
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1988-06

Distributed computer communications in support of

real-time visual simulations

Barrow, Theodore H.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/23180

SCHOOL

.....

NAVAL POSTGRADUATE SCHOOL

Icnferey , California

THESIS

DISTRIBUTED COMPUTER COMMUNICATIONS
in SUPPORT of

REAL-TIME VISUAL SIMULATIONS

by

Theodore H. Barrow

June 1988

Thesis Advisor: Michael J. Zyda

Approved for public release; distribution is unlimited

T238S85

UNCLASSIFIED
iCURlTY CLASSIFICATION OF THiS PAGE

REPORT DOCUMENTATION PAGE
a REPORT SECURITY CLASSIFICATION

Unclassified
1b RESTRICTIVE MARKINGS

a SECURITY CLASSIFICATION AUTHORITY

b- DECLASSIFICATION .'DOWNGRADING SCHEDULE

3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
Distribution is unlimited.

PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

a. NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

6b OFFICE SYMBOL
(If applicable)

Code 52

7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

E. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000

7b. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000

a. NAME OF FUNDING / SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

1 ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

i TITLE (Include Security Classification)

DISTRIBUTED COMPUTER COMMUNICATIONS in SUPPORT of REAL-TIME VISUAL SIMULATIONS

2. PERSONAL AUTHOR(S)

Theodore H. Barrow

3a. TYPE OF REPORT

Master's Thesis
13b. TIME COVERED
FROM TO

14. DATE OF REPORT (Year, Month, Day)

1988 June
15 PAGE COUNT

179
6. SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the U.S. Government

COSATI CODES

FIELD GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Distributed Computing; Computer Communications; Visual

Simulation; Transmission Control Protocol (TCP); Ethernet;

Computer Network
ABSTRACT (Continue on reverse if necessary and identify by block number)

Complex visual simulations can strain the capability of a single workstation. A mix

of different workstations is often more economical than the use of a large processor for

such simulations. Methods of communicating between such workstations are needed that

allow the developer to spend effort on the simulation and not on communications. Simple

protocols are developed to support both broadcast and direct-connect communications

between workstations using TCP/IP on an Ethernet. Comparisons are made between broadcast

and direct connect protocols.

10 DISTRIBUTION /AVAILABILITY OF ABSTRACT

E UNCLASSIFIED/UNLIMITED SAME AS RPT

!2a NAME OF RESPONSIBLE INDIVIDUAL

Professor Michael J. Zyda

DTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION

Unclassified

22b TELEPHONE (Include Area Code)

(408) 646-2305
z2c. OFFICE SYMBOL

Code 52Zk

)D FORM 1473, 84 mar 83 APR edition may be used until exhausted

All other editions are obsolete
SECURITY CLASSIFICATION OF THIS PAGE

O U.S. Government Printing Office: 1986—«06-24.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

DISTRIBUTED COMPUTER COMMUNICATIONS
in SUPPORT of

REAL-TIME VISUAL SIMULATIONS
by

Theodore H. Barrow
Major, United States Marine Corps

B.S.ChE, Stanford University, 1977

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1988

ABSTRACT

Complex visual simulations can strain the capability of a single workstation. A mix

of different workstations is often more economical than the use of a large processor for

such simulations. Methods of communicating between such workstations are needed that

allow the developer to spend effort on the simulation and not on communications.

Simple protocols are developed to support both broadcast and direct-connect

communications between workstations using TCP/IP on an Ethernet. Comparisons are

made between broadcast and direct connect protocols.

hi

TABLE OF CONTENTS

I. Introduction l

A. PROBLEM 1

1. Approach 1

2. Design Criteria 2

B. BACKGROUND 3

1. Visual Simulation 3

a. Vision and Information Presentation 3

b. Definition 4

c. Examples 4

2. Computer System Architecture 5

3. Communication 6

C. Organization 7

n. Existing System 8

A. Introduction 8

B. Hardware 8

1. Network 8

2. Workstations 10

a. Silicon Graphics, Inc. IRIS 10

b. ISI AI 10

c. Sun-3/50 11

d. Symbolics 36xx 11

e. Texas Instruments Explorer 12

3. Digital Equipment Corporation VAX 1 1/785 12

4. ISIV minicomputers 13

C. Software 14

1. UNIX Machines 14

a. 4.3BSD 14

b. System V 14

2. Lisp Machines 14

a. Genera 14

b. Explorer 14

D. Summary 15

m. Protocols 16

A. Introduction 16

B. Direct Connection 16

1. High-Level Protocol 16

IV

RY
: tool

2. Supporting Protocols 18

C. Broadcast 19

1. High-Level Protocol 19

2. Supporting Protocols , 19

D. Summary 20

IV. IMPLEMENTATIONS 21

A. Introduction 21

B. System V unix 21

1. Silicon Graphics, Inc. IRIS 2400 21

a. Sockets 21

b. Semaphores 23

c. Shared Memory 24

d. Buffering 30

(1) Direct Connect 30

(2) Broadcast 32

2. Silicon Graphics, Inc. IRIS 3120 33

3. Silicon Graphics, Inc. IRIS 4D 33

C. 4.3BSD UNIX 34

D. Lisp Machines 35

1. Texas Instruments Explorer I 35

2. Symbolics 36xx 37

E. Summary 39

v. useby Applications 40

A. Introduction 40

B. direct Connect 40

1. UNIX-Based Machines 40

a. Application Setup 41

b. Coding Practices 43

(1) Connection 43

(2) Program Use 45

(3) Disconnection 49

2. Lisp Machines 49

a. Connection 49

b. Program Use 52

c. Disconnection 52

C. Broadcast 52

1. Similarities With Direct Connect Protocol Use 52

2. Differences With Direct Connect Protocol Use 54

a. Application Setup 54

b. Coding Practices 55

D. Summary 55

VI. Performance 57

A. Introduction . 57

B. Data Collection 57

C. DISCUSSION 59

D. Summary 60

vn. Conclusions and Recommendations 62

A. LIMITATIONS 62

B. FUTURE RESEARCH AREAS 63

C. Summary and Conclusion 63

appendix A - IRIS Module Descriptions 64

1. io__sing!e.c 64

a. Calling Protocols 64

i. number_received 64

ii. read character 64

iii. readjcharacters 64

iv. readjioat 64

v. read_integer 64

vi. receivedjype 65

vii. write^character 65

viii. writejcharacters 65

Lx. writeJioat 65

x. writeJnteger 65

b. Code and Description 66

2. mpathe 81

a. Calling Protocols 81

i. deletemachinepath 81

ii. machinepath 81

iii. dynamicmachinepath 81

iv. dynamicmachinepaths 82

b. Code and Description 82

3. netV.c 94

a. Calling Protocols 94

b. Code and Description 94

4. receive.c 103

a. Calling Protocols 103

b. Code and Description 103

5. semaphore.c 107

vi

a. Calling Protocols 107

b. Code and Description 107

6. send.c 109

a. Calling Protocols . 109

b. Code and Description 109

7. shared. h 1 13

a. Calling Protocols 113

b. Code and Description 114

8. shareseg.c 116

a. Calling Protocols 116

b. Code and Description 116

9. support.c 121

a. Calling Protocols 121

i. receiverJias_data 121

ii. senderJs-free 121

b. Code and Description 122

APPENDIX B - TI EXPLORER MODULE DESCRIPTIONS 133

1. Calling Protocols 133

a. iris 133

b. start-iris 133

c. get-iris 133

d. put-iris 133

e. stop-iris 133

f. reuse-iris 133

2. Code and Description 134

APPENDIX C - Symbolics module Descriptions 137

1. Calling Protocols 137

a. select-host 137

b. start-iris 137

c. get-iris 137

d. put-iris 137

e. stop-iris 137

f. reuse-iris 137

2. Code and Description 138

APPENDIX D - TEST AND UTILITY PROGRAMS 141

1. gprog.c 141

a. Calling Protocols 141

b. Code and Description 141

2. gprog2.c 145

vii

a. Calling Protocols 145

b. Code and Description 145

3. prog.c 149

a. Calling Protocols 149

b. Code and Description 149

4. prog2.c 153

a. Calling Protocols 153

b. Code and Description 153

5. rmshare.c 157

a. Calling Protocols 157

b. Code and Description 157

6. testshare.c 160

a. Calling Protocols 160

b. Code and Description 160

LIST OF REFERENCES 163

INTTIAL DISTRIBUTION LIST 165

VIII

LIST OF TABLES

Table 2.1 IRIS WORKSTATION CONFIGURATIONS

Table 2.2 ISI AI WORKSTATION CONFIGURATIONS

Table 2.3 SUN WORKSTATION CONFIGURATIONS

Table 2.4 SYMBOLICS WORKSTATION CONFIGURATIONS

Table 2.5 EXPLORER WORKSTATION CONFIGURATIONS

Table 2.6 VAX CONFIGURATIONS

Table 2.7 ISIV DATABASE MACHINE CONFIGURATION

Table 3.1 DATATYPES SUPPORTED

Table 4.1 SOCKET SUPPORT FUNCTIONS
Table 4.2 SEMAPHORE SUPPORT FUNCTIONS

Table 4.3 SHARED MEMORY MESSAGES

Table 4.4 SHARED MEMORY SUPPORT FUNCTIONS

Table 4.5 INTERNET ADDRESSING CLASSES

Table 5.1 SERVER ERROR RESPONSES

Table 5.2 CLIENT ERROR RESPONSES

Table 5.3 PATH CONNECTION

Table 5.4 COMMUNICATION FUNCTIONS

Table 5.5 MACHINEPATH PARAMETERS
Table 6.

1

DIRECT CONNECT VERSUS BROADCAST STATISTICS

Table 6.2 APPLICATION NETWORK USE STATISTICS

10

11

11

12

12

13

13

16

23

24

25

26

35

42

44

45

47

56

58

58

IX

LIST OF FIGURES

Figure 2.1 Network Configuration 9

Figure 3.1 Message Format 17

Figure 4.1 Shared Memory Segment Data Assignment 25

Figure 4.2 UNIX Memory Allocation 27

Figure 4.3 IRIS 2400 Default Shared Memory Attachment 28

Figure 4.4 Three-Machine Interconnection 31

Figure 4.5 IRIS 4D Default Shared Memory Attachment 34

Figure 4.6 Encapsulation of IRIS Addresses .: 36

Figure 4.7 Lisp Port Acquisition 36

Figure 4.8 Opening a Lisp Client Connection 37

Figure 4.9 Sending a Message 37

Figure 4.10 Genera 6 and 7 defmethod 38

Figure 4.11 Generic Host Addressing 38

Figure 5.1 Sample Application make File 41

Figure 5.2 Normal Server Response 42

Figure 5.3 Normal Client Response 43

Figure 5.4 Creation of Machine Structure 44

Figure 5.5 Server Creation 45

Figure 5.6 Command Line Direction for Connection 46

Figure 5.7 Synchronous Write / Asynchronous Read 48

Figure 5.8 Reciprocal Synchronous Read / Asynchronous Write 50

Figure 5.9 Connection Termination 51

Figure 5.10 Loading Lisp Flavor 51

Figure 5.11 Lisp Connection Message 51

Figure 5.12 Setting Port Numbers with defvar 51

Figure 5.13 Specifying Server in Lisp 51

Figure 5.14 Specifying Server by Name in Lisp 52

Figure 5.15 Application Communication in Lisp 53

Figure 5.16 Termination of Communications in Lisp 54

Figure 5.17 Normal Receiver Response 54

Figure 5.18 Normal Broadcaster Response 54

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to a number of people who

supported this work. To my advisor, Dr. Michael Zyda, who provided me with the

initial idea and direction to start the project, and then stepped back, allowing me the

freedom to learn through exploration.

To the following people who provided programs and subroutines which were

incorporated into the project:

- Captain Andy Nelson, USMC, for the original versions of the irisflavor Lisp

routines.

- Dr. Sehung Kwak, for the conversion of the Explorer Lisp routines to run on the

Symbolics as streams.

- Mr. Al Wong, as the guiding light behind the original netV routines, as well as for

working broadcast routines, without which, the broadcast routines would never have

functioned.

- Dr. Michael Zyda, for the original versions of the mpath, netV, receive,

semaphore, send, shareseg, and support routines.

I would like to personally thank my wife, Clare, for the tremendous amount of

patience and support provided during all phases of the project. By expertly running a

home with two children and shuffling her schedule around the times I absolutely had to

work, she provided me the time necessary to fully pursue this project and all others.

XI

I. INTRODUCTION

The Graphics and Video Laboratory of the Department of Computer Science at the

Naval Postgraduate School permits the researcher to create three-dimensional visual

simulations from digital terrain data [Ref. 1]. Specialized graphics hardware allows the

display of such simulations in near-real time. The goal of a good part of the work in the

lab is the creation of a movie-like view of movement over and on terrain, with

increasingly complex movement animation models. Such projects have strained the

equipment's capabilities. One method of increasing available computing power is to

harness multiple heterogeneous machines together in some distributed computing

organization. It requires communication between the various machines, as well as

carefully matching each machine's capabilities to its assigned tasks.

A. Problem

Rapid turnover of inexperienced students at the Naval Postgraduate School makes

the creation of complex simulations difficult to manage. The learning curve becomes

steeper as the lab's capabilities increase. One of the areas of difficulty has been inter-

computer communications. So much time has been spent on designing, coding, and

debugging communication software, little has been left for the original research. We set

out to provide an easy-to-use, yet powerful, set of tools to aid in the development of

multi-computer projects.

1. Approach

A communication protocol can be optimized for large data transfers, or small

data transfers, or both. Efforts to optimize for both are both complex and difficult

[Refs. 2,3]. File transfer protocols such as FTP in the Defense Advanced Research

Project Agency (DARPA) Internet domain and uucp in the UNIX domain can be used for

large data transfers. Their overhead 1
is high. This overhead cannot be tolerated in a

real-time problem2
. Our visual simulation efforts rely on small data transfers to

communicate among machines. These small messages are typically commands and

changing status indicators. Transferring the entire "world view" is only a reasonable task

during initialization or reset. Hence, we designed our protocols for small messages.

2. Design Criteria

The design criteria for developed protocols were simplicity, ease of use,

portability, and efficiency. Rapid turnover of inexperienced students at the Naval

Postgraduate School makes simplicity of paramount importance. Inevitably, changes

will be required and only a simple protocol is easily modified to take advantage of new

capabilities. Much the same argument, and generally good software design practice,

make ease of use only slightly less important. Almost all operating system-level aspects

are hidden from the application. The number of other machines to be connected to, a use

of dynamic memory allocation, and the names of the other machines are the only

concerns for the application setting up a connection. The synchronization, or lack

thereof, in communication between machines is a design decision.

Portability dictated our use of TCP/IP, an integral part of the Defense Data

Network (DDN). Efficient use of processor power was considered more important than

efficient use of the network resources. The network is shared by the entire Computer

Science Department, but is not heavily loaded.

1 The cost of creating a file and then spawning a process to send it is high. On the receiving end, there is the cost

of creating the file and then reading it. Even a zero-cost file transfer protocol will require all this overhead.

2 Large data transfers, in real-time systems, will not be possible until 100 MByte/Sec networks are commonly
available.

B. BACKGROUND

1. Visual Simulation

a. Vision and Information Presentation

The eye has the largest bandwidth of any human sensory organ. Proper

use of this capability is a challenge to all scientists. Static graphs are used in most

disciplines to show the relationships between a limited number of variables. These two-

dimensional representations convey information more readily to human beings than

would a table of the underlying numbers. [Ref. 4: pp. 8-12]

Time, a common independent variable, is often one dimension on a graph.

The other dimension is a single dependent variable. To portray additional variables in

one presentation is a frequently occurring requirement. Various techniques such as

multiple colored lines, multiple icons, and perspective drawing are used. With each

technique, only a few additional variables are added before the graph becomes

incomprehensible

.

Pictures, particularly those in color, have a dense information content.

Unless blind, we live in a world of pictures. Human beings can recognize many

differences between two similar pictures. One presentation portrays many different

variables. When a series of pictures are presented, the time variable is easily correlated

to the actual time of presentation. When a series of pictures is presented rapidly, the

experience approaches reality, partly explaining the success of moving pictures and

television.

Animation creates visual images with an explicit time dimension, in

addition to two or three spatial dimensions. Using actual time to portray the

experimental time variable allows at least one more dependent variable on the display.

Images can be as simple as a changing graph, or as complex as a feature-length cartoon.

However, animation creates its effect with the playback of prerecorded scenes [Ref. 5].

It is not suitable for providing immediate feedback to a researcher.

b. Definition

Visual simulation is the creation, by computer, of a realistic, easily-

modified, moving image from the mathematical model of a phenomenon. Realism

implies high-resolution, color graphics. Movement implies adequate floating point

calculation capacity to recalculate the model and its graphical representation between

display refresh cycles. Easy modification implies a well-designed computer application.

Visual simulation allows a researcher to experiment easily with his

subject. Ideally, we display a realistic approximation of part of the world. The

experimenter then manipulates some part of this visual simulation and receives

immediate visual feedback. The rapidly refreshed display is one key to visual realism.

Such a display allows the direct manipulation of the visual simulation, making it easy

and intuitive to use [Ref. 6]. Ease of use allows the researcher to concentrate on the

research question, not the display methodology or the computer interface.

c. Examples

Recent visual simulation projects of the Graphics and Video Laboratory

include speed control of autonomous vehicles [Ref. 7], control of autonomous walking

machines [Ref. 8], rule-based control of autonomous underwater vehicles [Ref. 9],

interactive moving platforms [Ref. 10] and combat vehicle control [Ref. 11]. Each of

these projects exceeded the capacity of a single workstation. The speed control and

interactive moving platform projects, written entirely in C, used two Silicon Graphics,

Inc. IRIS workstations, allowing multiple simultaneous views. The other projects all

required a rule-based artificial intelligence component, best programmed in Lisp for ease

of modification. Running the Lisp subsystem on the IRIS workstation gave an

unacceptably low refresh rate and correspondingly poor realism [Ref. 12]. Placing the

Lisp subsystem on another machine improved the refresh rate of the IRIS workstation

used for the graphics display.

2. Computer System Architecture

Computer systems can have a distributed or a non-distributed architecture.

Distributed architectures have only one characteristic in common, more than one

processor used to accomplish the task. Beyond this, many different approaches have

been tried [Ref. 13]. Identical processors give a homogeneous architecture. Different

processors give a heterogeneous architecture. Either distributed architecture may

incorporate shared memory or it may not. The separate processors can be closely or

loosely coupled. Communication between processors can be via shared memory,

common bus, or some form of communications network. Communication via some

combination of the above, such as a file server on a local area network, is also

common [Ref. 3]. In the Computer Science Department at the Naval Postgraduate

School, a heterogeneous mix of stand-alone workstations, file server supported

workstation clusters, and minicomputers communicates via Ethernet.

Programming distributed architectures has inspired creativity. The

fundamental problems with distributed programming are the communications between

processes and the temporal interaction of the processes. Communicating sequential

processes [Ref. 14], distributed processes [Ref. 15], and remote procedure calls

[Refs. 2, 16] have all been proposed as primitives to hide message passing from the

programmer. Remote procedure calls [Refs. 2, 3] and communicating sequential

processes [Ref. 17] have been implemented. However, even today, none of these is

generally available as a standard mechanism across varied architectures. We have

created simpler (but less general) communication routines for use among heterogeneous,

distributed, standalone computers.

Complex projects can require the resources of more than one computer.

Graphics portions are best handled by the specialized hardware of a graphics workstation,

such as a Silicon Graphics, Inc. IRIS. Artificial intelligence portions are best handled by

a Lisp machine, such as a Symbolics or a Texas Instruments Explorer . Database

requests can be made to a machine with appropriate database software. A general

purpose computer, such as the Digital Equipment Corporation VAX , can be used for

additional processing power, file storage, or other administrative support. Providing easy

access across such a mix of heterogeneous computers is a large task [Ref. 3]. The simple

mechanism described in this work gives communication access between cooperating

processes running on diverse hardware. It leaves temporal design to the application

developer, while providing the tools for synchronous and asynchronous interaction.

3. Communication

Communications between computers cooperating on a task can be one-to-one,

many-to-one, or one-to-many. It can be synchronous or asynchronous. Any, or all, of

these can be required for one visual simulation.

One-to-one, or direct connect, communications puts the lowest load on the

network when there are few messages to be sent. A single virtual channel between the

two processes is required. Each communication between any two processes comprises

one message. All messages are known to be intended for the receiving process. These

messages can be sent synchronously or asynchronously. Direct connect communication

requires one action by the sender and one by the receiver. With more processors,

Symbolics is a trademark of Symbolics, Incorporated.

* Explorer is a trademark of Texas Instruments Incorporated.

" VAX is a registered trademark of Digital Equipment Corporation

potential virtual channels grow in number geometrically. For a fully connected network,

the virtual channels required can exceed capacity. The potential messages required also

grow geometrically in number.

One-to-many, or broadcast, communications puts the lowest load on the

sending process. A message is sent to all other processes that are connected to it. It

requires one action by the sender, and two actions by each receiver (the reception and a

decision on whether the message is intended for that receiver). It also places one to n

messages on the network (depending on how the network and the broadcast protocols are

designed). It is primarily used in an asynchronous mode, although synchronous protocols

could be designed.

Many-to-one communications puts the highest load on the receiving process. It

requires two actions by the receiver on every message that is sent by any connected

process. It is also a primarily asynchronous method. The receiver portion of a process

sees many-to-one whenever broadcast protocols are the only ones used in a visual

simulation.

C. Organization

The previous sections of this chapter provide background on visual simulation,

distributed architectures, and communication paradigms. Chapter II describes the

hardware and software environment in the Computer Science Department at the Naval

Postgraduate School. The protocols developed are discussed in Chapter III. Chapter IV

describes the implementation of the protocols. Chapter V covers the use of these

protocols. The performance of the protocols is detailed in Chapter VI. Chapter VII

concludes with a discussion of limitations, future extensions and research topics, and

summarizes the research conducted. Listings of the program source code for each of the

hardware systems are included as Appendices.

n. Existing System

A. Introduction

The distributed architecture available in the Naval Postgraduate School Computer

Science Department Graphics and Video Laboratory is Ethernet-connected workstations

and minicomputers. The workstations include IRIS 2400, 3120, and 4D graphics,

Symbolics 36xx and TI Explorer Lisp, ISI AI, and Sun-3s . The minicomputers include

VAX 11/785 and an ISIV minicomputer complex providing database services. All

computers, except the Symbolics and TI, use some version of UNIX as the primary

operating system.

B. HARDWARE

1. Network

Ethernet connects all the computers in our lab. There is a backbone network

and subnetworks for certain groups of computers. Currendy there are two subnetworks,

one for the ISIV minicomputers and one for the ISI AI workstations. Subnetworks are

planned for the IRIS workstations, the Sun Workstations , and the Symbolics and TI

workstations. Figure 2.1 illustrates the network configuration.

* Symbolics 3600, Symbolics 3640, Symbolics 3650, and Symbolics 3675 are trademarks of Symbolics, Inc.

** Sun-3 is a trademark of Sun Microsystems, Inc.

UNIX is a trademark of AT&T Bell Laboratories

Sun Workstation is a registered trademark of Sun Microsystems, Inc.

8

vmsl

irisl iris2 iris3 iris4

expl

syml

exp2 exp3 exp4

CHAOS

sym2 sym3 sym4

.-suhsl sunslO s u rfs 1-Q

Sun File Server/Diskless Workstations

suns2

L

suns20 suns21
j""""^""™*.

ail . . . ai7 ai8

isivl • • • isiv7 isiv8

CS Backbone Ethernet

CS Subnetwork

Figure 2.1 Network Configuration

All computers support TCP/IP protocols. The Symbolics Lisp machines also

use the CHAOS protocol to provide file server services from syml to the other Symbolics

machines. This logical local area network (LAN) uses the Ethernet backbone for its

messages. The Sun file servers also support their diskless nodes over the backbone

Ethernet.

2. Workstations

a. Silicon Graphics, Inc. IRIS

Table 2.1 shows the IRIS workstation configurations. All are connected

directly to the backbone Ethernet. The proprietary Geometry Engines in each of these

workstations allows three dimensional color graphics displays to be generated and

updated in real-time. The primary use of these machines is for color graphics.

b. ISI AI

Table 2.2 shows the ISI AI workstation configurations. Only ai8 is

connected directly to the backbone Ethernet. The other workstations are connected to it

in a subnetwork. These workstations are used primarily for artificial intelligence

projects. The ai8 machine provides, as well as a gateway to the backbone Ethernet, file

server support for the other workstations. Their high resolution black on white monitors,

although bitmapped, have rudimentary graphics capabilities.

Table 2.1 IRIS WORKSTATION CONFIGURATIONS

Nickname

Model

No.

Memory

(MBytes)

Disk

Capacity

Bit

Planes

Floating

Point

Accelerator

Screen

Resolution

irisl

iris2

iris3

iris4

4D/70G
2400 Turbo

3120

4D/70G

8

6

4

8

380MB
144MB
144MB
380MB

56

32

32

56

N/A
Y
N
N/A

1280x1024

1024x768

1024x768

1280x1024

10

Table 2.2 ISI AI WORKSTATION CONFIGURATIONS

Nickname
Model
No.

Memory
(MBytes)

Disk

Capacity

Bit

Planes

Screen

Resolution

ail V8WS 4 101MB 2 1280x1024
ai2 V8WS 4 101MB 2 1280x1024
ai3 V8WS 4 101MB 2 1280x1024
ai4 V8WS 4 101MB 2 1280x1024
ai5 V8WS 4 101MB 2 1280x1024
ai6 V8WS 4 101MB 2 1280x1024
ai7 V8WS 4 101MB 2 1280x1024
ai8 V16WS 4 403MB 2 1280x1024

c. Sun-3/50

Table 2.3 shows the Sun Workstation configurations. All are connected

directly to the backbone Ethernet. The black-on-white monitors of the Sun diskless

workstations are primarily used for administrative tasks at this time.

d. Symbolics 36xx

Table 2.4 shows the Symbolics workstation configurations. All are

connected direcdy to the backbone Ethernet. The Symbolics workstations are used for a

Table 2.3 SUN WORKSTATION CONFIGURATIONS

Niplrnsimf"
Model Memory Disk Bit Screen

No. (MBytes) Capacity Planes Resolution

sunsl 3/1 80S 12 490MB 2 1280x1024

sun10 3/50 4 N/A 2 1280x1024

sunll 3/50 4 N/A 2 1280x1024

sun 12 3/110 4 N/A 2 1280x1024

sun 13 3/110 4 N/A 2 1280x1024

sun 14 3/60 4 N/A 2 1280x1024

sun 15 3/60 4 N/A 2 1280x1024

sun16 3/60LC 4 N/A 10 1280x1024

sun17 3/50 4 N/A 2 1280x1024

sunl8 3/50 4 N/A 2 1280x1024

sun 19 3/50 4 N/A 2 1280x1024

suns2 3/1 80S 12 490MB 2 1280x1024

sun20 3/60LC 4 N/A 10 1280x1024

sun21 3/60LC 4 N/A 10 1280x1024

11

Table 2.4 SYMBOLICS WORKSTATION CONFIGURATIONS

Nickname
Model

No.

Memory
(MBytes)

Disk

Capacity

Bit

Planes
Color

Screen

Resolution

syml
sym2
sym3
sym4

3675

3640

3640

3650

5

1

1

5

1GB
180MB
180MB
512MB

24

1

8

1

Y
N
Y
N

1280x1024

1280x1024

1024x1024

1280x1024

variety of research projects involving artificial intelligence. The syml machine provides

file server support for the other Symbolics machines using the Chaos protocol and its one

GigaByte (unformatted) storage capacity. The color-capable systems are used to display

static information with color providing an easier human interface,

e. Texas Instruments Explorer

Table 2.5 shows the Explorer workstation configurations. All are

connected directly to the backbone Ethernet. The TI Explorers are also used for artificial

intelligence projects. They have the least graphical capabilities of any of the

workstations.

3. Digital Equipment Corporation VAX 11/785

Table 2.6 shows the two DEC VAX 11/785 computer configurations. Both are

connected direcdy to the backbone Ethernet. Only the unixl machine was included in

this project. The vmsl machine may not be available in the future, so the effort to

Table 2.5 EXPLORER WORKSTATION CONFIGURATIONS

Nickname
Model
No.

Memory
(MBytes)

Disk

Capacity

Bit

Planes

Screen

Resolution

expl

exp2

exp3

exp4

I

I

I

I

4

8

8

2

280MB
420MB
420MB
140MB

1

1

1

1

1024x808

1024x808

1024x808

1024x808

* DEC is a registered trademark of Digital Equipment Corporation

12

Table 2.6 VAX CONFIGURATIONS

Nickname
Model
No.

Memory
(MBytes)

Disk

Capacity

Operating

System

unixl

vmsl
11/785

11/785

24

8

1395MB
1442MB

UNIX
VMS

develop appropriate code was deemed unnecessary. The unixl machine is nps-cs.arpa

on MILNET and is the sole external access point to other machines connected locally via

Ethernet. It supports the various dial-up lines, as well as other administrative functions.

4. ISIV minicomputers

The computers in Table 2.7 make up the ISIV minicomputer complex. Only

isiv8 is connected to the backbone Ethernet. The other machines are connected to isiv8

in an Ethernet subnetwork. The ISIV minicomputers provide a high performance, multi-

backend distributed database. Any of the high-resolution black on white monitors can be

used with any of the hosts on the subnetwork. The character displays can also be used on

any of the subnetwork hosts. The graphics capabilities of these machines are limited.

Table 2.7 ISIV DATABASE MACHINE CONFIGURATION

Nickname
Model Memory Disk Bit Screen

No. (MBytes) Capacity Planes Resolution

isivl V24S 4 602MB N/A 80x24char

isiv2 V24WS 4 500MB 2 1280x1024

isiv3 V24WS 4 602MB 2 1280x1024

isiv4 V24WS 4 500MB 2 1280x1024

isiv5 V24S 4 602MB N/A 80x24char

isiv6 V24S 4 602MB N/A 80x24char

isiv7 V24WS 4 602MB 2 1280x1024

isiv8 V24WS 4 459MB 2 1280x1024

isiv9 V24S 4 602MB N/A 80x24char

13

C. Software

1. UNIX Machines

Two versions of UNIX are commonly used. The machines purporting to use

System V , also incorporate characteristics of 4.2BSD and 4.3BSD. The relevant

incorporation is the Berkeley socket mechanism.

a. 4.3BSD

A "pure" 4.3BSD system (4.3 BSD UNIX #11) exists only on unixl. The

ISIV minicomputers use 4.2 BSD UNDC Release 3.07, with a multi-backend database

system installed [Refs. 18-20]. The ISI AI workstations use IS68K 4.3 BSD UNDC: 4.0D

#2.

b. System V

The IRIS 4D systems use UNDC System V-based version 4D 1-2.2. The

IRIS 2400 and 3120 systems use UNDC System V-based version GL2-W3.6. Both have

extensive 4.3BSD extensions. The Sun-3 uses an almost System V version of 4.2BSD

UNDC. The currently installed release is 3.4.

