
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1988

Design, implementation, building and evaluation of a

Torus Double Transitive Closure Network of Transputers

Frazao Sosa, Jose Ignacio.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/23159

NAVAL POSTGRADUATE SCHOOL
^ 3 * J *

terey , Caiifon 334

THESIS
F'/ I

DESIGN, IMPLEMENTATION, BUILDING
AND EVALUATION OF A TORUS DOUBLE
TRANSITIVE CLOSURE NETWORK OF

TRANSPUTERS

by

Jose I. Frazao Sosa
June '1988

Thesis Advisor: Uno R. Kodres

Approved for public release; distribution is unlimited

T238916

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
lb RESTRICTIVE MARKINGS

2d. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE

3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUM3ER(3,

6a. NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

6b OFFICE SYMBOL
(If applicable)

33

7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000

7b. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943- 5000

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO.

PROJECT
NO.

TASK
NO

WG.'.rx UNIT
ACCESSION NO.

1 1 . TITLE (Include Security Classification)

DESIGN, IMPLEMENTATION, BUILDING AND EVALUATION OF A TORUS DOUBLE TRANSITIVE
CLOSURE NETWORK OF TRANSPUTERS.

12. PERSONAL AUTHOR(S)
Frazao Sosa, Jose I

13a. TYPE OF REPORT

Master's Thesis
13b. TIME COVERED
FROM TO

14. DATE OF REPORT (Year, Month, Day)

1988 June
15 PAGE COUNT

168

16. supplementary notation The v i ews expressed in this thesis are those of the author
and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
17 COSATI codes

field GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Transputer, Parallel Processing, Microprocessor Networks,

OCCAM Programming Language, Heat Flow in a Plate

9. ABSTRACT (Continue on reverse if necessary and identify by block number)

Currently the design of highly parallel "supercomputers'" is one
of the most challenging problems in engineering.
The purpose of this thesis is to describe how the problem was
approached in the design, implementation and building of a Torus
Double Transitive Closure Network of Microprocessors, using the
T414 Transputer as the basic Unit of Computation.
Also compares the performance of the evolved model, from one
Transputer to the final stage of sixteen Transputers running in
parallel. All the programs and examples presented in this thesis
were implemented in the 0CCAM2 Programing Language, using the
Transputer Development System, D700c, BETA 2.0 release March
1987 compiler version.

DISTRIBUTION /AVAILABILITY OF ABSTRACT

S UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED
2a. NAME OF RESPONSIBLE INDIVIDUAL

Uno R. Kodres
>DFORM 1473, 84 mar 83 APR edition may be used until exhausted

All other editions are obsolete

22b TELEPHONE (Include Are* Code) 22c OFFICE SYMBOL

(408) 646-2 197 ! i)2Kr

SECURITY CLASSIFICATION OF THIS PAGE
«f U.S. Government Printing OHice: 1986—606-24.

Approved for public release; distribution unlimited

Design implementation, Building and Evaluation of a Torus
Double Transitive Closure Network of Transputers

by

Jose Ignacio Frazao Sosa
Lieutenant Commander, Venezuelan Navy
B.S., Venezuelan Naval Academy, 1974

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING SCIENCE

frqrfi the

NAVAL POSTGRADUATE SCHOOL
Junk 1981

ABSTRACT

Currently the design of highly parallel "supercomputers" is

one of the most challenging problems in engineering.

The purpose of this thesis is to describe how the problem

was approached in the design, implementation and building of

a torus double transitive closure network of

microprocessors, using the T414 Transputer device as the

basic unit of computation.

Also compares the performance of the evolved model, from one

Transputer to the final stage of sixteen Transputers running

in parallel. All the programs and examples presented in this

thesis were implemented in the 0CCAM2 Programming Language,

using the Transputer Development System, D700c, BETA 2.0

release March 1987 compiler version.

111

THESIS DISCLAIMER

The reader is cautioned that the computer programs developed

in this research may not have been exercised for all cases

of interest. While the programs are free of known

computational and logical errors, they can not be considered

validated. Any application of these programs without

additional verification is at risk of the user.

Many terms used in this thesis are registered trademarks of

commercial products. Instead of attempting to cite each

occurrence of a trademark, we list all registered trademarks

which appear in this thesis below the firm which holds the

trademark.

INMOS Group of Companies, Bristol, UK

Transputer

Occam

INMOS

IMS T414

IMS B004 IBM PC add-in board

IMS B003

IV

TABLE OF CONTENTS

I

.

INTRODUCTION 01

A . BACKGROUND 01

1

.

The AEGIS Modeling Group at the NPS 01

2. Considerations and Terminology about

Parallelism 02

B . TRANSPUTER OVERVIEW 8

1. The Transputer 08

2. Programming Language 9

C. THESIS ORGANIZATION 10

II. DESCRIPTION OF THE HARDWARE USED IN THE NETWORK 12

A. REALIZATION OF THE TRANSPUTER IMS T414 12

1 . The Processor 13

2 . Processes and Concurrency 15

3 . Communications 17

4 . Timers 18

5 . Memory 19

6

.

External Memory Interface and Events 20

7 . Links 21

8 . System Services 22

B. THE B004 IBM PC ADD-IN BOARD 2 3

1. Initial Requirements for the PC Add-In Board... 23

C. THE BOO 3 BOARD 25

III

.

DESIGN AND EVOLUTION 27

A . THE MODELING PROCESS 27

1 . Description of the Problem 27

2 . The Abstract Model . 30

3 . The Transformed Computational Model 30

B. NETWORK MODELS AND EVOLUTION 3 2

1 . Network Classification 32

2 . Model Evolution 3 3

3 . The 16 Transputer Network Prototype 38

4 . Expandability of the Model 39

IV. EFFICIENCY CONSIDERATIONS 41

A. INTRODUCTION .41

1 . Generalities 41

2 . Terminology and Concepts 43

a

.

Power and Energy 4 3

b. Efficiency 45

3. Applications of Efficiency Analysis 46

B. MAXIMIZATION OF THE TRANSPUTER NETWORK 49

1 . Generalities 49

2 . Maximizing Link Performance 49

a. Decoupling Communication and Computation. .. 50

b. Gather Together all the Communication

Processes 50

c . Large Link Transfers 51

d. How the Boundaries were Passed in the

Network 51

vi

C . MODULARITY OF THE SYSTEM 5 3

V. COMPARISON OF THE NETWORKS PERFORMANCE 54

A. ARE WE USING AN INDUCTIVE ARCHITECTURE ? 54

B . EFFICIENCY EVALUATION 5 6

C. RELATIVE EFFICIENCY 60

D. TRADITIONAL APPROACH TO THE SPEEDUP ESTIMATION 62

E . SOME DETAILS 6 4

F . COMPARATIVE THROUGHPUT 6 5

G . THE OPTIMAL ZONE 6 6

H. HOW THE PARALLELISM WAS ACCOMPLISH 7

I . THE TIMING CONSTRUCT 7 6

VI

.

CONCLUSIONS AND RECOMMENDATIONS 7 7

A

.

CONCLUSIONS 7 7

B. POSSIBILITIES OF THE TRANSPUTER 7 8

C

.

RECOMMENDATIONS 7 9

APPENDIX A 01 TRANSPUTER NETWORK SOURCE CODE 80

APPENDIX B 04 Transputers NETWORK SOURCE CODE 8 8

APPENDIX C 9 Transputers NETWORK SOURCE CODE 9 8

APPENDIX D 16 Transputers NETWORK SOURCE CODE. 122

APPENDIX E EXPANDABLE PLACEMENT FOR 16 TRANSPUTER

NETWORK 147

LIST OF REFERENCES 152

INITIAL DISTRIBUTION LIST 154

VII

LIST OF FIGURES

2 .

1

IMS T414 Block Diagram 12

2 . 2 Transputer Register 14

2 . 3 Transputer Instruction Format 15

2 . 4 Memory Map 20

2 . 5 The Transputer Links 22

2 . 6 Block Diagram of B004 24

2 . 7 The BOO 3 Board 26

3 .

1

Heat Conduction in a Square Plate 28

3 . 2 Abstract Model 30

3 . 3 The Transformed Computational Model 31

3 . 4 Model I 34

3 . 5 Model II 35

3.6 Model III in Its Different Sizes 36

3 . 7 Data Flow in the Network 3 7

3.8 16 Transputer Network Prototype 38

3.9 01 and 04 Transputer Network Connections 40

3.10 09 and 16 Transputer Network Connections 40

4.1 Energy for a Serial Adder and Parallel Adder 47

4 . 2 Boundary Exchange 52

5 .

1

The Inductive Mesh Architecture 55

5 . 2 Efficiency Comparisons 58

5.3 Relative Efficiency 61

5.4 Various Estimates of Speedup and our Results 6 3

viii

5.5 Throughput for Different Grain Size in a 04 and 16

Network of Transputers 69

5.6 Memory Update Mechanism in the Network 7 2

5 . 7 Timing Diagram 75

5 . 8 The Timing Construct 76

IX

LIST OF TABLES

5 .

1

Prototype Energy Results 57

5 . 2 Efficiency Comparison for the Networks 60

5 . 3 Relative Efficiency 61

5 . 4 Throuahput Results 6 5

5 . 5 Throughpu 4- and Relative Throughput 6 6

5.6 Throughput Results for Different Grain Size 69

x

ACKNOWLEDGEMENT

This thesis is dedicated to my wife, Norma for her support

and understanding, and our sons Aaron and Guillermo.

To my thesis advisor, Professor Uno R. Kodres and the second

reader Major. Richard Adams, I would like to express my

thanks for all the confidence and support, given to me at

any time when I needed. Finally I would like to thank the

technical staff of the Department of Computer Science,

especially Russell Whalen, Rosalie Johnson and Mike

Williams, for all the aid lent to me during the lab research

for this thesis.

XI

I. INTRODUCTION

A . BACKGROUND

1. The AEGIS Modeling Group at the NPS

The research interest of the AEGIS Modeling Group at

the NPS, which was created at the late 1970s, is to

investigate any possible alternatives to replace the U.S.

Navy's mid-1960 design AEGIS COMBAT SYSTEM, and the main

focus of attention is the AN/SPY-1A phased array radar

processing unit.

Bearing in mind this objective, at present in the

Transputer Lab, the main thrust is dedicated to exploring

the possibilities that the Transputer, a VLSI microprocessor

developed in the United Kingdom by the INMOS corporation,

could have in the update process of the AEGIS system

currently in use on the U.S. Ticonderoga class (CG-47)

Cruisers

.

At present the Transputer Lab at the NPS consists of

five Zenith PC with B004 Tranputers boards incorporated, two

EUROCARD BOXES, one B001 Transputer board, one B002

Transputer board, two B007 Transputer boards for graphics,

four BOO 3 Transputer boards with T414 Transputers and two

B003 boards with T800 Transputers.

2. Considerations and Terminology about Parallelism

The design of parallel computers is a new frontier in

engineering. Since the device and technology is not expected

to increase computing power as fast as the increase in

demand, novel parallel architectures need to be designed.

This design is exciting and important to the future of the

computer weapons oriented industry and the national security

research projects in this field. Also as with most new

frontiers, it is often wild and chaotic due to the little

data and methodology to compare the many good designs

already in existence.

To help the reader to understand and get a good grasp

about parallelism here we have some terminology.

We will start with the basic discussion of terms and

concepts in computer architecture. While the readers may be

familiar with the terminology, some words were used

differently, therefore it is worthwhile to have a concise

statement of our use of the word.

We define a processor as a device able to be

programmed by a user to act on some data, a procedure as a

set of rules that a processor can follow to modify that

data, and a process as the execution of the procedure. The

Transputer is a microprocessor which includes a processor

and special instructions as well as hardware to provide a

maximum performance and optimal implementations of the OCCAM

model of concurrency and communications.

The OCCAM programming language is the first language

to be based upon the concept of parallel, in addition to

sequential, execution. It provides automatic asynchronous

communication between concurrent processes and is the

assembly language of the Transputer, because the Transputer

executes the occam programs more or less directly.

A Transputer system is a nonempty set of Transputers

including support components to connect them. A parallel

Transputer system or Transputer network for short, is a

collection of two or more Transputers that is built to work

in parallel. A Transputer network is no more powerful, in

terms of Turing computable procedures, than conventional

computers. We can characterize the networks of Transputers

by what they can do efficiently. So we will have two

fundamental types of Transputer networks: the special

purpose network of Transputers designed for specific

applications and the multipurpose Transputer network which

is designed to execute most Turing computable procedures

efficiently. In this thesis we will refer to a multipurpose

Transputer network specifically designed to explore network

programming with shared global variables.

The architecture of a Transputer system is the view

of the hardware seen by the (systems) programmer. Two

machines can have a different architecture if a programmer

can see a logical difference between them. A paradigm is a

set of architectures based on the same principles.

The Von Neumann paradigm contains almost all

multipurpose computers. It is the very well-known paradigm

in which a controller, data, memory and (I/O) are

sequentially programmed in a fetch-execute cycle, and which

contains move, arithmetic, control, I/O, and also logic

instructions. The implementation or organization is the

block diagram of the computer which shows its memory,

processor, I/O and other components, and the realization is

the actual hardware of the machine. We will focus on

paradigms of parallel computers.

An architecture or paradigm is parameterized if, in

the view of the programmer, it has parameters that describe

it. Parallel computer architectures may have a parameter,

such as the number of processors or Transputers. We can

characterize parallel computer architectures as bounded if a

parameter such as the number of processors can be

efficiently used, and is limited or inductive if the

"inefficiency" of the machine follows some reasonable

(e.g., sublinear) function of the parameter as it increases

inductively (e.g., as we increase the number of processor

from n to n + 1) . In this thesis we are basically interested

in the inductive parallel architectures.

Two other parameters are the number of instruction

streams and the number of data streams. A single

instruction single data (SISD) stream computer is in general

a Von Neumann computer. A single instruction multiple data

(SIMD) stream computer system has one instruction streams

(Procedure) simultaneously operating on multiple data

streams (data) in separate processors.

A multiple instruction multiple data (MIMD) stream

computer has a plurality of different instructions stream,

each operating on its own data, we focus on this last type

in this thesis.

For our purposes a plurality of procedures that are

cooperatively executed on a MIMD Transputer network is a

MIMD Transputer network procedure, a MIMD Transputer network

process is the execution of a MIMD Transputer network

procedure.

In a MIMD Transputer network, the process is clearly

a component of a MIMD Transputer network process which is

executed in one of the Transputers, where several

Transputers cooperate to solve a complex problem or operate

independently to solve different problems. We will be

concerned with the efficiency of running a simple process in

a MIMD Transputer network.

The programers may see a machine that is quite

different from the hardware machine, because the functions

available to him are augmented or modified by software,

microcode or hardware. For example, a MIMD machine may

appear to be a SIMD machine by means of the software that

implements the synchronization of the processors. When a new

machine "architecture" appears due to the use of software,

microcode or hardware to change the view of the machine, we

call this appearance of the hardware to the programers a

virtual architecture. A virtual shared memory system can be

created by duplicating information in local memories, so

that when a producing process writes a new value into its

local memory, the operating system then generates a message

to all the consumers of the data. The local memories of each

Transputer in the network contain the duplicated data ready

to be consumed by each consumer in its local memory. In this

way, we have the illusion of working with a Transputer

network which physically contains shared memory.

Another interesting concept is the communication,

scheduling and synchronization mechanisms between

cooperating processes to in a Transputer network. One aspect

of this is the granularity of the architecture. A fine

granularity architecture is one such that communication,

scheduling, or synchronization occurs within an instruction,

such as in the fetch-execute cycle of a Von Neumann

computer, (e.g., the Transputer OCCAM programming language

with its primitives processes send = ! and receive = ?). A

coarse granurality architecture implements these operations

in terms of instructions as a whole. This definition belongs

to the architecture and must not be taken as the granularity

concept for the parallel programing. Granularity in parallel

programming is a commonly used measure of parallelism, and

is an indicator of how much computing each processor can do

independently in relation to the time it must expend

exchanging information with other processors [HOM087]. Then

a fine-grained procedure spends relatively more time

communicating than calculating, in relation to a coarse-

grained procedure. A second related aspect is the degree of

coupling. A loosely coupled system uses the approach no

communicate between simple processors, while a tightly

coupled system uses data transfers within the instruction

cycle to provide communications between them. Tightly

coupled system generally require that each simple process

has a fairly extensive knowledge about the other process,

while loosely coupled processes may know very little about

the other processes. (Knowledge is either an explicit copy

of the data that controls a process, or an implicit

mechanism such as compiling the procedures from a common

source program and running the process in "lock step")

.

Generally loosely coupled systems require handshaking as in

the case of the transputer networks and the tightly coupled

system depend on a common system clock to assure the correct

completion of a communication.

A third aspect of communication and synchronization

is the nature of paths between processors that implement

these operations. If cooperating processes have direct wires

between them, as in the case of two Transputers connected

each other direct operation; if signals pass through other

processes, it is indirect (e,g., the case of a network of

Transputers in which for instance the first transputer of a

pipeline will send a message to update the data in the local

memory of the last tranputers of the pipe); and if signals

are handled by additional hardware, then it is switched. For

switched communication, scheduling, or synchronization, an

interconnection network is used. In this thesis we focus on

the indirect case.

B. TRANSPUTER OVERVIEW

1 . The Transputer

The Transputer is a computer in a chip - a processor,

complete with storage and standard external interfaces. It

is a key technological development, because it enables

information systems to be designed at a higher level of

abstraction than was previously possible (this concept will

be discussed later)

.

Because of its importance, the word "Transputer" has

been coined to describe the computer on a chip.

The Transputer focuses special interest on the transfer of

information across the chip boundary, rather than on the

processing of the information within that boundary. The

powerful concept provided by the Transputer links, is an

attractive characteristic which makes the Transputer very

suitable for building parallel networks [DASP78].

2. Programming Languages

At present exist compilers for Transputers in PASCAL,

C, FORTRAN, and ADA (this last will be available for the

fourth quarter 1988) but these do not have the capability to

exploit the intrinsic parallelism of the Transputer chip and

also can not take advantage of the communication model used

by the Transputers.

The OCCAM language "understands" parallelism and

communication at the very lowest level, allowing the

designer to describe and control the use of parallelism in

the system. Other languages, regrettably, do not provide the

needed facilities; ADA, for example, does not, since its

semantics are those of multitasking system (i.e., comprising

one or more processes which talk to each other through a

shared memory), this implies that a multi-processor ADA

system needs a shared global memory. Other languages have

equivalent assumptions; any language which provides

semaphores, for example, is assuming a shared address space.

OCCAM is a language designed to make the

representation and control of parallel systems simple and

comprehensible. In addition, it provides most of the

facilities that a user of modern block-structured languages

like C or PASCAL would expect.

As an example of how the OCCAM language provides for

parallelism is that of the transputer processor which

provides instruction set support for multitasking and

interprocess communication. The model used is that of OCCAM

in which the keywords PAR and ALT and the communications

operators ? and ! are implemented as instructions. This

makes the OCCAM parallelism very fast; a PAR costs around 1

microsecond per component, while the execution time of a

matching ? and ! - including all the scheduling needed is

about two microseconds [INMOSJ88].

C. THESIS ORGANIZATION

The rest of the chapters of this thesis were organized

in the following fashion:

In Chapter II we describe the hardware used during the

development of the model, including the Transputer board

used to place the I/O handler, which is internal to the PC.

Chapter III presents in a sequential and organized

fashion the "growth" of the model from one transputer

through sixteen Transputers, which is the final stage of

this design, focusing on model evolution, flow of data, and

expandability discussion.

In Chapter IV we approach the subject of efficiency

related to parallel networks and some key ideas about linear

speedup and linear and parallel performance.

10

Chapter V is a comparative study of the efficiency of

the model among the different sizes of the transputer

network

.

Chapter VI discusses the results obtained in the chapter

V, and gives some recommendations about what should be the

main goals of the AEGIS Modeling Group from a personal point

of view.

11

II. DESCRIPTION OF HARDWARE USED IN THE NETWORK

A. REALIZATION OF THE TRANSPUTER IMS T414

The IMS T414 was the transputer used in the design of

the Transputer network called Torus double transitive

closure, It will be depicted for hardware description as

well as to gain insight in the functional characteristic of

the Transputer chip in general. The T414 integrates a 32-bit

microprocessor, four standard transputer communications

links, 2K bytes of on-chip RAM, a memory interface and

peripheral interfacing on a single chip, using a 1.5 micron

CMOS process. For convenience of description, the IMS T414

operation is split into the basic block, shown in the Figure

2.1 [INMOSD86].

Reset-
Analyse-

Error '

3ootFromR0M-

I

Clockln-
VCC-
GND-

CapPlus-
CapMlnus-

System
Services

Timers

2k bytes

ot

On-chip

RAM

ProcClockOut
nolMemSO-4

notMemWrBO-3
notMemRd
nolMemRI
MemWalt-

MemConllg-
MemReq-

MemGranted •

External

Memory
Interlace

32 bit

Processor

Lmk
Services

LlnkSpeclal
LlnkOSpeclal
Link123Special

Link

interlace
r< LlnklnO

J LlnkOutO

32
N A

Link

interlace

Link

interface

"H

Link

Interlace

Event I

T

C i>

Linklrn
LlnkOutl

Llnkln2
LlnkOut2

Llnkln3
LlnkOut3

EventReq
EventAck

MemAD2-31
M em n o t R I D

1

MemnotWrDO

IMS T414 Block Diagram

Figure 2.1 IMS T414 Block Diagram

12

1. The Processor

The 32 bit-processor contains instruction processing

logic, instruction and work pointers, and an operand

register. It directly accesses the high-speed 2 Kbyte on-

chip memory, which can store data or program. Where larger

amounts of memory or programs in ROM are required, the

processor has access to 4 Gbytes of memory via the External

Memory Interface (EMI).

