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ABSTRACT

Heat transfer effects of longitudinal vortices embedded within film

cooled turbulent boundary layers on a flat plate were examined for

freestream velocities of 10 m/s and 15 m/s, and for blowing ratios ranging

from 0.47 to 1.26. Moderate strength vortices were employed having circu-

lation to freestream velocity ratios of about 1.6 cm. Spatially resolved heat

transfer measurements from a constant heat flux surface and mean tempe-

rature distributions in spanwise planes show that local heat transfer is

significantly affected by spanwise vortex position, and blowing ratio. Of

particular significance are boundary layer and vortex structural changes

which occur at high blowing ratios.
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TABLE OF SYMBOLS

A - area, m2

Cd - discharge coefficient

Cp
- specific heat at constant pressure, J/Kg 2f£

d - injection hole diameter, m

Ebi
- emissive power, W/m2

Fjj - radiation view factor

h - heat transfer coefficient (spanwise averaged) as define by,

q"/(Troo - TV), W/m2 OK

hf - heat transfer coefficient with film cooling (spanwise averaged)

as define by, q"/(Taw - Tw )

ji - radiosity, W/m2

K - thermal conductivity, W/m °C

M - blowing rate

P - static pressure, Pa

R - gas constant

Red - Reynolds number based on the diameter of injection holes

Rex - Reynolds number based on the downstream distance from the

boundary layer trip.

St - Stanton number

Sto - baseline Stanton number, no film cooling, no vortex

Stf - Stanton number with film cooling only

T - static temperature, QK, QC
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U - mean velocity, m/s

X - downstream distance as measured from the boundary layer

trip, m

Y - vertical distance from the test surface upward, cm

Z - spanwise distance from the test section center line, cm

£
- unhealed starting length (1.10 m)

e - radiation emissitivity

tl
- effectiveness of film cooling

p
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SUBSCRIPTS

aw - adiabatic wall

c - coolant at exit of injection holes

i - isentropic

o - stagnation condition

p - in plenum chamber
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wall

- free stream

V
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I. INTRODUCTION

The increasing need for greater efficiency in gas turbine engines has re-

sulted in higher turbine inlet temperatures. Consequently, combustors and

turbine blading are subject to greater amounts of thermal stress, thermal fa-

tigue, and creep. At present, gas turbines such as those associated with mi-

litary applications, have inlet temperatures as high as 1800-2000 2Q (Ref. 1],

While the development of improved alloys with higher melting points is part

of the solution, the development of efficient cooling systems is just as

important [Ref. 21. In order to design an efficient cooling configuration, the

heat transfer distributions for the gas turbine components are needed

Because of the complex geometries and flows involved near blades and end-

walls, accurate convective heat transfer rates are difficult to obtain. [Ref. 31

Ongoren, [Ref. 41, described the flow in a turbine cascade. As the inlet

boundary layer approaches the blade, just in front of the blade, a horseshoe

vortex forms. At the saddle point, it splits into a vortex on the suction side,

and a vortex on the pressure side. The pressure side vortex becomes the

passage vortex, moving from the leading edge of the blade towards the low

pressure side of the adjacent blade. As the suction side vortex convects

along the blade, it is eventually pushed away by the passage vortex from the

adjacent blade. A smaller, corner vortex rotates in opposite direction to the

passage vortex as was verified by Sieverding, [Ref. 51-

The passage vortex is an example of a longitudinal vortex embedded in

a film cooled turbulent boundary layer. In most cases, an embedded vortex

16



has a cross-stream length scale approximately equal to the boundary layer

thickness. Therefore, the vortex is capable of strongly perturbing the

boundary layer structure and modifying the heat transfer characteristics. In

addition, longitudinal vortices usually maintain their coherence over a long

streamwise distance, meaning that the heat transfer effects behind an effec-

tive vortex generator are likely to be very persistent. {Ret. 6]

Film cooling is used to provide a layer of cool fluid between a surface

and high temperature free stream gases to which it is exposed. The film

cooling not only acts as a thermal insulator but also as heat sink for the hot

freestream gases. The overall effect of the film cooling is to reduce the

temperature of the developing boundary layer, which in turn reduces the

heat transfer to the surface. In the present study, the heat flux is calculated

from :

q'= h(Tw - Troo) (eqn. 1.1 )

where h, includes the effect of the film cooling for constant wall heat flux, q
",

and constant free stream temperature, T rco. In the present experiment

variations of h correspond to variations of the wall temperature, Tw . When

Tw = Tr<x>, equation 1.1 indicates that q " = 0, which may not be the case when

film cooling is present.

Goldstein and Chen, [Ref. 2], defined an adiabatic wall effectiveness for

film cooling using:

Taw " T r
r| = -= =- (eqn. 1.2

toe " ir
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The heat transfer is then calculated from :

q" = hf( Tv - Taw ) (eqn. 1.3)

Here, q "= when Tw = Taw with film cooling. Without film cooling T roo = Tav ,

and equations 1.1 and 1.3 are the same.

Numerous studies have been conducted on the effects of film cooling on

heat transfer, effects of secondary flows on heat transfer, and more recently,

on effects of film cooling and secondary flows on heat transfer in a turbulent

boundary layer. Summarizing the results of experimental research on the

effects of secondary flows in turbine blades passages over the past decade,

Sieverding (1984) concluded that it is absolutely essential to establish the

significance of secondary flows at off design conditions, in particular in

regard to leading edge vortices.

Studying the effects of film cooling and secondary flows on heat trans-

fer, Golstein and Chen (1985) performed an experimental study on the influ-

ence of the end wall on film cooling of gas turbine blades using a single row

of injection holes. Two years later, the same authors performed a similar

study but this time employed two rows of injection holes for the film cooling,

[Ref 7]. From these two studies, the authors concluded that, in the convex

side of the blade there is a triangular region where coolant is swept away

from the surface by the passage vortex, while the concave side was not sig-

nificantly affected by secondary flows originating near the endwall. Other

study on film cooling effects is given in [Ref. 81.
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Eibeck and Eaton (1987), conducted a study of a longitudinal vortex em-

bedded in a turbulent boundary layer over a constant heat flux plate. The

authors found significant increases and decreases in local Stanton numbers,

due to the thinning of the boundary layer on the downwash side of the

vortex and thickening on the upwash side of the vortex. Spanwise heat

transfer variations became larger as the circulation of embedded vortices

increased. [Ref. 6]

Investigating the interaction between a single weak streamwise vortex

and a two-dimensional turbulent boundary layer, Russel, Pauley and Eaton

(1987), observed a rapid growth of the vortex core, and a flattening of the

core shape when the dimension of the core radius became comparable to the

distance of the vortex center to the surface. Adverse pressure gradient

caused an increase in the rate of core growth, and a stronger distortion of the

core shape. These authors also provide an extensive review of work on

vortices in boundary layers. [Ref 91

In (Ref. 10], a study was conducted on heat transfer distributions and

film cooling effectiveness on the endwail of an airfoil, using a full annular

low aspect ratio vane cascade. The authors demonstrated the importance of

the horseshoe vortices and secondary flows on the heat transfer and film

cooling distributions.

Recently, Joseph (1986), conducted a study of the effects of embedded

vortices on heat transfer in film cooled turbulent boundary layers. The

author showed that the effects of the vortex on heat transfer are significant

and important : on the downwash side of the vortex, heat transfer is aug-

mented, effects of the film cooling are negated and local hot spots will exist.
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Near the upwash side of the vorte::, coolant is pushed to the side, appearing

to augment the protection provided by the film cooling, (Ref. 31. Evans

(1987), studied the fluid mechanics of vortices in boundary layers with film

cooling, and showed that the vortices completely dominate the flow field,

especially near the downwash side [Ref. 11.

The objective of this thesis is to increase the understanding of the effects

on heat transfer, of a longitudinal vortex embedded in a film cooled turbu-

lent boundary layer as affected by : 1 ) spanwise vortex position relative to

the location of film cooling injection holes and, 2) blowing ratio. These

effects are important regarding turbine blade and endwall heat transfer.

The study was carried out under a series of steps. The first, was the design

and construction of the heat transfer test surface, followed by qualification

test to verify uniform wall heat flux, and an energy balance to identify and

quantify the heat losses. After completion of the experimental apparatus,

four types of heat transfer test were conducted : ( 1 ) heat transfer data with

developing boundary layer only, (2) boundary layer and embedded vortex,

(3) boundary layer with film cooling only, and (4) boundary layer with film

cooling and embedded vortex.
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II. EXPERIMENTAL APPARATUS

A. WIND TUNNEL

The wind tunnel pictured in Figure 3., built by Aerolab. was designed to

provide a flow field from the nozzle with uniform velocity and low turbu-

lence intensity. It is designated the NPS Shear Layer Research Facility

(SLRF).

1. Description.

The SLRF is a wind tunnel of the open circuit blower type with fan

upstream and air entering the blower inlet from the surrounding room. The

air speed through the test section can be adjusted from 5 to 40 m/s. The

tunnel frame has leveling screws to adjust the center line of the tunnel to a

horizontal position. The discharge of the fan slips into the inlet of the dif-

fuser with a 1.6 mm clearance to isolate vibrations from the fan to the wind

tunnel body. The diffuser section contains a filter pack and a nozzle leading

to test section. The test section is a rectangular duct, 3.048 m long and

0.6090 m wide. It is designed with numerous pressure tabs and four 38 x

20.3 cm access ports along each of the side walls to provide easy access. The

top wall is a continuous panel fabricated from 4.76 mm thick Lexan sheet,

continuously sealed with neoprene along the edges. The ceiling height is

adjustable to permit changes in the pressure gradient along the length of the

test section. Additionally, the top wall contains numerous instrument ports

for the measurements of various flow characteristics. The floor of the test

section consists of three 0.6096 m and one 1.2192 m long sections which are
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removable and replaceable. These sections are all 0.6090 m wide and are

sealed with "0" rings around the sides. Further discussions of the wind tun-

nel are contained in [Ref. 1 1] and (Ref. 3: pp. 38].

A schematic of the test section components with the coordinate

system employed in the present study are shown in Figure 1. An unheated

starting length ot I 10 m exists upstream of the heated test surface The in-

jection nozzles are located 1.08 m downstream of the boundary layer trio

and 0.02 m upstream of the test surface. The leading edges of the vortex

generators are placed 0.479 m downstream of the boundary layer trip as

shown in Figure 2.

2. Qualification and Performance .

Prior to its relocation, extensive qualification tests of the Shear

Layer Research Facility were conducted by Ligrani, [Ref. 12]. Results show

that the variation of total pressure at the exit plane of the nozzle is less than

0.4% at 26 m/s and 34 m/s. Mean velocity varies less than 0.7% for the

same mean freestream speeds. From five-hole pressure probe measure-

ments, the velocity angle deviation is nowhere greater than 0.6 degrees at

the nozzle exit plane.

Profile measurements of the mean velocity and longitudinal turbu-

lence intensity in the turbulent boundary layer developing at 20 m/s indi-

cate normal, spanwise uniform behavior. For this qualification test, and all

results which follow, the boundary layer was tripped near the exit of the

nozzle with a 1.5 mm high strip of tape. For the present study, total

pressure measurements along the test section were made after relocation of

the SLRF, in order to adjust the top wall for zero pressure gradient. The
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maximum pressure difference along the Lest section was 0.007 in of H2O.

Free stream turbulence intensity was measured to be 0.00085 ( 8.5 one

hundredths of one percent or 0.085%) at 20 m/s, increasing to 0.00095 at 30

m/s.

8. INJECTION SYSTEM.

The injection system provides film coolant at temperatures above am-

bient. The coolant is ejected from a single row of injection holes into the

boundary layer developing along the bottom wall of the test section. The

diameters of the injection holes were scaled relative to boundary layer

thickness to be similar to a turbine blade, with 5/d ratio ranging from 0.37 to

0.40. The free stream air is at ambient temperature, thus the direction of

heat transfer is opposite that of a gas turbine. The temperature difference

Tw - T roo range for this study has been kept less than 20 2C. to minimize the

effects of variable fluid properties.

The injection parameters M and 9 were scaled to resemble parameters

near gas turbine blades where M ranges from 0.47 to 1.26 and varied

from 1.39 to 1.69. Since the average temperatures of the coolant, plate and

freestream were approximately the same for different runs, Trc - 51 QC, and

Tw = 40 QC and T roo * 20 QC, variation of was not a parameter considered in

this study. Due to the reverse direction of heat transfer for the present ex-

perimental apparatus Trc : Troo : Tw ratio is 1.27 : 0.5- 0.55 :1.0 as compared

to 0.67- 0.83 : 1.5 : 1.0 for actual gas turbines.
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1. Description

Air for the injection system originates in a two stage, 150 psig

Ingersol-Rand air compressor, 10 HP, model # 71TD. From the compressor

air Hows through an adjustable pressure regulator, a cut-off valve, a

reinforce flexible tubing (254 cm inside diameter), a moisture separator, a

flow regulator, a Fisher and Portor rotometer (full scale 9.345E-3 m3/s. 19 8

SCFM, model * 10A5565A), a dilfuser, and finally into the injection heat

exchanger and plenum chamber. The rotometer monitors the flow rate for

film cooling.

