filled out ''-/

rfw=width-mfw; /"'^ Calculate reply field width''/
buffer=(Char ''OmallocC rfw+1);

/''^ Allocate memory for buffer
of size response field width''*'/

memset(buffer, ' O' ,rfw+l); /* Clear the buffer */
memcpyCbuf fer , reply , strlen(reply))

;

/* copy reply into buffer */
/* in case that it was previously

edited */
meraset(reply, ' O' jStrlen(reply));

/* clear previous string */
cp=buffer; /* Set walk pointer on buffer */

while ((k=get„key()) ! =K_RETURN)
/* Get key until RETURN key is hit*/

(

if (isascii(k) && (isprint(k)))
/* If it is not control key

{

len=strlen(cp);
if (cp + len -buffer < rfw)

(

memcpyC cp+1 , cp , len)

;

*cp=(Char) k;

HH-cp;

}

else

}

else
ring„bell(); /* buffer full */

e /* Else if it is control key */

switch (k)

case K„LEFT : /* move left one char */
if (cp > buffer)

=-cp;
break;

case K RIGHT /* move right one char
if (*cp !=' 0')

++cp;
break;

*/

case K_UP : /''^ move prior field */
memcpyC reply , buffer ,str len(buffer));

/•'f copy buffer back ''V

free(buf fer);
return(k);

case K DOWN /" move next field '''/

memcpy(reply,buf fer ,strlen(buffer));

/" copy buffer back "/

62

case K PGUP

case K PGDN

case K CTRLH

free(buf fer);
return(k);

meracpyC reply .buffer ,s trlen(buff er));
/>'" copy buffer back ''V

free(buf f er);
return(k);

meracpy(reply,buf fer, strlen(buffer));
/">'' copy buffer back */

free(buf fer);
return(k);

/''' destructive backspace *l
if (cp>buffer)

tmp=cp-l
;

memcpyC tmp , cp+1 , str len(tmp))

;

--cp;

break:

case K HOME

case K END

case K CEND

/* go to the beginning of buffer*/
cp=buf f er;

break;

/* go to the end of buffer */
while (''fcp !=' O')

-H-cp;

break;
: meracpy(reply,buf fer, str len(buffer));

/''« copy buffer back */
free(buf fer);
return(k);

case K_DEL : /* delete character at cursor */
memcpyC cp , cp+1 , str len(cp))

;

break;
case K_ESC : /''' cancel current input */

memset(buf fer ,

' 0',rfw+l);
cp=buf fer;
break;

/''f Following keys are being used to convert to TURKISH chars */

case K ALTC

case K ALTG

if (shift_pressed())
'''«'cp= (Char) ascii_C;

else
*cp= (Char) ascii_c;
++Gp;

break;
if (shift_pressed()

)

*cp= (Char) ascii_G;
else

''fcp= (Char) ascii_g;
++cp;
break;

63

case K_ALTI : if (shift_pressed()

)

*cp= (Char) ascii_I;
else

''''cp= (Char) ascii_i;
++cp;
break;

case K_ALTO : if (shift_pressed()

)

*cp= (Char) ascii„0;
else
*cp= (Char) ascii_o;

++cp;
break;

case K„ALTS : if (shift_pressed())
*cp= (Char) ascii_S;

else
*cp= (Char) ascii_s;

-H-cp;

break;
case K„ALTU : if (shift_pressed())

*cp= (Char) ascii_U;
else

'''cp= (Char) ascii_u;
++cp;
break;

default

}

ring„bell();
break;

/* display the reply window */
ccol=coH-mfw;
putcur (row , ccol)

;

writec(' ',(Int) (width-rnfw));
puts tr(buffer);
putcur(row,ccol+(cp-buf fer));

/* reposition the cursor */

memcpy(reply, buffer J strlen(buffer));

/* copy buffer back */
free(buffer);
return(k); /* return the key that cause

to end function */

64

EDITPAGEC):
Function that allows user to edit page form displayed on screen.
Invokes function getreply that gets user reply for each field.

Void
editpage()

Int row, col, width;
Char -m ;

Char *r ;

Int flag;
Bool done;

done=FALSE;
do

{

row=gfrow();

col=gfcol();

width=gfwidth()

;

m=gfmsg();
r=gfreply();

/* get user response and store if'/

f lag= get reply(row, CO l,width,m,r);
switch (flag)

case K_DOWN: /* Go next fillable field */
go_next();
break;

case K_UP : /* Go previous fillable field */
go_prior();
break;

case K_PGUP: /* scroll up */
page_up();
break;

case K_PGDN: /* scroll down */
page_down()

;

break;
case K_CEND : /* end of the editing session */

done=TRUE;
break;

default : go_next();
break;

>'
while ('.done); /* do until end of page */

65

MODULE : PRINTER.

C

VERSION

AUTHOR

DATE

I.

Metin AKINCI

1 MAY, 1988

EXPLANATION:
Performs two main functions. Prints

content of program buffer and prints doclog. fil
file. Allows printing Turkish characters .

For each character, separate function
is assigned. Input is filtered and if any
special character is encountered, appropriate
function is invoked and that character is

printed.

CHANGE LOG:

*****'sV********'3V**Vr*****'*Vryf**************iV*********iiV*********

#include <stdio. h>

^include "prport.
h"

/^include "myascii. num"

^include "extra, fnt"

^include "epson. dat"

/* file which contains ascii */
/* numbers for our own char */
/* Include file that contains extra*/
/* characters fonts for printer */

/* printer commands file */

GLOBAL extern Char *TEXTBUF; /* Pointer to text buffer

/* External function declarations*/
extern Void putcur(Int , Int);
extern Void drawframe(Int , Int ,Int ,Int);

char *DOCLOGFILE="doclog. fil"; /* file name to be printed out */

66

SETPRTGMODEC):
Sets printer dot graphics mode by sending appropriate ESC sequence.

Void
setprtgraode(pptr)

FILE ''"pptr; /* Pointer to printer stream '•''/

int i;

for (i=0; i<4;-H-i) /* Send ESC sequence to set */
fputc(p_grmode[i] ,pptr); /" printer to dot graphics mode -/

PRINT_C():
Prints the new lowercase 'c' letter by sending dot patterns to
the printer.

Void
print_c(pptr)

FILE *pptr;

int i;

setprtgmode(pptr); /* Send ESC sequence to set */
/* printer to dot graphics mode "/

for (i=0; i<8;++i)
fputc(c_pattern[i] ,pptr); /* Copy new c pattern to printer*/

PRINT_CC():
Prints the new uppercase 'C' letter by sending dot patterns to
the printer.

Void
print_CC(pptr)

FILE *pptr;

int i;

setprtgmode(pptr); /* Send ESC sequence to set */
/* printer to dot graphics mode "/

for (i=0; i<8;++i)
fputc(CC_pattern[i] ,pptr); /* Copy new C pattern to printer "/

67

PRINT_I()
Prints the new lowercase 'i' letter by sending dot patterns to
the printer.

Void
print_i(pptr)

FILE '"'pptr;

(

int i;

setprtgmode(pptr); /* Send ESC sequence to set */
/* printer to dot graphics mode ^V

for (i=0; i<8;-H-i)
fputc(i_pattern[i] ,pptr); /* Copy new c pattern to printer '"'/

}

PRINT_CI():
Prints the new uppercase 'l' letter by sending dot patterns to
the printer.

Void
print_CI(pptr)

FILE *pptr;
(

int i;

setprtginode(pptr); /* Send ESC sequence to set */
/* printerto dot graphics mode "/

for (i=0; i<8;-H-i)

fputc(CI_pattern[i] ,pptr); /* Copy new c pattern to printer */

}

PRINT_G():
Prints the new lowercase 'g' letter by sending dot patterns to
the printer.

Void
print_g(pptr)

FILE *pptr;

{

int i;

setprtgraode(pptr); /* Send ESC sequence to set */
/* printer to dot graphics mode "/

for (i=0; i<8;++i)
fputc(g_pattern[i] ,pptr); /* Copy new g pattern to printer */

68

PRINT_CG():
Prints the new uppercase 'G' letter by sending dot patterns to
the printer.

Void
print_CG(pptr)

FILE "pptr;

{

int i;

setprtgmode(pptr); /* Send ESC sequence to set */
/* printer to dot graphics mode -/

for (i=0; i<8;++i)
fputc(CG_pattern[i] ,pptr); /* Copy new C pattern to printer "/

PRINT„0():
Prints the new lowercase 'o* letter by sending dot patterns to
the printer.

Void
print_o(pptr)

FILE '^pptr;

{

int i;

setprtginode(pptr); /* Send ESC sequence to set */
/* printer to dot graphics mode "/

for (i=0; i<8;-H-i)
fputc(o_pattern[i] ,pptr); /* Copy new o pattern to printer */

PRINT_CO():
Prints the new capital 'O' letter by sending dot patterns to
the printer.