2. Lisp Machines

a. Genera

The Symbolics Lisp Machines first used Genera 6.0 software. All

machines are now on Genera 7.1.

b. Explorer

The TI Explorer lisp machine first used Explorer version 1.0.2 software.

All machines are now on version 3.4 except expl , which is still on version 3.2.

UNDC System V is a trademark of AT&T Bell Laboratories

14

D. SUMMARY

The configuration described above is constantly changing. Additional machines are

acquired. Older machines receive hardware upgrades. The network is reconfigured.

Software releases are updated (especially 4.2BSD UNIX to 4.3BSD UNIX). The

fundamental needs for distributed computation in this heterogeneous environment

remain.

15

m. Protocols

A. Introduction

Our visual simulation efforts rely on small data transfers to communicate among

machines. These small messages are typically commands and changing status indicators.

Hence, we optimized our protocols for small messages. Overhead to optimally encode

and decode packets was deemed inappropriate. The design criteria for developed

protocols were simplicity, ease of use, portability, and efficiency.

B. Direct Connection

The client/server paradigm is used for direct connection. The client requests

services from the server, so establishing communications is asymmetrical. Once

communications are established, however, the protocol used is completely symmetrical.

[Ref. 21: p. 17]

1. High-Level Protocol

The variety of data types supported is limited (see Table 3.1). Each message

contains exactly one instance of one type of data. All integer or float data is converted to

an ASCII character string before it is sent. It is converted back to the proper type after

Table 3 . 1 DATA TYPES SUPPORTED

Type
Length

(Bytes)
Elements Code Available

character 1

single B Y
array C Y

integer 4
single I Y
array J N

float 4
single R Y
array S N

16

reception. While the conversion is unnecessary when communicating between similar

architectures, it greatly simplifies the task of communicating between fundamentally

different architectures. Knowledge of the other machine's architecture is not required.

The inherent portability of this solution outweighs the processing cost.

A message is created with three fields. The type field is a one-character field.

It contains the appropriate code from Table 3.1. The length field is a four-character field.

It contains an ASCII string from 0001 to 9999. This string gives the length of the data

field. The data field is a variable length field containing the ASCII representation of the

data element. Figure 3.1 illustrates these fields.

While C programmers are continuously concerned with data types, Lisp

programmers are not. The Lisp routines support arrays of characters, single integers, and

single floating point numbers. Each of these is an object. Objects, not types (as implied

in Table 3.1), are received and sent by lisp applications. The underlying protocol is the

same, the application interface is different
3

.

Position

1 2 3 4 5 6 7 n

T
y

p
Length Data

e

Figure 3.1 Message Format

3 Giapter 5 discusses applications' use.

17

2. Supporting Protocols

Full-duplex stream sockets are used to provide sequenced, reliable connection

between machines. The sockets are created in the DARPA Internet domain. The

Internet pseudo-protocol is used [Ref. 22]. No out-of-band capability was included. We

could not envision a use for it, since our protocol is inherently asynchronous. If a strictly

synchronous protocol was used, out-of-band transmission might be necessary to interrupt

for an urgent message. In an asynchronous protocol, however, encoding the next

message gives the same effect. Processing overhead for encoding is no greater than for

continuous monitoring for an out-of-band message. With only a small volume of data

transfers expected, no urgent message waits very long.

Two ports, each with its own stream socket, are used for each channel between

machines. Although full-duplex, the stream sockets are used in a simplex mode. The

separate sockets are used because two processes cannot be bound to the same socket at

the same time. Two separate UNIX processes then monitor the independent send and

receive sockets. Blocking sockets are used, avoiding processing overhead for busy-

waiting. While non-blocking sockets are available in 4.3BSD [Ref. 21: p. 25], they were

not explicitly available in 4.2BSD [Ref. 22]. Operating systems might include 4.2BSD

sockets rather than 4.3BSD versions and so the blocking socket mechanism was deemed

more portable. Both TCP/IP and the C routines provide buffering.

On the TI Explorer, sockets were also blocking
5

. Direct access was made to

the TCP methods provided. Lisp streams are used for the Symbolics lisp routines. The

4 This is the underlying mechanism of the Defense Data Network (DDN) and was chosen for its wide availability

and applicability to Department of Defense problems.

5 Version 1.0 of the Explorer TCP/IP software uses blocking sockets. Version 2.0 uses non-blocking sockets.

There has been no update of this system's TI Explorer lisp routines to version 2.0.

18

lisp stream mechanism isolates the code from the issues revolving around blocking

versus non-blocking sockets.

C. BROADCAST

A broadcast message is sent to all machines on a local Ethernet. Those machines

that are waiting for some broadcast message will probably
6
receive it. If a machine on a

subnetwork is to get a broadcast message, an application must run on the gateway

machine that will rebroadcast on the subnetwork any messages received on the backbone

Ethernet. Machines not expecting a broadcast message must nevertheless process it and

reject it as inappropriate. The extra load on all machines connected to the Ethernet

restricts broadcasting to infrequent occurences until most of the machines used in

simulations
7
are on a private subnetwork.

1. High-Level Protocol

We expect users of the broadcast protocol to mix its use with the use of direct

connections. The same data types and messages are supported (see Table 3.1).

2. Supporting Protocols

Full-duplex datagram sockets are used to provide connectionless broadcast

capability. The sockets are created in the DARPA Internet domain. As with our use of

stream sockets for the direct connection protocol, we use these full-duplex datagram

sockets in a simplex mode. We use a sending socket for one-way sending of a broadcast

message to all other machines on a single network or subnetwork. We use a receiving

socket for one-way receiving from a specific broadcasting machine on the network or

6 Unlike the direct connect protocol, the broadcast protocol does NOT guarantee reception. Trying to provide

such a guarantee requires a feedback machanism so that the sender knows that the machines expected to receive the

broadcast did so. This is difficult without resorting to a direct connection or flooding the network with messages.

7 The IRIS machines and the Lisp machines are the ones principally used for visual simulation.

19

subnetwork. Direct connection, with its use of guaranteed reliable stream sockets, is

used for any other communication, including return messages. [Ref. 21: pp. 32-34]

As in the direct connection protocol, independent UNIX processes are bound to

the sockets. Since broadcasting is a one-way activity, a sender or receiver only spawns

a

one UNIX process.

D. SUMMARY

By building our high-level protocols on top ofDARPA TCP/IP standards, we provide

the highest degree of portability possible today. By using full-duplex stream sockets and

datagram sockets in a simplex mode, we do not make full utilization of a socket's

capabilities. However, this concern is outweighed by the increased simplicity and

resultant maintainability of the code. The use of ASCII character strings for the messages

is simple and makes interconnection with diverse architectures straightforward.

8
If broadcasting were used exclusively for complete connectivity, each of n machines would spawn n processes.

If direct connection was used exclusively for complete connectivity, each of n machines would spawn 2n-2 processes.

20

IV. Implementations

a. Introduction

The first connection was between the IRIS 2400-Turbo and TI Explorer. Then the

Symbolics Lisp machines were included. These routines have had extensive use

[Refs. 8,9, 11]. The IRIS functions were updated for the IRIS 4D, coincidentally

providing Mex support on the older IRIS machines. Broadcast capability was added for

UNIX-based machines. A port to 4.3BSD UNIX (application calls unchanged) was begun.

B. SYSTEM V UNIX

All our System V UNIX-based systems include the socket mechanism first

introduced by 4.2BSD. Sockets are a key aspect of all implementations. We expect they

will become part of System V or its successors [Ref. 23]. The System V-unique

semaphore and shared memory interprocess communication (IPC) capabilities are also

used.

1. Silicon Graphics, Inc. IRIS 2400

a. Sockets

The socket was introduced in 4.2BSD as the preferred metaphor for IPC. It

was easy and efficient to implement and the select mechanism could be used to

implement remote procedure calls, if desired [Ref. 23]. System V had no comparable

mechanism until version 3 was released with streams. The BSD sockets were included

by many vendors, Silicon Graphics, Inc. included . While the use of sockets could be

9 The System V version available on the IRIS machines, at the start of the project, was version 2 and so streams

were not considered.

21

replaced with streams, device drivers would have to be written. The advantage of

streams is the ability to filter them between streamhead and the actual device driver.

These filters, however, reside in the kernel's address space and have the kernel's

permissions [Ref„ 241. In our environment, the potential performance increase is not as

important as the requirement for simplicity.

The system call for socket creation is socket. The system calls supporting

socket configuration are setsockopt, bind, connect, and accept
10

[Ref. 22]. To simplify

their use, these are all repackaged into four high level routines: connect_server and

connect_client for direct connection, start broadcast and broadcastjreceive for

broadcast. These routines are encapsulated in netV.c. netV.c can be separately linked

with any application that needs to make a server/client connection using stream sockets

or a broadcasting connection using datagram sockets. Table 4.1 describes the four

routines.

Using the socket number , a process can transmit data through the socket.

In our system, sockets for inter-computer communication are created and used by the

send and receive processes exclusively. The file netV.c is not linked with the application

at all.

10 The accept system call is only relevant to stream sockets. The setsockopt, bind, and connect system calls are

used with both stream sockets and datagram sockets.

In the direct connect protocol, the server process reads from and writes to a remote socket number. The client

process reads from and writes to its local socket number. The reason for this is that a server could be connected to dif-

ferent clients (although not in our implementation) at different times. The client, meanwhile, is only going to connect

to the one server. In the Internet domain, all necessary routing information, for either server or client, is contained in a

sockaddrjn structure and is accessed (transparently) via the socket number.

In the broadcast protocol, both the broadcaster and receiver(s) use their local socket number because they are

using connectionless datagram sockets. The routing information is also contained in a sockaddrjn structure.

22

Table 4. 1 SOCKET SUPPORT FUNCTIONS

Function Description Use

connect_server

Creates socket. Binds that

socket to remote client ad-

dress and port. Waits to ac-

cept the remote client con-

nection. Returns the socket

number for the remote client.

int connect_server(. remote_client_name, port_number)

char remote_client_name[];

int port_number,

remote_socket = connect_server(remote_client_name,

port_number)

connect_client

Creates socket. Binds that

socket to remote server ad-

dress and port. Connects

with remote server. Returns

the local socket number.

int connect_client(remote_server_name, port_number)

char remote_server_name[];

int port_number,

local_socket = connect_client(remote_server_name,

port_number)

start_broadcast

Creates socket. Sets it to

broadcast mode. Binds it to

local address and specified

local port. Returns the local

socket number.

int start_broadcast(port_number

)

int port_number;

local_socket = start_broadcast(port_number)

broadcast_receive

Creates socket. Binds it to

local address and specified

port. Adds broadcaster ad-

dress and port. Returns the

local socket number.

int broadcast_receive(broadcaster_name, broadcaster_port)

char broadcaster_name[];

int broadcaster_port;

local_socket = broadcast_receive(broadcaster_name,

broadcaster_port)

b. Semaphores

The semaphore mechanism was chosen as the least expensive, in both

space and time, for communication between processes. Signals could have been used,

but implementation would have been more complex and less reliable. Signal-based

communication functions would also have been more difficult for the application

programmer to use [Ref. 25: p. 10]. There are two semaphore ids maintained for each

connection
12

. One is used to communicate with the send process; one is used to

communicate with the receive process. The two semaphores are both used to signal theii

process when it is safe to proceed. A send process is permitted to proceed only after the

12 Two semaphore ids are required for direct connect protocol connections since both a send and a receive pro-

cess are spawned. Two semaphore ids are still created for broadcast protocol connections, even though only one pro-

cess is spawned.

23

application has requested a write action on the channel. A receive process is permitted

to proceed only after the application has read all data from the shared memory buffer.

Neither the send nor the receive process is executing more than absolutely necessary,

assuring maximum availability of the local processor to the application.

The system calls supporting semaphores are semget, semop, and semctl.

To simplify their use, they are repackaged into three high level routines: semtran, P, and

V [Ref. 25: pp. 188-190]. These routines (and a support routine semcall) are

encapsulated in semaphores. It can be separately linked with any application that needs

semaphores. Table 4.2 describes the three routines.

c. Shared Memory

A cost barrier to IPC in UNIX is the cost of copying data from one process

to the kernel and then from the kernel to another process. Using a shared memory

segment, as a buffer, rninimizes this overhead. To further reduce overhead from system

calls, only a single segment is created. An application accesses the entire segment, while

a send or receive process accesses only its preassigned section. Figure 4.1 displays the

layout. The message area of each section is used for several purposes. It is formatted as

Table 4.2 SEMAPHORE SUPPORT FUNCTIONS

Function Description Use

semtran
Creates a semaphore associ-

ated with a key. Returns a

semaphore id.

int semtran(key)

int key;

sid = semtran(key);

P Acquire semaphore
void P(sid

)

int sid;

V Release semaphore
void V(sid)

int sid;

13 The data must also be valid in the shared memory buffer. All this is transparent to the application, which only

issues a write command.

24

Receive Section

Message Data

12 3 1 n

Send Section

Message Data

12 3 1 n

Shared Memory Segment

Receive Send Protocol

...

n

+

3

n

+
4

2n

+

7

2n

+
8

2n

+
19

where n = LARGESTREAD from shared.h

Figure 4. 1 Shared Memory Segment Data Assignment

a long (4-byte) integer. Table 4.3 describes the meaning of three-state values placed in

this area.

Table 4.3 SHARED MEMORY MESSAGES

Value

Meaning

to

send

Meaning

to

receive

Meaning

to

Application

positive

Data of length given is

in shared memory,

ready to be sent.

Application has not

finished reading data

from shared memory.

send: Data in shared memory

has not yet been sent to other

machine.

receive: Valid data of length

given is in shared memory,

ready to be read.

zero
Nothing ready to be

sent.

Application has read

data from sliared

memory. Message

from other machine can

be read, up to LAR-
GESTREAD bytes.

send: Previous message has

been sent. Ready to send

next message.

receive: No valid data in

shared memory.

negative Signal to terminate. Signal to terminate. N/A

25

The system calls supporting shared memory are shmget, shmat, shmdt, and

shmctl [Ref. 25: pp. 192-198]. To simplify their use, they are repackaged into four high

level routines: sharedsegment, dynamicsharedsegment, detachsharedsegment, and

deletesharedsegment. These routines (and a support routine attach_within_datasegment)

are encapsulated in shareseg.c. It can be separately linked with any application that

needs shared memory. Table 4.4 describes the four routines.

The implementation of shared memory on the IRIS 2400 and IRIS 3120

was a surprise. A basic UNIX memory allocation scheme is shown in Figure 4.2. Each

process has its own text, data, and stack sections. Neither the relative locations of these

sections nor the direction of growth for stack and data sections is specified for UNIX.

The shared memory segments are logically part of the data section [Ref. 26: p. 151].

Table 4.4 SHARED MEMORY SUPPORT FUNCTIONS

Function Description Use

sharedsegment

Creates (if not already in ex-

istence) a shared memory

segment associated with a

key. Attaches application to

that shared memory segment.

Returns a shared memory

segment address and id

Does not permit subsequent

dynamic memory allocation.

char *sharedsegment(key, nbytes, shmid)

long key;

long nbytes;

int *shmid;

segment = sharedsegment(key, nbytes, shmid)

dynamicsharedsegment

Creates (if not already in ex-

istence) a shared memory

segment associated with a

key. Attaches application to

that shared memory segment.

Returns a shared memory

segment address and id. Per-

mits subsequent dynamic

memory allocation.

char *dynamicsharedsegment(nummachines,

key, nbytes, shmid, freespace)

int nummachines;

long key;

long nbytes;

int *shmid;

int freespace;

segment = dynamicsharedsegment(num-

machines, key, nbytes, shmid, freespace)

detachsharedsegment
Detach shared memory seg-

ment from application

void detachsharedsegment(segment)

char *segment;

deletesharedsegment
Delete shared memory seg-

ment

void deletesharedsegment(segment, shmid)

char *segment;

int shmid;

26

Stack

growth

growth

Data

Code

Figure 4.2 UNIX Memory Allocation

Actual implementation is left to the team porting UNIX to the machine. The Silicon

Graphics, Inc. implementation attaches a shared memory segment to the first available

valid
14

address within the data section. However, the beginning of shared memory

delimits the size of all other sections [Ref. 26: pp. 367-370]. Figure 4.3 illustrates this

14 Shared memory segments must begin on a page boundary. This allows easy table-driven access by multiple

processes. On the IRIS 2400 and 3120 machines, the Motorola 68000 architecture is used. The pages are 8KBytes.

27

Unallocated

Available

Memory-

Data Section

Code Section

Maximum
Data

Section
Address

Unallocated

Unavailable

Memory

Shared Memory Segment

Data Section

Code Section

Before After

Figure 4.3 IRIS 2400 Default Shared Memory Attachment

1 S
relationship. While no dynamic memory calls are made, the default arrangement works

fine. But when dynamic memory allocation—linked lists and makeobjO calls are

examples—is needed, the technique fails.

To allow dynamic memory allocation, the shared memory segment must

be attached at an address beyond the greatest ever required for regular data. Dynamic

allocation can then occur without reaching the shared memory segment. Attaching at an

unknown address both within the data section and sufficiently beyond existing data to

permit dynamic data section growth, can be done at least two ways. First, the data

section can be expanded until it is as large as possible, then the shared memory segment

15 Dynamic memory allocation is made with system call brk or alternate sbrk. Library functions nialloc, realloc,

and calloc use brk and so also do dynamic memory allocation.

28

can be attached at a valid location just inside this maximum value. While minimizing

application programmer effort, this technique requires many system calls to grow the

data section. It also has the fatal flaw of limiting the stack section, if the stack section

and data section grow into the same unallocated memory. Second, the application can be

required to prespecify the maximum amount of dynamic memory allocation it might use.

The solution adopted is adding a freespace parameter to the

sharedsegment function; and renaming it the dynamicsharedsegment function. The

sharedsegment function was retained for backward compatibility. The freespace

parameter gives the caller the ability to specify the maximum additional memory

required for the application. A request for this additional space is made before the shared

memory segment is attached. After acquiring (and freeing) the additional space, the next

available address is determined and the shared memory segment is attached to the next

valid address. We have now established the shared memory segment beyond the

specified growth of the application's data.

When multiple machines are connected together, there must be a separate

shared memory buffer for each channel. There is no way to connect a second shared

memory segment. The solution adopted is adding a nummacnines parameter to the

dynamicsharedsegment function. The nummachines parameter requires the application

developer to specify, in advance, the maximum number of channels that can be created in

the application. The first dynamicsharedsegment call establishes a shared memory

segment big enough for nummachines maximum requested channels. Subsequent

dynamicsharedsegment calls return the same shared memory id as the first; but return a

different address within the segment. Since the application does not directly access these

functions, there were no problems caused by this parameter list change.

29

The shared memory functions are isolated from the application by the

machinepath, dynamicmachinepath, dynamicmachinepaths , and deletemachinepath

functions
16

. For the direct connect protocol, each machinepath, dynamicmachinepath, or

dynamicmachinepaths call spawns both a send and a receive process. For the broadcast

protocol, these calls spawn only a send process (for the broadcaster) or a receive process

(for the receiver). In all cases, the spawned processes issue a sharedsegment call to

attach to the shared segment earlier created by the spawning function. A command line

parameter is passed providing the offset into the shared memory segment that the

spawned process is to use. Figure 4.4 illustrates a system with three machines and two

channels.

d. Buffering

(1) Direct Connect . When a receive process is quiescent, waiting for

the application to read from the shared memory buffer, anything sent to it is buffered by

TCP/IP. The buffering provides the reliable delivery promised by a stream socket. The

next read command will deliver up to LARGESTREAD bytes into the receive data area of

the shared memory buffer. Since the messages are variable length, there cannot be a

guarantee that only one message was read
17

. Multiple messages might be in the shared

memory buffer. A partial message might be in the last bytes.

The shared memory buffer management is handled by the various

read functions
18

provided. Each read, requested by the application, is satisfied from the

16 See Chapter 5, Sections A.l.b(l) and A.l.b(3) for more information on these functions.

17 The idea to pad all messages to some arbitrary size was considered and rejected. Whatever size was chosen

would always be too small for some character array. If the maximum Ethernet packet size was chosen, an unnecessary

network dependence would be introduced. The cost of application buffer management is considered acceptable, espe-

cially since it is incurred only on reads.

See Chapter 5, Section A. l.b(2) for more information on these functions

30

shared memory buffer

unal 1 ocated

memory

send port

i

i

receive port

Data

anal located

memory

unallocated

memory

Data Data

Appl i cati on send recei ve

shared memory buffer

unallocated

memory

Data

Appl i ca.ti on

unallocated

memory

Data

sem

unallocated

memory

Data

recei ve

I

send port

receive port

shared memory buffer

shared memory buffer

unallocated

memory

Data

Applicati on

send port

receive port

send port

;i_j

\t
—

unallocated

memory

Data

sent.

unallocated

memory

Data

recei ve

unallocated

memory

Data

sent

receive port

unallocated

memory

Data

recei ve

Ethernet
Figure 4.4 Three-Machine Interconnection

31

shared memory buffer. Remaining valid data is shifted into the low order positions of the

data area. The count of valid bytes, held in the message area, is decremented. The

shared memory buffer now appears as it would have, if it had only received the

remaining data and not the first message at all. As long as only entire messages are

received (one or more at a time), this works well. When the TCP/IP buffer has more data

than the data area can take at one time, however, the receive process deposits

LARGESTREAD bytes in the shared memory data area. It is highly unlikely that this will

be on a message boundary.

A socket read overwrites all data in the data area. A partial data

reception must be stored and concatenated with bytes from the next socket read to get a

complete message. The protocol area was introduced to retain the protocol

information
19

required to decipher the variable length messages. The count of already

received bytes of a message is held here between socket reads. A message's protocol

information is stored here, too. Protocol information is built up until complete (covering

the possibility that the break is in the protocol information itself). It is then maintained

until the entire message is received and read by the application. The buffering works

with data areas as small as four bytes
20

.

(2) Broadcast . The datagram socket used by the broadcast protocol

preserves message boundaries. Each recvfrom call to a socket returns only one message.

This message must be no longer than LARGESTREAD bytes. The shared memory buffer

management routines are not needed.

19 See Chapter 3, Section B. 1 for a description of the protocol

20 LARGESTREAD must be specified in multiples of four bytes. The smallest possible data area is therefore

four bytes.

32

TCP/IP keeps unread messages on a queue. This queue may not be in

sending sequence. If the queue buffer becomes full, subsequent messages are lost

[Ref. 21: p. 8-8]. The sending buffer can easily be filled if many messages are broadcast

in a short period of time. Each broadcast message must be processed by every host on

the Ethernet. Only then can the next be sent. No access for manipulation of the TCP/IP

sending buffer is provided because its size is normally specified during system generation

and is not easily manipulated by an application program.

2. Silicon Graphics, Inc. IRIS 3120

There are no required changes to the IRIS 2400-Turbo code. The Makefile

must be changed to remove the -Zf compile flag, since there is no floating point

accelerator board in this machine.

3. Silicon Graphics, Inc. IRIS 4D

The IRIS 4D required programming changes only to the shared memory

module, shareseg.c. The path name for user directories is also different. Changes were

necessary to the Makefile because the lusrlinclude directory structure changed.

The IRIS 4D is based on the MIPS RISC architecture. The UNIX

implementation was done differently than that for the Motorola 68020. Shared memory

segments are not attached to addresses within the data section, as illustrated in Figure

4.5. They are attached at a much higher address, yet accessing them does not result in a

segmentation violation. This is a more robust technique that obviates any manipulation

of attachment addresses. Multiple shared memory segments are easily attached, using

default system calls. The sharedsegment call suffices, even when dynamic memory

allocation is needed. To maintain backward compatibility for application code,

dynamicsharedsegment calls sharedsegment, ignoring the freespace parameter, when

compiled on an IRIS 4D, and calls attach_within_datasegment when compiled on an

older IRIS machine.

33

Shared Memory Sezaen
.M mmt

Unallocated

Available

Memory

Data Section

Code Section

Maximum
Data

Section
Address

Unallocated

Available

Memory

Data Section

Code Section

Before After

Figure 4.5 IRIS 4D Default Shared Memory Attachment

C. 4.3BSDUNDC

The netV.c file functions properly on a 4.3BSD machine that is connected to only

one network. The start^broadcast function does not properly handle multiple networks.

The other functions work correctly, even when the machine is connected to multiple

networks.

All other functions depend upon semaphores and shared memory for

communication between the spawned processes and the main application. Stream

sockets
21 could be used to provide the IPC between these processes under 4.3BSD. The

21
Unidirectional stream sockets are equivalent to pipes.

34

three channels used will have to be multiplexed into one, but the implementation is

otherwise straightforward.

D. Lisp Machines

The communication code is a flavor to be mixed with the application [Ref. 11]. The

Explorer software is syntactically equivalent to Genera 6 on the Symbolics. With a

simple change in the sequence of method and flavor names, the Genera 7 code runs on

the TI Explorer. The older flavor, originally developed for the Explorer, is also presented

to illustrate working directly with TCP/IP instead of using a stream.

1. Texas Instruments Explorer I

This older flavor works with Release 1.0 of the Explorer TCP/IP software. It

will not work with Release 2.0 as the implementation was changed from blocking to

non-blocking [Ref. 27].

Messages to the flavors in the ip package are made together with messages to

the tcp flavors. Network-independent addressing is not used. Table 4.5 describes the

addressing schemes possible [Ref. 28: pp. 4-2—4-3]. Class C addressing is used by the

Computer Science Department. Figure 4.6 shows the simple encapsulation of the

addresses for irisl, iris2, and iris3. Extension to include other machines is easy.

Table 4.5 INTERNET ADDRESSING CLASSES

Class
No.

Networks

No.

Hosts

A 128 16,777,216

B 16,384 65,536

C 2,097,152 256

22 These are the semaphore, the message areas of the shared memory buffer, and the data areas of the shared

memory buffer. The first is unidirectional from application to spawned process. The second is bidirectional and three

state (see Table 4.3).

35

(defvar * i r i s 1 - addres s* 3221866502)
(defvar * i r i s2

-

addre s s* 3221866504)
(defvar * i r i s 3 - addres s * 3221866505)

(defvar *des t - address* nil) ; the tcp-ip or internet address
; look in network configuration

(def un iris (x)
(cond ((equal x 1) (setq *des t

-

addres s* * i r i s 1 - addres s*)

)

((equal x 3) (setq *des

t

-addres s* * i r i s3- addres s*)

)

(t (setq *des

t

-addres s* *i r i s2- addres s*))))

Figure 4.6 Encapsulation of IRIS Addresses

A port is acquired by using the :get-port method of the tcp-handler flavor.

Here, shown in Figure 4.7, we use the global instance, *tcp-handler*23 to create specific

instances of the Transmission Control Block (TCB) for each of the two ports. Only the

client side of the server/client paradigm has been implemented. The client is created by

using the :active mode argument to the :open method of the tcp-port flavor. Both the

sending and receiving ports are full duplex, but are only used in a simplex mode. Figure

4.8 shows the creation of the sending port [Ref, 28: pp. 4-12—4-18].

The three fields in a message are sent and received separately. Each field is

then treated as a separate object. Figure 4.9 illustrates sending a message. For all fields,

the urgent argument is specified as nil. The push argument is specified as nil until the

(defvar *

t

cp- hand I e r 1 * (send ip ::*

t

cp- handl e r* :get-port))
(defvar * t cp - hand 1 e r2* (send ip ::*

t

cp- handl e r* :get-port))

Figure 4.7 Lisp Port Acquisition

The double : allows the tcp-handler to be found, since it was not created "exportable" in the ip package.

36

(send talking-port :open
: ac t i ve

talking-port- numbe r

destination

30)

tcp will begin the procedure to establish
connection (default vs : p a s s i v e)

port number of destination host
machine name or address if blank and
in :passive mode local machine waits for
connec t ion
set max seconds before read request times out

Figure 4.8 Opening a Lisp Client Connection

(progn
(s

(i

(s

end talking-port : send
typebuf f e r

1

nil
nil)

f (= (length lengthbuf fer) 4)
(send talking-port : send

1 eng t hbuf f er
4

nil
nil)

(progn
(loopfor *loopvari able* (length 1 eng t hbuf fer) 4

(send talking-port : send "0" 1 nil nil))

(send talking-port : send lengthbuffer (length leng thbuf f er) nil nil)))

end talking-port : send
buffer
buf f e r - 1 eng t

h

t

nil))

Figure 4.9 Sending a Message

data buffer is sent, when it is specified as t. The entire message is thus sent as a unit to

the other machine.

2. Symbolics 36xx

Genera 7 syntactic conventions are followed. The principle difference with

Genera 6 conventions is in the deftnethod function. In Genera 6 (and the TI Explorer),

the method name follows the flavor name, hi Genera 7, the method name precedes the

37

flavor name. Figure 4.10 shows the difference. It also shows the other main difference

with the earlier code, that streams are used. The use of streams improves portability and

eliminates the need for the :reuse-iris method . It may be slightly slower, but any

difference has been unnoticeable.

Another change was to remove the dependence on hard-coded addresses. The

method :init-destination-host was added to the conversation-with-iris flavor (see

Figure 4.11). By using the net:parse-host function, the application need only know the

name of another machine. As network tables are updated, no change to the application

code is necessary unless a different machine is desired.

(defmethod (conve r sa

t

ion-wi th- i r i s :stop-iris)
()

(progn (send talking-port :close)
(send listening-port :close)))

Genera 6

(defmethod (:stop-iris conversa t i on-wi th- i r i s

)

()

(progn (send t a Iking- s t ream :close)
(send 1 i s t en ing- s t ream :close)))

Genera 7

Figure 4.10 Genera 6 and 7 defmethod

(defmethod (: i ni t -des t ina t

i

on-hos t conver sa t ion-wi t h- i r i s

)

(n ame -of- host

)

(setf de s t i na

t

ion-hos t -obj ec t (ne t : par se - hos t name - of - hos t)))

Figure 4.11 Generic Host Addressing

' The :reuse-iris method is retained for backward compatibility.