There are only six registers in the transputer, and

that is due to the availability of fast on-chip memory.

These registers are used in the execution of a sequential

process. The small number of registers, together with the

simplicity of the instruction set enables the processor to

have relatively simple (and fast) data paths and control

logic. The six registers are:

The workspace pointer which points to an area of
storage where local variables are kept.

The instruction pointer which point to the next
instruction to be executed.

The operand register which is used in the
formation of instruction operands.

The A, B and C registers which form an
evaluation stack.

13

The Figure 2.2 [INMOSD86], shows these registers

Registers Locals Program

j

A

B

C

Workspace

Next inst

— •

Operand '.

Figure 2.2 Transputer Registers

The A, B and C registers are sources and destinations

for most arithmetic and logical operations. Loading a value

onto the stack pushes B into C, and A into B, before loading

A. Storing a value from A, pops B into A and C into B.

The instruction set has been designed for simple and

efficient compilation of high-level languages. All

instructions have the same format, designed to give a

compact representation of the operations occurring most

frequently in programs. Each instruction consists of a

single byte divided into two 4-bit fields.

14

The four most significant bits of the byte are a

function code and the four least significant bits are the

data value, as shown in Figure 2.3 [INMOSD86].

Function Data

4 3 I

Operand Register

Figure 2.3 Transputer Instruction Format

2. Processes and Concurrency

A process starts, performs a number of actions, and

then either stops without completing or terminates complete.

A transputer can run several processes in parallel

(concurrently). Processes may be assigned either high or low

priority, and there may be any number of each.

The processor has a microcoded scheduler which

enables any number of concurrent processes to be executed

together, sharing the processor time. This removes the need

of a software kernel.

15

At any time a concurrent process can be in one of the

following states:

Active -- Being executed
-- On a list waiting to be executed

Inactive -- Ready to input
-- Ready to output
-- Waiting for a specified period of time

The scheduler operates in such a way that inactive

processes do not consume any processor time. It allocates a

portion of the processor's time to each processor. The

active processes waiting to be executed are held in two

linked lists of process workspaces, one for the low priority

processes and one for the high priority processes. Each

process runs until completion but is descheduled while

waiting for communication from another process. In order for

several processes to operate in parallel, a low priority

process is only allowed to run for a maximum of two time

slices (800 microseconds), before it is forcibly

descheduled

.

The IMS T414 supports two levels of priority. The

priority 1 (low priority) processes are executed whenever

there are no active priority (high priority) processes.

High priority processes are expected to execute for a short

time. If one or more high priority processes are able to

proceed, then one is selected and runs until it has to wait

for communication, a timer input, or until it completes

processing. If no process at high priority is able to

16

proceed, but one or more processes at low priority are able

to proceed, then one is selected.

Low priority processes are periodically timesliced to

provide an even distribution of processor time between

computationally intensive tasks [INMOSD86],

3. Communications

Communication between processes is achieved by means

of channels. The process communication is point to point,

unbuffered and synchronized. As a result, a channel needs no

process queue, no message queue and no message buffer.

A channel between two processes executing on the same

transputer is implemented by a single shared word in memory;

a channel between processes executing on different

Transputers is implemented by point to point links. The

processor provides a number of operations to support message

passing, the most important being input message and output

message. The input message and the output message use the

address of the channel to determine whether the channel is

internal or external. Thus the same instruction sequence can

be used for both, allowing a process to be written and

compiled without knowledge of where its channels are

connected. The communications between two processes is

established as follows: The process which is first ready

must wait for the second one to be ready.

17

To be precise, a message is transmitted as a sequence

of single byte communications; each byte is transmitted as a

start bit followed by a one bit followed by the eight data

bits followed by a stop bit. After transmitting a data byte,

the sender waits until an acknowledge is received; this

consists of a start bit followed by a zero bit. The

acknowledge signifies both that a process was able to

receive the data byte, and that the receiving link is able

to receive another byte.

4 . Timers

The Transputer has two 32-bit timer clocks which

"tick" periodically. The timers provide accurate process

timing, allowing processes to deschedule themselves until a

specific time. Also they are an excellent tool for

programmers to use to evaluate the performance of networks

and communication timing.

Two types of timers exist: one for high priority

processes and one for low priority processes. The high

priority timer is only accessible to high priority processes

and is incremented every microsecond, having a full period

of about 71 minutes. The low priority timer is only

accessible to low priority processes and is incremented

every 64 microseconds, and has a full period of about 76

hours

.

5 Memory

The 2K bytes of static RAM provide a maximum data

rate of 80 MBytes/sec with access for both the processor and

links

.

The Transputer can also access 4 Gbytes of external

memory space. Internal and external memory are part of the

same linear address space. Transputer memory is byte

addressed, with words aligned on four-byte boundaries. The

least significant byte of a word is the lowest addressed

byte

.

The bits in a byte are numbered to 7 , with bit

the least significant. In general, wherever a value is

treated as a number of component values, the components are

numbered in order of increasing numerical significance, with

the least significant component numbered .

The internal memory starts at #80000000 and extends

to #800007FF. User memory begins a #800000048 and is

referred to as MemStart.

The reserved area is to implement link and event

channels. Figure 2.4 [INMOSD86], on next page shows the

memory map of a T414.

19

Machine Map
8yi9 aci.-ess

»7FFFFFFE (ResetCoSePtr)

Word offsets
Occam Map

r

Memory configuration . »7FFFFF6C to #7FFFFFF8

Start of eternal memory - #0200
•0

*8CCC ?S00

| ^'fC'itidveLCC

" - "
. S "'f^ve^ec

Creof.n'SaveLoc

B'eTC'SaveLoc

A-f c!-:5aveLoc

c'-'-'SaveLcc

Wdescl.ntSaveLoc

TP--LOC1

TP-locO

event

Lir'i 3 Inout

Lin* 2 InDut

L'-K 1 Inout

L'n< mDut

L«w 3 Outout

L "« 2 Ou'Dut

LinK 1 OutDut

Lm» a Ouidui

Note 1

I
»800000-i3 MemStart

#80000044

#80000040

*sc:ooo3C

#80000038

#80000034

#80000030

S8C0C0C2C J
#eC000028

#80000024

#80000020

«8C00001C

#80000018

#80000014

#30000010

•8000000C
#30000008

#80000004

#80000000

MemStart #12

(Base ot memory)

#0A

#03

#09

#07

#06

#05

#04

#03

#02

#01

#00

I

-

TP "LOCI

T° -LCCO

/em

bn< 3 Inout

Link 2 Inoul

Linn i Inout

Lin. Inout

lin< 3 O'JtOul

L^k 2 Outoul

Link 1 OutDUt

LirK : O-'dj!

Memory Map

Figure 2.4 Memory Map

6 . External Memory interface and Events

The External Memory Interface allows access to a 32-

bit address space (4 Gbytes) , supporting dynamic and static

RAM as well as ROM and EPROM . EMI timing can be configured

at Reset to cater to most memory types and speeds, and a

program is supplied with the Transputer Development System

to aid in this configuration. There are 13 internal

configurations which can be selected by a single pin

20

connection. If none are suitable, the user can configure the

interface to specific requirements.

EventReq and EventAck provide an asynchronous

handshake interface between an external event and an

internal process. When an external event takes EventReq

high, the external event channel (additional to the external

link channels) is made ready to communicate with a process.

When both the event channel and the process are ready, the

processor takes EventAck high and the process, if waiting,

is scheduled. EventAck is removed after EventReq goes low.

Only one process may use the event channel at any

given time. If no process requires an event to occur,

EventAck will never be taken high.

7 . Links

The T414 uses a DMA block transfer mechanism to

transfer messages between memory and another Transputer

product via the INMOS links. The link interfaces and the

processor all operate concurrently, allowing processing to

continue while data is being transferred on all of the

links. The four links are identical, bi-directional serial

and provide synchronization for communication between

processors and with the outside world. Each link comprises

an input channel and an output channel. A link between two

Transputers is implemented by connecting a link interface on

one transputer to a link interface in the other transputer.

21

Every byte of data sent on a link is acknowledged on

the input of the same link, thus each signal carries both

data and control information. Figure 2.5 shows the

TransDuter links.

i i

"

link 1

link link 2

link 3

i i

'

r

800028H

800024H

800020H

800016H

800012H

800008H

800004H

800000H

1

Iink3ln

Iink2in

linklin

linkOln

link3out

link2out

link 1 Out

linkOout

Transputers Links Memory Locations

Figure 2.5 The Transputer Links

8. System Services

The System Services include all the necessary logic

to initialize and sustain operation of the Transputer. They

also include error handling and analysis facilities. They

are: Power, CapPlus, CapMinus , Clockln, Reset, Boot, Peek

and Poke, Analyse, and Error.

22

B. THE B004 IBM PC ADD-IN BOARD

The B004 Transputer board was used to accomplish the

function of hold the I/O handler of the transputer network.

It is depicted in the following lines.

1 . Initial Requirements for the PC Add-In Board

There are three main elements required for the PC

board, and those are:

a. A Transputer, with some external RAM

b. The interface to the Personal Computer

c. User controlled devices to allow the board to be
used to control other similar boards

Let's talk about the transputer and memory first. The

T414 Transputer is a 32-bit processor with a processing

capability of 10 MIPS.

For the personal computer add-in board, it was

decided to give the user up to 2MBytes external RAM, mapped

into the internal RAM of the T414. For this amount of RAM on

an IBM form- factor board, dynamic RAM (DRAM) had to be used.

Also, a parity check system was implemented.

The communication with the host Personal Computer is

handled using the C002 Link Adaptor; this device converts

serial link data into byte-wide parallel data, and vice

versa. The C002 allows simple interfacing with standard bus

architectures, appearing to the host computer as a memory

mapped peripheral.

A number of system control signals are also provided

which give the user the possibility of connecting a number

23

of Transputer boards to the add-in board via INMOSlinks,

allowing the add-in board to control a Transputer network.

All signals are software controlled. Figure 2.6 shows the

BC04 block diagram [INM0STN11].

•MOyie

SPAM

Parity

IMSVI
OflAW

Parity

S-oSysten

-» resa<

-»» anaiyss

arrof

Figure 2.6 Block Diagram of a B004

Because of the Transputer programmable memory

interface, we can configure the external memory cycle of the

transputer to be any width to suit slow and fast memory.

Also a number of strobes were supplied which can be

programmed to give refresh signals to DRAM (automatic

refresh over a selectable refresh cycle time can also be

chosen). This eliminates the need of timing generators.

The interface with the personal computer is possible due to

24

the communication between the PC parallel bus and the

Transputer via one of the Transputer serial links.

This method was chosen because it maps into the

Transputer concept of communications via OCCAM channels,

i.e., the host computer appears to be as a process at the

end of a channel mapped into one Transputer link. However,

that also implies that the Transputer only use a channel to

communicate with the host computer.

To make this sort of interface possible, were

developed devices which convert parallel data into serial

data, and vice versa to match with the channel protocol of

the Transputer links.

The aim of the system control functions is to

initialize, and analyse errors in an arbitrarily large

network of Transputers built with many boards. In particular

a B004 board must be able to control many other boards in a

rack such as in the EUROCARD BOX.

C. THE BOO 3 BOARD

The IMS BOO 3 evaluation board was the main unit used to

build the prototype of the 16-transputer network developed

in this thesis.

It comprises four IMS T414 Transputers with 256 Kbytes

of DRAM in each Transputers. The links provided with the

evaluation board allow the Transputer network to be easily

extended by connecting with other boards.

25

This board is capable of processing up to 40 MIPS. The

data rate of its links is either 10 or 20 Mbits/ sec.

The four Transputers are connected in a ring as shown in

Figure 2.7.

link i link 3

link link 2 link 3

1

link 1

link 3

link 2

link

link

2

3

link 1

3
link 3 link 2

2
link

link link 1

Figure 2.7 The B003 Board

There are two links per Transputer which can be

connected externally. Thus each BOO 3 can be connected to

four neighbor evaluation boards.

III. DESIGN AND EVOLUTION

A. THE MODELING PROCESS

1. Description of the Problem

The problem chosen was the heat flow problem in a two

dimensional plate and how this problem could be solved using

globally distributed variables in a transputer network.

This problem was selected because it is

representative of many similar types of problems that arise

in meteorology, science and engineering.

The heat flow problem in a two dimensional plate is

governed by the partial differential equation:

d t a
2
T d

2
T

+
dt -* 2 2

d x dy

with specified initial and boundary conditions.

To find the steady-state temperature distribution in

the square plate, one side is maintained at some temperature

which is called the hot end temperature, and the other three

sides are maintained at degrees (iced bath) as shown in

Figure 3.1.

27

i= o
T =

i= n

T= HOT
END

X

A

(I.J)

\

a x *-

t

T=

T= 0" i=

Figure 3.1 Heat Conduction in a Square Plate

All internal points on the grid start also at

degrees. Also another element which is present in this

equation is the propagation rate W, which is equal to

A t

(1- 4r)/r where r= -

Ax"
The method of solution is to iterate through all grid

points, calculating a better approximation to the

temperature at each point (i,j) in turn using the equation :

T
(i.j)

_ «T(i.j)*W)+ (T
(i . i+1)) + (T

(iJ , 1>
)-t- (T

(i+lti ^+ (T^)
(4 + w)

As soon as a new value of T is calculated at a point,

its previous value is discarded. This is the Gauss-Seidel

method of iteration. To start a temperature of degrees is

assumed everywhere within the plate. This process of

iteration is repeated through all grid points until further

iteration would produces, very little change and eventually

no change in the computed temperatures. At this moment we

have reached the steady-state solution, and we can assert

that this is the moment at which the iteration converges,

by which we mean, if

limT
(i
j)(tm + 1)= T

(ijj)

t m—> oo

then our equation satisfies the discretized version of the

Laplace's equation.

Our finite difference scheme involves five points,

four at time tm and one at the advance time tm + 1= tm + Dt,

that allows us to "march forward in time". In this numerical

scheme, the temperature at the next time is the average of

the four neighboring mesh points at the present time,

adjusted by the propagation rate W (relaxation parameter)

which is a function of the thermal conductivity coefficient

of the material.

29

2. The Abstract Model

Our abstract model was defined without using a formal

specification approach. It can be seen as a black box in

which a function operates ruled by the partial differential

equation described above. The box provides the solutions to

the steady state distribution of temperature in a square

plate, with hot end temperature and propagation rate inputs,

as shown in Figure 3.2.

boundary

conditions

Partial differential equation

B*T A.
Art" -, 2

+
- 2

dx dy

Solution heat flow

problem in a two

dimensional plate

Figure 3.2 Abstract Model

3. The Transformed Computational Model

The Transformed Computational model represents the

adaptation of the mathematical model to the facilities

supported by the OCCAM programing languages in a modular

fashion. This model is shown in the Figure 3.3.

30

Initial Conditions

initial Conditions

COMMUNICATIONS

CALCULATIONS

MAIN
PROCESS

Figure 3.3 The Transformed Computational Model

At the bottom of Figure 3.3 we observe the processes

executing. On the left side is located the I/O Handler which

is in charge of supply to the Main Procedure with the

boundary conditions necessary for the correct operation

during each new iteration. On the right side is the Main

Procedure box which contains two basic blocks: The

Communication Block and The Calculations-Updating Block.

The Communication Block is in charge of the maintenance of

the interchange of messages with the I/O Handler and

eventually with other neighbor Main Procedures.

31

The Calculations-Updating Block has the functions of

calculating the new temperatures for time tm + 1 and also

updating the values in the mesh points.

B. NETWORK MODELS AND EVOLUTION

1. Network Classification

We can categorize our network prototype as a MIMD

Transputer network, because we have interactions among the n

Transputers which comprise the network, due to the fact that

all memories streams are derived from the same data space

virtually shared by all Transputers. Also this MIMD

transputer network is a loosely coupled one, because of the

facilities created by the OCCAM programing language.

In particular the input and output messages which use the

address of a channel can determine whether an internal or

external channel, is being used. Thus the very same

instruction allows a process to be written and compiled

without having knowledge of where its channels are

connected. That is a Transputer does not need to have

knowledge about its neighbors to operate properly.

Our final stage will consist of a Transputer network of 16

Transputers connected and operating in parallel to solve the

proposed problem of the heat flow in a square plate.

The type of arrangement chosen was a Torus Double

Transitive Closure as can be seen on the Figure 3.8.

32

This type of network is also known as Regular Network

[CAWE80] and its main characteristic are the following:

a. The "tree" is a hierarchical structured variation with
any processor able to communicate with its superior and
its subordinate as well as its two neighbors.

b. If one of the Transputer fails we have redundant paths
for single connected failure.

c. The cost of this network is relatively nigh we
considered its computational power.

d. The modularity and expandability is poor.

e. Performance is very high typically 3 to 5 MIPS, but
using the Transputer, we can have higher performance.

2. Model Evolution

Initially we made the set up for one Transputer , but

in order to compare the efficiency with a Transputer

network, the model was expanded to an array of 2 X 2 , an

array of 3 X 3 and the final stage was a 4 X 4 Transputer

network

.

First let's see the different models which were

considered, why they were discarded, and why we choose our

final prototype model. The Model I, was a system in which

the processes A, B, C, D, E, and F simulated the boundary

conditions and the numbered processes achieves the

calculations to solve the problem. This model was discarded

because for each line of Transputers, it had two Transputers

doing nothing but serving to convey the boundary conditions

and to extract the final solution of the problem.

33

Also the communication vertically was very

inefficient. The Figure 3.4 depict the model.

I/O

HANDLER

A 1 ? D

r

B 3 4 5 E

I

C 6 7 R F

Figure 3.4 Model I

The Model II has the processes A, B, C, and D as

senders/receivers of boundary conditions. The main

disadvantage of this model is that as we increase size of

the network, we will need more Transputers to handle the I/O

and boundary conditions passing, this model works well for

a small number of Transputers, assuming one is willing to

use four Transputers to handle nothing but boundary

conditions. This model is shown in Figure 3.5.

34

C

1 2

|

A 3 4 B

6 7 8

D
f

I/O

HANDLE?

Figure 3.5 Model II

Finally the model we selected, shown in Figure 3.6,

is one which handles the boundary conditions better. We use

one B003 for the one Transputer network, and make the other

three Transputers transparent. The 2 X 2 network used all

four tranputers in the board. For the 3X3 network we used

four B003 using the same idea as for one Transputer in one

B003 board, but now making transparent seven Transputers.

35

I/O

Handlei

—
T

T N

01 transputer network

09 tranputer network

I/O

Handler

2

1 3

04 transputer network

I/O

— 4 —.8 — 12

1 — 5 _ 9 _ 13

3 — 7 _ 1 1 _ 15

10—14

16 transputer network

Figure 3.6 Model III in Its Different Sizes

Is interesting to see how the flow of data is

achieved in this model. Figure 3.7 shows how the boundary

conditions and the start/stop signal are propagated through

the network, as well as the data path follow by the

solution, when it is sent back to the handler to be

displayed on the screen.

36

In general this model was chosen because it provides

the larger Transputer device utilization without have

any idle or misemployed Transputers on the four and sixteen

Transputer networks, and also because its symmetry permits a

more even distribution of the communication load in the

network

.

^PHH^-H

[2 -a

a
k3j

-B

LxJ^TO^

f-5—i

e

T 1

-a

ITARTirrOP UCNAL PATH

tOLUTtON FLUSH PATH

DATA FLOW PATH

Figure 3.7 Data Flow in the Network

37

3. The 16 Transputer network prototype

On Figure 3.8 we can observe the 16 transputer network

with all its connected links, including these which

communicates to the I/O handler. The programs for each one

of the transputer networks are contained in the Appendixes

A, B, C, and D; the implementation of the modules are these

programs, and they will be discussed in the next chapter at

the paragraph, Maximization of Software Performance.

i
(•—

«5

r
k

;

1

k i

—
1

? ?

r

k

i

•— c 4 "^ 2 '« *H

1 r i r i

I

kin -"

< r

w

I/O

HANDLER

m ».

i r~^ i

3 "*

k J

•'
1

i

j ^

—

k

t^

L. < r
\

1, 1

r
1

. -4

w'

r-
1

i k

—
1 4 * Tk\

I i

1l_ _: r 1 r 1
r

1

ii

r

4

*
1 1 - * 15 *

. IE. o

—
*JL

IP

p* j i« wr *

—>:
r

Figure 3.8 16 Transputer Network Prototype

38

4. Expandability of the Model

This transputer network can be expanded easily using

the series, (2 + n)~2 in which n is 0, 2, 4, 6, 8,

this allows the construction of Transputer networks

utilizing all the Transputers available on the BOO 3 boards

which is not the case if we get n= odd, then the Transputers

that are left over must be made transparent in order to run

the network. This practice however, makes the placement of

the channels a job tedious and error prone.

Appendix E is contains an expandable placement of

Transputer channels following the above series for n even.

Thus we can easily place with just change a number, networks

of 16, 36, 64, 100 Transputers [INMOSTN13].

The way in which the external links were connected,

including the links that joined the different BOO 3 boards on

the EUROCARD box, is displayed on Figure 3.9 for 01 and 4

Transputer networks, and in Figure 3.10 for 09 and 16

Transputer networks.

The connecting box(es) shows the connections between

the various B003 boards which make up the Transputer

network

.

39

to lin k B004

hi 3

lil
3

1

J

reset line

R
B004

connector at

EUROCARD Box

To set up the external links, Just

match up the numbers using the

twisted cable, provided with the

boards.

