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ABSTRACT

The rising percentage of system costs attributed to software development and

maintenance have resulted in the research by industry and academia into ways to

improve the productivity oC software professionals in all phases of the software life-

cycle. Computer Aided Software Engineering (CASE) environments are one solution

being pursued. This thesis attempts to coalesce, from various efforts to date, some

general principles for such environments in order to assist decision makers who must

procure them. This work is in support of the Missile Software Branch, Naval Weapon

Center, China Lake. California (MSB), and their investigation of CASE environments

to improve productivity. Problems of CASE development and use are discussed in this

context. A general problem solving approach through abstraction of resources is

proposed with a focus on an individual programmer productivity subset of a CASE

environment.
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I. INTRODUCTION

Since its infancy, the software industry has worked to improve the environment

in which people work to create software. In general, these efforts were paced by

hardware developments and by the way programmers thought about programming.

The development of assembly and then higher level programming languages was an

environmental improvement (over machine language) because they allowed

programmers to think in more abstract, logical terms about the problems their

programs were solving. System operators and operating systems relieved the

programmer from the burden of managing hardware resources. The move from offline

batch interaction to online real time interaction was another major improvement in the

environment of programmers. As more and more software resources to improve the

programmers environment have been introduced, the hardware designers have provided

the speed and computing power necessary to support all of these features, and real

work, without bringing systems to their knees.

The hardware advances resulting from VLSI and other technologies have allowed

the proliferation of low cost computers throughout modern society, resulting in an

explosion in the demand for software. The drastic improvements already being made

in software engineering methods have not kept up with this demand.

For the past decade and more, the software industry has expended much effort

on the issues of software engineering as a methodology analogous to other engineering

fields, and to the development of automated tools and environments to support this

methodology and enhance the productivity of software developers and maintainers.

Tins thesis attempts to coalesce, from various software development environment

efforts to date, some general principles for such environments to aid the decision

makers who must procure them. We begin by discussing the software engineering

process, the software engineering problem and the issue of environments. We then

consider a particular research and development software group. Missile Software

Branch. Naval Weapon Center. China Lake. Ca. (MSB), their mission, their need for a

Computer Aided Software Engineering Environment (CASE), and some of the issues

they face in procuring a CASE.



The concept of an integrated CASE has developed to include the cradle to grave

Life cycle of software. We discuss the general state of technology of software

development tools and environments to date and some of their problems. We discuss

abstraction of environment resources and standardization of interfaces as potential

solutions to problems. To limit the scope of this effort we focus on one of the better

developed and understood subsets of a CASE environment, the aspect of individual

programmer productivity (IPP), in terms of abstract resources applicable to any CASE.

Future areas of study are suggested. Recommendations, for Missile Software Branch

procurement efforts, are discussed in terms of general CASE principles in the IPP

context.



II. BACKGROUND OF SOFTWARE ENGINEERING AND
ENVIRONMENTS

A. THE SOFTWARE ENGINEERING PROCESS

Software engineering has been defined in many ways. Boehm (1981, p. 16) called

it "'the application of science and mathematics by which the capabilities of computer

equipment are made useful to man via computer programs, procedures, and associated

documentation." The focus of such definitions is that software engineering is

engineering in the same sense as the traditional engineering fields.

It should be clear that we are not talking about one person programming for his

sole individual use. We are talking about the case where more than one person is

involved in developing and or using the software products. In general terms there are

at a minimum: a customer (an individual or organization s) who want something useful

done by a computer), a developer (an individual or organization(s) who must engineer

the software to meet the customer's need;, a user (who may or may not be the same as

the customer) and a maintainer (who may or may not be the same as the developer).

An applicable definition of process when referring to the software engineering

process is. ".
. . a series of actions or operations conducing to an end; esp. a

continuous operation or treatment esp. in manufacture . .
."

( Webster's. 1966. p. 67S).

We take the "end" in the software engineering process to be an operational version of

a software product including the object code and all attendant documentation (both

historical and deliverable) required to recreate it.

The common waterfall model of the software life cycle. Figure 2.1 (Boehm. 1981,

p. 36), with minor variations, is often used to capture the major (top level) "series of

actions or operations*' in the software engineering process. This traditional view

appears in the literature as far back as a 1956 paper written by Herbert D. Bennington

describing work on the SAGE air defense system software (Bennington. 19S3, p. 356).

The IEEE Ninth International Conference on Software Engineering. (}0 March -

2 April 198"7

, Monterey, California, USA) met with the theme of "Formalizing and

Automating the Software Process." During the opening Plenary Session. Program

Committee Co-chairman Robert Balzer stated that the traditional waterfall model oi

the software engineering life cycle "is dead". Our purpose here is not to debate that

issue. However, this work is based on a belief that the waterfall model provides a we'd
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known terminology and common framework, around which much of software

engineering to date can be discussed. We believe that the waterfall model represents a

top level view of the software engineering process when the process is viewed statically.

Such a static view is often attempted, and may be appropriate, in dealing with systems

where the problem and solution methods are well known and defined.

When faced with uncertainty in the definition of the problem or methods of

solution, understanding evolves throughout the software engineering process and a

static view of the whole life cycle is inappropriate. We believe that, in such a case, a

waterfall model is still useful, but not as the top level of the process. Instead, major

portions of it exist at a lower level of a process which may be categorized as

evolutionary prototyping. In other words, a waterfall model applies at many levels of

the overall software engineering life cycle process. In our view o.f such a dynamic

process, a waterfall-like sequence of transformations may be executed repeatedly to

"conduce" progressively more functional versions of the "end'* product. Since the

waterfall model imposes no temporal constraints on its phases, an initial version may

be prototyped rapidly by manipulating not only the functionality of the prototype

version, but the complexity and detail of some phases of that version's life cycle. A

result can be top down design, with a combination of top down and bottom up

implementation, of a family of evolutionary versions. Each new version is evolved by

extension of the collective analysis, design, implementation and testing, etc., of some

prior version. This approach can deal dynamically with problem solution uncertainty

early in a project development life cycle, as well as with continued evolution of the

project over time and in the context of technological advance. Lehman (1985)

discusses, in detail, the dynamics of software evolution with respect to his now familiar

S. P and E program classes. He also discusses the process of iterative transformation

through waterfall like phases from topmost (i.e., requirements) specification to final

implementation (in this case a prototype or subsequent versions). Lehman's iterative

transformation is based on a single canonical design step whereby the software engineer

creatively chooses a formal lower level linguistic system in which to model the higher

level model with which he begins each step. Formalism is intended to support a

mapping from the higher level model to the subsequent lower level model facilitating

calculable (vs. empirical) verification, backtracking and change propogation activities

which lead to iteration of the design step and support evolution. Such formalism is not

in common practical use in industry today. Such a process is intended to help avoid

12



throwing out large portions of prior development work and having to start over from

scratch.

Speaking at the IEEE Ninth International Conference on Software Engineering.

Herbert Bennington commented that the successful SAGE development efforts were

not "driven" by the waterfall-like model illustrated in his 1956 paper. But, that a

prototyping process, based on those activities, was employed to deal dynamically with

the uncertainty involved in the projects ambitions and possible solutions. So. these

ideas are far from new. They have been studied and gained prominence in the context

of past successes and failures. Given these views of the software engineering process,

we can discuss briefly cur view of the software engineering problem.

B. THE SOFTWARE ENGINEERING PROBLEM
The software engineering problem or crisis to use a popular cliche, has manifested

itself in problems including quantity, quality, maintenance and management.

1. Quality

Software quality is a fundamental issue. Many products simply don't do what

the user wants. The causes for this generally reduce to the inherent difficulties with

validation, verification and testing.

a. Validation

Validation is the process of determining the fitness of a software product

for its operational mission. The developer interacts with the customer, at the start of

the software engineering process, to translate the customer's need into a requirement

specification. Validation at this stage tries to determine that the right product is being

engineered. The customer's description, of what the product must do, is inherently

imprecise because it is expressed in a semantically imprecise natural language (e.g..

English). Within his own organization, the developer translates the requirements

description into a requirements specification. This has traditionally been the first step

away from natural language toward a more precise representation. Validation of this

translation is often complicated because the customer thinks in his natural language,

not the developers representation scheme. Next, the developer translates the high level

requirements specification into design specifications. Design specifies how the

requirements will be met. The high level requirements specification of what does not

inherently contain all of the detail required to make explicit design decisions. Ideally,

as questions arise, conscious effort would be made to revalidate the requirements

specification with the customer so that the requirements specification answers the

13



questions. Often this does not happen. Sometimes it is not even clear to the designer

that his decision cannot he validated from the requirements. Additionally, design

representation is generally so far removed from the customer's view and understanding

that an inherently imprecise reverse translation is required in order to get any feedback

from the customer at this point. After implementation, validation must determine if

the right product was actually built. As we'll discuss later, this last phase, testing, is an

inherently imprecise process.

b. I 'erification

Verification assumes that the requirements specification is valid and tries to

ensure that the product is built correctly. The developer must translate design

specifications into an implementation in object code for the target machine. Since

design specifications are a more precise representation, this translation is much more

direct. In fact, systems have been implemented in which specifications are

automatically translated from design languages to source code languages which are

then translated into object code by compilers. However, these programs themselves

can net as yet be proven correct, so empirical verification is essential to insure the

intent of the design is met by the object code. For two decades, considerable effort has

been devoted to proving the correctness of programs (verification). However, testing

continues to be the best available tool for verification and validation.

c. Testing

It is generally accepted that exhaustive testing (instrumented execution of a

program, in its precise operational environment, over every possible combination of

inputs) is not feasible for other than trivial programs. It is also accepted that nothing

short of exhaustive testing will infer program correctness. As Dijkstra said, "program

testing can be used to show the presence of bugs, but never their absence". (Dahl,

1972. p. 6) So. the primary objective of testing becomes demonstration of the

programs operational readiness. Individual tests must be mapped from the design

specifications for verification and from requirements specifications for validation. Since

exhaustive testing cannot realistically be performed, a reasonable subset of all possible

tests must be chosen. With knowledge of the design and code, (by not simply treating

modules and programs as "black boxes") tests can be chosen for boundry conditions,

legal and illegal inputs, volume, etc. and logical assumptions can be made about

continuity of function between boundary conditions. Even if the program executes the

tests without errors, and the logic is unflawed, operational readiness is only shown in

14



the specific environment tested. Was some unforseen combination of inputs omitted?

Is the target- machine and its firmware and system software identical to the test

machine'?

2. Quantity

Proliferation of computers throughout modern society has caused an explosion

in demand for software. This demand is a double edged sword. The more software

there is, the more software there is to be maintained. A fixed number of software

engineers, with fixed productivity, will eventually reach a point where ail of their effort

is consumed by maintenance. No new software can be developed until some software in

maintenance is retired.

While the number of software engineers is not fixed, several industry studies

conclude that the number is increasing too slowly to keep pace with increasing

software demands. To complicate matters, the lifespan of existing software often

exceeds expectations. This is particularly true in the United States Department of

Defense ^DoD'l where capital investment in militarized hardware, logistics systems,

training of technicians and operators, etc. all add up to practical and political inertia to

keep a working system in place (and in maintenance) long after technology passes it

by. Improving the productivity of software engineers appears not only desirable, but

essential, to stem the quantity problem.

a. Reuse

The reuse issue is actually a component of the overall issue of improving

productivity Ql software engineers. It is mentioned separately here because it has long

been thought to be the key to making an order of magnitude improvment in software

production capability. Since the earliest days software engineers have redesigned and

reimplemented things which had been built before. The problems of reuse are well

known and go far beyond any "not invented here" egomania. Reusable code libraries

achieved some early success for discrete functions (like mathematical formulas). It was

hoped that higher order languages would make source code reuse a reality for much

more complicated functions and programs. However, a general lack of discipline in

establishing and adhering to language standards resulted in proliferation of subsets,

supersets and generally inconsistant implementations of compilers for varying machines

often defeating portability of such cede. Additionally, at the larger scope of more

complex functions and procedures, the code is too detailed (i.e., data types, data

structures, etc.) for easy reuse. As a result, it is generally the abstraction (e.g.. a

15



domain specific model), and not the concrete implementation, that is reutilized.