Void
print_CO(pptr)

FILE *pptr;

(

int i;

setprtgmode(pptr); /- Send ESC sequence to set */
/* printer to dot graphics mode "/

for (i=0; i<8;++i)
fputc(CO_pattern[i] ,pptr); /- Copy new pattern to printer -/

69

PRINT_U():
Prints the new lowercase 'u' letter by sending dot patterns to
The printer.

Void
print_u(pptr)

FILE '"'pptr;

int i;

setprtgmode(pptr); /* Send ESC sequence to set */
/" printer to dot graphics mode -/

for (i=0; i<8;-H-i)
fputc(u_pattern[i] ,pptr); /* Copy new u pattern to printer */

PRINT_CU():
Prints the new uppercase 'U' letter by sending dot patterns to
the printer.

Void
print_CU(pptr)

FILE *pptr;

int i;

setprtgmode(pptr); /* Send ESC sequence to set */
/* printer to dot graphics mode "/

for (i=0; i<8;-H-i)
fputc(CU_pattern[i] ,pptr);/" Copy new U pattern to printer "/

PRINT_S():
Prints the new lowercase 's* letter by sending dot patterns to
the printer.

Void
print_s(pptr)

FILE ''^pptr;

{

int i;

setprtgmode(pptr); /* Send ESC sequence to set */
/* printer to dot graphics mode */

for (i=0; i<8;-t-+i)

fputc(s_pattern[i] ,pptr); /* Copy new s pattern to printer */

70

PRINT_CS() :

Prints the new uppercase 'S' letter by sending dot patterns
to printer.

Void
print_CS(pptr)

FILE ^'-pptr;

{

int i;

setprtgmode(pptr); /" Send ESC sequence to set -/

for (i=0; i<8; -H-i) /''' printer to dot graphics mode -/

fputc(CS_pattern[i] ,pptr); /" Copy new C pattern to printer "/

SETPRTC): Resets the printer. Cancels all possible modes .

Void
setprt(pptr)

FILE "pptr;
(

int i;

fput s (p_cbold ,
pptr)

;

fputs(p_cds ,pptr);
fputs(p_cital jpptr)

;

fput s (p_ccmp ,
ppt r)

;

for Ci=0; i<3;-H-i)
fputc(p_cul[i] ,pptr);

fputs(p_init ,pptr);

/* Cancel bold mode
1"^ Cancel double strike mode
/" Cancel italic mode
/" Cancel compressed mode v./

/* Cancel underline mode */
/* Printer hardware initialize */

71

PRINT_PAGE() :

Gets the contents of TEXTBUF global buffer and by searching
and printing extra characters sends them to printer.

Void
print_page(

)

FILE Sprinter;
Char ch;

Char "bufptr;
Int i, count;

count=getnumber();

printer= fopen("PRN","w");
if (printer=NULL)

{

}

clrscrnf)

*

drawframe((Int)19,(Int)15,(Int) 23, (Int) 65);
putcur((Int) 21, (Int) 17);
printfC n%s", "PLEASE MAKE SURE PRINTER IS ON");
printf("%s n","...AND HIT ANY KEY");
getcheO;
return;

clrscrn();

setprt(printer);
for (i=0; i<count; ++i)

{

bufptr=TEXTBUF;
while ((ch=^'bufptr)!=' O')

{

switch (ch)
{

case ascii_c: print_c(printer);
break;

case ascii_C: print_CC(printer);
break;

case ascii_i: print„i(printer);
break;

case ascii_.I: print_CI(printer);
break;

case ascii_o

case ascii_0

case ascii_s

case ascii_S

case ascii_u

case ascii_U

case ascii_g

print_o(printer);
break;
print_CO(printer)

;

break;
print_s(printer);
break;
print_CS(printer);
break;
print_u(printer);
break;
pr int_CU(printer)

;

break;
print_g(printer);

72

break;
case ascii_G: print_CG(printer);

break;

default : fputc(ch, printer);

}

putchar(ch);
++bufptr;

fputc(FF, printer); /* Put form feed character */
/* for next copy */

73

PRINT_FILE(): Prints program defined doclog. f il file.

Void
print_f ile(

)

(

FILE -printer, "fptr;
Char ch;

Char "bufptr;
Int i, count;

fptr=fopen(DOCLOGFILE
,

" r")

;

if (! fptr)

error((Int) 1);
return;

printer^ fopen("PRN","w");
if (printer=NULL)

{

clrscrnC);

drawframe((Int)19,(Int)15,(Int) 23, (Int) 65);
putcur((Int) 21, (Int) 17);
printfC n%s", "PLEASE MAKE SURE PRINTER IS ON");
printf("%s n","...AND HIT ANY KEY");
getcheO;
return;

}

clrscrn();

setprt(printer);
while (! feof(fptr))

{

ch=fgetc(fptr);
switch (ch)

{

case ascii_c: print_c(printer);
break;
print„CC(printer);
break;
print_i(printer)

;

break;
print_CI(printer);
break;
print_o(printer);
break;
print_CO(printer);
break;
pr int_s (printer)

;

break;
pr int_CS(printer);
break;
print_u(printer);
break;
print_CU(printer);
break;
print_g(printer);
break;

case ascii_C

case ascii_i

case ascii_I

case ascii_o

case ascii_0

case ascii_s

case ascii_S

case ascii_u

case ascii_U

case ascii_g

74

case ascii_G: print_CG(printer);
break;

default : fputc(ch, printer);
break;

75

MODULE : DBASE.

C

VERSION: 1.

AUTHOR : Met in AKINCI

DATE : 15 MAY, 1988

EXPLANATION:
Implements index sequential access to

database file which holds documents,
cooperates with LLADT. C module.

CHANGE LOG:

•i«ifiti<:irieififrkii'ki(rkifi<iti(icrhiticifie:hif'i('ffirkic'kitr/fitiTififit'f(iirhi(ifiiicrkici(ifrki(iti(ifr/fiei«'i^ .

^include "prport.
h"

^include <stdio, h>
include <string. h>
include <raem. h>

GLOBAL extern Char *TEXTBUF; /* pointer to global buffer */

/* definitions on the key to database */

extern Char ''^KEYWORD; /* pointer to keyword buffer */
//define KEYSIZE 12 /* define size of keyword */
//define BUFSIZE 3500;

/* function prototypes for userinterface module */

extern Void getdocinfo(Char *);
extern Char *getkey2db();

/* File name definitions related to Dbase. C module */

Char *INDEXFILE = "index. fil"; /* index file , contains kwords 'V
Char 'VDBASEFILE = "dbase. fil"; /* database file 'V
Char '''DOC_LOG = "doclog. fil"; /* file to keep record of */

/* incoming document */

76

/* definition of data structure for index sequential access */
/* implementation ^j

typedef struct INDEX
(

Char "kev2db;
} INDEX

;

typedef char INDXLST; /- generic pointer to Hist -/
INDXLST "index list;

j-Mefine POSITIVE 1

/******** Function prototypes for linked list module aaaaa a aaa/

extern char "ll_alloc();
extern INDEX *ll_find(INDXLST *,INT)EX *,int (pfcomp)());
extern Bool ll_delete(INDXLST *,INT)EX *);
extern INDEX *ll_next(INDXLST *);
extern INDEX '^ll.firstC INDXLST *);
extern INDEX "ll_last(INDXLST '^);

extern Bool ll_add(INDXLST -, INDEX *,int (*pfcomp)());

MYSTRCMPC): Compares two string in llnode.
Function like strcmp().

«» t\ <\ /« #» t\ fs t\ r« •* «% •» «* IS t\ t\ *\ «« w% *% 0% *\ «« f\ *\ ** *\ «> »% 4% 4\ *% #« ¥* «« t\ 4\ i* *\ t% 0% «^ i\ i% 4\ 0\ 4\ «» »\ »\ «% ^\ i\ f% #• *\ 4\ t\ *\ t\ *\ €% «« #* #» *» /

Int
mystrcmp(nodel,node2)

INDEX ^nodelj'^nodeZ;
{

Int i;

i=0;
while ((nodel->key2db)[i] =(node2->key2db)[i])

if (nodel->key2db[i++]=' O')
return(O);

retum((nodel->key2db)[i] - (node2->key2db)[i]);

77

INDEXCMPC):
compares two node of linked list. In order to put new item
at the end of the list, it always return positive.

Int
indexcmp(s ,t)

INDEX '> s,''-t;

{

returnC POSITIVE);

LOADINDEX(): Loads keywords from index file into linked list.