38

E. Summary

For UNIX-based machines, generic routines are developed for semaphore use,

shared memory use, and socket use. The socket routines use both stream sockets and

datagram sockets in a simplex mode to provide directly connected client/servers and

unconnected broadcasting communications. IRIS 2400, 3120, and 4D systems are fully

supported. 4.3BSD systems are supported with mid-level socket calls only.

For Lisp machines, stream-based functions are available for direct connection as

clients only. These functions are available directly if using Genera 7 syntax and with

minor modification if using Genera 6 syntax.

39

V. Use by Applications

A. Introduction

The application using either direct connect or broadcast protocol is not concerned

with system-level implementation details. Almost all aspects of shared memory,

semaphore, and socket use are hidden. The number of other machines to be connected

to, the use of dynamic memory allocation, and the names of the other machines are all

that concern the application in setting up a connection. The synchronization, or lack

thereof, in communication between machines is a design decision, not a protocol

decision.

B. DIRECT CONNECT

A UNIX-based machine can be either a server, waiting for a client to call and

establish a connection, or the client. A Lisp machine is always a client.

1. UNIX-Based Machines

The functions provided for UNIX-based machines are all written in C. They

must be linked into the application program using them. Figure 5.1 is an example make

file for creation of an application program on an IRIS system.

There are two independent processes, send and receive, that are spawned to

create the sockets and monitor them. They are made separately with the makefile
25

contained in their subdirectory.

See Appendix A

40

CFLAGS = -Zg - lm -g -p

SHARE = /work/bar row/ share3/

MAIN = carsimu.c

OBJS = First group of .o files

OB J S 1 = Second group of o files

OBJS2 = Third group of o files

OBJS3 = $(SHARE) io_single.o \

$(SHARE)mpath.o \

$(SHARE) semaphore . o \

$(SHARE)shareseg.o \

$(SHARE) suppor t .o

OBJS4 = Fifth group of .o files

carsimu: $(MAIN) $(OBJS) $(OBJSl) $(OBJS2) $(OBJS3) $(OBJS4)
cc -o carsimu $(MAIN) $(OBJS) $(OBJSl) $(OBJS2) $(OBJS3) $(OBJS4) $(CFLAGS) -lbsd

$(MAIN): const. h vars.h

$(OBJS): const. h vars.h

$(OBJSl): const. h objects. h

$(OBJS2): const.h

$(SHARE)mpath.o: $(SHARE) shared .

h

cc -c -o $(SHARE)mpath.o $(SHARE)mpa t h . c $(CFLAGS)

$(SHARE) support .o: $ (SHARE) shared .

h

cc -c -o $(SHARE) suppor t .o $(SHARE) suppor t . c $(CFLAGS)

$(SHARE) semaphore . o

:

cc -c -o $(SHARE) semaphore .o $(SHARE) semaphore . c $(CFLAGS)

$(SHARE) io_single. o: $(SHARE) shared .

h

cc -c -o $(SHARE)io_single.o $(SHARE) i o_s ingl e . c $(CFLAGS)

$(SHARE)shareseg. o:

cc -c -o $(SHARE)shareseg.o $(SHARE) share seg . c $(CFLAGS)

Figure 5.1 Sample Application make File

a. Application Setup

The server process must be started first. The application can set up the

communications paths as part of initialization, or it can do so only in response to a

41

specific operator command. In either case, there will be two messages returned to the

terminal for each direct connection setup. Figure 5.2 illustrates a normal, single

connection, response. Since the receive and send processes that provide the messages

are independent, the two lines shown may be jumbled. A variety of errors can occur at

this point. Table 5.1 gives the most common error messages, their cause, and solution.

Server waiting to connect to name
Server waiting to connect to name

Figure 5.2 Normal Server Response

Table 5 . 1 SERVER ERROR RESPONSES

Message Cause Solution

Server couldn't open a local socket: Socket in use due to previ-

ous run not terminating

with deletemachinepath

Run ps. Use kill to ter-

minate any receive or send

processes still running

Server couldn't bind address to local socket: Socket in use due to previ-

ous run not terminating

with deletemachinepath

Run ps. Use kill to ter-

minate any receive or send

processes still running

shmget: Permission denied The shared memory seg-

ment already exists, but is

owned by another uid

Change key in

machinepath call, recom-

pile, and rerun

shmget: Invalid argument The shared memory seg-

ment already exists, but is

too small because the value

of LARGESTREAD has

been increased

Run rmshare and rerun ap-

plication

shmat: Permission denied Someone else's send or re-

ceive process is being

spawned

Outdated software is being

used.

Gieck that proper path is

used in shared. It, for

application's include of

shared.lt, and in

application's Makefile.

Correct and recompile.

Ensure that all modules are

the most current. If some

are not, get updated

modules and recompile

—

especially send and re-

ceive.

42

The client process must not attempt connection until after the server is

properly running (the messages in Figure 5.2 have been received). The application can

set up the communications paths as part of initialization, or it can do so only in response

to a specific operator command. When client communications setup is part of the

initialization, care must be taken to wait for a ready server before starting the client. In

either case, there will be two messages returned to the terminal for each direct

connection setup. Figure 5.3 illustrates a normal, single connection, response. Since the

receive and send processes that provide the messages are independent, the two lines

shown may be jumbled. A variety of errors can occur at this point. Table 5.2 gives the

most common error messages, their cause, and solution,

b. Coding Practices

(1) Connection . Making a connection requires two acts. The first is to

set aside space for the data required. Figure 5.4 shows this code when local declaration

is used. The Machine structure can also be declared globally. The second is to request

the connection with a machinepath, dynamicmachinepath, or dynamicmachinepaths

call. Table 5.3 compares the three types of call, while Figure 5.5 gives a server example

for dynamicmachinepath. A description of the parameters used is in Appendix A,

Section 2. a.

For flexibility, there is often a requirement for command line

specification of the machine to be connected to. For ease of use, there is often a

Connection established with name
Connection established with name

Figure 5.3 Normal Client Response

43

Table 5.2 CLIENT ERROR RESPONSES

Message Cause Solution

Client couldn't open a local socket: Socket in use due to previ-

ous run not terminating

with deletemachinepath

Run ps. Use kill to ter-

minate any receive or send

processes still running

Client couldn't connect to the remote server socket: The server has not success-

fully started

The port numbers used by

client do not correspond to

those of server

Terminate client, restart

server, restart client when

server started

Correct, recompile, and

rerun

shmget: Permission denied The shared memory seg-

ment already exists, but is

owned by another uid

Change key in

machinepath call, recom-

pile, and rerun

shmget: Invalid argument The shared memory seg-

ment already exists, but is

too small because the value

of LARGESTREAD has

been increased

Run rmshare and rerun ap-

plication

slunat: Permission denied Someone else's send or re-

ceive process is being

spawned

Outdated software is being

used.

Check that proper path is

used in shared, ft, for

application's include of

shared, ft, and in

application's Makefile.

Correct and recompile.

Ensure that all modules are

the most current. If some

are not, get updated

modules and recompile

—

especially send and re-

ceive.

#include " /work/barrow/ share3/ shared. h"

ma in(argc , argv

)

/***

LOCAL DECLARATIONS

Ma chine cardriver /* structure for conmun i ca t

i

ons system */

Figure 5.4 Creation of Machine Structure

44

Table 5.3 PATH CONNECTION

Function Purpose

machinepath

Creates a link between two machines

No subsequent dynamic memory allocation al-

lowed

dynamicmachinepath
Creates a link between two machines

Subsequent dynamic memory allocation allowed

dynamicmachinepaths

Creates a link between two machines

Subsequent dynamic memory allocation allowed

Multiple calls provide multiple links to one or

more other machines

ma i n(argc , argv

)

/a***

SYSTEM INITIALIZATIONS
*********** + ****** + **** + ********** + ****-(.*********** + *** + ****

/* Open up the net path to other machine (iris3 default) */

dynamicmach inepath(2, other_machine ,4, 5, "server" ,&cardriver, 2000000)

Figure 5.5 Server Creation

requirement for a default specification. Figure 5.6 illustrates one way to accomplish this

for a client. This example does not require that the network alias be defined to the

system as it uses the complete address. The user, however, only enters the alias.

(2) Program Use . The simplest high-level communication paradigm is

reading from and writing to the other machine. It closely parallels handling files and

terminals in C. It was chosen for these reasons.

Twelve high-level functions are available. Four provide status

information, four write to otherjnachine, and four read from otherjnachine . Table 5.4

describes these functions. The parameters used by these calls are described in Appendix

A, Sections l.a and 9. a.

45

main(argc , argv

)

int argc; /* argument count */

char *argv[]; /* pointers to the passed in arguments */

I

/***

DATA DECLARATION
***************************** ******************************** i

char o ther_machine [50]

;

/* name of other machine */

/*** + + ***** + *********** ****************** *********************

SYSTEM INITIALIZATIONS
****** ******************************* ************************!

/* pull out the string from the argument list */

i f (argc > 2

)

(

printf("NAV: incorrect argument count! use nav <alias>\n");
e x i t (1) ;

}

/* pull out the name of the other string, if it exists */

i f (argc == 2)

{

strcpy(ot her_machine , "npscs-");

strcat(o t he r_machine , argv[l]);

)

else
strcpy(ot her_machine , "npscs - i r i s2");

/* Open up the net path to other machine (iris2 default) */

dynamicmachinepa th(2 , o ther_machine ,5, 4, "client" ,&car , 2000000)

;

Figure 5.6 Command Line Direction for Connection

There is a variety of ways to use these functions. Figure 5.7

illustrates a typical scenario. This code is from the display station of a two-workstation

driver simulation. The display station provides its status (that of the "world") on each

pass through its graphical display loop. The control station must read that status on each

pass, to update the vehicle position on its track diagram. On each pass, the display

station checks to see if any commands have been received. This is an asynchronous

communication, as the display station continues with or without a control station

46

command. The asynchronous reads are guarded by a receiver_has_data call that detects

arrival of a message. Other receiver_has_data calls are used to "busy wait" for the next

message. In practice, it has not been necessary to include any but the first "busy wait"

receiver_has_data call. TCP/IP buffers messages when they are not immediately read.

It then blocks them into the largest grouping possible and delivers them when the next

read occurs. The LARGESTREAD denned constant in shared. h determines this

maximum grouping. The first message is read by receive. The socket is then ignored

until the application reads the data. During this time, the other messages have all been

sent and buffered by TCP/IP. There is a slight delay between the time the first message is

read and the block containing all the rest is read. Thus the necessity for the first "busy

wait" receiver_has_data call. The other "busy wait" receiver_has_data calls are simply

for robustness.

The "busy wait" senderJsJree call determines if something has

happened to the other machine or Ethernet. The first write will always succeed, as it goes

to a buffer. If there is a communications problem, TCP/IP will not accept it and the

Table 5.4 COMMUNICATION FUNCTIONS

Function Action

sender_is_free

receiver_has_data

received_type

number_received

Returns TRUE if a message can be sent.

Returns TRUE if a new message has been received.

Returns a character indicating the type of the message. CHARACTER_TYPE,

INTEGER_TYPE, and FLOATTYPE are predefined. CHARACTER_ARRAY_TYPE,
1MTEGER_ARRAY_TYPE, and FLOAT_AJRRAY_TYPE are predefined

Returns an integer indicating how many elements in message.

write_character

write_integer

write_float

write_characters

Send a single value of the type to other machine.

read_character

read_integer

read_float

read_characters

Move single value of named type from buffer to application program storage.

47

ma i n(argc , argv

)

MAIN SIMULATION LOOP
+****+************+/

whi 1

e

(vehi c 1 e . command . condi

t

ion != DONE)

(

/**

Get commands (if any) from navigator. Comnands are all sent
or none are sent so no information is needed as to which value
i s wh i c h

.

********************* ********** ******* ************************/

if(rece i ver_has_da t a(&cardriver))

read_i n t ege

r

(&cardr iver, &veh ic 1 e . command .condi tion);
wh i 1 e (! rece i ver_has_da t a(&cardriver))

/ *pr i n t f
(

" 1
"

) */
read_intege r (&cardr iver, &vehic le . command .brakepedal)

;

while(! rece i ver_has_da t a(&cardriver))
/ *pr in t f

(

"2"
) */

read_in t eger (&cardr i ver , &r emot e_mousex)

;

while(! rece i ver_has_da t a(&cardriver)) /*pr in t f
("3")*/

read_floa t (&cardr iver, &cmd speed) ;

I
******* ***

Report all status information to navigator every cycle.
****************** **<

wr i t e_floa t (&cardr i ver , &veh icle.state_vector[l])
while(! sender_i s_f ree(&cardr i ver)) printf("b")
wr i t e_floa t (&cardr iver, &veh icle. state_vector[2])

wr i t e_floa t (&cardr i ver , &veh icle. state_vector[3])

wr i t e_floa t (&cardr i ver , &veh icle. si tuat ion.distance_traveled) ;

wri te_integer (&cardr iver, &vehic 1 e . conmand .condi tion);
wri te_integer (&cardr iver, &vehi c 1 e . command .brakepedal)

;

wri te_integer (&cardr i ver , &veh icle. si tuat ion. 1 ightcolor) ;

)
/ * wh i 1 e 1 oop * /

)
/ * ma in */

Figure 5.7 Synchronous Write / Asynchronous Read

48

senderjsjree call will return FALSE. This often occurs when there is a delay by the

client in connecting to the server (the display station here). If there is a good connection,

TCP/IP will accept and buffer all input. No other "busy wait" calls are needed. The other

side of the communication is shown in Figure 5.8.

(3) Disconnection . Tennination, with a deletemachinepath call for

each path opened, is mandatory. If not performed, the sockets (and shared memory

segment on System V UNIX machines) will not be returned to the system. Problems26

may then occur on the next run. Figure 5.9 is an example termination when multiple

paths have been opened [Ref. 11].

2. Lisp Machines

All necessary functions are contained in a single file. This file must be loaded

before use. Figure 5.10 is an example. A Lisp machine is always a client and is started

second. Figure 5.11 illustrates the message returned with a successful connection.

Unsuccessful connections "hang" and return nothing.

a. Connection

The address of the server and the ports it is using must be specified.

Figure 5.12 shows the ports specified as part of the loaded file. When using the older TI

Explorer functions, the addresses are specified in the same way (see Figure 4.5) and then

the machine desired is requested by number^ (shown in Figure 5.13). When using the

stream-based functions, the addresses are not specified by the user at all. The network

tables are accessed, by host name, through the select-host function provided (shown in

Figure 5.14). Once the instance of conversation-with-iris flavor has been completed

26 See Tables 5.1 and 5.2

27 A throwback to connection only with different IRIS machines.

49

ma in(argc.argv)

wh i 1 e (condi t ion != DONE)

I

/*****+***+**** *** * * * *

Receive all status information from car every cycle.
**/

wh i 1 e (! rece i ver_has_.dat a(fear))

read_ fioa t (&car , &cy) ;

wh i 1 e (! rece iver_has_ data(fear))

read_ fioa t (&car , &cx) ;

wh i 1

«

'(
! rece i ver_has_ dat a(fe a r))

read. fioa t(&car, &velocity) •

wh i 1 e (!
rece i ver_has_ data(fear))

read_ floa t (fear , &rdi s t ance);

wh i 1 e (! receiver_has_ data(fe a r))

read_ int e g e r (&c a r , &c ondi t ion) ;

wh i 1 e (! recei ver_has_ data(fear))

read_ int eger (fear , &t r akep as i t i on) ;

wh i 1 e (! receive r_has_ data(fear))

read_.int eger (fear , &1 i gh tcol or)

;

yT** ************** ******

Send commands (if any) to car. Commands are all sent
or none are sent so no information is needed as to which value
i s wh i c h

.

**/

i f (any t hi ng_has_changed)

any t hi ng_has_changed = FALSE;
wr i te_i n t eger (fear , feondition);
while(! sender_i s_f ree(fear)) printf("a")
wr i t e_in t ege r (fear , &brakepos i t ion)

;

while(! sende r_i s_f ree (fear)) printf("b")
wr i t e_i n t ege r (fear , <Sonousex) ;

while(! sende r_i s_free(fear)) printf("c")
wr i t e_floa t (&c ar , femdve loc i t y) ;

) /* i f (any t h ing_has_changed) */

) / * wh i 1 e *

/

) I'

Figure 5.8 Reciprocal Synchronous Read / Asynchronous Write

50

de 1 e t emach i nepa t h(&TI)

;

de 1 e t emachinepa t h (&SW3)

de le t emach i n e p a t h (&S\M1)

de 1 e t emach i nepa t h (&S"YM4)

exi t () :

Figure 5.9 Connection Termination

;;; this is the communication package
(load " i r i sflavor "

)

Figure 5.10 Loading Lisp Flavor

'A conversation with the iris machine has been established'

Figure 5.11 Lisp Connection Message

(defvar * i r i s 1 -por 1 1* 1027) ; this is the send port
(defvar * i r i s 1 -por t 2* 1026) . ; this is the receive port

Figure 5.12 Setting Port Numbers with defvar

;;; get the net wo r k going
(iris 1

)

(setq *battle* (make - i n s

t

ance ' conver sa t i on-wi t h- i r i s)

)

(if (y-or-n-p "start networking ?") (send * b a t t 1 e * : start-iris))

Figure 5.13 Specifying Server in Lisp

51

(select- host iris2)

Figure 5.14 Specifying Server by Name in Lisp

with port numbers and host addresses, the connection is established with the method

:start-iris, see Figure 5.13.

b. Program Use

The method :get-iris returns with the object sent by one message. The

method (:put-iris object) sends the object as one message. Figure 5.15 illustrates both.

Note how methods are added to flavor conversation-with-iris to simplify the

application interface even further. [Ref. 11]

c. Disconnection

Disconnection is accomplished with the method :stop=iris, shown in

Figure 5.16.

C. BROADCAST

Only UNIX-based machines support our broadcast protocol at this time. It is a

unidirectional protocol, but nothing prevents the establishment of two unidirectional

channels in opposite directions. Using two broadcast channels to emulate a direct

connect channel, however, loads all other machines on the network by requiring every

other machine to process each message. It is also less reliable. Broadcasting is good for

sending status information to many other machines, as long as those machines can

tolerate missing reports.

1. Similarities With Direct Connect Protocol Use

Using the broadcast protocol is similar to using the direct connect protocol.

The same functions are used in the same way. Each connection must set aside space as

52

defln i t i on s

obj ec t n

x

y
z

spd
dir

character "
1

'

"5"

x coordinate: real

y coordinate: real
z coordinate: real
speed : real
direction: real

in lisp ("n" (x y z spd dir))

speed of vehicle -10.00 to 25.00
compass dir in degrees from GN

;;; get an object in graphics environment (defined as above)

(defmethod (conver sa t i on -wi t h- i r i s :object)
()

(makeob

j

(send self :get-iris)
get - iri s)

ge t - ir i s)

get - iris)

get - iris)

(send self

(send self
(send self

(send self

(send self get-iris)))

; ; ; vision returns a list of objects in the tank's field of vision (100m radius)
;;; this is effectively an association list

(defmethod (conver sa t i on-wi th- i r i s :vision)
(tank)

(let ((field nil)

(n-obj ec t s 0))

(progn (send self :put-iris "V")
(send self :put-iris tank)
(if (equal "V" (send self :get-iris))

(progn (setq n-objects (send self :get-iris))
(dot imes

(x n-objects field)

(setq field (cons (send self :object) field))))'

(progn
(print "iris did not respond to the vision corrmand sent from ")

(pr inc " t ank "

)

(princ tank))))))

Figure 5.15 Application Communication in Lisp

in Figure 5.4. The same criteria for using a specific machinepath call apply (see Table

5.3). The same communications functions are available as in Table 5.4. Each

connection must be terminated as in Figure 5.9.

53

(if (y-or-n-p "stop iris connection ?") (send *battle* :stop-iris))

Figure 5.16 Termination of Communications in Lisp

2. Differences With Direct Connect Protocol Use

a. Application Setup

The broadcast protocol is not directly modeled as a server/client

relationship. The broadcaster broadcasts to whomever is prepared to receive. The

receiver must be ready and so must be started first. Since the broadcaster is more similar

to the server in a server/client model, this connection order seems exactly backward. No

error will result if the broadcaster starts first, messages will simply not be received. The

receiver message is shown in Figure 5.17. The broadcaster message is shown in Figure

5.18. When a direct connect channel is also required between the same two machines,

achieving proper startup order is easy. Establish the direct connect channel first, then the

soon-to-be broadcasting process sends a message telling the receiver to start up. Once

started, the receiver process sends a message permitting the broadcaster to start.

ready to receive from broadcaster name

Figure 5.17 Normal Receiver Response

Waiting to broadcast

Figure 5.18 Normal Broadcaster Response

54

b. Coding Practices

The parameters to the machinepath family of functions are used

differentiy for the broadcast protocol. All are required to be present, but some are

ignored (see Table 5.5). Since a broadcast channel is unidirectional, the receivejype

application calls are meaningless to the broadcaster (the receiver_has_data call always

returns false). The sendjype application calls are meaningless to the receiver (the

senderJsjree call always returns false).

D. SUMMARY

Using the same functions, an application can either broadcast or directly connect to

another machine. The same steps of setup, connection, use, and termination are common

to both protocols. Care must be taken in the timing of the two (or more) machines setup.

After that, an application merely reads or writes data.

55

Table 5.5 MACHINEPATH PARAMETERS

Parameter
Function

machinepath dynamicmachinepath dynamicmachinepaths

nummachines N/A

Number of channels that could

be created by application. This

includes both DIRECT CON-

NECT and BROADCAST chan-

nels.

segmentnum

Arbitrary integer. Should be different than another

user's application.

Only first call's value used.

mname

DIRECT CONNECT and BROADCAST {receiver

only): Name of machine to connect to.

BROADCAST {broadcaster only): Required but ig-

nored

sendportnum

DIRECT CONNECT: Number (0-3076) of port to be

used to send to other machine.

BROADCAST {broadcaster only): Number (0-3076)

of port to be used for broadcast.

BROADCAST {receiver only): Required but ignored

receiveportnum

DIRECT CONNECT: Number (0-3076) of port to be

used to receive from other machine.

BROADCAST {broadcaster only): Required but ig-

nored

BROADCAST {receiver only): Number (0-3076) of

port to be used for broadcast.

server

"server": Create DIRECT CONNECT channel

as a server.

"client": Create DIRECT CONNECT channel

as a client.

"broadcast": Create BROADCAST channel as a

broadcaster.

"receive": Create BROADCAST channel as a

receiver.

instructure Address of Machine structure created to hold channel

information.

freespace N/A
Amount of space to be used for

dynamic memory allocation.

Only first call's value used.

56

VI. performance

A. Introduction

We look at the size of packets from our protocols. We also look at the effect of real

applications on the network. We try to do this for both direct connect and broadcast

protocols. However, no application making good use of broadcast protocols exists.

Hence, we used a direct connect test application and replaced the channel with two

broadcast channels.

B. DATA COLLECTION

The LANalyzer EX 5500 network analyzer was used to gather Ethernet statistics.

Version 2.0 of the software was used. The LANalyzer 5500 is a COMPAQ PORTABLE

II with a coprocessor board installed. The coprocessor board has an Intel 80286 CPU,

an Intel 82586 LAN coprocessor, and two MBytes of memory. It performs packet

collection, packet filtering, and network statistics calculation. The COMPAQ PORTABLE

n processor handles user software control, screen updating and disk I/O. [Ref. 29]

Samples were taken while direct connect applications were running on iris2 and

iris3. To compare direct connect protocol with the broadcast protocol, test programs

were used
28

. Table 6.1 summarizes the information collected. These programs send a

character string, an integer, and a floating point number in a rotating sequence. The

messages are either sent to the machine specified on the command line or are broadcast

to all machines on the local network but only received from the machine specified.

* LANalyzer is a registered trademark of Excelan, Inc.

** COMPAQ PORTABLE II is a tradmark of the COMPAQ Computer Corporation.

28 See programs prog.c, prog2.c, gprog.c, and gprogl.c in Appendix D.

57

Table 6.1 DIRECT CONNECT VERSUS BROADCAST STATISTICS

Run

Number

Direct Connect

Number Ave Max
of Packet Test

„ . Size Load
Packets , „

(bytes) (%)

Broadcast

Number Ave
of Packet

Packets
(bytes)

Max
Test

Load

(%)

1 1031 91 TO 9498 69 1.0

2 1047 111 .05 9860 69 1.0

3 465 96 <.05 4000 68 1.0

4 698 95 .05 2556 68 1.0

5 334 103 .10 1262 68 1.0

The visual simulation application measured was a modified version of the driving

simulator [Ref. 7]. Table 6.2 summarizes the information collected. This data was

taken during the day29 . The application's communication code is shown in Figure 5.7

and Figure 5.8. One trip around the track took approximately five minutes. Seven

messages are sent every cycle to report status. Four messages are sent in the opposite

direction, as required, to control the car. One circuit was driven, on autopilot, for each

test run. There were about 500 cycles per test. Approximately 3600 messages were

generated per test. The number of packets sent was less than half of this. The apparent

discrepancy exists for two reasons. First, each packet sent also generates an

Table 6.2 APPLICATION NETWORK USE STATISTICS

Run

Number

Number
of

Packets

Average

Packet

Size

(bytes)

Peak

Network

Load

(%)

Peak

Test

Load

(%)

Average

Network

Load

(%)

1 3747 89 13 .10 .5

2 3297 89 11 .15 1.0

3 4152 89 15 <.05 .5

4 2848 89 17 .15 .9

5 22830 89 17 .10 .3

At night, with less competition for network resources, the results were similar.

58

acknowledgement packet in return. By acknowledging each packet, the stream socket

guarantee of delivery and proper sequence is met. Second, after the first packet

(containing the first message) is received, the remaining three or six messages are

immediately sent. The receiving process has often not yet handled the first one. The

remaining messages are combined into one and all are read as one block. This reduces

the interchange to a typical total of four packets per cycle, two with data and two for

acknowledgement. Similarly, four packets are usually generated whenever the navigator

process issues a command sequence to the car.

An evaluation of a five-workstation application [Ref. 11] was also made. This

application used three Symbolics (syml, sym3, and sym4), expl, and iris2 to perform its

tasks. Statistics were similar to the other application, but the Symbolics irisflavor.lisp
30

exhibited some problem behavior. It sent three packets for every message. The first

packet contained the type field only. The second packet contained both the type field

and the length field. The third contained the entire message. If a second message

immediately followed the first, three more packets were sent, each adding one field to the

previous packet. Only one acknowledgement was received, as all packets in a group had

the same identification number.

C. DISCUSSION

Attempting to use broadcast protocol with the simple test programs failed. One

problem encountered was overflow of the sending buffer within the TCP/IP layers. The

rapidity of attempted transmission was the cause. Higher network loading exacerbated

the problem. When the test application was slowed down with printf calls (and the

output redirected into a file) the buffer could keep up with sending requests. Using

See Appendix C

59

broadcast protocol within a graphics display loop should pose no problems unless

numerous data elements are transmitted at one time.

Without acknowledgement packets, broadcasting put fewer packets on the network

than did the direct connect protocol. When overall load was haevy, some were lost. This

poses a serious problem for visual simulation applications. Without an elaborate

application-level protocol, the receiving process will never know what was intended to

be sent. Since only one data object is transmitted at a time, labeling the data objects is

difficult. All that is available is to alternately send different types and, after checking

the type received, make a determination of the likely intent of the sending process. If a

block of data, containing different types, could be sent as a single message, the decoding

problem would become one of simply sequence checking. Missing status packets can be

safely ignored in many situations. At most, a simple averaging algorithm can smooth

any discontinuities caused by a missing packet. Timestamping, with a virtual timestamp,

of each packet would eliminate the averaging requirement.

The Symbolics stream version is much less efficient, in terms of network

utilization, than is the Explorer's. It still functions correctly, with no noticeable delay.

As the amount of data to transmit increases, the Symbolics flavor will eventually have

noticeable performance degradation.

The interconection of five machines loads the network only slightly more than does

that of two. The limitation will be from the process swap overhead, not the network.

D. Summary

The direct connect protocol sends fewer packets than messages. Half of the packets

sent are acknowledgements. These acknowledgements provide the reliability of the

direct connect protocol. The broadcast protocol sends one packet for each message.

These packets tend to be smaller than those for the direct connect protocol. Until a

60

mechanism exists to bundle several messages into one broadcast packet, the broadcast

protocol is of small value.

61

vn. Conclusions and Recommendations

A. LIMITATIONS

There are two primary limitations. First, the Lisp and C functions differ at the user

level. This was done to allow each to be used readily by programmers "thinking'' in their

respective language. We have found this to be confusing to students who are

inexperienced in both languages. Second, there is no simple means to transmit a block of

data or an entire file. Each data element, unless it is part of an array of characters, must

be sent separately. This was done to "hit a middle ground" between a complex

facility

—

printf function—and low-level system calls. As long as only the direct connect

protocol existed, this was only an annoyance. As discussed in Chapter 6, this is a

critically limiting factor for the broadcast protocol.

The port to BSD UNIX systems without shared memory and semaphores was not

completed. The socket handling aspects are portable, but the shared memory aspects are

interwoven throughout the system. The difficult part of the porting will be designing the

message-passing protocol for the pipe between the application and the send and receive

processes, as discussed in Chapter 4. Other specific limitations include:

• no broadcast capability for Lisp machines

• no server capability for Lisp machines

• limited communication error handling—no signals are sent from the send or receive

processes to the application process if they encounter problems

• limited read/write error handling—a read or write of the wrong type will be

attempted and usually produce garbage

• no out-of-band capability

• Symbolics iris-flavor.Iisp creates three packets per message

62

B

.

FUTURE RESEARCH AREAS

Implementation of the missing structure data type is one key area in which more

work could be done. The most straight-forward solution to this would be to add

messages to the send section of the shared memory array without signalling the send

process to send it until the entire block was ready. Such a solution eliminates any need to

change the receiving functions at the cost of either an additional sending function or an

additional parameter to the existing send functions. The additional send function would

be a push function and the existing send functions would be modified to never signal the

send process to send. That would be left to the new push function. Adding a parameter

to each send function would allow any send function to push. While in some respects

simpler, changes to any application sending a block of data would have to carefully

monitor which send function actually is pushing.

Creation of a Lisp flavor that mimics the UNIX functions would prove useful to C

programmers who find a need for Lisp modules in their visual simulation. Adding server

and broadcast capabilities would increase the applicability of the protocols to future

visual simulation projects. Functions to break complex Lisp objects into simple ones and

then combine these into a single message are necessary for the broadcast protocol. The

Symbolics version should be corrected to send a packet only at message boundaries.