(Standish. 1984, p. 495) In general, even the reuse of the abstraction has been informal

at best. Documentation of requirements and design specifications generally lacks

standards outside a particular organization (and sometimes within). The why of

particular design and implementation choices is often unclear in documentation. The

level of effort required to understand what an existing design is doing and what, if

anything, must be done to adapt it to a new application or new environment, is often

seen as more difficult than starting fresh. So. reuse of the abstraction, without

methods and tools to reduce the understanding overhead, is usually informal.

Individuals use their own prior work (things they understand and retain in their

personal toolbox), but they reject organized library resources as too hard to use. This

situation is changing as such methods and tools supporting reuse become more

available, but formal reuse is still absent in many organizations.

b. Productivity

In classical terms productivity can be defined as units of product delivered

divided by cost. Herein lies one of many problems associated with measuring the

productivity of software developers. There are no basic units of software. However.

various measures have been developed and attempts to instrument and study

productivity have been made. In general, we believe productivity in software

engineering activity has been worse than it is now. We believe that various efforts to

improve the software engineering methodology and environment have improved

productivity to its current level. And. we believe further improvements are possible.

We dent believe precise measumients of productivity are possible.

Such measurements industry wide are complicated by the lack of

meaningful measurement standards and the proprietary nature of statistics. Something

as seemingly simple as lines of cede per programmer per day cannot be compared

unless one defines precisely what a line of code is. Is it assembly code or a fourth

generation language? Is their more than one statement per line? Beyond this is the

issue of program complexity. Highly modularized code is likely to have more lines

than unstructured monolithic unmodularized code. Yet a poor design can yield just as

many or more lines of modularized code as a good design. Which represents more

productivity

The most believable claims for measuring software engineering productivity,

and productivity increases, come from studies within individual organizations. At least
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they measure activity in a relatively consistant environment (source system hardware

and software, source language, methodology, etc.). with consistant measurement units

(what is a line of code?) and with a relatively consistant group of individuals over the

course of the study. With such a semblance of a controlled environment, the impact of

introducing new tools or methods becomes more measurable. One consistant source of

such reports, for a number of years, has been Boehm at TRW. (Boehm, 1981 and 1983)

One can argue that the result of such studies can be generalized for other

organizations. One cannot argue that such a generalization offers any precision. But,

it is evidence to offset the risk in a decision to invest in similar tools and methods for

productivity improvement.

3. Maintenance

Software maintenance is commonly defined as any work on a software system

after operational release. It is often subdivided into maintenance to correct errors

(corrective maintenance) or maintenance to improve or modify capability (sometimes

called perfective maintenance). In either case, maintenance involves changing the

program. Without a complete understanding of how the program works and why the

designers chose to make it work that way. a maintainer can often introduce totally

unexpected errors. Such a change can invalidate all prior testing. Maintainers are

often not the original developers, and they must rely on the documentation of the

development process for the understanding required to change a software system.

They need to be able to repeat testing and compare results to original tests in order to

determine the operational readiness of the new (maintained) version. They must

conduct and document new tests to demonstrate readiness of new capabilities. Much

of de\ e'.cpment and maintenance documentation for existing software has been

inadequate to support efficient maintenance efforts. Often, much of the development

effort must be repeated to do maintenance well. In reality, driven by pressure to meet

operational deadlines, much maintenance results from efforts closer to trial and error.

Needless to say. documentation of such efforts, if any, is seldom beneficial to follow-on

maintenance.

4. Management

Management problems have been a major driving factor towards software

engineering methodologies and tools. Problems such as; late deliver.", over budget,

unreliable product, failure of product to meet specifications and product difficult and

expensive to maintain; are common. They are attributable in part to the quality.

17



quantity and maintenance issues already discussed. The familiar phrase. "You can't

manage what you can't measure.", sums up part of management's woes. Another

ma;or contributor to management problems is the chaos inflicted on static plans when

the well defined problem or solution unexpectedly evolves into something else. Such

attempts to manage, based on measurement of the wrong things, are further

complicated by the phase in the life cycle when the change is discovered. Changes or

errors involving the requirements and design, which are not discovered until late in the

development process, are often much more expensive to correct. They can often result

in discarding much of the work, already done.

In the last decade software engineering methodologies, tools and environments

have exploded on the market offering and delivering partial solutions to the software

problem. Work, and controversy surrounding development environments continues.

C. DEVELOPMENT ENVIRONMENT A SOLUTION

A software development environment is, in general terms, the domain in which

the software system is developed. From the view of software engineers this domain

consists of methods, tools (computer hardware and software) and other software

engineers (the managers, analysts, designers, programmers, etc. who make up the

engineering team). In other words, all of the resources necessary to engineer software.

1. Structured Methodology

Since the early 1970's, structured methods for managing and developing

software have been written about, taught and implemented. The structured methods

support the major activities of the waterfall model (Figure 2.1).

By structured methods we mean a collection of procedures and concepts to

increase the productivity and effectiveness of the software engineering organization.

Elements of the structured methods include:

• structured analysis, guidelines and graphical tools that allow replacing the

traditional representations of the requirements specification with one that can

be more easilv understood bv the customer;

top-down design and implementation;

structured design, guidelines and methods to help the designer distinguish

between good and bad designs;

structured programming, composition of program logic from sequence, if-then-

else and dc-while constructs with little or no use of the go-to.

Associated with these methods are aids to implementation such as:

13



• program librarians, to relieve programmers of clerical tasks and manage version

control and archival;

• structured walkthroughs, peer group review of design and implementations to

assist in error reduction and schedule pacing between formal inspections

(Yourdon, 19S6. pp. 2-3).

Controversy about the value of these and other methods often centers around

hew much they improve productivity and effectiveness. As indicated earlier, how much

is a difficult thing to measure and compare with any precision. Yourdon says "In

general . . . they double the productivity of the average programmer, increase the

reliability of his code by an order of magnitude, and decrease the difficulty of

maintenance by a factor of two to ten." (Yourdon. 19S6. p. 3) We'll just say that

common sense indicates these methods should improve productivity and effectiveness,

and our general sense of^ reports from industry, regarding such methods, is that they do

work with substantial benefit.

One of the serious problems encountered trying to use these methods is that a

tremendous amount of cross referencing of data and data structures from one phase of

the iife cycle to another is required. Also, many tasks are cyclic in nature and require a

lot of repetitive activity. For instance, validation of a data flow diagram representing a

requirement specification might require reiterating the diagram several times with

minor changes as the customer and developer narrow down exactly what the customer

wants. Each named piece of data on the diagram is a unique entity recorded in a data

dictionary. Each new change to the diagram must be checked against the data

dictionary to ensure all items are uniquely recorded. Such repetitive or purely

mechanical tasks tend to be error prone and slow when done by humans. They are

excellent candidates for automation using a computer. (MacLennan. 19S3. p. 5)

2. Automation

There are generally three forms of automation supporting software

engineering.

a. Tools

Tools are programs that perform a single type of function. A compiler,

that generates object code for a target machine from source code in a specific language,

is a tool, as are assemblers, linkers, editors, graphic tool boxes, spread sheet programs.

etc..
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b. Programming Support Environments

Programming support environments are collections of tools to provide

support for programming (normally considered the implementation phase of the life

cycle). They generally only directly support programmers. They may be a cooperative,

interoperable set of tools (what we will call a toolset) specifically designed to work

together with a common user interlace and common data exchange formats. Or, they

may be a set of disjoint tools which are separately executed, each with its own user

interface, each performing its task on its own internal data structures, generally with a

sequential file of characters as the only external data interface with each other.

c. Computer Aided Software Engineering (CASE) Environments

CASE environments are a relatively new concept. They are an extension of

programming support environments to the entire software engineering life cycle. They

are intended to provide support to the entire engineering team (i.e., managers, analysts,

designers, programmers, maintainers. etc.) for overall product development.

3. The Environment Jungle

We have been automating aspects of the environments in which we engineer

software for a long time. At first there were simply collections of whatever software

tools were available for the hardware and languages we wanted to use. in general,

partly due to the large number of languages being developed, only the most basic tools

were available (assemblers, linkers, loaders, compilers) to support production of object

code. These environments were based in batch processing techniques. As hardware

advances produced teletype terminals for on-line real-time processing, environments

gave the illusion (in the user interface) of being interactive with the computer. This

was stiil sequential batch processing (for that user), only the batches were much

smaller and turnaround time much faster. Video terminals evolved directly from

teletype terminals, still processing lines of characters. The natural data structure to

evolve for external interfaces in such environments were files of sequential characters.

These are still the most common "standard" data exchange format industry wide. Since

there are more than one "standard" character code (e.g., ASCII and EBCDQ. filter

programs are employed for portability of files.

As hardware provided inexpensive speed and raw computing power, assisted

by operating systems offering virtual memory support, a few languages began

commanding a large market share. As software engineers came to grips with the

software problem, more complex interoperable toolsets appeared. These interoperable
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tools often rely on common data structures (other than simple sequential character

files) representing objects which can be viewed and manipulated by various functions

within each tool. These objects are normally stored in a database accessible by all of

the interoperable tools. The database objects are generally only meaningful in the

context of their tool or tool set which often must eventually produce a sequential

character file for manipulation by tools not integrated with the set. The advent of bit

mapped graphic objects has added further complexity to portability of data among

tools. Due to storage overhead, and the complexity of handling bit images instead of

the objects they represent, bit mapped graphic objects are generally compacted into

unique, complex, proprietary storage code which constitutes a recording of the

sequence of resource (tool) calls used to construct the object. These recordings are

replayed and edited in order to reconstruct or manipulate the objects. The storage

format of such objects is therefore meaningless outside the context of the environment

required to replay it.

a. Integrated vs. Disjoint Environments

We use the term integrated to describe environments with the following

features:

• all resources conform to a consistant user interface;

• all resources are as highly interoperable as possible;

• objects and their interrelationships are in a persistent common data format:

which is meaningful to all environment resources;

We use the term disjoint to describe environments which lack integration:

• inconsistent user interface among resources requiring user to shift modes when
moving from one resource to another.

• incompatable data formats among resources

b. Environment Development Efforts

The software crisis and technological advances (hardware, operating

systems, languages, user interfaces, databases, etc.) have resulted in a booming new

market in environments. We easily collected a full file drawer of documentation in the

form of books, papers, technical reviews, promotional materials, and conference

proceedings describing myriad environments under research, or in production or

operation. What is generally most common about these environments is that they have

so very little in common.

{ 1 ) General State of Technology. Developing a CASE environment is itself

a software engineering problem of mammoth proportions. No standard requirements
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for a CASE environment have been adopted. Since the software engineering process

itself is less than mature or stable, top down specification and design of an

environment to model it has been deficient. For the most part a bottom up approach

has prevailed. While many CASE labels have been hung on projects, at best it is

limited integrated toolsets that are being made. The CASE customer who can define

his particular software engineering process is unlikely to find a toolset which is a

complete CASE environment for his process. Since data portability between

independent tools and toolsets is generally limited to sequential character files,

assembling a complete CASE environment from off- the shelf products can at best yield

a disjoint environment. The majority of what are being called CASE environments

today include:

graphic tools supporting various structured analysis and design methods;

program design language (PDL) tools supporting prototyping through

executable specifications;

programming support environments supporting specific language

implementations, debugging, documentation, version control, and archival;

project management systems supporting a variety of management
methodologies and economic models;

office automation toolsets;

hardware and software supporting multiple view window interfaces and

multitasking.