Void
loadindex(

)

(

FILE *fptr;
Bool flag;
Char line[80]

;

INDEX --indexptr;

indexlist=ll_alloc();

fptr=fopen(INDEXFILE
,

"r")

;

if (fptr=NULL) /* if file is not existing, */
return; /* assume there is no document */

/* in database. -/

while (fgetline(fptr, line, (Int) KEYSIZE))

indexptr=(INDEX *)malloc(sizeof (INDEX))

;

iiidexptr->key2db=(Char *) malloc(KEYSIZE+l);
memset(indexptr->key2db,' O' ,KEYSIZE+1);
strcpyC indexptr->key2db5 line);
ll_add(indexlist , indexptr , indexcmp)

;

fclose(fptr);

UPDATE INDEXF(): Writes all keywords back tto index file in the same
order in the linked list.
i'<r')'t->'(i^^'(-krkii-k'i\:-)'r-i''r!(-'(ri'(-)'e->'(ifiii;r>'(itiiiei(-)^if:t^^

Void
updateindexf ()

FILE *fptr;
Int i;

INDEX ''aemp;

fptr=fopen(INDEXFILE, "w+");
/''- open index file */
/* if file does not exist create'''/

temp=ll_f irst(indexlist);
while (temp) /* write everything in indexlisfV

{ /" back to index file . */
fprintf (fptr

,

"%s n" , temp->key2db)

;

temp= 1 l_next (index list);

78

}

fclose(fptr);
temp=ll_£irst(indexlist); /^' first free the data in LLIST */

while (temp)

f ree(temp);
temp=ll_next(indexlist);

ll_free(indexlist)i I* then free the linked list ^7

79

GETINDEXC): Gets the index value for a certain keyword.
The relative location in the list implies index for that keyword.

Int
getindex(

)

Int i;

INDEX "tempj-countptr;
temp=(INDEX *) malloc(sizeof(INDEX));
temp->key2db=(Char *) malloc(KEYSIZE);
memset(tetnp->key2db, ' O' ,KEYSIZE);
strcpy(terap->key2db , KEYWORD)

;

countptr=ll_first(indexlist);
i=l;
while (countptr)
{

if (! (strcmpC countptr ">key2db, temp">key2db))

)

return(i);
countptr=ll_next(indexlist);
i=i+l;

}

return(O);

SAVE„KEY():
Saves the key to database and assigns an implicit index
value to it.

Bool
save_key()

INDEX *new;
new=(INDEX*) malloc(sizeof(INDEX));
new->key2db=(Char *)malloc(KEYSIZE);
strcpy(new->key2db , KEYWORD)

;

ll_add(indexlist, new
J
indexcmp);

80

DISLPAYBUFFERC): Displays the program buffer.
It is invoked after document has been fetch in buffer.
Provides -- more -- facility.

Void
displaybuf fer(

)

Char "temp;
Int linecount,

pc;

Char ch;

/^f temp pointer to buffer
/* variables to control scroll

temp=TEXTBUF;

linecount=l;
pc=l;
clrscrn();

temp=TEXTBUF;

while ((ch=^'temp)!=' O')

/* temp pointer to buffer */
/" intialize variables */
/* number of lines displayed */
/* number of video pages */

{

/* set pointer to the beginning */
/•^f of buffer
/* display document requested

putchar(ch);
-H-temp;

if (ch=' n')
linecount=linecount+l;

if (linecount %(pc*23)=0)

/* control scrolling

}

(

}

pc=pc+l;
fprintf(stdout," n%s
getcheC);

II II

>
more —

fprintf(stdout," n%s
getcheC);

II II

hit any key

- hit any key to continue n");

n);

81

BROWSE(): It is used to browse any document from database file.
It requests the keyword, gets index then fetches document into
buffer. Calls display buffer routine.
Returns FALSE in case of failure.

Bool
browse(

)

(

Int recnum;
Int size;
Int j;
Char *temp;
FILE *fptr;
Int i;

Int recsize;

fptr=fopen(DBASEFILE,"rb");
if (fptr=NULL)
{

}

error((Int) 1);
return(FALSE);

recnum=getindex();

if (! recnum)
/* Get the index
/* if not found

{

}

error((Int) 3);
returnC FALSE);

temp=TEXTBUF;
for (i=^l; i<recnum; ++i)
{

/* return after error messages */

/* temp pointer to buffer
/* get the offset to document

fscanf (fptr j "%d" ,&recsize)

;

fseek(fptr,(Long) recsize, 1);

fscanf (fptr ,"/od" j&size);
for (j=l; j<size;-H-j)

*temp-fgetc(fptr);
+-ftemp;

}

*temp=' 0';

displaybufferC);

rewind(fptr);
fclose(fptr);
return(TRUE);

/* get the size of document
/* copy document into buffer

/* attach string terminator
/* display the buffer
/* by controlling scrolling Vc/

82

SAVEDOC(): Saves the document currently edited into DBASEFILE.

Void
savedoc(

)

FILE ^^fptr;

Char ch, "buffer;

buffer=TEXTBUF; /* set pointer to buffer */
getkey2db(); /* get key to dbase from user </

save_key(); /* save key in the linked list -/
fptr=fopen(DBASEFILE ,

"ab+")

;

/" append the document -/
/* first write its size "/

fprintf(fptr,"%d n", strlen(TEXTBUF));
while ((ch=^-buffer)!=' O') /- then write buffer into file */

fputcCch, fptr);
++buffer;

fclose(fptr);

ENTERLOG(): Allows the user to enter the information about any
incoming document. Information about document is

provided by the function getdocinfo() that is defined
within userinterface module.

Void
enterlogC

)

FILE *fptr;
Char line[80]

;

fptr=fopen(DOC.LOG
,

" a+")

;

getdocinfo(line);
fprintfCfptr,"%s n",line);
fclose(fptr);

83

/rhi(i(iti('i'ei(-krfe-)kiei(ifi(i(i(i(itieie'>'f-ifMtrkititifi«-i'«ifitieic-i(i(if-)^itiei(ic^^

MODULE : USERINT.

C

VERSION: 1.

AUTHOR : Metin AKINCI

DATE : 1 MAY, 1988

EXPLANATION:
Implements user interface part of the project.

Gets all input values from user returns
to calling module.

CHANGE LOG:

^include "prport.
h"

//include "bios lib. h"

^include <stdio. h>
^include <alloc. h>

/* DEFINE BOX CHARACTERS */

#define VBAR2 186
#define HBAR2 205
#define ULC22 201
//define URC22 187
//define LLC22 200
//define LRC22 188

/* Function prototypes */

extern Void clrscrn();
extern putcur(Int , Int);
extern fgetline(FILE '"=, Char *jint);
extern putsbuf(Char ''sChar *);
extern putcbuf(Char ''^jChar);

GLOBAL extern Char '^KEYWORD;

84

/* Define pointers to messages to be displayed in module */

static char MAINHEADER[]

=

" ««« MAIN MENU »»»"
;

static char '-MAINMENU[
]
=

{

''1. PREPARING DOCUMENT ...",
"2. BROWSING A DOCUMENT ..",
"3. ENTERING AN INCOMING DOCUMENT..",
"4. PRINTING INCOMING DOCUMENT LOG..",
"5. EXIT TO DOS.

.

"

} ;

static Char ASKENTER[]= Please enter your choice=> ;

static Char ASKSAVEF]

=

^' WILL THIS DOCUMENT BE SAVED? (Y/N)..";

static Char ASK_KEY[]

=

" PLEASE ENTER THE DOCUMENT ID IN CORRECT FORMAT.

static Char HOWMANY[]
=

"HOW MANY COPY DO YOU WANT ?

static Char HOWMANY_HELP[]
=

"ZERO IMPLIES NO OUTPUT. MAXIMUM 8 COPIES.

//define MENULX 5

#define MENULY 15

/Mefine MENURX 21
//define MENURY 65
#define MSGX 23
//define MSGY 5

//define KEYSIZE 12

/* Main menu left corner coordinates */

/* Main menu right corner coordinate */

/* Prompt area coordinates */

85

PUTHEADER(): Displays any header to specified location.

Void
putheader(x,y jStrptr)

Int x,y;
Char ''""strptr;

put cur ((Int)x,(Int)y);
puts(strptr);

DRAWFRAME(): Draws frame for the given coordinates.

Void
drawframe(leftupX, leftupYjrightdownX,rightdownY)

Int leftupX,leftupY;
Int rightdownX, rightdownY;

Int i;

putcurC (Int) leftupX, (Int) leftupY);
putchar(ULC22);
for (i=0;i< rightdownY-leftupY-1; ++i)
putchar(HBAR2);

putchar(URC22);
for (i=leftupX+l; i<rightdownX;++i)

putcur ((Int) i J (Int) leftupY)

;

putchar(VBAR2);
putcur ((Int)i, (Int)rightdownY);
putchar(VBAR2);

put cur((Int) rightdownX , (Int) leftupY)

;

putchar(LLC22);
for (i=0; i<rightdownY-leftupY-l; -H-i)

putchar(HBAR2);
putchar(LRC22);

IFSAVEO:
Function that prompts the user if he wants to save the document.