C. SUMMARY AND CONCLUSION

The routines described herein have already proved useful to researchers at the Naval

Postgraduate School. With Ethernet loading never exceeding one percent, these routines

are efficient enough to use without concern. With the additions mentioned above, the

goal of an easy-to-use yet powerful system will be reached.

63

APPENDIX A - IRIS MODULE DESCRIPTIONS

1 . io_singIe.c

a. Calling Protocols

This module contains functions that are intended for the application's use and

functions that are used exclusively by them. The parameters for externally accessible

functions are described below.

i. number received

number_rece ived(instructure)

Machine *ins tructure ; /* includes
char *ins tructure . segment a pointer to the shared segment
*/

ii. read_character

read_char ac ter(instructure,charac ter_ou t

)

Machine *ins

t

ructure ; /* includes
char *ins true ture . segment a pointer to the shared segment */

char *charac ter_out ; /* pointer to output character */

iii. readjeharacters

read_characters(ins

t

ructure, outarr ay, arr ay size)

Machine * ins t rue ture ; /* includes
char * ins t rue ture . segment a pointer to the shared segment */

char outarray[]; /* output character buffer */
int arraysize; /* the number of characters to be returned */

iv. readjioat

read_f loa

t

(instructure, float _out)

Machine * i ns t rue

t

ure ; /* includes
char *ins

t

rue ture . segment a pointer to the shared segment */
float *float_out; /* pointer to output float */

v. readjnteger

read_integer (ins tructure, integer_out)

Machine * ins t rue ture ; /* includes
char * ins

t

rue ture . segment a pointer to the shared segment */

int * i n t ege r_ou t ; /* pointer to output integer */

64

io_single.c

vi. receivedJype

char rece i ved_type (instructure)

Machine * ins t rue ture ; /* includes
char * ins

t

rue ture . segment a pointer to the shared segment
*/

vii. writejoharacter

wri te_character(ins t rue ture, character_in)

Machine *ins t rue ture ; /* includes
char * i ns

t

rue ture . segment a pointer to the shared segment
int ins t rue ture . sendsem the semaphore to the sender */

char *charac ter_in ; /* pointer to input character */

viii. write_characters

wri te_characters(instructure, inarray.arraysize)

Machine * ins t rue ture ; /* includes
char *ins

t

rue ture . segment a pointer to the shared segment
int ins

t

ructure . receivesem the semaphore to the receiver
char *inarray; /* input character buffer */

long arraysize; /* the number of characters input */

ix. writeJioat

write_float (ins true ture, float_in)

Machine * ins

t

ructure ; /* includes
char * ins

t

rue ture . segment a pointer to the shared segment
int ins true ture . sendsem the semaphore to the sender */

float *float_in; /* pointer to input float */

x. writeJnteger

write_integer(ins t ructure, integer_in)

Machine * ins t rue ture ; /* includes
char * ins t rue ture . segment a pointer to the shared segment
int ins t rue ture . sendsem the semaphore to the sender */

int *integer_in; /* pointer to input integer */

65

iojsingle.c

b. Code and Description

* *

* TITLE In t er -Compu t e r Conmun ica t ion Package

i o_s i ngle .

c

3.0

15 December 1987

Theodore H. Barrow

* MODULE

* VERSION
*

* DATE

*

*

*

*

*

* AUTHOR : Theodore H. Barrow *

* *

** ******* *****************

*

*

* HISTORY:
*

VERSION

DATE

AUTHOR

DESC.

VERSION

DATE

AUTHOR

DESC.

VERSION

DATE

AUTHOR

DESC.

1.0

27 May 1987

Theodore H. Barrow

Originally part of support. c. Contains the documented read
and write calls for use by the application prograrrmer.

2.0

21 October 1987

Theodore H. Barrow

Modified read routines to use a global array to manage the
possibility of a partial message receipt.

3.0

15 December 1987

Theodore H. Barrow

Modified read routines to use part of a buffer set instead of *

the global array to manage the reception of a partial message.*
**
* *

* RECORD OF CHANGES *

* *

Version* Date * Author * * Affected *Reqd*
* * Change Description * Modules *Vers*
**
* * * * * * *

* * * * *

***/

66

io_single.c

#include "shared. h"
#i nc 1 ude "gl .

h"

/* The following routine copies a character into the shared segment.
It puts the type CHARACTER_TYPE in the first byte and the

length 0001 into the next four bytes.
It then puts the total size at the top of the shared segment.
It then sends a wakeup to the sender program.
It uses an input structure since called by main program

*/

wri te_character(ins t ructure ,character_in)

Machine *inst ructure; /* includes

char *instructure. segment a pointer to the shared segment

int ins t rue ture . sendsem the semaphore to the sender */

char *charac t er_i n ; /* pointer to input character */

f

int msgsize = 5 + CHARACTERS I ZE; /* size of message */

char *senderstart = i ns

t

rue ture ->segment + SENDEROFFSET

;

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */

char *datastart = senderstart + 9;

long *sent length = (long *

)

ins t rue ture->segmen t + WSENDEROFFSET

;

/* insert the type code */
*(senders tart + 4) = CHARACTER_TYPE

;

/* insert the length IN BYTES of the input data */
sprintf((senderstart + 5), "%04d" , CHARACTER_S I ZE)

;

/* move the data bytes */

memepy (da t as t ar t , charac t er_in , CHARACrER_SIZE)

;

/* copy out the size of the data from the shared segment top */

sentlength = msgsize;

/* at this point, we send a wakeup to the sender program,
indicating that he can reuse the shared segment.

•/
V(inst ructure ->s ends em)

;

) /* wr i

t

e_char ac t er */

67

io_single.c

/* The following routine converts an integer to a string and copies it

into the shared se gme n t

.

It puts the type INTEGERJTTPE in the first byte and the string length
(in bytes) as an integer (in string format) into the next four bytes

It then puts the total size at the top of the shared segment.
It then sends a wakeup to the sender program.
It uses an input structure since called by main program

*/

wr i te_integer(ins t ructure
,
integer_in)

Machine * ins t rue t ure ; /* includes

char * ins t rue ture . segmen t a pointer to the shared segment

int i ns t rue ture . sendsem the semaphore to the sender */

int *integer_in; /* pointer to input integer */

I

char in t ege r_s t r ing[20]
;

/* string for integer conversion */

int length; /* length of integer string */

intmsgsize; /* size of me s s a g e *

/

char *senderstart = i ns

t

rue t ure ->segmen t + SEfOEROFFSET

;

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */

char *datastart = senderstart + 9;

long *sentlength = (long *) ins t rue ture->segmen t + WSENDEROFFSET

;

/* convert integer to string */
sprintf(in t eger_s t

r

ing
,
"%d '

, *in t eger_in);

/* find length of integer string and thus message */
length = strlen(in

t

eger_s t

r

ing);
msgsize = 5 + length;

/* insert the type code */
(senderstart + 4) = INTEGERJTYPE

;

/* insert the length IN BYTES of the input data */
spr int f(

(

senders tar t + 5), "%04d" , length);

/* move the data bytes */
memepy (da t as t ar t , in

t

eger_s t

r

ing , length);

/* copy out the size of the data from the shared segment top */
*sentlength = msgsize;

/* at this point, we send a wakeup to the sender program,
indicating that he can reuse the shared segment.

*/
V(instructure ->s ends em)

;

) /* wr i t e_i n t ege r */

68

io_single.c

/* The following routine converts a float to a string and copies it
into the shared se gme n t

.

It puts the type FLOAT_TYPE in the first byte and the length
(in bytes) as an integer (in string format) into the next four bytes

It then puts the total size at the top of the shared segment.
It then sends a wakeup to the sender program.
It uses an input structure since called by main program

*/

wr i te_float (ins t rue ture
, float_in)

Machine * ins t rue t ure
;

/* includes

char * ins t rue ture . segmen t a pointer to the shared segment

int ins t rue ture . sendsem the semaphore to the sender */

float *float_in; /* pointer to input float */

(

char f loa t_s t r ing [30] ; /* string for float conversion */

int length; /* length of float string */

intmsgsize; /* size of message */

char *senderstart = ins t rue ture->segmen t + SENDEROFFSET

;

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */

char *datastart = senderstart + 9;

long *sentlength = (long *) ins true ture->segmen t + WSENDEROFFSET;

/* convert float to string */
sprintf(float_string, "%f " , *float_in);

/* find length of float string and thus message */
length = s t r 1 e n (float_string);

msgsize = 5 + length;

/* insert the type code */
(senderstart + 4) = FLOATJTYPE;

/* insert the length IN BYTES of the input data */
spr int f(

(

sender s t ar t + 5), "%04d" , length);

/* move the data bytes */
memepy (da t as t ar t , f 1 oa t_s t

r

ing , length);

/* copy out the size of the data from the shared segment top */

*sentlength = msgsize;

/* at this point, we send a wakeup to the sender program,
indicating that he can reuse the shared se gme n t .

*/
V(instructure ->sendsem)

;

) /* wri te_f loat */

69

io_sing!e.c

/* This routine returns the type of data received. */

char rece i ved_t ype (instructure)

Machine *instructure; /* includes

char * ins t rue

t

ure . segmen t a pointer to the shared segment
*/

I

return(* (i ns t rue ture ->segmen t + RECEIVEROFFSET + 4));

70

io_single.c

/* This routine returns the number of data items received. */

n umb er_received(instructure)

Machine * i n s t rue t ur e ; /* includes

char *ins t rue ture . segment a pointer to the shared segment */

(

i n t t emp_ i n t ;

char *protocolho!d = ins t rue ture ->segmen t + PRCTTOCOLHOLDOFFSET

;

long *par t rece i ved = (long *)pro t ocol ho 1 d

;

long *recei vedl eng t h = (long *) ins t rue t ure->segmen t + 'WRECEIVEROFFSET;

char *receiverstart = i ns t rue ture ->segmen t + RECEIVEROFFSET;

/* check if only part of protocol information received */

if(*rece i vedleng th < 5)

{

/* move data received (as well as length field) to holding area */

memcpy(pro

t

ocolhold , recei ver s t ar t , *recei vedl eng th + 4);

/* get next message(s) */
free_receiver(ins t rue ture->se gme n t)

;

V(instructure->rece i vesem) :

wh i 1 e (rece i ver_i s_f ree (i ns t rue

t

ure ->segmen t)) /* wait */
;

/* copy rest of protocol data into holding area */
memcpy((protocol hold + *par

t

rece i ved + 4), (receiver s t ar t + 4),
(5 - *par

t

rece i ved));

1

else
I

/* copy protocol data into holding area */

memcpy(pro t oco 1 hoi d , rece

i

ver s t ar t , 9);

/* initialize *par

t

recei ved so it can be used later */

par t rece i ved = 0;

)

/* determine the length of the received integer string and thus message */

sscanf(prot ocolhold + 5, "%d" , &temp_int);

switch(*(pro t oco lhol d + 4))

(

case CHARACTER_TYPE:
re t urn(1) ;

break ;

case INTEGER_TYPE

:

r e t u r n (1) ;

break ;

case FLOATTYPE:
return(1) ;

break :

case CHARACrER_ARRAY_TYPE

:

return! t emp_in t /CHARACTER.SIZE);

break ;

case INTEGER_ARRAY_TYPE

:

return(t emp_i n t / INTEGER_SIZE);

break ;

case FLOAT_ARRAY_TYPE

:

return! t emp_i n t /FLOAT_SIZE);

)

}
/ * n umb er_received */

71

iojsingle.c

/* The following routine returns a character from the shared segment.
It frees the receiver side of the shared segment if it is empty.
It then sends a wakeup to the receiver program.
It uses an input structure since called by main program.

*/

read_character(instructure,character_out)

Machine *instructure; /* includes

char * ins t rue ture . segment a pointer to the shared segment */

char *charac t er_out
; /* pointer to output character */

{

/* temporary storage for move of received data or for protocol information
wh en partial receipt *

/

char temp[LARGESTREAD] ;

char *protocolhold = ins t rue ture->segmen t + PROTOC0LH0LDOFFSET

;

/* first four bytes of holding area as integer */

long *par t rece i ved = (long *)prot ocolhold;

int msgsize = 5 + CHARACTER_SIZE; /* size of message */

char *recei vers t art = ins t rue ture ->segmen t + RECEIVEROFFSET;

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */

char *datastart = rece i ver s t ar t + 9;

long *recei vedlength = (long *

)

ins t rue t ure->segmen t + WRECEIVEROFFSET;

/* check if first part of protocol information is missing */
if(*par t rece i ved ==)

(

/* check if only part of protocol information received */
if(*receivedlength <= 5)

(

/* move data received (as well as length field) to holding area */

memcpy(pro

t

ocolhol d, rece i ver s t ar t , *rece i vedlength + 4);

/* get next message(s) */
free_receiver(instruc t ure->segmen t)

;

V(instructure->rece i vesem)

;

while(rece iver_i s_free (ins t rue ture ->segment)) /* wait */ ;

)

I

/* reset msgsize and datastart to correspond to partial receipt */
msgsize -= *partreceived;
datastart -= *par t rece

i

ved;

/* move the bytes */

memcpy(charac t er_ou t , datastart, CHARACTER_S I ZE)

;

/* make buffer ready for next read */
r e se t_buf f e r (receivedlength, msgsize, instructure, datastart,

CHARACTERSIZE, par

t

received , rece i ve r s t ar t);

(/* read_charac t er */

72

io_single.c

/* The following routine converts a string in the shared segment
into the returned integer.

It frees the receiver side of the shared segment if it is empty.
It then sends a wakeup to the receiver program.
It uses an input structure since called by main program.

*/

read_integer(instructure,integer_out)

Machine * ins t rue t ure ; / * includes

char *instructure. segment a pointer to the shared segment */

int * i n t ege r_ou t ; /* pointer to output integer */

I

char in t ege r_s t r ing[LARGESTREAD] ;
/* string storage for received data */

char *protocolhold = i ns

t

rue t ur e ->segmen t + PROTOCOLHOLDOFFSET

;

/* first four bytes of holding area as integer */
long *par t rece i ved = (long *)pro t ocolho Id;

int length; /* length of integer string read */

long s e gme ntlength; / * length of data of partial ma s s a g e *

/

int msgsize; /* size of message */

char *rece i vers t art = ins t rue ture ->segmen t + RECEIVEROFFSET;

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */

char *datastart = receiverstart + 9;

long *recei vedlength = (long *

)

ins t rue t ure->segmen t + WUiCEIVEROFFSET;

/* determine proper protocol info and reset variables if necessary */

ge
t
_pro t oco 1 (pro toco 1 hoi d ,

pa r t

r

ece i ved , rece i ved 1 eng t h , receiverstart,
instructure, &length, <Smsgsize, &datastart);

I* check if only part of data has been received */

if(*receivedlength < msgsize)

(

get_data(Asegmen t

1

engt h , receivedlength, partreceived,
in t ege r_s t r ing , &datastart, <&msgsize,
receiverstart, instructure, Alength);

/* convert to string */
i nteger_s t r ing [segment 1 ength + msgsize] = '\0*;

I

else
(

/* move the integer string bytes */

memepy (i n t ege r_s t

r

ing , datastart, length);

/* convert to string */

i n t ege r_s t r i ng [1 eng t h] = '\0';

)

/* convert the received string to an integer */

sscanf(in

t

eger_s t r ing , "%d" , integer_out);

/* make buffer ready for next read */

reset _buffer(receivedlength, msgsize, instructure, datastart, length,
partreceived, receiverstart);

) / * read_in t ege r */

73

io_single.c

/* The following routine converts a string in the shared segment
into the user supplied float.

It frees the receiver side of the shared segment if empty.
It then sends a wakeup to the receiver program.
It uses an input structure since called by main program.

*/

read_ float (instructure ,
float_out)

Machine * ins t rue t ure ; /* includes

char * ins t rue

t

ure . segment a pointer to the shared segment */

float *float_out; /* pointer to output float */

(

char f loat_s t r ing [LARGESTREAD] ; /* string storage for received data */

char *protocolhold = ins t rue ture->segmen t + PROTOCOLHOLDOFFSET

;

/* first four bytes of holding area as integer */
long *par t rece i ved = (long *)pro t ocolhold;

int length; /* length of float string read */

long segmen t 1 eng th

;

/* length of data of partial massage */

int msgsize; /* size of message */

char *recei vers t art = ins t rue t ure->segmen t + RECEIVEROFFSET;

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */

char *datastart = rece

i

vers t ar t + 9;

long *recei vedlength = (long *) i ns t rue ture->segmen t + ^RECEIVEROFFSET;

/* determine proper protocol info and reset variables if necessary */
ge t_prot ocol (pro

t

ocolhol d, par t rece i ved, recei vedl eng t h , rece i vers t ar t ,

instructure, &length, <&msgsize, &datastart);

/* check if only part of data has been received */
if(* rece i vedl eng th < msgsize)

I

get_data(Asegmen t 1 eng th , recei vedl eng th , par t rece i ved

,

f loa t_s t r i ng , &datastart, <&msgsize,
rece i vers t ar t , instructure, &length);

/* convert to string */
f loa t_s t r ing [segmen t 1 eng th + msgsize] = '\0';

)

else
I

/* move the float string bytes */
memepy (f 1 oa t_s t r ing , datastart, length);

/* convert to string */
f loa t_s t r i ng [leng t h] = '\0';

)

/* convert the received string to an float */
sscanf(f 1 oa t_s t r ing ,

"%{"
, float_out);

/* make buffer ready for next read */

reset _buffer(receivedlength, msgsize, instructure, datastart, length,
pa r t rece

i

ved , rece i ve r s t a r t);

)
/* read_float */

74

io_single.c

/* The following routine copies characters from an array
into the shared se gme n t

.

It puts the type CHARACTER_ARRAY_TYPE in the first byte and the
array length (in bytes) as an integer into the next four bytes.

It then puts the total size at the top of the shared segment.
It then sends a wakeup to the sender program.
It uses an input structure since called by main program

*/

wri te_characters(instructure, inarray, arraysize)

Machine * ins t rue t ure
;

/* includes

char * ins t rue ture . segment a pointer to the shared segment

int ins t rue ture . rece ivesem the semaphore to the receiver.

char *inarray; /* input character buffer */

long arraysize; /* the number of characters input */

I

int datasize = arraysize * CHARACTER_SIZE; /* size of data field */

int ms g size =5 + datasize; /* size of me s s a g e *

/

char *senderstart = ins t rue ture ->segment + SENDEROFFSET

;

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */

char *datastart = senderstart + 9;

long *sentlength = (long *) ins t rue ture ->segmen t + WSENDEROFFSET;

/* insert the type code */
(senderstart + 4) = CHARACTER_ARRAY_TYPE

;

/* insert the length IN BYTES of the input data */
spr in t f((sender s t ar t + 5), "%04d" , (in t)da t as i ze)

;

/* move the data bytes */
memepy ((da t as t ar t) , inarray, datasize);

/* copy out the size of the data from the shared segment top */
*sentlength = 5 + datasize;

/* at this point, we send a wakeup to the sender program,
indicating that he can reuse the shared segment.

•/
V(instructure ->s ends em)

;

) /* wr i t e_char ac t er s */

75

io_single.c

/* The following routine copies bytes from the shared segment
into the user supplied array.

It frees the receiver side of the shared segment if it is empty.
It then sends a wakeup to the receiver program.
It uses an input structure since called by main program.

*/

read_characters(instructure,outarray,arraysize)

Machine * ins t rue t ure ; /* includes

char *instructure. segment a pointer to the shared segment */

char outarrayf]; /* output character buffer */

int arraysize; /* the number of characters to be returned */

I

char *protocolhold = ins t rue ture ->segmen t + PR0TOCOLH0LDOFFSET

;

/* first four bytes of holding area as integer */

long *par t rece i ved = (long *)pro t ocolhold;

int length; /* length of character string read */

long segmen t I eng th

;

/* length of data of partial massage */

int datasize = arraysize * CHARA.CTER._S IZE

;

/* size of requested data field */

int requestsize; /* size of message */

int msgsize = 5 + datasize; /* size of requested message */

char *recei vers t art = ins t rue ture ->segment + RECEIVEROFFSET;

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */

char *datastart = rece

i

ver s t ar t + 9;

long *rece i vedl eng t h = (long *) ins t rue t ure->segmen t + A^RECEIVEROFFSET;

/* determine proper protocol info and reset variables if necessary */
ge t_pro t ocol (pro tocolhol d, par

t

received , rece i vedl eng th , rece i vers t ar t
,

instructure, &length, &nsgsize, &datastart);

/* check if all of data (or more) was requested */

if(length <= arraysize)

I

/* check if only part of data has been received */
if(*receivedlength < msgsize)

(

get_data(&s egmen t

1

eng t h , receivedlength, partreceived,
outarray, &datastart, &msgsize,
receiverstart, instructure, &d a t a s i z e)

;

)

else
I

/* move the character bytes */
memc py(outarray, datastart, length);

)

/* make buffer ready for next read */
re se tbu f f e r (receivedlength, msgsize, instructure, datastart, datasize,

partreceived, receiverstart);

76

io_single.c

else
(

/ * move the by t e s */

memcpy (ou t ar r ay , datastart, datasize);

/* make buffer ready for next read */
reset_buffer(receivedlength, msgsize, instructure, datastart, datasize

pa r t rece

i

ved , rece i ve r s t ar t);

/* read_char ac t e r s */

77

io_singIe.c

/* These are various support routines used by several of the preceding
f unc t ions .

*/

re se
t
_buf f e r

(

rece i ved

1

eng t h , msgsize, instructure, datastart, datasize,
partreceived, receiverstart)

long * rece i vedl eng th ; /* first four bytes of receive part of shared seg */

int msgsize; /* size of message read */

Machine * ins t rue t ure ; /* includes

char * ins t rue

t

ure . segmen t a pointer to the shared segment

int ins t rue

t

ure . rece ivesem the semaphore to the receiver. */

char *datastart; /* address data starts in receive part of shared seg */

int datasize; /* length of data part of message */

long *par t rece i ved; /* length of message received in previous block */

char *

r

ece i ve r s t ar t ; /* address receive part of shared seg starts */

I

char t emp[LARGESTREAD] ; /* temporary storage for move of received data */

/* free the receiver segment if this is only message received */

if(*receivedlength == msgsize)
I

free_receiver(instruc t ure->segmen t) ;

/* at this point, we should send a wakeup to the receiver program,
indicating that he can reuse the shared segment.

*/
V(instructure->rece ivesem)

;

)

else /* shift data forward in shared memory segment */

(

*receivedlength -= msgsize;

memcpy(temp, (datastart + datasize), (LARGESTREAD - msgsize));

memcpy((rece ivers tar t + 4), temp, (LARGESTREAD - msgsize));
)

/* reset *par t rece i ved for next read */
*par t rece i ved = 0;

} /* reset_buffer */

78

io_singIe.c

ge t
_pro t ocol (p ro t oco 1 ho 1 d , par t rece i ved , rece i ved 1 eng t h , receiverstart ,

instructure, length, msgsize, datastart)

char *protocolhold; / * protocol holding area */

long *partreceived; /* length of message received in previous block */

long *receivedlength; / * first four bytes of receive part of shared seg * /

char *rece i ve r s t ar t : /* address receive part of shared seg starts */

Machine *instructure; /* includes

char * ins t rue t ur e . segmen t a pointer to the shared segment

int ins t rue ture . rece ivesem the semaphore to the receiver. */

int *length; /* length of data field in message */

int *msgsize; /* length of message */

char **datastart; /* address data starts in receive part of shared seg */

I

/* check if first part of protocol information is missing */
if(*partreceived ==)

(

/* check if only part of protocol information received */

if(*receivedlength <= 5)

(

/* move data received (as well as length field) to holding area */

memcpy(pro tocolhold , receiverstart, *rece i vedleng t h + 4);

/* get next message(s) */
free_receiver(instruct ure->segmen t)

;

V(ins t rue tu re ->rece ivesem)
;

while(rece iver_i s_free(ins t rue ture ->segmen t)) /* wait */ ;

/* copy rest of protocol data into holding area */
memcpy((pro t ocol hoi d + *par t rece ived + 4), (receiverstart + 4),

(5 - *par t rece i ved));

}

else
{

/* copy protocol data into holding area */
memc py(protocolhold, receiverstart, 9);

/* initialize *par

t

rece ived so it can be used later */
*par t rece ived = 0;

/* determine the length of the received data string and thus message */

sscanf(protocolhold + 5, "%d", length);

*msgsize = 5 + *length - *partreceived;

/* reset datastart to c omp ensate for possible partial receipt */

*datastart -= *par

t

rece ived ;

I
/* get_protocol */

79

io_sing!e.c

get_data(segmen t 1 eng t li , receivedlength, partreceived, string_ array,
datastart, msgsize, receiverstart, instructure, datasize)

long * s e gme ntlength; / * length of partial data *

/

long ""rece i vedl eng t h ; /* first four bytes of receive part of shared seg */

long ""par t rece i ved ; /* length of message received in previous block */

char s t

r

ing_array [] ; /* storage for incoming characters */

char *""da t as t ar t ; /* address data starts in receive part of shared seg */

int ""msgsize; /* length of message */

char *rece i ver s t ar t ; /* address receive part of shared seg starts */

Machine * in s t rue t ure ; /* includes

char *ins t rue

t

ure , segmen t a pointer to the shared segment

int ins t rue

t

ure . rece ivesem the semaphore to the receiver. */

int ""datasize; /* length of data field in message */

{

/* determine length of data that has been received */
*segmen t I eng t h = * rece

i

ved 1 eng th - 5 + *pa r

t

rece i ved

;

/* copy the first segment of data to holding array */
memcpy(s t r i ng_a r ray , *datastart, ""segment leng t h);

/* reset msgsize and datastart to correspond to partial receipt */
""msgsize -= * segmen t 1 eng t h + 5 - *par t rece i ved;
datastart = receiverstart + 4;

/* get next message(s) */
free_receiver(instructure ->segmen t)

;

V(instructure->rece ivesem) ;

whi 1 e (rece iver_i s_free (ins t rue t ure ->segmen t)) /* wait */
;

I* cycle through as many messages as it takes */
wh i 1 e (*receivedlength < ""msgsize)

{

/* copy the next segment of data to holding array */
memcpy(&s t r i ng_ar ray [* segmen 1 1 eng t h] , ""datastart, ""receivedlength);

/* reset msgsize and segmen t

1

eng t h to correspond to partial receipt */
*msgsize -= ""receivedlength;
* segmen 1 1 eng th -= ""receivedlength;

/ * get next message(s) *

/

free_receiver(instructure ->segment)

;

V(inst ructure->receive sem) ;

wh i 1 e (rece i ve r_i s_free(i ns t rue t ure ->segmen t)) /""wait */
;

I

/* copy the last segment of data to holding array *

/

memcpy(&s t r i ng_a r r ay [
* segmen t 1 eng t h] , ""datastart, ""msgsize);

/* reset datasize to properly reflect last segment size *

/

""datasize = ""msgsize;

)
/"" get_data * /

80

2. mpath.c

a. Calling Protocols

All functions in this module are meant to be accessible by the application.

These functions set up and tear down the communications path between two machines,

i. deletemachinepath

de 1 e t emachi nepath(instructure)

Machine * ins t rue ture
; /* structure to hold segment and semaphore info:

char *instructure.se gme nt -- returned ptr to the shared se gme n t

.

int ins t rue ture . shmid -- returned system generated shared mem id
int ins t rue ture . sendsem -- the returned send semaphore.

We base it on the send port number,
int ins t rue ture . rece ivesem -- the returned receive semaphore.

We base it on the receive port number.
*/

ii. machinepath

mach i nepa t h(segmen t num,mname , sendpor t num. receivepor t num. server, instructure)

long segmentnum; /* the key to use for the created shared segment */
char mname [] ; /* machinename character string */
long sendpor t num. rece ivepor t num; /* send and receive port numbers */

char server []; /* this character string is either "client" or "server".
It indicates whether the sender/receiver should open
up as either a client or server. The first guy open
mus t be the server .

*/

Machine * i ns t rue ture
; /* structure to hold segment and semaphore info:

char * ins

t

rue ture . segmen t -- returned ptr to the shared segment,
int ins t rue ture . shmid -- returned system generated shared mem id
int ins t rue ture . sendsem -- the returned send semaphore.

We base it on the send port number,
int ins t rue ture . rece i vesem -- the returned receive semaphore.

*/

iii. dynamicmachinepath

dynami cmach i nepa t h(segment num,mname , sendpor t num, receiveport num, server ,

in structure, freespace)

long segmentnum; /* the key to use for the created shared segment */
c Ii a r mn ame [] ; / * ma c h i n e n ame character string * /

long sendpor t num, rece i vepor t num; /* send and receive port numbers */
char server[]; /* this character string is either "client" or "server".

It indicates wh ether the sender/receiver should open
up as either a client or server. The first guy open
must be the server.

*/
Machine * i ns t rue t u r e ; /* structure to hold segment and semaphore info:

char * i n s

t

rue t u re . segmen t -- returned ptr to the shared segment,
int ins t rue

t

ure . shmid -- returned system generated shared mem id
int ins t rue

t

ure . sendsem -- the returned send semaphore.
We base it on the send portn unib e r .

int i n s t rue t u re . rece i ve s em -- the returned receive semaphore.
We base it on the receive portn umb e r

.

*/

int freespace; /* amount of freespace desired for dynamic memory allocation
after this routine has been called. */

81

mpath.c

iv. dynamicmachinepaths

d y n am i cma chi n ep a t h s (n urrma chines , s e gme n t n um ,mn ame , sendpor tn um , receiveportn um

,

server, instructure, freespace)

int n urrma ch i ne s ;
/* the max

long segmentnum; /* the key
char mn ame [] ; / * ma chine
long sendpor 1 num, rece i vepor

t

char server[]; / * this ch
It i ndica t

up as ei t

h

must be th

Ma chine
*/

*inst ructure; r
char * ins t rue t ur

e

int ins t rue t ure . s

int ins t rue t ure .

s

int ins t rue ture .

r

int freespace; /* amount
after this routine h

b. Code and Description

imum number of other machines to be attached */

to use for the created shared segment */

n ame character string *

/

num; /* send and receive port numbers */

aracter string is either "client" or "server",
es whether the sender / rece iver should open
er a client or server. The first guy open
e server.

tructure to hold segment and semaphore info:
.segment -- returned ptr to the shared segment,
hmid -- returned system generated shared mem id
endsem -- the returned send semaphore.

We base it on the send portnumber.
eceivesem -- the returned receive semaphore.