Figure 3.9 01 and 04 Transputer Networks Connections

TO LINK2 B004

CONNECTOR A

RESET UNE
FROM B0O4

CONNECTOR B CONNECTOR C

TO LINK3 BOM

CONNECTOR D

Figure 3.10 09 and 16 Transputer Networks Connections

40

IV. EFFICIENCY CONSIDERATIONS

A. INTRODUCTION

1, Generalities

Two related aspects of a parallel computer that

affect run-time efficiency are the speed of computation and

the speed of communication. The first relates to the design

of the processor, its instruction set, and its organization

(such as the use of a cache and pipelining) and its

realization (such as the speed of its transistors). The

second relates to the interconnection network, the

scheduling of its resources and the routing of information

through it. This second aspect is less understood, and is

the one in which different paradigms of parallel computers

differ most. We focus on these two aspects, and propose that

our application be characterized by its communication

requirements. Applications with similar communications

requirements can be grouped together. For instance a pattern

recognition edge-detection problem can also be put in a

Transputer network mesh structure and our two dimensional

heat problem also can be put in a Transputer network mesh

structure. These two mesh structure problems have radically

different computational requirements, but have the same

communication requirements. We can study such network

topology from the point of view of how well it handles a

related class of Transputer network procedures.

41

We agree that a large Transputer network can be built

to solve large problems, then we will submodel that problem

into two models; one model considers how a very large

Transputer network can be built, and how a MIMD Transputer

network process can be expanded within it, to determine

whether doubling the number of Transputers assigned to that

problem will speed up its execution by a factor of two. We

might get linear speedup if that were true. (This ideal

situation is not easy to achieve, unfortunately). Those

results about linear speedup of Transputer network

procedures are very important since we need good procedures

for Transputer networks. The other model which is complement

of the first assumes that the problem size will remain fixed

and the machine will be larger and larger inductively. That

is, the problem may be run on one Transputer, and the

machine might be expanded from one to sixteen Transputers,

and we will consider the efficiency of running the problem

on the same one Transputer.

This model is easier to study, since rather simple

and general statements can be made on it.

It is quite useful in understanding the overall

model, since expanding a Transputer network system to solve

a bigger problem can be done by fixing the problem and

expanding the machine first, then expanding the problem to

fill the machine.

42

In this thesis we will devote correspondingly more

time to studying the model which shows how a given

Transputer network process can be expanded within a large

machine to determine if increasing the number of processors

assigned, we can get linear speedup, also some reference and

results related to how the fixed sized problem behaves when

the Transputer network system in which it runs is expanded

inductively [LIMI87].

2 . Terminology and Concepts

We want a suitable set of definitions to evaluate the

quality of our architecture. Because of that, a notion of

"energy" is given besides the traditional concepts used in

engineering for the efficiency study.

a. Power and Energy

The computational energy for a process is the

product of the computational power (bit rate able to be

generated by the hardware of the Transputer) and the time

the hardware is needed, where the computational power

includes all the output necessary to run the processes and

the time is the product of the length of the clock cycle or

in other words is the time required for computation and

communication

.

To clarify those concepts let's see an example,

suppose we have a network with four Transputers like the

case of the networks that can be implemented using a IMS

B003, then if each Transputer has a computational power of

43

10 MIPS we can then assert that our network comprised of

four Transputers will have a computational power of 40 MIPS.

Therefore if we have a module running a process, we can use

N identical modules to execute the same process (as N

Transputers) but having available N times the computational

power of one module.

When we expand our Transputer network in an

inductive way, we call each Transputer that we add a unit of

computational power (UCPs).

In the evolution of our 16 Transputer network

prototype, we pass through the 3X3 network which is

assembled using 4 boards B003, then in this topology we find

a special kind of Transputer which is transparent or a

neutral unit. It does not compute and only has the task of

moving data in and out of the network or simply doing

nothing as the Transputer located at the right-lower corner.

These modules cannot be classified as UCPs, so we call them

blocked UCPs, and these will be considered when we evaluate

the Transputer network in the next chapter. We also take

these into account when we measure the total amount of

computational energy necessary to run a Transputer network

process. The Time is also an interesting concept, and it

includes all the components of the time needed to execute a

Transputer network process. We will break the time in two

main blocks; the communication and the calculation time.

These two blocks are very well defined in our Transformed

44

Computational Model from Chapter III and also they can be

seen on any of the programs from the Appendices.

b. Efficiency

The usefulness of a computer is indicated by the

efficiency it exhibits in the execution of processes on it.

This is the obvious definition for efficiency; now we will

define relative efficiency as well as the concept of

equivalent process necessary to understand the relative

efficiency. Later a relation between relative efficiency and

input computational energies will be stated.

The relative efficiency of two computer systems executing

equivalent processes is defined as the ratio of the

efficiencies of the two systems in executing the process,

where two processes are equivalent if they provide the same

outputs when given the same inputs, (which is clearly our

case in the network). Therefore we can define the efficiency

of a computer system in executing a process as the ratio of

input computational energy (ability to generate bits from

the modules) to the output computational energy (information

of theoretic bits produced by a module).

From this definition we can state that :

the relative efficiency of two computer systems executing

equivalent processes is inversely proportional to the ratio

of input computational energies of the two computers

[LIMI87]

.

45

3. Applications of Efficiency Analysis

So far the reader probably has some doubts about the

concept of efficiency and that it is critical for the

analysis that we present in the next chapter. Thus to bring

some light, let's use it to analyze some issues to show its

utility

.

First of all, we will consider the simple idea of

serial-parallel conversion, which leads to the notion of

speedup. Before we do that we will classify the efficiency

analysis in two types; first order analysis which ignores

communication and control, focuses on computation, and the

second-order analysis which considers all these factors.

Then the analysis that we use to determine if a procedure is

capable of linear speedup, may be a first-order analysis and

to understand the real world we will need to apply a second-

order analysis. In Figure 4.1 we can observe the classical

comparison between parallel and pipelined processors, this

is a simple notion which has been manipulated by theorists

for many years.

46

computational Power

,..,...._."

< .

time

Serial Adder

computational Power

A

time

Parallel Adder

Figure 4 . 1 Energy for a Serial and Parallel Adder

If we examine the relative efficiencies of a serial

and a parallel adder (Fig. 4.1), in which the computational

power of the adder cell is much more greater than that of

the control and communication circuitry that support the

adders (i.e., the calculations are more time consuming than

the communications), therefore we will ignore these factors

(first-order analysis). The energy for a 3 bit serial adder

and for a 3 bit parallel adder is shown in the Figure, in

the serial adder we have one unit of hardware used for three

units of times and in the parallel adder we have three units

of hardware being used for one unit of time, then clearly

the areas are the same and so are the relative efficiencies.

This simple procedure shows the notion of linear speedup. If

the number of UCPs is multiplied by N then the time to

execute the procedure is reduced to 1/ Nth, or the speed is

increased by N.

47

It should be noted that linear speedup is equivalent

to constant computational energy. This, type of analysis

will be used extensively in the next chapter, when we

perform the comparative evaluation of the different

networks. The results are misleading in some architectures

because it does not consider the changes in computational

energy due to the communication and control. Nevertheless

tne analysis carried out on the different prototypes was of

the type second-order, because the communication time was

include in the total time.

From the notion of linear speedup and conversion of

serial to parallel we can realize about the secondary

importance of the speed as figure of merit in a topology.

A parameterized architecture based on a single procedure as

addition is capable of considerable speedup. For instance

12-bit add can be done one bit at a time in 12 time steps,

or 12 bits at a time in one time step. Within limits, it is

possible to squeeze the time dimension of an energy area as

the power dimension is increased to get constant area.

The degree to which parallelism can be exploited to

get speed depends on the amount of data to be processed.

However the limit to the speedup is given by the smallest

size of the unit of computational power (i.e., indivisible),

and this is the fundamental idea why the researchers are

interested in fine grain rather than large grain

parallelism.

48

Ultimately we can not go further than a Turing

machine. Within these limits, time can be traded against

power. Thus the speedup is not a fundamental figure of merit

for a parallel architecture. The more fundamental figure of

merit in a parallel architecture is the efficiency.

B. MAXIMIZATION OF THE TRANSPUTER NETWORK

1. Generalities

This section will describe how to obtain better

performance from a Transputer network (array type). However

only very general guidelines can be given, because this area

is still on active research and our solutions tend to be

specific to our problem.

2. Maximizing link performance

The Transputer link is an autonomous DMA engine

capable of sustaining a bi-directional data rate of 20

Mbits/sec. However in our prototype we are using 10 Mbit/sec

as the common data rate. The higher rates can be used

without seriously degrading the performance of the

processors. To achieve a maximum link throughput the system

links and the processor must be kept as busy as possible.

49

Following are some suggestions for achieving the

maximum throughput:

a. Decoupling communication and computation

To avoid the links waiting for the processor or

vice versa, link communication should be decoupled from

computation. For example, it is inefficient to have code

like the following :

SEQ

in ? data

compute (data

)

out ! data

because we are forcing the Transputer to perform one action

at a time, as inputting, computing, and outputting. The

solution is doing the three things at the same time using a

couple of buffers into a parallel construct:

PAR

buffer (in, a)

compute (a, b)

buffer (b, out)

b. Gather together all the communications processes

This can be seen in the communication blocks of

the diverse designed prototypes. The communication process

must also be wrapped into a PAR construct. If possible, is

also recommended to put this PAR package inside a PRI PAR

running first or at high priority, the communications

package.

50

c. Large link Transfers

When we set up a transfer down a link, the set up

itself takes about 1 microsecond. Once the transfer is

initiated, it will proceed autonomously from the processor,

consuming typically 4 processor cycles every 4 microseconds.

Thus the idea is to keep the message as long as possible.

However, long data transfers also increase latency when data

must be transferred, which occurred in our case for the 16

Transputer network prototype. To solve the problem we used

the optimal message length in all the topologies developed,

including the final model of 16 Transputers, which used

between 10 and 100 bytes [SIHA88].

d. How the boundaries were passed in the network

The problem of the boundaries exchange was

approached in the following manner: The basic idea was to

send and receive by all the channels available, and if the

information (boundary) was not necessary, we just do not use

it. It may appear inefficient but for purposes of creating

homogeneous processes, we favored this option. This gives a

uniform communications package, allowing a better measure of

the performance to be obtained. The boundaries were one

dimensional linear arrays with a maximum length of 24

integers (one Transputer network) and a minimum length of 6

integers

.

51

Figure 4.2 shows how this sequence of events happens.

Once the communications are achieved the different

boundaries are stored in linear arrays called dummies, then

the processes decide whether to use them or not.

boundary

out

array of

erattires

boundary

i n

Dummy arrays
to which the

boundary conditions
arrives before
they are used or

discarded

Figure 4.2 Boundary Exchange

52

C MODULARITY OF THE SYSTEM

The modularity of this type of system is poor [CAWE80].

The main issues that conspire again the modularity of each

of the procedures were the routing code for the start/stop

signal and the routing code to extract the final information

from the network. Even considering this little difference in

the implementation of each module, we still preserve the

data structures for the Communication and Calculation Block

identical. We call these two blocks the main data structure,

which allows us to see the Transputer network as a system

with virtual shared memory by duplicating the information in

each main data structure which is in turn a block of memory

on each Transputer.

The routing codes are different, however because most

of the Transputers in the network have to perform a

different job to assure the transmission of the start/stop

signal and to flush the results out of the network.

For instance Transputer number which is at the upper left

corner, has to receive and send to the I/O Handler 15 arrays

of temperatures plus its own array, in contrast to

Transputer number 3 which is at the lower left corner, and

which only has to send up its own array the moment after the

reception of the stop signal.

53

V. COMPARISON OF NETWORK PERFORMANCE

The main reason to build parallel computers is to be

able to solve larger problems or to solve the problem

faster.

This chapter focuses on the central theme of this

thesis. We have described so far a parallel computer

(Transputer network) prototype which has been implemented in

an inductive fashion. Briefly, an inductive architecture is

one that can execute a number of jobs proportional to the

number of processors, and the energy needed for each job is

proportional to a sublinear function of the total number of

processors. Thus a relatively large process, as the one used

in this thesis (heat flow problem) whose procedure exhibits

linear or nearly linear speedup, can run efficiently on the

whole network if it has an inductive architecture.

It is also convenient to comment that the experimental

results obtained from the different Transputer networks were

conducted using off-chip memory data. This provides the

worst case evaluation and all the results are under the same

general conditions.

A. ARE WE USING AN INDUCTIVE ARCHITECTURE ?

After the above lines and before get into the efficiency

subject, we think it is good to verify this point.

54

A computer architecture is inductive if:

1. There is a basis architecture, and all architectures
use only the components that are units of the basis.
For us that is certainly true, since the basis
architecture is represented by only one Transputer, and
the other architectures contain nothing but the same
UCP, which is the Transputer.

2. There is an induction mechanism that can expand an
architecture frcr v * UCPs to N+l UCPs . That also can be
seen in Figure 5.1, in which we see the basis
architecture on the left and trie expanded architecture
on the right for a simple N b\ N mesh. The induction
mechanism simply adds Transputers around the perimeter
of the mesh to increase the number of UCPs from N~2 to
(N+ 1)~2.

01 TRANSPUTER

Q
H

_

—

04 TRANSPUTERS

09 TRANSPUTERS

1
j

["':':? I
j

,,....

i
16 TRANSPUTERS

Figure 5.1 The Inductive Mesh Architecture

Therefore we can assert that our expanded model is an

inductive architecture.

55

B. EFFICIENCY EVALUATION

In general the efficiency can be increased by using a

better procedure, a faster technology or processor. In this

thesis, using the inductive property of our architecture, we

will not change the technology, procedure or processor, but

we will use a variable number of identical processors

(Transputers). What we have done in this evolution, or

better, induction of the basis model is to fix the size of

the problem. That is, we are solving an array of 24 by 24

elements and executing it on more UCPs or Transputers; our

goal is to show how this Transputer network process runs,

without seriously decreasing in efficiency. Then from our

experimental results we can see in Figure 5.2 a picture,

which is pretty much the same as the one used to describe

the linear speedup concept in Chapter IV; the sizes of the

UCPs differ a bit from the original basis, but this is due

to the fact that we are using a second-order analysis in

which the communication and control overhead is considered,

and of course larger than for only one processor running the

same process. In this Figure on the left, the area of the

rectangle is the energy to execute the process in one

Transputer, and on the right and the bottom we can observe

the same for the other inductive architectures.

56

In Table 5 . 1 we have a summary of the results.

We can observe that the computational power of each network

is incremented as expected by factor of 4, 9, and 16 in

relation to the value of the network of one Transputer.

TABLE 5.1

PROTOTYPE ENERGY RESULTS

time computational power # of Transputers

30.82 sec 310,519 bit/sec 01

05.74 sec 1,400,102 bit/sec 04

02.33 sec 2,829,484 bit/sec 09

01.08 sec 4,949,449 bit/sec 16

57

01 tranaputar computational anar-jy

•xmar in bivaac

C4 transputer caoiputationai ana

oomaumontt pc-*w in *i aac

30 82 tim« in aec

09 traniputar computational energy

tionai oo-K m twt /aec

4100000 -

'0XX. -

isxxe -

MXXO

2SXX0 -

1100000

10COOO

3 • 74 timt In sac

LC transputer computational energy

in atvaac

4600O0C -

40000 00'

"6X0X-

>«,„.

*mmi

S30CX -

'—

-

sxxc

0-

4600000*

«oxox *

feoocx *

SOOOOX*

MOOOM '

'iOXX '

1Q0OCX'

aooxc '

=

tim* In twe

Figure 5.2 Efficiency Comparison

The values for four and nine Transputers are, as

explained before, a little bit above the expected because

the communication and control overhead, but in the 16

Transputer architecture we see that now the computational

power to run the process is a little bit less than the

theoretical calculated value, which will be 4968304 bit/sec

(310519 x 16)

.

58

The reason for that is referred to Chapter IV, on the

paragraph "the applications of efficiency analysis", in this

case our architecture is entering in the fine granularity

zone so the degree at which the parallelism is oeing

exploited is superior to the two former cases; also we can

say that for our inductive model, the atomic size of the UCP

is for an array of 6X6 Transputers, in which the array

of temperatures we are deal with is only 3 4 X 4 elements

.

Beyond this point we cannot continue diminishing the size

because the Transputer process simply does not work.

From Chapter IV we remember the definition of

efficiency; it was the ratio of input computational energy

to output computational energy; and also we should realize

that the efficiency factor is very low because we have the

output information of the process divided by the information

delivered by the hardware modules in the time necessary to

solve the problem (i.e., time to steady state in our case).

In Table 5 . 2 we can see how the efficiency is improved in

relation to the network basis of one Transputer. For this

calculation we recall that the input computational energy of

the system is equal to the Time times the computational

power, and the output computational energy is equal to the

maximum data rate for the Transputer which is 1024 x 10~5

bits/sec [INMOS086] , times the Time.

59

TABLE 5.2

EFFICIENCY COMPARISON FOR THE NETWORKS

in. cp . energy out .cp. energy effi. ra t io # Transp.

3155968000 9570195.58 0.0030 01

587776000 8036585.48 .0127 04

238592000 6592697.72 0.0276 09

110592000 5345404.92 .0483 16

As can be expected as long as we are entering on the

fine granularity zone, the efficiency of the system is

improved

.

C. RELATIVE EFFICIENCY

Another measure that we performed is the relative

efficiency of running our Transputer network procedure in

the different systems.

From the definition we know that the relative efficiency

of two computer systems is the ratio of the efficiencies of

the two systems executing the same process. This results are

resume in the Table 5.3, on which we take the higher

efficiency as base to compare the others again it.

60

TABLE 5 .

3

RELATIVE EFFICIENCY

basis efficiency = 0.0483

relative efficiency for 01 Transp. network = 6.21 %

relative efficiency for 04 Transp. network = 28.36 %

relative efficiency for 09 Transp. network = 57.14 %

On this Table we can realize that the efficiency of the

one Transputer network, is about 6.21% the efficiency of the

sixteen Transputers network, and so on for the others

networks

.

The relative efficiency is plot in Figure 5.3. We

observe a plot of the efficiencies, related to the highest

efficiency presented by the sixteen Transputers network.

12

Number of I'roct

Figure 5.3 Relative Efficiency

61

D. TRADITIONAL APPROACH TO SPEEDUP ESTIMATION

The speedup that our system is capable of achieving can

be graphically determined using the traditional method which

is outlined now. We know from before that if we have a

parallel computer with N equivalent processors running in

parallel on a problem, it will be N times faster than a

single processor running the same process. Certainly this is

the ideal case, but in the reality the speedup of a system

ranges from a lower-bound of lg(N) to an upper-bound of

N/ln(N) [KAFA84]. The lower bound is known as Minsky's

conjecture. Using this conjecture, we can only expect a

speedup of 2 to 4 from our four and sixteen Transputers

networks. In the other case we have a better estimate of N/

ln(N). For the latter case let's get through the estimation

and subsequently plotting process. We can say that the

process at the one Transputer network is running in a unit

of time, Tl= 1. Let Fi be the probability of assigning the

same problem to i processors working equally with an average

load di=l/i per processor. Furthermore assume equal

probability of each operating mode using i processors,

that is Fi= 1/N, for N operating modes : i= 1, 2,..., N.

Then the average time required to solve the problem on an N-

processor system is given below, where the summation

represents N operating modes.

iT,"

i = i

62

The average speedup S is obtained as the ratio of Tl = 1

to Tn; that is S=T1/Tn [KAFA84]. Then in the Figure 5.4

we observe the plot of these upper and lower bound plus the

ideal case and also we can see our result.

Sp**dup

100

10-

Numberof Transputer

ideal case

100

Time in seconds for each network

seconds # transputers

1.978 x 10"2 01

5.336 x 10' 3 04

2.235 x 10" 3
09

1.241 x 10' 3

1 6

Figure 5.4 Various Estimates of Speedup and our
Results

In this plot we can observe, that as we enter in the

fine granularity zone, due to the reduction in the

communications overhead and computational time, we are

exploiting the parallelism in a more efficient fashion, and

obtaining a better speedup.

63

E. SOME DETAILS

There are some conditions about this evaluation and some

observations that are necessary to explain and which can

serve as hints for future investigation.

First, during the evaluation of the different networks,

there were automatic ways of setting up to evaluate. That

is the processes were loaded on the Transputer network and

when they were ready with the data, they stopped the

processes themselves and displayed the information on the

screen. Although this look like a fairly good way to save

time, in our particular case, the method was discarded

because it introduces an overhead in communications which

would bias the accuracy of the measurements.

Second, the programs were implemented using the Type

INTEGER for all the arithmetic operations. It allows a

program to run faster and also the comparison time to

establish the "steady state" condition was less than if we

had used the Type Floating Point, which from the comparison

resulted much more time consuming than the Integer Type, as

expected from the OCCAM programming Language specifications.

Third, once the programs were implemented, there were

other paths of investigation, such as the one in which the

problem size was augmented to run on a 4 X 4 Transputer

network, giving an overall array of 96 by 96 elements. In

this case the results showed an improvement; i.e., an

increasing in throughput was observed.

64

The reason is simpler but not subtle; in this case the

improvement of the performance was due to the fact that the

number of computation per unit of time was increasing by a

square factor, while the overhead in communications grew in

a linear fashion, therefore we were again diminishing the

size of the grain. This point will be discussed later in

this chapter.

F. COMPARATIVE THROUGHPUT

The throughput is another type of performance measure

that can be recorded. The throughput in our system

represents the number of results per unit of time that our

system can achieve. Table 5.4 gives us a summary of the

results

.

TABLE 5.4

THROUGHPUT RESULTS

array size # transp. throughput

24 x 24 01 40511 results/sec

12 x 12 04 206580 results/sec

8x8 09 392535 results/sec

6x6 16 671824 results/sec

Also we can do a relative comparison between the

efficiencies as we did before with the efficiencies

65

determined from the computational energy of the system, and

certainly, as can be expected, these values are much the

same. The summary of this information is recorded on Table

5.5.