A prevailing point of view seems to be that it is unlikely that any single organization

could, or should, define canonical requirements for some CASE environment and then

implement all of the integrated resources to instantiate it.
1

'This may not do justice to a few large software developers who have invested in

long term top down development of environments for their own use based on their own
software engineering process and methods of operation. However these systems are

either generally not available off the shelf, or represent an exorbitant investment, and

complete integration within them is dubious. A possible exception , the R1000 Ada
Development System from Rational (Mountain View, California), has been developed

for the market place and is touted in the literature to epitomize "... the fully

integrated CASE environment." (Suydam. 1987, p. 58) However, most would classify

the R1000 dedicated hardware architecture and software as an exorbitant investment.

Also, we should note that European CASE environment efforts seem more advanced

than our own domestic endeavors. ISTAR. from Imperial Software Technology

(London, England), is an example. ISTAR's top down design provides for a flexible,

open and extensible environment.
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It is generally agreed that integration of tools toolsets (resources) is

desirable within an environment for:

• coherence, whereby all the tools behave in a uniform and consistant way (e.g., a

common user interface style);

• control, whereby tools behave in a disciplined way (e.g., not allowing

unintegrated tools to bypass and subvert a configuration management tool);

• sharing, whereby tools work together by sharing data (data is structured

independently of the tools which create and use it)

(Hall. 19ST, p. 289). There is a basic conflict between the desire for integration and the

desire and need (economic and evolutionary) for environments to accept tools from

various sources. We feel the most promising of the current approaches to resolving

this conflict is to build around a kernel structure of resources which provide services to

the tools for accessing and manipulating objects in a standardized environment

database. Once the interfaces to these kernel resources are defined, tool developers

who adhere to the interfaces will develop integratable toois. Two such efforts currently

underway are the Portable Common Tool Environment (PCTE) which is the base for a

number of European environment and tool projects (including ISTAR. see Figure 2.2

(Henderson. 1987. p. 59)) and the Common Apse(Ada Programming Support

Environment) Interface Set (CAIS) sponsored by the DoD.

(2) United States Department of Defense {DoD) Initiatives. Early in the

DoD common high-order language project which spawned Ada, developers recognized

that the language alone would be insufficient to combat the problems associated with

DoD software projects. DoD sponsored development of requirements, defining the

Ada Programming Support Environment (APSE;, with the stated objective ".
. . to

support the development and maintenance of Ada applications software throughout its

life cycle, with particular emphasis on software for embedded computer applications."

(Stoneman, 1980, p. 1) Fundamental concepts of the APSE included:

• host target environment, where the APSE is hosted on a development machine

whiie the target machine of the software, to be developed utilizing the APSE.

may be a different machine:

• program database, to include ail project information (e.g., source and object

code, documentation, specifications, etc.);

• extensibiiitv. with all tools written in Ada.

"In embedded systems the target hardware may be so limited in resources (speed.

memory, etc.) that it cannot practically support the development environment.
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ISTAR FRAMEWORK ISTAR TOOLSET

Figure 2.2 The ISTAR Integrated Project Support Environment (IPSH).
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The original Stoneman representation of the APSE is illustrated in Figure 2.3 (Booch.

19S7. p. 409/. The host machine resources are provided through the Kernel APSE

(KAPSE) which provides the logical to physical mapping. The Minimal APSE

(MAPSE) contains some minimal toolset for program development, and the APSE

overall represents a life cycle environment.

While early Stoneman developers may have thought in terms of a single

organization developing an APSE or MAPSE under DoD sponsorship, this approach

quickly ran into the integration versus independent developers conflict mentioned

earlier.
J Commercial developers are competitively pushing the edge of technology in

programming support and CASE environment resources. Any standardized integrated

toolset from a single developer faces stiff competition in fields (e.g., editors, debuggers,

user interfaces, etc.) where few widely accepted standards exist and several potential

defacto standards might emerge. To encourage the competitive advance of

environment technology in a direction supporting integrated environments, DoD

sponsored the development of the Common APSE Interface Set (CAIS).

The CAIS provides interfaces for data storage and retrieval, data transmission to

and from external devices, and activation of programs and control of their

execution. In order to achieve uniformity in the interfaces, a single model is used

to consistently describe general data storage, devices and executing programs . . .

referred to as the node model. {Military Standard Common APSE Interface Set

(CAIS), 1985. p. 11)

The development of CAIS has been a lengthy and methodical process of bounded

scope. The version of the specification scheduled for release in the Spring of 1987 is

intended to support some transportability interfaces often required by common

software development tools, including:

• the node model:

• processes, covering program invocation and control;

• input output, covering file and device I O and interprocess communication;

• utilities, list operations for manipulation of parameters and attribute values.

Some CAIS issues and decisions deferred for later versions of the CAIS include:

-The Army Navy Ada Language System (ALS) was such a venture from which

the Army has now withdrawn support. The Navy has continued with ALS-N with the

specific purpose of directly supporting some major unique Navy embedded

architectures. It has been anticipated that such support will not be spontaneous from

the private sector cue to the extremely limited vertical market.

is
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• configuration management. CAIS supports resources for configuration

management but no specific methodology.

• devices, supports scroll, page and form terminals and magnetic tape drives,

(other devices and possibly other ANSI or ISO interfaces (e.g., ISO DIS 7942

Graphical Kernel System (GKS)) are under consideration);

• inter-tool interfaces, are not defined;

• interoperability, only a primitive text-oriented file transfer capability is provided

between a CAIS implementation and its host. CAIS does not define external

data formats for transfer between environments or between a host and target;

• archiving, a decision on the form that archiving interfaces should take has been

deferred

{Military Standard Common APSE Interface Set (CAIS), 1985. pp. 1-2).

The Software Technology for Adaptable Reliable Systems (STARS)

program established by the DoD in late 19S3 included the STARS Software

Engineering Environment (STARS-SEE) task. The early objectives of STARS-SEE

were to specify the requirements for a complete life cycle environment which was fully

integrated and interoperable, multilingual, utilized state of the art technology and was

itself designed to evolve with technology. Early STARS leadership felt that the DoD

itself was best capable of analysis and definition of requirements for such an

environment. A joint services team composed of uniformed and DoD civilian software

professionals, augmented by DoD contractors, analyzed the software engineering

process, requirements for the STARS-SEE. and the state of technology. This resulted

in generation of a five volume collection of thirty-five preliminary reports, by 19S6. in

preparation for defining the STARS-SEE software architecture. (Naval Air

Development Center, 19S6. p. flyleaf) Changes in project management resulted,

csNentially. in disbanding the STARS-SEE task effort within DoD activities and shifting

emphasis to encouragement and support of private sector software engineering

environment development efforts.

In addition to such high level DoD environment initiatives as

APSE CAIS and STARS, several lower level efforts exist. DoD field activities engaged

in software engineering already have an investment in their own unique individual

environments which have evolved bottom up (with the evolution of hardware and

software technology) as they have done their jobs over the years. They are in various

stages of evolution from batch oriented and "interactive" time shared central

mainframe, mini complexes, to networked ""personal" microcomputers with '"terminal"

access to central computing resources. Individual initiatives to upgrade local



environments with relatively inexpensive "personal" computers and off-the-shelf

software engineering tools in such a bottom up fashion are often seen as both blessing

and curse. Blessing for their contribution to improving an often otherwise extremely

unproductive working environment, and curse because of the lack of interoperability,

transportability, consistancy, etc. which they represent.
4 DoD Ada implementation

policy (essentially that Ada is the only authorized programming language for new

embedded systems and existing systems entering major revision) has been one point of

focus for many of these independent efforts in DoD as well as for the tool and

environment developers.

"'Not all of these efforts are so limited. Some are large and well organized and

funded (e.g., the Interactive Ada Workstation being developed under contract by

General Electric for the Avionics Lab, AFWAL/AAAF-2, YV'PAFB. OH., and the

Software Life Cycle Support Environment (SLCSE) being developed by General

Research Corporation under sponsorship of the U.S. Air Force Rome Air

Development Center, GAFB. N.Y.).
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III. CASE DEVELOPMENT ISSUES FOR MISSILE SOFTWARE
BRANCH (MSB), CHINA LAKE

A. MSB BACKGROUND
MSB is a small software research and development group. They are a branch of

the Weapons Development Division, Michelson Laboratory, Naval Weapons Center,

China Lake, California. Software engineers in the group are domain specialists in

onboard, embedded missile software. Prior to current efforts to use Ada, virtually all

of their work involved assembly language programs for unique processors with

extremely limited resources (e.g., speed, memory) in onboard, mission critical, real-time,

embedded missile systems. Working around constraints like limited memory often

requires methods (e.g., unstructured design) which subsequently make the software

extremely difficult to understand and maintain. Reuse of such hardware specific and

unstructured software is virtually impossible. Knowledge of the weapon domain (a

major factor itself) is often the only reusable resource in this software engineering

process. Hardware advances with the potential to improve the resource (speed,

memory, etc.) availability of potential target processors, and the increasing availability

of Ada compilers for target processors, have opened the door for MSB to exploit Ada's

inherent support for structured methods, object oriented software engineering and cede

portability. -

1. Mission

The basic mission of MSB is to establish and maintain a Navy m-house

capability for developing state of the art missile software. As with any research

oriented organization, they are considered a resource for exploring new technologies

which would likely remain unexplored in the profit oriented private sector. As a

development resource they may be tasked to perform some or all of the development of

software for specific missile projects.

^Onboard embedded software operates in a unique environment. Size, weight,

power, and heat dissipation continue to be a major concern, and even today the

memory-is-cheap scenario may not apply. Efficiency of object code generated by target

machine Ada compilers is also of major concern. (Myers, 19S7, pp. 71-72)
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2. Problem

Hardware advances (e.g.. VLSI) have proliferated embedded processors into

weapons systems projects at an ever increasing rate. The impact of new technologies

on the operational environment of the weapons (e.g., operational deception, electronic

warfare, etc.) demands increasing capabilities for mission fulfillment. New technologies

make new mission capabilities possible and. or essential. As a result, mission critical,

embedded system software demand (both upgrade of existing systems and new systems

development) is increasing rapidly.

Current federal policy on personnel funding effectively limits any increase in

MSB personnel resources in the foreseeable future. Projects rejected (due to

insufficient capacity) by MSB must either be done somewhere else (generally private

sector contracts) or be abandoned or postponed. For many projects, especially

research, the missile software domain expertise of MSB makes them the best equipped

for the job. Other considerations, such as security of operational environment

intelligence and hardware advances, can make in-house research and development

easier, more desirable and less expensive. Our purpose here is not to attempt to

quantify capacity shortfall at MSB, or its cost in terms of private sector contracts or

unexplored avenues of research. But. to report MSB's own assessment that they are

unable to keep pace with demands for their services.

3. Organization

The largest organizational subgroup within MSB is known as the Software

Technology (ST) group. This group, currently seven software engineers, is engaged in

various projects often involving only one or two people per project. These projects are

primarily research oriented (e.g.. rapid prototyping for feasibility demonstration). The

customer sponsoring such projects is generally the project manager (not part of MSB)

for the particular weapon system involved. Also, independent research of a less system

specific nature (e.g., developing and benchmarking Ada library packages) may be

sponsored by the branch, department or some other activity. Besides the ST group, a

team of three software engineers and a program librarian are currently engaged in a

development project for the Sidewinder missile. There are three software engineers in

the Sparrow missile development group. There is a Software Acquisition Contracting

Manager group, of two, who are dedicated to configuration and documentation

management for the branch. Finally, there are a Branch Head and a secretary bringing

the total to 18 personnel. Development teams are formed from ST group personnel
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assets, and return to the ST group when development projects end. This is a general

description of the MSB organization and the degree of flexibility in their software

engineering process required to meet their committments.