We base it on the receive portnumber.

of freespace desired for dynamic memory allocation
as been called. */

*

*

*

*

5.0 *

*

TITLE

NCDULE

VERSION

DATE

AUTHOR

In t er -Compu t er Communication Package

mp a t h .

c

*

*

*

*

*

*

*

*

*

* *

****************** ****** ***************************************.***************

31 May 1988

Theodore H. Barrow

HISTORY:

VERSION: 1.0

DATE : 6 February 1987

AUTHOR : Michael J. Zyda

DESC. : Contains routines machinepath and de 1 e t emach i nepa t h for
link creation/removal at a high level of abstraction.

VERSION: 2.0

DATE : 27 May 1987

AUTHOR : Theodore H. Barrow

DESC. : Converted to use a structure for ease of use.

VERSION: 3.0

DATE : 21 October 1987

AUTHOR : Theodore H. Barrow

DESC. Added function dynami cmach i nepa t h to allow dynamic memory

82

mpath.c

VERSION

DATE

AUTHOR

DESC.

VERSION

DATE

AUTHOR

DESC.

allocation after communications link established

4.0

15 December 1987

Theodore H. Barrow

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

* RECORD OF CHANGES *

Added function dynami cmach i nepa t hs to allow use with multiple *

links. Modified all creation routines to place sequence *

numbers at end of command line for send and receive processes.*

5.0

31 May 1988

Theodore H. Barrow

Added broadcast and receive capability - one process spawned *

Vers ion Date * Author
Change Description

* * Affected *Reqd*
* Modules *Ve r s

*

+ * + ** + ******* + *** + ** + ****»+* + **** + ** + *** + ****•*** + ** + ** + * + * + ***** + *** + ***+ + *+<-

* * * * * * *

* * * * *

83

mpath.c

#include "shared. h" /* my special defines */
#i nc 1 ude <g 1 . h>

deletemachinepath(instructure)

Machine * i n s t rue t ure ; /* structure to hold segment and semaphore info:

char * ins t rue t ure . segmen t -- returned ptr to the shared segment.

int ins t rue

t

ure . shmid -- returned system generated shared mem id

int ins t rue t ur e . sendsem -- the returned send semaphore.
We base it on the send port number.

int instructure. receives em -- the returned receive s ema p h o r e

.

We base it on the receive port number
*l

I

/* kill the receiver process... */

ki

1

l_receiver(instructure ->segmen t

,

inst rue ture->rece i vesem)
;

/* kill the sender process... */
ki

1

l_sender(instruc t ure->segmen t .instructure ->s ends em) ;

/* detach and delete the shared segment... */
delete sharedsegmen t(ins tructure ->segmen t

,

instructure ->shmi d)

;

84

mpath.c

/*

For direct connection, both send and receive processes are spawned.
For broadcast, either send or receive process is spawned.
The macliinepa t h routine performs the following:

(1) creates a shared se gme n t .

(2) creates a send and/or receive semaphore based on the send and receive
por t numbe r s

.

(3) free_sender(se gme nt) and/or free_receiver(se gme n t

)

(4

)

s p awn s off the send and/or receive processes.
system("send sharedseg# machinename port# server /c 1 i en

t

/broadcas t 0&"
)

:

sy s t em(

"

rece i ve sharedseg# machinename port# server/client/receive 0&"
) ;

(5) the send and receive semaphores, the pointer to the shared segment,
and the id of the shared segment are placed in a structure of type
Machine that is declared in the calling program.

*/
mac hi nepa t h(segmen tnum.mname , sendpor t num, receivepor tnum, server , inst ructure)

long segmentnum; /* the key to use for the created shared segment */

char mname[]; /* machinename character string */

long sendpor t num, receivepor tnum; /* send and receive port numbers */

char server[]; /* this character string is either "client", "server",
"broadcast", or "receive". If direct connection wanted,
it indicates whether the sende r /

r

ece i ve r should open
up as either a client or server. The first guy open
mu st be the server. If broadcast wa nted, it indicates
whether to open up as broadcaster or receiver.

*l

Machine * ins t rue t ure ; /* structure to hold segment and semaphore info:

char * ins t rue ture . segmen t -- returned ptr to the shared segment.

int ins t rue ture . shmid -- returned system generated shared mem id

int ins t rue ture . sendsem -- the returned send semaphore.
We base it on the send port number.

int ins t rue ture . rece ive sem -- the returned receive semaphore.
*/

(

char *sharedsegmen t () ; /* shared segment creation function */

int semtran(); /* semaphore creating routine. */

char temp[200], temp2[200]; /* temp character arrays */

/ * create the shared se gme n t * /

instructure ->segmen t = shared segmen t (segmen t n um .MAXSHAREDS I ZE ,& i n s t ructure ->shmi d

)

/* create the send semaphore, (unused if receiving broadcast messages) */

i ns t rue t ure ->sendsem = semt ran(sendpor t num)

;

/* create the receive semaphore (unused if broadcasting messages) */

i n s t rue t u re ->rece i ve sem = semt r an

(

rece i vepo r t num) ;

/* free the sender and receiver parts of the shared segment */

ini t_sha red_bu ffer(instructure ->segmen t) ;

/* spawn off the sender process */

iff strcmp(server, "receive") !=)

(

85

}

else

mpath.c

/* add the start of the line, i.e. the program to run */
si rcpy(temp,SENDLOCATI0N) ;

s t r c a t (t emp , " "
) ;

/* add the number of the sha redsegmen t in text */

spr i n t f (t emp2 , "%d"

,

instructure ->shmi d) ;

s t r c a t (t emp , t emp2)

;

s t r c a t (t emp , " "
)

;

/* add on the machine name */
s t rca t (t emp.mname) ;

s t r c a t (t emp ,

" "
)

;

/* add the port number */

spr in t f (t emp2 , "%d"

,

sendpor tnum) ;

s t rca t (t emp, t emp2)

;

s t r c a t (t emp , " "
)

;

/* indicate whether a server, a client, or a broadcaster */
strcat(t emp

,

server)
;

s t r c a t (t emp ,

" "
)

;

/* spawn off into the background */

s t r c a t (t emp , "&"
)

;

/ * s p awn off the sender */

i f (s y s t em(t emp) == - 1)

perror("SEND system call failed");

/* kill sender (which really doesn't exist anyway) so that the
sende r_i s_f ree() call will always return FALSE.
A similar thing does not have to be done for rece i ve r_has_da t a(

)

in a broadcasting path since it will always return FALSE anyway */
kill_sender(ins t rue ture->segmen t , ins t rue t ure ->sendsem);

/* spawn off the receiver process */

if(strcmp(server, "broadcast") !=)

I

/* add the start of the line, i.e. the program to run */
st rcpy(temp.RECEIVELOCATION) ;

s t r c a t (t emp ,

" "
) ;

/* add the number of the sharedsegmen t in text */
spr in t f (t emp2 , "%d" ,

instructure ->shmid) ;

s t rca t (t emp, t emp2)

;

s t r c a t (t emp ,

" "
) ;

/* add on the machine name */
s t rca t (t emp mname)

;

s t rca t (temp , " "
)

;

/* add the port n umb e r *
/

sprint f (t emp2 , "%d"

,

receiveport num) ;

s t r c a t (t emp , t emp2)

;

s t r c a t (t emp , " "
)

;

/* indicate whether a server, a client, or a broadcast receiver */

s t r c a t (t emp .server);
s t r c a t (t emp ,

" "
)

;

/* spawn off into the background */
s t re a t (t emp, "&"

)

;

86

mpath.c

/ * s p awn off the receiver *

/

i f (s y s t em(t emp) == - 1)

pe

r

ror ("RECEIVE system call failed")

87

mpath.c

/*
For direct connection, both send and receive processes are spawned.
For broadcast, either send or receive process is spawned.
The dynami cmach i nepa t h routine performs the following:

(1) creates a shared se gme nt and attaches it to the ma in program virtual
space after an allocation of free memory space.

(2) creates a send and/or receive semaphore based on the send and receive
por t numbe r s

.

(3) f ree_sender (segmen t) and/or f ree_rece i ve r (segmen t

)

(4) spawns off the send and/or receive processes.
system("send sharedseg# machinename port# server/client/broadcast 0&")

;

sy s t em("

r

ece i ve sharedseg# machinename port# server/client/receive 0&")

:

(5) the send and receive semaphores, the pointer to the shared segment,
and the id of the shared se gme nt are placed in a structure of type
Machine that is declared in the calling program.

*/

dynami cmach i nepa t h(segmen tnum,mname , sendpor tnum, rece i vepor tnum, server ,

instructure, freespace)

long segmentnum; /* the key to use for the created shared segment */

char inn ame [] ; / * ma c h i n e n ame character string * /

long sendpor t num, rece i vepor t num; /* send and receive port numbers */

char server[]; /* this character string is either "client", "server",
"broadcast", or "receive". If direct connection wanted,
it indicates whether the sende r

/

rece i ve r should open
up as either a client or server. The first guy open
must be the server. If broadcast wanted, it indicates
whether to open up as broadcaster or receiver.

*/

Machine * ins t rue

t

ure ; /* structure to hold segment and semaphore info:

char * ins t rue

t

ure . segmen t -- returned ptr to the shared segment.

int instructure slim id -- returned system generated shared mem id

int ins t rue

t

ure . sendsem -- the returned send semaphore.
We base it on the send portnumber.

int ins t rue

t

ure . rece ivesem -- the returned receive semaphore.
We base it on the receive portnumber.

*/

int freespace; /* amount of freespace desired for dynamic memory allocation
after this routine has been called. */

I

char *dynami c sha redsegmen
t () ; /* shared segment creation function */

int semtran(); /* semaphore creating routine. */

char temp[200], temp2[200]; /* temp character arrays */

/* create the shared se gme nt *

/

instructure ->segmen t = dynamic sha red segmen t (1 , segmen t n um .MAXSHAREDS I ZE

.

&instructure->s hmi d, freespace)

;

/* create the send s ema phore. (unused if receiving broadcast me ssages) */

i ns t rue t u re ->sendsem = semt ran(sendpor tnum)
;

/* create the receive semaphore (unused if broadcasting messages) */
i ns t rue t ure ->rece i ve sem = semt ran(rece i vepor t num)

;

88

mpath.c

/* free the sender and receiver parts of the shared segment */
i ni t_shared_buf fer(instructure ->segmen t)

;

/ * s p awn off the sender process * /

if(strcmp(server, "receive") !=)

(

/* add the start of the line, i.e. the program to run */

st rcpy(temp.SENDLOCATION)

;

s t r c a t (t emp , " "
)

;

/* add the number of the sha redsegmen t in text */

s p r i n t f (t emp2 , "%d ",instructure->s hmi d)

;

s t re a t (t emp , t emp2)

;

s t r c a t (t emp ,
" "

) ;

/* add on the machine name */

s t re a t (t emp.mname) ;

s t re a t (t emp , " "
)

;

/* add the port number */
spr in t f (t emp2 , "%d" , sendpor tnum)

;

strcat(t emp , t emp2)

;

s t r c a t (t emp , " "
) ;

/* indicate whether a server, a client, or a broadcaster */

s t r c a t (t emp , server) ;

s t r c a t (t emp ,

" 0&"
)

;

/* spawn off the sender into the background */

i f (s y s t em(t emp) == - 1)

perror("SEM) system call failed");

else

/* kill sender (which really doesn't exist anyway) so that the
sender_i s_f ree() call will always return FALSE.
A similar thing does not have to be done for rece i ve r_has_da t a(

)

in a broadcasting path since it will always return FALSE anyway */

kill_sender(ins t rue t ure ->segmen t , ins t rue

t

ure ->sendsem);

/* spawn off the receiver process */

if(strempt server, "broadcast") !=)

I

/* add the start of the line, i.e. the program to run */

st rcpy(temp.RECEIVELOCATION)

;

s t r c a t (t emp ,

" "
)

;

/ * add the n umb er of the sharedse gme n t in text *

/

spr in t f (t emp2 , "%d"

,

instructure ->shmi d)

;

s t r c a t (t emp , t emp2)

;

s t rca t (t emp , " ")

;

/* add on the machine name */

s t re a t (t emp ,mname) ;

strcat(t emp , " "
) ;

/* add the port number */

spr in t f (t emp2 , "%d"

,

receivepor tnum) ;

s t r c a t (t emp , t emp2)

;

s t r c a t (t emp , " "
) ;

/ * indicate wh ether a server, a client, or a broadcast receiver *

/

s t r c a t (t emp

,

server) ;

s t r c a t (t emp ,

" 0&"
)

;

89

mpathoC

/* spawn off the receiver into the background */
i f (s y s t em(t emp) == - 1)

perror("RECEIVE system call failed");

90

mpath.c

/*

For direct connection, both send and receive processes are spawned.
For broadcast, either send or receive process is spawned.
The dynami cmach inepa t hs routine performs the following:

(1) creates a shared segment large enough for multiple attachments
and attaches it to the main program virtual space after an allocation
of free memo r y space.

(2) creates a send and/or receive semaphore based on the send and receive
por t number s .

(3) f ree_sender(segment) and /or f ree_rece ive r (segment)

(4) spawns off the send and/or receive processes.
system("send sharedseg# machinename port# server/cl ient/broadcast 0&") ;

sy s t em(
" rece i ve sharedseg# machinename port# server/client/receive 0&"

) ;

(5) the send and receive semaphores, the pointer to the shared segment,
and the id of the shared segment are placed in a structure of type
Machine that is declared in the calling program.

•/

dynami cmach i nepa t hs (nurrmachi ne s , segmen t num.mname , sendpor tnum, receivepor t num,
server

, ins t rue ture , freespace)

int nurrmachines; /* the maximum number of other machines to be attached */

long segmentnum; /* the key to use for the created shared segment */

char mnamef]; /* machinename character string */

long sendpor tnum, rece i vepor tnum; /* send and receive port numbers */

char server[]; /* this character string is either "client", "server",
"broadcast", or "receive". If direct connection wanted,
it indicates whether the sender/receiver should open
up as either a client or server, The first guy open
must be the server. If broadcast wanted, it indicates
whether to open up as broadcaster or receiver.

*/

Machine * i n s t rue t u re ; /* structure to hold segment and semaphore info:

char *instructure.se gme nt -- returned ptr to the shared se gme n t

.

int ins t rue ture . shmid -- returned system generated shared mem id

int ins t rue ture . sendsem -- the returned send semaphore.
We base it on the send portnumber.

int instructure. receives em -- the returned receive s ema p h o r e

.

We base it on the receive portnumber,
*/

int freespace; /* amount of freespace desired for dynamic memory allocation
after this routine has been called. */

I

char *dynami c sha redsegmen t () ; /* shared segment creation function */

int semtranl); /* semaphore creating routine. */

char temp[200], temp2[200]; /* temp character arrays */

static Boolean firsttime = TRUE; /* flag to detect multiple requests */

static int sequencenum = 0; /* sequence number for receive/send */

static int totmachines; /* max attachments permitted */

/* check for first time called and establish max possible attachments */

i f (f i r s t t ime)

91

mpath.c

totmachines = nuimiach i nes ;

f i rs t t ime = FALSE;
)

else
++sequencenum;

I* check for violation of maximum attachments */

if(sequencenum >= totmachines)

I

per ror ("mpa th : Too many attachments attempted");
exi t (- 1) ;

)

/* create the shared segment */

ins t rue t ure ->segmen t = dynamic sharedsegmen t (nurrmachines , segment num.
MAXSHAREDSIZE,
&instructure ->shmi d.freespace)

/* create the send semaphore, (unused if receiving broadcast messages) */

ins t rue

t

ure->sendsem = semt r an(sendpor t num) ;

/* create the receive semaphore (unused if broadcasting messages) */
i ns t rue

t

ure->recei vesem = semt ran(rece ivepor t num) ;

/ * free the sender and receiver parts of the shared se gme n t * /

ini t_shared_buffer(ins t rue ture ->segmen t)

;

/* spawn off the sender process */

if(strcmp(server, "receive") !=)

I

/* add the start of the line, i.e. the program to run */
strcpy(temp.SENDLOCATION) ;

s t r c a t (t emp ,

" ") ;

/* add the number of the sharedsegmen t in text */

spr in t f (t emp2 , "%d"

,

ins t rue ture->shmi d)

;

s t r c a t (t emp , t emp2)

;

s t r c a t (t emp ,

" "
)

;

/* add on the machine name */

s t r c a t (t emp ,mname) ;

s t r c a t (t emp , " "
) ;

/* add the port number */

spr in t f (t emp2 , "%d" , sendpor tnum)

;

s t rca t (t emp , t emp2)

;

s t re a t (t emp, " "
) ;

/* indicate whether a server, a client, or a broadcaster */
s t r c a t (t emp ,

server)
;

s t r c a t (t emp , " "
)

;

/* add the machine sequence number */
spr i n t f (t emp 2 , "%d" , sequencenum)

;

s t rca t (t emp, t emp2) ;

/* spawn off into the background */
s t rca t (t emp, "&"

)

;

/ * s p awn off the sender *

/

i f (s y s t em(t emp) == - 1)

per ror ("SEND system call failed");
)

else
(

/* kill sender (which really doesn't exist anyway) so that the

92

mpath.c

sender_is_free() call will always return FALSE

.

A similar thing does not have to be done for r ece i ve r_ha s_da t a ()

in a broadcasting path since it will always return FALSE anyway */

kill_sender(i ns

t

rue t ur e ->segmen t , i ns

t

rue t u re ->sends em);

/* spawn off the receiver process */

if(strcmp(server, "broadcast") !=)

I

/* add the start of the line, i.e. the program to run */

strcpy(temp.RECEIVELOCATION)

;

s t r c a t (t emp ,

" "
)

;

/* add the number of the sharedsegmen t in text */

spr in t f (t emp2 , "%d"

,

instructure ->shmid)
;

s t r c a t (t emp , t emp2)

;

strcat(t emp ,

" "
)

;

/* add on the machine name */
s t rca t (t emp.mname) ;

s t r c a t (t emp ,

" "
)

;

/* add the port number */

spr in t f (t emp 2
, "%d" .receiveport num) ;

st r c a t (t emp , t emp2)

;

s t r c a t (t emp ,

" "
)

;

/* indicate whether a server, a client, or a broadcast receiver */

s t r c a t (t emp

,

server) ;

s t r c a t (t emp ,

" "
)

;

/* add the machine sequence number */

spr in t f (t emp2 , "%d" , sequence num) ;

s t r c a t (t emp , t emp2)

;

/* spawn off into the background */

s t rca t (t emp, "&"
)

;

/ * s p awn off the receiver */

i f (s y s t em(t emp) == - 1)

perror("RECEIVE system call failed");

93

3. netV.c

a. Calling Protocols

This module contains the low-level socket-managing calls. No functions in

this module are intended for application programs. This module is only linked into the

send and receive processes.

b. Code and Description

/
************************ ******************** *********************************

* TITLE
*

* NODULE
*

* VERSION
*

* DATE

In t er -Compu t e r Conrnun ica t i on Package

ne tV.

c

5.0

31 May 1988

* AUTHOR : Theodore H. Barrow *

* *

**
* *

HISTORY:

VERSION

DATE

AUTHOR

DESC.

VERSION

DATE

AUTHOR

DESC.

VERSION

DATE

AUTHOR

DESC.

VERSION

DATE

AUTHOR

DESC.

VERSION

DATE

1.0

19 November 1986

Michael J. Zyda

Contains routines connec t_se rver and connec t_c 1 i en t to allow
two machines with Unix System V to corrmunicate via sockets.

2.0

29 April 1987

Mi chae 1 J . Zyda

Converted to work with 4 . 2BSD sockets.

3.0

27 May 1987

Theodore H. Barrow

Eliminated excess variables, some unused and some unnecessary.*

4.0 *

21 August 1987

Theodore H. Barrow

Improved reliability of socket connection and disconnection

5.0

31 May 1988

94

netV.c

* *

* AUTHOR : Theodore H. Barrow *

* *

* DESC. : Added s t ar

t

_broadcas t () and broadcas t _rece i ve () to provide
* datagram sockets for broadcast use. These sockets use the
* default Internet broadcast addressing. *

**
* *

* RECORD OF CHANGES *

* *

Version* Date * Author * * Affected *Reqd*
* * Change Description * Modules *Vers*
*********** + *** + + ********* + * **
* 4.1 * 4Jan88 * T. H. Barrow * * send.c *4.0 *

* * Changed include library pathnames for IRIS 4D. * receive. c *4 .
*

**
* * * * * * *

* * * * *

***/

95

netV.c

/*
Th i s segmen t , when 1 i nked into a progr am on a compu t e r with a UNIX 4 . 2 BSD
operating system, will allow the program to corrmunicate with programs
executing on other computer systems over an Internet network.
*/

#define TRUE 1

/* include files for UNIX 4.2 BSD. These are all called from the bsd
subdirectory in /us r / inc 1 ude . The file sys/types.h also exists and is

included when bsd/ sy s /
t
ypes . h is used. This was done for ease of change

if and when Silicon Graphics changes the include library structure. */
#include <sy s

/

types . h>
#include <sy s / socke t . h>
#include <bsd/ne t i ne t / in . h>
#include <bsd/ne t db . h>

/
*********$***********************4^********%****************

The connec t_se rve r (remot e_c 1 i en t_name , port_number) function performs
the actions required to connect a server system to a remote client system

* 4- + ******»•***'**+ +**+*******+**********+**********+***+*****

int connec t_server (remot e_c 1 i en t_name
,
port_number)

char remo t e_c 1 i en t_name [] ;
/* name of the remote client system */

int port_number; /* port number to the remote client system */

I

char *p t r_c I i en t_name ; /* pointer to the remote client system's name */

int local_server_socket
; /* local socket number */

int socket(); /* function that opens a socket */

int accept(); /* function that accepts a connection from
a remote client socket */

int remot e_c 1 ient_socke t = -1; /* socket number of remote client system */

/* protocol and address data structure for socket */
static struct sockaddr_in address = (AF_INET };

long remot e_c 1 i en t_addres s ; /* address of the remote client system */

short remot e_c 1 i en t_por t ; /* port number of the remote client system */

int address_size; /* size of address of remote client system */

/* create socket structure from input parameters */

/* get a pointer to the remote client system's name */
p t r_c 1 i en

t
_name = r emo t e_c 1 i en t_name ;

/* convert the remote client system name to its address.
Note that ge t hos t byname () requires a pointer to a pointer * /

remot e_c 1 i en t_addres s = (long)gethost byname (&p t r_c 1 i en t _name) ;

/* set the remote client port number above the system reserved ports
by adding the remote client port number to the number of reserved ports */

remote_cl ient_por t = I PPORT_RESERVED + port_number;

/* remote client system address family (Internet in this case) */
address. sin_family = AF_INET ;

96

netV.c

/* place the remote client port number into the address data structure
in network byte order */

addre s s . s i n_por t = h t ons (remo t e_c 1 i en
t
_por t)

;

/* place the remote client system's address in the address data structure */
address. si n_addr.s_addr = remo t e_c 1 i en t _addr e s s

;

/* find number of bytes in the remote client address */
address_size = s i zeof (remo t e_c 1 i en

t
_addr e s s)

;

/* attempt to open a local socket */
Iocal_server_socket = socke t (AF_INET, SOCK_STREAM,)

;

i f

(

local_serve r_socke t < 0)
per ror

(

"Server couldn't open a local socket:");
else
(

i f (bi nd(1 oca l_server_socke t
,

(caddr_t)&addres s , s i zeof

(

addres s)) < 0)
perror("Server couldn't bind address to local socket:");

/* set the maximum number of remote client systems to be connected to */

1 i s ten(local_server_socket , SCMAXCONN)

;

printf ("Server waiting to connect to %s \n " , r emo t e_c 1 i en t _name)

;

/* attempt to accept a connection */
r emo t e_c I i en t_socke t = accep t (1 oca l_se rve r_socke t , &address,

&addres s_s i ze)

;

i f (remot e_c 1 i en t_socke t < 0)
(

/* an error occurred in the server attempting to
accept a connection from remote client system */

per ror ("Se rver couldn't accept connection from remote client system:")

shut down(local_server_socket, 2);
close(local_server_socket)

;

)

/* else the server accepted a connection from the remote client system */

/* return the socket number of the remote client system */
re t urn(remot e_cl ient_socket)

;

J
/* connec t_se rve r */

97

netV.c

/***

The connec t _c 1 i en t (remot e_se rve r_name , port_number) function performs
all the actions required to connect a client system to a remote server
s y s t em

int connec t_c 1 i en t (remot e_server_name ,
port_number)

char remot e_serve r_name [] ; /* name of the remote server system */

int port_number; /* port number to the remote server system */

I

int local_c 1 i en t_socke t ; /* local socket number */

int socket(); /* function that opens a socket */

/* function that connects local socket to remote server socket */
i n t connec t () ;

int remot e_serve r_socke t ; /* socket number on remote server system */

/* the protocol and address data structure specified for the socket */

static struct sockaddr_in address = (AF_INET j;

struct hostent * r emo te_server_address; / * address of r emo te server syst em *

/

short remot e_server_por t

;

/* port number of remote system */

/* create socket structure from input parameters */

/* convert the remote server system name to its address.
Note that ge t ho s t byname () requires a pointer only in this case */

remot e_se rve r_addres s = ge thos tbyname (remot e_server_name)

;

/* clear out the address structure */

bzero((char *)&address, s i zeof (addre s s)) ;

/* copy the remote server address structure into the address structure */
bcopy (remot e_server_address->h_addr ,

(char *)&addre s s . s in__addr
,

remot e_server_address->h_length) ;

/* set remote server port number above the system reserved ports by adding
the user's remote server port number to the number of reserved ports */

remote_server_por t = IPPORT_RESERVED + port_number;

/ * r emo te server syst em address family(Internet in this case) * /

addre s s . s i n_f ami 1 y = AF_INET;

/* place the remote server port number into the address structure
in network byte order */

addre s s . s i n_por t = h t on s (r emo

t

e_se r ve r_po r t)

;

/* attempt to obtain a local socket */
local_cl ient_socket = socke t (AF_INET, SOCK_STREAM, 0);

i f (1 oca l_c 1 i en t_socke t < 0)
perror("Client couldn't open a local socket:");

else
I

/ * place Internet address f amily type in address structure */
addres s . s i n_f ami 1 y = AF_1NET;

98

netV.c

/* attempt to connect local client socket to remote server socket */
remot e_serve r_socke t = connec t (1 oc

a

l_c 1 i en

t

socke t , (c addr t)&add re s s ,

s i zeof (addres s))

;

i f (remot e_serve r_socke t < 0)

(

/* error occurred in attempting to connect to remote server socket */
perror("Client couldn't connect to the remote server socket':");

shut down(local_client_socket, 2);
close(local_client_socket);

/* set local_c 1 ien t_socke t so that negative value is
a 1 wa ys returned wh en an error occurs

*/
local_c 1 i en t_socke t = remot e_se rver_socke t

;

)

else
/* successfully connected to the remote server system */
pr in t f("Connec t ion established with %s

.

\n" , remot e_serve r_name)

;

/* return the socket number of the local client system */

return(local _c

1

ient_socket)

;

)
/* connec t_c 1 i en t */

99

netV.c

Tlie s t a r t_broadcas t (por t_number) function performs
the actions required to initiate a datagram broadcast socket.

**

i n t s t ar t_broadca s t (por t_numbe r

)

int port_number; /* port number for the remote receiver system */

I

int broadcas t_socke t ; /* local socket number */

int socket()

;

/* function that opens a socket */

int se t sockop t () ; /* function that sets a socket to allow broadcast */

int on = TRUE; /* to set broadcast toggle on for socket */

/* protocol and address data structure for socket */
static struct sockaddr_in address = { AF_INET };

short broadcas t_por t ; /* port number broadcast heard from */

/* create local socket structure from input parameters */

/* set the broadcast port number above the system reserved ports
by adding the broadcast port number to the number of reserved ports */

broadcas t_port = IPPORT_RESERVED + port_number;

/* system address family (Internet in this case) */
address . s in_f ami ly = AF_ INET ;

/* place the port number into the address data structure
in network byte order */

address . s in_por t = ht ons (broadcas t_por t)

;

/* place the local address in the address data structure
in network byte order */

address . sin_addr. s_addr = h t on 1 (INADDR_ANY)

;

/* attempt to open a local socket */
broadcast_socket = socke t (AF_INET,SOCK_DGRAM, 0)

;

i f(broadcas t_socke t < 0)
per ror ("Broadcas t er couldn't open a local socket:");

else
(

/* set the broadcas t_socke t for broadcasting */
if (set sockopt (b roadcas t_socke t , SOL_SOCKET, SO_BROADCAST

,

&on , sizeof(on)) < 0)
pe r r or ("Broadc a s t e r couldn't set socket to broadcast:");

else if(bind(b roadc a s

t

_socke t
,

(struct sockaddr *)&address,
s i zeof

(

addre ss)) < 0)
per ror ("Broadcas t e r couldn't bind to local socket:");

else
(

pr i n t f
("Wa i t i ng to broadc as t \n")

;

I

I

/* return the socket number */
return (broadcast_socket)

;

)
/* s t a

r

t_broadca s t */

100

netV.c

The broadc as t_rece i ve(broadca s t e r_name ,por t_number) function performs
all the actions required to set up a broadcast receiving socket

+ + ****** + *** + * + + + + + ************ + *** + + + ** + + *+ + * + * + + + + + + + <.* +
/

int broadcast_receive(broadcaste r_name
,
por t_n umber

)

char broadcas t er_name [] ; /* name of the broadcaster system */

int port_number; /* port number for the broadcaster */

(

int local_socke t ; /* local socket number */

int socket(); /* function that opens a socket */

int broadcas t er_socke t ;
/* socket number on broadcaster system */

/* the protocol and address data structure specified for the socket */

static struct sockaddr_in address = { AF_INET };

struct hostent *b roadc a s t e r_addr e s s ;
/* address of broadcaster system */

short broadcas t e r_por t

;

/* port number of remote system */

/* create socket structure from input parameters */

/* convert the broadcaster system name to its address.
Note that ge thos t byname () requires a pointer only in this case */

broadcas te r_addres s = ge thos tbyname (broadcas ter_name)

;

/* clear out the address structure */
bzero((char *)&address, s

i

zeof (addres s)) ;

/* copy the broadcaster address structure into the address structure */
bcopy (broadc as ter_address->h_addr ,

(char *)&addre s s . s i n_addr

,

broadcaster_address->h_length) ;

/* set broadcaster port number above the system reserved ports by adding
the user's broadcaster port number to the number of reserved ports */

broadcas ter_port = IPPORT_RESERVED + port_number;

/* broadcaster system address f ami 1 y (In t

e

rne t in this case) */
address . s i n_f ami ly = AF_INET;

/ * place the broadcaster port n umb er into the address structure
in network byte order */

address . s in_por t = h t ons

(

broadcas t e r_por t) ;

/* attempt to obtain a local socket */
local_socket = socke t (AF_ INET, SOCK_DGRAM, 0);

i f (

1

ocal_socke t < 0)

(

pe r ror

(

"Receiver couldn't open a local socket:");
)

else
I

/* attempt to connect local socket to broadcaster socket */
broadc as t

e

r_socke t = connec t (1 oca l_socke t , (struct sockaddr *)&address
sizeof (address))

;

101

netV.c

i

f

(broadcas t er_socke t < 0)
(

/* error occurred in attempting to insert broadcaster information */

per ror ("Rece i ve r couldn't find broadcaster:");

shu t down(local_socke t , 2);
close(local_socket)

;

/ * set local_socket so that negative value is
always returned when an error occurs

*/
local_socket = broadcas te r_socke t

;

)

else
/* successfully listening to the broadcaster system */
pr i nt f(

"

ready to receive from %s . \n" .broadcas t er_name)

;

)

/* return the socket number of the local system */
return(local_socket)

;

J
/* broadcast_receive */

102

4. receive.c

a. Calling Protocols

This program monitors a socket, like a daemon. It is spawned transparently to

the user and receives its initialization data through the command line.

b. Code and Description

;** ************************ + *****..