Bool
ifsave(

)

{

Char choice;

clrscrn();

putheader((Int)MSGX, (Int) MSGY, ASKSAVE);
do
{

putcur(CInt) MSGX,(Int) (strlen(ASKSAVE)+MSGY+2));
scanf ("%c" ,5cchoice);

}

while (choice! ='y' &6c choice! ='Y' && choice! ='n' 6c& choice! ='N');

if (choice='y' || choice=='Y')

86

return(TRUE);

return(FALSE);

GETKEY2DB():
Gets the key to database. Prompts the user to enter the keyword
then gets it and stores in the global variable KEYWORD.

Char "

getkey2db(

)

clrscrnO; /* Prompt the user to enter the */
/* keyword. */

putcur((Int) MSGX,(Int)MSGY);
printf("%s",ASK_KEY);
putcur((Int) (MSGX+l),(Int) 15);
writea((Char) ATTR,(Int) KEYSIZE);

/''^ color the input area */
getreply((Int) (MSGX+1) ,(Int) 15,(Int) KEYSIZE, NULL, KEYWORD);

/* get the keyword from the user''V
struprC KEYWORD); /* convert it to uppercase */
returnC KEYWORD);

}

GETDOCINFO(): Gets the incoming document information from user
allows user to edit his input.
V?VfyfV?VfVf'A'VfVfTt-A'***VfVfVfi'?VfTtVf**VcVcVf*VcVf***********************

Void
getdocinfoC where)

Char *where;

Char line[801;
meraset(line, O' ,80);
clrscrn();

drawframe((Int)16,(Int)15,(Int) 22,(Int) 75);
putcur((Int) 17,(Int) 18):

INFORMATION ABOUT INCOMING DOCUMENT");

FROM DATE ");

printfC "PLEASE ENTER THE
putcur((Int) 19,(Int) 18)

printfC "DOCUMENT ID
putcur((Int) 21,(Int) 17)
writea((Char) ATTR,(Int) 58);
getreply((Int)21,(Int) 17,(Int) 58, NULL, line);

strcpyC where, line);

87

MMENU(): Function that displays main menu.

Void
mmenu(

)

{

Int x,y,n,i;
clrscrn();

putheaderC (Int) 3 , (Int) 25 ,MAINHEADER)

;

drawframe((Int) MENULX,(Int) MENULY,(Int) MENURX,(Int) MENURY);
n= sizeof(MAINMENU)/sizeof(Char ''O;

putcur((Int)(MENULX+2),(Int)(MENULY+2));

for (i=0; i<n;-t-+i)

printf("%s n",MAINMENU[i]);

readcur (5cx 5 &y)

;

putcur ((Int) (x+2) , (Int) (MENULY+2))

;

}
^

GETREQUESTO: Gets the number of the request.

Int
getrequestO

Char choice;
mmenuC)

;

putheaderC (Int)MSGX, (Int)MSGY,ASKENTER);
putcur((Int) MSGX,(Int)MSGY);
printf("%s",ASKENTER);

do
{

putcurC (Int) MSGX, (Int) (strlen(ASKENTER)+2+MSGY));

scanf ("%c" jScchoice);

while (choice<'l' || choice>*5');

returnC choice- '
'
)

;

88

GETNUMBER()

:

Gets the count of the copies from user. implies nothing
will be printed.

Int
getnumber(

)

Char num;

clrscrn();

drawframe((Int)19,(Int)15,(Int) 23, (Int) 65);
putcur((Int) 21, (Int) 20);
print f("%s n",HOWMANY);
putcur((Int) 22, (Int) 20);
printf("%s n",HOWMANY_HELP);
do
{

putcur((Int) 21, (Int) (20+strlen(HOWMANY)));
scanf("%c",&num);

while (nuin<'0' || num> '8');

return(nuin-' O');

}

GETTEMPLATE(): Gets the number of the template from user.

Int
gettemplate(

)

{

Int num;

clrscrn();

printf("%s n"," ALL TEMPLATES AVAILABLE HAS BEEN LISTED BELOW");
printf(" Find the number for template that you need..");
showtemplates();

clrscrn();

drawframe((Int)21,(Int)10,(Int) 23, (Int) 69);
putcur((Int) 22, (Int) 12);
printf("ENTER THE NUMBER OF TEMPLATE YOU WANT TO EDIT . . ");

writea((Char)ATTR,(Int) 3);
scanf ("%d" ,6cnum);

return(num);

89

ERRORO:
Simple error handler function. Prompts user according to error_code
which is determined by related modules.

Void
error(error_code)

Int error_code;
{

char chj

clrscrn();

ring_bellO;
drawframe((Int) 8, (Int) 20, (Int) 10, (Int) 60);
putcur((Int) 9, (Int) 22);
printf("%s","!!! ");

switch (error_code)

case 1 :printf("%s"," Can not open file..");
break;

case 2 : printf("%s"," Error while loading template.. ");

break;
case 3 : printf("%s"," Error ! Possibly incorrect keyword");

break;
case 4: printf("%s" ," Template too long ");

default: break;

putcur((Int) 24, (Int) 10);
printf("%s", "PLEASE HIT ANY KEY TO CONTINUE..");
getche();

90

MODULE : SYSTEM.

H

VERSION

AUTHOR

DATE

1.

Metin AKINCI

25 FEB, 1988

EXPLANATION: Header file for system. c module
It contains all definitions and
data structure used within system. c module

CHANGE LOG:

*******Tfr****'ATfe*********iVyriVyf*****'A'TV****'5V***Vr****yr***

^include "prport.
h"

^include "keydef . h"
#include "bioslib. h"

/^include <dos.h>
/Hnclude <bios.h>
^include <stdio. h>

/* INCLUDE FILE FOR PROJECT GLOBALS */
/* KEYBOARD SCAN CODES */
/* BIOS FUNCTIONS */

/* Include neccesary TC header files*/

DEFINITIONS OF DATA STRUCTURE FOR REGISTERS

struct WORD REGS
(

WORD ax,bx,cx,dx,si,di,cf lag;

} ;

struct BYTE REGS
{

BYTE al,ah,bl,bh,cl,ch,dl,dh;

} ;

union REGISTER
(

struct WORD_REGS x ;

struct BYTE_REGS h ;

} REGS;

91

MODULE : SYSTEM.

C

VERSION

AUTHOR

DATE

1.0

Metin AKINCI

14 JAN, 1988

EXPLANATION:
This module contains system dependent

functions definitions. All functions within
this module are system dependent. To port the
program to the another system, this entire module
must be changed with the one which contains
appropriate system calls.

CHANGE LOG:
Throughout this project IBM PC default video

page number (which is zero) has been used.
All functions in this modules work will under
this assumption.
To make them general purpose, page number
must be added to function parameters.

#include "system, h"

PUTCUR()

:

Gets the row and column number of new cursor location and sets
the cursor to given coordinate.

Void
putcur(r,c)

Int r,c;
(

union REGS inrg,outrg
;

inrg. h. ah=CUR„POS;
inrg. h. dl=c;
inrg. h. dh=r;
inrg. h. bh=0;

int86(VIDEO, &inrg,5coutrg);

/ cursor addressing func no
/* column coordinate
/=^' row coordinates
/" video page number

/* BIOS video routine call

'7
.J..

92

CLRSCRNO: Clears screen by invoking BIOS VIDEO service 6.

Void
clrscrn(

)

{

}

union REGS rg;

rg. h. ah=SCROLL_UP;
rg. h. al=0;
rg. h. ch=0;
rg. h. cl=0;
rg. h. dh=24;
rg. h. dl=79;
rg. h. bh=0;

int86(VIDEO, &rg,&rg);
putcur((Int) l,(Int) 1);

/" screen scroll code
/* clear screen code
/* start row
/* start column
/" end row
/* end column
Z'^* blank line is black

/* BIOS video routine call
/* reposition the cursor

*/
*/
*/

*/
*/
*/

Vc/

READCUR()

:

Reads the cursor position by calling BIOS VIDEO service 3.

yriVyrVrVrVfVfVcVcyfVcVcVcVfVcVcVfVfVc'!iVyfyf'3tVfVfyfVrVe''3VVfyfVfVfVcVfVfVfVcVfVfyfVfyrVfV-Vf-AVfyfVf

Void
readcur(r,c)

Int *r,*c;
(

union REGS inrg,outrg
;

inrg. h. ah=GET_CUR;
inrg. h. bh=0;

/* AH=function no 3

/* video page number

int86(VIDEO, &inrg,&outrg); /* DOS call

}

*r=outrg. h. dh;

*c=outrg. h. dl;

/* returned row number
/* column number

*/
*/

*/

*/
*/

GET_KEY()

:

Gets key from keyboard and if it is non ASCII key
returns scan code for it.

Int
get_key(

)

{

}

Int ch;
/" if normal key codes "/

if ((ch=bdos(KEYIN,0,0) & LOBYTE) != ' O')

return(ch);
/''^convert scan codes to unique-/
/'='' internal codes "/

return((bdos(KEYIN,0,0) & LOBYTE)
|
XF);

93

WRITECO:
This function writes a character or string of identical characters,
starting at the current cursor position. It does not advance
the cursor.