4. Current Environment

MSB has been actively improving the environment within which they work.

Management tailors the software engineering process to the task at hand. Research

projects may proceed employing structured methods and top down design for rapid

prototyping without pushing the entire bow wave of static sequential life cycle

constraints required (e.g., by DoD Standard 2167) when a project enters development.

MSB employs structured methodologies espoused by Yourdon and others. MSB is

actively engaged in research to demonstrate Ada feasibility for missile software. This

work includes performance analysis of object code generated for potential "off the

shelf target processors. They are developing expertise in object oriented design with

Ada. They are actively researching missile software domain Ada library packages and

working towards reuse of design and code. They have sponsored development of an

Ada code analysis metric (Halstead metric) tool, AdaMeasure, (Fairbanks, 19S"7
) at the

Naval Postgraduate School (NPS). They have encouraged other NPS efforts
b

including this one. which focus on aspects of CASE resources and development.

To the extent possible with available funding, MSB has upgraded the

hardware and software of their host development system. The result to date is a

disjoint environment of personal microcomputer workstations with local area network

terminal access to their own super-microcomputer and the central site processors. The

MSB microVAX II runs the UNIX operating system and hosts various Ada compilers

and their run time support tools (e.g., debuggers). Similar resources are available on

the central site VAX. The personal computer workstations generally have

individualized collections of disjoint tools for word processing, text editing, scheduling,

spreadsheets, eraohic drawins. etc..

6Under development concurrently with this work, these efforts will also result in

June 198" theses. While titles are not yet firm, the works are identified by subject and

author:

• An Ada Ternunal Interface Package, by Anthony Keough;

• Improved AdaMeasure (Henry Kifur metric), by Paul Herzig;

• Interactive Graphics in a CASE Environment User Interface, by Gregg Singer.
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Recognizing not only a need, but an obligation, to remain a viable research

and development resource, by remaining competitive in terms of development cost,

productivity, and availability. MSB is actively investigating CASE environments.

5, CASE a Desired Solution

In the Fail of 19S6, MSB began to actively explore CASE solutions to

improve productivity, reduce development costs and improve product quality. Their

high level requirements included automated resources supporting the following:

• CASE environment database containing code, documentation, specifications,

requirements, transformations, design histories, project summaries and cost

projections integrated with graphic design tools;

• library, supporting reusability of source code, documentation, tests and test

data and object code;

• documentation generation, supporting their research/prototype process and the

development process (DoD Standard 2167 and other requirements);

» graphical analysis and design. supporting Yourdon structured

analysis structured design methodologies and Ada object oriented design;

• programming support including style guidelines, static and dynamic analysis and

source and object code generation;

• office automation, supporting project management.

In addition, they identified hardware resource constraints including support for:

• networked software library (database);

• modern graphics oriented methodologies and tools;

• team approach to software development.

They refined these hardware constraints further to:

• multitasking, supporting parallel simultaneous interaction with environment

resources;

• rnega-pixel graphics resolution, supporting multiple virtual terminals for parallel

simultaneous interaction with concurrent tasks;

• mega-instructions per second, supporting resource-intensive features of the

system;

• mega-bytes of main memory, supporting resource-intensive features of the

system.

(Missile Software Branch, 1986, pp. 6-8)
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B. CASE ENVIRONMENT PROCUREMENT ISSUES

Within DoD. procurement of any large, expensive, complex system of hardware

and software (like a CASE environment) is governed by policies and standards which

require such things as demonstration of economic feasibility and documentation of the

development life cycle in a systematic way for management as the procurement

progresses (e.g., DoD Standard 2167 requirements). Our purpose here is not to study

the process, but to discuss some general issues which would arise during such a

procurement. A fundamental issue is a consideration of make versus buy. By make we

mean to make or have made (e.g.. under contract) a system which is designed topdown

for the unique organization and software engineering processes of MSB. By buy we

mean a sytem composed of existing (off-the-shelf) products which are purchased to

assemble a CASE environment. We will discuss briefly two fundamental aspects of the

buy option. In the first case one buys a collection of tools or toolsets from a variety of

sources, choosing each for the particular functional resource it provides. Because of

the general current state of the marketplace in tools (le: lack of consistent user

interfaces, lack of interoperability, etc.) the best result of this approach is a disjoint

environment assembled in a bottom up fashion. We call this a short term appoach. In

the other case, one buys a complete environment (in todays marketplace there are few

choices) which has been designed top down as an integrated environment. We cali this

a long term approach.

1. Short Term Off-the-shelf Buy Approach

a. Advantages

(1) Immediate Results. Compared to an environment as a whole, a tool

with limited functions is relatively inexpensive. This will often allow funding from

lower levels within a bureaucracy with less justification and shorter procurement

delays. The tool can be in the working environment much sooner.

(2; Ease of Extensibility as User Experience and Technology Evolve

Requirements. The relatively small investment in any partcular tool in the

environment, allows easier justification and funding to enhance the environment by

adding a tool which fulfills new requirements better than existing tools, or adds totally

new functions.

(3) Pick Best of Available Tools. As discussed previously with regard to

the dilemma of integration versus a variety of sources, this approach encourages access

to the best technolosv available now or in the future.
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b. Disadvantages

The advantages listed above lead directly to some major disadvantages.

(1) Short Term Solutions Create Long Term Problems (e.g., Creeping

Evolution of the Environment). Within a software engineering environment, the issue at

hand is production of a software product. The product is more than just the object

code. Change (maintenance in the traditional view, or evolution in the

transformational prototype development view) of software is generally accepted as

inevitable. To be able to change object code in an efficient and responsive manner

(without starting over from scratch), is a major (if not the major) purpose for the

development environment. At a minimum, the environment should facilitate the

archival of the product in some durable storage media from which the development

process can be recreated exactly and then evolved. Since the product is a direct result

of the specific tools used to create it (and the tools themselves are programs which are

not provably correct or identical), the only guaranty that a recreation from the archives

is precisely the same product is if precisely the environment used in the software

engineering process is also recorded in the archival process. If the environment is

subject to creeping evolution the task of archiving becomes very complex as multiple

versions of a tool, or even totally different tools, may have been used in developing the

same or different parts of the product at the same or different times.

(2) Disjoint Environment. While each tool may add to overall productivity

in a specific way, the additional overhead involved in using a disjoint environment will

result in the overall productivity gain being less than the sum of its parts. In contrast,

synergistic gains in productivity and quality should be expected from integrated tools

(e.g., a debugger which works with an object created by an editor, as source code, and

is capable of changing the object without forcing the user to shift modes (leave the

debugger and re-enter the editor to make the change)).

(3) Inconsistant User interface. With rare exceptions, the user interfaces

from one vendor of software to the next vary considerably. While many argue that

this is only of concern with novice users who must learn a large number of interfaces at

the same time, we feel it is a major consideration for expert users as well. The expert

user may make fewer mistakes than the novice because he knows which knobs operate

the system in each of the modes of operation imposed by the various disjoint tools.

But, there is a cognitive investment, in navigating this modal hierarchy, which must

detract from the creative work the user is trying to accomplish in the process. Also,
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the training overhead required to create expert users (including acceptance of the new

environment by existing users in the first place) will be much higher than with a

consistant user interface.

2. Long Term Off-the-shelf Buy Approach

a. Advantages

(1) Long Tern:. Since this approach involves a complete environment, we

are talking about a major investment in both hardware and software. Once such a

system has been procured it is likely to remain quite stable for relatively long periods of

time. Because of its large mass as an investment it will tend to have a great deal of

resting inertia. The developers' changes will be consistant with the overall design to

protect the users investment. Creeping evolution is unlikely, and any evolution is more

easily traceable due to reduced complexity in the number of vendors involved.

(2) Integrated Resources (within this CASE environment). One should

expect synergistic gains in productivity and product quality.

(3) Consistent User Interface. A consistent user interface is not

guaranteed just because the environment is the product of a single developer. Neither

is it prevented if more than one developer is involved. Since there are a variety of

possibilities, and no one well accepted standard, it takes a committment, by the lead

developer, to a consistent interface philosophy. One relatively successful approach to

this is the Apple Macintosh interface. While Apple themselves followed a consistent

interface . they also invested in the future by providing the toolbox of resources, in

system firmware, which make it easier for application developers to simply conform

with the Macintosh interface than to invent something new and different.

b. Disadvantages

( 1 ) High Cost. This approach requires an up-front committment to a

major hardware software system representing a major investment of funds relative to

that involved for individual tools. Local approval and funding are less likely.

Justification of the system to a higher level of a bureaucracy is generally more formal

and takes longer.

(2) Sole Source. Unless his product has a well established market share

and the vendor is clearly a healthy business concern, there is a great risk in a major

investment in his product. (No one wants to be the first, and possibly only, customer.)

This risk is even greater if the product involves a unique hardware architecture required

to host the environment. The user mav be effectively limited to the vendor's
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technological and proprietary vision both for what is included in the environment

today and how it will evolve in the future. The resting inertia which makes this a

stable long term asset may inhibit extensibility in stride with the advancing state of the

art. Also, an off-the-shelf complete environment may include resources which are not

applicable or useful for the MSB software engineering process. The customer naturally

resists paying for something he will not use.

(3) Incompatible Data Formats (with other development environments). It is

a natural extension of the idea of interoperability within an environment, to also

consider interoperability between different environments. If for example MSB is tasked

to prototype a proposed change to an embedded software product developed for a

project by some contractor, the process would be significantly enhanced if the MSB

CASE environment could accept and operate on the model of the system and all of the

objects developed in the contractors original software engineering process and

environment.

3. Make Approach

The make approach shares many of the disadvantages of the long term buy

approach. In general terms it appears to far exceed existing MSE resources. In

Chapter IV, we will discuss some of the inherent risk for any sole development of a

CASE environment.

C. WHICH WAY FROM HERE

In order to effectively make decisions which commit scarce resources to

developing a CASE environment for MSB. managers in the MSB chain of command

must understand, the software engineering problem and how it relates to the

productivity of MSB, as well as what a CASE environment is intended to be. and do,

to improve productivity. An understanding of general CASE environment development

issues, and principles for a good CASE environment will also help.
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IV. CASE ENVIRONMENT DEVELOPMENT ISSUES

A. SCOPE OF CASE PROBLEMS

As previously mentioned there are a number of products on the market which

use the term CASE in their descriptions but only amount to tools, or toolsets, limited

to a portion of a full life cycle software engineering environment. A life cycle view of

CASE entails some major development problems which are reflected in the general

state of this technology today.

1. Evolutionary Development Politically Necessary

High risk is the driving force behind evolutionary development of CASE

environments. Because of the size and complexity of a CASE environment, and the

immaturity, instability or rapid evolution of the fundamental components involved (i.e..

languages, database technology, management techniques, software engineering

methods, economic models, hardware engineering, graphics, networking, ergonomics,

artificial intelligence, etc.). the classic problems of software engineering apply to CASE

environment development. Definition of the problem (the software engineering

process) is generally incomplete, or inconsistent, and likely to remain so for sometime

for the software industry7 as a whole. As a result, no clear industry wide set of

requirements to be satisfied by the environment has emerged. Likewise, no clear

agreement on fundamental issues regarding data models and component interfaces

within environments or among environments have emerged. Most of domestic industry

seem to lack the resources and motivation to undertake a full life cycle CASE

environment development project under such high risk conditions (uncertain of the

direction each of these technologies wiil take). As a result, most efforts have continued

to chip away at the problem from the bottom up. ' The risk of changing technology is

not likely to suddenly go away. The software engineering process may be well defined

for a particular organization in which the majority of projects follow similar life cycles.