TABLE 5.5

THROUGHPUT AND RELATIVE THROUGHPUT

array size # transp

24 x 24 01

12 x 12 04

8x8 09

6x6 16

rel . throughput

6.30 %

30.75 %

58.43 %

/ ** \

(*) the overall array size is the same

(**) basis throughput

G. THE OPTIMAL ZONE

We know that the idea of reducing the granularity in a

parallel architecture is the main focus of the research

today, but conversely there is a practical limit on how

little computational power can be used to execute a process

related to the cost of the hardware and the threshold time

to execute the process. In other words, it appears to be

ideal to break up the problem into smallest possible

components for parallel execution, but that fine

partitioning can in practice be too costly in terms of

66

overhead and cost of the hardware. For instance, we will be

underusing a powerful microprocessor as the Transputer, to

solve a very little problem product of this partition, and

also when we partitioning a problem very finely, we get more

time consumed to communicate data between Transputers, thus

slowing down the production of results, and not gaining any

improvement in performance. Therefore we have to find a way

to balance the communication and computation in a effective

manner. To that end, the answer is to get a more relatively

coarse partitioning, i.e., get a tradeoff between the

maximum number of processors that can be feasibly employed

to solve the problem and the time constrains of the problem

itself. The idea is to find what we have called the "optimal

zone" , and operate our machine in it in order to have

maximum performance and consequently the best efficiency.

In our sixteen Transputer network prototype, we have a

system comprised by many small internal fast memory

processing elements or Transputers, that communicate each

other relatively fast through the splendid Transputers

links, thus this architecture lends itself to fine grained

problems. These expectations were confirmed from our

experimental results. Another way to approach the problem is

to fix the number of processors and reduce the granularity

by using a larger array. We use this method in the four

network prototype and the sixteen network prototype.

67

We decreased the granularity using software, i.e., we

increased the size of the array of temperatures and we

observed and recorded the behavior in relation to

throughput

.

The testing that was performed on these two

architectures was to run the programs, changing granularity

starting with a very coarse grain, i.e., we use a

temperature array of 4 elements and we incremented its size

up to 24 elements, and we were recording and calculating the

different throughputs for each different problem size. Thus

we could observe the throughput start to increase

continuously from the minimum size, and then stabilize at

an array size of 14 x 14 elements, for an array of 96

elements (not shown), this behavior still holds. It is true

the throughput increased greatly, but on the other hand, the

time to solve the problem also increased. Here we have to

tie our performance to timing constrains. From this we can

deduce the existence of the optimal zone for this type of

architecture. To illustrate these concepts we can see in

Table 5.6 the results of throughput for different array

sizes on both architectures, and in Figure 5 . 5 we can see a

plot of these results

.

68

TABLE 5.6

THROUGHPUT RESULTS FOR DIFFERENT GRAIN SIZE

grain
size

array
size

elements

extrem. large 04
very large 06
large 08
medium 12
transition 14
fine 16
fine 18
very fine 24

04 Transp.
throughput in
results / sec

62500
111111
118421
135869
145161
133315
140350
144047

16 Transp.
throughput in
results / sec

250000
444432
473680
543472
580640
532608
561392
576176

throughput in bits per second

950000 -

900000 -

850000 -

800000 - Maximun troughput

750000 -

700000 -

650000 - ^^ 16 transp. network

600000 -

550000 -

500000 -

450000 -

400000 -

350000 -

300000 -

250000 -

200000 -

150000 -

100000 -

50000 - 04 transp. network

-

c

1 1 '

4 8

. . I
"> 1 r-

12 16 20 24

Array size

2 I

Figure 5.5 Throughput for Different Grain Size
in a 04 and a 16 Transputer Network

69

H. HOW THE PARALLELISM WAS ACCOMPLISHED

So far, we discussed throughput and speedup of the

different Transputer networks and we have proved from the

experimental results the existence of parallel activity.

Now let's consider the parallelism in more detail to have a

clear idea of what is going on.

We must recall that we have g Transputer network process

running making use of the virtual shared memory system. This

virtual shared memory is obtained by duplicating information

in local memories so that when a producing process writes a

new value into its local memory, the synchronous operating

system generates a message which is broadcast to all

consumers of the data via the point to point link mechanism

of the Transputers. Thus the local memory of each computing

node (Transputer in the network) contains the duplicate data

ready to be consumed by each consumer in its local memory,

[KOD88]. The reading and writing is accomplished in every

complete cycle of communication and calculation, and is

executed in a carefully synchronized fashion so that the

writing of the data structure by a producer is completed

before that data structure is read by the consumer [REKA79].

In our heat flow problem this sequence of events occurs in

the following way: suppose we map an imaginary grid over the

plate denoting at each line intersection a Transputer which

is in charge of calculating a square segment of temperatures

for the plate.

70

As soon as some process is ready with the updating of

its set of temperatures due to a previous boundary exchange

with its neighbors, it proceeds to calculate the new

temperatures, updating its internal array of temperatures

(updating its local memory, represented by the data

structure which contains the array of temperatures). It is

then ready for a new cycle, which always starts with the

boundaries exchange (write in and read from the local memory

of its neighbors). This last action cannot be seen as a

local activity which only affects the state of the neighbors

of this process but as a kind of chain reaction which is

propagated in vertical and horizontal sense all over the

network, creating the so called virtual shared memory

effect. We can observe that assertion in Figure 5.6 on next

page.

71

!

—«

f

! I

TO

a

,1

"
I

TO T1 T2 T3
7

t

A

I''

Tl

1r *

T2

ft

T3

'
r

i

-a

For simplicity only a row ol the network is displayed, but this transfer

of boundaries, which in turn represent the update mechanism, must be

observed as a simultaneous process in both directions, (up—down and

right-- left)-

Figure 5.6 Memory Updating Mechanism in the Network

Let's describe what we mean with chain reaction in a

more precise way: suppose at some instant of time the

process receives and sends (writes in its local memory and

writes out the surrounding local memories) the boundaries

from/to its neighbors. The following processor (or immediate

neighbor on bottom or right) let's call and locate it to the

right, process 01 which does exactly the same to its right

72

and the next process receive and send these boundaries

behaving in the same way until we arrive at the end of the

row, which we call the end for the sake of the illustration

of the concept. In reality if we look in more detail, we

shall agree that this end of the row does not exist, because

the last Transputer is physically connected to the first

Transputer in a closed loop. Moreover, this movement of data

to the right is also registered in the opposite sense

concurrently (from these notions were established the name

of "double transitive closure"). Thus we can assert that at

any instant of time each Transputer in the network updates

or writes into the local memories of the other Transputers

in the network due to a kind of interactive total exchange

of boundaries. In other words, when Transputer receives

the boundaries from Transputer 01 at its right, it is

receiving not only the effect of the boundary temperatures

of this Transputer but also the effect of boundary

temperatures in Transputer 02, and Transputer 03, and so

forth in a concurrent fashion, yielding a kind of

instantaneous daisy chain transmission.

73

We can assert that the time in which memory was last

updated in process due to the data produced in process 3

at the end of the row is the very same as the time for

updating of memory in process 3 due to the data produced by

process 0. In the timing diagram of Figure 5.7 is shown the

concurrent activity of the sixteen Transputer network

prototype, using for the sake of simplicity only a row of

the array. It must be remembered that the activity occurs

concurrently in a vertical and horizontal sense, in right to

left and top to bottom directions, and vice versa.

The symbol C stands for calculations and the symbol D

for updated data value. During the first complete cycle,

process updates its data value, receiving information via

link2 from process 01 and process 01 at the same time

receives this information for its own consumption from

Transputer via link3. This activity is performed

concurrently. At the same time, process 01 does the same for

process 02, and process 02 for process 03. After that, we

observe a parallel calculation activity in the fourth

process, which will last, at a maximum, the time which

takes the last process to achieve its calculations. This

does not means that the next iteration will be delayed by

any processor calculation other than the process

calculation, which is in charge to start the cycle.

Therefore the calculation activity of the slower process may

overlap in time with the updating data time of the other

74

processes for the next updating cycle, and the other way

around. That is, the updating activity of a process may

overlap with the calculating activity of the other process,

but the bottom line for this overlapping is that it is not

possible to perform an updating activity which belongs to a

determined cycle with the calculations data of the same

cycle.

Proc.

Proc. 1

Proc. 2

Proc. 3

DO CO D1 C1 D2 C2.

DO CO D1
<—** -* -M-

C1 D2 C2

DO CO D1 C1 D2
* -* -* -* *~* -*-*-

C2

DO CO
"-

D1 +~+ C1
>«*•

D2 C2-^

Time

The Parallelism is easily observed by the overlapping in time
of the update and computational periods of the different
proces sat

.

Figure 5.7 Timing Diagram

75

I. THE TIMING CONSTRUCT

To finish, we wish to describe the timing construct used

to obtain the measurements.

The T414 Transputer has two timers; a high priority

timer with a resolution of one microsecond and a cycle time

of about 71 minutes, and a low priority timer which has a

resolution of 64 x 10" -6 seconds and a cycle time of 37

hours. The timer used was the low priority timer, and the

type of construct was an elapsed time construct to determine

the elapsed time from start to finish of some activities

within the process. The basic structure of this construct

can be seen in Figure 5.8.

. . . Declaration of Variables
Timer clock:
INT timel , time2 , timetest

:

SEQ
clock ? timel
.... timing code
clock ? time2

more code
timetest := time2 - timel (final result)

Figure 5.8 The Timing Construct

Essentially the timing construct has two variables of

integer type, (time2, timel) which are used to store the

value of the Timer and a third integer variable called

timetest which give us the difference , which is the value

of interest.

76

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The conclusions that we obtain from our observations

during this research were as follow:

First, the effects of parallelism in the networks were

proved practically and theoterically

.

Second, the existence of an optimal zone related to the

granularity of the system and time constrains of the problem

was predicted in theory and deduced from the experimental

results.

Third, the degree of parallelism attained in these

networks is quite remarkable, as shown in the Figures due to

speedup and efficiency. For example, in the 16 Transputer

network prototype we obtain for a 6 by 6 array of

temperatures a throughput of 671824 results per second.

Considering the fact that we perform 7 arithmetic operations

per result, (5 additions, one division and one

multiplication), that gives us 4,702,768 integer operations

per second. Also should be taken under consideration that

because the fact of the implementation "march forward in

time", was necessary to copy the entire array of

temperatures into a temporary array which is later

transferred to the real array of temperatures, thus that

represents an overhead which slows down the process

significantly.

77

Fourth, the improvement in performance is a trade off

between the number of processors (Transputer) added to the

network and the granularity on one hand, and on the other

hand, the cost of the hardware and the time constrains cf

the problem.

Fifth The Transputer network is an architecture

comprised of many small internal fast memory processing

elements that communicate to each other through the powerful

Transputer links. Thus this architecture lends itself to

fine grained problems.

B. POSSIBILITIES OF THE TRANSPUTER

At the beginning of this thesis some guidelines about

the importance of the Transputer were given.

The real importance of the Transputer lies in the fact

that it represents a new level of abstraction in the

physical design of information systems. As we know so far,

there have been two levels of abstraction:

1) the electronic component, in which the information is

represented in terms of electrical signals, like voltage or

capacitance, and

2) the logical gate, in which the information is

represented by logical levels, so the electrical details

have been abstracted from the design process.

The Transputer offers a third level of abstraction,

based on language, where the basis unit is the word, which

can be given specific semantic connotations by the provision

78

of an appropriate set of information operations. Therefore

the Transputer chip will be used as time goes on in much the

same way as the discrete transistor was used about 20 years

ago.

C . RECOMMENDATIONS

Bear in mind that the fundamental research reason of the

AEGIS modeling group at the NPS, is to develop a suitable

replacement the older architectures on board the Ticonderoga

class ships. It is recommended that rather than broadening

the Transputer Laboratory to cope with this function, the

research should be divided into specific smaller projects

which help to implement the new system. This recommendation

is basically due to the limited availability of resource for

a small group like this

.

Another recommendation is to seek for feasible research

projects related to weapons that can be developed by the

Group.

It is also important to continue the trend of this

thesis in following the exploration of this type of

architecture and the production of software for it.

It will be interesting to see how this type of

architecture can handle problems as weather forecasting for

a particular weather model. Finally is important to continue

research in the field of graphic applications, especially

that which pertains to the study of Chaotic Systems such as

Mandelbrot and Julia sets.

79

APPENDIX A

01 TRANSPUTER NETWORK SOURCE CODE

PROC input. handler (CHAN OF ANY keyboard , screen)

#USE c: \tdsiolib\userio. tsr"
VAL linkOout IS
VAL linklout IS 1

VAL link2out IS 2

VAL link 3 out IS 3

VAL linkOin IS 4
VAL linklin IS 5
VAL link2in IS 6

VAL link3in IS 7

CHAN OF ANY 1 eft:mleftin , rightout , antirightout , antileftin
PLACE leftin AT link3in:
PLACE rightout AT link3out:
PLACE antirightout AT link2out:
PLACE antileftin AT link2in:
BOOL turning:
VAL s IS 11:

esc IS 223:
g IS 333:
size IS 24:
w , tag , he , no , z , txt

:

INT temp:

VAL
VAL
VAL
INT
[size]
[size]
[size]
[size]
[size] [size] INT trulyO
SEQ

no:=0
write . full . string

INT recp:
INT recpl

:

INT recp2:
[size] INT

(screen, " Enter the hot end
temperature "

)

read .echo . int (keyboard , screen, he, no

)

newline (screen

)

no:=0
write . full . string (screen, " Enter the propagation

rate "

)

read . echo . int (keyboard , screen,w,no)
newline (screen)
SEQ

SEQ r = FOR size
SEQ

temp [r] :=

recp [r] :=

recpl [r] :=

recp2 [r] :=

80

SEQ r = FOR size
temp [r] : = he

tag:- g
antirightout ! tag; w; temp
rightout ! tag ;w; temp
antirightout ! recp2
rightout ! recpl
turning : = TRUE
SEQ
WHILE turning

PRI ALT
keyboard ? z

SEQ
IF

z = esc
SEQ

tag:= s

antileftin ? recp
leftin ? recp
antirightout ! tag; w; temp
rightout ! tag ;w; temp
antileftin ? trulyO
SEQ r = FOR size

SEQ
SEQ c = FOR size

SEQ
txt:= trulyO [r] [c]
write. int (screen, txt, 4

)

newline (screen

)

turning : = FALSE
newline (screen

)

TRUE
SKIP

antileftin ? recpl
SEQ

leftin ? recp2
antirightout ! tag; w; temp
rightout ! tag; w; temp
antirightout ! recp2
rightout ! recpl

newline (screen

)

write. full. string (screen, "Type ANY to return to TDS"
INT any:
read .char (keyboard , any)

81

VAL linkOout IS
VAL linklout IS 1

VAL link2out IS 2

VAL link 3out IS 3

VAL linkOin IS 4

VAL linklin IS 5

VAL link 2 in IS 6

VAL link3in IS 7

[9] CHAN OF ANY channel , antichannel

PROC central. node (VAL INT engine, CHAN OF ANY
leftin , topin , rightin , bottomin

,

leftout , topout , rightout , bottomout

)

#USE "c:\tdsiolib\userio.tsr"
BOOL active :

VAL s IS 11:
VAL g IS 3 33:
VAL size IS 24:
INT tag,w,tp,n:

—Declarations

[size] INT
[size] INT
INT dummy :

INT dummy 1

:

INT senderO
senderl
sender2
sender3

INT
INT
INT

TRUE

[size]
[size]
[size]
[size]
[size]
[size]
[size]
[size]
WHILE

SEQ
SEQ r=

SEQ c =

SEQ
square
calcul

SEQ r= FOR
SEQ

dummyO [r]
dummy 1 [r]
senderO [r]
senderl [r]
sender2 [r]
sender3 [r]

active := TRUE
n:= engine

square:
calcul

:

-- Array
FOR size

FOR size

[r] [c]
[r] [c]
size

=

=

initialization

=

=

82

ILE active
SEQ

IF
n=

SEQ
topin ? tag;w; dummy]
rightout ! tag
IF

tag= s

SEQ
active := FALSE
topout ! square

TRUE — Communication bio
SEQ

PAR
leftin ? dummyO
topin ? dummy
rightin ? dummy
bottomin ? dummy
leftout ! senderO
topout ! senderl
rightout ! sender2
bottomout ! sender3

SEQ r - FOR size
SEQ

square[r

]

[0] := dummy

1

SEQ r = 1 FOR size - 2

[r]

SEQ c = 1 FOR size - 2

SEQ
tp:=

(
(w * square [r] [c])

+

(square [r] [c-1] +(square
[r] [c + 1] square[r-1

]
[c]

+ square [r + 1] [c]

)))) / (4 + w)
calcul [r] [c] : = tp

SEQ r = FOR size
calcul [r] [0]:= square[r] [0]

square := calcul
SEQ r = FOR size

SEQ
senderO [r]:= square[r] [1]
senderl [r]:= square[l] [r]
sender2 [r]: = square[r] [size -

2]
sender3 [r] : =square[size - 2] [r]

83

PROC transp. horizontal (VAL INT engine, CHAN OF ANY
leftin , topin , rightin , bottomin , leftout

,

topout , rightout , bottomout

)

#USE "c:\tdsiolib\userio.tsr":
BOOL active:
VAL s IS 11:
VAL g IS 3 33:
VAL size IS 24:
INT tag,w,n:
[size] INT sped:
[size] INT spec2

:

WHILE TRUE
SEQ

SEQ r = FOR size
SEQ
sped [r] :=

spec2 [r] :=

n:= engine
active := TRUE
tag:= g
WHILE active

SEQ
IF

n= 2

SEQ
leftin ? tag
IF

tag= s

active := FALSE
TRUE

SEQ
leftin ? sped
rightin? spec2
leftout ! spec2
rightout ! sped

n= 3

SEQ
leftin ? tag
IF

tag = s

active := FALSE
TRUE

SKIP

84

PROC transp. vertical (VAL INT engine, CHAN OF ANY
left in, topin, rightin,bottomin,
leftout , topout , rightout

,

bottomout

)

#USE "c:\tdsiolib\userio.tsr":
BOOL active: — Variable declaration
VAL S IS 11:
VAL g IS 333:
VAL size IS 24:
INT tag,w,n:
F^ize] INT sped:
[size] INT spec2:
WHILE TRUE

SEQ
SEQ r = FOR size

SEQ
sped [r] :=

spec2 [r] :=

n:= engine
active := TRUE
tag:= g
WHILE active

SEQ
IF

n= 1

SEQ
bottomin ? tag,-w; sped
rightout ! tag
IF

tag= s

active := FALSE
TRUE

SEQ
bottomin ? sped
topout ! sped
topin ? spec2
bottomout ! spec2

85

- Processor Placement

PLACED PAR
PROCESSOR T4

PLACE channel []

PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE

AT
AT
AT
AT

channel [1

]

channel[2]
channel [3

]

antichannel[0

]

antichannel [1

]

antichannel [2]
antichannel [3

]

linkOin:
linklin:
link2in:
link 3 in:
AT linkOout
AT linklout
AT link2out
AT link 3 out

central . node (, channel [] , channel [1] , channel [2] , channel [3

]

antichannel [] , antichannel [1]

,

antichannel [2] , antichannel [3]

)

PROCESSOR 1 T4
PLACE channel[4] AT

channel [5] AT
channel [3] AT
channel [6] AT
antichannel [4]
antichannel[5]
antichannel [3

]

PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE

linkOin:
linklin:
link2out:
link 3 in:
AT linkOout
AT linklout
AT link2in:

antichannel [6] AT link3out:
transp . vertical (1 , channel [5] , antichannel [3] , channel [6]

,

channel [4] , antichannel [5] , channel [3

]

antichannel [6] , antichannel [4]

)

PROCESSOR 2 T4
PLACE channel[7]
PLACE channel[0]
PLACE channel[8]
PLACE channel[2]
PLACE antichannel
PLACE antichannel
PLACE antichannel
PLACE antichannel
transp. horizontal

AT linkOin:
AT linklout:
AT link2in:
AT link 3 out:
[7] AT linkOout:
[0] AT linklin:
[8] AT link2out:
[2] AT link3in:
(2 , antichannel [2] , channel [7

]

antichannel [] , channel [8]

,

channel [2] , antichannel [7]

,

channel [] , antichannel [8]

)

86

PROCESSOR 3 T4
PLACE channel [5] AT
PLACE channel [7] AT
PLACE channel [6] AT
PLACE channel[8] AT
PLACE antichannel[5]
PLACE antichannel[7

]

PLACE antichannel[6

]

antichannel [8

]

linkOout

:

linklout:
link2out

:

link 3 out:
AT linkOin:
AT linklin:
AT link2in:
AT link 3 in:PLACE

transp . horizontal (3 , antichannel [6] , antichannel [8

]

antichannel [5] , antichannel [7] , channel [6]

,

channel [8] , channel [5] , channel [7]

)

87

APPENDIX B

04 TRANSPUTER NETWORK SOURCE CODE

PROC input .handler (CHAN OF ANY keyboard , screen)

This procedure handles the input and output from the
Transputer
network.