Void
writec(ch, count)

Char ch;

Int count;

union REGS inrgjoutrg;

inrg. h. ah=WRITE_CHAR;
inrg. h. al=ch;
inrg. h. bh=0;
inrg. X. cx=count;
int86(VIDEO , Scinrg ,&outrg)

;

READCA(): Reads the character with attribute

Void
readca(ch , attr)

Char *ch;
Int '^attr;

{

union REGS inrgjOutrg;
inrg. h. ah=RE„C_ATT;
inrg. h. bh=0

;

int 86 (VIDEO, 6cinrg, &inrg);
*ch=outrg. h. al ;

*attr=outrg. h. ah;

94

WRITECA(): Writes character with attribute for the number of count

Void
writeca(ch,attr, count)

Char ch;

Char attr;
Int count;

(

}

union REGS inregs ,outregs;

inregs. h. ah=WR_C_ATT
;

inregs. h. al= ch
;

inregs. h. bh= 0;

inregs. h.bl= attr
;

inregs. x.cx= count;

int86(VIDEO ,&inregs ,&outregs)

;

WRITEAO:
Reads N characters from current cursor location on and
writes them back with specified attribute

Void
writea(atr jn)

Char atr;
Int n ;

Int i;

Char attrx;
Int chx;
Int r,c;

readcur(&r,&c);
for (i=0; i<n;-H-i)
{

putcur(r,c+i);
readca(&chx , Scattrx)

;

writeca(chx, atr, (Int) 1);
}

putcur(r,c);

RING_BELL(): Rings the bell by sending character defined as BELL
to the output port.

Void
ring_bell(

)

putch(BELL);

95

PUTSTR()

:

Displays the null terminated string on the screen from current cursor
position on.

Int
putstr(s)

Char '^s;

{

Int r,CjCO;

readcur(6tr,&c)j
for (cO=c; *sl=' O' ; -H-Sj-H-c)

putcur((Int)r,(Int)c);
writec(*s,(Int) 1);

putcur((Int)r,(Int)c);

WRITEMSG(): Writes field message with specified attribute.

Int
writemsg(r,CjW,msg,attr)

Int rjCjW;
Char ''msg;

Int attr;
I

Int i;

Char ch;

putcur(r jC);

i=0;
while ((*msg!=' O') &6c (i<w))

ch=*msg;
writecaCchjCInt) attr j(Int) 1);
putcur(r j++c);
-H-rasg;

+-i-i
;

}

return(i);

SVDPG(): Sets active video page

Void
svdpg(vp)

Int vp;
{

union REGS inregs ,outregs;
inregs.h. ah=SETVDPG

; /* BIOS Video Service 5 */
inregs. h.al= vp ; /* Active display page to be set */
int86(VIDEO , &inregs , Scoutregs)

;

96

ACVDPGC): Gets active video page

Int
acvdpgC

)

(

}

union REGS inregs ,outregs;

inregs. h. ah=GETVDMOD
;

/* BIOS Video Service 15

to get video information */
int 86 (VIDEO, iinregs , Scout regs);
return(outregs. h. bh); /" return the active display page

number in bh register "/

SHIFT_STATUS(): Gets shift status
•^kifiririfi^-kifk-irif** hick* iV tV it * i'c iV A* * ** ie -A- ^ Vc a'f iV^ ** A A ** * ;VA"A-X"t>"kit****-!rit':(}<:*iri(iTifirifrkr/rirk

j

Bool
shift_pressed()

{

union REGS inregs ,outregs;
Char status_byte;

inregs. h. ah=KBD_STATUS;
int86(KBD_INT,&inregs,&outregs);

status_byte=outregs. h. al;

status_byte=status_byte 5e 0x43;
/* mask sixth bit for 'CAPSLOCK'*/
/* first and second bit for "/

/* left and right 'SHIFT' keys -^

I

switch (status_byte)
{

case 1: retum(TRUE);

case 2: return(TRUE);

case 3: return(FALSE);

case 64: return(TRUE);

case 65: return(FALSE);

case 66: retum(FALSE);

case 67: return(TRUE);

default: return(FALSE);

/* right shift key pressed */

/* left shift key pressed */

/* both right and left shift key*/
/* pressed. */
/* CAPS LOCK is on */

/* CAPS LOCK and right shift key*/

/* CAPS LOCK and left shift key */

/* three of them is active */

97

MODULE : DLADT.

C

VERSION

AUTHOR

DATE

1.0

Met in AKINCI

10 MAY, 1988

EXPLANATION:
General purpose Doubly Linked List

abstract data type.
Application side has to provide pointer to linked
list and pointer to data .

Appropriate compare function must be provided by
user of this module.

Implementation of this module is

independent from data structure. It has been
implemented by using C language's generic pointer
feature.

CHANGE LOG:

****Vf**'A''A'****iV***'*iV'A********':V**yr*******Vf**')V*Vf'3VVr*'iV*

//^include "prport. h"

^/finclude <mem. h>
yMnclude <stdlib. h>
^include <stdio. h>
#include <alloc. h>

typedef char DATA;

typedef struct DLNODE

(

DATA * pdata;
struct DLNODE *left;
struct DLNODE ''''right;

} DLNODE;

typedef struct DLLIST

DLNODE "head, "tail, ^'curr;

} DLLIST;

/* generic pointer to data
/* Doubly linked list node
/* data structure

/* generic pointer to data
/* pointer to left node
/* pointer to right node

*/

•)V/

/* Doubly Linked List structure */

98

DL_ALLOC(): Creates doubly linked list. Returns pointer to
dllist.

DLLIST *

dl_alloc()

}

DLLIST *pdl;
pdl= (DLLIST *) malloc(sizeof(DLLIST));
if (!pdl)

return(NULL);
pdl->head=NULL; /* initialize to null */
pdl->tail=NULL;
pdl->curr=NULL;
retum(pdl); /* either null or succesful pdl "/

DL_FIND(): Finds data in the doubly linked list and sets
current pointer then returns pointer to data found,

DATA *

dl_f ind(pdl
,
pnode ,pfcmp)

DLLIST ''fpdl;

DATA ''-pnode;

int (* pfcmp)();

int comp;
if (!pdl->head)

return(^fULL); /* list is empty */

pdl ->curr=pdl ->head;
while (pdl->curr)

comp=(*pfcmp) (pnode, pdl ->curr->pdata);
if (comp=0)

return(pdl ->curr->pdata)

;

else if (comp<0)
return(NULL);

pdl->curr=pdl->curr->right;

return(NULL);
}

99

DL_DELETE(): Deletes data provided by user from dllist
Returns TRUE if atterap is succefull otherwise FALSE.

!ViVVrVriV'5VVfVfVr7ViVVfiVVcyrVrV?VfVfV,-Vfy?VriVVr'>VVcVfV-iVVfVfVcVrVfVriVVcit')VycVrVcVr'>Vi'fVf'jV-V->V

Bool
dl_delete(pdi ,pnode jpfcmp)
DLLIST ^'^pdl;

DATA *pnode;
int (*pfcmp)();

DATA * tempnode;

if (! (tempnode=dl_find(pdl,pnode,pfcmp)))
return(FALSE); /* not exists */

free(tempnode);

if (pdl->head=pdl->curr)
pdl->head=pdl->curr->right;

/* if it is first element */

if (pdl->tail==pdl->curr)
pdl-=>tail=pdl->curr->left;

/* if it is last element */

if (pdl->curr->left)
pdl->curr->left->right=pdl->curr->right;

if (pdl->curr->right)
pdl-->curr->right->left=pdl-=>curr->left;

free(pdl->curr); /* delete the node */
pdl->curr=pdl->head; /* reset the current pointer */

return(TRUE);

}

100

DL_ADD(): Adds data provided by user into doublu linked list.
Returns False in case of failure.

Bool
dl_add(pdl

,
pnode

,
pfcmp

)

DLLIST ''^pdl;

DATA "pnode;
int ('^pfcmp)();

DLNODE *pdlnode;

if (dl_find(pdl, pnode, pfcmp))
returnC FALSE); /* already exists in the list */

pdlnode=(DLxN'ODE") malloc (sizeofCDKNODE));
pdlnode->pdata=pnode;

if (pdl->head=NULL)

pdl->head=pdl->tail=pdlnode;
pdlnode->right=pdlnode->left=NULL;

else if (pdl->curr=NULL) /* my node is the greatest -/

pdl->tail->right=pdlnode;
pdlnode->left=pdl->tail;
pdl->tail=pdlnode;
pdlnode->right=NULL;

else

{
/* my node is somewhere either in
middle or at the beginning */

if (pdl->head=pdl->curr)
{

/* my node should be first */
pdlnode->right=pdl->head;
pdlnode->left=NULL;
pdl ->head=pdlnode;

else
{

pdl ->curr-> left ->right=pdlnode;
pdlnode->right=pdl->curr;
pdlnode->left=pdl->curr->left;
pdl->curr->left=pdlnode;

return(TRUE);
}

101

DL_FREE(): Deallocates memory allocated for doublu linked list.
Deallocation of memory allocated for user data is under
user responsibilty.