However, it is likely that several distinct environment markets exist, and committment

to a sinsle life cvcle model would constitute a committment to a sinsle vertical market.

European developers seem to be way ahead in top down development of

integrated full life cvcle CASE environments.



2. Requirement Tradeoffs Contributing to Risk

Among the many tradeoffs involved in CASE requirements analysis are:

low (e.g.. UNIX) vs. high integration:

closed vs. open environment (extensibility):

language dependence vs. independence;

monolingual vs. multilingual:

partial vs. full life cycle support;

single vs. multiple methodology;

single user vs. multiple user;

hardware dependant vs. independent;

text vs. graphics;

system configurable vs. user configurable:

non-secure vs. secure:

cost effective vs. cost exorbitant

(Henderson. 1987, p. 48). What is needed is a committment to a CASE environment

development philosophy which will allow evolutionary development of good

environments, while minimizing risks from changing software engineering process

requirements and continued technological advances. First, let's consider what

constitutes a good automated environment for software engineering.

B. FUNDAMENTAL PRINCIPLES FOR CASE ENVIRONMENTS

The background discussion of the preceding chapters included several issues

which have influenced the evolution of CASE environment efforts. We did not

discover any clear cut study or statistics proving one side of certain issues to be

superior to the other. One can get a feel for the trend of developments, user

acceptance and the direction of ongoing research, by examining past and continuing

work with environments. A strong dose of common sense can then be applied to the

issues, and choices can be made which appear to be fundamentally better than the

alternatives. An objective study to demonstrate that these choices are superior to their

alternatives is certainly a direction for further research, but far exceeds the scope of

this work. 8

It seems that few such studies are ever conducted. Such a study must of

necessity follow implementation of the principles involved. Then each of the

alternatives need to be applied in parallel to the same problem in an environment

where other variables (software, hardware, people, etc.) are controlled (no doubt

difficult and expensive). As has often been the case with past developments, if a factor
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Leon Osterweil (1981. pp. 36-37) wrote that.

The essence of a software environment is the synergistic integration of tools in

order to provide strong, close support for a software job. This environment must

have at least these five characteristics: breadth of scope and applicability, user

friendliness, reusability of internal components, tight integration of capabilities.

and use of a central information repository. A support system must possess

these characteristics if it is to merit the name environment.

This <i\ year old view of what should characterize an environment has not generally

been attacked or disproved, seems to represent the consensus of todays stated goals for

environments, and is the essence of what we call fundamental principles for CASE

environments.

1. Portable/ Reusable CASE Resources

We view environments as a collection of resources. The collection includes:

• physical resources, consisting of computer hardware and system software and

firmware;

• CASE resources, consisting of software tools implemented on the physical

resources:

• manual resources, consisting of the methods and procedures necessary to the

software engineering process but not implemented as CASE
resources;

• human resources, consisting of the people who use and facilitate utilization (in

the case of manual resources) of the environment.

Our primary focus is on CASE resources. Naturally, the CASE resources imply the

minimum physical resources required for their execution. They also define the

automation boundaries for a software engineering process in a given environment

thereby determining the nature of manual and human resources.

CASE resources should provide the software engineering team (human

resources) with a problem solving interface between the real world problem (for which

they must develop a software solution) and the manual and physical resources. A

broad, shallow, functional hierarchy of resources, is required to support user friendly

like productivity (which is inherently difficult to quantify with precision) is noticeably

improved by the change, the industry tendency seems to be to accept and exploit the

change. If the advantage of the change is not clear, it is resisted and either limps along

with a minor market share or dies out by natural selection. In either case there seem

to have been few attempts to objectively quantify the relative advantage of the

alternatives involved. At best, empirical order of magnitude comparisons of similar

issues are conducted.
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goals (discussed later). By shallow, we mean a hierarchy with very few layers. This

facilitates responsiveness by reducing the calling overhead required to descend through

the hierarchy in order to use physical resources. Subordinate layers in such a shallow

hierarchy will be bread in the sense that they will of necessity contain many resources

(if modular design principles of coupling and cohesion are observed). In such an

architecture, kernel utility resources (with unique, independent functionality) directly

access the hardware resources or the environment data model (the key CASE resource),

on behalf of tool resources which provide CASE environment services to the user

interface. Such an architecture enhances portability and reusability of software

components and extensibility of software systems.

The issues of portability and reusability of CASE resources and extensibility of

CASE environments are fundamental to risk management. CASE

environment, resource user risk will be reduced if their investment is secured well into

the future (inspite of hardware, methodology, and other technological advances).

CASE environment, resource developer risk is reduced if their products reach a broader

market (various hardware and methodologies) with greater longevity. Unfortunately,

the same competitive market dynamics which encourage technological innovation tend

to discourage reusability and portability. Hardware and software developers who rely

heaviiy on the direct linkage of their respective products, to control their share of the

market, tend to resist (often in subtle ways) industry standardization efforts which

might undermine their market leverage.

2. Integrated CASE Resources

All of the CASE resources in an environment should be integrated to facilitate

coherence, control and sharing (see Chapter II) in order to yield a synergistic effect

whereby the utility of the environment as a whole is more than just the sum 01 its

parts. Recall that with respect to automated environment tools, in this instance CASE

resources, we defined integrated as:

• all resources conform to a consistant user interface;

• all resources are as highly interoperable as possible;

• objects and their interrelationships are in a persistent common data format;

which is meaningful to all environment resources.

The consistent user interface and interoperability allow for intuitive access to CASE

resources relieving the user o[ much of the cognitive overhead of navigating among

various tools, with various operating controls. The user can devote more of his
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attention to the software engineering task at hand. Interoperability, based on

manipulation of the common data model by all CASE resources, should allow the user

to create or change an object by manipulating any of it's displayed forms.

(MacLennan, 19S7. p. 1-3)

3. Open Environment

To enjoy the benefits of new technology and competitive endeavor, and

encourage evolutionary development for multiple environment markets, environments

should be open to extensibility. To support reusability of resources, functionality of

existing CASE resources should not be diminished by new resources. To reconcile

extensibility with the seemingly conflicting principle of integration requires agreement

on and standardization of:

• data model used to represent objects and their interrelationships;

» interfaces of CASE resources with the data model; 9

• interfaces of CASE resources with physical resources;

• interfaces of CASE resources with the user.

4. User Friendly

User friendly is a much overworked term, but we've chosen to use it for

consistency with Osterweil. Commitment to an integrated CASE environment

composed of CASE resources as described above can facilitate an event-driven user

interface philosophy. Such a philosophy is characterized by:

• responsiveness, user's actions have direct results, are intuitive and spontaneous

(i.e., no modes);

• permissiveness, the user can do anything reasonable at any time, the user decides

what to do next, not the individual CASE resource (i.e.. no

modes);

• consistency, regardless of what CASE resource is in execution, the user's

control options and the apparent response to them are consistent

with the type of function being performed (e.g., anything that

seems like text editing should use identical controls regardless of

whether it involves labeling a graphical diagram or generating a

textual document).

'""The database provides an integrating and unifying medium for interfacing tools

without forcing them into a complex structure of interrelationships. Tools obtain their

information from the database and return their results to it without having to interface

directly with other tools. . . . In order to maintain flexibility it is important to avoid

building bridges between pairs of tools rather than bridges into the database.'*

(Howden. 19S2. p. 326)
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The feel of such an interface should be that the environment is waiting to serve the

user as opposed to the other way around. This is done by employing an event-driven

control structure where user actions are events and the system is always ready to

handle them (e.g.. as priority interrupts, or by polling for them). The broad shallow

architecture, of the CASE resources in the environment, facilitates event handling

without modality.

C. FUNCTIONAL ABSTRACTION AN APPROACH TO SOLVING
PROBLEMS

The principles may not have changed significantly in six years, but CASE

environments embodying these principles are not generally available. Without

belaboring the point, we attribute this to the high risk of building on questionable

standards in rapidly changing and relatively immature technologies. We propose a

strategy, to avert some of said risk, allowing progress towards these principles.

1. Definition of Abstraction

An abstraction is a description of some object which separates the defining

properties of the object from the unnecessary details about it. A software engineer is

concerned with solving seme problem. The tools (CASE resources) in his software

engineering environment form a problem solving abstraction. The hardware (and some

of the software), on which the problem solving abstraction (the CASE resources) are

implemented, form a physical resource abstraction (Y'urchak, 1984, p. S).

2. Formal Specification

It is generally recognized that the operating system is an abstraction of the

hardware system of primary and secondary memory resources, processor resources, and

input output resources. Additional abstractions (e.g., video display resources) have

also become commonplace. Such abstractions generally exhibit lack of formalism or

consistency, a semantic gap, similar to the problems faced by linguists trying to specify

the semantics of language constructs. "The vital property of a specification which

guarantees that a correct program corresponding to it may be constructed, is .... its

consistency." (Lehman. 1984. p. 39) The practical problem to be solved involves the

portability of software. One must be able to specify resources, in an implementation

independent manner, in terms of abstract functional properties they provide. Davis

(1984). using concepts developed to specify the semantics of high level language

constructs (particularly abstract data types), developed a method for algebraic

specification to solve some of these problems. Using such a formal specification as an
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external frame of reference, correctness of a program developed from the specification

can be viewed as a calculable, instead of empirical, notion (Lehman. 19S4. p. 39). The

implication is that a correct implementation of a problem solving resource, layered on

top of correct implementation of physical resources, will always behave functionally the

same regardless of the implementation or hardware details. The way is then clear for

development of portable, reusable, functional resources.

3. Abstraction of Physical Resources

Yurchak (1984) used Davis's algebraic formalism to specify AM, an abstract

machine (physical resource) from functional requirements. Multiple instances of AM
have been successfully implemented, from Yurchak's specification, on different physical

hardware at Naval Postgraduate School. Implementation efforts proceed quickly and

mechanically without the semantic ambiguity of less formal specifications. Work is

continuing testing portability of applications running on AM when hosted by different

physical hardware.

Grant (1986) functionally abstracted resources to support graphic user

interfaces. He hosted his abstract resources on the Apple Macintosh and Digital

Research's GEM 'on the IBM PC). Applications, using only his abstract resources,

are portable between the two host implementations inspite of significantly different

hardware and system software (e.g.. differences between color and monochrome are

handled by the abstraction by placing colors within a gray scale, from light to dark,

causing them to be displayed in logical shades q[ gray when hosted on monochrome

hardware.). There is no noticeable (from a human interaction perspective) degradation

in the response time of applications using Grant's abstract resources vs. similar native

system resources (e.g., mouse tracking) on either host. This is attributed to Grant's

adherence to the broad shallow architecture principle for portable reusable resources

supporting user friendliness. At most two levels of calling overhead are added between

an application resource call and the native system resources.

4. Abstraction of Environment Resources

By defining abstractly the basic functionality of CASE resources based on a

useful standard data model, and implemented on abstract hardware resources, software

developers may be able to drive CASE development with minimal risk from the

uncertainties of hardware evolution, language evolution, and even evolution ol" the

software engineering process. One key is agreement on a standard data model capable

of representing all Oi the objects (i.e., real like people, programs and documents; or
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imaginary like yet undeveloped programs or unhired people) and their inter-

relationships which compose the software engineering environment. CASE resources

must assume basic hardware and system capability as specified for the abstract

hardware resources. Once a CASE resource is operational on the abstract hardware, it

would be portable to any physical hardware capable of hosting the abstract hardware.