#USE "c:\tdsiolib\userio.tsr":
VAL 1 ink out IS 0' Variable
VAL linklout IS 1 Declarations
VAL link 2out IS 2

VAL link 3out IS 3

VAL linkOin IS 4

VAL linklin IS 5

VAL link 2 in IS 6

VAL link 3 in IS 7

CHAN OF ANY leftin, rightout , antirightout , antileftin

:

PLACE leftin AT link3in:
PLACE rightout AT link3out:
PLACE antirightout AT link2out:
PLACE antileftin AT link2in:
BOOL go, turning:
VAL s IS 11:
VAL esc IS 223:
VAL g IS 33 3:

VAL size IS 12:
INT w, tag, he, no, z , counter ,txt

:

[size] INT temp:
[size] INT recp:
[size] INT recpl

:

[size] INT recp2:
[size] [size] INT trulyO

:

[size] [size] INT trulyl

:

[size] [size] INT truly2:
[size] [size] INT truly3:
[size] [size] INT tx

:

SEQ
no:=0
write . full . string (screen, " Enter the hot end

temperature"

)

read . echo . int (keyboard , screen , he ,no

)

newline (screen

)

no:=0
write. full . string (screen, " Enter the propagation

rate "

)

read . echo . int (keyboard , screen,w,no)
newline (screen

)

88

SEQ
SEQ r = FOR size Array initialization

SEQ
temp [r] :=

recp [r] :=

recpl [r] :=

recp2 [r] :=

SEQ r = FOR size
temp [r] : = he

tag:= g
antirightout ! tag;w;temp
rightout ! tag; w; temp
antirightout ! recp2
rightout ! recpl
turning : = TRUE
SEQ
WHILE turning

PRI ALT
keyboard ? z

SEQ
IF

z = esc
SEQ

SEQ
tag:= s

antileftin ? recp
leftin ? recp
antirightout ! tag; w; temp
rightout ! tag; w; temp
counter :=

leftin ? truly0;truly2;
trulyl;truly3

WHILE counter < 4

SEQ
SEQ r = FOR size - 1

SEQ
SEQ c = FOR size - 1

Printing the temp. SEQ
array tx:= trulyO

txt:= tx [r] [c]
write. int (screen,

txt,5)
SEQ 1=1 FOR size - 1

SEQ
tx:= truly2
txt:= tx [r] [1]
write. int (screen,

txt,5)
newline (screen

)

89

SEQ r = 1 FOR size - 1

SEQ
SEQ d = FOR size - 1

SEQ
tx:= truly

1

txt:= tx [r] [d]
write. int (screen,

txt,5)
SEQ h = 1 FOR size - 1

SEQ
tx:= truly

3

txt:= tx [r] [h]
write. int (screen,

txt,5)
newline (screen

)

counter := counter + 4

turning : = FALSE
newline (screen

)

antileftin ? recpl
SEQ

leftin ? recp2
antirightout ! tag,-w; temp
rightout ! tag ;w; temp
antirightout ! recp2
rightout ! recpl

newline (screen

)

write. full. string (screen, "Type ANY to return to TDS")
INT any:
read .char (keyboard, any)

90

VAL linkOout IS
VAL linklout IS 1

VAL link2out IS 2

VAL link3out IS 3

VAL linkOin IS 4

VAL linklin IS 5

VAL link2in IS 6

VAL link 3 in IS 7

Channel declaration

[9] CHAN OF ANY channel , antichannel

:

PROC central. node (VAL INT engine, CHAN OF ANY
leftin, topin,

rightin , bottomin , leftout , topout , rightout

,

bottomout

)

#USE "c:\tdsiolib\userio.tsr"
BOOL active :

VAL s IS 11:
VAL g IS 333:
VAL size IS 12:
INT tag,w,tp,n:
[size; [size] INT square:
[size; [size] INT calcul:
[size; INT dummyO

:

[size; INT dummy 1

:

[size; INT dummy 2

:

[size;
|

INT dummy 3:

[size'
|

INT dummy4

:

[size INT senderO:
[size INT senderl:
[size INT sender2:
[size

|
INT sender3:

[size
]

[size] INT temporal:
WHILE TRUE

SEQ
SI

SI

ZQ r= FOR size
SEQ c= FOR size

SEQ
square [r] [c] :=

calcul [r] [c] :=

temporal [r] [c] :=

5Q r= FOR size
SEQ Array

dummyO [r] = Initialization
dummyl [r] =

dummy 2 [r] =

dummy 3 [r] : =

91

dummy4 [r] :==

senderO [r] =

senderl [r] -

sender2 [r] =

senders [r] =

active := TRUE
n:= engine
WHILE active

SEQ
IF

n=
SEQ

topin ? tag; w; dummy

1

rightout ! tag;w
IF

tag= s
active := FALSE

TRUE
SEQ

PAR
leftin ? dummyO --Communication
topin ? dummy4 — Block
rightin ? dummy

2

bottomin ? dummy

3

leftout ! senderO
topout ! senderl
rightout ! sender2
bottomout ! sender3

SEQ r = FOR size
SEQ

square [r

]

[0] := dummy 1 [r]
square [r

]

[size - 1] := dummy

2

[r]
square [size 1] [r] := dummy

3

[r]
SEQ r = 1 FOR size - 2— Calculations

SEQ c = 1 FOR size - 2

SEQ
tp:=

(
(w * square [r] [c]) +

(

square[r]
[c-1] + square

[r] [c + 1] + (square [r-1]
[C] + square [r + 1] [c]

))))
/ (4 + W)

calcul [r] [c]
:= tp

SEQ r = FOR size
calcul [r] ;0] := square[r] [0

]

square := calciuI
SEQ r = FOR size

SEQ
senderO []c] : = square[r] [1

]

senderl [:c] := square[1] [r]

92

sender2 [r]:- square[r]
[size-2

]

sender3 [r]:- square[size-2
]

[r

]

tag ;w; dummy

3

tag;w

n= 1

SEQ
bottomin
rightout
IF

tag= s

active := FALSE
TRUE

SEQ
PAR

leftin ?

topin ?

rightin ?

bottomin ?

leftout !

topout !

rightout !

bottomout !

SEQ r = FOR
SEQ

square [r

]

square [0

]

square [r

]

SEQ r = 1 FOR

dummyO
dummy

1

dummy

2

dummy4
senderO
senderl
sender2
sender3
size

[0] := dummy 3 [r]
[r] := dummy 1 [r]
[size-1] := dummy2
size - 2

[r]

SEQ c = 1 FOR size - 2

SEQ
tp:= (

(w * square[r] [c]

)

+(square[r] [c-1] +

(square[r] [c+1] +
(square[r-1

]
[c] +

square [r + 1] [c]
(4+w)

calcul [r] [c] : = tp
SEQ r = FOR size

calcul [r] [0] := square [r]
square := calcul

SEQ r = FOR size
SEQ

senderO [r]
senderl [r]
sender2 [r]

))))
/

[0]

sender3 [r]

square [r] [1]
square [1] [r]
square[r]

[size-
2]

square [size - 2]
[r]

93

n= 2

SEQ
leftin ? tag;w
IF

tag= s

active := FALSE
TRUE

SEQ
PAR

leftin ?

topin ?

rightin ?

bottomin ?

leftout •

topout !

rightout !

bottomout !

SEQ r = FOR
SEQ

square [r

]

dummy
dummy

1

dummy

2

dummy

3

senderO
senderl
sender2
sender3
size

[0] := dummyO [r]
square[size -l][r] := dummy3

SEQ r = 1 FOR size - 2

SEQ c = 1 FOR size - 2

SEQ

[r]

tp:=
(
(w *

square
[r]

[r-l][c]
[c])))) /

calcul [r] [c]
square := calcul
SEQ r = FOR size

SEQ
senderO [r]
senderl [r]
sender2 [r]
sender3 [r]

square [r
]
[c]) +

(

[r] [c-l]+(square
[c + 1] + (square
+ square [r + 1]

(4 + w)
:= tp

square [r] [1]
square [1] [r]
square[r]

[size
square [size -

-2]
2]

[r]

94

n- 3

SEQ
leftin ? tag;w
IF

tag= s

active := FALSE
TRUE

SEQ
PAR

leftin ? dummy
topin ? dummy

1

rightin ? dummy

2

bottomin ? dummy

3

leftout ! senderO
topout ! senderl
rightout ! sender2
bottomout ! sender3

SEQ r = FOR size
SEQ

square [0

]

[r] := dummy 1 [r]
square[r

]

[0] := dummyO [r]
SEQ r = 1 FOR size - 2

SEQ c = 1 FOR size - 2

SEQ
tp:=

(
(w * square[r] [c]) +

(

square [r][c-l] + (square
[r] [c + l]+(square [r-1]
[c] +

))))/(4
calcul [r]
:= calcul
= FOR size

square
+ w)
[c]

[r +

= tp

l] [c]

square
SEQ r

SEQ
senderO [r]
senderl [r]
sender2 [r]
sender3 [r]

square [r] [1]
square [1] [r]
square [r

]
[size- 2

]

square [size - 2]
[r]

95

IF
n=0

SEQ
bottomout ! square
rightin ? temporal
bottomout ! temporal

n=2
SEQ

leftout ! square
n=3

SEQ
rightout ! square

n=l
SEQ

topin ? temporal
bottomout 1 temporal
topin ? temporal
bottomout ! temporal
bottomout I square
leftin ? temporal
bottomout ! temporal

— Processors Placement

PLACED PAR
PROCESSOR T4

PLACE channel[0] AT linkOin:
PLACE channel[l] AT linklin:
PLACE channel[2] AT link2in:
PLACE channel[3] AT link 3 in:
PLACE antichannel[0] AT linkOout:
PLACE antichannel[l] AT linklout:
PLACE antichannel[2] AT link2out:
PLACE antichannel[3] AT link3out:
central . node (, channel [] , channel [1] , channel [2]

,

channel [3] , antichannel [] , antichannel [1

]

antichannel [2] , antichannel [3]

)

96

PROCESSOR 1 T4
PLACE channel [4] AT
PLACE channel[5] AT
PLACE channel [3] AT
PLACE channel[6] AT
PLACE antichannel[4]
PLACE antichannel[5]
PLACE antichannel [3]
PLACE antichannel[6]

linkOin:
linklin:
link2out

:

link3in:
AT linkOout:

linklout

:

link2in:
AT
AT
AT link3out

:

central . node (1 , channel [5] , antichannel [3]

,

channel [6] , channel [4] , antichannel [5]

,

channel [3] , antichannel [6] , antichannel [4

]

PROCESSOR 2 T4
PLACE channel [7] AT
PLACE channel [0] AT
PLACE channel[8] AT
PLACE channel [2] AT
PLACE antichannel [7

]

PLACE antichannel[0]
PLACE antichannel[8]
PLACE antichannel[2]

linkOin:
linklout:
link2in:
1 ink 3out

:

AT linkOout:
linklin:
link2out

:

AT
AT
AT link3in:

central . node (2 , antichannel [2] , channel [7]

,

antichannel [] , channel [8] , channel [2]

,

antichannel [7] , channel [] , antichannel [8

]

PROCESSOR 3 T4
PLACE channel[5]

channel [7

]

channel [6

]

channel[8]

AT linkOout:
AT linklout:
AT link2out:
AT link 3 out:

antichannel[5] AT linkOin:
antichannel[7] AT linklin:
antichannel [6] AT link2in:
antichannel[8] AT link3in:

central . node (3 , antichannel [6] , antichannel [8]

,

antichannel [5] , antichannel [7] , channel [6

]

channel [8] , channel [5] , channel [7]

)

PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE

97

APPENDIX C

09 TRANSPUTER NETWORK SOURCE CODE

PROC input .handler (CHAN OF ANY keyboard , screen)

#USE "c:\tdsiolib\userio
VAL linkOout IS

tsr

"

VAL
VAL
VAL
VAL
VAL
VAL
VAL
CHAN

linklout
link 2 out
link 3 out
linkOin
linklin
link2in
link3in
OF ANY

IS
IS
IS
IS
IS
IS
IS

leftin , rightout , antirightout , antileftin

:

PLACE leftin AT link3in:
PLACE rightout AT link3out:
PLACE antirightout AT link2out:
PLACE antileftin AT link2in:
BOOL go, turning:
VAL s IS 11:
VAL esc IS 223:
VAL g IS 333:
VAL size IS 8:
INT w , tag , he , no , z , counter , counter 1 , txt

:

[size] INT temp
[size]
[size]
[size]
[size] [size] INT truly:
[9] [size] [size] INT true:
SEQ

no:=0
write. full .string (screen, " Enter the hot end

temperature "

)

read . echo. int (keyboard , screen, he, no

)

newline (screen

)

no:=0
write . full . string (screen, " Enter the propagation

rate "

)

read . echo. int (keyboard ,screen,w,no
)

newline (screen

)

INT recp:
INT recpl

:

INT recp2:
[size] INT

[size]

SEQ
SEQ r = FOR size

SEQ
temp

— Array initialization

SEQ

[r]
recp [r]
recpl [r]
recp2 [r]
r - FOR

=

=

:=

:=

size

98

temp [r] : = he
tag:= g
antirightout ! tag;w;temp
rightout ! tag; w; temp
antirightout ! recp2
rightout ! recpl
turning : = TRUE
SEQ
WHILE turning

PRI ALT
keyboard ? z

SEQ
IF

z = esc
SEQ

SEQ
tag:= s

antileftin ? recp
leftin ? recp
antirightout ! tag; w; temp
rightout ! tag ;w; temp
counter :=

counterl :=

WHILE counter < 9

SEQ
antileftin ? truly
SEQ h = FOR size

SEQ p = FOR size
true [counter] [h] [p] :=

truly [h][p]
counter := counter + 1

SEQ
SEQ r = FOR size - 1

SEQ
SEQ c = FOR size - 1

SEQ
txt:= true [counterl

]
[r]
[c]

write. int (screen, txt , 3

)

SEQ 1=1 FOR size - 2

SEQ
txt:= true [counterl +

3] [r][l]
write. int (screen, txt , 3

)

SEQ d = 1 FOR size - 1

SEQ
txt:= true [counterl +

6] [r] [d]
write. int (screen, txt , 3

)

newline (screen

)

counterl := counterl + 1

SEQ r = 1 FOR size - 2

99

SEQ
SEQ c = FOR size - 1

SEQ
txt:= true [counterl]

[r] [c]
write. int (screen, txt, 3

)

SEQ 1=1 FOR size - 2

SEQ
txt:= true [counterl +

3] [r] [1]
write. int (screen , txt , 3

)

SEQ d = 1 FOR size - 1

SEQ
txt:= true [counterl +

6] [r][d]
write. int (screen, txt , 3

)

newline (screen

)

counterl := counterl + 1

SEQ r = 1 FOR size - 1

SEQ
SEQ c = FOR size - 1

SEQ
txt:= true [counterl]

[r] [c]
write. int (screen, txt , 3

)

SEQ 1=1 FOR size - 2

SEQ
txt:= true [counterl +

3] [r][l]
write. int (screen, txt , 3

)

SEQ d = 1 FOR size - 1

SEQ
txt:= true [counterl +

6] [r] [d]
write. int (screen, txt , 3

)

newline (screen

)

counterl := counterl + 1

turning := FALSE
newline (screen

)

antileftin ? recpl
SEQ

leftin ? recp2
antirightout ! tag ;w; temp
rightout ! tag ;w; temp
antirightout ! recp2
rightout ! recpl

newline (screen)
write. full . string(screen, "Type ANY to return to TDS")
INT any:
read. char (keyboard, any)

100

VAL linkOout IS
VAL linklout IS 1

VAL link2out IS 2

VAL link 3 out IS 3

VAL linkOin IS 4

VAL linklin IS 5

VAL link2in IS 6

VAL link3in IS 7

— Channel declaration

[35] CHAN OF ANY channel , antichannel

:

PROC central. node (VAL
leftin,topin,

INT engine, CHAN OF ANY

rightin , bottomin , leftout , topout , rightout

,

bottomout

)

#USE "c: \tdsiolib\userio. tsr"

:

BOOL active : —Variable and array
declaration

VAL s IS 11:
VAL g IS 333:
VAL size IS 8:
INT tag,w,tp,n:
[size'

|

[size] INT square:
[size [size] INT calcul:
[size [size] INT temporal:
[size INT dummyO

:

[size INT dummy 1

:

[size INT dummy 2

:

[size INT dummy 3:

[size INT dummy4

:

[size INT senderO

:

[size INT senderl

:

[size INT sender2:
[size INT sender3:
WHILE TRUE

SEQ
SIHQ r= FOR size

SEQ c= FOR size
SEQ

square [r] [c] :=

calcul [r] [c] :=

temporal [r] [c] :=
SEQ r- FOR size

SEQ
dummy
dummy

1

dummy

2

dummy

3

dummy

4

[r]
[r]
[r]
[r]
[r]

101

senderO [r] =

senderl [r] =

sender2 [r] =

sender3 [r] =

active := TRUE
n:= engine
WHILE active

SEQ
IF

n= 5

SEQ
leftin ? tag;w
rightout ! tag;w
IF

tag= s

SEQ
active := FALSE
topout ! square
bottomin ? temporal
topout ! temporal

TRUE
SEQ

PAR
leftin ? dummyO
topin ? dummyl
rightin ? dummy2
bottomin ? dummy

3

leftout ! senderO
topout ! senderl
rightout ! sender2
bottomout ! sender3

SEQ r = FOR size
SEQ

square[0] [r] := dummyl [r]
square[r] [0] := dummyO [r]
square[r]

[size -1] := dummy2 [r]
square[size -l][r] := dummy3 [r]

SEQ r = 1 FOR size - 2

SEQ c = 1 FOR size - 2

SEQ
tp:=

(
(w * square [r] [c]

(square [r] [c-1] +

(square [r]
[c + 1] +

(square [r-1] [c] +

square [r + 1] [c]

(4 + w)
calcul [r] [c] : = tp

square := calcul
SEQ r = FOR size

SEQ
senderO [r]:= square[r] [1]
senderl [r]:= square[l] [r]

+

)/

102

sender2 [r]:= square[r]
[size- 2]

sender3 [r]:= square[size-2
]

[r

]

PROC corner .node (VAL INT engine, CHAN OF ANY leftin, topin,
rightin , bottomin , leftout , topout , rightout

,

bottomout

)

#USE "c:\tdsiolib\userio.tsr":
BOOL active :

VAL s IS 11:
VAL g IS 333:
VAL size IS 8:

INT tag,w, tp,n, counter :

[size]
[size]
[size]
[size]
[size]
[size]
[size]
[size]
[size]
[size]
[size]
[size]
WHILE

SEQ
SEQ r=

SEQ C =

SEQ

[size] INT square:
[size] INT calcul:
[size] INT temporal:
INT dummy :

INT dummy 1

:

INT dummy 2

:

INT dummy 3:

INT dummy4

:

INT senderO:
senderl

:

sender2

:

sender3

:

INT
INT
INT

TRUE

FOR size
FOR size

SEQ

square [r] [c] :=

calcul [r] [c] :=

temporal [r] [c] :=

r= FOR size
SEQ

dummy
dummy

1

dummy

2

dummy

3

dummy

4

senderO

[r]
[r]
[r]
[r]
[r]
[r]

senderl [r]
sender2 [r]
sender3 [r]

active := TRUE
n:= engine

103

WHILE active
SEQ

IF
n=

SEQ
topin ? tag;w;dummyl
rigntout ! tag;w
bottomouc ! tag ;w; dummy

1

IF
tag= s

SEQ
counterO :=

active := FALSE
topout ! square
WHILE countcrO < 2

SEQ
bottomin ? temporal
topout ! temporal
counterO : = counterO

WHILE counterO < 8

SEQ
rightin ? temporal
topout !

counterO
TRUE

SEQ
PAR

leftin ?

topin ?

rightin ?

bottomin ?

leftout !

topout !

rigntout !

bottomout !

SEQ r = FOR
SEQ

square [r

]

+ 1

temporal
:= counterO

dummyO
dummy4
dummy

2

dummy

3

senderO
senderl
sender2
sender3
size

+ 1

SEQ

[0] := dummy 1 [r]
square [r]

[size- 1] := dummy
square [size - l][r]:= dummy
r = 1 FOR size - 2

[r]
[r]

SEQ c = 1 FOR size - 2

SEQ
tp: = w [r][c]

[c-l]
[c + 1

square
square [r]

(square [r]
square [r-1]

square [r + 1] [c]

)

(4 + w)
calcul [r] [c] := tp

SEQ r = FOR size
calcul [r] [0]:= square[r] [0

)
+

+

]
+

c]

)))

104

square := calcul
SEQ r = FOR size

SEQ
senderO [r] :=

sender 1 [r] :

=

sender 2 [r] :=

sender 3 [r] :=

square[r] [1]
square[l] [r]
square[r

]
[size- 2]

square[size-2
]

[r]

tag;w;dummy3
tag;w

FALSE
square

n= 2

SEQ
bottomin
rightout
IF

tag= s

SEQ
active:

=

topout !

TRUE
SEQ

PAR
leftin ?

topin ?

rightin ?

bottomin ?

leftout !

topout !

rightout !

bottomout !