A photograph of the chamber, the row of film cooling holes and

vortex generator is shown in Figure j.b. The chamber is constructed of 1.27

cm plexiglass, with outside dimensions of 0.305 x 0.508 x 0.457 m. The

internal structure consists of three thin metal plates 0.381 x 0.508 m,

starting 5.08 cm from the bottom and proceeding up at 5.OS cm intervals.

Two silicon rubber heaters, 0.381 x 0.483 m, 120 volts, are separately placed

over the bottom two plates. The heaters are controlled through a Powerstat

variable autotransformer, type 136. The top surface contains 13 plexiglass

injection tubes 8 cm long each, with an inside diameter of 0.952 cm ij/^ in),

with a 1/d ratio of 8.42. The 13 injection nozzles are incline at angle of 30$
,

with a three diameter spanwise spacing between center lines. The middle

tube is located on the center line of the test surface.

Three pressure taps, positioned at the center of the front and two

side faces of the injection plenum chamber, are used to measure Poc - Poo.

Three 0.254 mm diameter copper-constantan wire thermocouples with
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welded joints are placed at different locations inside the plenum chamber to

measure Top .

2. Qualification and Performance .

Extensive qualification of the injection system was conducted by

Joseph, [Ref. 3: pp. 23-26). Results show that the uniformity of the plenum

chamber pressure, Poc ,
was satisfactory over the range of the injection con-

ditions with differences of about 1% in the spanwise direction and a maxi-

mum of 4% occurring for only one case at low flow rate of 0.327E-4 m-Vs.

This is equivalent of a blowing ratio M of 0.004 at Uoo =
1 m/s

The plenum produces a reservoir of air at an elevated temperature

and pressure, which is near stagnation conditions. The temperature at the

exits of the injection tubes, T rc ,
is different from the temperature of the

plenum of the injection chamber, Top , due to conduction through the tubes

surface to the surrounding air. it is more convenient to measure T p,

whereas Trc is needed to calculate the injection parameters. Thus a

relation between Trc and Top was needed and found from experiment to be ;

T c= 1-455 Top0868 - Because of the low velocities employed, (and negligible

viscous dissipation), Toc ~ T rc within a fraction of a degree.

In order to determine injection parameters, the following quantities

must be measured, Poo, Too V c , Poc , T c, and A, the area normal to the flow

of the injection holes, designed to be 9.2633E-4 m 2
. The coolant velocity is

then given by:

U c - "^~ i.eqn. 2.1 >
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The static density is estimated using

Pc =
RT C

i.eqn. 2.2)

The mass flux, m C) is the product of U c and p c . To calculate the isentropic

mass flow, p c j and U c i are found using

Pci -

RTo,
(eqn. 2.3 )

and

Uci- A /^
2(Po<

Pci
(eqn. 2.4)

The product of p c i
and U c i for compressible flows may be given as

05

(r U) = P
RT

cc

(eqn. 2.5)

Discharge coefficients, C<j, are then estimated using

Cd =
PcU<

(PcUCM
(eqn. 2.6)

In order to check the injection system, discharge coefficients were

measured as volumetric flow rate was changed. Results are given in Figure

4 as a function of Reynolds number for 13 injection hole locations and 7

injection hole locations. Discharge coefficients range between 0.5 and 0.730,
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and increase with Reynolds number, for Re > 3 x 103, discharge coefficients

collapse closely around a value of approximately 0.72 . Because these re-

sults are consistent with those of [Ref. 8], satisfactory injection system

performance is indicated.

C. HEAT TRANSFER SURFACE.

The heat transfer surface was designed and developed to provide a con-

stant heat flux over its area. The average surface temperature may be

adjusted and maintained from ambient up to about 60 QC. The plate was

constructed so that its upward facing part is adjacent to the wind tunnel air

stream, with minimal heat loss by conduction from the sides and beneath the

test surface. The plate itself has been instrumented to measure tempera-

tures with thermocouples placed just beneath the foil surface. A film of

liquid crystals is sprayed over a layer of black paint painted on the foil.

1. Description.

A photograph of the heat transfer surface is shown in Figure 5a.

The design is based on ones used at the University of Minnesota [Ref 1 31

and [Ref. 14], and provides more uniform heat flux and better spatial resolu-

tion of temperature than the surface used by Joseph, [Ref. 3: pp. 27-36], It

consists of a thin stainless steel foil, AISI 302 full hard, 0.2032 mm x 1.3 m x

0.467 m, painted flat black with 7 layers of liquid crystals. Attached to the

under side of the surface are 126 copper-constantan thermocouples. 120 of

these have flattened tips and were manufactured by Marchi associates (type

MA 3%T-30-96-FEP-FJ), the remaining six have round junctions and were

manufactured by Omega Engineering, inc. Thermocouple lead wires are
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located in grooves cut into a triple sheet of 0.254 mm (10 mil) thick double

sided tape, manufactured by the 3M Company), as shown in Figure 5b. The

grooves are then filled with RTV. A thin foil constant heat flux heater. 1.0

mm x 1.143 m x 0.457 m, 120 V/1500 W, manufactured by Marchi

Associates, is attached to the tape with Electrobond epoxy Beneath the

heater is a 12.7 mm (1/2 in) thick lexan sheet, followed by a 25 4 mm of

foam insulation, 82.55 mm thick styrofoam, three sheets of 254 mm eacn

lexan and one sheet of 9.53 mm thick balsa wood, as shown in Figure 7.

Around the edges of the foil, grease was inserted between it and the

plexiglass frame to fill any small gaps resulting from thermal expansion. In

addition, both the upstream edge and the trailing edge were taped to the

bottom wall of the test section. Since additional vertical movement of the

foil above the bottom wall of the test section occurs due to thermal expan-

sion during heating, the level of the surface is adjustable and maintained

level with the test surface by adjusting screws in the plexiglass frame sup-

porting the heat transfer surface from below. During heat transfer tests, the

top surface of the foil remained remarkably flat and smooth with minimal

surface irregularities. The surface temperature is controlled by adjusting

input voltage to the heater using a Standard Electrical Product Co. variac,

type 3000B. With this type of heat transfer surface, good resolution of tem-

perature was achieved without hot spots.

Thermocouples are placed on the surface as shown in Figure 6 (n

each of the six rows, 21 thermocouples are located 1.27 cm apart from each

other. The first row of thermocouples is located at 5 cm from the leading

edge of the test surface, the second is 10 cm further downstream with
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respect to the first, the third is 15 cm apart downstream from the second

row, and the rest of the thermocouple rows are 20 cm apart from each other

2. Qualification and Performance

The present test surface was the second one constructed for this

experiment. The first one could not be used since it had hot spots located

under the thermocouple lead wires where Lhe surrounding liner was not

properly attach to the heater. In the second surface, this problem was

remedied by increasing the thickness of the liner.

To test the second heat transfer surface, a Huges Probeye Thermal

Series 4000 Video System , consisting of a infrared and video camera with

display screen, was used. Surface temperatures were measured as the test

surface was heated outside the wind tunnel, since the system could not see

through wind tunnel walls. With this system temperature variations as

small as 1 &C, can be measured. The surface was observed under three ope-

rating conditions : natural convection with a surface temperature of ap-

proximately 35 QC, forced convection from the leading edge with a surface

temperature of about 40 QC, and force convection from the trailing edge,

with a surface temperature of about 40 QC. Results showed that most of the

heat transfer surface temperatures were spanwise uniform within a fraction

of a degree for all three tests. The only exceptions were several small cool

spots with temperatures about 1
QC lower than the rest of the plate, located

between rows of thermocouple lead wires near the edges of the plate.

A second test using the liquid crystals was performed to further

qualify the test surface. The liquid crystals, manufactured by Davis Liquid

Crystals, Inc., are rated from 30 to 35 QC. Temperature variations as small as
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1.2 QC can be measured with an uncertainty of t .2 yC. The test was con-

ducted with natural convection with a surface temperature of approximately

32 QC. Results were consistent with the infrared test with temperatures

variations not greater than 1.2 QC across most of the surface. As for the

early test, small hot spots were evident near some thermocouple lead wire

locations.

3 . Energy Balance.

An energy balance was performed to determine the heat loss by

conduction from the heat transfer test surface used to obtain final results.

During the energy balance, heat loss by radiation and convection were pre-

vented since the metal foil surface, ordinarily exposed to convection in the

wind tunnel, was covered with three layers of 25.4 mm thick foam insula-

tion. For the energy balance, and for all wind tunnel testing, foam insulation

was also placed around the sides of the test surface located below the wind

tunnel convection surface. To estimate heat loss through the insulation

placed on top of the foil surface, program ENERGB was employed with an

algorithm involving the one dimensional, linear form of Fourier s conduction

equation:

AX
qw = KA— (eqn. 2.7)

For the insulation, K is 0.4 W/m QC, A is 0.4897 m*, aX is 0.0254 m, and AT

is the temperature drop in the X direction in QC. Heat conduction through the

bottom and sides of the heat transfer device is then given by:

q c = VI - qw (eqn. 2.8)
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Here. VI is the power into the test plate, and qw is the conduction loss

through the top insulation. Tests were made at five power leveis 11.02.

13.0, 15.25, 16.52 and 18.2 Watts, chosen to give conduction losses at the

same levels as experienced under normal operating conditions. Figure 8

shows q c vs. Tw - Iamb results, where Tw is the average piate surface

temperature. A second order polynomial was fitted to this data in order to

predict conduction losses during heat transfer measurements:

q c = 0.683 + 0.954Tdiff - 0.0 1 6Tdiff2 ! eqn. 2.9

)

where Tdiff = Tv - Tamb- This equation is valid over a range of Tw - Tamb

from 10 to 30 QC. When exposed to convection in the wind tunnel, conduc-

tion losses are only 1.5 to 2.5% of the total power, and thus, a 25% error in

the estimate of conduction losses will cause less than a 0.5% error in the

estimate of the heat transfer by convection.

Radiation losses were estimated using two different approaches.

For the first:

%=
a ,

(eqn. 2.10)
I 1-e

( 1
1-e

+—— + 1

pi A. P. pA

and

n

Qrad Sqij (eqn. 2.1 1)

i-i
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[Ret. 151. For the second approach,

n

Ebi"Ji \.
1

Ji~Ji / ->,->,

[Ret'. 16]. The view factors, F Ui Tor the top and each of the side wails were

estimated to be 0.54 and 0.23, respectively [Ref. 16], where

n

yFij = i (eqn. 2.15 \

i-i

From these two methods, the radiation losses for an average plate tempera-

ture of 40 QC were estimated to be 55 Watts, approximately 8.5 % of the total

power into the heat transfer surface.

4. Contact Resistance Temperature Drop

Local surface temperatures were measured using thermocouples

placed in contact with the underside of the metal foil surface. The junctions

of these thermocouples were held in place next to the foil with three layers

of 0.254 mm thick double-sided lining tape and RTV silicon rubber epoxy.

During the heat transfer tests, temperatures measured by the thermocouples

were greater than those of the surface of the plate, due to thermal contact

resistance between the thermocouples and the foil and conduction through

the foil. The resulting temperature difference AT is given by:

( 1 AX^
AT =

q!h~A
+

J<a]
(eqfi 2J4J

32



where AX/KA accounts for conduction across the foii thickness and l/hcA

accounts for the thermal contact resistance, q is the heat flux through the

foil. The contact resistance is highly dependent on the contact pressure as

well as the area of the surfaces in contact.

The value of contact resistance used in the present study was the same

as used by Joseph [Ref. 31. In his study liquid crystals were applied to the

surface to measure its temperature distribution during convection tests, so

that AT in eqn. 2.13 could be determined. Stanton numbers from baseline

tests matched expected correlations after accounting for contact resistance.

The empirical relationship for turbulent boundary layers at constant free

stream velocity, along a flat plate with constant wail heat flux and unheated

starting length of % = 1.10 m. [Ref. 141 is given by

-0.2 i0.91-.iii
'X

StxPr°
4 = 0.030ReT 1- v P (eqn. 2.15W j

Data in Figures 10 and 13 show that this equation matches the data well for

5 x 105< Rex < 2.0 x 10 6
. From these measurements, the two terms in

brackets in equation 2. 13 were estimated to be 0.014 QK/Watt. The same

value was used for all thermocouples. However, on the present test plate,

contact pressure and the area of the thermocouples in contact with the sur-

face varied slightly from one thermocouple to another. Because contact

resistance for each individual thermocouple may vary from this value, small

deviations in the spanwise heat transfer coefficients and Stanton numbers

result, which were independent of flow conditions. In the present study, the

effects of these small variations were minimized by presenting results for

local conditions in terms of Stanton number ratios

.
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D. TEMPERATURE MEASUREMENT.