Given an abstract hardware host, fully integrated environments could be assembled

from abstract CASE resources. An environment builder could design and implement

his own preferred consistent user interface which interacts with the abstract CASE and

physical resources. But, ideally he would find it easier to adhere to user interface

guidelines making use of CASE resource utilities which directly and efficiently use the

abstract physical resources to provide a responsive, permissive, consistent, human

engineered user interface. New resources could be abstracted, as technology advances,

by adhering to the specified data model and interfaces.

Such an aproach is directly pointed to by efforts such as CAIS and PCTE.

We believe efforts in this direction hold some promise for bringing order to the current

environment chaos.

5. Layers

The question o£ efficiency often comes up in connection with our advocacy of

layering abstract problem solving resources on top of abstract physical resources on

top of actual physical resources. This is certainly an area of concern since

responsiveness is one of our user friendly requisites, and many CASE resources may be

physical resource intensive (e.g., manipulation of many interrelated objects in a large

project database). A key to this issue is our advocacy of a broad shallow hierarchy of

CASE resources facilitating responsiveness of event driven user interfaces and resource

intensive tools, and providing rapid access to physical resources by avoiding a deep

modal hierarchy. Grant's experience indicates that this can be a viable approach for

supporting user friendliness in an interactive graphic user interface. The speed of

physical resources has been continuously increased by hardware advances, and more

recently through multi-processor architectures.
10

so it seems reasonable to argue that

l0As an example, the Multi Backend Database System (MBDS) at the Naval

Postgraduate School provides for distributing a database evenly among multiple off-

the-shelf backend microcomputers. Database size can be doubled, with no impact on

transaction time, if the number of backends is doubled. Or. the response time can be

halved by doubling the number oi" backends while maintaining database size. The

number of backends is transparent to the users who deal with V1BDS as an abstract

database resource which supports multiple data models and multiple query languages.
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small efficiency gains in CASE resource implementation, at the cost of portability and

reusability, are likely to be wasted in the long run (i.e.. if you must scrap non-portable

resources in order to take advantage of more significant performance gains offered by

technological advances).

In addition to efficiency considerations, a major consideration, in constructing

abstract resources is identifying the individual functions to be provided. As Osterweil

(1981, p. 37) observed, different application areas will inevitably lead to differences in

environments to support them. The bottom layer of problem solving resources should

be atomic functions which directly support multiple top layer resources. As an

example, an atomic resource might be a parser which is called by pretty printers, error

checkers, static analyzers and compilers, etc.. The philosophy for developing

environments should use information hiding to protect the integrity of these basic

layers. In other words, the users of top level resources only interact with those

resources. For instance, the compiler user should only use the compiler. The fact that

the parser even exists should be hidden from him. Those abstracting top level

resources, know the parser exists, but only access the parser in terms of its abstract

functional interface. If the need arises to jump around a layer of abstract resources to

get at some lower function, then a function which should have been abstracted has

been missed. This is one reason why high order languages like Ada or Pascal don't

produce portable applications. Abstraction in these languages is at an extremely high

level (the programming logic level), and hardware or operating system calls are often

required to handle external interfaces (e.g., inputoutput devices). In the case of good

program design these may be collected into abstract interface packages and

documented as requiring change before porting. By abstracting at a lower level, and

being committed to a philosophy preserving the integrity of layers of resource

abstractions, portability and reusability of environment resources may be achieved.

6. Standards Enforcement vs. Encouragement

One thing the software industry has is plenty of standards. As part of the

original STARS-SEE effort, Inst'uute for Defense Analyses conducted a study of

information interface related standards. They identified 772 existing standards and 422

emerging standards
H from 77, international. U.S. government, or industrial,

organizations. The study focused on standards, in 25 categories (e.g., data interchange.

n The category of emerging standards included both standards oriented

development projects and commercial ventures becoming defacto standards by virtue of

market share.
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project management, graphics, programming languages, etc.), considered o[ possible

relevance in defining integration requirements for the STARS-SEE (Nash. 1985, p.

223).

The fact that so many standards exist, and so many more are developing

suggests that standards are anything but standard. Many standards are the result of

noble effort by standards organizations. But, adherence to such standards, by

developers, can be a high risk proposition. If the standard is something new and

different, there is no easily predictable market for a product conforming with it.

Success of such a product (its market capture) is determined by a multitude of factors.

If the product is measurably or noticably superior to some existing successful product,

or provides some entirely new and highly demanded function, and is targeted for

physical resources commanding a significant portion of the likely user group, it will

probably be successful. This is risky business, and many standards on paper never

become standards in fact. Some standards of necessity (e.g., hardware interconnection,

external communication protocols, etc.), many of which began as defacto standards,

are broadly accepted as mutually beneficial to industry as a whole. Other standards,

such as those promoting software portability (in this case CASE resources), may be

viewed favorably by users, and developers without a vested interest in particular real

physical resources. However, much market selection of hardware currently involves

issues concerning the breadth and depth of software applications available for that

hardware. If software were more readily portable and reusable a major hardware

marketing lever would be altered significantly.

As stated earlier, hardware and software developers, who rely heavily on the

direct linkage of their respective products to control their share of the market, tend to

resist (often in subtle ways) industry standardization efforts. If their market share is

large enough, they collect strap hangers seeking some of that market. It is in this way

that defacto standards arise. Of course, at this point the authors of the defacto

standard, who have already profitted, may change directions radically in a bid to shake

of[~ strap hangers who have not yet recouped their investment. And so, often with

different lesser players, the cycle begins again.

In a few cases, such as the DcD Ada initiatives, a particular standard, or set

of standards, have been implemented and enforced by management dictate. In the

case of Ada, competition for DoD dollars has been the primary industry incentive to

l2One may argue that Ada is far from being fully implemented, and that

management resolve is not perfectly clear.
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actually develop the resources required to support the dictated standard. One obvious

drawback to this sort of approach to standardization is the fact that few interest

groups have the financial clout required to pull something like this ofT. A more subtle,

and in the long run possibly detrimental, drawback (to standards by edict) is the

possibility that the standard may not be a very good one, but gains momentum by

directive, and consumes resources which might otherwise contribute to evolution,

through natural selection, of something better. And, once in place, inertia will tend to

keep it there. Of course, if the standard is good, or at least acceptable, the advantages

cf focusing resources and effort should be significant.

The dilema of standards enforcement vs. encouragement is not likely to be

resolved. We favor standards encouragement for CASE resource functional

abstraction, interfaces, and data models. Keys to standards encouragement are:

• good design, so there is little incentive to repeat the effort;

• availability, if possible make all forseeable low level resources sufficiently

efficient and readily available so there is little incentive to violate

layer integrity (by jumping around it), and little incentive to

reinvent the wheel

• guidelines. well publicised and justified philosophy of why it is the way it is

and how to keep it that way.

• social change, growing recognition that standards promoting plug compatibility of

CASE resources with eachother, users, and physical resources, are

also standards of necessity.

7. Top Do^n or Bottom Up

One cf our major criticisms of the current state of most CASE environment

development has been the bottom up path being followed. We've recognized some of

the motivation for this. Commercial CASE developers are avoiding risk and playing to

the disjoint off-the-shelf tools market. In order to survive, software developers (CASE

resource users customers) in the competitive trenches often require immediate support

-some of which is available in disjoint off-the-shelf tools). One significant by-product

(from the long term view) of this activity has been the generation of experience, with a

variety of capabilities, as a base for identifying problem solving resource functions for

abstraction.

The top down activity in our CASE environment development strategy begins

with the analysis of a basic software engineering process to abstractly specify the data

model and interface requirements (which are the infrastructure of the environment),

and the functions (at lower layers) and their aggregate (at successive higher layers).
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which together with the type of data they manipulate, define the resources of the

environment. Design then proceeds hierarchically with more complex resources

specified in terms of more primitive resources in the adjacent lower layer. Algebraic

formalism associates meaning to the specification of each resource, with a rigor which

can be used to calculably verify implementations of the resources defined in the

specifications (Davis. 19S7, pp. 30-2 - 30-7).
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V. FUNCTIONAL REQUIREMENTS ANALYSIS ISSUES

A. SCOPE OF THIS EFFORT

In Chapter IV, we discussed CASE environment development issues and their

contribution to the existing chaos of disjoint tools, toolsets, and environments. We

discussed general principles for good environments and how abstraction of resources

and a formal method of algebraic specification may help to achieve those principles

and alleviate continuing chaos. We believe that this approach should be developed

further to make good CASE environment resources which become the foundation

building blocks of portable, reusable, interoperable CASE environments.

In virtually all conceivable software engineering processes, starting from the top

means analysis of the real world problem to be solved. It is clearly beyond the scope

of this work to conduct an in depth analysis of the process required by MSB, and the

functional hierarchy of CASE environment resources required to support the process.

What we've done so far. falls more in the category of general familiarization. It is

potentially useful as a starting point for more directed efforts.

In Chapter III. we outlined three basic alternatives for MSB CASE environment

procurement:

• make;

• short term off-the-shelf buy;

• long term off-the-shelf buy.

We also indicated that the make alternative very likely exceeds MSB resources and is

therefore infcasible. However, we would like to carry the make ideas, discussed in

Chapter IV, a little further to illustrate some of the top level considerations involved.

We are going to skirt the really difficult issues of a standard data model (based on the

software engineering process whose definition we've also bypassed) and a data

exchange interface (at a higher level than sequential character based text files). We will

look at some functional design issues for a relatively well understood subset of CASE

environment resources supporting mdividal programmer productivity (IPP).

l3
This is not intended to appear like the type of bottom up effort we have

criticised. We proceed in this fashion because of time constraints, the exploratory

scope of this effort, and the extremely broad scope, complexity, and uncertainty of the

environment engineering task (which has contributed to the current chaotic state of

environment automation in general). Our intended purpose is to advance understanding
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It is noteworthy that, with the layered approach we've advocated, most of the

low level resources, required to support a subset like IPP, are also required support for

other high level tools. As an example, all of the user interface resources, below the

CASE tools resource layer, must be in place (as do the user interface guidelines). IPP

tool resources will use the user interface physical. CASE, and manual (i.e., the user

interface guidelines) resources, just as all subsequent tool resources should use them, as

the basis for the consistent, user friendly interface which is one fundamental attribute

of an integrated environment. This sort of idea should help one to visualize the

potential contribution of our approach towards open extensible environments without

compromising integration.

B. INDIVIDUAL PROGRAMMER PRODUCTIVITY (IPP) RESOURCES

What follows is a very broad brush treatment of a few of the concerns associated

with functional abstraction of CASE resources for a small part of a CASE

environment.

1. Physical Resources

One might ask why (given the difficuty of bringing new standards into the

marketplace) even attempt to abstractly specify physical resources. For instance,

abstracting operating system level resources is tantamount to defining a standard

operating system (which has already been done on paper, but has not succeeded in

displacing defacto standards such as UNIX). Why not just adopt an existing defacto

standard and build on top of it? This is what is generally being done today to achieve

some portability and reusability. Problems include:

• lack of formalism in specification of these defacto standards, resulting in less

than functionally equivalent instantiations and inherent portability problems;

• knowledge of the underlying operating system layer, encouraging, or at least

enabling, undisciplined users to bail-out to the operating system, violating the

layered functional information hiding structure to produce applications with

inherent portability and reuse problems;

• dual functionality (i.e., more than one way to accomplish the same thing),

especially if more than one existing standard (e.g.. an operating system and a

seperate graphics kernel) must be combined to get at the hardware, which can

of the problem, and the potential of our problem solving approach, at several levels.