SEQ r = FOR
SEQ

square [r

]

square[0

]

square[r]
SEQ r = 1 FOR

dummy
dummy

1

dummy

2

dummy

4

sender2
senderl
sender2
senderl
size

[] : = dummy 3 [r

]

[r] := dummy 1 [r]
[size -1]:= dummy2 [r]
size - 2

SEQ c = 1 FOR size - 2

SEQ
tp:=

(
(w * square [r][c]

square [r] [c-1] +

(square [r] [c + 1

square [r-1] [c
square [r + 1] [c]

)

(4 + w)
calcul [r] [c] : = tp

SEQ r = FOR size
calcul [r] [0] := square [r]

square := calcul
SEQ r = FOR size

SEQ
senderl [r] := square [1] [r]
sender2 [r]:= square[r]

[size-2

]

) + (

] + (

1 +

))) /

[0]

105

n= 8

SEQ
leftin ? tag;w
ri.ghtout ! tag
IF

tag= s

SEQ
active := FALSE
leftout ! square
bottomin ? temporal
leftout ! temporal
bottomin ? temporal
leftout ! temporal

TRUE
SEQ

PAR
leftin 7 dummy
topin ? dummy

1

rightin 7 dummy

2

bottomin ? dummy

3

leftout j senderO
topout i sender3
rightout ! senderO
bottomout ! sender3

SEQ r = FOR size
SEQ

square [r

]

[0] :
= TimyO [r]

square [size - l][r]:= dummy 3 [r]
SEQ r = 1 FOR size - 2

SEQ c = 1 FOR size - 2

SEQ
tp:=

(
(w * square[r][c]) +

(

square [r] [c-1] +

(square [r] [c + 1] +
(

square [r-1] [c] +
square [r + 1] [c])))) /

(4 + w)
calcul [r] [c] : = tp

square := calcul
SEQ r = FOR size

SEQ
senderO [r]:= square [r] [1]
sender3 [r]: = square[size-2

]
[r]

106

n= 10
SEQ

leftin ? tag;w
IF

tag= s

SEQ
active := FALSE
topout ! square

TRUE
SEQ

PAR
leftin ? dummyO
topin ? dummyl
rightin ? dummy

2

bottomin ? dummy

3

leftout ! senderO
topout ! senderl
rightout ! senderO
bottomout ! senderl

SEQ r = FOR size
SEQ

square[0] [r] := dummyl
square[r] [0] := dummy

SEQ r = 1 FOR size - 2

[r]
[r]

SEQ c = 1 FOR size - 2

SEQ
tp:=

(
(w * square [r][c]) +

(

square [r] [c-1] +

(square [r] [c + 1] +
(

square [r-1] [c] +
square [r + 1] [c])))) /

(4 + w)
calcul [r] [c] : = tp

square := calcul
SEQ r = FOR size

SEQ
senderO [r] := square [r] [1]
senderl [r] := square [1] [r]

107

PROC cross .node (VAL INT engine, CHAN OF ANY leftin, topin,
rightin , bottomin , leftout , topout

,

rightout , bottomout

)

#USE "c:\tdsiolib\userio
BOOL active :

VAL s IS 11:
VAL g IS 3 33:
VAL size IS 8:
INT tag, w,tp,n, counter 1

:

tsr

[size]
[size]
[size]
[size]
[size]
[size]
[size]
[size]
[size]
[size]
[size]
[size]
WHILE

SEQ
SEQ r =

SEQ c =

SEQ

[size] INT square:
[size] INT calcul:
[size] INT temporal
INT dummy :

INT dummy 1

:

INT dummy 2:

INT dummy 3:

INT dummy4

:

INT senderO

:

senderl

:

sender2

:

sender3

:

INT
INT
INT

TRUE

FOR size
FOR size

SEQ

square [r] [c] :=

calcul [r] [c] :=

temporal [r] [c] :=

r= FOR size
EQ
dummy
dummy

1

dummy

2

dummy

3

dummy

4

senderO

[r]
[r]
[r]
[r]
[r]
[r]

senderl [r]
sender2 [r]
sender3 [r]

active := TRUE
n:= engine

108

WHILE active
SEQ

IF
n- l

SEQ
topin ? tag;w;dummyl
rightout ! tag;w
IF

tag= s

SEQ
active:

=

topout !

bottomin
topcut !

TRUE
SEQ

PAR
leftin ?

topin ?

rightin ?

bottomin ?

leftout !

topout !

rightout !

bottomout !

SEQ r = FOR
SEQ

square[r]

FALSE
square
? temporal
temporal

dummy
dummy4
dummy

2

dummy

3

sender2
senderl
sender2
sender3
size

[0] := dummy 1 [r]
square[r] [size -1]:= dummy2 [r]
square [size - l][r]:= dummy 3 [r]
square[0] [r] := dummy 4 [r]

SEQ r = 1 FOR size - 2

SEQ c = 1 FOR size - 2

SEQ
tp:=

(
(w * square[r] [c]) +

(

square [r] [c-1] +

(square [r] [c + 1] +
(

square [r-1] [c] +

square [r + 1]
[c])))) /

(4 + w)
calcul [r] [c] : = tp

SEQ r = FOR size
calcul [r] [0]:= square[r] [0]

square := calcul
SEQ r = FOR size

SEQ
senderl [r]:= square[l] [r]
sender2 [r]: = square[r]

[size -2]
sender3 [r]:= square[size-2

]
[r]

109

1= 4

SEQ
leftin ? tag;w
ri.ghtout ! tag;w
IF

tag= s

SEQ
counterl :=

active := FALSE
leftout ? square
WHILE counterl < 2

SEQ
bottomin ? temporal
leftout ! temporal
counterl = counterl + 1

WHILE counterl < 5

SEQ
rightin ? temporal
leftout ! temporal
counterl := counterl + 1

TRUE
SEQ

PAR
leftin ? dummy
topin ? dummy

1

rightin ? dummy

2

bottomin ? dummy

3

leftout ! senderO
topout ! senderO
rightout ! sender2
bottomout ! sender3

SEQ r = FOR size
SEQ

square [r

]

[0] := dummyO [r]
square[size-l

]
[r] : = dummy 3 [r]

square[r] [size-1] : = dummy 2 [r]
SEQ r = 1 FOR size - 2

SEQ c = 1 FOR size 2

SEQ
tp:= ((<tf * square

[

r] [c]) +
(

square [r] [c-1] +

(square [r] [c + 1] +
(

square [r-1] [c] +
square [r + 1] [c])))) /

(4 + w)
calcul [r] [c] : = tp

square := calcul
SEQ r = FOR size

SEQ
senderO [r] := square [r] [1]
sender2 [r] := square[r]

[size-2

]

sender3 [r]:= square[size-2
]

[r]

110

n= 6

SEQ
leftin ? tag;w
rightout ! tag;w
IF

tag= s

SEQ
active : = FALSE
topout ! square

TRUE
SEQ

Fni\

leftin ? dummy
topin ? dummy

1

rightin ? dummy

2

bottomin ? dummy 3

leftout ! senderO
topout ! senderl
rightout ! sender2
bottomout ! sender2

SEQ r = FOR size
SEQ

square [r

]

[0] := dummyO [r]
square [0

]

[r] := dummy 1 [r]
square [r

]

[size-1] := dummy

2

SEQ r = 1 FOR size - 2

SEQ c = 1 FOR size 2

SEQ
tp:=

(
(w * square [r] [c]

)

r]

square [r] [c-1] +

(square [r] [c + 1] +
(

square [r-1] [c] +
square [r + 1] [c])))) /

(4 + w)
calcul [r] [c] := tp

square := calcul
SEQ r = FOR size

SEQ
senderO
senderl
sender2

[r]
[r]
[r]

= square
= square
= square

[r] [l]

[1] [r]
[r]

[size-2

]

111

n= 9

SEQ
leftin ? tag;w
IF

tag= s

SEQ
active:

=

topout !

bottomin
topout !

TRUE
SEQ

PAR
leftin ?

topin ?

rightin ?

bottomin ?

leftout !

topout !

rightout !

bottomout !

SEQ r = FOR
SEQ

square[size-l
]
[r] : = dummy3

square[0] [r] := dummy 1 [r]
square [i:] [0] := dummyO [r]

SEQ r = 1 FOR size - 2

SEQ c = 1 FOR size - 2

SEQ
tp:=

(
(w * square[r]

[c]

)

square [r] [c-1]
(square [r] [c + 1

square [r-1] [c
square [r + 1]

[c]

)

(4 + w)

FALSE
square
? temporal
temporal

dummy
dummy

1

dummy

2

dummy

3

senderO
senderl
senderO
sender3
size

[r]

+ (

+

] + (

] +

))) /

= FOR size

calcul [r] [c]
square := calcul
SEQ r

SEQ
senderO [r]
senderl [r]
sender3 [r]

= tp

= square [r] [1]
= square [1] [r]
= square [size-2][r]

112

PROC transp. horizontal (VAL INT engine, CHAN OF ANY
leftin , topin , r ightin , bottomin

,

leftout , topout , r ightout

,

bottomout

)

#USE "c:\tdsiolib\userio. tsr"

:

BOCL active:
VAL S IS 11:
VAL g IS 33 3:

VAL size IS 8:

INT tag,w,n:
[size] INT spec!

:

[size] INT spec2:
WHILE TRUE

SEQ
SEQ r = FOR size

SEQ
sped [r] :=

spec2 [r] :=

n:= engine
active := TRUE
tag:- g
WHILE active

SEQ
IF

n= 12
SEQ

leftin ? tag
bottomout ! tag
IF

tag- s

active := FALSE
TRUE

SEQ
leftin ? sped
rightin? spec2
leftout ! spec2
rightout ! sped

n= 13
SEQ

topin ? tag
bottomout ! tag
IF

tag = s
active := FALSE

TRUE
SEQ

leftin ? sped
rightin? spec2
leftout ! spec2
rightout ! sped

113

n= 14
SEQ

topin ? tag
IF

tag = s

active := FALSE
TRUE

SEQ
leftin ? spec!
rightin? spec2
leftout ! spec2
rightout ! spec!

PROC transp. vertical (VAL INT engine, CHAN OF ANY
leftin, topin, rightin, bottomin,
leftout , topout , rightout , bottomout

#USE "c: \tdsiolib\userio.tsr"

:

BOOL active:
VAL s IS 11:
VAL g IS 333:
VAL size IS 8:

INT tag,w,n:
[size] INT sped:
[size] INT spec2:
WHILE TRUE

SEQ
SEQ r = FOR size

SEQ
sped [r] :=

spec2 [r] :=

n:= engine
active := TRUE
tag:= g
WHILE active

SEQ
IF

n- 3

SEQ
bottomin ? tag; w; sped
topout ! tag ;w; sped
rightout ! tag
IF

tag= s

active := FALSE
TRUE

SEQ
bottomin ? sped
topout ! sped
topin ? spec2
bottomout ! spec2

114

n= 7

SEQ
leftin ? tag
rightout ! tag
IF

tag = s
active := FALSE

TRUE
SEQ

topin ? specl
bottomin? spec2
topout ! spec2
bottomout ! specl

n= 11
SEQ

leftin ? tag
rightout ! tag
IF

tag = s

active := FALSE
TRUE

SEQ
topin ? specl
bottomin? spec2
topout ! spec2
bottomout ! specl

PROC neutral. node (CHAN OF ANY
leftin , topin , rightin , bottomin

,

leftout , topout , rightout , bottomout

)

#USE "c:\tdsiolib\userio.tsr":
BOOL active:
VAL s IS 11:
VAL g IS 333:
INT tag:
WHILE TRUE

SEQ
active := TRUE
tag:= g
WHILE active

SEQ
leftin ? tag
IF

tag= s

active := FALSE
TRUE

SEQ
SKIP

115

-- Processor Placement

PLACED PAR
PROCESSOR T4

PLACE channel[0] AT
AT
AT
AT

PLACE channel [1

]

PLACE channel[2]
PLACE channel [3

]

PLACE antichannel[0]
PLACE antichannel[l

]

PLACE antichannel[2]
PLACE antichannel[3

]

linkOin:
linklin:
link2in:
link 3 in:
AT linkOout
AT linklout
AT link2out
AT link 3 out:

corner . node (, channel [] , channel [1] , channel [2]

,

channel [3] , antichannel [] , antichannel [1

]

antichannel [2] , antichannel [3]

)

PROCESSOR 8 T4
PLACE channel[5]

channel [7

]

channel [8

]

channel [9

]

AT linkOin:
AT linklin:
AT link2in:
AT link 3 in:

antichannel[5] AT linkOout:
antichannel [7] AT linklout:
antichannel[8] AT link2out:
antichannel[9] AT link3out:

corner . node (8 , channel [5] , channel [7] , channel [8

]

channel [9] , antichannel [5]

,

antichannel [7] , antichannel [8]

,

antichannel [9]

)

PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE

PROCESSOR 2 T4
PLACE channel [17] AT
PLACE channel [12] AT
PLACE channel [18] AT
PLACE channel [19] AT
PLACE antichannel [17]
PLACE antichannel [12]
PLACE antichannel [18]
PLACE antichannel [19

]

linkOin:
linklin:
link2in:
link3in:
AT linkOout
AT linklout
AT link2out
AT link3out

corner . node (2 , channel [17], channel [12], channel [18]
channel [19], antichannel [17],
antichannel [12] , antichannel [18]

,

antichannel [19])

116

PROCESSOR 10 T4
PLACE channel [20]

channel [16

]

channel [22]
channel [23]

AT linkOin:
AT linklin:
AT link2in:
AT link3in:

antichannel[20] AT linkOout:
antichannel [16] AT linklout:
antichannel [22] AT link2out:
antichannel [23] AT link3out:

corner .node (10 , channel [20] , channel [16] , channel [22]

,

channel [23], antichannel [20] , antichannel [16]
antichannel [22] , antichannel [23])

PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE

PROCESSOR 1 T4
PLACE channel [10] AT linklout:
PLACE channel[3] AT link2out:
PLACE channel [11] AT link3out:
PLACE channel [12] AT linkOout:
PLACE antichannel [10] AT linklin:
PLACE antichannel [3] AT link 2 in:
PLACE antichannel [11] AT link3in:
PLACE antichannel [12] AT linkOin:
cross .node(1 , antichannel [10] , antichannel [3

]

antichannel [11] , antichannel [12]

,

channel [10] , channel [3]

,

channel [11], channel [12])

PROCESSOR 9 T4
PLACE channel [13] AT linklout:
PLACE channel[9] AT link2out:
PLACE channel [15] AT link 3 out:
PLACE channel [16] AT linkOout:
PLACE antichannel [13] AT linklin:
PLACE antichannel[9] AT link2in:
PLACE antichannel [15] AT link 3 in:
PLACE antichannel [16] AT linkOin:
cross . node (9 , antichannel [13], antichannel [9

]

antichannel [15] , antichannel [16]

,

channel [13], channel [9]

,

channel [15], channel [16])

117

PROCESSOR 3 T4
PLACE channel [24] AT

antichannel [30

]

channel [19] AT
channel [25] AT
antichannel [24

]

channel [30] AT
antichannel [19

]

PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
transp

linkOout:
AT linklout
link2out

:

1 ink 3out

:

AT linkOin:
linklin:
AT link2in:

antichannel [25] AT link3in:
vertical (3 , channel [30] , antichannel [19]

,

antichannel [25] , antichannel [24

]

antichannel [30] , channel [19]

,

channel [25] , channel [24]

)

PROCESSOR 11 T4
PLACE antichannel [7] AT linkOin:
PLACE channel [26] AT linklin:
PLACE antichannel [23] AT link2in:
PLACE antichannel [29] AT link3in:
PLACE channel[7] AT linkOout:
PLACE antichannel [26] AT linklout:
PLACE channel [23] AT link2out:
PLACE channel [29] AT link3out:
transp. vertical (11 , channel [26] , antichannel [23]

,

antichannel [29] , antichannel [7]

,

antichannel [26] , channel [23]

,

channel [29] , channel [7]

)

PROCESSOR 5 T4
PLACE channel [11] AT link 2 in:
PLACE channel[6] AT link 3 in:
PLACE channel [13] AT linkOin:
PLACE channel [14] AT linklin:
PLACE antichannel [11] AT link2out:
PLACE antichannel[6] AT link3out:
PLACE antichannel [13] AT linkOout:
PLACE antichannel [14] AT linklout:
central .node(5 , channel [11] , channel [6] , channel [13

]

channel [14] , antichannel [11] , antichannel [6

]

antichannel [13] , antichannel [14

]

118

PROCESSOR 13 T4
PLACE channel [10] AT linkOin:
PLACE antichannel[28] AT linklin:
PLACE channel [15] AT link2in:
PLACE channel [27] AT link 3 in:
PLACE antichannel[10] AT linkOout:
PLACE channel [28] AT linklout:
PLACE antichannel[15] AT link2out:
PLACE antichannel [27] AT link3out:
transp. horizontal (13 , channel [15] , channel [27]

,

channel [10] , antichannel [28] , antichannel [15

]

antichannel [27] , antichannel [10

]

channel [28]

)

PROCESSOR 7 T4
PLACE antichannel [26] AT linkOin:
PLACE channel[4] AT linklin:
PLACE channel [25] AT link2in:
PLACE channel [21] AT link 3 in:
PLACE channel [26] AT linkOout:
PLACE antichannel[4] AT linklout:
PLACE antichannel [25] AT link2out:
PLACE antichannel [21] AT link3out:
transp . vertical (7 , channel [25] , channel [21]

,

antichannel [26]

,

channel [4] , antichannel [25]

,

antichannel [21] , channel [26

]

antichannel[4]

)

PROCESSOR 15 T4
PLACE channel [30] AT
PLACE channel [32] AT
PLACE channel [29] AT
PLACE channel [31] AT
PLACE antichannel [30

]

PLACE antichannel [32]
PLACE antichannel [29

]

PLACE antichannel [31]

linkOout:
linklout:
link2in:
link3in:
AT linkOin:

linklin:
link2out

AT
AT
AT link3out

:

neutral. node (channel [29] , channel [31] , channel [30]

,

channel [32] , antichannel [29] , antichannel [31

]

antichannel [30] , antichannel [32]

)

119

PROCESSOR 4 T4
PLACE channel[2] AT
PLACE channel [4] AT
PLACE channel[5] AT
PLACE channel [6] AT
PLACE antichannel[2]
PLACE antichannel[4]
PLACE antichannel[5]
PLACE antichannel[6]

1 ink 3 out

:

linkOout:
linklout

:

1 ink 2out

:

AT link3in:
AT linkOin:
AT linklin:
AT link2in:

cross . node (4 , antichannel [2] , antichannel [4]

,

antichannel [5] , antichannel [6] , channel [2

]

channel [4] , channel [5] , channel [6]

)

PROCESSOR 6 T4
PLACE channel [18]

channel [14]
channel [20]
channel [21

]

PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
cross

ant

AT link 3 out:
AT linkOout:
AT linklout:
AT link2out:

antichannel [18] AT link3in:
antichannel [14] AT linkOin:
antichannel [20] AT linklin:
antichannel [21] ATantlcnannei[2l] AT link2in:
.node(6 , antichannel [18] , antichannel [14]

,

tichannel[20] , antichannel [21] , channel [18]

,

channel [14] , channel [20] , channel [21]

)

PROCESSOR 12 T4
PLACE channel [32] AT linkOin:
PLACE antichannel [0] AT linklin:
PLACE antichannel [27] AT link2in:
PLACE antichannel[8] AT link3in:
PLACE antichannel [32] AT linkOout:
PLACE channel[0] AT linklout:
PLACE channel [27] AT link2out:
PLACE channel[8] AT link 3 out:
transp. horizontal (12 , antichannel [8] , channel [32]

,

antichannel [] , antichannel [27] , channel [8

]

antichannel [32] , channel [0] , channel [27]

)

120

linkOin:
AT linklin:
AT link2in:
AT link3in:
AT linkOout

:

PROCESSOR 14 T4
PLACE channel [28] AT
PLACE antichannel[17]
PLACE antichannel[31

]

PLACE antichannel[22]
PLACE antichannel[28]
PLACE channel [17] AT linklout:
PLACE channel [31] AT link2out:
PLACE channel [22] AT link3out:
transp. horizontal^ 14 ,antichannel[22] , channel [28]

,

antichannel[17] ,antichannel[31

]

channel [22] , antichannel[28] , channel [17

]

channel [31]

)

121

APPENDIX D

16 TRANSPUTER NETWORK SOURCE CODE

PROC input .handler (CHAN OF ANY keyboard , screen)

This procedure send the boundary conditions to
processors and 3

-- on the network and displav the information coming from
the
network
-- when it stops the network.