All thermocouples employed in the present study are type-T, copper-

constantan thermocouples. 120 of these were manufactured by Marchi

Associates, Inc and attached beneath of the heat transfer surface. These

thermocouples, have a flattened junctions, so that they may be placed in

good contact with the surface. One of these thermocouples was calibrated

using a temperature regulated bath consisting of liquid nitrogen and electric

heaters and a platinum resistance temperature reference (± 0.01 SC). The

calibration was performed over the temperature range of - 45.32 QC. A

second order was used to convert microvolts to temperature :

T = 0.018205 + 0.025846E - 0.000000581E2 (eqn. 2.16)

where:

E = microvolts x 106 Volts (eqn. 2.17)

This calibration was used for all Marchi Associates thermocouples attached

to the plate, since all thermocouples indicated very similar behavior as

temperatures were changed.

Thermocouples manufactured by Omega Engineering Co. were used to

measure six plate temperatures, as well as temneratures of the plenum air,

freestream air, and the boundary layer as traverses were made. The calibra-

tion of Joseph, [Ref. 3.: pp. 371, was first verified, and then used for all of

these measurements except the traverses:
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T = 26.573E - 1.937E2 + 0.998E3 - 0.261E* (eqn. 2.18)

Here,

E - millivolts x 1000 (eqn. 2.19)

Temperatures surveys of T - Tco, were performed using the automated

traversing device. For this, two thermocouples manufactured by Omega

Engineering were used, after calibration using the technique mentioned

above. Simultaneous measurement of free stream temperature was made

for every boundary layer location to minimize scatter due to wind tunnel

temperature drift. For the thermocouple mounted in the probe that travels

the flow field, the following equation was used to convert voltage to

temperature:

T = 0.1836 + 0.025667E - 0.0000004882E2 (eqn. 2.20)

For the thermocouple used to measure the free stream, the equation

employed was

:

Too = 0.07832 +0.023 1054E - 0.0000006786E2 (eqn. 2.21

)

As before, E = microvolts x 10 6 . The automated traversing mechanism has

two degrees of freedom which allowed measurement of a plane the flow

field. Each survey consisted of 800 probe locations, covering an area of 12

cm x 22 cm. Both, spanwise and vertical traversing blocks are mounted on a

20-thread per inch drive screw and two ground steel case hardened steel

guide/support shafts. Each drive shaft is directly coupled to a SLO-SYN type
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iVO92-FD310 steeping motor. Motors are controlled by a MIT AS two-axis

Motion Controller. Both the motors and the controller are manufactured by

The Superior Electric Co. The MITAS controller comes equipped with 2K

bytes of memory and a MC68000, 16-bit microprocessor which allows the

user to program the start, stop, duration, speed. acceleration and deceleration

of the steeping motors.

E. DATA ACQUISITION SYSTEM

The data acquisition system was designed to rapidly measure thermo-

couple voltages and convert them to temperature in degrees C. Using these

temperatures along with user supplied information on ambient conditions,

freestream conditions, power input, and flow rates into the injection

chamber, the system calculates free stream velocity, density, local heat

transfer coefficients, Stanton numbers, spanwise averaged Stanton numbers,

and injection parameters such as blowing ratio and discharge coefficient.

1. Hardware

A Hewlett-Packard Series 300, Model 9836S computer, equipped

with a MC68000, 8 MHz 16/32-bit processor, dual 5-1/4 inch floppy disk

drives, and 1M bytes of memory RAM, was used in the study. The computer

was used to process signals from the data acquisition system as well as the

information supplied by the user in order to process, store, display and print

results. An HP Think Jet printer was used to print data, and an HP 7470 two

pen plotter was employed for graphics. Voltages from the thermocouples

are read by an HP-3497A Data Acquisition/Control Unit with an HP-3498A
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Extender. The unit communicates with the computer through a HP-829737A

Interface

2. Software.

Programs STANFC1, STANFC2 and ACQTPRO were developed to

process temperature and Stanton number data, program ENERGB was deve-

loped to estimate the conduction losses, and programs PTSLC, PTSTAV,

PLSTRVOR, PLSTRTIO. PLSTRFC. PLSTVV, SURFCONT and PLOTRUN were

developed for plotting data. All these programs are listed in Appendix C.

The data files created by the heat transfer programs are listed in Appendix

D.

Programs STANFC1 and STANFC2 are modified versions of STDAT1,

which was developed by Ligrani, Ortiz and Joseph, [Ref. 3.: pp 4 1 ]. Program

STAN'FCl prompts the user if film rooling is being used. If the answer is

affirmative, the program prompts the user to enter the percentage of flow to

the injection chamber from the rotometer and the pressure difference

between the injection chamber and the static pressure in the wind tunnel.

These inputs are transformed to SI units and stored in a data file named

"FILDT". The program continues by prompting the user for the stagnation

pressure of the free stream (in inches of H2O), the ambient pressure (in Hgj,

the current (Amps) and voltage supplied to the heater. The program then

reads the thermocouple voltages and converts them into temperatures.

These are then stored in a data file named "TDAFC". After all temperatures

have been calculated, the free stream density and velocity are calculated.

Parameters previously calculated such as the free stream density, free
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stream velocity, ambient pressure, and the power in are stored in a data file

named "IDAFC".

Program STANFC2, processes the data files TDAFC, IDAFC and FILDT.

The program begins by prompting the user whether a vortex generator is

being used or not, then it accounts for conduction, radiation losses and

contact resistance. It continues bv calculating local heat transfer coefficients

and Stanton numbers, average spanwise Stanton numbers and Reynolds

number based on downstream distance. These data are printed out and two

data files, "STRFCV" and "STAY", are created. In STRFC" the local heat

transfer coefficients and Stanton numbers are stored, along with their

spanwise position and downstream positions along the test plate. Spanwise

averaged Stanton numbers with their corresponding down stream Reynolds

numbers, are located in "STAV" The last section of the program includes a

subroutine to calculate film cooling parameters, such as discharge coeffi-

cients, density ratios, mass flux ratios, momentum flux ratios and blowing

rate.

Program ACQTPRO, developed by Ortiz, acquires temperatures from a

thermocouple probe mounted on the automatic traversing device and from

another thermocouple that senses the freestream temperature. This pro-

gram was used to create the data to plot the temperature surveys of T - Too.

The program begins by prompting the user for the downstream distance

from the boundary layer trip, the number of points in the spanwise direction

where temperatures are going to be measured, the number of points tn the

vertical direction, the spanwise resolution in inches, the vertical resolution in

inches and the initial position of the probe with respect to the plate, in both Z
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and Y coordinates, in inches. A matrix of data points is then computed.

Freestream temperature is calculated and ambient conditions are input. The

program then enters a loop which samples each temperature 25 times per

probe position and 5 times the free stream temperature. Upon acquiring

these temperatures and obtaining their respective average, T - Too is calcu-

lated for each probe location. The temperature difference aiong with their

respective coordinates are stored in a matrix. At the end of the data

collection run, these values are read into a data file named "TPRO", on a

floppy disk. These data are plotted using program "TPROPUN".
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Ill EXPERIMENTAL RESULTS

A. BASE LINE MEASUREMENTS

Heat transfer measurements were made at free stream velocities of 10

m/s and 15 m/s, without vortex and without film cooling. These were done

in order to determine how heat transfer from the plate compares with

existing correlations. These measurements validated and qualified the per-

formance of the heat transfer plate and measurements procedures used

Results are given in Figures 9-11 for 10 m/s, and in Figures 12-13 for 13

m/s.

Figure 9 shows the spanwise uniformity of the local heat transfer coeffi-

cient of the test surface at 10 m/s. Except for row 1, the spanwise unifor-

mity is very good with maximum variation of 10% (based on the average for

a given row). These small variations are probably due to slight differences

in the spatial uniformity of the heat transfer test surface, especially diffe-

rences in the conduction contact resistance between different thermocouples

and the metal foil, which comprises the top of the heat transfer plate. Larger

spanwise variations for row I are believed to be due to multi-dimensional

heat transfer by conduction through the leading edge and through the front

corners of the test plate in addition to the contact resistance. These varia-

tions are not as large as those observed by Joseph [Ref. 3: pp. 45, 77-78].

The spanwise-averaged Stanton Numbers for 10 m/s are shown in Fi-

gure 10. Six data points are shown, where each corresponds to a different

thermocouple row The data shows excellent agreement with the empirical
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equation for turbulent boundary layers on a flat plate at constant free

stream velocity, with constant heat flux and unheated starting length of x. =

1.10 mlRef. 151-

St.Pr0 4 = .030Re:
02

(l- f^H'
- 111

feqr, 3-D
V v

x
; )

A survey of T - T^o in degrees Centigrade was obtained at X = 1.48 m,

using a calibrated copper-constantan thermocouple, positioned using the

automated traversing device. Results are shown in Figure 11, for LW10

m/s with no vortex and no film cooling. In this figure, results for an area

normal to the flow of 1 1 cm x 20 cm. are given, as measured using 800

probe positions. The survey evidences good spanwise uniformity of the

temperature boundary layer.

Figure 12 and 13 show the spanwise variations of the heat transfer

coefficient and averaged Stanton numbers as function of Reynolds number

for 15 m/s free stream velocity. Results are consistent with those obtained

for 10 m/s. In Figure 12, the data show good spanwise uniformity, except

for the first row, where variations are slightly larger than for the 10 m/s

case. In Figure 13, the data again show excellent agreement with equation

(3.1).

B. BOUNDARY LAYER WITH SINGLE VORTEX

Heat transfer measurements were made at free stream velocities of 10

m/s and 15 m/s with an embedded longitudinal vortex and no film cooling.

These were done to further qualify the heat transfer surface for spatially re-
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solved heat transfer measurements. To produce the vortex, vortex generator

^2,(see Joseph [Ref. 3: pp 76]), was positioned 0.479 m downstream from the

boundary layer trip, and 4.79 cm in the positive Z-direction, as shown in

Figure 2.

The spanwise variation of local St/Sto for 10 m/s and 15 m/s are pre-

sented in Figures 14 and 15, respectively. Here, Sto is the local Stanton num-

ber without an embedded vortex. In both of these, the effect of the vortex

on wall heat transfer is evident. The Stanton number ratios approach 1

away from the vortex. As Z decreases from +I5cm, the ratios increase until

maximum values of 1.2 and 1.25 are reached for 10 and 15 m/s, respec-

tively. These maxima correspond to locations on downwash sides of vor-

tices, where secondary flows result in boundary layers which are locally

thinner than at other locations For -50<Z<-0.0 cm a large gradient of heat

transfer exists at each downstream location. The location of this gradient

moves to smaller Z as the vortex develops downstream. For smaller Z,

Stanton number ratios for 10 and 15 m/s, reach minima of 0.92 and 0.90 at

locations which correspond to the upwash sides of vortices. Here, the

boundary layer is locally thicker than at other locations.

The results in Figures 14 and 15 are in excellent quantitative agree-

ment with those of Joseph [Ref. 3: pp. 87-881, for the same experimental

conditions, (The sign of the Z coordinate in this experiment is opposite to

the one employed by Joseph). The results in 14 and 15 also show qualita-

tive agreement with the measurements of Eibeck and Eaton [Ref. 6], where

small quantitative differences are a result of different vortex generator

geometries.
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C. BOUNDARY LAYER WITH FILM COOLING

In order to further qualify the heat transfer surface and the film cooling

injection system, measurements were made with film cooling without em-

bedded vortex. Results were obtained at 10 m/s , at 9 = 1.614, 1.699 and

1.50 wuh blowing ratios of 0.68, 0,98 and 1.26 respectively, and at 15 m/s

at 9 = 1.393 and 1.586 with blowing ratios of 0.47 and 0.36 respectively

Results are presented in Figures 16-30.

Figures 16-18 show the spanwise variations of St/Sto at 10 m/s, for

blowing ratios of 0.68, 0.98 and 1.26, respectively. The first data set was

obtained using 13 injection holes, which produce a film wide enough (25.4

cm) to cover the entire span of the measuring heat transfer surface. Because

of the limitations on the secondary air supply, 9 and 7 injection holes were

required to produce blowing ratios of 0.98 and 1.26, respectively, in these

cases the coolant was injected such that it covered a portion of the center

span of the heat transfer test surface. Consequently, Stanton number ratios

are higher near the edges of the plate, as shown in Figures 17 and 18 file

latter Figure for only 7 injection holes, shows this effect to be particularly

significant, however, in spite of this a large spanwise uniform area exists in

the center portion of the plate where adequate spanwise averages may be

obtained. Apart from this, the spanwise uniformity of Stanton number ratios

in Figures 16-18 is excellent with a maximum deviation of about 10 percent.