Bool
dl_free(pdl)

DLLIST 'Vpdl;

{

DLNODE *tempnode;

if (!pdl)
returnC FALSE); /* error */

if (!pdl->head)

free(pdl);
return(TRUE);

}

pdl->curr=pdl">head;
while (pdl->curr)

terapnode=pdl->curr;
pdl->curr=pdl->curr->right;
free(tempnode);

free(pdl);
return(TRUE);

DL_NEXT(): Sets the current pointer to next node in the list.
Returns pointer to next node data.

DATA *

dl_next(pdl)
DLLIST * pdl;

pdl->curr=pdl->curr->right;

if (!pdl->curr)
return(NULL);

return(pdl->curr->pdata);

102

DL_PRIOR(): Sets the current pointer to previous node.
Returns the pointer to prior node data.

DATA >''

dl_prior(pdl)
DLLIST ''^pdl;

{ if (!pdl->curr->left)
return(NULL);

pdl->curr=pdl->curr->left;
if (pdl->curr)

return(pdl ->curr->pdata)

;

return(NULL);

DL_FIRST(): Sets the current pointer to first element in the list.
Returns the pointer to first data in the list.

DATA *

dl_first(pdl)
DLLIST '- pdl;

pdl ->curr=pdl ->head;
if (pdl->curr)

return(pdl ->curr->pdata)

;

retum(NULL);

}

DL_LAST(): Sets the current pointer to last item in the list
Returns pointer to last data in the list.

DATA *

dl_last(pdl)
DLLIST *pdl;

pdl->curr=pdl->tail;
if (pdl->curr)

return(pdl ->curr->pdata)

;

return(NULL);
}

DL_CURR(): Returns pointer to data pointed by current pointer.

DATA *

dl_curr(pdl)
DLLIST ^--pdl;

if (pdl->curr)
return(pdl->curr->pdata);

return(NULL);

103

MODULE : LLADT.

C

VERSION: 1.

AUTHOR : Met in AKINCI

DATE : 15 MAY, 1988

EXPLANATION:
General purpose linked list implementation.

It has been implemented by using C language's
generic pointer feature.
Pointer to data and appropriate compare function
must be provided by application side.

CHANGE LOG:

iViViiV'3ViV^V^VVrtiVVf'5V^V^ViV^V?V')V**'jViV'3V'5V'}ViV^iViViViV'5ViViV'A'iV^V**iV'3VyfiV'jV'}V^V*'3t^iV^V'>V'5Vi^ ;

^include "prport.
h"

^include <stdio<. h>

typedef char DATA;

typedef struct LLNODE
{

DATA *pdata;
struct LLNODE *next;

} LLNODE;

typedef struct LLIST

LLNODE *head,*tail,*curr;
} LLIST;

/* generic pointer to DATA */

/* define each node of the list */

/* generic pointer to data
/* pointer to next node

/* linked list structure

104

LL_ALLOC(); Creates an empty linked list.
Returns pointer to newly created list.

LLIST *

ll_alloc()
{

LLIST ^^pll;

pll=(LLIST *)malloc(sizeof(LLIST));
if (pll)

pll->head=NULL;
pll=>tail=NULL;
pll->curr=NULL;

return(pll);

LL_FIND(): Finds any data in the linked list and returns pointer
to data. Appropriate compare function must be provided
by user of this module.

DATA ^

ll_find(pll ,pnode jpfcomp)
LLIST ''fpll;

DATA *pnode;
int (•'^pfcomp)();

int comp;

if (!pll->head) /* linked list is empty */
return(NULL);

pll->curr=pll->head; /* start from beginning */
while (pll->curr)

comp=(*pfcomp)(pnode,pll->curr->pdata);
if (comp=0) /* data is found in the list */

return(pll->curr->pdata);
else if (comp<0)

return(NULL); Z^'' it is smaller than first */
pll->curr=pll->curr->next;

/* keep searching */
}

return(NULL);
}

105

LL_DELETE(): Deletes data from linked list. Returns TRUE
if attempt is succesful otherwise FALSE.

Bool
ll_delete(pll ,pnode,pfcomp)

LLIST -'^pll;

DATA ''^pnode;

int (''fpfcomp)();

LLNODE "tempnode;
DATA *temp;

if (! (temp=ll_find(pll,pnodejpfcomp)))
return(FALSE); /* not exists in the list */

tempnode=pll->curr; /* if exists, save the pointer */
/* to the data to be deleted */

if (pll->head=pll->curr) /* if it is first element in lisfV

pll->head=pll->curr->next;
free(pll->curr);
return(TRUE);

}

if (pll->tail=pll->curr) /* if it is last element in the list^V

pll->curr=pll->head; /* find the previous node */
while (pll->curr->next! =pll->tail)

pll->curr=pll->curr->next;
pll->tail=pll->curr;
return(TRUE); /* return the new last item */

/* otherwise it is somewhere
in the middle */

pll->curr=pll->head;
while (pll->curr->next !=terapnode)

pll->curr=pll->curr->next;
tempnode=pll->curr;
tempnode ->next=t empnode ->next ->next

;

free (t empnode ->next)

;

return(TRUE);

106

LL_NEXT(): Sets the current pointer to next node and
returns pointer to data in the next node of list.

DATA >''

ll_next(pll)
LLIST *pll;

pll->curr=pll->curr->next;
if (pll->curr)

return(pll->curr->pdata);
return(NULL);

LL_FIRST(): Sets the current pointer to first item in the list.
Returns pointer to data in the first node of list.

DATA *

ll_first(pll)
LLIST * pll;

pll->curr=pll->head;
if (pll->curr)

return(pll->curr->pdata);
return(NULL);

LL_LAST(): Sets the current pointer to the last item in the list.
Returns pointer to data in the last node.

DATA *

ll_last(pll)
LLIST ''^pll;

pll->curr=pll->tail;
if (pll->curr)

return(pll->curr->pdata);
return(NULL);

}

107

LL_ADD(): Adds new item into linked list. Appropriate compare
fiinction must be passed by user. Returns FALSE if item
to be added is already in list.

Bool
1 l_add(p 1 1 ,

pnode
,
pfcomp

)

LLIST ''-pll; I* pointer to linked list */
DATA *pnode;
int (*pfcomp)();

LLNODE *terap,*tempnode;

if (ll„find(pll, pnode, pfcomp))
returnC FALSE); /* already exists */

/* prepare linked list node */
temp= (LLNODE *) malloc(sizeof(LLNODE));
temp->pdata=pnode;

if (pll->head=NULL) /* if linked list is empty */

pll->head=pll->tail=terap;
temp->next=NULL;

else if (pll->curr=NULL)
/* mynode is the greatest */

pll=>tail->next=temp;
pll->tail=terap;
temp->next=NULL;

else /* else my node is somewhere in */

{ /* the middle or at the beginning*/
if (pll->head==pll->curr)

pll->head=temp;
temp->next=pll->curr;

else
{

tempnode=pll->curr;
/* save the current pointer */

p 1 1 ->curr=pl 1 ->head;
/* start from beginning */
/''f find the previous node */

while (pll->curr->next! =terapnode)

p 1 1 ->curr=p 1 1 ->curr->next

;

pll->curr->next=terap;
t emp ->next=t empnode;

return(TRUE);

108

LL_FREE(): Deallocates the memory allocated for linked list.
Deallocation of memory allocated for data must be freed
before this function is invoked.

-'."iVV; •).";;">;-,?;.)

Bool
ll_free(pll)

LLIST ''^pll;

LLNODE *temp;

if (!pll)
returnC FALSE);

if (!pll->head)

VrVr->^V-.W?'VcV-VriVVrVrVc'VfVfVrV-VfiV^tVryr'jVyrVc'jVVf's'f'jVVc'jVVfVfVfVfVf'sVVfVf'sVVrVc'sVVfVfVfVc
/

{

}

/* error */

/* if linked list is empty */

free(pll);
return(TRUE);

p 1 1 ->curr=p 1 1 ->head;
while (pll->curr)
{

}

temp=pll->curr;
pll->curr=pll->curr->next;
free(temp);

free(pll);
return(TRUE);

109

MODULE : EGACHR.

C

VERSION: 1.

AUTHOR : Met in AKINCI

DATE : 15 APR, 1988

EXPLANATION:
This is a memory resident program. Creates

extra characters in the Turkish alphabet for EGA
adapter. This program reads the system info,
if EGA is present, it is installed.
Otherwise terminates by prompting user.

This program should compile and run outside
of integrated environment.