-- Channel and link decla.
#USE "c:\tdsiolib\userio.tsr":
VAL linkOout IS
VAL linklout IS 1

VAL link2out IS 2

VAL link3out IS 3

VAL linkOin IS 4

VAL linklin IS 5

VAL link2in IS 6

VAL link 3 in IS 7

CHAN OF ANY leftin , rightout , antirightout , antileftin

:

PLACE leftin AT link 3 in:
PLACE rightout AT link3out: — placement of
PLACE antirightout AT link2out: — external channels
PLACE antileftin AT link2in:
VAL s IS 11:
VAL esc IS 223:
VAL g IS 333:
VAL size IS 6:
[size] INT temp: — Array declarations
[size] INT recp:
[size] INT recpl

:

[size] INT recp2

:

[size] [size] INT truly:
[16][size] [size] INT true:
BOOL turning:
INT w, tag, he, no, z , counter ,counterl , txt

:

SEQ
no:=0
write . full . string (screen, " Enter the hot end

temperature"

)

read .echo. int (keyboard , screen, he ,no

)

newline (screen

)

no:=0
write. full . string (screen, " Enter the propagation

rate "

)

read . echo. int (keyboard , screen,w,no)
newline (screen

)

122

SEQ
SEQ r = FOR size — Initialization of

SEQ — arrays
temp [r] : =

recp [r] :=

recpl [r] :=

recp2 [r] :=

SEQ r = FOR size
temp [r] : = he

tag:= g
antirightout ! tag; w; temp -- sending hot end and W
rightout ! tag;w;temp — and start signal
antirightout ! recp2
rightout ! recpl
turning := TRUE
SEQ
WHILE turning

PRI ALT
keyboard ? z -- receive stop signal

SEQ
IF

z = esc
SEQ

SEQ
tag:= s

antileftin ? recp
leftin ? recp
antirightout ! tag; w; temp
rightout ! tag; w; temp
counter :=

counterl :=

WHILE counter < 16 -- receiving
SEQ -- arrays

antileftin ? truly
SEQ h = FOR size

SEQ p = FOR size
true [counter] [h] [p] : =

truly [h] [p]
counter := counter + 1

SEQ
SEQ r = FOR size - 1

SEQ
SEQ c = FOR size - 1

SEQ
txt : = true [counterl]

[r] [c]
write. int (screen, txt ,

3

SEQ 1=1 FOR size - 2

SEQ
txt: = true [counterl +

4] [r] [1]
write. int (screen, txt ,

3

123

SEQ f = 1 FOR size - 2

SEQ
txt:= true [counter 1 +

8] [r][f]
write. int (screen, txt , 3

)

SEQ d = 1 FOR size - 1

SEQ
txt:= true [counterl+12]

[r] [d]
write. int (screen, txt , 3

)

newiine (screen

)

counterl:= counterl + 1

SEQ r = 1 FOR size - 2

SEQ
SEQ c = FOR size - 1

SEQ
txt : = true [counterl]

[r] [c]
write. int (screen, txt , 3

)

SEQ 1=1 FOR size - 2

SEQ
txt:= true[counterl+4

]

[r][l]
write. int (screen, txt , 3

)

SEQ f = 1 FOR size - 2

SEQ
txt : = true [counterl +

8] [r][f]
write. int (screen, txt , 3

)

SEQ d = 1 FOR size - 1

SEQ
txt:= true [counterl+12]

[r][d]
write. int (screen, txt , 3

)

newiine (screen

)

counterl := counterl + 1

SEQ r = 1 FOR size - 2

SEQ
SEQ c = FOR size - 1

SEQ
txt : = true [counterl]

[r] [c]
write. int (screen, txt , 3

)

SEQ 1=1 FOR size - 2

SEQ
txt:= true [counterl +

4] [r][l]
write. int (screen, txt , 3

)

SEQ f = 1 FOR size - 2

SEQ
txt:= true [counterl +

8] [r] [f]

124

write. int (screen, txt, 3

)

SEQ d = 1 FOR size - 1

SEQ
txt:= true [counterl +

12][r][d]
write. int (screen, txt , 3

)

newline (screen

)

counterl := counterl + 1

SEQ r = 1 FOR size - 1

SEQ
SEQ c = FOR size - 1

SEQ
txt:= true [counterl]

[r] [c]
write. int (screen, txt , 3

)

SEQ 1=1 FOR size - 2

SEQ
txt:= true [counterl +

4] [r] [1]
write. int (screen, txt , 3

)

SEQ f = 1 FOR size - 2

SEQ
txt:= true[counterl+8

]

[r] [f]
write. int (screen, txt , 3

)

SEQ d = 1 FOR size - 1

SEQ
txt:= true [counterl+12

]

[r][d]
write. int (screen, txt , 3

)

newline (screen

)

turning := FALSE
newline (screen

)

antileftin ? recpl
SEQ

leftin ? recp2
antirightout ! tag ;w; temp
rightout ! tag ;w; temp
antirightout ! recp2
rightout ! recpl

newline (screen

)

write. full. string (screen, "Type ANY to return to TDS")
INT any:
read. char (keyboard, any)

125

-- variables and channel declarations

ISVAL linkOout
VAL I ink lout IS 1

VAL link2out IS 2

VAL link 3 out IS 3

VAL linkOin IS 4

VAL linklin IS 5

VAL link2in IS 6

VAL link 3 in IS 7

33] CHAN OF ANY channel , antichannel

PROC central. node (VAL INT engine, CHAN OF ANY
leftin, topin, right in, bottomin,
leftout , topout , rightout , bottomout

)

— This procedure does the calculations for nodes at the
center — of the network

#USE "c:\tdsiolib\userio.tsr":

— Declarations of arrays and variables

VAL s IS 11:
VAL g IS 3 33:
VAL size IS 6:

size] [size] INT square:
size] [size] INT calcul:
size] INT dummy :

size] INT dummy 1

:

size] INT dummy2:
size] INT dummy3:
size] INT dummy4:
size] INT senderO

:

size] INT senderl

:

size] INT sender2:
size] INT sender3:
size] [size] INT temporal:

BOOL active :

INT tag,w,tp,n:

126

WHILE TRUE
SEQ

SEQ r = FOR size
SEQ c= FOR size

SEQ
square [r] [c] :

calcul [r] [c] :

temporal [r] [c]
SEQ r= FOR size

SEQ
dummyO [r] : =

dummy 1 [r] :=

dummy2 [r] :=

dummy 3 [r] :=

dummy4 [r] :=

senderO [r]

-- Initialization of arrays

=

=

:=

senderl [r]
sender2 [r]
sender3 [r]

active := TRUE
n:= engine
WHILE active

SEQ
IF

(n= 5) OR (n= 9)- code for processors 5 and 9

SEQ
leftin ?

rightout
IF

tag= s

SEQ
active :=

topout !

bottomin
topout !

bottomin
topout •

TRUE
SEQ — Communications receive

PAR -- send boundaries
conditions

leftin ?

topin ?

rightin ?

bottomin ?

leftout !

topout !

rightout !

bottomout

tag;w --receiving start/stop
! tag;w -- sending start/stop

FALSE -- checking for stop
square -- routing code to
? temporal
temporal
? temporal
temporal

dummyO
dummy

1

dummy

2

dummy

3

senderO
senderl
sender2
sender3

127

SEQ r = FOR size
SEQ

square[0] [r] := dummy 1 [r]
square[r] [0] := dummy [r]
square[r] [size - 1] := dummy2 [r]
square [size - 1] [r] := dummy 3 [r]

SEQ r = 1 FOR size - 2

SEQ c = 1 FOR size - 2

SEQ
tp:=

(
(w * square [r][c]) +

(

square [r] [c-1] +

(square [r] [c + 1] +
(

square [r-1] [c] +
square [r + 1] [c])))) /

(4 + w)
calcul [r] [c] : = tp

square := calcul
SEQ r = FOR size

SEQ
senderO [r]:= square[r] [1]
sender 1 [r]:= square[l] [r]
sender2 [r]:= square[r]

[size-
sender3 [r]:= square[size-2

]

(n= 6) OR (n= 10) -- code processors 6 and
SEQ — in the network

leftin ? tag;w
rightout ! tag;w
IF

tag= s

SEQ -- checking stop
active := FALSE
topout 1 square -- routing code
bottomin ? temporal
topout ! temporal

TRUE
SEQ

PAR -- COMMUNICATIONS BLOCK
leftin ? dummyO
topin ? dummy

1

rightin ? dummy

2

bottomin ? dummy

3

leftout ! senderO
topout ! senderl
rightout ! sender2
bottomout ! sender3

SEQ r = FOR size
SEQ

square[0

]

[r] := dummy 1 [r]
square[r

]

[0] := dummyO [r]
square[r

]

[size-1] := dummy2
square[size -l][r] := dummy3

SEQ r = 1 FOR size - 2

2]
r]

[r]r

128

SEQ c = 1 FOR size - 2

SEQ
tp:=

(
(w * square [r][c]) +

(

square [r] [c-1] +

(square [r] [c + 1] +
(

square [r-1] [c] +
square [r + 1] [c])))) /

(4 + w)
calcul [r] [c] : = tp

square := calcul
SEQ r = FOR size

SEQ
senderO
senderl
sender2
sender3

[r]
[r]
[r]
[r]

square[r] [1]
square[l] [r]
square[r]

[size- 2]
= square[size- 2][r]

PROC corner .node (VAL INT engine, CHAN OF ANY
leftin, topin, rightin,bottomin,

leftout , topout , rightout , bottomout

)

— This procedure drives the execution of the processors
at the corners— of the array

#USE "c:\tdsiolib\userio.tsr":

— declarations of arrays and variables

VAL S IS 11:
VAL g IS 333:
VAL size IS 6:
[size; [size] INT square:
[size" [size] INT calcul:
[size; [size] INT temporal
[size; INT dummyO

:

[size; INT dummy 1

:

[size; INT dummy 2:
[size;

|

INT dummy 3:

[size
|

INT dummy4

:

[size
]
INT senderO:

[size
]
INT senderl:

[size]
INT sender2:

[size |
INT sender3:

BOOL cactive :

INT teag,w,tp,n, counterO

:

WHILE TRUE

129

SEQ
SEQ r= FOR size

SEQ c= FOR size
SEQ

square [r] [c] :=

calcul [r] [c] :=

temporal [r] [c] :=

SEQ r= FOR size
SEQ

dummyO [r] :=

dummy 1 [r] :=

dummy2 [r] :=

dummy 3 [r] :=

dummy4 [r] :=

senderO [r]
senderl [r]
sender2 [r]

— Initialization of arrays

- code for processor

tag;w;dummyl
! tag;w

! tag ;w; dummy

1

sender3 [r]
active := TRUE
n: = engine
WHILE active

SEQ
IF

n=
SEQ

topin
rightout
bottomout
IF

tag= s

SEQ -- checking for stop
counterO:=
active := FALSE
topout I square
WHILE counterO < 3

SEQ -- screen array
bottomin ? temporal
topout ! temporal
counterO := counterO

WHILE counterO < 15
SEQ

information

+ 1

topout !

counterO
TRUE

SEQ
PAR

leftin ?

topin ?

rightin ?

bottomin ?

leftout !

rightin ? temporal
temporal
:= counterO + 1

dummyO
dummy4
dummy

2

dummy

3

senderO

130

topout ! senderl
rightout ! sender2
bottomout ! sender3

SEQ r - FOR size
SEQ
square[r] [0] := dummy

1

square[r] [size - 1] :=

square[size - 1] [r] :=

SEQ r = 1 FOR size - 2

SEQ c = 1 FOR size - 2

[r]
dummy 2 [r

]

dummy 3 [r]

SEQ
tp:=

(
(w * square [r] [c]) +(

square [r] [c-l] +

(square [r] [c + 1] +
(

square [r-1] [c] +
square [r + 1] [c])))) /

(4 + w)
calcul [r] [c] : = tp

r = FOR sizeSEQ
calcul [r

] [0] :=

square := calcul
SEQ r = FOR size

SEQ
senderO [r] :=

senderl [r] :=

sender2 [r] :=

sender3 [r] :=

square[r] [0]

square[r] [1]
square[l] [r]
squarefr] [size-2]
square [size-2

]
[r

]

? tag; w; dummy

3

tag ;w; dummy

3

! tag;w

square

n= 3

SEQ
bottomin
topout !

rightout
IF

tag= s

SEQ
active := FALSE
topout !

TRUE
SEQ

PAR
leftin ?

topin ?

rightin ?

bottomin ?

leftout !

topout !

rightout !

bottomout

-- code for processor 3

dummyO
dummy

1

dummy 2

dummy4
sender2
senderl
sender2
senderl

SEQ r = FOR size

131

SEQ
square[r] [0] := dummy 3 [r]
square[0] [r] := dummyl [r]
square[r] [size -1]:= dummy2 [r]

SEQ r = 1 FOR size - 2

SEQ c = 1 FOR size - 2

SEQ
tp:=

(
(w * square[r][c]) +

(

square [r] [c-1] +

(square [r] [c + 1] +
(

square [r-1] [c] +
square [r + 1

]
[c]

)))
) /

(4 + w)
calcul [r] [c] : = tp

SEQ r = FOR size
calcul [r] [0] := square [r] [0]

square := calcul
SEQ r = FOR size

SEQ
senderl [r] := square[l] [r]
sender2 [r] := square[r]

[size-2

]

n= 12 -- code for processor 12
SEQ

leftin ? tag;w
IF

tag= s

SEQ
counterO :=

active := FALSE
leftout ! square
WHILE counterO < 3

SEQ
bottomin
leftout !

counterO

:

TRUE
SEQ

PAR
leftin ?

topin ?

rightin ?

bottomin ?

leftout !

topout !

rightout !

bottomout !

? temporal
temporal

= counterO

dummyO
dummyl
dummy

2

dummy

3

senderO
sender3
senderO
sender3

+ 1

132

SEQ r = FOR size
SEQ

square[r] [0] := dummyO [r]
square[size - l][r]:= dummy3 [r]

SEQ r = 1 FOR size - 2

SEQ c = 1 FOR size - 2

SEQ
tp:=

(
(w * square [r][c]) +

(

square [r] [c-1] +

(square [r] [c + 1] +
(

square [r-1] [c] +
square [r + 1]

[c]
))))

/

(4 + w)
calcul [r] [c] : = tp

square := calcul
SEQ r = FOR size

SEQ
senderO [r] :=square [r] [1]
sender3 [r] :=square [size-2][r]

n= 15 — code for processor 15
SEQ

leftin ? tag;w
IF

tag= s

SEQ
active := FALSE
topout ! square

TRUE
SEQ

PAR
leftin ? dummyO
topin ? dummy

1

rightin ? dummy

2

bottomin ? dummy

3

leftout ! senderO
topout ! senderl
rightout ! senderO
bottomout ! senderl

SEQ r = FOR size
SEQ

square [0

]

[r] := dummy 1 [r]
square [r

]

[0] := dummyO [r]
SEQ r = 1 FOR size - 2

SEQ c = 1 FOR size - 2

SEQ
tp:=

(
(w * square [r][c]) +

(

square [r] [c-1] +

(square [r] [c + 1] +
(

square [r-1] [c] +
square [r+1] [c])))) /

133

(4 + w)
calcul [r] [c] : = tp

square := calcul
SEQ r = FOR size

SEQ
senderO [r] := square [r] [1]
sender 1 [r] := square [1] [r]

PROC cross. node (VAL INT engine, CHAN OF ANY
left in, topin, right in, bottomin,

leftout , topout , rightout , bottomout

)

— This procedure drives the processors which are
situated— forming a

-- croos at the square network

#USE "c:\tdsiolib\userio.tsr":

— declarations of arrays, variables and constant

VAL s IS
VAL g IS
VAL size
[size
[size
[size
[size
[size
[size
[size
[size
[size
[size
[size
[size
BOOL

11:
333:
IS 6

[size]
[size]
[size]
INT dummyO
INT dummyl

:

INT dummy 2:

INT dummy 3

:

INT dummy 4

:

INT senderO

:

INT senderl

:

INT sender2:
INT sender3:

active :

INT square:
INT calcul:
INT temporal:

INT tag,w,tp
WHILE TRUE

SEQ
SEQ r=

SEQ c =

SEQ

n,counterl

FOR size
FOR size

- Initialization of arrays

square [r] [c] :

calcul [r] [c] :

temporal [r] [c]
SEQ r= FOR size

SEQ
dummy [r] :=

dummyl [r] :=

=

134

duminy2 [r]
dummy 3 [r]
dummy4 [r]
senderO [r]
senderl [r]
sender2 [r]
sender3 [r]

active := TRUE
n:= engine
WHILE active

SEQ
IF

n= 1

SEQ
topin

=

=

=

-- code for processor C

? tag ;w; dummy

1

rightout ! tag;w
IF -- sending start/stop signal

tag= s

SEQ -- checking for stop
active := FALSE

topout ! square -- routing code
bottomin ? temporal

topout ! temporal
bottomin ? temporal
topout ! temporal

TRUE
SEQ

PAR
leftin ? dummyO
topin ? dummy4
rightin ? dummy2
bottomin ? dummy

3

leftout ! sender2
topout ! senderl
rightout ! sender2
bottomout ! sender3

SEQ r = FOR size
SEQ

square[r] [0] := dummy 1 [r]
square[r] [size -1]:= dummy2 [r]
square[size - l][r]:= dummy3 [r]
square[0] [r] := dummy4 [r]

SEQ r = 1 FOR size - 2

SEQ c = 1 FOR size - 2

SEQ

135

tp:=
(
(w * square [r][c]) +

(

square [r] [c-1] +

(square [r] [c + 1] +
(

square [r-1] [c] +
square [r + 1] [c])))) /

(4 + w)
calcul [r] [c] : = tp

SEQ r = FOR size
calcul [r] [0]:= square[r] [0]

square := calcul
SEQ r = FOR size

SEQ
senderl [r]:= square[l] [r]
sender2 [r]:= square[r]

[size-2

]

sender3 [r]:= square[size-2
]

[r]

-- code for processor 2n= 2

SEQ
bottomin ?

rightout !

IF
tag= s

SEQ
active:

=

topout !

bottomin
topout !

TRUE
SEQ

PAR
leftin ?

topin ?

rightin ?

bottomin ?

leftout !

topout !

rightout !

bottomout !

SEQ r = FOR
SEQ

square [r

]

tag;w;dummyl
tag;w

FALSE
square
? temporal
temporal

dummyO
dummy

4

dummy

2

dummy

3

sender2
senderl
sender2
sender3
size

[0] := dummy 1 [r]
square[r] [size-1] := dummy2 [r]
square [size - l][r] := dummy3[r]
square[0] [r] := dummy 4 [r]

SEQ r = 1 FOR size - 2

SEQ c = 1 FOR size - 2

SEQ
(
(w * square [r

]
[c]) +

(

square [r] [c-1] +

(square [r] [c + 1] +
(

square [r-1] [c] +

square [r + 1]
[c]

)))
) /

tp: =

136

(4 + W)
calcul [r] [c] : = tp

SEQ r = FOR size
calcul [r] [0]:= square[r]

square := calcul
SEQ r = FOR size

SEQ

[0]

senderl
sender2
sender3

[r]
[r]
[r]

= squaj_e[l] [r]
= square[r]

[size- 2]
= square[size-2

] [r]

n= 4 -- code for processor 4

SEQ
leftin ? tag;w
rightout ! tag;w
IF

tag= s

SEQ
counterl :=

active := FALSE
leftout ? square
WHILE counterl < 3

SEQ
bottomin ? temporal
leftout ! temporal
counterl := counterl + 1

WHILE counterl < 11
SEQ

rightin ? temporal
leftout !

counterl
TRUE

SEQ
PAR

leftin ?

topin ?

rightin ?

bottomin ?

leftout !

topout !

rightout !

temporal
= counterl + 1

dummyO
dummy

1

dummy

2

dummy

3

senderO
senderO
sender2

bottomout ! sender3

SEQ r = FOR size
SEQ

square[r] [0] := dummyO [r]
square [size -l][r] := dummy

3

square[r] [size-1] := dummy2
[r]
[r]

137

SEQ r = 1 FOR size - 2

SEQ C = 1 FOR size - 2

SEQ
tp:=

(
(w * square[r]

square [r] [c-1]
(square [r] [c
square [r-1] [c]
square [r
(4 + w)

calcul [r] [c]
square := calcul
SEQ r = FOR size

SEQ
senderO [r]
sender2 [r]
sender3 [r]

[c]
+

+ 1]
+

)
+

+ 1] [c]

:= tp

= square[r
] [1

]

= square[r]
[size-2

]

= square[size-2
]

[r

]

n= 8 -- code for processor 8

SEQ
left in ? tag;w
rightout ! tag;w

tag= s

SEQ
counterl :=

active := FALSE
leftout ? squa
WHILE counter

SEQ
bottomin ?

leftout !

counterl :

WHILE counter
SEQ

rightin ?

leftout !

counterl :

TRUE
SEQ

PAR
leftin ?

topin ?

rightin ?

bottomin ?

leftout !

topout !

rightout •

bottomout !

SEQ r = FOR
SEQ

square [r

]

square[siz

re
1 < 3

temporal
temporal
= counterl + 1

1 < 7

temporal
temporal
= counterl + 1

dummyO
dummy

1

dummy

2

dummy

3

senderO
senderO
sender2
sender3
size

[0] := dummyO [r]
e - 1]

[r] : = dummy 3 [r

]

138

square[r]
[size -1] := dummy2 [r]

SEQ r = 1 FOR size - 2

SEQ c = 1 FOR size - 2

SEQ
tp:=

(
(w * square[r][c]) +

(

square [r] [c-1] +

(square [r] [c + i] +
(

square [r-1] [c] +

square [r + 1] [c])))) /

(4 + w)
calcul [r] [c]

square := calcul
SEQ r = FOR size

SEQ
senderO [r]
sender2 [r] := square[r]

[size-2

]

sender3 [r] := square[size-2
]

[r

]

= tp

= square[r] [1]
= square[r]

[siz
= square[size-2

tag;w
! tag;w

n= 7) OR (n= 11) — code processor 7 and 11
SEQ

leftin ?

rightout
IF

tag= s

SEQ
active := FALSE
topout ! square

TRUE
SEQ

PAR
leftin ?

topin ?

rightin ?

bottomin ?

leftout !

topout !

rightout !

bottomout !

SEQ r = FOR
SEQ

square[r

]

square[0

]

square [r

]

dummy
dummy

1

dummy

2

dummy

3

senderO
senderl
sender2
sender2
size

[0] := dummyO [r]
[r] := dummy 1 [r]
[size- 1]:= dummy2[r]

SEQ r = 1 FOR size - 2

SEQ c = 1 FOR size - 2

SEQ

139

tp:=
(
(w * square [r] [c])+

(

square [r] [c-1] +

(square [r] [c + 1] +
(

square [r-1] [c] +
square [r + 1] [c])))) /

(4 + w)
calcul [r] [c] : = tp

square := calcul
SEQ r = FOR size

SEQ
senderO
senderl
sender2

[r]
[r]
[r]

= square
= square

[r

[1
[1]
[r]

= square[r]
[size-2]

n= 13 — code for processor 13
SEQ

leftin ? tag;w
IF

tag= s

SEQ
active := FALSE
topout !

bottomin
topout !

bottomin
topout !

square
? temporal
temporal
? temporal
temporal

TRUE
SEQ

PAR
leftin ? dummyO
topin ? dummyl
rightin ? dummy2
bottomin ? dummy

3

leftout ! senderO
topout ! senderl
rightout ! senderO
bottomout ! sender3

SEQ r = FOR size
SEQ

square[0] [r] := dummyl [r]
square[r] [0] := dummyO [r]
square [size - l][r]:= dummy 3 [r]

SEQ r = 1 FOR size - 2

SEQ c = 1 FOR size - 2

SEQ
(

(w * square [r]
[c

]

square [r] [c-1] +

(square [r] [c + 1]
square [r-1] [c] +

square [r + 1] [c]
)

(4 + w)

tp: = + (

+ (

140

calcul [r] [c]
square := calcul
SEQ r = FOR size

SEQ

= tp

senderO
senderl
sender3

[r]
[r]
[r]

= square [r] [1]
= square [1] [r]
= square[size-2][r

]

n= 14
SEQ

leftin ? tag;w
IF

tag= s

SEQ
active:=
topout !

bottomin
topout !