Figures 19 and 20 show the spanwise variations of the Stanton number

ratios at 15 m/s. Results for blowing ratios of 0.47 and 0.86 were obtained

using 13 and 7 injection holes respectively. Spanwise variations in Figures
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19 and 20 are larger than in Figures 16-18, though qualitative trends are

very similar.

A summary of spanwise averaged St/Sto as dependent upon Reynolds

number is given in Figure 21. Graphs showing individual curves are pre-

sented in Figures 22- 26, where averaged St/Sto are given for blowing

ratios of 0.68, 0.98 and 1.26 at 10 m/s, and 0.47 and 0.86 at 15 m/s, respec-

tively. Referring to Figure 21, the lowest St/Sto are observed tor M = 68 ai

10 m/s and for M = 0.47 at 15 m/s. For each individual data set, the lowest

ratio is present for the two rows of thermocouples nearest the film cooling

holes, where X/d is 7.35 and 17.48. Here, X is distance from the down

stream edge of the injection holes, and d the injection hole diameter. The

data in figures 21-26 are plotted as function of the blowing ratio in figures

27 and 28. Results in 21-28 are qualitatively consistent with the fully tur-

bulent measurements of Goldstein and Yoshida, [Ref. 151, also for a single

row of injection holes.

Two surveys of T - Too in degrees C were obtained in the film cooled

turbulent boundary layer at X = 1.48 m, X/d - 41.94. Both surveys were

made at a free stream velocity of 10 m/s, with M = 0.98 and a coolant injec-

tion temperature of 5 1
QC. In one case, the plate was heated to 40 2C (Figure

30.), and in the other, the plate was maintained at the free stream tempera-

ture (Figure 29). The latter experimental arrangement with unheated plate

allowed the determination of the presence and distribution of heated film

coolant as indicated by higher temperatures. In Figure 30 with a heated

plate, the locations of coolant jets are evident as local hot spots near the wall
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Comparing these results to ones in Figure 1 1 . without film cooling shows that

the thermal boundary layer is about twice as thick.

D. BOUNDARY LAYER WITH SINGLE VORTEX AND FILM COOLING

In this part of the study the effect of an embedded vortex on a film

cooled turbulent boundary layer was studied. This section of the experiment

was conducted in four different parts. For all the parts of the experiment

the same vortex generator was employed. The first consisted in repeating

Joseph data, [Ref. 3. : pp. 97-104]: Uoo= 10 m/s, vortex generator #2 at Z =

4.79 cm and blowing ratio, M = 0.68, in order to provide additional check on

measurements, equipment and procedures. In the second step, a blowing

ratio of M = 0.98 was employed, at Uoo = 10 m/s. The position of the vortex

was changed to three different locations with respect to test section center

line. Vortex position A corresponds to vortex generator at Z = 3.52 cm, vor-

tex position B to Z = 4.79 cm, and vortex position C to Z = 6.06 cm. In the

third step, a freestream velocity of 15 m/s, with M = 0.47 were employed,

in order to study the effect of blowing ratio. In the fourth part, a blowing

ratio of M = 1.26, at Uoo = 10 m/s was employed, in order to study the effect

of high blowing ratio. Here, information was also obtained on changes in

boundary layer structure which occurred for higher blowing ratios.

1- Freestream 10 m/s. Bloving ratio. M = 0.68. Repeat of

Joseph data.

These heat transfer measurements were obtained to compare with

those of Joseph, [Ref. 31. He first showed that embedded vortices cause sig-

nificant changes in heat transfer in film cooled turbulent boundary layers.

This finding is also evident from the present study. To obtain the present
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data set, vortex generator *2 was placed at position B, and all 15 injection

holes were used tor film cooling. Results are presented in Figures 3 la.-3 l.f,

and in Figure 32. Overall effects are now discussed. The embedded vortex

produces a thicker boundary layer in the upwash side thus augmenting the

film cooling protection. Near the downwash side, the boundary layer is lo-

cally thinner, and the protection provided by the film cooling is minimized.

The undercooled region produced on the upwash side vortex is very per-

sistent not only in the down stream direction, but also in the spanwise

direction. Here, Stanton numbers are .5 to 5.5 percent lower than those in

boundary layers with film cooling only.

Figures 3 l.a-f., show the spanwise variation of the Stanton number

ratios, St/Sto with film cooling and embedded vortex. Here, St is the local

Stanton number and Sto is the Stanton number for the same location and

free stream velocity but without film cooling and without embedded vortex.

A St/Sto = 1 thus indicates an undisturbed thermal boundary layer. As

shown in the set of Figures 3 la - 3 If, the lowest St/Sto is 0.55 at X = 1.15 m,

X/d - 7.35, and the maximum is 1.025 at X = 2.00 m, X/d = 96.59. If these

results are compared with those of Joseph [Ref. 3- : pp. 97-1031, a general

qualitative agreement can be observed. Differences are due to im-

provements in the present heat transfer test plate, especially better

spanwise temperature resolution and more uniform heat flux.

Figure 32. shows surface contours of St/Stf. Here, St is the local

Stanton number, and Stf is the local Stanton number at the same location

with film cooling but without embedded vortex. A very steep heat transfer

gradient is present which is near the same location as the axis of the vortex.
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At the upstream end of the plate this gradient is located near L = - 1 cm. k

hot spot is present at larger Z, and a region of high heat transfer is present at

smaller Z on the upwash side of the vortex. These results are in qualitative

agreement with those of Joseph [Ref. 3.: PP- 1041, except the most significant

hot spots are located further downstream in the present study.

2. Free stream 10 m/s. Blowing ratio, M « 0.98

In order to achieve the blowing ratio used for this data. 9 injection

holes were employed for film cooling. Here, injection covers the midspan of

the test plate from -12 cm < Z < 12 cm. Vortex generator #2, was placed 60

cm upstream of the row of injection holes, at vortex position A, B and C. to

investigate the effect of the vortex position with respect to film cooling

injection holes. Results are presented in Figures 33 - 42.

a. Data overview.

Spanwise variations of St/Sto for the vortex position B are

shown in Figures 33a-33f. These data show the same overall qualitative

trends as measurements at 10 m/s and M = 0.68 (Figure 3\). With embed-

ded vortex, the normalized Stanton numbers in 35d-'53i are increased on the

downwash side and decreased on the upwash side relative to the boundary

layer with film cooling only. The only significant quantitative difference

between these results and those in 31 are higher St/Sto at X/d = 17.48 and

at X/d = 33.59 resulting from a less effective film cooling at M = 0.98.
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b. Effect of downstream development.

In Figures 33a - 33f, a double peak of St/Sto is present at X/d

= 17.48. and at X/d = 33.59. As the boundary layer develops further down-

stream, one peak becomes smaller iZ ~ -2.0 cm), and one increases in mag-

::::uao (Z
:- 5.0 cm), until at X/d - 54.59 the St/Sio distribution shows one

large peak. This St/Sio peak increases in magnitude to become equal to 1.05

or about 34 percent greater than the St/Sto with film cooling only. St/Stf

data in Figure 54. indicate that this hot spot covers an area along the center

and spanwise downstream half of the plate. Such behavior evidences highly

three-dimensional interactions within the boundary layer.

Figure 34 shows the St/Stf distribution for vortex position B

and M = 0.93. A steep heat transfer gradient is evident along the the lengtn

of the test surface, which corresponds to the path of the vortex center. Tins

path is at an angle to the streamwise direction, moving to smaller Z as the

vortex convects downstream. Compared to results for M = 0.68 in Figure 32,

the heat transfer gradient is steeper, and a larger region where St/Stf is less

than 1 is present over the top third of the test plate. This follows since a

larger amount of coolant is swept by the vortex at higher blowing ratio.

For Z values smaller than those along the location of the vortex

center, Figure 33 shows values of Stanton ratios which are about 5 per cent

lower than those with film cooling only. The same trend is evident in Figure

34, where almost 1/3 of the plate shows 0.90 < St/Stf < 0.98. These locations

are on the upwash side of the vortex, where film coolant seems to be pushed

and spread over a very large portion of the plate. Similar phenomena were

observed by Goldstein and Chen. [Refs. 2 and 7], in a study of film cooling of
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a turbine blade with injection through one and two rows of holes tn the

near-endwail region.

Figures 35a- 35d show the T - Tco temperature field as it de-

velops downstream at X/d = 41.9, 82.9, 109.2 and 147.0. For these tests,

film cooling jets were heated to 51 QC without providing any heat to the test

plate. Thus, the temperature field shows how fluid from the film cooling

holes is convected and distorted by the vortex, where higher temperatures

indicate greater amounts of coolant. The most dramatic effect evident from

Figures 35a-d occurs on the upwash side of the vortex, where coolant is

lifted away from the thermal boundary layer which is ordinarily about 4 cm

thick with film cooling. At X/d = 41.9 fluid affected by the film cooling is 6.5

cm from the surface, and at X/d = 147.0, the temperature field is more than

10 cm from the surface. Also, evident are cooler temperatures with down-

stream development resulting as coolant is convected and diffused. The

areas indicated by low St/Sto and St/Stf values correspond to 0. < Z < -5 cm,

where coolant seems lifted from the surface to accumulate in one small area.

Figures 35a-d clearly show how the coolant is pushed and spread over an

area by the vortex, and how this area increases in size, as the flow convects

downstream.

On the downwash side of the vortex, secondary flows cause

freestream fluid to be located very near the wall. Here, the thermal bound-

ary layer is greatly thinned and very little effect of the film cooling remains.

From Figure 35c for X/d = 82.94, the local hot spot is located at to < Z -5

cm, which seems to indicate that film coolant is moved to other locations in

the boundarv laver bv the vortex.
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In Figure 36, the temperature field is presented for an expe-

riment in which the heat transfer plate is heated to 40 QC and film coolant to

51 QC. The temperature difference contours show the same qualitative

trends as in Figure 35. In particular, the positions of many temperature

gradients and the dimensions of the area affected by the vortex are about

the same. Results in Figure 36 are different from those in 35 since : (1) it is

not as easy to discern which part of the temperature field is due to film

cooling only, (2) overall temperature differences are larger, and (3) local hot

spots corresponding to film cooling locations are more easily discernable

every 3 cm starting at Z = - 1 2 cm.

The temperature gradient at Z = -14 cm, corresponds to the

spanwise edge of the film cooling for blowing rate of M = 0.98.

c. Effect of spanwise vortex position.

To study the effect of the vortex position relative to the film

cooling injection, the vortex position was changed from A to B to C locations.

Distributions of St/Sto are shown in Figures 33. 37 and 40, distributions of

St/Stf in Figures 34, 38, 41 and distributions of T - Too are given in Figures

35. 39 and 42. Regardless of the vortex position, the following phenomena

were observed :(1) on the upwash side of the vortex a low heat transfer

region exists, where St/Sto is less than for a film cooled turbulent boundary

layer only, (2) on the downwash side of the vortex a wide region of high

St/Sto exists, because of thinning of the boundary layer by the vortex, and

(3) at X/d = 7.4, the film cooling dominates the flow and the vortex seems to

have very little effect on the heat transfer.
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Comparisons of Figures 33, 37 and 40, show that for Low X/d

values up to 17.5, a double peak in the St/Sto distributions is present for

vortex positions A and B. At X/d = 33.6 and further downstream for vortex

positions A and C, the double peak in St/Sto distributions starts to grow

spanwise enlarging the portion of the plate covered by the hot spot. In these

cases, St/Sto peaks are not as high as for the vortex position 8 case (Figure

35). A maximum St/Sto of 1.05 was observed for the vortex' position B at

X/d = 96.6, or about 30 percent greater than the St/Sto with film cooling

only. Low St/Sto and St/Stf regions on the upwash side o! the vortex were

observed for all three vortex positions. These were less significant for

position C, while varying between 2- 6 percent for the other two vortex-

positions.

St/Stf distributions from Figures 34, 38 and 40 show that the

location, shape and size of the hot spot vary depending on the vortex span-

wise position. In Figure 34, for vortex position B, this hot spot is located

from the middle length of the plate, growing in size as the vortex develops

downstream. For vortex position A, the hot spot is shifted upstream and is

not as wide, nor as long as for position B. For vortex position C, the hot spot

begins early upstream but persists further downstream, but it does not

reach the end of the test section, and it is very narrow. A region of high heat

transfer is observed in all three cases, but this area is larger for vortex posi-

tion A, covering about 2/3 of the test plate. A heat transfer gradient is

aligned along the vortex center for ail three vortex positions, but it is

steeper and more persistent for vortex position B. The region of low heat
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transfer, where St/Stf is less than 1, is largest for position B and smallest for

position C.