Other, more specific, work to demonstrate technical feasibility of functional

components of this problem solving approach (some specifically cited in this work and

ethers just commencing or being encouraged) are in progress at Naval Postgraduate

School. We hope that our work will provide sufficent background to stimulate

continued efforts in an organized top down manner.
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lead to implementations of higher resource layers which are affected in different

ways, by changes in the components of the physical resource layer, depending

on- how that particular implementation accomplished something (violation of

our unique atomic function interface principle for layers).

• critical functions required but not extendible to existing defacto standards (e.g..

If the environment must be a trusted secure system, the very presence of an

existing operating system is likely to prevent realizing security which must be

designed in from the beginning).

Physical resource functions to be abstracted should be familiar. They include the

hardware typically managed by the operating system, graphics interface and database

management system.

a. Abstract Hardware Resource Layer

The abstract hardware resource layer represents the hardware virtual

hardware that will host other physical resources (operating system level resources).

The challenge at this level is to abstract needed hardware functionality (which can be

met with existing hardware technology) in a way that allows extension (e.g.,

parameterizing the interface to the next higher level in a way that should allow access

to future hardware. l
~

) without compromising the integrity of the layer. Included

should be familiar things like:

processor* s):

primary and secondary memory stores;

archival storage device;

bit mapped display;

printer plotter;

pointing device;

keyboard;

network communications (not strictly required for I PP. but certainly a

hmderance to extensibilitv if not available).

4The formal algebraic specification of abstract hardware may be implemented as

virtuai hardware hosted on some existing hardware, (similar to P-coded

;:.:p'.c:r.entations) or it may be implemented as new physical hardware.

'"Some crystal ball gazing should be beneficial, but even if the result does not

allow the most efficient use of ail future hardware developments, rehosting virtual

devices to new hardware should still capitalize on features such as added speed while

effectively porting the entire environment built above it. We see tins sort of thing (on

a generally smaller scale) in upwardly mobile hardware families where, through

emulation, the instruction set of an older machine, runs on the newer machine,

allowing porting of object code for the old machine to the new machine.
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The abstract hardware resource layer represents the interface between real host

hardware and an open, extensible, portable and reusable environment of CASE

resources. Of course, this nucleus can be broadened by addition of other devives which

must then be reflected back, up through the resource hierarchy to (and down through

the hierarchy from) the tool resources which can use them.

It is obvious that the physical resources constrain higher level resources,

and that higher level resources drive the demand for lower level resources. One should

not work independently with either set when defining the functional resource hierarchy.

Instead one must begin in one place (either the top or the bottom) and model the

desired functionality. Since high level resources generally require an aggregate of lower

level functions, one should analyze the situation in a combined top down and bottom

up fashion working both ends (required high level problem solving resources vs.

available physical resources) towards a meeting point in the middle. The goal is a

broad shallow hierarchy with atomic functional resources at the base which are called

through the interface to higher layers by resources providing compound (or aggregate)

functionality (the combination of atomic functions from below) to the interface with

the layer of even more capable resources above them. Working in such a fashion one

might continue populating a CASE environment IPP subset resource hierarchy as

follows.

b. Abstract Operating System Resource Layer

The name of this layer is virtually self explanatory'. However, the layer is

expanded, beyond more conventional operating system functions, to handle database

management and graphics functions. The resource categories include:

• process management (including multitasking which we consider critical to

productivity);

memory management;«

• file svstem manasement;

« database system management (the database system is essential to the

interoperability aspect of integration in environments');

* input, output device management;

• graphics kernel.

As before, additional resources may be added (driven by the balance of requirements

from above against capabilities from below). As an example, a security kernel might

be added (with hooks to security resources added to the abstract hardware layer; and

driven from a security manager (in the CASE environment services resource layer)

supporting security requirements of the CASE tool resource layer.
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2. CASE Resources

These are the problem solving resources. They are intended to interface

directly, and only, with the abstract operating system resource layer below, and the

user above. There are only two hierarchical layers envisioned (to remain broad and

shallow).

a. CASE Environment Services Resource Layer

Resources at this level are the basis for integration standards within the

CASE tool resources. These resources are the result of the philosophy governing such

things as the user interface design. Data interface standards are also resolved at this

level, and utility service resources (which have broad applicability among tool resources

and provide a cohesive functional aggregate of operating system level resources) would

also be included.

(I) User Interface Service Resources. These resources provide services

which directly support the user interface guidelines.
16

Their presence is intended to

promote voluntary compliance with the user interface by doing much of the work, in

advance and giving it to tool resource developers. Included would be:

» event manager, the heart of a responsive user friendly interface, reports events

(e.g.. pointing device movements, keyboard or pointing device key presses) to

the user interface and ail other consistant CASE tool resources, to which they

can respond by forking to event handlers, whereby tool level resources navigate

the system resource hierarchy instead of the user who remains free to alter the

control flew with new events (whether an event queue is polled, or events are

handled as priority interrupts, will be key efficiency considerations for design):

• window manager services create and manipulate windows as objects displayed to

convey information to the user, classes of windows include system windows

^created by the system user interface tool), and tool windows (created by ether

tool resources), either of which may include dialog or alert windows:

• menu manager allows tool resources to create and display menus consistent with

the user interface guidelines, and reports menu selections back to the tool

(menus allow users to chose options at any time, menu options are imperatives

used analogously to commands in more conventional systems (e.g.. print, open)

or alternatively they may be selections (e.g.. font size type), user interface

guidelines should provide for menu selection via pointing device or command
keys, menus should not be hierarchical (avoidance of modes)):

I6
Singer (19S7) provides an in depth discussion of the user interface philosophy

and the resources and guidelines required to achieve it. He also covers some

implementation issues and a discussion Oi the potential of such a user interface for

significant productivity improvement when fully exploited by advanced CASE tool

resources such as visual programming tools.



• dialog manager used to create and control dialog windows when a tool resource

must have more information from the user in order to continue a task (dialogs

are modal if the user must respond before doing anything else, or modeless if the

user can still do other things, dialogs may make use of controls standardized by

the user interface guidelines and provided by a controls manager, or text entries

(e.g., naming a file)), the dialog manager can also generate alert windows

(notes, cautions, warnings) when a potentially dangerous situation arises

(usually modal));

• graphics facilities which manage the drawing plane in terms of common
parameters, objects, and functions (e.g., two dimensional coordinate system and

conventions for defining points, objects, rectangles, regions, bit images, bit

maps, patterns, cursors, graphics pens, icons, transfer modes, drawing

environments (defining how and where graphics operations will take place),

etc.);

• text facilities to perform basic text entry and editing, and handle different text

characteristics (e.g.. text font. face, mode, size, leading, etc.)

(Peatroy, 1986, pp. 4-37).

(2) Data Mode! Manager. The data model manager would provide for

manipulation of the chosen environment process data models. The technology exists

to provide sophisticated filters for converting to and from models supporting various

processes both internal and external to this environment.

(3) Utility Manager. In the interest of efficiency and responsiveness, the

environment service resources should be resident in memory as are the operating

system resources and the user interface tooi resource. Utility service resources (handled

by the utility manager) and tool resources in general would most likely be in secondary

storage. The first call to such resources should bring them into memory until they are

either sent back by the user or, the end of the user session. It should be a characteristic

of the environment data model that objects created in the environment are tagged with

the identity of all environment resources used in their creation. The utility manager

should be called by a resource recorder'checker function (e.g.. of the database

manager) to locate needed resources and bring them into memory when an object is

accessed. When a required resource cannot be found the user should be told, via a

dialog, so he can either supply the missing resource, or proceed in some other

direction. Utility resources would include:

• text editor

• text fliers, various filters might be defined to allow data interchange with

external environments (e.g., via the communications network);
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• binding transformers, to allow glueing together parameterized objects with

different native contexts (e.g., moving a language dependent code package from

a network library into the abstract, language independent representation o[ the

environment data model);

• any of a number of other possible utilities which have broad applicability

among tool resources and provide a cohesive functional aggregate of system

level resources (e.g.. a parser or parsers, for the programming languages and

data model supported by the environment, which could be used by a compiler,

debugger, pretty printer, etc.. or an unparser to reverse the process).

b. CASE Tool Resource Layer

This layer consist o{ tools which are integrated by their use of the

underlying resource layers with adherence to user interface guidelines, the environment

data model(s). and the manual and human resources of the environment. It is beyond

the scope of this work to complete any particular portion of the abstract function

typing for an environment. At this point our purpose is just to indicate the direction

of such an effort.

(1) Environment User Interface. One might appropriately view the entire

CASE environment resource hierarchy as a super operating system, with this resource

providing functionality similar to the command shell or command line interpreter of a

more conventional operating system. However, this resource is the user interface

guidelines incarnate, and it exploits interactive graphic user interface principles to

achieve user friendliness and enhance productivity. It is the example for other tool

developers who will use the environment service resources and user interface guidelines

to achieve the common user interface aspect for integration of their tool into the

environment.

(2) Project Management Support. This category of resources for the IPP

environment might include resources to help an individual manage his time, budget, or

other resources. Objects generated here (e.g., schedules reports) should be designed to

facilitate aggregation by the project management support resources of a Project

Managers environment which is created by extending (by adding resources to ) the

IPP environment. IPP tools in this category might include:

• project scheduler.

• office automation.

1 "Extensions would likely include security resources (if not already present) to

control access priviledges to resources objects.
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(3) System Generation and Management. This should be a familiar

category of tools commonly found in programming support environments. These tools

must assist the programmer in a verifiable transformation of the model of a software

system, created in the Designers environment, into an executable model which must be

validated against the model created in the Analysts environment. Some of these

resources should have broad enough applicability to be useful in the Managers,

Analysts, Designers and Maintainers environment. For example, the following are

necessary to effectively manage ail of the various models (i.e.. analysis, design,

implementation, etc.) within a software project:

o documentation generator,

• version maintainer,

• archive r,

• backup.

Other tools, in the system generation and management category, would include

programming language specific resources directly supporting transformation of the

design model into the executable model. One consideration is exploitation of the

available interactive graphics of the user interface (Singer. 1987) and the power of

global models of objects (e.g.. construction of objects by selecting templates and setting

controls or filling out choices in dialogs, manipulation of objects through their displayed

forms, multiple simultaneous views, animation, etc.) with tools like syntax

knowledgeable editors, and interpreting or incremental compiling debuggers, to

improve productivity. In other words, use of visual programming techniques. Another

consideration is exploration of automated transformation technology to take advantage

of formal specification technology and calculable verification techniques in order to

deal directly (with some degree of automation) with the system model generated in the

Designers environment. For the IPP subset we would begin with the more traditional

programming support environmnt resources and exploit the user interlace for

productivity gams. Tools would include:

• syntax knowledgeable editor(s),

• compileris) interpreter^),

• assemblers),

•

18We prefer the use of an incremental compiler for debugging since it makes

verification easier than if an interpreter is used during development of source which will

later be compiled.
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• debuggers,

• analyzers merries.

(A) System Integration and Testing. The IPP user must deal with

integration of various system modules for which he is responsible. In addition to

debugging and verification, he is also concerned with validation of cohesive functional

units. Resources to assist him in test set generation, regression testing, etc. are

required and also form a logical base for extension to overall system integration and

testing.

C. WHAT ABOUT THE REAL WORLD
The foregoing discussion presented an extremely high level view of CASE

resource functional abstraction issues in a very limited scope. Hopefully, the benefit of

such a discussion (in the context of the current chaotic proliferation of disjoint

environments and environment resource options') will be the stimulation of well

directed top down efforts to bring order to the devlopment of CASE environments

through such techniques. We will conclude with a brief discussion of the major

obstacles to the success of such efforts, directions for continuing this work, and

recommendations for MSB.



VI. CONCLUSIONS

A. INVITATION FOR REVOLUTION

"Welcome to the CASE revolution," proclaimed the ebullient keynote speaker at

a recent symposium covering computer-aided software engineering (CASE).