* *

* TITLE *

*

*

*

*

*

*

* *

it**

* MODULE

* VERSION

* DATE
*

* AUTHOR

In t e r -Compu t er Conmun ica t i on Package

receive.c

3.0

31 May 1988

Theodore H. Barrow

* HISTORY:
*

VERSION

DATE

AUTHOR

DESC.

VERSION

DATE

AUTHOR

DESC.

VERSION

DATE

AUTHOR

DESC.

1.0

6 February 1987

Mi chae 1 J . Zyda

Background process to receive messages over link.

2.0

15 December 1987

Theodore H. Barrow

Added capability to get sequence number from command line
and use it to get offset into shared memo r y s e gme n t .

3.0

31 May 1988

Theodore H. Barrow

Added broadcast receive capability

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*+******************************+**********++**+******************************
* *

* RECORD OF CHANGES *

* *

Version* Date * Author * * Affected *Reqd*
* * Change Description * Modules *Vers*
+**+*+**+**********
* * * * * * *

* * * * *

************************************ *+********+*++*+***********************+*

103

receive.c

#include "shared. h"
i n c 1 u d e "gl.h"

ma i n (a rgc

,

argv)

i n t argc; /* argument count */

char *argv[] ; /* pointers to the passed in arguments */

(

/* we need to declare character variables for everything passed in */

char shmi ds t r [10] ; /* shared segment string holding the integer key*/

int shmid; /* integer pulled out of the string */

char ^segment; /* character pointer to the shared segment */

int receivesem; /* receive semaphore */

char *sharedsegment(); /* create shared segment function */

char mname[100]; /* machine name */

char por t s t r [10] ; /* port number string */

long portnum; /* port number pulled from the string */

char server[10]; /* server string */

char seqnos t r [10] : /* sequence # string holding integer sequence # */

long sequencenum = 0; /* integer pulled out of the string (default 0) */

int socket; /* the opened socket descriptor */

int connec t_server ()

;

int connec t_c 1 i en t ()

;

int broadcas t _rece i ve ()

;

int rece i ve r_i s_f ree()

;

int rece i ver_should_di e()

;

int semtran(); /* semaphore creation routine. *

/

/* pull out the strings from the argument list */
i f (argc < 5

)

I

pr i n t f("RECEIVE: incorrect argument count !\n");
exi t (1) ;

/* pull out the shared memory string */
strcpy(s hmi d s t r,argv[l])

;

s s c a n f (s hmi d s t r
, "%d " , &s hmi d)

;

/* pull out the machinename string */
s t r cpy (mn ame , a r gv [2]) ;

/* pull out the port number string */
strcpy(portstr,argv[3]);

sscanf(port st r , "%d" ,&por t num)
;

104

receive.c

* create the receive semaphore */
eceivesem = semt ran(por t num) ;

* pull out the c 1 i en t

/

server string */
t rcpy(server , argv[4])

;

* pull out the sequence number string */
f (argc > 4)

strcpy(seqnostr,argv[5]) ;

sscanf(seqnostr, "%d" ,&sequencenum) ;

* attach to the shared memory segment */
f ((int)(segment = (char *) shmat (shmid , 0, 0666)) < 0)

pe rr or ("RECEIVE: shmat") ;

exi t(0)

;

* create the shared segment address to use */
egment += sequencenum * MAXSHAREDS I ZE

;

* open the socket connection to the named machine */
f (s t r cmp

(

server
,
"server") ==)

/* we should open as the server */
socket = connec t_server (mname ,por t num)

;

Ise i f(s t rcmp(server , "receive") == 0)

/* we should open as the broadcast receiver*/
socket = broadcas t_rece i ve(mname ,por t num) ;

lse

/* we should open as a client */
socket = connec t_c 1 ien t (mname ,por t num)

;

* check to make sure socket was opened, exit if not */
f(socket < 0)

print f("RECEIVE: socket connection NOT made!\n");
exi t(l)

;

* the infinite loop... */

f (s t rcmp(server ," receive") = 0)
whi le(TRUE)

/* should the receiver die??? */

if(receiver_should_die(segmen t, receives em))
(

/* exit after detaching shared segment and cleaning up socket */
detachsharedse gme n t (s e gme n t) ;

shu t down(socke t , 0);
c lose(socke t)

;

exi t (0)

;

)

/* if the receiver part of the segment is free, read onto it */

i f(receiver_i s_free(segmen t))

(

/* check socket and read into segment if proper message */

i f (

b

roadcas t_i n t o_segmen t (socke t , segmen t ,mname
,
por t num) > 0)

105

receive.c

/* at this point, sleep until we receive a signal from the
graphics program that the receiver segment is free, i.e
the data has been read out */

P(rece i vesem) ;

) /* end while true for broadcasting*/
else

while (TRUE)
I

/* should the receiver die??? */

if(receive r_should_die(segment

,

rece i vesem)

)

{

/* exit after detaching shared segment and cleaning up socket */
de t achsharedsegmen t (segment)

;

shu t down(socke t , 0);
c 1 ose(socke t)

;

exi t (0)

;

)

/* if the receiver part of the segment is free, read onto it */

if(receive r_is_free(segment)

)

{

/* read socket into segment */
read_ socke t_in t o_segmen t (socke t , segment)

;

)

/* at this point, sleep until we receive a signal from the
graphics program that the receiver segment is free, i.e.
the data has been read out */

P(receive sem)
;

} /* end while true for direct connections*/

106

5. semaphore.c

a. Calling Protocols

This module repackages the low-level semaphore calls into a P and a V

semaphore operation. No functions in this module are intended for application programs.

b. Code and Description

* TITLE

* MODULE
*

* VERSION

* DATE

* AUTHOR

In t e r -Compu t er Communica t i on Package

I*************************** ***+*******+***+*******************+******+**,.****

*

*

send .

c

*

1.0 *

11 February 1987

Mi chae 1 J . Zyda

*

*

•it*** *********
* *

* HISTORY: *

*

*

*

*

*

*

1.0

11 February 1987

Mi chae 1 J . Zyda

Implements P and V semaphore operations for Unix system V.
Based on an example from Advanced Unix Progr anrni ng

.

* VERSION
*

* DATE

* AUTHOR

* DESC.
*

**
*

* RECORD OF CHANGES

Ve r s i on Da t e * Au t h o r * * Affected *Reqd*
* * Change Description * Modules *Vers*
**********+*******I*************************+************+********************

107

semaphorex

#include <sy s /
t
ype s . h>

#include <sys/ipc.h>
#include <sys/sem.h>

int semtran(key) / * translate s ema phore key to ID */

in t key

;

(

int sid;

if ((sid = semget ((key_t)key, 1,06661 IPC_CREAT)) == - 1

)

I

per ror (" semge t ")

;

}

return(sid);

static void semcal 1 (s i d , op) /* call semop */

int sid;
int op;

(

s t rue t sembuf sb

;

sb . sem_num = 0;
sb . sem_op = op

;

s b . s em_ fig = ;

i f (semop (s i d ,&sb , 1) == -1)

(

perror("s emop ")

;

void P(sid) /* acquire semaphore */
int sid;

{

s emc all(sid, -1);

}

void V(sid) /* release semaphore */
int sid;

{

s emc a 1 1 (s i d , 1) ;

)

108

6. send.c

a. Calling Protocols

This program monitors a socket, like a daemon. It is spawned transparently to

the user and receives its initialization data through the command line.

b. Code and Description

/***
* *

* TITLE In t e r -Compu t er Conmun ica t i on Package *

* *

send .

c

*

*

3.0 *

31 May 1988 *

Theodore H. Barrow *

* MODULE

* VERSION

* DATE

* AUTHOR
* *

*********** ** *<,***»*»»***, „,.,

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

* VERSION:
*

* DATE
*

* AUTHOR :

*

* DESC.
*

* VERSION:
*

* DATE
*

* AUTHOR :

*

* DESC.
*

*

* VERSION:
*

* DATE :

*

* AUTHOR :

*

* DESC

1 .0

6 February 1987

Mi chae 1 J . Zyda

Background process to send messages over link.

2.0

15 December 1987

Theodore H. Barrow

Added capability to get sequence number from corrmand line
and use it to get offset into shared memory segment.

3.0

31 May 1988

Th eodore H. Barr ow

Added broadcast capability

* RECORD OF CHANGES
*

"Version* Date * Author
Ch a n g e De script ion

*

*

* Affected *Reqd*
* Modules *Ve r

s

*

**

109

send.c

#include "shared. h"
#inc I ude "gl .

h"

ma i n(argc , ar gv)

i 11 1 argc; /* argument count */

char *argv[]; /* pointers to the passed in arguments */

(

/* we need to declare character variables for everything passed in */

char shmids t r [10] ; /* shared segment string holding the integer shmid */

int shmid; /* integer pulled out of the string */

char *segment; /* character pointer to the shared segment */

int sendsem; /* send semaphore */

char *sharedsegmen t () ;
/* create shared segment function */

char mname[100]; /* machine name */

char portstr[10]; /* port number string */

long portnum; /* port number pulled from the string */

char server [10]; /* server string */

char seqnos t r [10] ; /* sequence # string holding integer sequence # */

long sequencenum = 0; /* integer pulled out of the string (default 0) */

nt socket; /* the opened socket descriptor */

nt connec t_se rver ()

;

nt connec t_c 1 i en t ()

;

nt s t a r

t

_broadcas t ()

;

nt sende r_has_da t a()

;

nt sender_should_di e()

;

nt semtran(); /* semaphore creation routine. */

/* pull out the strings from the argument list */
i f (a r g c < 5)

I

pr in t f
("SEND: incorrect argument count!\n");

exi t (1)

;

)

/* pull out the shared memo ry string *

/

s t rcpy (shmi dstr,argv[l]);
sscanf(s hmi d s t r

, "%d "
, &s hmi d)

;

/ * pull out the ma c h i n e n ame string *

/

s t r c py (mn ame , a r g v [2])

;

/* pull out the port number string */
s t rcpy

(
po r t s t r , a rgv [3])

;

sscanf(portstr, "%d" ,&por tnum) ;

/* create the send semaphore */

110

send.c

sendsem = semlran(portnnm) ;

/* pull out the client/server string */
st rcpy(server, argv[4]) ;

* pull out the sequence number string */
f (a r g c > 4)

strcpy(seqnostr,argv[5]) ;

sscanf(seqnostr, "%d" ,&s equencenum)
;

* attach to the shared memo r y s e gme n t * /

f ((int)(segment = (char *
) shma t (shmi d , 0, 0666)) < 0)

per ror ("SEND: shmat "
) ;

exi t(0)

:

* create the shared segment */
egment += sequencenum * MAXSHAREDSIZE;

* open the socket connection to the named machine */
f (s t r cmp

(

server , "server") ==)

/ * we should open as the server *

/

socket = connec t_serve r (mname , por t num) ;

lse if(strcmp(server, "broadcast") ==)

/* we should open as a broadcaster */
socket = s t ar t_broadcas t (portnum);

lse

/* we should open as a client */
socket = connec t_c 1 i en t (mname

,

por t num)

;

* check to make sure socket was opened, exit if not */
f(socket < 0)

pr in t f

(

"SEND: socket connection NOT made!\n");
exi t(1)

;

* the infinite loop... */

f(strcmp(server, "broadcast") ==)

wh i 1 e (TRUE

)

(

/* should the sender die??? */

i f(sender_shoul d_di e (segmen t , sendsem))

I

/* exit after detaching segment and cleaning up socket */
de t ach shared segmen t (segmen t) ;

shu t down(socke t , 1);
c lose(socket) ;

exi t (0)

;

)

/* if there is data in the shared memo r y s e gme n t *

/

i f(sender_has_dat a(segmen t))

I

/* write the data in the shared segment onto the socket */

s en d_ socke t_f rom_ segmen t

(

socket .port num, segmen t) ;

111

send.c

)

/* at this point, sleep until we receive a signal from the graphics
program. The signal will indicate that the graphics program
has put more data into the shared segment.

*/

P(sends em)
;

) /* end while true for broadcasting*/
else

wh i 1 e (TRUE

)

(

/* should the sender die??? */

if(sender_should_die(segment , sends em)

)

{

/* exit after detaching segment and cleaning up socket *

/

de t achshar edsegmen t (segment)

;

shu t down (socke t , 1);
c 1 ose(socke t)

;

exi t(G)

;

I

/ * if there is data in the shared memo r y s e gmen t , ... *

/

if(sende r_has_da t a(segmen t)

)

{

/* write the data in the shared segment onto the socket */
wri te_socke t _f r om_ segmen t (socke t , segmen t)

;

)

/* at this point, sleep until we receive a signal from the graphics
program. The signal will indicate that the graphics program
has put more data into the shared segment.

*/
P(sendsem) ;

J /* end while true for direct connection*/

112

7. shared.

h

a. Calling Protocols

This module has all the predefined constants and type definitions. It must be

included in the application.

113

shared.h

b. Code and Description

*

TITLE

MODULE

VERSION

DATE

AUTHOR

In t e r -Compu t e r Communication Package

shared.h

4.0

15 December 1987

Theodore H. Barrow

** + ****** + * + * + + + + *** + + ,.**** + + »*** + * * + *** + +****** + *****+******* + + ******* + **>. + *

* *

* HISTORY: *

* *

* VERSION: 1.0 *

*

DATE : 6 February 1987

AUTHOR : Michael J. Zyda

DESC. : Contains all defines and special constants for shared
memory socket system.

VERSION: 2.0

DATE : 27 May 1987

AUTHOR : Theodore H. Barrow

DESC. : Added a typedef of structure for use by various routines.
Added message types for high level read/write protocol.

VERSION: 3.0

DATE : 21 October 1987

AUTHOR : Theodore H. Barrow

DESC. : Changed dependencies of buffer calculation constants so that
only one need change. Added additional message types.

VERSION: 4.0

* DATE : 15 December 1987
* *

* AUTHOR : Theodore H. Barrow *

* *

* DESC. : Added field to buffer set so that each link would have its *

* own area to handle partial receipt of messages. *

+ * + + ** + + **** + *** + ************* + + +.********<•***** + *** + * + * + + * + *** + ** + ** + ** + + * * * *

* *

* RECORD OF CHANGES *

>Ve r s i on' Da t Au t hor * Affected
* Mo d u I e s

Reqd*
* * Change Description * Modules *Ve r s

*

* 4.1 * 4Jan88 * T. H. Barrow * * * *

* * Changed pathname to include /usr for IRIS1 * * *

***************************** + + <,**.* + + ** + + * * ********************** + * + + ***** + */

114

shared.h

/*
the foil ow ing 3 defines are the changeable par ame t e r s

LARGESTREAD MJST be divisible by 4
*/

#define SENDLOCATION " /us r /work/ba r row/ share3 / send" /* the name of the program
to run for the sender */

#define RECEIVELOCATION " /us r /work/bar row/ share3/ rece i ve" /* the name of program
to run for the receiver */

#define LARGESTREAD 252 /* the largest read (i.e. buffer size) */

/* The following defines are constants or are derived from LARGESTREAD */

#define SErOEROFFSET (LARGESTREAD + 4) /* the sender data starts here */

#define W5EIOEROFFSET (SEMDEROFFSET / 4) /* long word offset for sender data */

#define RECEIVEROFFSET /* the receiver data starts at byte */

#def ine WRECEIVEROFFSET /* the receiver data starts at long word */

#define PROTOGOLHOLDOFFSET (SEM5EROFFSET * 2) /* holding area starts after
sender area */

#define MAXSHAREDS IZE (PROTOGOLHOLDOFFSET + 12) /* the number of bytes in the
shared se gme n t *

/

#define CHARACTERJTYPE 'B* /* code for characters */
#define INTEGER_TYPE 'I' /* code for integers */
#define FLOAT_TYPE "R' /* code for floats */
#define CHARACTER ARRAY_TYPE 'C /* code for character arrays */
#define INTEGER_ARRAY_TYPE 'J* /* code for integer arrays */
#define FLOAT_ARRAY_TYPE 'S' /* code for float arrays */

#define CHARACTER,SIZE 1 /* character size in bytes */
#define INTEGER_SIZE sizeof(l) /* integer size in bytes */
#define FLOAT_SIZE sizeof(l.O) /* float size in bytes */

/* the following is the structure type definition needed for each machine
you want to conmunicate to...

*/

t ypede f s t rue t
{

char *segment; /* ptr to shared memory segment */

int shmid; /* system generated shared mem. id */

int sendsem; /* semaphore used to wakeup the sender
process

.

•/

int receives em ; / * s ema phore used to wa k e u p the
receiver process...

*/

} Ma chine ;

115

8. shareseg.c

Calling Protocols

This module contains the low-level shared-memory calls. No functions in this

module are intended for application programs.

b. Code and Description

*+**************+***************+******+***************+**************+++++**
/
* *

* TITLE In t er -Compu t er Conmun ica t i on Package *

* *

* MODULE rshareseg.c *

* *

* VERSION: 3.1 *

* *

* DATE : 24 February 1988 *

* *

* AUTHOR : Theodore H. Barrow *

* *

**

*

*

+

*

*

*

*

*

+

*

*

*

*

*

*

*

*

*

*

*

*

*

HISTORY:

VERSION

DATE

AUTHOR

DESC.

VERSION

DATE

AUTHOR

DESC.

VERSION

DATE

AUTHOR

DESC.

1.0

6 February 1987

Mi chae 1 J . Zyda

Contains routines to manage shared memory segment. Creation
attachment, detachment and deletion are all covered.

2.0

21 Oc tober 1987

Theodore H. Barrow

Added function dynami csharedsegmen t to allow dynamic memory
allocation after cormiuni cat ions link established.

3.0

15 December 1987

Theodore H. Barrow

Modified function dynami c sha redsegmen t for use with multiple
links. First call does shared segment creation. Subsequent *

calls return address for the next buffer set. *

**
* *

* RECORD OF CHANGES *

* *

Version* Date * Author * * Affected *Reqd*
* * Change Description * Modules *Ve r s *

******************************** ******* ***************************************
* 3.1 * 24Feb88* T. H. Barrow * * none * *
* * Added compatibility for IRIS 4D. * * *

***/

116

shareseg.c

^include <sy s / sy smac ros . h>
include <stdio.h>
#include <sy s /

t

ypes . h>
#include <sys/ipc.h>
#include <sys/shm.h>
#i nc 1 ude <gl . h>

/* The following defines will have to be modified for different machines
but one of the underlying shared memory attachment mechanisms should
work for any system V implementation. */

#define IRIS4D 1

#define IRIS3000 2

#ifdef FLAT
#define MACHINE IRIS4D
#else
#define MACHINE IRIS3000
#endi f

char *sharedsegmen t (key.nbytes, shmid)

long key; /* the key to use for the segment */

long nbytes; /* the number of bytes in the segment */

int *shmid; /* returned shared memory id name */

I

char *buf; /* temp char pointer */

struct shmid_ds junkbuf; /* I don't care what's in this buffer */

/* allocate a shared memo r y s e gme n t *

/

if((*shmid = shmget(key, nbytes, 0666 I IPC_CREAT)) <)

(

perror("s hmg e t ")

;

exi t(0)

;

)

/* attach to the shared memo r y s e gme n t *

/

if((int)(buf = (char *) shmat (* shmi d , 0, 0666)) < 0)

{

perror("s hma t ")

;

/* Since there was an attachment error, delete the segment */

if(shmctl(shmid, IPC_RMID, Ajunkbuf) == - 1)

perror("s hmc t
1
")

;

exi t(0)

;

)

/* return the pointer to the shared segment */

return(buf) ;

117

shareseg.c

char *at t ach_wi t hin_da t asegmen t (. key, size, shmid, freespace)

long key; / * the key to use for the se gme n t * /

long size; /* the number of bytes in the segment */

int * shmid; /* returned shared memory id name */

int freespace; /* amount freespace desired for dynamic allocation */

{

char *enddata, *buf; /* temporary address pointers */

struct shmid_ds junkbuf; /* I don't care what's in this buffer */

char * s b r k () , *ma 1 1 o c ()

;

/* allocate a shared memory segment */

if((*shmid = shmget(key, size, 0666 I IPC_CREAT)) <)

I

per ror (
" shmge t ")

;

exi t(0)

;

)

/* Ensure at least as much unallocated space as freespace indicates.
Normally the top of the data region is incremented more than the
minimum required to meet the malloc() request. Using malloc()
and free() ensures that this mechanism is available for subsequent
dynamic memory allocations. Direct use of sbrk() system call
causes the malloc() mechanism to fail on subsequent allocation
requests. freespace is cast to unsigned to meet malloc() spec. */

free(malloc((un s
i
gned)

f

ree space));

/* find the top of data region */
endda ta = sbrk(0);

/* round up to the next page boundary for attachment of shared
memory segment */

buf = (char *
) ((in t) endda t a -

((in t)endda t a % SHVLBA) + S1MLBA) ;

/* reset top of data region to be above shared segment */

if(brk(buf + size) <)

{

pe r ror ("brk")

;

/* Since there was an error, delete the segment */

if(shmctl(shmid, IPC_RMID, Ajunkbuf) == - 1)

perror("s hmc t
1
")

;

exit(-l);
)

/* attach to the shared memo r y s e gme nt at the calculated address *

/

if((int) shmat (* shmid, buf, 0666) <)

I

perror("s hma t ")

;

/* Since there was an attachment error, delete the segment */

if(shmctl(shmid, IPC_RMID, &junkbuf) == - 1)

perror("s hmc t 1
"

)

;

exi t (0)

;

I

re t urn(buf)

;

)
/ * a t t ach_wi t h i n_da t asegmen t () */

118

shareseg.c

char *dynami c shar edsegmen t (nunmachi ne s , key, nbytes, shmid, freespace)

i n t nunmach i ne s ;
/* maximum number of machines to be initiated */

long key; /* the key to use for the segment */

long nbytes: /* the number of bytes in the segment */

int * shmid; /* returned shared memory id name */

int freespace; /* amount freespace desired for dynamic allocation */

(

static Boolean first time = TRUE; /* allows for multiple calls */

static char *startshared; /* start of shared memo ry space *

/

static int *holdshmid; /* holds shmid for subsequent calls */

i f (f i r s t t ime)

(

switch(MACHINE)

(

case IRIS4D:
startshared = sharedsegmen t (key, nurrmachi nes *nby t e s , shmid);

break ;

case IRIS3000:
startshared = (char *) a t t ach_wi t h in_da t a segmen t (key,

nurrmach ine s *nby t es , shmid, freespace)

break ;

d e f a u 1 t :

perror("shareseg: Unknown machine");

J /* switch(MACHINE) */

holdshmid = shmid;
f irst t ime = FALSE;

)

else
(

/* start next buffer immediately above last. Return the same shmid
for all buffers. Assumes all buffers are same size (true if all
from same shared. h definition. */

startshared += nbytes;

* shmid = *holdshmid;
)

/* return pointer to the proper buffer in the shared segment */
return(startshared);

119

shareseg.c

detachsharedse gme nt(se gme n t

)

char ^segment; /* segment to detach from */

(

int returnvalue;

i f ((i n t) s e gmen t % SfM_BA ! =)

re t urn(1)

;

else
(

if(returnvalue = s hmd t (s e gme n t) <)

perror("s hmd t ")

;

return(returnvalue);

de 1 e t e sharedsegmen t (segment , shmid)

char * segment; /* character pointer to the shared segment */

int shmid; /* shared memory id. . . */

(

int re t urnva I ue

;

struct shmid_ds junkbuf; /* I don't care what's in this buffer */

/ * detach fr om the shared se gme nt and set returnvalue *

/

if(returnvalue = de t achsharedsegmen t (segment) ==)

/* remove the shared segment from the system and reset returnvalue */

if(returnvalue = shmc t 1 (shmi d , IPC_RMID, &junkbuf) <)

per ror (
" shmc t

1

") ;

return(returnvalue)
;

120

9. support.c

a. Calling Protocols

This module contains functions that are intended for the application's use and

functions that are used exclusively by other routines. The parameters for externally

accessible functions are described below.

i. receiver_has_data

int receiver_has_data(instructure)

Machine * ins t rue ture ; /* includes
char * ins

t

rue ture . segment a pointer to the shared segment */

ii. senderjs-free

int sender_i s_free(ins true ture)

Machine * ins t rue ture ; /* includes
char * ins

t

rue ture . segment a pointer to the shared segment */

121

support.

c

b. Code and Description

* TITLE

* MDDULE
*

* VERSION
*

* DATE

In t e r -Compu t er Conmun ica t i on Package

suppo r t .

c

4.0

31 May 1988

Theodore H. Barrow* AUTHOR
*

*************** ******* ****** ******************************* *******************
*

* HISTORY:
*

* VERSION: 1.0
*

* DATE : 6 February 1987
*

* AUTHOR : Michael J. Zyda

* DESC. : Contains support routines for shared memory conmun i ca t i on

s

* system.
*

* VERSION: 2.0

DATE : 27 May 1987

AUTHOR : Theodore H. Barrow

DESC. : Converted functions called by the application program to use
a structure for ease of use.

VERSION: 3.0

DATE : 21 October 1987

AUTHOR : Theodore H. Barrow

DESC. : Removed functions for reading from and writing to the shared
memory segment by the application program.

VERSION: 4

* DATE : 31 May 1988

* AUTHOR : Theodore H. Barrow *

* +

* DESC. : Added functions bi oadcas t_ in t o_segmen t and *

* send_socke
t _f rom_segmen t for broadcasting over datagram socket*

**

RECORD OF CHANGES

Version* Date * Author
Change Description

* * Affected *Reqd*
* Modules *Vers*

**
* * * * * * *

* * * * *

***/

122

support.c

#include "shared. h"
#i nc I ude <gl . h>
#include <bsd/ sy s /

t
ype s . h>

#include <sy s

/

socke t . h>
#include <bsd/ne t i ne t / i n . h>
include <bsd/netdb.h>

/* the following routine sets up buffer area */

ini t_shared_buffer(segmen t

)

char *segment; /* pointer to the shared segment */

free_sender(segment);

free_receiver(se gme n t)

;

•(segment + PR0TOCOLH0LDOFFSET + 9) = *\0';

/* the following routine writes zeroes at the top of the
shared segment indicating that the segment data is no longer
valid.

*/

free_sender(segment

)

char * s e gme nt; / * pointer to the shared se gme n t *

/

I

/* the following line zeroes the first four bytes of the sender part
of the shared memory segment, 'segment' is a character pointer.
I coerce it into a long integer pointer and then write a zero.

*/
((long *)segment + WSErOEROFFSET) = 0;

/* this following routine writes zeroes at the top of the
shared segment indicating that the segment data is no longer
val id.

*/

free_receiver(segmen t

)

char * segment; /* pointer to the shared segment */

(

/* the following line zeroes the first four bytes of the receiver part
of the shared memory segment, 'segment' is a character pointer.
I coerce it into a long integer pointer and then write a zero.

*/
((long *)segment + WRECEIVEROFFSET) = 0;

123

support.c

/* the following routine tests the first 4 bytes of the receiver
segment to see if they are non-zero.
it uses an input structure since called by main program

*/

int receiver_h as _data(instructure)

Machine *in structure; /* includes

char * ins t rue t ure . segmen t a pointer to the shared segment */

f(*((long *) inst rue ture->segmen t + WRECEIVEROFFSET) > 0)

return(TRUE)

;

else

return(FALSE)

;

/* the following routine tests the first 4 bytes of the sender
segment to see if they are non-zero.

•/

int sende r_has_da t a(segmen t

)

char *segment; /* pointer to the shared segment */

I

f(*((long *) segment + WSEfOEROFFSET) > 0)

return(TRUE)

;

else

return(FALSE) ;

124

support.c

/* the following routine tests the first 4 bytes of the receiver
segment to see if they are less than zero.

*/

int receiver_should_die(se gme n t)

char *segment: /* pointer to the shared segment */

I

if(*((long *) segment + \M*ECE IVEROFFSET) < 0)

(

return(TRUE)

;

)

else
(

re turn(FALSE)

;

)

)

/* the following routine tests the first 4 bytes of the sender
segment to see if they are less than zero.

*/

int sende r_shou 1 d_d i e (segmen t

)

char *segment; / * pointer to the shared segment */

I

if(*((long *) segment + W5EIOEROFFSET) < 0)

I

return(TRUE)

;

}

else
(

return(FALSE)

;

)

)

125

support.c

/* the following routine tests the first 4 bytes of the receiver
segment to see if they are non-zero.

*/

i ii t rece i ve r_i s_f ree(segmen t)

char * s e gme nt: / * pointer to the shared se gme n t *

/

[

if(*((long *) segment + V.RECEIVEROFFSET) == 0)

(

return(TRUE)

;

)

else
(

re turn(FALSE)

;

)

)

/* the following routine tests the first 4 bytes of the sender
segment to see if they are non-zero.
it uses an input structure since called by main program

*/

int sende r_i s_f ree (i ns

t

rue t ure)

Machine * i ns t rue t ur e ; /* includes

char * i ns t rue ture . segmen t a pointer to the shared segment */

(

if(*((long *)instructure->segment + WSEM>EROFFSET) == 0)

(

return(TRUE)

;

)

else
(

return(FALSE) ;

126

support.c

/* the following routine reads on the input socket into the receiver segment.*/

read_socket_int o_segmen t

(

socke t , segment

)

int socket; /* a socket descriptor */

char * s e gme nt; /* a ptr to the shared se gme n t *

/

(

long nbytes; /* the number of bytes read in */

char templLARGESTREAD]

;

/* read the data into a temporary array to avoid segment protection
violation since the socket does not share with the shared memory
s e gme n t .