Figures 35, 39 and 42 show the T - Too temperature field in

degrees C for X/d = 41.9. For these results the heat transfer plate was

maintained at the freestream temperature and the coolant was heated to 51

2C, lunheated plate). Overall qualitative trends for all three vortex positions

are similar; coolant is lifted away the wall by the upwash side of the vortex
,

on the downwash side of the vortex, secondary flows cause the freestream

fluid to be located very near the wall, making the boundary layer very thin

and minimizing the effect of the film cooling. A significant spanwise gradient

in temperature exists which is located near the vortex core, and extends

about 5 cm from the wall. As expected, the spanwise location of this gradi-

ent changes with vortex position. The effect of the downwash side or the

vortex is most significant for vortex position B. For this case Figure 35a

shows that the boundary layer is thinned such that it only extends 2 cm

from the wall. Significant changes also occur near the upwash side of the

vortex where secondary flows from the vortex convect film coolant away

from the wall. The most significant changes in this part of the flow occui for

vortex position C.

3- Free stream 15 m/s. blowing ratio. M = 0.47. Effect of

low bloving ratio.

Measurements were made at U©o =15 m/s, with a blowing ratio

M of 0.47, in order to determine the effect of low blowing ratio on heat

transfer. These tests were also conducted to obtain additional verification oi

general conclusions from results obtained at 10 m/s and M = 0.98 blowing

ratio. For these tests, vortex generator *2, was used at positions A, B and C.
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Results are shown in Figures 43 - 48. Distributions of St/Sto are shown in

Figures 43. 45. and 47. and distributions of St/Stf are given in Figures 44. 46

and 48.

From a general qualitative point of view, the results at 15 m/s and

M = 0.47 are similar to those of 10 m/s and M = 0.98. The most significant

quantitative difference is thai St/Sto maxima are higher, and St/Sto minima

are lower for M = 0.47. In addition, the peaks of local heat transfer seem to

increase more rapidly with downstream distance. At the downstream end of

the plate where X/d = 96.6, local St/Sto for M - 0.47 mav be as high as 1 1 2

compared to about 1.05 for M - 0.98. The rapid downstream growth of these

maxima becomes more apparent when one considers the film cooled bound-

ary layer alone, since St/Sto ratios at M = 0.47 are lower than those at M =

0.98.

At M = 0.47, the effect of changes in the spanwise position of the

vortex are much less significant than at M = 0.98. At higher blowing ratio,

many quantitative changes in the local heat transfer result as the vortex

position is changed. In particular, primary and secondary peaks of St/Sto

were observed at X/d = 17.5 and 33 6 for vortex position B, and X/d = 54 6

and 75.6 for vortex position C. At the M = 0.47 blowing ratio, the shapes of

St/Sto distributions for different vortex positions are very similar, especially

for X/d = 54.6, 75.6 and 96.6. Generally, quantitative changes for M = 47

occur only in the spanwise locations of the St/Sto maxima and minima. At

X/d = 7.4, the effect of the vortex position changes is minimal and the

spanwise heat transfer rates are mostly affected by the film cooling At X/d

= 17.5 both primary and secondary St/Sto peaks are present for all three
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vortex positions. The only significant St/Sio changes with vortex position oc-

cur at X/d - 33.6 where a small secondary St/Sto peak is observed when the

vortex is located at position A only. Such behavior indicates that the effects

of film cooling at M = 0.47 do not persist as far downstream as at higher

blowing ratios. In addition, the vortex seems to more completely dominate

the flow field as the blowing ratio decreases.

4. Free stream 10 m/s. blowing ratio. M = 1.26. SHect of

high blowing ratio.

In order to study the effect of high blowing ratio on the film cooled

turbulent boundary layer with embedded vortex, measurements were made

at Uoc = 10 m/s. with M = 1.26 and the vortex at position B. Results are

shown in Figures 49- 52.

The St/Sto and St/Stf data in 49 and 50 show the same overall

qualitative trends shown by measurements at M = 0.98, 0.47. and 0.68 :

augmented heat transfer near the downwash side of the vortex and reduced

heat transfer near the upwash side. Also, at X/d - 7.4, film cooling rather

than the vortex dominates the spanwise variation of heat transfer. The most

important quantitative differences between these result? and those at other

blowing ratios are the magnitudes of St/Sto with film cooling only. Figure 26

shows M - 1.26 St/Sto data at 10 m/s which is, on the whole, greater than

data at M = 0.68, but just lower than results for M - 0.98. Results presented

in Figure 49 reflect the same overall trends.

Details of the spatial variations of normalized Stanton numbers in

Figures 49 and 50 are now discussed. At X/d = 17.5, 33-b and 54.6 double

peaks in St/Sto distributions are present. These seem to result from inter

-
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action between cooling jets and the vortex, occurring at Z = -2- -3 cm ana at

Z = 2 — 3 cm.

Contours of T - Too (20, at X/d - 41.9 in Figure 51. show that the

peak near +2-5 era results from the downwash of free stream fluid to near

wail regions by the vortex. The corresponding St/Sto peak increases in

magnitude as the the boundary layer convects downstream reaching mag-

nitudes as high as 1.05 at X/d 75.6 and 96.6. At these downstream locations

augmented St/Sto cover a large spanwise portion of the film cooled test sur-

face extending from -5 cm to +5 cm (Figures 49 and 50). Magnitudes of

St/Sto maxima in these hot spots at M = 1.26 are about the same as those at

M = 0.98.

Figure 50 shows the heat transfer rate over the test plate in terms

of St/Stf. Here, the hot spot is located from X/d = 54.6 to X/d = 96.6. This

region is very large, confined to the downwash side of the vortex. The tem-

perature gradient on the upwash side of the vortex is not very steep in some

streamwise locations. A comparison between Figure 50 and Figure 32 where

M = 0.68, show that, the hot spot is present at the same spanwise and

streamwise location in both cases, but in 50 the hot spot is thinner, and the

area of low St/Sto on the upwash side of the vortex is larger.

Temperature contours at X/d = 41.9 in Figure 51, show that the

St/Sto peak atZ = -2— 3 cm. lies beneath a region of large temperature gra-

dients very near the vortex center. Figure 52d. shows strong secondary

flows at this location which apparently sweep coolant further from the vor-

tex center (to smaller Z), such that it collects near -5 Z -8 cm Contours of

vorticity magnitude, calculated from these secondary flow vectors for M =
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1.26 vortex position B, are shown in Figure 52e. These show that (1) the

core of the primary vortex is located at Z = -2 cm., Y = 3.5 cm., and (2) that

the secondary peak in heat transfer is not a result of any form of secondary

vortex. Augmented mixing is initially created by the secondary flows

beneath the vortex center, resulting in locally higher heat transfer. This se-

condary peak shown in Figure 49 at X/d = 17.5, 33.6 and 54.6 eventually

becomes indistinguishable at larger X/d equal to 75.6 and 96.6. The se-

condary peak is bigger and more persistent than at M = 0.98, indicating that

the shear layer interaction causing higher heat transfer is dependent upon

the mass flux of film cooling.

Another important feature of the results in Figure 5 1 is the gradient

of heat transfer present at Z = -10- -12 cm. for < Y < 5.0 cm. This gradient

is present at the edge of the film cooled region : coolant was injected from

only 7 holes extending across a span from -9 cm. to +9 cm.

Additional flow field information at X = 1.48 m, X/d = 41.9 is given

in Figures 52a.-c for 10 m/s, M = 1.26 and vortex position B. Data was taken

using a five-hole pressure probe, [Ref. 1.: pp. 14-151, to measure pressure at

800 points in a spanwise plane in order to further investigate the effect of

the high blowing ratio in the turbulent boundary layer with embedded vor-

tex. These results are consistent with those of Evans, lRef.1]. They show : ( 1

)

that high velocity, high total pressure fluid is swept near the wall on the

downwash side of the vortex, (2) a velocity and total pressure deficits exist

at the center of the vortex, and (3) low velocity fluid is swept away from the

wall near the upwash side of the vortex. Vorticity contours in 52e. show a
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large region of negative vorticity in the upwash region,(-8 < Z < -4 cm). In

addition, two other regions of negative vorticity result from the secondary

flows present.
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IV. SUMMARY AND CONCLUSIONS.

Heat transfer measurements were made of turbulent boundary layers

with film cooling and embedded vortices for freestream velocities of 10 and

15 m/s . To obtain the data, a heat transfer test surface was designed and

developed to provide constant heat flux over its area, with 126 embedded

thermocouples for detailed spanwise resolution of temperature. Extensive

qualification tests show tnai the surface gives excellent spatially resolved

heat transfer coefficients over an area of 43.8 15 cm x 1 1 1 1.76 cm.

Baseline measurements show excellent agreement with Stanton number

correlations for a flat plate with constant wall heat flux and unheated start-

ing length. Results of turbulent boundary layer with embedded vortex show

excellent agreement with Joseph, [Ref. 3.1, and with the literature. Results of

turbulent boundary layer with film cooling at different blowing ratios show

expected trends, consistent with the data of Goldstein and Yoshida, [Ref. 181.

Longitudinal vortices cause significant changes in heat transfer and

structural characteristics of film cooled turbulent boundary layers. Heat

transfer augmentations as large as 30 percent, and reductions as high as 10

percent were observed to persist as many as 23 boundary layer thicknesses

or 96 film cooling hole diameters downstream of film cooling injection loca-

tions. The effects of the embedded vortex on heat transfer in film cooled

boundary layers are significant and important

:

I.) Near the downwash side of the vortex the heat transfer is augmented,

vortex effects totally dominate the flow behavior, and the effects of
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the film cooling are negated. " Hot spots " will exist for blowing ratios

ranging from 0.47 to 1.26, and vortex circulation to freestream velocity

ratios of about 1.6 cm.

2.) Near the upwash side of the vortex, the coolant is lifted off the wall and

pushed to the side of the vortex, increasing the surface area protected

by the film cooling.

3.) Changing the position of the vortex with respect to the film cooling jets

results in significant local quantitative changes in heat transfer occur,

even though the overall qualitative trends remain unchanged.

4.) Near film cooling injections locations for X/d up to 7.4, the film cooling

dominates the flow behavior and the vortex seems to have very little

effect on spanwise variations of heat transfer.

Results (1) and (2) are mostly a consequence of the intense secondary

flows produced in the plane perpendicular to the axis of mean vorticity.

These results are consistent with those obtained by Joseph, [Ref. 3.: pp. 54),

and Evans, [Ref. 1.: pp. 28].

At high blowing ratios:

1.) A double peak in the St/Sto distributions was observed to occur

between X/d = 7.4 and 54.6.

2.) The change in spanwise position of the vortex in relation with the film

cooling jets affects the magnitude, shape and spanwise position of

St/Sto peaks, and

3.) Secondary St/Sto peaks become higher in magnitude and more
persistent with respect to downstream development as the blowing

ratio increases. The double peaks observed at M = 1.26 were not due
to a secondary vortex, but to an interaction between the vortex and
film cooling which depends on blowing ratio.
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At low blowing ratios:

I.) The change in spanwise position of the vortex has very little effect on

local heat transfer distributions except to change the locations of

Stanton number minima and maxima, and

2.) St/Sto distributions exhibit only one peak which increases in magni-

tude with downstream development.

It is recommended that flow visualization study of the interaction of the

vortex and film cooling be conducted in order to enhance the understanding

of some of the complex phenomena observed during the course of this

study.
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APPENDIX A

FIGURES
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Fig. 2. Vortex Generator Position.
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Fig. 3a. Experimental Set-up
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Fig. 3b. Detail of the Injection Plenum and Vortex Generator
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Fig. 5a. Heat Transfer Test Plate
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Fig. 5b. Detail Of Heat Transfer Plate
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Fig. 6. Thermocouple Placement on Plate
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THERMOCOUPLES (.762 mm)

STAINLESS STEEL (0.127 mm)

TAPE (.0762 mm

HEATER (1.0 mm)

LEXAN(12.7mm)

INSULATION (25.4 mm)

LEXAN(.762mm)

STYR0F0AM (82.55 mm)

BALSA WOOD (9.53 mm)

Fig. 7. Cross Section of Test Surface
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APPENDIX B

UNCERTAINTY ANALYSIS

Uncertainty analysis was performed using the method proposed b\

Kline and McClintock [Kef. 19]. This is the root sum square' method, where

the uncertainty. 5f , of some function F, is a function of the independent

variables XQl according to the following expression:

5f
=

f n \

2jWn
1/2

lean. C. 1

V
1=1

All uncertainties are based on 95% confidence ieveis. To calculate the

uncertainty of the Stanton number, it is necessary to calculate first the

uncertainty in the heat transfer coefficient, h. The following independent

variable uncertainties were determined : £q
- + 16 W/m2

, 8tw = T 0.5 QC, 5tw

= ± 0. 1 °C. Here, the uncertainty of heat ioss by convection was based on a

5% error in radiation losses and 2.5% error in conduction losses. The

uncertainty of Tw is higher than Too due to higher uncertainty in the

calculation of the contact resistance. From these parameters the uncertainty

of h was determined to be 4.S% or approximately +
i 7 W/m2 e

C, based on an

h value of 35 W/m2 9
C.