While well meant, those words may not have been well chosen for a technical

audience ever watchful of marketing hype and still reeling from the past

'revolutions' of fourth generation languages, relational data bases, structured

programming and real-time systems. . . .the thought of going through yet another

revolution is less than appealing to most. . . .appealing about CASE. . .is that its

tools. . .do not really represent revolution but rather evolution of tools and

concepts. . .already embraced in the systems development lifecycle. (Huling. 1987,

p. 73)

Webster's (1966. p. 737) defines revolution as ".
. . radical and complete change. . .

."

We would agree that the CASE concept is evolutionary, not revolutionary. In this

thesis we've acknowledged the software problem, and studied the evolution of software

engineering towards solving it. We have little doubt that CASE environments are a

natural and needed stage in this evolution. Probably the most compelling evidence of

this is the huge demand for. and resultant proliferation of. disjoint CASE tools and

fragmentary environments.

We've coalesced, from a variety of sources, spanning several years, a consensus

of fundamental principles for good environments. We've reported on, the general state

Oi technology which faiis to adhere to these principles, and the technology and market

factors which have encouraged such unprincipled bottom up developments.

We've reported on promising research, at the Naval Postgraduate School,

involving formal specification of functional (physical and problem solving) resources

'abstract function typing). We've proposed a top down strategy for developing

integrated CASE environments in an open, extensible, evolutionary manner which

could achieve standardization through functional interfaces allowing integration (both

common user interface and interoperability) without conflict over advances in hardware

and software technology, and supporting multiple processes, models, programming

languages, etc.. through its extensibility.

We've discussed the major obstacles to such a strategy. The task is difficult

because the imperatives include words like agree and the descriptors are words like
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standard. And. agreement on standards implies a required shift in marketing strategies,

especially for those hardware and software houses whose symbiotic relationship is the

basis for their competitive edge in controlling their market share. Our strategy

provides for competition in hardware and software technologies directed not only

towards implementing standard functional resources, but also towards defining and

implementing new functional resource abstractions which will be integrated with eariier

resources. While this would still allow for substantial competitive arenas, they would

be different than the current arenas. This would be a "radical and complete change".

So, it may be argued that our strategy is an invitation for revolution.

Revolutions tend to begin with a small group of protagonists who must gather a

following convinced that their cause is just and that revolution is necessary. One goal

of this particular revolution is relief from the current environment chaos and the dawn

of a new age of open, extensible, integrated environments built from portable, reusable

functional resources. Another goal is focusing competitive innovation on advancing

the state of technology without getting bogged down just trying to cope with the chaos

spawned along the way. 19

We believe the only practical means of winning such a revolution is to make it

seem like evolution. In our discussion of standards enforcement vs. encouragement, we

favored encouragement of standards through good design, availability, and social change

(realization that the standard is a standard of necessity). Social change concerning this

issue is already afoot with mere and more work focusing on abstraction, rigorous

formalism, user interface design and object oriented software engineering. This is a

relatively slow process, but it may be accelerated with a catalyst in the form of

availability of well designed resources. Future work should be directed towards that end.

B. FUTURE WORK
Functional analysis is probably the hardest part of the task. We've discussed a

combination top down bottom up proccess, of balancing high level requirements

against physical resource constraints, in order to arrive at an abstract [unction

hierarchy to meet the requirements. The really difficult thing is to do this without

letting perceived (but not actual) constraints, derived from the way things are done

today 'implementations), jaundice the functional abstractions. To arrive at useful

'^Fov example, the chaotic proliferation of programming languages, by the early

19"0's. so saturated development resources and hampered development of new

technology that de\elopment of anything more than rudimentary programming support

tools 'compilers assemblers, linkers and loaders) was considerably delayed.
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abstractions, work should progress in the context of a real world environment (keeping

in mind the ultimate goal of portable resources). Detailed process and requirements

analysis, and understanding, are prerequisites to the high level balancing act required in

functional analysis. Working in the real world (e.g., the foundations, say an IPP

subset, of a CASE environment for an organization like MSB) demands practical

results vs. esoteric discourse. Practical results are the essence of catalysts for social

change.

Once a minimal functional resource hierarchy is available, abstract resources

must be formally specified. Then, parallel efforts can be applied to implementation.

Completed implementation of the resources will constitute a prototype version of a

CASE IPP environment. Several prototypes should be constructed from the same

formal specifications, and testing should be designed to evaluate achievement of the

principles for a good CASE environment. By repeating the process from functional

analysis through prototype, functional evolution should add CASE resources for direct

support of increasing portions of the software engineering lifecycle.

C. RECOMMENDATIONS FOR MSB
Depending on the resources available for such an undertaking, the make process

described above could take several years (not to mention the time required to win the

market revolution and see commercially available resources for constructing working

integrated CASE environments). We've also said that MSB lacks the resources to

undertake such a project. Other, more practical solutions are of immediate concern to

MSB. 20

1 . Near Term

Given insufficient resources to make their own CASE environment, and the

inherent disadvantages of the available buy options, we decided to consider some sort

of hybrid, of the available alternatives, as a potential means of means of acquiring

CASE resources while achieving at least some of the advantages embodied in the

-°Encouragement of such development using resources which represent DoD
sunk costs (e.g., Naval Postgraduate School (NTS) Master's Candidates) and are

essentially free to MSB has the potential to contribute to the revolutionary effort in the

long run. but is not likely to offer practical CASE environment solutions in the near

term. Bottom up NTS work on specific tool resources (not incorporated to date under

a top down CASE environment development plan) like AdaMeasure can offer limited,

more immediate, practical benefits to MSB (while also contributing to their existing

disjoint environment).
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general principles for a good environment. We've devoted considerable thought to

hybrid make buy schemes, and quite frankly there aren't many good choices.
:1

a. Physical Resources

(1) Hardware. We believe that committment to unique architectures and

a proprietarily constrained source of software is a mistake both now and for the future.

Flexibility now. and portability and reusability in the future, are best served by a

powerful general purpose hardware suite. MSB has already defined reasonable

minimum physical hardware constraints ( Missile Software Branch. 1986. p. 3). At the

time these constraints seemed to dictate the use of relatively high priced (S25K - S75K)

32-bit professional workstations. Recent market releases of networkabie 32-bit personal

computer workstations, rival the more expensive machines in capability and are driving

prices into a far more affordable range (SSK - S25K). Such an affordable general

purpose hardware base seems to be a reasonable first step to productivity

improvement, with the capability to host CASE resources available today and into the

future.

(2) Operating System Resources. We've already discussed the problems

inherent to standardizing on top of an existing operating system. A traditional

operating system choice is likely to be made based on such considerations as:

• What do we have the most experience with what do we use now? (In the case

oi" MSB the answer would likely be UNIX);

• Is our current operating system adequate?

• What additional capabilities (i.e.. graphics, database) are required?

• Which operating system promises to support the broadest selection of off-the-

shelf tools 'i.e.. a defacto standard)?

And so on. We have little to offer here other than this common sense sort of approach

to try to ensure the operating system will be adequate and supported until something

significantly better comes along. Obviously if UNIX were kept as a defacto standard

operating system, a graphics capability would be required (probably best to stick with

the ISO GKS standard). Since many of the disjoint off-the-shelf CASE resources to be

hosted employ their own database management, a choice on a database management

system, to augment the UNIX file system, might either be a non-requirement or be

dictated bv the tool resources chosen.

-'One short term option, which we won't discuss, is to concentrate on manual

resources and simply wait on better options from CASE development efforts.
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b. Problem Solving Resources

So far this near term discussion has sounded like straight short term off-the-

shelf buy. Environment service resources are the level at which we can see practical

potential for compromise between the short term off-the-shelf buy and some portions

of the make option. But, look ahead for a moment at the disjoint tools to be bought.

The tools of the most interest are likely to be the new CASE tools, offering relatively

complete, language independent, support to the early software engineering phases of

structured analysis, structured design, and in some cases even generation of source

code. (You supply the compile, debug and test functions.) These tools in general have

unique internal interfaces for interoperability. They generally have primitive,

unprincipled, inconsistent, and highly modal user interfaces which are also unique.

These tools generally do not consistently adhere to event driven control vs. hierarchical

modality. They generally support a limited set of structured methodologies. The point

we're getting at is that there is little common ground on which to base environment

service resources. The internal interfaces of these various tools are generally so deeply

involved in their design that it is doubtful any monetary incentive (especially something

MSB could offer) would entice a developer to re-engineer his tool to interact only

through MSB standard data models of objects. That leaves the user interface.

Would it be possible for MSB to develop standard user interface guidelines

based on availability of some suitable service package (say GEM, assuming it is

supported by the operating system of choice) and then successfully get CASE tool

developers (for the tools MSB really wants) to host their tooi on the service package

with a user interface conforming to the MSB guidelines? Although probably less

difficult than the common data model problem, the answer is still probably no. The

task would not be trivial. and with a market of at most 18 users, a prohibitive

pricetag should be expected.

One other possibility, which falls somewhere between the long term and

short term off-the-shelf buy option, would be to identify a general purpose computing

system meeting the minimum hardware constraints, for which an operating system

supporting a widely accepted (defacto standard) well principled, event driven, user

friendly interactive graphic user interface, already exists. While the original Apple

Macintosh fell short of the minimum hardware constraints, the 68020 based Macintosh

-"For example, few existing tools are implemented using event driven program

control, so major restructuring would be required to achieve user interface guidelines

based en event driven responsivness and permissiveness.
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II. scheduled for release this summer, will come much closer. The Macintosh user

interface guidelines and service resources are well principled and accepted. Originally

targeted at a market of unsophisticated computer users, the Macintosh still suffers

from type casting as a fancy toy. However, it is in fact a powerful system in its own

right. Over a million users later, it presents a lucrative horizontal market to the

software developers. Off-the-shelf software is plentiful and the user interface has

survived to become a defacto standard for Macintosh application developers, while also

influencing the competition. Among the off-the-shelf Macintosh software are,

sophisticated syntax knowledgeable editor visual programming incremental compile

and debug packages, at bargain basement prices (thanks to the horizontal market).

The new Macintosh open architectures promise access to UNIX and MS-DOS. The

point here is that, at least to the user interface chaos, there are alternatives. But. it

takes a committment on the part of the customer, to not accept deviation from

established user interface guidelines. And. guideline adherence can be a reality if you

give developers the tools required to make adherence easier than reinventing the wheel.

There is, of course, always a bottom line. In this particular discussion it goes like this.

Are the best 'functionally, i.e.. disregard the kluge user interface) off-the-shelf CASE

tools available for Macintosh? What about Ada support? The answers are generally

not yei. Can MSB alone get a developer to port his product to Macintosh (adhering to

the user interface)? Probably not. but the incentive ought to be greater due to a

potentially larger market.

Sadly, the bottom line of the whole near term issue would seem to be. if its

a matter of survival, join the competition and buy up the disjoint tools of your choice.

2. The Future

We are firmly convinced that the future of CASE environment development

lies along the path we've proposed for functional abstraction and formal specification

of physical and problem solving resources. Key to this effort are standardization on

user interfaces, and interoperability based on manipulation of global objects.

Connivency checking, validation, verification, and testing must also be founded on the

objects themselves and their interrelationships. Efforts like CAIS within the DoD seem

to have a start on this path in an extremely limited and language specific way, and sans

rigorous formalism. But, they are a start, and enjoy direct support from a much higher

level within not only the DoD bureaucracy, but (due to clout) within the industry as a

whole. If MSB wants better choices in the future, we recommend thcv aggressively
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lobby the DcD infrastructure to expand work like CAIS in the direction we've
proposed.
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