*/
nbytes = r e ad (socke t , t emp , LARGESTREAD)

;

if(nbytes <= 0)

I

/* the following routine calls are commented out for the following
reason :

nbytes <= means that the socket has been broken.

This routine is called by the receiver process so the only
intelligent thing to do is to terminate the receiver process,
i.e. call exi t . . .

perror (" read")

;

printf ("READ_SOCKET_INTO_SEGMEOT: number of bytes read = %d\n" , nby t es

)

*/
shutdown(socket, 2);
c lose(socke t)

;

e x i t (1) ;

)

/* copy the data into the shared segment */
memcpy((segment + RECEIVEROFFSET + 4) , t emp ,nby t es)

;

/* set the number of bytes in the shared segment */
*((long *) segment + WRECEIVEROFFSET) = nbytes;

127

support.c

/* the following routine writes the data from the sender side
of the shared se gme nt to the socket */

write_soeket_f rom_segmen ((socket ,s egmen t

)

i n t socket; /* socket descriptor */

char *segment; /* pointer to the shared segment */

(

long nbytes; /* the number of bytes to write */

char temp[LARGESTREAD]

;

/* copy the data into a temporary array to avoid segment protection
violation since the socket does not share with the shared memory
s egmen t

.

V
memcpy(temp, ((char *)segment + SENDEROFFSET + 4),

*((long *)segment + WSENDEROFFSET)) ;

/* write the data to the socket */
nbytes = wr i t e (socke t , t emp, *((long *) segment + *5ENDEROFFSET)) ;

if (nbytes <= I I nbytes != *((long *) segment + W5ETOEROFFSET)

)

(

/*
This error indicates the socket is broken. Just exit the
sende r process.

pe r ror ("wr i t e") ;

print f("\MUTE_SOCKET_FROvl_SECMENT: number of bytes written = %d\n" , nby t es)

;

pr in t f("Number of bytes in shared segment = %d\n" , *(

(

long *)segment + WSErOEROFFS
*/

s hut down (socket, 2) :

c lose(socke t)

;

exi t (1)

;

I

/* free the sender se gme n t *

/

free_sender(s egmen t)

;

128

support.c

/* The following routine receives on the input datagram socket.
If the message matches the mname and portnum it is copied into the
receiver area of the shared memo r y s e gme n t .

is returned if the message does not match mname and portnum,
the number of bytes read is returned if it does match. */

int broadcast_int o_segmen t (socke t , segmen t .mname
,
por t num)

int socket; /* a socket descriptor */

char * s e gme nt
;

/ * a ptr to the shared se gme n t *

/

char mname [] ; /* machine name of broadcaster */

long portnum; /* port number of broadcaster */

long nbytes; /* the number of bytes read in */

char temp[LARGESTREAD]

;

int flags = 0; /* flags = indicates none set */

struct sockaddr_in who; /* Internet structure for message sender address */

int who 1 en; /* length of received address struct who */

struct hostent *b roadcas t er ; /* pointer to structure with info on
broadc aster *

/

static long broadcas t_address ;
/* address of broadcaster */

static short broadcas t_por t ; /* port of broadcaster */

static Boolean first time = TRUE;

/* read the data into a temporary array to avoid segment protection
violation since the socket does not share with the shared memory
segment. This also allows checking for match with desired broadcaster.

*/
nbytes = recvfrom(socket, temp, LARGESTREAD, flags,

(struct sockaddr *)&who, Awholen);

if(nbytes <= 0)

(

perror(" recvfrom: "
)

;

}

else
I

i f (f i r s t t ime)

I

/* determine desired broadcaster address and port */

broadcas t_po r t = h

t

ons (

(

shor t) por t num) ;

broadcaster = (struct hostent *) ge t ho s t byname (mname);

I

bcopy(broadca s t er ->h_addr
,

(char *)&broadcas t_addre s

s

broadc a s t e r ->h_l eng t h);

if((broadcas t_addre s s == who . s

i

n_addr . s_add r) &&
(broadcas t_por t == who .

s

in_por t))

129

support.c

/* copy the data into the shared segment */
memcpy((segment + RECEIVEROFFSET + 4) , t emp ,nby tes)

;

/* set the number of bytes in the shared segment */
*((long *) segment + WRECEIVEROFFSET) = nbytes;

else

nby tes = 0;
/* Set nbytes to so return of function indicates no match */

re t urn(nby t es) ;

130

support.c

/* the following routine sends the data from the sender side
of the shared se gme nt to the socket for broadcast * /

send_socke t _f rom_segmen t

(

socket .port num, s egmen t

)

int socket; /* socket descriptor */

long portnum; /* port number of broadcaster */

char * segment; /* pointer to the shared segment */

(

long nbytes; /* the number of bytes to write */

char temp[LARGESTREAD]

;

short broadcas t er_por t

;

static Boolean first time = TRUE;

static struct sockaddr_in netwo r k = { AF_ INET); / * structure for broadcast
addr e s s *

/

i f (f i r s t t ime)

(

broadcas ter_port = I PPORT_RESERVED + portnum;
/* Set up broadcasting address structure */
ne twork . s i n_f ami 1 y = AF_INET;
network. si n_addr . s_addr = h

t

onl (INAEDR_BROADCAST)

;

ne twork . s i n_por t = h tons (broadcas t er_por t)

;

f irst t ime = FALSE;
)

/* copy the data into a temporary array to avoid segment protection
violation since the socket does not share with the shared memory
segmen t .

*/
memcpy(temp, ((char *) segment + SEM)EROFFSET +4),

((long *) segment + WSEtOEROFFSET))

;

/* broadcast the data through the socket */
nbytes = sendto(socket, temp, *((long *) segment + WSEtOEROFFSET) , 0,

(struct sockaddr *)&network, s izeof (ne twork));

if (nbytes <= I I nbytes != *((long *) segment + WSEN)EROFFSET)

)

(

/*
This error indicates the socket is broken. Just exit the
sender proce s s

.

*/

pe r ror ("wr i t e")

;

pr int f (

,r\MlITE_SOCKET_FRCM_SEavlENr: number of bytes written = %d\n "
, nby t e s) :

pr in t f
("Numbe r of bytes in shared segment = %d\n" ,

* ((

1

ong *) segment + WSENDEROFFSET
shut down (socket, 2);

c lose (socke t)

;

exi t (1)

:

I

/ * free the sender se gme n t *

/

free_sender(se gme n t)

;

131

support.c

/* the following routine deletes the sender by writing
a negative byte count into the shared segment
and then waking up the sender.

*/

ki

1

l_sender(segmen t

,

sends em)

char * s e gme nt; / * p t r to these gme n t *

/

int sendsem; /* semaphore to the sender */

I

/* write a negative number into the byte count field. */

*((long *) segment + "WSETOEROFFSET) = -1;

/* at this point, we should send a wakeup to the sender program.
the sender will read the bad byte count and exit.

*/
V(sendsem) ;

/* the following routine deletes the receiver by writing
a negative byte count into the shared se gme n t

and then waking up the receiver.
•/

kill_receiver(segmen t

,

receives em)

char *segment; /* ptr to the segment */

int receivesem; /* semaphore to the receiver */

(

/* we do not wait until the receiver segment is free here
as the process that calls this routine should already
have read the last piece of data.

*/

/* write a negative number into the byte count field. */
*((long *) segment + WRECE1VEROFFSET) = -1;

/* at this point, we should send a wakeup to the receiver program,
the receiver will read the bad byte count and exit.

*/
V(r ece i ve sem) :

132

APPENDIX B - TI EXPLORER MODULE DESCRIPTIONS

All functions, methods, and flavor are contained in file irisflavor.lisp.

1 . Calling Protocols

The module contains functions, methods, and a flavor that are intended for the

application's use. It also contains a macro and functions that are used internally. The

parameters for externally accessible functions and methods are described below.

a. iris

(defun iris (x) ;where x is number of iris machine desired

b. start-iris

(defmethod (conver sat i on-wi th- i r i s :start-iris)
()

c. set- iris

(defmethod (conversat ion-wi th- i ri s :get-iris)
()

d. put-iris

(defmethod (conve r s a t ion-wi t h- i r i s :put-iris)
(obj ec t)

(let* ((buffer (cond
((equal (type-of object) 'bignum) (convert-number-to-string object))

((equal (type-of object) 'fixnum) (convert-number- to-string object))
((equal (type-of object) "float) (convert -number- to-string object))
((equal (type-of object) 'string) object)
(t "error")))

e. stop-iris

(defmethod (conversat ion-wi th- i r is :stop-iris)
()

f. reuse-iris

(defmethod (conversat i on-wi th- i r i s :reuse-iris)
()

133

Explorer irisflavor.Iisp

2. Code and Description

(defmacro loopfor (var init test expl &optional exp2 exp3 exp4 exp5)
'

(
prog (

)

(setq ,var ,init)
tag
, expl
, exp2
, exp3
, exp4
, exp5
(setq ,var (1+ ,var))
(if (= ,var .test) (return t) (go tag))))

(defun conve r t -numbe r- t o- s t

r

ing (n)
(pr inc - to- s t r ing n))

(defun conve r t - s t r ing- t o- in t ege r (str &optional (radix 10))
(do ((j (+ j 1))

(n (+ (* n radix) (di gi

t

-char -p (char str j) radix))))

((= j (length str)) n)))

(defun f ind-pe r iod- index (str)
(catch "exit

(dotimes (x (length str) nil)
(if (equal (char str x) (char "." 0))
(throw 'exit x)))))

(defun ge t - 1 e f t s i de -of - real (str &optional (radix 10))
(do ((j (1+ j))

(n (+ (* n radix) (di gi

t

-char -p (char str j) radix))))

((or (null (digit-char-p (char str j) radix)) (= j (length str))) n)))

(defun ge t - r
i
gh t s i de -of - real (str &optional (radix 10))

(do ((index (1+ (

f

ind-pe r iod- index str)) (1+ index))
(factor 0.10 (* factor 0.10))
(n 0.0 (+ n (* factor (digit-char-p (char str index) radix)))))

((= index (length str)) n)))

(defun conver t - s t

r

ing- t o- real (str &optional (radix 10))
(+ (float (ge t - 1 e f t s i de -of - real str radix)) (ge t -

r

igh t

s

ide-of - real str radix)))

(defvar *

t

cp- hand 1 e r 1 * (send i p : : *

t

cp- hand 1 e r* :get-port))
(defvar *

t

cp- handl e r2* (send ip :
: *

t

cp-handl er* :get-port))

(defvar * i r i s 1 -por t 1* 1027)
(defvar * i r i s 1 -por t 2* 1026)

(defvar * i r i s 1 - addres s* 3221866502)
(defvar * i r i s2- addres s* 3221866504)
(defvar * i r i s3

-

addres s* 3221866505)

(defvar *dest -address* nil)

; this is the send port
; this is the receive port

; the tcp-ip or internet address
; look in network configuration

(defun iris (x

)

(cond ((equal x 1) (setq *dest -address* *irisl-ad dress*))
((equal x 3) (setq *dest -address* *iris3-address*))
(t (setq *des t

-

addres s* * i r

i

s2- addre s s*))))

(defflavor conve r sa

t

ion-wi t h- i r i s ((t a I k

i

ng-por t - numbe r * i r i s 1 -po r t 1 *
)

(listening-port- numbe r *irisl-port2*)
(talking-port *

t

cp-hand I e r 1*

)

(listening-port *tcp-handler2*)
(destination *de s t

-

addre s s *))

134

Explorer irisflavor.lisp

()
:get table-instance-variables

set table- instance-variables
i n i t ab 1 e - i n s t ance - var i ab 1 e s)

(de fme t hod (conve r s a t i on -wi t h - i r i s :start-iris)
()

(progn
(send talking- port :open

: ac t i ve

ta Iking-port -number
des t i na t i on

tcp will begin the procedure to establish
connection (default vs :passive)
port number of destination host
machine name or address if blank and
in :passive mode local machine waits for
connec t i on
set max seconds before read request times30)

(send listening-port :open
: ac t i ve ; : pas s i ve
listening-port -numbe r

des t ina t i on
30)

'"A conversation with the iris machine has been established"

ou t

))

(defmethod (conve r s a t i on-wi t h-

()
(setq *

t

cp- handl er 1 * (send ip

r i s

)

tcp-handler* :get-port)
*

t

cp- hand 1 e r 2* (send ip :
: * t cp - hand 1 e r * :get-port)

talking-port *

t

cp-handl e r 1*

listening-port *

t

cp-handl er2*))

")

")
")

(defmethod (conve r s a t i on-wi t h - i r i s :get-iris)
()

(let* ((typebuffer
(1 eng t hbuf f er

"

(buffer
(buffer- length 1))

(progn
(send listening-port :receive

t ypebuf f e r

buf f er - 1 eng t

h

30
: wa i t)

(send listening-port :receive
1 eng t hbuf f er
4
30
: wa i t)

(setq buf f er - 1 eng t h (convert-string-to-integer lengthbuf f er)

)

(setq buffer (make-string buf f er - 1 eng t h : in i t i a 1 - e lenient (character
listening-port :receive
buffer
buf f er - I eng t h

30
: wa i t)

(

(

equa 1

((equal
((equal
(t nil)

32)))
(send

(cond typebuffer "I")
t ypebuf f er "R"

)

t ypebu f f e r "C"

)

))))

(conve r t

(conver t

buffer)

string- to-

string- to
integer
real

buffer)

)

buffer)

)

(defmethod (con ve r s a t i on -wi t
h - i r i s :put-iris)

(ob j ec t

)

(let* ((buffer (cond
((equal (type-of object) 'bignum) (conve r t -number - to- s t r i ng object))

((equal (type-of object) 'fixnum) (conve r t - numbe r - t
o - s t r i ng object))

((equal (type-of object) 'float) (conve r t - numbe r - t
o - s t r i ng object))

((equal (type-of object) 'string) object)
(t "error")))

(bu f f e r - 1 eng t h (length buffer))

135

Explorer irisflavor.lisp

(typebuffer (cond ((equal (type-of object) 'bignum) "I")
((equal (type-of object) 'fixnum) "I")
((equal (type-of object) 'float) "R"

)

((equal (type-of object) 'string) "C"

)

(t "C"))

)

(1 eng t hbuf f e r (convert-number-to-string buf f er - 1 eng t h)

)

(* 1 oopvar i abl e* 0))

(progn
(send talking-port : send

t ypebuf f er
1

nil
ni 1)

(if (= (length 1 eng

t

hbuf fer) 4)
(send talking-port : send

1 eng t hbuf fer
4
nil
nil)

(progn
(loopfor * 1 oopvar i ab 1 e* (length 1 eng t hbuf fer) 4

(send talking-port :send "0" 1 nil nil))

(send talking-port : send lengthbuffer (length 1 eng thbuf f er) nil nil)))

(send talking-port : send
buffer
buffer- 1 eng t

h

t

nil))))

(defmethod (conver sa t ion-wi th- i r i s :stop-iris)
()

(progn (send talking-port :close) (send listening-port rclose)))

136

APPENDIX C - Symbolics module descriptions

All functions, methods, and flavor are contained in file irisflavor.lisp.
*

1 . Calling Protocols

The module contains functions, methods, and a flavor that are intended for the

application's use. It also contains a macro and functions that are used internally. The

parameters for externally accessible functions and methods are described below.

a. select-host

(defun select-host (host-name)

b. start-iris

(defmethod (:start-iris conve rsa t i on-wi t h- i r i s

)

()

c. get- iris

(defmethod (:get-iris conversat ion-wi th- i ri s

)

()

d. put-iris

(defmethod (:put-iris conver sa

t

ion-wi t h- i r i s

)

(obj ec t

)

(let* ((buffer (cond
((equal (type-of object) 'bignum) (conver t -number - t o- s t r i ng object))

((equal (type-of object) 'fixnum) (conver t -numbe r - t o- s t r i ng object))
((equal (type-of object) ' s

i

ngl e - f 1 oa t) (conve r t - numbe r - t o- s t r i ng object))
((equal (type-of object) 'string) object)
(t "error")))

e. stop- iris

(defmethod (:stop-iris conversat ion-wi th- i r i s

)

()

f. reuse-iris

(defmethod (:reuse-iris conversat i on-wi th- i r i s

)

()

137

Symbolics irisflavor.lisp

2. Code and Description

;;; -*- Mode: LISP; Syntax: Conmon- 1 i sp ; Package: USER -*-

: handy macro to have in the send message farthur down

(defmacro loopfor (var init test expl &optional exp2 exp3 exp4 exp5)
' (prog ()

(setq ,var ,init)
tag

, expl
, exp2
, exp3
, exp4
, exp5
(setq , v a r (1+ ,var))
(if (= ,var , test) (return t) (go tag))))

(defun convert-number-to-string (n)
(pr inc - t o- s t r ing n))

(defun conver t - s t

r

ing- t o- in

t

eger (str &optional (radix 10))
(do ((j (+ j 1))

(n (+ (* n radix) (di gi

t

-char -p (char str j) radix))))

((= j (length st r)) n)))

(defun f ind-pe r i od- index (str)
(catch 'exit

(dotimes (x (length str) nil)
(if (equal (char str x) (char "." 0))
(throw *exi t x)))))

(defun ge t - 1 ef t

s

ide-of - real (str &optional (radix 10))
(do ((j (1+ j))

(n (+ (* n radix) (digi t -char -p (char str j) radix))))

((or (null (di gi

t

-char -p (char str j) radix)) (= j (length str))) n)))

(defun ge t - r i
gh t s i de -of - real (str &optional (radix 10))

(do ((index (1+ (

f

ind-per iod- index str)) (1+ index))
(factor 0.10 (* factor 0.10))
(n 0.0 (+ n (* factor (dig i

t

-char -p (char str index) radix)))))

((= index (length str)) n)))

(defun conver t - s t

r

ing- to- real (str Aoptional (radix 10))
(+ (float (ge t - 1 ef t s

i

de-of -

r

eal str radix)) (ge t - r
i
gh t s i de -of - real str radix)))

(defvar *iris-portl* 1027)
(defvar *iris-port2* 1026)
(defvar * 1 oca 1 - t a 1 k-por t * 1500)
(defvar * loca 1 - 1 i s

t

en-por t * 1501)

this is the send port
this is the receive port
this is the local send port
this is the local receive port

(defflavor conversat ion-wi th- i r i s ((t a 1 ki ng-por t - numbe r * i r i

s

-po r t 1 *
)

(listening-port- numbe r *iris-port2*)
(1 oca 1 - t a 1 k-por t -numbe r *Iocal-talk-port*)
(local-listen-port -numbe r *locaI-listen-port*)

(t al king- s t ream)
(listening-stre am

)

(de s

t

ina t

i

on-hos t -ob j ec t))

()

:ini table-instance-variables)

(defmethod (: i n i t - des t i na t i on - hos t conve r s a t i on -wi t
h - i r i s

)

(n ame - o f - h o s t

)

(setf des t i na t

i

on-hos t -obj ec t (ne t

:

par se -hos t name -of -hos t)))

138

Symbolics irisflavor.lisp

(defmethod (:start-iris conversation -with- iris)
()

(setf talking-stre am
(tcp:open-tcp-st ream dest inat ion-host -object

talking-port - numbe r

local -

1

alk-por t -numbe r))

(setf listening-stre am
(t cp

:

open- t cp- s t ream destination-host-object
listening-port -numbe r

1 oca 1 - 1 i s

t

en-por t - number))

"A conversation with the iris machine has been established")

(defmethod (

:

reuse-iris conver sa

t

ion-wi t h- i r i s

)

()

)

(defun read-string (stream num-chars)
(let ((out - st ring ""

)

)

(dotimes (i num-chars)
(setf out-string (s t

r

ing- append out-string (read-char stream))))

ou t - s t r i ng))

(defmethod (:
ge t - i r i s conversat ion-wi th-iri s)

()
(let* (

(

typebuf f er " ")

(1 eng t hbuf f e r " "

)

(buffer " ")

(buffer- length 1))

(progn
(setf t ypebuf f e r

(read-string 1 i s

t

ening- s t ream 1))

(setf lengthbuffer
(read-string 1 i

s

teni ng- s t ream 4))

(setf buf f er - lengt

h

(convert-string- to-integer lengthbuffer))

(setf buffer
(read-string 1 i s

t

ening- s t ream buf f e r -

1

eng t h))

(cond ((equal typebuffer "I") (convert-st ring- to- integer buffer))
((equal typebuffer "R") (conve r t - s t

r

ing- to- real buffer))
((equal typebuffer "C") buffer)
(t nil)))))

(defvar *step-var* 0)

(defun my-wr i t e - s t r ing(s t

r

ing stream)
(let* ((n um- chars (length string)))

(dotimes (i num-chars)
(write-char (aref string i) stream))))

(defmethod (:
pu t - i r i s conve r s a

t

ion -wi t h - i r i s

)

(ob j ec t)

(let* ((buffer (cond
((equal (type-of object) 'bignum) (conve r t - numbe r - t o- s t r i ng object))

((equal (type-of object) 'fixnum) (conve r t - numbe r - t o- s t r i ng object))
((equal (type-of object) ' s i ng 1 e - f 1 oa t) (conve r t - numbe r - t

o - s t r i ng object))
((equal (type-of object) 'string) object)
(t "error")))

(buf f er - 1 eng t h (length buffer))

(typebuffer (cond ((equal (type-of object) 'bignum) "I")
((equal (type-of object) 'fixnum) "I")
((equal (type-of object) 'single-float) "R")
((equal (type-of object) 'string) "C"

)

(t "C")))

(lengthbuffer (convert-n umb er-to-string buffer-length)))

139

Symbolics irisflavor.lisp

(progn
(my -wr i t e - s t

r

ing typebuffer t a lki ng- s t ream)
(send t a Ik ing- s t ream : force - output)

(if (= (length 1 eng t hbuf f e r) 4)
(wr i t e - s t r i ng 1 eng t hbuf fe r t a Iking- s t ream)
(progn

(loopfor *step-var* (length 1 eng t hbuf fer) 4

(write-string "0" t a Ik ing- s t ream))

(my -wr i t e- s t

r

ing lengthbuffer t aiking- s t ream)))

(send t alking- s t ream : force - ou tput)

(my -wr i t e - s t r ing buffer t a 1 ki ng - s t ream)
(send t alking- s t ream : force - outpu t))))

(defmethod (:stop-iris conversat ion-wi th-iris)
()

(progn (send t a 1 k ing- s t ream :close)
(send 1 i s t eni ng- s t ream :close)))

(defun select- host (host-n ame)

(send talk : i n i t -de s t i na t i on - hos t host-name))

140

APPENDIX A - TEST AND UTILITY PROGRAMS

1. gprog.c

a. Calling Protocols

This is a test program for the direct connect protocol. By command line

argument, another machine to receive direct connect messages from can be specified.

The default is to receive messages from iris2. It must be run in conjunction with

gprog2.c to function properly, as the port assignments are hardcoded. Since it is the

server program, it must be started before gprog2.c.

b. Code and Description

/* this is file gprog.c

It is a sample top level program for the asynchronous reading
and writing of sockets via snared memory and two other processes.

This program spawns off the required processes.

This program uses structure type Machine declared in file shared. h.

This is the SERVER side program and runs first!!!.

*/

#include "shared. h"
#inc 1 ude "gl .

h"

#include "device. h"

main(argc , argv)

int argc; /* argument count */
char *argv[]; /* pointers to the passed in arguments */

(

Machine remot emachine

;

/* structure for remote machine */

char o the r_mach ine [50]

;

/* name of other machine */

char mybuf f e r [LARGESTREAD] ; /* received data */

char ou

t

going [LARGESTREAD] ; /* outgoing message's buffer */

int mybuf ferl [LARGESTREAD / INTEGER,SIZE] ;
/* received integer data */

int outgoingl [LARGESTREAD/ INTEGER,SIZE] ;
/* outgoing integer message's buffer */

float mybuf f e r2 [LARGESTREAD/FLOAT_SIZE] ;
/* received float data */

float outgoing2[LARGESTREAD/FLOAT_SIZE] ; /* outgoing float message buffer */

long noutgoing; /* size of the outgoing message */

141

char t emp [10];

long count = 0;

char rece i ved_t ype ()

;

char type_received;

i n t el erne nt s_received;

1 ong i

;

long j = 0;

gprog.c

/* temp array used to make outgoing message */

/* message counter */

/* temp loop variable */

/* variable to control message sending */

/* pull out the string from the argument list */

i f (argc > 2)

(

pr int f
("GPROG: incorrect argument count! use gprog <alias>\n");

exi t(1)

;

}

/* pull out the name of the other string, if it exists */

if(argc == 2)

I

strcpy(o t her_machi ne , "npscs-");

strcat(o t her_mach ine , argv[l]);

)

else
strcpy(o t he r_mach i ne , "npsc s - i r i s

1
");

/* create a path to a particular machine (irisl default) */
/* the first argument is the key for the shared memory segment,

the second argument is the name of the machine to connect to.
the third argument is the sending port number for the socket to use.
the fourth argument is the receiving port number for the socket to use
the fifth argument indicates whether the processes should

act as a server or a client,
the sixth argument is the returned pointer to the structure

remot emachine .

it includes the pointer to the shared memory segment,
the system generated shared memory id, the sendsem id,
and the returned receivesem id.

the seventh argument is the amount of freespace desired for dynamic
memory allocation during execution of the program.

*/
dynamicmachi nepath(1 , o t her_machine ,1,2, "server" ,&remotemach ine , 2000000)

;

/* the loop for polling the shared segment */
whi le(TRUE)
(

/* make an outgoing message */
strcpy(out going, "GPROG ORIGINATED MESSAGE: ");

count = count - 1;

outgoingl[0] = count;

noutgoing = s t r 1 en (ou
t
go i ng)

;

outgoing2[0] = count;

/ * is there data in the shared se gme n t ? *

/

i f(receiver_has_data (&r emo t emach ine))
(

t ype_rece i ved = rece i ved_
t
ype (&r emo t emach i ne)

;

142

)

gprog.c

printf("The message received by GPROG is of type %c \n"

,

t ype_rece i ved) ;

switch (
t
ype_rece i ved)

(

case CHARACTER,ARRAY_TYPE

:

e 1 emeu

t

s_rece i ved = number_rece i ved(&r emot emach i ne) ;
'

print f("The message received by GPROG is %d elements long!\n'
e 1 eme nt s_received) ;

read_charac t ers (&remot emachine , mybuffer, e 1 emen

t

s_rece i ved)

break ;

case INTEGER_TYPE

:

read_ integer (&r emot emachine ,mybuf f er 1) ;

break ;

case FLOAT_TYPE:
read_ float (&r emot emachine ,mybuf

f

er2) ;

b r e ak ;

)

/* at this point in the program, process the received data...*/
pr in t f

("GPROG has received the following data:\n");

switch (type received)
I

case CHARACTER_ARRAY_TYPE

:

f o r (i =0 ; i < e 1 eme nts_received; i+=l)
I

p r i n t f
("%c " ,mybu ffer[i]);

}

b r e ak

;

case INTEGER_TYPE

:

print f ("%d" .mybuffer 1 [0])

;

break
;

case FLOAT TYPE:
print f("%f " ,mybuffer2[0]);
break ;

)

pr in t f
("\n")

;

/* at this point, we would look at our system and see if we needed
to send data. Instead, I will check if the sender is free.
If the sender is free, I will send one of three messages */

if(sender_i s_f ree(&remot emachine))

(

if((j % 3) == 0)
wri te_characters (&remot emach ine.outgoing.noutgoing) ;

/* wait until message sent before attempting to send another */

while(! sende r_i s_free (&r emot emach ine)) /* do nothing */ ;

i f ((j % 3) == 1

)

wri te_integer (&remot emach ine
,
outgoingl)

;

/ * wa i t until me ssage sent before att emp ting to send another * /

wh i 1 e (! sende r_i s_f ree (&remot emach i ne)) /* do nothing */ ;

if((j % 3) == 2)
wr i t e_f loa t (Aremot emach ine ,outgoing2) ;

)

else

++J ;

143

gprog.c

/* assume socket connection broken */
pr in t f

("Sender wasn't free! Termina t ing. . . \n"

)

break ;

) /* endif wh i le TRUE */

/ * get rid of the path to the other machine
de 1 e t emach i nepa t h (&r emot emach ine)

;

144

2. gprog2.c

a. Calling Protocols

This is a test program for the direct connect protocol. By command line

argument, another machine to receive direct connect messages from can be specified.

The default is to receive messages from irisl. It must be run in conjunction with

gprog.c to function properly, as the port assignments are hardcoded. Since it is the

client program, it be started after gprog.c is ready for it.

b. Code and Description

/* this is file gprog2.c

It is a sample top level graphics program for the asynchronous reading
and writing of sockets via shared memory and two other processes.

This program spawns off the required processes.

This program uses structure type Machine declared in file shared. h.

This is the CLIENT side program and runs second!!!.

•/

include " shared. h"
#define TRUE 1

ma in(argc , argv

)

int argc; /* argument count */
char *argv[]; /* pointers to the passed in arguments */

I

Machine remot emachine

;

/* structure for remote machine */

char o the r_machine [50]

;

/* name of other machine */

char mybuf fer [LARGESTREAD]

;

/* received data */

char ou
t
go i ng [LARGESTREAD]

;

/* outgoing message's buffer */

int mybuf f e r 1 [LARGESTREAD/ INTEGER_SIZE]

int out go ingl[LARGESTREAD/ INTEGER_SIZE]

float mybuffer2[LARGESTREAD/FLOAT_SIZE]

float outgoing2[LARGESTREAD/FLOAT_SIZE]

/* received integer data */

/* outgoing integer me ssage's buffer *

/

/* received float data */

/* outgoing float message buffer */

long noutgoing; / * size of the outgoing me s s a g e *

/

c li a r t emp [10]; / * t emp array used to ma ke outgoing me s sage */

long count = 0; /* message counter */

char rece i ved_
t
ype ()

;

145

gprog2.c

char t ype_rece i ved

;

int e 1 emen

t

s_rece i ved;

long i; /* temp loop variable */

longj=0; /* variable to control message sending */

/* pull out the string from the argument list */

i f (argc > 2)

I

pr in t f ("GPROG2 : incorrect argument count! use gprog2 <a 1 i as>\n") ;

exi t(1) ;

)

/* pull out the n ante of the other string, if it exists *

/

if(argc == 2)

{

strcpy(o t her_machine , "npscs-");

strcat(o t her_machine , argvfl]);

)

else
strcpy(other_machine , "npsc s

- i r i s2");

/* create a path to a particular machine (iris2 default) */
/* the first argument is the key for the shared memory segment,

the second argument is the name of the machine to connect to.
the third argument is the sending port number for the socket to use.
the fourth argument is the receiving port number for the socket to use
the fifth argument indicates whether the processes should
act as a server or a client.
the sixth argument is the returned pointer to the structure

r emo t ema chine .

it includes the pointer to the shared memory segment,
the system generated shared memory id, the sends em id,
and the returned receives em i d

.