To calculate the uncertainty of the Stanton number besides the uncer-

tainty of the heat transfer coefficient, the following independent variable

uncertainties were determine : 5pco - ± 0.01 Kg/m^, Syoo = i0.5 m/s and Cp =
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i ! ^/r-Q c
'fC. The uncertainty of Cp was based on the assumption of constant

properties. From these parameters the uncertainty of the Stanton lumber

was calculated to be + 6.04%, or approximately 1.87 :; I CM based on a typical

Stanton number of 0.0035 The uncertainty of St/Sto is derived from the

parameters already mentioned and was estimated to be ± 7.2'fb or t
r

based on a St/Sto of 0.75.

To calculate the uncertainty of the blowing ratio vl. along the uncer-

tainty values determined for Uoo and poo. the following independent

variable uncertainties were: 5uinj = - 1.0 m/s, and <5om j
- ± .02 !•

. The

uncertainty of U in j
is higher than Uoo due to higher uncertainty of the

rotometer and the area of the injection holes, and the uncertainty of pin j
is

also higher than pco due to higher uncertainty in the estimation of T ini from

Tp. From these parameters the uncertainty of M was calculated to be = 8 '-)"'.

or about + 0.087c for a \i value of 0.98.
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APPENDIX C

SOFTWARE

The following programs d-cs listed :

".'.L.Rlj . energv oalance estimation lor conciuctiori losses

STANFC1 : heal transfer pro^.-' m to acquire thermocouple

readings from DAS., and store information in data

files in floppy disk

STANFC2 : heat transfer program to calculate Stanton numbers
for all flow conditions

ACQTPRO : heat transfer program to acquire temperatures from

automatic traversing device for temperature surveys

PLOTRUN : program to read a data file to plot temperature

contours

PTSTAV : programs read a data file to plot spanwise averaged

Stanton numbers vs. Reynolds number

PTSTLC : reads a data file to plot spanwise local heat transfer

coefficients

PLSTRTIO : plots spanwise St/Sto for film cooling only.

PLSTRVOR: plots spanwise variations of St/Sto for embedded
vortex data oniy

PLSTRVV. plots spanwise variations of St/Sto for film cooling

only and St/Sto for film cooling and embedded vortex

bv rows.
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SURFCONT: plots surface contours of St/Stf

PLSTRFC : plots spanwise variations of local St/Sto for film

cooling data only.

Name of variables used are intended to be self explanatory
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Q
10 i PROGRAM ENERGB
20 i

30 i THIS PROGRAM ACQUIRES MULTIPLE CHANEL THERMOCOUPLE DATA
40 !AND PERFORMS ENERGY BALANCE TO ESTIMATE CONDUCTION LOSSES
50 'LISRANI/CRTIZ VERSION, JUNE 1 SSS
SO I

73 DIM E(200; ,T(200>
SO i

30 [CHANNELS 3-73,100-146
130 I COPPER CONSTANTAN THERMOCOUPLES
no
!Z3 c Ri;-JTE= IS 731

} 43 PRINT "ENERGY BALANCE RESULTS"
]C,1 PRINT '

l *#****ifr**it*4'**'»***'*'»ir*'**"

ISO ! ENTER POWER IN (WATTS/

!S1 DISP "(HIT, CONTINUE:- >"

*. a 2 r r-rUSi;

173 DISP "ENTER SUPPLY CURRENT IN AMPS, AND VGLTASE IN VCLT3'
r

ISO INPUT Ar^p 5
,
Volts

ISO PRINT
200 PRINT "CURRENT =»"5Amps," VOLTS = "jVoits
DIG PRINT

220 PRINT "TEMPERATURE RESULTS"
230 PRINT
243 ""d've-3

.

250 PRINT
2S0 FOR I = 1 TG 13

273 OUTPUT 705; "A I" ;I; "UTS "

230 ENTER 709 }X

230 EC I > = :<*! 000330.
330 T( I ;-=.31S205+.02584S*E-: I :- .330300531 *E< I >*E< I )

310 Tave=Tave+T( I

)

323 PRINT USING 33G;I ,£( I ) ,T( I)

333 IMAGE DDD ,3X ,DDDDD .0 ,3X .DDDD.DD

343 NEXT I

35

2

PRINT "+ + + **•************ + * + **************** +
"

362 PRINT
370 PRINT
3S0 FOR 1=43 TO SS

353 OUTPUT 70S;"AI";I;"VT1 "

400 ENTER 703 ;X

410 E-: I ) = X*: 300300.
423 T( I )=.31320Sr.32S84S^E{ I )-. 300300531 *E<

I

>*E< I

)

420 Tave = Tdve-r-T( I )

443 PRINT USING 453 ; I ,E< I ) , T( I

)

453 IMAGE DOD ,3X .DDCQD.D ,3X .DQDD.DD
4S3 NEXT I

473 PRINT "*^******** + *»**«-i *-**'«-4-T* + «**-r***********«-***-+*'*-''

430 PRINT
433 Tave»Tave/4S.
503 PRINT "AVERAGE PLATE TEMP. MEASURED ( DEG C) -"sTave
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540 PRINT
550 \GET T AMBIENT
550 OUTPUT 70S j "AI" 5

0; "VT}

"

570 ENTER 709 sX

530 E(0)»X*1000
530 T(3)»2S.S73*e<0)-l .336879*EO >*£(3H.99785*E<0 >*E<0 )*E(0 )-.2Sl 277*E(0 )*E(0

}*E\3 )*E(0 )

G!3 Tanb=*TC0>

S20 PRINT "AMSTENT TEMP. =";Tarcb

G30 PRINT
S40 Tdif f=Tave-Tamb
552 PRINT "TPLATE-TAMB =>"}Tdiff

6S3 FRINT

S70 'SET AVERAGE TEMP IN INSULATION
553 Ti r>5 ! =3 .

590 FOR 1 = 1 47 TO US
700 OUTPUT 70S i

a
AI " ; I

: "UT I

"

710 ENTER 73S;X
720 E<I)-X*T000.
733 T« I >»26.S73*E< I )-1 .936379*ECI >*£( I }~.3S735*E(I )*E( I >*E( I )-. 25 i

277 -E<; I ) *£< I

)*E\ I )*E( I )

753 Tinsl^Tins 1 +T< I )

7S3 'PRINT USING 4S0|I ,£< I > ,T( I

)

770 NEXT I

733 Tinsl»Tins1/3.
730 Tins2=0.
S33 FOR 1=153 TO 152

51

3

OUTFUT 733; "AI" il; "UT1

"

S20 ENTER 709 ;X

833 E\ I )=X*1300.

S43 T(I >-2B.S73*E< I M .S3H873*EU >*E( I )-,9378S*E! I >*E< I >*EU >-.2G1277*E< I)*E(I
>*E< I )*E( I >

853 ! PRINT USING 450; I ,E( I ) ,T< I

)

870 Tins2«Tins2+T( I

)

883 NEXT I

890 Tins2=»Tins2/3.
303 PRINT
910 PRINT "TINS1 = :

';Tins1," TINS2 • M ;Tins2
323 PRINT
933 fENTER VALUES OF THERMALCONCUCT

.
, AREA, AND THICKNESS OF INSULATION

940 K-.04 !W/M 0E5 C

950 Dx=.3254 111

960 A=.4337 !M
A
2

970 ! CALCULATE HEAT FLUX THROUGH INSULATION
9S0 Qins«K*A*<Tin5i-Tina2 )/Ox

330 !SET Q IN (WATTS)
1000 Qin=Uolt5+Afop5
1310 Qconb=Qin-Qins
1020 PRINT "Q IN -" ;Cin," OINSULATION »";Qins," QCONDUCTION -";Ocond
1033 PRINT ''***»**** +***********»**** + ** + ** + *****-##•*****•*''

1040 STOP
1050 END
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c
I a

23

30

40

S3

S3
70

80
90

180

1:0

123

130

US
150

153

173

133

1S3

w u *«

213

f "7 pi

240
253
253

! PROGRAM STANFC1

I

«THIS PROGRAM ACQUIRES MULTIPLE CHANEL THERMOCOUPLE DATA
f CREATES AND CREATES A FILE TO EE READ BY OTHER FRQ5RAM.
[UPDATED BY ORTIZ, JULY 193".

MASS STORAGE IS ": INTERNAL ,4 ,
1"

CREATE 3DAT "TDAFC2S" ,252 ,8 IOPEN FILE TO RETRIEVE BASELINE TEMPERATURE:

ASSIGN 3Path_i TO "TDAFC2S'

CREATE BOAT "IDAFC2S" ,1 I ,3

ASSIGN §F^ih_: TO "IQACC:5" IOPEN FILE TO RETRIEVE INPUT DATA
dim e::oo :•

;
t> :so j

PRINTER 13 I

PRINT "ARE YOU WORKING WITHU/, OR WITH0UT<2) FILMCOOLING?"
INPUT Ans
IF fins = l THEN GOTO 1353 I SUBROUTINE FOR FILMCOOLING DATA

intMCL: q o_"

! COPPER CONSTANTAN THERMOCOUPLES

PRINT "ENTER RUN ft ( MONTH ,DAY , YEAR .HOUR .MINUTEa-MMDOVY.HHMM >"

INPUT Runno
PR [NT " RUN ft •; MONTH ,DAY , YEAR . HOUR .MINUTES ) - " tRunno
PRINT

k

283 i ENTER AMF3 AMD UCLT3 FROM UARIAC
2S3 PRINT "ENTER CURRENT { AMFS. )"

333 INPUT Amps
313 PRINT "ENTER UGLTA5E( VOLTS >

'

320 INPUT Volts
330 PRINT " AMPS «"

5 Amps ."VOLTS -" f Volts
340 PRINT
352 i ENTER AMBIENT CONDITIONS
353 PRINT "ENTER AMBIENT PRESSURE: IN HSi"
370 INPUT- PaMb
333 PRINT "ENTER AMBIENT TEMPERATURE (DEG C>"

390 INPUT Taeib

430 PRINT "ENTER PRESSURE DIFFERENCEC IN H20>"
413 INPUT Deltap
420 PRINT "PAMECIN HG )-" ;Pamb , "DELTAP ( IN H20 >-" ?Del tap

,

"TAMB( DEG C) = ";Tawb

433 PRINT
440 !

453 DI3P "<HIT<CGNTINUE>>"
4S0 PAUSE
473 PRINTER IS 1

430 PRINT "TEMPERATURES DEG C"

4S0 PRINT "^fr***********-**-*******-*''

533 PRINT
510 PRINT "RUN ft ( MONTH, DAY .YEAR. HOUR ,MIN /=" ;Runno

523 PRINT
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530
540

550
550
570
5S0
532
600

G10
520

S30
540
550

SEG

S70
550
553

730
7T0

740
750

750
i 7G
750
735
600

3 i 3

823

S30

S40
350
850
873
" n r>

330
egg
H * /"*

3 1 (D

320

330

340

350
350

370

380
330

1 000
10 1.3

] 023

1 043

1050

1053

PRINT "No T DE5 G"

! ACQUIRE THERMOCOUPLE READINGS
PRINT

FOR 1-1 TO 73
OUTPUT 70S; "AI"iI;"VTl

"

ENTER 705 ;X

E-: I ) = X* 1000000
T< I >«.31S205+.02584S*E< I >- .000000531 *E< I J*£C I

)

PRINT USING 320} I ,T< I )

IMAGE DDD.4X ,00.00
OUTPUT §Fath_1 ;T(I )

NEXT I

1 = j 33 ! *U

OUTPUT 70S ; "AI " 5
1; "U"

ENTER 709 ;X

E< I >-X-*l 300333
•{ t }=

t

p, : o:

PRINT USING S2G; I i , T( I )

OUTPUT 2Path_i ;T( I

)

NEXT I

!GET AMSIENT TEMPERATURE
OUTPUT 703: " AI " ;0$ "VT!

"

ENTER 703 ;

X

K .'=A* I vv'0 .

T(3)=25.573-E;3)-l .335373*E-:0 }*E(0>+. 33783*E( 3 >*E< )*E( >-.

Tchafib = T( 3 )

PRINT "THERMOCOUPLE AMBIENT TEMP . ( DEG 0) ="}Tcharcb

PRINT
"GET THE REST OP THERMOCOUPLES
FOR 1-147 TO 153

OUTPUT 70S;"AI";I;*V71 "

ENTER 733 ;X

Ei I >=X*t0S0.