CHANGE LOG:

Vf*A**itA*******Vr:V***'5V*******Vr*******'sHr**************Vf*Vr****'5^

^include <stdio. h>
^include <dos.h>
//include <process.h>
/Hnclude <mem. h>
#include <stdlib. h>

#define TRUE 1

^define FALSE

/* Functions related to video operations */

void
loadegachr(char '''fptr,int block, int bpc,int char_count , int spos);

void
get_egafont(char *fptr, int font);

int
get_video_info(void)

;

110

/* Global variables and #DEFINEs related to video operations */

/Hnclude "egachr. asc"

,-'/define VIDEO 0x10
char fontarray[3585]

;

char ega_color;

/''f egachr. asc contains our
/* own character font
/" BIOS video interrupt
/* buffer for font storage

v./

v./

/* Global variables related to TSR operations */

unsigned save_bpl, save_bp2, old_ds, old_psp;
unsigned old_env;

/* Turbo C system variables

extern unsigned brklvl:
extern unsigned _psp;

void
error(int errnum);

main(

)

int i, j, k;

union REGS regs;

get_video_info()

;

if (!ega_color) regs. x. ax = 0x7;
/* set the video mode

else regs. x. ax = 0x3;
int 86(VIDEO , Scregs , Scregs)

;

/* system checks out --go ahead and put own chars, in font V

get_egafont(fontarray, 14);
/* store the ROM font in fontarray */

for(i=14*128,j=0; i< 14*140; j++)

}

for(k=0;k<14;k++)
/* overwrite our own characters */

fontarray[i-H-j = egachr_array[j] [k]
;

loadegachr(fontarray ,0,14,256,0);
/'"f load our font */

/* terminate and stay resident. Program length is determined by"/
/* subtracting the psp address (_psp) from brkval which is */
/" dynamically set to the address of the end of DS. -/

keepC FALSE, _DS + (_brklvl + 15)/ 16 - _psp);

111

/* LOADEGACHR -- Load a user-defined font and reset page length. */
/''' Farms: ptr. to user table, block to load, bytes-per-char , */
/* number of chars to store, starting position in font table. "/

void
loadegachr(char *fptr,int block, int bpc,int char_count , int spos)

unsigned byte_block;

byte_block = (bpc « 8) | block;

_ES = _DS;
_AX = 0x1100; /* call function 0x11 */
_BX = byte_block; /* block to load */
_CX = char_count; /* number of characters to load */
_DX = spos; /* character offset into table */
save_bp2 = _BP; /* save BP for stack addressing */
_BP = FP„OFF(fptr); /* load address of user font -/

}

geninterrupt(VIDEO);
,B? = save_bp2;

/* GET_EGAFONT: This routine grabs an EGA font from ROM */
/* and stores it in the global variable fontarray */

void
get_egafont(char *fptr, int font)

struct REGPACK regs;

regs.r_ax = 0x1130; /* EGA BIOS call to return font */
if (font = 8)

regs. r_bx = 0x0300;
else if (font = 14) regs. r„bx = 0x0200;

intr(VIDEO, ®s);
movedata(regs. r„es, regs c r„bp,_DS, (unsigned) fptr, 14*256);

}

/* GET„VIDEO_INFO: A VGA or an EGA must be installed for this */

Z"^' program to work. The monitor must be an Enahanced Color or */
/">'' Monochrome display and the correct adaptor must be active. ''=/

int
get_video_info(

)

union REGS regs;
unsigned char e_byte;

/* First check for the presence of an EGA */
regs. h. ah = 0x12; /* EGA BIOS alternate select */
regs.h. bl = 0x10; /''' return EGA information. */
int86(VIDEO, Scregs , ®s);
if (regs.h. bl = 0x10) error(l); /-^ EGA not found •>''/

112

/* EGA is present -- is it active? */
e_byte = peekb(,0x487)

;

/'"' EGA info, byte */
if (e_byte & 8) error(2);

/'f EGA not active "*/

/* Does the present, active EGA drive a color or mono monitor? ''^7

if (regs.h. bh) ega_color = FALSE;
/* EGA drives a mono monitor "^

I

else ega_color = TRUE; /* EGA drives a color monitor ''V

/* See if EGA drives an Enhanced Color Display ''V

if (ega_color)
if ([(regs.h. cl = 3 |I regs.h. cl == 9))

error(1);
return (1);

/" ERROR: A simple error handler. */
void

error(int errnum)
{

switch (errnum)

case 1: printf(" An EGA and Enhanced Color or Monochrome Display");
printf(" mnust be present to use this program.");
break;

case 2: printf(" Please make the EGA the active adapter");
printf("in order to run this program.");
break;

default: break;

printf(" nProgram exiting, n");
exit(Oxf); /•'' Return code for DOS error level */

113

/* FILE NAME: EGACHR. ASC */
/-k ,v/

/* egachr. asc: This is an ASCII representation of the italic font '''/

/* characters used in egachr. C. This file is //includeD. >'«/

/* In the table below, each row corresponds to a character. The '''f/

/* 14 elements of each row correspond to the 14 scan lines of the ''"/

/>'' character. ''^/

char egachr_array[12] [14] =
{

{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x78, Oxcc,
0x60,0x38, Oxcc, 0x78, 0x00, 0x30, 0x00

/* s 'V
{ 0x00, 0x00, 0x78, Oxcc, OxcO, OxeO, 0x38,

OxOc, OxOc, Oxcc, 0x78, 0x00, 0x30, 0x00
/•k s -i^/

{ 0x00, 0x00, 0x00, 0x66, 0x00, Ox7c, 0xc6,
0xc6, 0xc6, 0xc6, Ox7c, 0x00, 0x00, 0x00

/* o */

{ 0x6c, 0x00, 0x38, 0x44, 0xc6, 0xc6, 0xc6,
0xc6, 0xc6, 0x44, 0x38, 0x00, 0x00, 0x00

/A- */

{ 0x00, 0x00, 0x00, Oxcc, 0x00, Oxcc, Oxcc,
Oxcc, Oxcc, Oxcc, Ox7c, 0x00, 0x00, 0x00

/Vf u */

{ 0x00, 0xc6, 0x00, 0xc6, 0xc6, 0xc6,0xc6,
0xc6, 0xc6, 0xc6, 0x7e, 0x00, 0x00, 0x00

/* U */

{ 0x00, 0x00, 0x00, Ox7c, 0x00, Ox7e, Oxcc,
OxcCj Oxcc, Ox7c, OxOc, Oxcc, 0x78, 0x00

/* g */

{ 0x3c, 0x00, 0x3c, 0x66, OxcO, OxcO, OxcO,
Oxde, 0xc6, 0x66, 0x3a, 0x00, 0x00, 0x00

/* G */

{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x78, Oxcc,
OxcO, OxcO, Oxcc, 0x78, 0x00, 0x30, 0x00

/•k c */

{ 0x00, 0x00, 0x3c, 0x66, 0xc2, OxcO, OxcO,
OxcO, 0xc2, 0x66, 0x3c, 0x00, 0x18, 0x00

/* C */

{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x38, 0x18,
0x18, 0x18, 0x18, 0x3c, 0x00, 0x00, 0x00 }

/,v i */

{ 0x18, 0x00, 0x3c, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x3c, 0x00, 0x00, 0x00 }

/* 1 'V

114

PRPORT. H : Project portabilty header file.
Contains programmer defined data types, printers, systems
and compilers.

/''«• Programmer defined data types

typedef unsigned char Char;

typedef int Int;

typedef long int Long;

typedef short int Bool;

typedef unsigned char BYTE;

typedef unsigned int WORD;

^define Void void

#define EXTERN /**/

#define TRUE (Bool) 1

^define FALSE (Bool) .

^define GLOBAL /**/

,v/

/* define compilers

?'Mefine
//tdef ine
y/define
^define

#define
#def ine
^define
^Mefine

/Me fine
#def ine
j'/def ine

TC 1

LC
MSC
IBMC

DOS 1

SYS5
CPM
UNIX

EPSON 1

IBMPROPRINTER
OK IDATA

Turbo C Compiler
Lattice C compiler
Microsoft C Compiler
IBM C Compiler

/* DOS
/* Systera-V
/^t CPM 0/S
/'V UNIX 0/S

0/S

/* define PRINTERS

*/

*/

/* define OPERATING SYSTEMS */

*/

'V
*/

115

KEYDEF.

H

: Contains 1neyboa

Vf^V';V-VVr-,'f5V'5V7V"5V^V'5V-VVf5'f5ViViViVVf!VVf5V'5ViV'5V"

//define XF Ox:LOO

//define K PGDN 81
1
XF

//define K LEFT 75
1
XF

//define K RIGHT 77
1
XF

//define K UP 72
1 XF

//define K CTRLH 8

//define K DOWN 80 1 XF
//define K ESC 27
//define K SPACE 32
//define K DEL 83

1
XF

//define K BACKSP 15

//define K RETURN 13
//define K HOME 71

1
XF

//define K END 79
1
XF

//define K PGUP 73
1 XF

//define K CTRLZ 26
//define BELL 7

//define K CEND 117
1
XF

//define K ALTC 46 XF
//define K ALTG 34 XF
//define K ALTI 23 XF
//define K ALTO 24 XF
//define K ALTS 31 XF
//define K ALTU 22 XF
//define LF (Char) IC)

//define BLANK (Char:) 32
//define CR (Char) i:5

116

BIOSLIB. H : This file contains all BIOS definitions used in program.