*/
machinepath(1 , o ther_machine ,2,1, "client" ,&remot emach ine)

;

/* the display loop and loop for polling the shared segment */
whi le(TRUE)
(

/* make an outgoing message */
s t rcpy (ou

t

going," IRIS 1 ORIGINATED MESSAGE: ");

count = count + 1;

outgoingl[0] = count;

noutgoing = s t r 1 en (ou
t
goi ng)

;

outgoing2[0] = count;

/ * is there data in the shared se gme n t ? *

/

i f(receiver_has_dat a(&remo t emach ine))
I

t ype_r ece i ved = rece i ved_
t
ype (&remot emach i ne)

;

printf("The message received by IR1S1 is of type %c \n"

,

type_received)
;

switch (type_received)
(

case CHARACTER_ARRAY_TYPE

:

e 1 emen

t

s_rece i ved = numbe r_rece i ved(&remot emach ine)

;

146

gprog2.c

printf("The message received by IRIS1 is %d elements long!\n'
e 1 erne nt s_received)

;

read_characters (&remot emach i ne ,mybuf f e r

,

elements_received) ;

break;

case INTEGER_TYPE

:

read_integer (&remo t emach ine .mybuf f e r 1)

;

break ;

case FLOAT_TYPE:
read_f 1 oa t (&remot emach i ne , mybuf

f

er2) ;

break ;

)

/* at this point in the program, process the received data...*/
pr in t f

(
" IRIS1 has received the following data:\n") ;

switch (type_rece i ved)
I

case CHARACTER_ARRAY_TYPE

:

for(i=0; i < e 1 emen

t

s_rece i ved ; i+=l)
(

pr in t f

(

"%c" ,mybuf fe r [i])

;

I

break
;

case INTEGER_TYPE

:

print f ("%d" .mybuf fer 1 [0])

;

break ;

case FLOATTYPE:
print f("%f" ,mybuf fer2[0])

;

break;
)

print f ("\n")

;

)

/* at this point, we would look at our system and see if we needed
to send data. Instead, I will check if the sender is free.
If the sender is free, I will send one of three me ssages */

if(sender_is_free(&r emo t ema chine))
I

if((j % 3) == 0)
wri te_characters (&remot emach ine , outgoing, noutgoing) ;

/* wait until message sent before attempting to send another */
while(! sende r_i s_f ree (&remot emachine))

/* do nothing */ printf("2");

if((j % 3) == 1)
wr i te_integer (&r emo t emach ine.outgoingl) ;

/* wait until message sent before attempting to send another */
while(! sender_i s_f ree (&remot emach ine)) /* do nothing */ printf("3");

i f ((j % 3) == 2)

wr i t e_f loa t (&remot emach ine ,outgoing2) ;

++j

;

)

else
I

/* assume socket connection broken */

p r i n l f
(

"

Sender wasn't free! Te rm i n a t i n g . . . \
n

") ;

break:

147

gprog2.c

/* at this point, you can do the rest of the display loop */

) /* end if whi le TRUE */

/* get rid of the path to the other machine...*/
de 1 e t emach i nepa t h (&r emot emach ine) ;

148

3. prog.c

a. Calling Protocols

This is a test program for the broadcast protocol. By command line argument,

another machine to receive broadcast messages from can be specified. The default is to

receive messages from iris2. It must be run in conjunction with prog2.c to function

properly, as the port assignments are hardcoded.

b. Code and Description

/* this is file prog.c

It is a sample top level program for the asynchronous reading
and writing of sockets via shared memory and two other processes.

This program spawns off the required processes.

This program uses structure type Machine declared in file shared. h.

#include " shared. h"
#define TRUE 1

ma i n(argc , argv)

int argc; /* argument count */
char *argv[]; /* pointers to the passed in arguments */

Machine remot emach i ne

1

Machine remo t emach i ne2

char o t he r_machine [50]

char mybuf f er [LARGESTREAD] ;

char ou

t

going [LARGESTREAD]

;

/* first structure for remote machine */

/* second structure for remote machine */

/

*

n ame of other ma chine *

/

/* received data */

/* outgoing message's buffer */

int mybufferl[LARGESTREAD/INTEGER_SIZE]

int out go ingl[LARGESTREAD/ INTEGER_S I ZE

]

float mybu f f e r 2 [LARGESTREAD/FLOAT_S I ZE]

float outgoing2[LARGESTREAD/FLOAT_SIZE]

long noutgoing;

char t emp [10];

/* received integer data */

/* outgoing integer message's buffer * /

/* received float data *

/

/* outgoing float message buffer */

/* size of the outgoing me s s a g e *

/

/* temp array used to make outgoing message */

long count = 0;

char rece i ved_
t
ype()

char type_received;

/* message counter */

149

prog.c

nt el erne nts_received:

ong i: /* temp loop variable */

ong j = 0: /* variable to control message sending */

/ * pull out the string fr om the a r g ume n t list *

/

f (argc > 2)

pr in t f
("PROG: incorrect argument count! use prog <alias>\n");

exi t (1) ;

/* pull out the name of the other string, if it exists */
f (argc == 2)

strcpy(o t he r_machi ne , argv[l]);

else
strcpy(other_machine, "npscs - i r i s2");

/* create a pair of paths to a particular machine (iris2 default) */
/* the first argument is the maximum number of channels to be created,

the second argument is the key for the shared memory segment,
the third argument is the name of the machine to connect to.
the fourth argument is the sending port number for the socket to use.
the fifth argument is the receiving port number for the socket to use
the sixth argument indicates whether the processes should
act as a receiver or a broadcaster.
the seventh argument is the returned pointer to the structure

remot emachine 1 or remot emach ine2 .

it includes the pointer to the shared memory segment,
the system generated shared memory id, the sendsem id,
and the returned receivesem id.

•/
dynamicmachinepa ths (2 , 1 , o t her_machine ,2,1, "receive" ,&remot emachine 1)

;

sleep(5); /* to let both sides set up receiving channels first */

dynami cmachi nepaths(2,l,othe r_machine ,4,3,"broadcast" ,&remot emach ine2)

;

/* the loop for polling the shared segment limited to avoid send buffer
ove r f 1 ow *

/

whi le(TRUE)
I

/* make an outgoing message */
st rcpy(out going, "PROG ORIGINATED MESSAGE: ");

coun t = coun t + 1

;

outgoingl[0] = count;

noutgoing = s t r 1 en(ou
t
go i ng)

;

outgoing2[0] = count;

/* is there data in the shared se gme n t ? *

/

i f(receiver_has_dat a(&remot emach i ne 1)

)

(

t ype_rece i ved = r ece i ved_
t
ype (&remot emach i ne 1) ;

printf("The message received by PROG is of type %c \n" .

t ype_r ece i ved)

;

switch (type_received)

150

prog.c

(

case CHARACTER_ARRAY_TYPE

:

e 1 emen

t

s_rece ived = numbe r_r ece i ved (&remo t emach i ne 1) ;

printf("The message received by PROG is %d elements long!\n"
e 1 erne nts_received):

read_ characters (&remo t emach i ne 1 .mybu f f e r

,

e 1 erne nts_received);
break ;

case INTEGER_TYPE

:

read_integer (&remot emach ine 1 , mybuffer 1) ;

break ;

case FLOAT_TYPE:
read_float (&remot emach i nel ,mybuf f er2) ;

break :

)

/* at this point in the program, process the received data...*/
printf("PROG has received the following data:\n");

switch (
t
ype_rece i ved)

(

case CHARACTER_ARRAY_TYPE

:

for(i=0; i < e 1 emen

t

s_rece ived ; i+=l)
I

pr in t f
("%c" ,mybuf f er [i])

;

)

break;

case INTEGER_TYPE

:

print f("%d" ,mybuf f er 1 [0])

;

break :

case FLOAT_TYPE:
print f("%f" ,mybuf fer2[0]) ;

break ;

)

p r i n t f (
" \ n "

)

;

)

/* at this point, we would look at our system and see if we needed
to send data. Instead, I will check if the sender is free.
If the sender is free, I will send one of three messages */

if(sender_i s_f ree (&remo t emach ine2)

)

(

if((j % 3) == 0)
wr ite_characters (&r emo t emach ine2,outgoing,noutgoing) ;

/* wait until message sent before attempting to send another */
wh i 1 e (! sende r_i s_f ree (&r emo t emach i ne2)) /* do nothing printf("2")*/

if((j % 3) == 1)
wr i te_integer (&remo t emach ine2,outgoingl)

;

/* wait until message sent before attempting to send another */
while! ! sende r_ i s_f ree (&r emo t emach i ne2)) /* do nothing printf("3")*/

if((j % 3) == 2)
wr i t e_f 1 oa t (&remo t emach ine2,outgoing2);

/* wait until message sent before continuing */

wh i 1 e (! sende r_i s_f ree l&remot emach i ne2))
/* do nothing p r i n t f

(

"
4"

)
* /

+ + j ;

}

else

151

prog.c

/* assume socket connection broken */
printf(" Sender wasn't free!\n");

break;

I* at this point, you can do the rest of the display loop */

) /* end if wh i le TRUE */

/* get rid of the path to the other machine...*/
de 1 e t emach inepa t h (&remot emachine 1) ;

de 1 e t emach inepa t h (&remot emachine 2)

;

152

4. prog2.c

a. Calling Protocols

This is a test program for the broadcast protocol. By command line argument,

another machine to receive broadcast messages from can be specified. The default is to

receive messages from irisl. It must be run in conjunction with prog.c to function

properly, as the port assignments are hardcoded.

b. Code and Description

/* this is file prog2.c

It is a sample top level program for the asynchronous reading
and writing of sockets via shared memory and two other processes.

This program spawns off the required processes.

This program uses structure type Machine declared in file shared. h.

#include " shared. h"

#define TRUE 1

ma in(argc , argv

)

int argc; /* argument count */
char *argv[]; /* pointers to the passed in arguments */

Machine remot emachine 1

;

Machine r emot emachine2

;

char o ther_machine [50]

;

char mybuffer[LARGESTREAD] ;

char outgoing[LARGESTREAD] ;

/* first structure for remote machine */

/* second structure for remote machine */

/* name of other machine */

/* received data */

/* outgoing message's buffer */

int mybufferl[LARGESTREAD/INTEGER_SIZE]

int outgoingl[LARGESTREAD/INTEGER_SIZE]

float mybuf fer2[LARGESTREAD/FLOAT_SIZE]

float outgoing2[LARGESTREAD/FLOAT_SIZE]

long noutgoing;

char t emp [10]

;

/ * received integer data *

/

/* outgoing integer message's buffer */

/ * received float data *

/

/* outgoing float message buffer */

/* size of the outgoing message */

/* temp array used to make outgoing message */

long count = 0;

char rece i ved_t ype()

;

char t ype_rece i ved;

/* message counter */

153

prog2.c

int e lemen

t

s_rece i ved;

long i; /* temp loop variable */

long j = 0; (* variable to control message sending */

/* pull out the string from the argument list */

i f (argc > 2)

{

pr int f
("PROG2 : incorrect argument count! use gprog2 <alias>\n");

exi t(1)

;

I

/* pull out the name of the other string, if it exists */

if(argc == 2)

(

strcpy(other machine, argv[l]);

}

else
strcpy(other_machine , "npsc s - i r i s2");

/* create a path to a particular machine (iris2 default) */
/* the first argument is the maximum number of channels to be created,

the second argument is the key for the shared memory segment,
the third argument is the name of the machine to connect to.

the fourth argument is the sending port number for the socket to use.
the fifth argument is the receiving port number for the socket to use
the sixth argument indicates whether the processes should
act as a server or a client.
the seventh argument is the returned pointer to the structure

remot emachinel or remot emachine2

.

it includes the pointer to the shared memory segment,
the system generated shared memory id, the sendsem id,
and the returned receivesem id.

*/
dyrxami cmachi nepa ths (2,1, other_machine ,3,4, "receive" ,&remot emachineZ) ;

sleep(5); /* to let both ends of the process get set up */

dyn ami cmachi nepa ths (2,1, ot her_mach ine, l,2,"broadcast" ,&remot emach ine 1)

;

/* the display loop and loop for polling the shared segment */
while (TRUE)
{

/* make an outgoing message */
st rcpy(out going, "PROG2 ORIGINATED MESSAGE: ");

coun t = count + 1

;

outgoingl[0] = count;

noutgoing = s t r 1 en(ou
t
goi ng)

;

outgoing2[0] = count;

/ * is there (.lata in the shared se gme n t ? * /

if(receiver_has_dat a(&remot emach i ne2)

)

(

t ype_rece i ved = r ece i ved_t ype (Aremot emach i ne2)

;

printf("The message received by PROG2 is of type %c \n",
t ype_rece i ved)

;

switch (type_rece i ved)
(

154

prog2.c

case CHARACTER_ARRAY_TYPE

:

e lemen

t

s_recei ved = nurnbe r_rece i ved(&remot emach ine2) ;

printf("The message received by PR0G2 is %d elements long!\n'
e 1 erne nt s_received) ;

read_charac ters (&remot emach i ne2 ,mybuffer ,

e 1 erne nts_received)
;

break ;

case INTEGERJTYPE

:

read_integer (&remot emach ine2 ,mybuf f er 1) ;

break;

case FLOAT_TYPE:
read_ float (&remot emach ine2 ,mybuf f er2) ;

break;
}

/* at this point in the program, process the received data...*/
pr in t f

("PROG2 has received the following data:\n");

switch (type_rece i ved)

I

case CHARACTER_ARRAY_TYPE

:

for(i=0; i < e lemen

t

s_recei ved ; i+=l)
I

pr in t f
("%c" .mybuf fer [i])

;

)

break;

case INTEGERJTYPE

:

print f ("%d" .mybuf fer 1 [0])

;

break;

case FLOATTYPE:
print f ("%f " .mybuf fer2[0])

;

break ;

)

pr in t f
("\n")

;

)

/* at this point, we would look at our system and see if we needed
to send data. Instead, I will check if the sender is free.
If the sender is free, I will send one of three messages */

if(sender_is free (&remot emach i ne 1)

)

(

if((j % 3) == 0)
write_characters (&remot emach ine

1

,outgoing,noutgoing)
;

/* wait until message sent before attempting to send another */
while(! sender_i s_f ree(&remot emachine 1)) /* do nothing pr in t f

(

"2"
) *

/

if((j % 3) == 1)
wri te_integer (&remot emach inel.outgoingl);

/* wait until message sent before attempting to send another */

while(! sende r_i s_free(&remot emach i ne 1)) /* do nothing pr in t f
(

"
3"

)
* /

if((j % 3) == 2)
wr i t e_f loa t (&remot emach inel ,outgoing2)

;

/* wait until message sent before continuing */
wh i 1 e (! sende r_i s_free (&remot emach i ne 1)) /* do nothing pr in t f

("4"
) * /

+ + j :

}

else

155

prog2.c

/* assume socket connection broken */
print f("Sender wasn't free! Termina t i ng . . . \n "

)

break;

)
/* endif while TRUE */

/* get rid of the path to the other machine
de 1 e t emach i nepa t h (&r emot emach i ne2)

;

de 1 e t emach i nepa th (&remot emach ine 1)

;

156

5. rmshare.c

a. Calling Protocols

This is a stand-alone utility. It will remove all shared memory segments owned

by the user. By command line argument, selective segments can be removed.

b. Code and Description

* *

*

*

*

*

*

*

* *

+ + ** + ***** + + + *** + + ** *** ****************
* *

* HISTORY: *

* *

*

*

*

*

*

Removes shared memory segments identified on command line. *

********** + ***** + *+** + +* + **** + *** + ** +***** +),**** + » + + ***,* + *********
* *

* RECORD OF CHANGES *

* TITLE
*

* MODULE

* VERSION

* DATE

* AUTHOR

* VERSION
*

* DATE
*

* AUTHOR
*

* DESC.
*

In t er -Compute r Communication Package

rmshare . c

1.0

25 February 1988

Theodore H. Barrow

1 .0

25 February 1988

Theodore H. Barrow

Version Date * Author * * Affected *Reqd*
* * Change Description * Modules *Ve r s

*

************ + **** ******************** *********************************** ******
* * * * * * *

* * * * *

***/

157

rmshare

#include <errno.h>
include <sy s / sy smac ros . h>
#include <stdio.h>
#include <sy s /

t
ype s . h>

#include <sys/ipc.h>
#include <sys/shm.h>
i nc 1 ude <g 1 . h>

/* The following defines will have to be modified for different machines
but one of the underlying shared memory attachment mechanisms should
work for any system V implementation. */

#define IRIS4D 1

#define IRIS3000 2

#ifdef FLAT
#define MACHINE IRIS4D
fFC I S C

#define MACHINE IRIS3000
#endi f

extern in t er rno ;

ma in(argc, argv)

int argc; /* argument count */
char *argv[]; /* pointers to the passed in arguments */

(

int first = 1

;

int last = 1000;
key_t i

;

int shmid;
key_t key;
static struct shmid_ds buffer;

/* set the number of shared memory keys to remove */

i f (argc > 1

)

{

for(i=first; i<argc; i++)

(

key = atoi(argv[i]);

if((shmid = shmget(key, 0, 0)) == -1)

(

i f (errno != ENOENT)

I

write_error(shmid, key, errno);

}

)

else
I

if(shmctl(shmid, IPC_RMID, &buffer) == - 1)

{
.write_error(shmid, key, errno);

)

else
write_done(shmid, key)

;

)
/* if((shmid = shmget(i , ,)) == - 1) *

/

|
/* for */

)

else
(

for(i=first; i<last; i++)

(

if((shmid = slimget(i, 0, 0)) == -1)

(

i f (errno != ENOENT)

(

write_error(shmid, i, errno);

)

158

rmshare

)

else

if(shmctl(shmid. IPC_RMID. &buffer) == - 1)

I

write_error(shmid, i, errno);

)

else
write_done(shmid, i);

) /* if((shmid = shmget(i, 0,)) == -1) */
/* for */

print f("\nCompl e t ed . \n");

) /* main() */

write_error(shmid, key, error)

int shmid;
key_t key:
int error;

I

print f ("\nShared Memory ID%d (key %d) caused error %d .

"
,

shmi d, key, error);

) /* wr i

t

e_error () */

write_done(shmid, key)

int shmid

;

key_t key;

(

printf("\nShared Memory ID %d (key %d) removed.", shmid, key)

(
/* write_done() */

159

6. testshare.c

a. Calling Protocols

This is a stand-alone utility. It will print current parameters for all active

shared memory segments. By command line argument, selective segments can be

printed.

b. Code and Description

*

*

*

*

*

*

*

*

* *

* HISTORY: *

* *

*

*

*

+

*

*

*

*

* TITLE
*

* MODULE
*

* VERSION
*

* DATE
*

* AUTHOR
*

In t e r -Compu t er Corrmun ica t i on Package

testshare.c

1.0

25 February 1988

Theodore H. Barrow

1.0

25 February 1988

Theodore H. Barrow

Determines which shmid values are used and what their
par anie t e r s are.

* VERSION

* DATE
*

* AUTHOR

* DESC.
*

* *

* RECORD OF CHANGES *

*Ve r s i o n * Da t e * Au t h o r

Ch a n g e De script ion

* * Affected *Reqd*
* Modules *Ve r s

*

*******+***************.********** + ** + * + + **** + ****** + ***********************<•.
* * * * * * *

* * * * *

160

testshare.c

#include <errno.h>
#include <sy s / sy smac ros . h>
i n elude <stdio.h>
#include <sy s /

t
ype s . h>

#include <sys/ipc.h>
#include <sys/shm.h>
#i nc I ude <g 1 . h>

/* The following defines will have to be modified for different machines
but one of the underlying shared memory attachment mechanisms should
work for any system V implementation. */

#define IRIS4D 1

#define IRIS3000 2

#ifdef FLAT
#define MACHINE IRIS4D
#e 1 se
#define MACHINE IRIS3000
#endi f

extern in t er rno;

ma i n ()

(

in t first = 1

;

int last = 1000:
int i ;

int shmid;

for(i=first; i<last; i++)

(

if((shmid = shmget(i, 0, 0)) == -1)

{

i f (errno != ENOENT)

(

write_error(shmid, i, errno);

)

)

e 1 se

(

if(wri te_s t rue t (shmid) == - 1)

write_error(shmid, i, errno);

) /* if((shmid = slimget(i , ,)) == - 1) */

)
/* for */

print f("\nCompl e t ed . \n");

) / main() */

write_error(shmid, key, error)

int shmid;
key_t key;
int error;

{

print f ("\nShared Memo r y ID %d (key %d) caused error %d .

"

,

shmi d, key, error);

) /* wr i t e_e r ror () */

struct shmid_ds *get_struct(slunid)

int s lim i d ;

I

static struct shmid_ds buffer;

if(shmctl(shmid, IPC_STAT, &buffer) == - 1)

161

testshare.c

return((struct shmid_ds *)-l)

I

else
i e t urn(&buf f er) ;

) /* ge t_s t ruct () */

wr i t e_s t rue t (shmid)

i n t shmid

;

struct shmid_ds *buf;

if((int)(buf = get_struct(
return((int)buf);

shmid)) == -1
)

P r

pr
pr

P>"

Pr
P r

Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
Pr
pr
pr

nt f

ntf
ntf
ntf
ntf
ntf
ntf
ntf
ntf
ntf
ntf
ntf
ntf
ntf
ntf
ntf
ntf

pr i n t f

return

AnSh
"\n
"\n
"\n
"\n
"\n
"\n
"\n
"\n
"\n
"\n
"\n
"\n
"\n
"\n
"\n
"\n
"\n

);

a red Memory ID %d has the f ol lowi ng structure:",
shm_perm has the following structure:");

shmid)

;

c u i d is %d

.

c g i d is %d .

"

u i d is %d .

"

,

g i d is %d .

"

,

mode i s %o .

"

s e q is %d .

"

,

key i s %d .

"

,

s hm_ s e g s z is %d
s hm_ r e g is
s hm_

1
p i d is %A

.

shm_cpi d i s %d .

shm_na t t ch i s %
shm_cna t t ch is 1

shm_a t ime i s %d
shm_dt ime i s %d
shm c t ime i s %d

buf ->shm_pe rm. cui d);

buf ->shm_pe rm. cgi d);

buf ->shm_perm. uid);

buf ->shm_perm. g id);
buf ->shm_pe rm.mode);

buf ->shm_pe rm. seq);

buf ->shm_perm. key);
o r %x .

" , b u f - > s hm_ segsz, buf->s hm_ s e g s z)

a structure incompletely defined in region.h!"
b u f - > s lim_ 1 p i d) ;

buf ->shm_cpi d) ;

, buf ->shm_na t t ch);
", buf ->shm_cna t t ch);
buf ->shm_a t ime)

buf ->shm_dt ime)

buf ->shm_segsz)

)
/* wr i t e_s t rue t () */

162

LIST OF REFERENCES

1. Zyda, Michael J., and others, "Flight Simulators for Under $100,000," IEEE
Computer Graphics & Applications, v. 8, no. 1, pp. 19-27, January 1988 .

2. Birrell, Andrew D. and Nelson, Bruce Jay, "Implementing Remote Procedure

Calls," ACM Transactions on Computer Systems, v. 2, no. 1, pp. 39-59, February

1984.

3. Cheriton, David R., "The V Distributed System," Communications of the ACM,
v. 31, no. 3, pp. 314-333, March 1988 .

4. Hearn, Donald and Baker, M. Pauline, Computer Graphics, Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey, 1986 .

5. Magnenat-Thalmann, Nadia and Thalmann, Daniel, Computer Animation; Theory

and Practice, Computer Science Workbench, ed. by Tosiyasu L. Kunii, Springer-

Verlag, New York, 1985 .

6. Shneiderman, Ben, Designing the User Interface: Sti-ategies for Effective Human-
Computer Interaction, pp. 179-223, Addison-Wesley Publishing Company, Menlo

Park, California, 1987 .

7. Dolezal, Michael J., A Simulation Study ofa Speed Control System for Autonomous
On-Road Operation of Automotive Vehicles, M.S. Thesis, Naval Postgraduate

School, Monterey, California, June 1987 .

8. Goodpasture, Richard Paul, A Computer Simulation Study of an Expert System for

Walking Machine Motion Planning, M.S. Thesis, Naval Postgraduate School,

Monterey, California, December 1987 .

9. MacPherson, David L., A Computer Simulation Study of Rule-Based Control of an

Autonomous Underwater Vehicle, M.S. Thesis, Naval Postgraduate School,

Monterey, California, June 1988 .

10. Oliver, Michael R. and Stahl, David J., Interactive, Networked, Moving Platform

Simulators, M.S. Thesis, Naval Postgraduate School, Monterey, California,

December 1987 .

11. McConkle, Corinne and Nelson, Andrew H., A Prototype Simulation System for

Combat Vehicle Coordination and Motion Visualization, M.S. Thesis, Naval

Postgraduate School, Monterey, California, June 1988 .

12. Nelson, Andrew H., McGhee, Robert B., and Zyda, Michael J., Investigation into

the Use of Kyoto Common Lisp For Real-Time Computer Animation, to be

published, Naval Postgraduate School, Monterey, California .

13. Newell, D. P. Siewiorek, C. G. Bell, and A., Computer Structures: Principles and

Examples, pp. 306-485, McGraw-Hill Book Company, San Francisco, 1982 .

14. Hoare, C.A.R., "Communicating Sequential Processes," Communications of the

ACM, v. 21, no. 8, pp. 666-677, August 1978 .

163

15. Hansen, Per Brinch, "Disributed Processes: A Concurrent Programming

Concept," Communications of the ACM, v. 21, no. 11, pp. 934-941, November

1978 .

16. Lin, Kwei-Jay and Gannon, John D., "Atomic Remote Procedure Call," IEEE
Transactions on Software Engineering, v. 11, no. 10, pp. 1126-1135, October

1985 .

17. Pountaint, Dick, A Tutorial Introduction to Occam Programming, INMOS Limited,

March 12, 1986 .

18. OSU-CISRC-TR-82-1, The Implementation of a Multi-Backend Database System

(MDBS): Part I - Software Engineering Strategies and Efforts Towards a

Prototype MDBS, by Kerr, D. S., and others , The Ohio State University,

Columbus, Ohio, January 1982 .

19. NPS-52-82-008, The Implementation of a Multi-Backend Database System

(MDBS): Part II - The First Prototype MDBS and the Software Engineering

Experience, by He, X., and others , Naval Postgraduate School, Monterey,

California, July 1982 .

20. NPS-52-83-003, The Implementation of a Multi-Backend Database System

(MDBS): Part III - The Message-Oriented Version with Concurrency Control and
Secondary-Memory-Based Directory Management, by Boyne, Richard D., and

others , Naval Postgraduate School, Monterey, California, March 1983 .

21. Leffler, Samuel J., and others, "An Advanced 4.3BSD Interprocess

Communication Tutorial," in UNIX Programmer's Supplementary Documents
Volume 1, PS 1:8, Usenix Association, 1986 .

22. Leffler, Samuel J., Fabry, Robert S., and Joy, William N., "A 4.2BSD Interprocess

Communication Primer," in Unix Programmer' s Manual, Draft of August 23,

1986.

23. Tuthill, Bill, "IPC Facilities in 4.2BSD," Unix Review, v. 3, no. 4, pp. 82-87,

April 1985 .

24. AT&T, UNIX System V, Streams Programmer Guide, Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey, 1987 .

25. Rochkind, Marc J., Advanced UNIX Programming, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1985 .

26. Bach, Maurice J., The Design of the Unix Operating System, Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey, 1986 .

27. Texas Instruments Inc., Explorer TCP/IP User's Guide, 2537150-0001 Revision A,

pp. C-l-C-7, Austin, Texas, June 1987 .

28. Texas Instruments Inc., Explorer TCP/IP User's Guide, 2537150-0001, Austin,

Texas, March 1986 .

29. LANalyzer EX 500 Series Network Analyzer, Reference Manual, Publication No.

4200068-00 (Rev. B), Excelan, Inc., December 21, 1987 .

164

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information System 2

Cameron Station

Alexandria, Virginia 22304-6145

2. Director, Information Systems (OP-945) 1

Office of the Chief of Naval Operations

Navy Department

Washington, DC 20350-2000

3. Commandant of the Marine Corps 1

Code TE 06

Headquarters, U.S. Marine Corps

Washington, DC 20360-0001

4. Library, Code 0142 2

Naval Postgraduate School

Monterey, California 93943-5002

5. Chairman, Code 52 2

Department of Computer Science

Naval Postgraduate School

Monterey, California 93943-5000

6. Superintendent, Naval Postgraduate School 1

Computer Technology Programs, Code 37

Monterey, California 93943-5000

7. Michael J. Zyda, Code 52Zk 2

Department of Computer Science

Naval Postgraduate School

Monterey, California 93943

8. Robert B. McGhee, Code 52Mz 1

Department of Computer Science

Naval Postgraduate School

Monterey, California 93943

165

9. John M. Yurchak, Code 52Yu
Department of Computer Science

Naval Postgraduate School

Monterey, California 93943

10. Marciano Code 52

Department of Computer Science

Naval Postgraduate School

Monterey, California 93943

11. AlWong Code 52

Department of Computer Science

Naval Postgraduate School

Monterey, California 93943

12. Captain Andrew H. Nelson

1006 Leahy Rd.

Monterey, California 93940

1 3

.

Major Theodore H. B arrow

Computer Science School

Training and Education Center

Marine Corps Combat Development Center

Quantico, VA 22134

166

Th^Thesis
B2

JB24035
c.Jc.l

Thesis

B24035
c.l

Barrow

Distributed computer
communication*? -fn

of real , in SuPPortox real-txme visual
ion. simu-

i KB 9] ^i?J

Barrow
Distributed computer

communications in support

of real-time visual simu-

lation.