T< I XS.S75*E( I ;-1 .33BS73*S< I )*E<

I

)r.3S737S-E( I )*£< I >*E< I )-.251277*E( I >

A
4

FRIN7 USING B23 » I ,T( I )

OUTPUT @Fath__1 ;T( I)

NEXT I

ASSIGN (?Fath_i TO +

i TRANSFORM TO SI UNITS

Pat>ib=Far,b*33S5. 82

DeHap=Deltap*243.7
Fstenp»T< 147 >+273. 15

Ro=Panb/(237*F5'teinp )

U i n ? = ( 2 * Oe i t ap / Ro )
" ,5

i Pascals-: N/r-rz)

I
PASCALS* N/M'"2)

IDES KELVIN
?AIR DENSITY (KG/M3 5

'FREE STREAM VELOCITY (M/

PRINT •

OUTPUT ©Pa t h_2 ;Runnc .Anpsj .'Volts ,Pamb , Del tap , Tamb , Tchamb ,Uinf ,Ro , Fstercp ,An*

ASSIGN 9Path_2 TO *

i
•

GOTO 1133

[SUBROUTINE TO CALCULATE FILM COOLING DATA ,-,
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c

kjfi

1073 PRINTER IS 1

10S0 PRINT "ENTER FLOW % FROM ROTOMETER"
1G33 INPUT Fiw
11.30 PRINT "ENTER PLENUM PRESSURE- -DIFFERENCE (IN H20)"

i t.j-0 INPUT Oelpi
1123 Delpi=Deipi*243.7
1130 Flw=Fiuj*. 303333*56
1 140 CREATE BOAT "FILQ72E" ,2 ,3

1153 ASSIGN <§Path3 TO "FILDT2g" I OPEN FILE TO RETRIEVE FILMC0OLIN6 DATA
1 7 SO OUTPUT @Paih3;Fiw,Delpi
1 173 ASSIGN @Paih3 TO *

1 180 GOTO 193

1133 MASS STORAGE IS ": INTERNAL ,4" -/

1230 END
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10

20

30

-*y

50

S3
70

30
90

100

na
120

130

l
i0

152

1G0

170

! PROGRAM STANFCZ

110 M/S FREE STREAM VELOCITY, 13 INJECTION HOLES OPEN

(THIS PROGRAM ACQUIRES MULTIPLE CHANEL THERMOCOUPLE DATA

'CALCULATES HEAT TRANSFER COEFFICIENTS AND STANTON NUMBERS RATIOS
!AND FILMCGOLING PARAMETERS.
1LIGRANI /ORTIZ/ JOSEPH VERSION, NOVEMBER 1335

UPDATED BY ORTIZ. JULY 1937.

MASS STORAGE IS "
: INTERNAL ,4 ,t

"

CREATE BDAT "STRFGV1 0" ,504 ,8 -'OPEN FILE TO RETRIEVE STANTON Nos RATIOS

ASSIGN Q?

z

th_4 TO "STRFCV10"

DIM T(230 ) ,H(230>
1
St<230) ,X1<3),HHS) ,StKS) ,X2<230) ,2(200) ,5tf(200 >

DIM Ho(230) ,Sto(200) ,X1q<S ) ,X2o<200 ) ,2o(2B0) ,3tr(200) ,Stfr<230 )

i

PR INTER IS 1

130 PRINT "ARE YOU USING VORTEX GENERATOR? (3.Y OR 4,N> "

200 INPUT Y

210 IF Y-3 THEN
220 PRINT "ENTER TYPE OF VORTEX. GENERATOR"
233 INPUT Vert

240 PRINT "ENTER LOCATION FROM CENTER LIME IN en"

250 ' INPUT Loc

2S0 ELSE
2~G SOTO Z30
230 END IF

230 PRINTER IS 701

300 PRINT CHRS(27))CHRS(33);CHR3' 103 >;CHR$<53 );CHR3(52 );CHR$<70)

310 PRINT CHRS(27 )iCHR3(3S >?CHR$< 133 ):CHR3< 49 )?CHR5C 7S

)

323 !

333 ASSIGN gPathi TO "fDAFCIfl 1
"

.. .

•

340 FOR 1=1 TO 133

350 ENTER ©Path! iTCI >

353 NEXT I

370 ASSIGN SPathZTO "IDAFC13"
330 ENTER 3Path2«Runno ,Arnps /Jolts ,Panb , Dal tap ,Tamb Jchamb ,Uinf ,Ro .Fstemp ,Ans

390 PRINT
430 !

412 D I SP " ( H IKCONT I NUE > )

"

420 PAUSE
430 IF Ans=L THEN.

443 PRINT "STANTON NUMBER RESULTS WITH FILM COOLING"
450 ELSE
450 PRINT "STANTON NUMBER RESULTS"
470 END IF •

.

430 PRINT " #*#*&*******$*i* + $fir* + ******************************** **''

433 PRINT
500 PRINT "RUN 4 ( MONTH , DAY ,

YEAR . HOUR ,M IN >=", Runno
510 PRINT
523 IF Y=3 THEN
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c

y

533 PRINT "VORTEX GENERATOR 13 No -"iVort," LOCATED AT (cm) -"sLoc
543 PRINT
553 ELSE
5G3 GOTO 533
5T3 END IF

583 IF Ana=t THEN GOTO 2240

530 ! PRINT OUT DATA
G30 PRINT "AMPS = u ;Anps," VOLTS =";Vo;ts
SI PRINT
323 PRINT "AMBIENT PRESSURE (N/M

A
2> = ;Pznb ." DELTA P (N/M'2 5 «"iDeltap

533 PRINT
G43 !

353 PRINT "AIR DENSITY ( KG/M3 ) «"jRo," VELOCITY (M/S> =";Uinf
SE3 PRINT
373 PRINT " FREE' STREAM TEMP , ( DEG K )-" f Fa temp

S33 PRINT
S33 PRINT "THERMOMETER AMBIENT TEMPERATURE (DEG C) -

" ; Tama

733 PRINT
7!

3

1 CALCULATE THE AVERAGE PLATE TEMPERATURE
723
733 Tave=0.
740 FOR 1 = ] TO 123 • •

753 Tave— Tave+T« I )

753 NEXT I

t —> r* T T * i *y *+

CIV lave-'avc. i «it3

?33 FRINl AVcRAGc PLnTc icnrcnn i URc , nEnSuhED Cuco C' * jlave

733 PRINT
330 i ENERGY BALANCE

323 Tdi f f—Tave—Tchawb
S33 Qcond* . SS3+. 954 * Tdi f f- .0 i6*Tdif

f

"2

343 Tavab5=Tave+273 . !

5

353 Tchab5=Tchanb+273 . !

5

333 Qrad«.300000021BS*<Tavabs A 4-Tchab5'x 4) '-'•

273 Qin asAnps*Volt5
833 Oconv=0in-Qcond-Qrad
330 Del t=Tavab3-Fst ernp

300 i

31(3 PRINT "T PLATE - T FSTREAM (DEG C )*" ;Dalt
, "POWER IN ( WATTS >-" *Gin

323 PRINT
330 PRINT "CONDUCTION LOSS (WATTS)-" iQcond ."CONNECTION LOSS ( WATTS >-" jQconv

340 PRINT
953 PRINT "RADIATION LOSS (WATTS) =";Qrad
353 PRINT
370 IUALL TEMPERATURES CORRECTIONS
383 i

533 Cp-1035. i SPECIFIC HEAT FOR AIR
1000 Cr=.05 4 i CONTACT RESISTANCE CORRECTION FACTOR
1010 Dt=Cr*0conv ! DELTA TEMP. DUE-TQ CONTACT RESISTANCE
1020 G=Qconv/.4337 ! CONVECTION LOSS CORRECTION
1333 !

1043 Tea vbs=Tavab5-0t
1353 Del tc = TcavLJ5-F3 tepip_

I3SC ThetaW Tijabs-Fstepjp //Deltc
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Bia
620

530
640
652
650
573
530
530
700
710
720

73G
740

raw

752

< < ti

730

750
300"

3 1 3

320
833
343

850

353
870
3S0
830
300

310

320

S30-

340

350

950
370

330

SS0

2003
2310
2020
2030
2043
2050
2050
2073
2030
2030
2100
21 10

2120
2133

2140

Z(MX
X2< ri )=

FOR 1 =

X2(I> =

ZCI >-z

NEXT I

X3=X3+
NEXT J

FOR I-

OUTPUT
PRINT
IMAGE

NEXT I

nSaloN
I

onut-o

PRINT

( i )

X3

M+1 TG J*21

X3

( 1-1 > + l .27

1 TC 125

<3Path_4;Str(I ) ,St tril ) ,X2< I i , Z( I 3

USING ! 7201 1 ,X2U >, Z( I >, H( I >,3tr< I), St fr{ I)

ODD ,2X .DD.OD ,3X ,3D,DQ ,5X .SD.QDQE ,5X .SD.DDOE ,5X .D.3DE

@Path_4 TO * (CLOSE FILE WITH STANTON NUMBERS RATIOS

LATE LOCAL REYNOLDS NUMBER

Nu- .0030153
»Uinf/Nu

15

25

I CINEMATIC VISCOSITY FOR AIR C
•'

3) =

4) =

Fac

;< 1 (

XI (

XI (

XI (

XH
Xl<6> = 2.00
i

FOR
R

NEXT I

. S3

.30

1=1 TO G

'CALCULATE AVERAGE STANTON NUMBER
FOR 1=1 TO 5

H( I )=0.

M=I*21-20
FOR J=M TO 1+21

HI ( I >-HU I )tH(J )

NEXT J

HJ ( I >-H1( I )/21

St 1(1 >=»H1 ( I >/(Ro*Uinf*Cp)
NEXT I

PRINT
l

ASSIGN @Fath7 TO "S7AU2"
FOR 1=1 TO 5

ENTER @Path7;Xto< I ) ,Reo< I ) ,Stlo( I )

Strav( I ) = 5tl ( I )/Stto< I 5

NEXT I

CREATE BOAT "STAVFCV" , 18 ,8

ASSIGN @Path_S TG "STnUFCv"'

! PR I NT A'JERAGE STANTON NUMBERS
I

PRINT "ROW* X(M> REYNOLDS No St/Sto Ave
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1373 I

1080 PRINT "TFLATE - T FREE3TREAM CORRECTED < DE5 C) = ";Deltc
J 093 PRINT
1100 PRINT "AVERAGE PLATE TEMP. CORRECTED (DEC C >-"

; Tave-Ot

1110 PRINT
1123 PRINT "NONOIMESIONAL TEMP. THETA - u ;Theta
1130 PRINT
1140 PRINT "No X(M) Z-CCM) H(W/M*2 C) St/3to Si/StF"

! 153 PRINT ''* + **** + *********** + **************** + * + ****** + + + *** + ** + + *** + ****''

JtSQ PRINT
TJ70 ASSIGN @PathS TO "HDAT2"
M33 ASSIGN OPathT TO "STA.FC3''

I J90 !

I203 FOR 1=1 TO I2S

1210 ENTER ©PathSiHov I> ,3to( I

)

,X2o< I ) ,Zo( I )

1 220 ENTER @Pat h7 i St f ( I 5

1230 NEXT I

1240 I CALCULATE THE HEAT TRANSFER COEFFICIENTS AND SATANTCN NUMBERS
1 253 !

12E2 FOR 1 = 1 TO 1 25

1273 TsI) = T(I)-Ot

12S3 , k I =Q/(T( I )-T< I 27 >

)

•233 St(I)-H(I)/<Ro*Utnf*Cp)
1333 Str(I)-St(I>/Sto<I>
1313 St fr< I >=St ( I )/S t ( ;'

I )

I Ji.U !NCA i i

1333 i GENERATE X AND Z POSITION FOR EACH INDIVIDUAL THERMOCOUPLE
1343 Z< 1 >— JZ.7 i (CM)

5 353 X2! 1 )=1 . 15

1353 F3R 1=2 TO 2!

t 373 X2( I )= 1 . 1

5

13S0 Z( I >=2< I-t )+1 .27

1403 Z(22)=Z< 1 )

i 41 3 X2< 22 :
= 1 . 25

T423 FOR 1=23 TO 42

1433 X2(I)=1.25
1440 Z( I > = 2 < 1-1 > + 1 .27

1433 NEXT I

14S3 Z(43) = Z' 1 )

1473 X2(43 ) = 1 .40

1480 FOR 1=44 TO 53
!453 X2(I)=1.43
tS03 2(1 ) = Z( I-! )+1 .27

1510 NEXT I

1 523 Z\ 5 4 >-Z( 1 )

1533 X2(B4)-!.S
154-0 FOR 1=65 TO S4

1553 XZ<I>-i.B
155.3 Z( I )-Z( 1-1 M-1 .27
1570 NEXT I

1533 FOR J = 5 TO 5

1S33 M=J*2l-23
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2150 PRINT "***••**•**#**•**#***'»*'*#***** »#*#*#*#****#**********"