TRUE
SEQ

PAR
leftin ?

topin ?

rightin ?

bottomin ?

leftout !

topout !

rightout !

bottomout !

SEQ r = FOR
SEQ

square[0]
square [r

]

-- code for processor 14

FALSE
square
? temporal
temporal

dummyO
dummy

1

dummy

2

dummy

3

senderO
senderl
senderO
sender3
size

[r] := dummy 1 [r]

[0] := dummyO [r]
square[size - l][r]:= dummy3 [r]

SEQ r = 1 FOR size - 2

SEQ c = 1 FOR size - 2

SEQ
tp:=

(
(w * square [r][c]

square [r] [c-1] +

(square [r] [c + 1]
square [r-1] [c] +

square [r + 1] [c]
)

(4 + w)
calcul [r] [c] : = tp

square := calcul

) + (

+ (

))) /

SEQ r = FOR
SEC

senderO [r]
senderl [r]
sender3 [r]

size

= square [r] [1]
= square [1] [r]
= square[size-2][r

]

141

Placement of the processors

PLACED PAR
PROCESSOR T4

PLACE channel[0]
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
corner

AT
AT
AT
AT

channel [1

]

channel [2

]

channel [3

]

antichannel[0

]

antichannel [1

]

antichannel [2

]

antichannel [3

]

linkOin
linklin
link2in
link3in
AT
AT
AT
AT

linkOout
link lout
link2out
link3out

node (, channel [] , channel [1] , channel [2] ,

channel [3] , antichannel [] , antichannel [1

]

antichannel [2] , antichannel [3]

)

PROCESSOR 8 T4
PLACE channel [5] AT
PLACE channel [7] AT
PLACE channel[8] AT
PLACE channel [9] AT
PLACE antichannel [5

]

PLACE antichannel [7

]

PLACE antichannel [8

]

PLACE antichannel [9

]

cross

.

linkOin:
linklin:
link2in:
link3in:
AT linkOout
AT linklout
AT link2out
AT link3out

. node (8 , channel [5] , channel [7] , channel
channel [9] , antichannel [5] , antichannel

antichannel [8] , antichannel

[8]
[7]
[9]

PROCESSOR 2 T4
PLACE channel [17] AT
PLACE channel [12] AT
PLACE channel [18] AT
PLACE channel [19] AT
PLACE antichannel [17]
PLACE antichannel [12]
PLACE antichannel [18]
PLACE antichannel [19]
cross

.

linkOin:
linklin:
link2in:
link3in

:

AT linkOout:
linklout

:

link2out

:

AT
AT
AT link3out

:

.node (2 , channel [17] , channel [12] , channel [18

]

channel [19], antichannel [17], antichannel [12]
antichannel [18] , antichannel [19

]

142

PROCESSOR 10 T4
PLACE channel [20] AT
PLACE channel [16] AT
PLACE channel [22] AT
PLACE channel [23] AT
PLACE antichannel[20

]

PLACE antichannel [16]
PLACE antichannel [22]
PLACE antichannel [23]

linkOin:
linklin:
link2in:
link3in:
AT linkOout:

linklout:
link2out

:

AT
AT
AT link3out:

central. node (10 , channel [20] , channel [16] , channel [22]
channel [23] , antichannel[20] , antichannel [16

]

antichannel [22] , antichannel [23]

PROCESSOR 1 T4
PLACE channel [10] AT linklout:
PLACE channel[3] AT link2out:
PLACE channel [11] AT link 3 out:
PLACE channel [12] AT linkOout:
PLACE antichannel [10] AT linklin:
PLACE antichannel[3] AT link2in:
PLACE antichannel [11] AT link 3 in:
PLACE antichannel [12] AT linkOin:
cross .node(l / antichannel[lO] , antichannel [3]

,

antichannel [11] , antichannel [12] , channel [10]

,

channel [3] , channel [11], channel [12])

PROCESSOR 9 T4
PLACE channel [13] AT linklout:
PLACE channel[9] AT link2out:
PLACE channel [15] AT link3out:
PLACE channel [16] AT linkOout:
PLACE antichannel[13] AT linklin:
PLACE antichannel[9] AT link2in:
PLACE antichannel [15] AT link3in:
PLACE antichannel [16] AT linkOin:
central . node (9 , antichannel [13], antichannel [9]

,

antichannel [15] , antichannel [16] ,channel[l3]

,

channel [9] , channel [15], channel [16])

143

PROCESSOR 3 T4
PLACE channel [24] AT
PLACE antichannel[30]
PLACE channel [19] AT
PLACE channel [25] AT
PLACE antichannel[24]
PLACE channel [30] AT
PLACE antichannel [19]
PLACE antichannel [25]
corner . node (3 , channel

antichannel
antichannel
channel [25

]

linkOout:
AT linklout:
link2out:
link3out

:

AT linkOin:
linklin:
AT link2in:
AT link3in:
[30] , antichannel [19]

,

[25] , antichannel [24]

,

[30] , channel [19]

,

, channel [24]

)

PROCESSOR 11 T4
PLACE antichannel[7] AT linkOin:
PLACE channel [26] AT linklin:
PLACE antichannel [23] AT link2in:
PLACE antichannel [29] AT link3in:
PLACE channel[7] AT linkOout:
PLACE antichannel [26] AT linklout:
PLACE channel [23] AT link2out:
PLACE channel [29] AT link3out:
cross. node (11 , channel [26] , antichannel [23]

,

antichannel [29] , antichannel [7]

,

antichannel [26] , channel [23] , channel [29]

,

channel [7]

)

PROCESSOR 5 T4
PLACE channel [11] AT link2in:
PLACE channel[6] AT link 3 in:
PLACE channel [13] AT linkOin:
PLACE channel [14] AT linklin:
PLACE antichannel [11] AT link2out:
PLACE antichannel[6] AT link3out:
PLACE antichannel [13] AT linkOout:
PLACE antichannel [14] AT linklout:
central . node (5 , channel [11], channel [6] , channel [13]

channel [14] , antichannel [11] , antichannel [6

]

antichannel [13], antichannel [14]

)

144

PROCESSOR 13 T4
PLACE channel [10] AT linkOin:
PLACE antichannel[28] AT linklin:
PLACE channel [15] AT link2in:
PLACE channel [27] AT link 3 in:
PLACE antichannel[10] AT linkOout:
PLACE channel [28] AT linklout:
PLACE antichannel[15] AT link2out:
PLACE antichannel [27] AT link3out:
cross .node (13, channel [15] , channel [27] , channel [10]

,

antichannel[28] ,antichannel[15]

,

antichannel [27] , antichannel [10]

,

channel [28]

)

PROCESSOR 7 T4
PLACE antichannel [26] AT linkOin:
PLACE channel[4] AT linklin:
PLACE channel [25] AT link2in:
PLACE channel [21] AT link 3 in:
PLACE channel [26] AT linkOout:
PLACE antichannel[4] AT linklout:
PLACE antichannel [25] AT link2out:
PLACE antichannel [21] AT link3out:
cross .node (7 , channel [25] , channel [21] , antichannel [26]

,

channel [4] , antichannel [25] , antichannel [21

]

channel [26] , antichannel [4]

)

PROCESSOR 15 T4
PLACE channel [30] AT
PLACE channel [32] AT
PLACE channel [29] AT
PLACE channel [31] AT
PLACE antichannel [30]
PLACE antichannel [32]
PLACE antichannel [29

]

PLACE antichannel [31

]

linkOout:
linklout:
link2in:
link3in:
AT linkOin:

linklin:
link2out

:

AT
AT
AT link3out

:

corner .node (15 , channel [29] , channel [31] , channel [30]

,

channel [32] , antichannel [29]

,

antichannel [31] , antichannel [30] , antichannel [32]

)

PROCESSOR 4 T4
PLACE channel[2] AT
PLACE channel[4] AT
PLACE channel [5] AT
PLACE channel[6] AT
PLACE antichannel[2]
PLACE antichannel[4]
PLACE antichannel[5]
PLACE antichannel[6]

link3out

:

linkOout

:

linklout

:

link2out

:

AT link 3 in:
AT linkOin:
AT linklin:
AT link 2 in:

cross . node (4 , antichannel [2] , antichannel [4

]

antichannel [5] , antichannel [6] , channel [2

]

channel [4] , channel [5] , channel [6

]

145

PROCESSOR 6 T4
PLACE channel [18]

channel [14

]

channel [20

]

channel [21

]

AT link 3 out:
AT linkOout:
AT linklout:
AT link2out:

antichannel[18] AT link3in:
antichannel [14] AT linkOin:
antichannel [20] AT linklin:
antichannel [21] AT link2in:

central .node (6 , antichannel [18] , antichannel[14]

,

antichannel [20] , antichannel [21] , channel [18

]

channel [14] , channel [20] , channel [21]

)

PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE

PROCESSOR 12 T4
PLACE channel [32] AT linkOin:
PLACE antichannel[0] AT linklin:
PLACE antichannel [27] AT link2in:
PLACE antichannel[8] AT link3in:
PLACE antichannel [32] AT linkOout:
PLACE channel[0] AT linklout:
PLACE channel [27] AT link2out:
PLACE channel[8] AT link 3 out:
corner .node (12, antichannel [8] , channel [32]

,

antichannel [] , antichannel [27] , channel [8] ,

antichannel [32] , channel [] , channel [27]

)

PROCESSOR 14 T4
PLACE channel [28] AT linkOin:
PLACE antichannel [17] AT linklin:
PLACE antichannel [31] AT link2in:
PLACE antichannel [22] AT link3in:
PLACE antichannel [28] AT linkOout:
PLACE channel [17] AT linklout:
PLACE channel [31] AT link2out:
PLACE channel [22] AT link 3 out:
cross .node(14 , antichannel [22] , channel [28]

,

antichannel [17], antichannel [31],
channel [22] , antichannel [28]

,

channel [17], channel [31])

146

{{{
{{{
VAL
VAL
VAL
VAL
VAL
VAL
VAL
val
}}}
{{(
VAL

APPENDIX E

EXPANDABLE CHANNEL PLACEMENT

define link/channel numbers - T4
linkOout
linklout
link2out
link 3out
linkOin
linklin
link2in
link3in

IS
IS
IS
IS
IS
IS
IS
IS

create internal mapping
IS

arrays
[linkOin,left . to . right . in

link2in] :

VAL right. to. left. in IS [link2in,
linkOin] :

VAL top. to. bottom. in IS [linklin,
link3in] :

VAL bottom, to, top, in IS [link3in,
linklin] :

VAL left .to. right .out
[link2out , linklout , link3out , linkOout

]

VAL right .to. left .out
[linkOout , link3out , linklout , link2out]

VAL top. to. bottom. out
[link3out , link2out , linkOout , linklout

]

VAL bottom. to. top. out
[linklout , linkOout , link2out , link3out

]

link 3 in,

linklin,

linkOin,

link2in,

linklin,

link3in,

link2in,

linkOin,

IS

IS

IS

IS

-- each soft channel is associated with a table which is
indexed
— when the soft channel is placed on to a hard channel.
}}}
{{{ declare size structure
VAL n IS 4:
VAL p IS n: — x dimension of array
VAL q IS n: — y dimension of array
VAL nodes IS p * q:

}}}
{((declare size channels
[nodes] CHAN left . to. right

,

right .to. left:
[nodes + 1] CHAN top. to. bottom,

bottom. to. top:
}}}

147

{{{ node 1

{{{ declaration of constants
VAL i IS :

VAL j IS :

VAL dec. machine
VAL left
VAL right
VAL bottom
VAL top
VAL man. index
}}}

{{{ placement of channels
PLACE left. to. right

[map . index]

:

PLACE left. to. right
[map. index]

:

PLACE right. to. left
[map . index]

:

PLACE right. to. left
[map. index]

:

PLACE top. to. bottom
[map. index]

:

PLACE top. to. bottom
[map. index]

:

PLACE bottom. to .top
[map. index]

:

PLACE bottom. to. top
bottom. to . top. out [map. index]

:

IS 0:
IS (dec. machine + (nodes - q)) \ nodes
IS dec. machine:
IS dec. machine:
IS nodes

:

IS
((j\2)*2) + (i\2)

:

[left]

[right]

[right]

[left]

[top]

[bottom]

[bottom]

[top]

AT left .to. right . in

AT left .to. right .out

AT right .to. left. in

AT right .to. left .out

AT top. to . bottom. in

AT top. to. bottom. out

AT bottom. to . top. in

AT

}}}
node (1, left. to. right [left] ,left. to. right [right]

right . to . left [right] , right . to . left [left]

,

top . to . bottom [top] , top . to . bottom [bottom]

,

bottom. to. top [bottom], bottom. to. top [top]
)

}}}

{{{ node q
{{{ declaration of constants
VAL i IS 0:
VAL j IS q-1:
VAL dec. machine
VAL left
VAL right
VAL bottom
VAL dec.j
VAL top
VAL map. index
}}}

IS q-1:
IS (dec. machine + (nodes - q)) \ nodes:
IS dec. machine:
IS dec. machine:
IS (j + (q-1)) \ q:
IS dec.j + (i * q)

:

IS ((j\2)*2) + (i\2):

148

PROCESSOR q T4

{ { (placement of channels
PLACE left. to. right

[map. index]

:

PLACE left. to. right
[map . index]

:

PLACE right. to. left
[map. index]

:

PLACE right. to. left
[map. index]

:

PLACE top. to. bottom
[map. index]

:

PLACE top. to. bottom
[map . index]

:

PLACE bottom. to. top
[map. index]

:

PLACE bottom. to . top
bottom. to . top. out [map. index]

[left]

[right]

[right]

[left]

[top]

[bottom]

[bottom]

[top]

AT left .to. right . in

AT left .to. right .out

AT right .to. left . in

AT right .to. left .out

AT top. to . bottom. in

AT top. to . bottom. out

AT bottom. to . top . in

AT

}}}
node (q, left . to . right [left], left . to . right [right]

right .to. left [right], right . to . left [left],
top. to .bottom [top], top. to. bottom [bottom],
bottom. to. top [bottom], bottom. to . top [top]

)

}}}
VAL i ISO:
PLACED PAR J = 1 for (q-2)

VAL dec. machine IS j + (i * q) :

VAL machine IS dec. machine + 1 :

PROCESSOR machine T4
{{{ evaluate indices
VAL left
VAL right
VAL bottom
VAL dec.j
VAL top
VAL map. index

IS (dec. machine + (nodes-q)) \ nodes:
IS dec. machine:
IS dec. machine:
IS (j + (q-1)) \ q:
IS dec.j + (i * q) :

IS
((j\2) * 2) + (i\2) :

— position of node within the B003
group

}}}

149

{({ placement of channels
PLACE left. to. right [left] AT left . to . right . in

[map. index]

:

PLACE left . to . right [right] AT left . to . right . out:

[map . index]

:

PLACE right .to. left [right] AT right . to . left . in
[map . index]

:

PLACE right. co. left [left] AT right . to . left . out
[map. index]

:

PLACE top . to . bottom [top] AT top . to . bottom. in
[map . index]

:

PLACE top . to . bottom [bottom] AT top. to . bottom. out
[map. index]

:

PLACE bottom. to . top [bottom] AT bottom. to . top . in
[map . index]

:

PLACE bottom. to. top [top] AT
bottom. to . top .out [map. index]

:

}}}
node (machine, left . to . right [left], left .to. right [right],

right . to . left [right], right . to .left [left],
top . to . bottom [top], top. to .bottom [bottom],
bottom. to . top [bottom], bottom. to . top [top]

)

PLACED PAR i = 1 FOR
(
p - 1

)

PLACED PAR j = FOR Q
VAL dec. machine IS j + (i * q) :

VAL machine IS dec. machine + 1 :

PROCESSOR machine T4
{{{ evaluate indices
VAL left IS (dec. machine + (nodes-q)) \ nodes:
VAL right IS dec. machine:
VAL bottom IS dec. machine:
VAL dec.j IS (j + (q-1)) \ q:
VAL top IS dec.j + (i * q) :

VAL map. index IS ((j\2) * 2) + (i\2) :

-- position of node within the B003
group.

}}}
{{{ placement of channels
PLACE left. to. right [left] AT left . to . right . in

[map. index]

:

PLACE left .to. right [right] AT left . to . right . out
[map. index]

:

PLACE right .to. left [right] AT right . to . left . in
[map . index]

:

PLACE right .to. left [left] AT right . to . left . out
[map . index]

:

PLACE top . to . bottom [top] AT top. to . bottom. in
[map. index]

:

PLACE top. to . bottom [bottom] AT top. to . bottom. out
[map . index]

:

150

PLACE bottom. to. top [bottom] AT bottom. to . top . in
[map . index]

:

PLACE bottom. to. top [top] AT
bottom . to . top . out [map . index]

:

}}}
node (machine, left . to . right [left], left .to . right [right],

right .to. left [right], right .to .left [left],
top. to. bottom [top], top. to .bottom [bottom],
bottom. to. top [bottom], bottom. to .top [top]

)

}}}

In this appendix we start the placement from processor 01
on.

The placement of channels in the I/O handler is as follows

{{{
CHAN OF ANY leftin , rightout , antirightout , antileftin
PLACE leftin AT link3in:
PLACE rightout AT link3out:
PLACE antirightout AT link2out:
PLACE antileftin AT link2in:
}}}

151

LIST OF REFERENCES

[AMES77] Ames, W.F., Numerical Methods , 2nd edition
page 251, formula 5.64, Academic Press, NY,
1977.

[CAWE80] Weitzman Cay., Dis-criouted Micro/Minicomputer
Systems , Prentice-Hall , Inc, 1980.

[DASP78] Aspinall, P., The Microprocessor and its
applications , Cambridge University Press,
1978.

[HOM087] Howe, Carl and Moxon, Bruce., "How to program
parallel processors", IEEE Spectrum,
September, 1987.

[INMOSD86] Inmos., "IMS T414 Transputer", December, 1986

[INMOSJ88] Inmos., "Introduction to Transputers",
January, 19 88.

[INMOS086] Inmos., Reference Manual "Transputer",
October, 1986.

[INMOSTN11] Inmos., "Technical Note Number 11"

[INMOSTN13] Inmos., "Technical Note Number 13"

KAFA84] Hwang, Kai and Briggs, Faye., Computer
Architecture and Parallel Processing , Mc Graw-
Hill, 1984.

[KOD88] Kodres, Uno .

, "MultiTransputer Network
Programming with Shared Global Distributed
Variables", Umpublished paper,
Naval Postgraduate School, Monterey, California
1988.

152

[LIMI87] Lipovski, G.J and Miroslaw Malek., PARALLEL
COMPUTING Theory and Comparisons ,

Wiley-Interscience Publication, 1987.

[SIHA88] Hart, Simon., Design, Implementation and
Evaluation of a Virtual Shared Memory System in
a MultiTransputer Network , Naval Postgraduate
School, Monterey, California, December, 1987.

[REKA79] Reed, David and Kanodia, Rajendra.,
"Synchronization with Eventcounts and
Sequencers", Communication of the ACM,
February, 1979

.

153

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 02
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 02
Naval Postgraduated School
Monterey, CA 93943-5002

3. Department Chairman, Code 52 01
Department of Computer Science
Naval Postgraduated School
Monterey, CA 9 3 943

4. Dr. Uno R. Kodres, Code 52Kr 03
Department of Computer Science
Naval Postgraduated School
Monterey, CA 9 3 943

5. Major Richard A. Adams, USAF, Code 52Ad 01
Department of Computer Science
Naval Postgraduate School
Monterey, CA 9 3 943

6. Daniel Green, Code 20F 01
Naval Surface Weapons Center
Dahlgren, VA 22449

7. Jerry Gaston, Code N24 01
Naval Surface Weapons Center
Dahlgren, VA 22449

8. Captain J. Hood, USN 01
PMS 400b5
Naval Sea Systems Command
Washington, DC 20362

154

9. RCA AEGIS Repository 01
RCA Corporation
Government Systems Division
Mail Stop 127-327
Moorestown, NJ 08057

10. Library ^Code E33-05) 01
Naval Surface Weapons Center
Dahlgren, VA 22449

11. Dr. M. J. Gralia 01
Applied Physic Laboratory
John Hopkins Road
Laurel, MD 20702

12. Dana Small, Code 8242 01
Naval Ocean Systems Center
San Diego, CA 92152

13. Director de Mantenimiento de Sistemas 01
de Armas Comandancia General de la Armada
Ave. Vollmer, San Bernardino, Caracas
Distrito Federal, Armada-001-MSA,
Venezuela, South America

14. Director de Educacion 01
Comandancia General de la Armada
Ave. Vollmer, San Bernardino, Caracas
Distrito Federal, Armada-001-EED,
VENEZUELA, South America

15. Lieutenant Comander Jose Frazao Sosa 05
Venezuelan Navy
Agregaduria Naval de Venezuela
2409 California Street. N.W.
Washington. DC. 20008

16. Superintendent, 01
Naval Postgraduate School
Computer Technology Programs, Code 37
Monterey, CA 93943-5000

155

3XJL

-Thesis
'•c7ftA? Frazao bo^a
]F7

f Design, implementation,
*

building and evaluation

o£ a Torus Double Transi-

tive Closure Network ot

Transputers.

Thesis

F7862 Frazao Susa

c.l Designs implementation,
building and evaluation
of a Torus Double Transi-
tive Closure Network of

Transputers.

StWCA*.