#define VIDEO 0x10

#define KEYIN 0x7

//define CUR POS 2
#define GET CUR 3

#define SCROLL UP 6

#define SCROLL DN 7

#def ine WRITE CHAR 10

/Me fine m C All' 9

//define RE C ATI' 8

//define SETVDPG 5

//define GETVDMOD 15

//define KBD_INT 0x16

//define KBD_STATUS 2

//define LOBYTE 0x0OFF

//define HIBYTE OxFFOO

/* BIOS VIDEO INT 10 */

/* DOS function kbd input w/o echo */

/* VIDEO routine service numbers
placed in AH register before a

BIOS interrupt lOh. */

/* write char with attribute */
/* read char with attribute */
/* BIOS Video service 5

sets active video page */
/* BIOS Video service 15

gets current video information*/

/* BIOS keyboard interrupt number*/

/* kbd status function number */

/* Bit mask for low byte */

/* bit mask for high byte */
/* define video attributes */

//define ATTR 65 /* BYTE Attribute is RED background*/
/* BLUE foreground. */

117

/* FILE NAME: MYASCII. NUM */
/* Definitions of ascii number assigned for extra */
/* characters in the Turkish alphabet. */

/Mefine ascii_s 128

,-'Mefine ascii„S 129

y/define ascii_o 130

^define ascii_0 131

//define ascii_u 132

^define ascii„U 133

#define ascii„g 134

^define ascii_G 135

^define ascii_c 136

^define ascii_C 137

y/define ascii_i 138

//define ascii_I 139

118

/' FILE NAME: EPSON.DAT

/" Definitions of Standard printer control cotmnands
/" for EPSON and Compatible Printers

char p_init[]=" 033(9";

char p_bold[]=" 033E";

char p_ds[] = " 033G";

char p_ital[]= " 0334";

char p_cmp[]= " 017";

char p_exp[]
= " 016";

char p_ul[]=" 033-1";

char p_cbold[]= " 033F";

char p_cds[]= " 033H";

char p_cital[]=" 0335";

char p_ccmp[] =" 022";

char p_cexp[]=" 024";

char p_cul[]= { 27,' -' ,0 }

char p_grmode[4] = { (char)

char p_default[]
=" 033P";

#define FP 12

#define LF 10

/* hardware reset

/* emphasized mode

/* double strike mode

/* italicized mode

/^ condensed mode

/* expanded mode

/* underlined mode

/* cancel emphasized mode

/'^ cancel double strike mode

/" cancel italic mode

/* cancel condensed mode

/* cancel expanded mode

27/K' ,(char)8,(char)0 } ;

/* set to dot graphics mode

*/

*/

*/

*/

*/

*/

*/

*/

*/

'V

*/

*/

*/

119

/* FILE NAME: EXTRA. FNT 'V
/* Here extra character font pattern for printers are given. ">''/

char c_pattern [8]
=

char CC_pattern [8]
=

char i_pattern [8]
-

char CI_pattern [8]
=

char o„pattern [8]
=

char CO„pattern [8]
-

char s„pattern [8]
=

char CS_pattern [8]
=

char u_pattern [8]
=

char CU„pattern [8]
=

char g_pattern [8]
=

char CG_pattern [8]
-

Oxlc , 0x22 , 0x23 , 0x23 , 0x22 , 0x00 , 0x00 , 0x00

Ox7c , 0x82 , 0x83 , 0x83 , 0x82 , 0x44 , 0x00 , 0x00

0x00 , 0x00 , 0x22 , 0x3e , 0x02 , 0x00 , 0x00 , 0x00

0x00 , 0x00 , 0x42 , Oxfe , 0x42 , 0x00 , 0x00 , 0x00

Oxlc , 0xa2 , 0x22 , 0x22 , 0xa2 , Oxlc , 0x00 , 0x00

0x3c 5 0xc2 , 0x42 , 0x42 , 0xc2 , 0x3c , 0x00 , 0x00

0x12 , 0x2a , 0x2b , 0x2b , 0x2a , 0x04 , 0x00 , 0x00

0x64 5 0x92 , 0x93 , 0x93 , 0x92 , Ox4c , 0x00 , 0x00

0x3c , 0x82 , 0x02 , 0x82 , 0x3c , 0x02 , 0x00 , 0x00

Ox7c , 0x02 , 0x82 , 0x82 , 0x02
,
Ox7c , 0x00 , 0x00

0x32 , 0xc9 , 0xc9 , 0xc9 , Ox7e , 0x00 , 0x00 , 0x00

0x3c , 0xc2 , 0xc2 , Oxca , Oxca , 0x2c , 0x00 , 0x00

120

APPENDIX D. EXAMPLE TEMPLATE AND PROGRAM OUTPUT
DOCUMENT

* EXAMPLE TEMPLATE DEFINITION
* This is a comment line
DURUM RAPORU
* row column width editable message
3 30 30 (§ T. C @
4 30 30 @ Dz. K. K (§

5 30 30 @ TCG. PIYALEPASA K. ligi (§

8 55 20 1 @Tarih: @
10 30 30 @HAZIRLIK DURUM RAPORU (§

11 29 30 §--"------"--"-•=--—
(§

12 5 20 1 (aiDARI:@
15 5 20 (aPERSONEL : (3

16 5 20 i^_ = -__-,______ _/rt(d-------- .-(d

18
19

30
25

30
40

(9 TAM KADRO
@ ----------

MEVCUT (§

21 10 30 (asUBAY : (§

21 41 20 m
22 10 30 (SASTSUBAY : @
22 41 20 m
23 10 30 (aERAT : (a

23 41 20 m
26 5 20 (aMATERYAL : (§

27 5 20 @-—-—

@

29
30

30
25

30
35

@ TAM MEVCUT IHTIYAC @
.-/a(d ,_>_ = ___»__ --(a

32 10 30 1 @A. GIDA :(§

32 41 20 1 (?(§

34 10 30 1 (aB. SU :(§

34 41 20 1 (a@

36 10 30 1 (ac. YAKIT :(§

36 41 20 1 (§(?

38 10 30 1 (§0. YAG :(§

38 41 20 1 (9(3

45 5 30 (§ DAGITIM :(a

46 5 30 @"-----------@
49 50 20 @ KOMUTAN (a

(§

NEXT TEMPLATE

121

SUBAY
ASTSUBAY
ERAT

MATERYAL

T. C
Dz. K. K

TCG. PIYALEPASA K. ligi

IDARI:

PERSONEL

Tarih:

HAZIRLIK DURUM RAPORU

TAM KADRO MEVCUT

TAM MEVCUT IHTIYAC

A« GIDA

B. SU

C. YAKIT

D. YAG

DAGITIM

KOMUTAN

122

LIST OF REFEREiNCES

1. Turbo C Compiler Reference Manual Version 1.0

2. Parnas, David L., On the Criteria to be used in Decomposing Systems into Modules,

Communications of the ACM, Volume 15, Number 12, December 1972.

3. Liskov, Barbara. Modular Program Construction Using Abstractions MIT labora-

tory for Computer Science, Computation structures group memo 184, September

1979.

4. Parnas, David L., Information Distribution Aspects of Design Methodolgy, Pro-

ceedings of 1971 IFIC Congress, Amsterdam, The Netherlands North Island Pub-

lishing Company, 1971.

5. IBM Technical Reference Manual, Volume I.

6. IBM Technical Reference Manual, Options and Adapters, Volume II, Chapter 4.

7. IBM Proprinter Reference Manual

123

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station

Alexandria, VA 22304-6145

2. Library, Code 0142 2

Naval Postgraduate School
Monterey, CA 93943-5002

3. Deniz Kuwetleri Komutanligi 4

Bakanliklar

Ankara, Turkey

4. Deniz Harp Okulu Komutanligi Kutuphanesi 1

Tuzla

Istanbul, Turkey

5. Department Chairman, 52Mz 1

Computer Science

Naval Postgraduate School
iMonterey, CA 93943

6. Daniel Davis 1

MBARI
160 Central

Pacific Grove, CA 93950

7. John Yurchak, 52Yu 1

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

8. LtJG Metin AKINCI 2

Bakirkoy Akatlar Sok No 9/6

Istanbul, Turkey

9. Metin G. Ozisik 1

427 West Str.

Salinas, CA 93901

124

DTTDLICT' K
L SCHOOL

"
CALIFORNIA 9Sy4S-6002

^Thesis

Ja333805

(

Akinci
Document generator

software design that
supports Turkish al-
phabet.

Thesis

A333805
c.l

Akinci
Document generator

software design that

supports Turkish al-

phabet.