21S0 FOR r-1 TO 5

2170 PRINT USINS 2180; I ,X!(I > ,R«y< I
)
,Strav( I

>

2130 IMAGE DD,4X,DD.QD,4X.D.4QE,7X,0.4QE
2190 OUTPUT 3Path_5;Xi < I ) ,Ray( I ) .StravU )

2230 NEXT I

2210 ASSIGN @Path_5 TO *

2223 f

2233 GOTO 2SS3
2240 ! SUBROUTINE TO CALCULATE DISCHARGE COEFFICIENTS
2250 !

22S3 ASSIGN ©Path3 TO "FILDTIO"

2273 ENTER @Path3?Fiw,Qelpi
2290 i GET AVERAGE PLENUM TEMPERATURE
2290 Tpl=3

£.oWa run. i-i^o i u Ij a

23 1 Tpl=Tpi + T- I

)

<-\ —» -^ ,n h i*
-

• ' *i~ t
i.JLfi INC \ I i

2330 Tpi=Tpi/3
2343 ! CONVERT PLENUM TEMP. TO INJECTION TEMP.

2350 Tinj~i ,454S3*Tpi A
.858 1 E2

23SS Ti jab3=Tinj+273 . 1

5

2373 Uinj=FI^/.OG0S2i453 ! FOR 13 JNJ . HOLES
2330 !Uinj=FIw/.00043S IFOR 7 INJ. HOLES

2 3 30 Tor=T i j abs-( U in
j "2/(2*1 335 )

)

2400 Roc"Papib/ ( Tor*287 )

2413 Inflx-Roc*Uinj ! INJECTION MASS FLUX

2423 Ropl»ramb/(Tijab5*287) 'TOTAL DENSITY BASED ON To

2433 U3»<Qelpi»2/RopI)".5
244G Pmflx=Ropl*U3
2453 C d = I m f ix/Pmf 1>

24S0 Red-Uinj*. 309525/ .3033156
2473 M-Imf Ix/(Ro*Uinf ) [BLOWING RATIO
2433 Vrat«Uinj/Uinf [VELOCITY RATIO
2433 Mfr=Roc*Uinj"2/(Ro*Uinf2 ) i MOMENTUM FLUX RATIO
2503 !

25 i0 i PRINT RESULTS
2520 PRINT "INJECTION TEMPERATURE ( C > = " I Tinj , "PLENUM TEMP (C>-"iTpi
2533 PRINT
2543 I

2553 PRINT "PLENUM PRESSURE DIFF, ( N/M"2 )=" ;Dslci

25S3 PRINT
2573 PRINT "COOLANT DENSITY KG/IT3) = u ;Roc," DENSITY RATIO -" iRoc/Ro
25S3 PRINT
25S3 PRINT "INJECTION VELOCITY ( M/3 >-"

j Uinj , "MASS FLUX (KG/M"2 3)- ,, jImflx

2330 PRINT
2S10 PRINT "REYNOLDS No (DIA )-" tRed

, "DISCHARGE COEFF , Cd =";Cd
2523 PRINT
2330 PRINT "SLOWING PATIO -"ill," VELOCITY RATIO =";Vrat
2340 PRINT
2353 PRINT "MOMENTUM FLUX RATIO - " jMfr
2330 PRINT
2373 GOTO 593
2330 MASS STORAGE IS ": INTERNAL ,4"

2333 END
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10 REM PROGRAM ACQTPRG
23 REM THIS PROGRAM ACQUIRES TEMPERATURES FRGM A THERMOCOUPLE
30 REM MONTED ON A AUTOMATIC TRAVERSE MEGHAN I SIM AND FRGM A FREE
40

'

'

! STREAM VELOCITY THERMCOPLE TO PLOT THE TEMPERATURES PROFILE:

50 i USING PROGRAM PLQTDE
50 :

70 ! BY ALFREDO ORTIZ, AUGUST, 12S7

SO REM

SO REM VARIABLE NAMES
1 00 REM
MO REM Ed) IS THE VOLTAGE READ FRGM THE DATA ACQUISTICN SYSTEM
120 REM T;i ) IS THE CONVERSION FROM VOLTAGE TO TEMPERATURES
1 30 REM
140 REM PAMB-AMBIENT PRESSURE
150 REM TFS=FREE STREAM TEMP* KELVIN)
1S3 REM RO-QENSITY tKG/M A

3)

i 70 Ren UINF=VEi_QCI i \ Or
i HE pnccSiREnn

ict; kc n

193 DIM Y: !300> ,Z( 1000) ,T( 1000) J) I 1000 ) ,D( 1000'

230 REM
2 1 R E M

223 INPUT 'ENTER DATE ,( MMODYY )" ,NS

230 INPUT "ENTER TIME ,<HHMM >" ,N9

240 REM
250 INPUT "ENTER DISTANCE FROM THE 3.L. TRIP., X<M)",X1
250 INPUT "ENTER POINTS SPANWISE"

:
N3

270 INPUT "ENTER POINTS VERTICAL (MUST 3E AN INTEGER)", N3
230 REM ^il MUST 3E AN EVEN INTEGER
230 INPUT "ENTER SPANWISE RESOLUTIQNdN )

M
,Z4

300 INPUT "ENTER VERTICAL RESOLUTION IN)" ,Y4

Z10 INPUT "INITIAL Z<±N>" ,23

320 INPUT "INITIAL Y<IN)",Y3
330
340

ten

Z( ! ) = Z3

350 Y( 1 )-Y3

37G FOR 17=1 TO N7

330 IS-I7-1
3S3 J1 =2 * I 6*M3+Z

410 FOR K-J1 TO J2

420 Z(K )»Z(K-1 ) + Z4

430 Y( K )™Y< K- 1 )

440 NEXT K

450 J3-2*I6*M3+M3+1
4S Z ( J5 ) se Z ( J3— 1 )

470 Y(J3)-Y< J3-1 HY;
480 J4=J3+1

4S0 J5=2*IS'M3r2*M3
500 FOR K=J4 TO JS

513 Z(K )=Z(K-I S -Z4
520 Y(K )=Y(K-1 )

530 NEXT K
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540 IF I7-N7 THEN 533

553 JS=J5+!

560 Z(JB)-Z(JS-1 )

573 V( JS )*Y< J6-1 )+Y4

530 NEXT 17

590 REM

600 ! ENTER FREE STREAM TEMPERATURE FROM DAS.

5)3 OUTPUT 709; M AI"; 151
i "VT1"

620 ENTER 735 ;X

638 E=X* 1333338
540 Tf s=- . 0733 1 7 1 + . 025 1 0S4SA*E~ . 300030678 *E*E
553 Tfs = Tfs-t-273. 15

550 REM ENTER AMBIENT CONDITIONS
573 INPUT "ENTER PAMB (IN. OF HG/",Panb
680 INPUT "ENTER PRESSURE DIFFERENCE (IN OF H2Q)",Deltap
380 REM
703 REM CONVERSION TO 31 UNITS
713 Pamb=Paiyib*3335 . 32

720 Ro=Pamb/( 287*Tf s

)

733 Del tap=Del tap*243 .

7

740 REM FREESTREnM VELOCITY
750 Uinf-{2*Deltap/Ro) .3

7S0 REM
770 REM ENTER THE LOOF FOR ACQUIRING EACH TEMFERATURE COMPUTING COEFFICENTS
783 REM AND COMPUTING TWO TEMPERATURE COEFFICIENTS AND TUG TEMPERATURE:
793 PRINTER IS 701

800 PRINT CHR3(27>;CHR3c3S);CHRS{ 133 )?CHRS(S3 );CHR3i52 >;CHR$(78 )

810 PRINT CHRS(27)iCHRS(38>iCHR$< 108>,-CHR$< 49 >;CHR3<76

)

320 !

830 PRINT "TEMFERATURE PROFILE COMPUTATION "

r; * !** nntk'T »i
,

•'

o *nu rr\ii\ ! » **

350 PRINT
350 PRINT "DATE OF RUN IS",N8," TIME =" ;N9

873 PRINT
830 PRINT "DISTANCE FROM THE BOUNDARY LAYER TRIP, X (M)-"|X!
330 PRINT
900 PRINT "DENSITY* KG/M A 3)" ,Ro

318 PRINT
920 PRINT "FREESTREnM VELOCITY (M/8)",Uinf
930 PRINT
948 PRINT "PAMBIENT<N/M A2>" .Panfa

950 PRINT
930 PRINT "FREE STREAM TEMFERATURE ( DE3 C) =" ;Tf s-273 . 1

5

978 PRINT
938 PRINT "POINTS SPANWI'SE" ,M3

993 PRINT
1030 PRINT "POINTS VERTICAL" ,N3
1018 PRINT
1020 PRINT "SPANWISE RESOLUTION (IN>",Z4
1030 PRINT
1040 PRINT "VERTICAL RESOLUTION CIN)",Y4
1050 PRINT
1053 PRINT "INITIAL Z(IN)",Z3 ;

1078 PRINT
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030 PRINT "INITIAL Y(IN)'V ,Y3

030 FRINT
100 FRIMT "**#**#******#****#********#*******•****»»#**#* M

110 PRINT
5 20 PRINT " Y • Z T TF3 DT"

130 PRINT " = = === = = = = = * = == = === = = = === a== ==* = = = = = ==»=:= ac = ==:== x!= "

140 PRINT
150 DISP "HIT <( CONTINUE PGR DAS>>"
150 PAUSE
170 K3=0
1 S3 K2=M3»N3
130 FOR K*1 TO K2
200 K3=K

210 REM
220 WAIT 13

230 REM ACQUIRE THE TEMPERATURE FOR EACH POSITION

253 REM
2S3 FOR J-1 TO 25 ! ENTER THE DAS AND SAMPLE OF TEMPERATURE 25 TIMES
273 OUTPUT 703;

"

AI" ; 1 52
;

" VT
1"

230 ENTER 703 ;X

230 G1=G1h-X

332 NEXT J

313 REM
320 »Gi/25 [AVERAGE THE VALUES
ZZZ E-X*l 303003
340 T(K)-.1S36709+.3Z5SS713*E-.B88O03488*E*E I CONVERSION FROM VOLTAGE TO TEM

PERATURE

353 i SET FREE STREAM TEMP 5 TIMES ANQ AVERAGE IT

370 G4=3
330 FOR I- I TO 5

330 OUTPUT 703; "AI"; 151 ;"VT1"

400 ENTER 733;

X

410 B4-G4+X
420 NEXT I

430 X-G4/S
440 E=X* I 300000
453 Tt (K )=-,07S317l-r.02Sf05454*E-.0®8000S7Q*E*E
4 S D \ K ) = T \ K ) - T 1 ( K /

473 PRINT USING 1 480i¥< K ) ,2< K > ,T(K > ,TJ (K ) ,D<K

)

430 IMAGE MDD.DD,2X ,MDD.0D,2X ,MDD.DD,5X ,MQD.DD,3X , SO. ODE
430 REM
500 NEXT K

510 REM
520 MASS STORAGE IS ": INTERNAL ,4 ,

1"

530 CREATE BOAT "TPR01 4" ,2400 ,3

543 ASSIGN ©Path2 TO "-TPR014"

550 FOR I=*l TO K3

550 OUTPUT BPath2iY(I),Z( I ) ,0( I

)

570 NEXT I

530 ASSIGN 0Path2 TO *

550 MASS STORAGE IS ": INTERNAL, 4"

330 END
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10

20
30

40

50

S3

70

S0

90

100

I 10

120

130

!40

150

1S3

170

1 SO

190

2S0

2 1

220
230
240

250
250
270

2 50

290

300

310

320

330
340

350
350

37G
330

390
400

410
420

430
440

450

460
470
430

430
500
510

520

I PROGRAM PLOTPRUN
! THI3 PROGRAM READS THE FILE TPRO AND PLOT TEMPERATURES
! PROFILES
DIM Y1 (300) ,Z0(S00),XS<300)C1 3 ,

VIC 800) ,21 i 40 > ,22(40) ,C$< 13)Ct]

! U< I >-D< I ) : TEMPERATURE DIFFERENCE,

INTERNAL ,4,1

"

TPR07"

,Z0( I 5,VtU)

INPUT "ENTER RUN NUMBER " .Runno
FS="DATE="
MASS STORAGE IS

"

ASSIGN ©Path! TO

FOR 1=1 TO 300
ENTER @Path1 ;Y1 ( I

V1< I )=Y1 ( I >*2.S4

Z0( I >=Z0( I >*2.54

NEXT I

FOR 1-1 TO SSQ
IF

IF

IF

IF VI (I X=1 .5 AND \l\( I )>1

IF V I ( I ><=2 . AND v 1 ( I '•>
1

IF V 1 ( I X=2 . 5 AND V ! ( I ) >

2

IF UK I > '-3.0 AND VI ( I >>2

IF VI ( I X = 3.5 AND VI ; I »3
IF VKIK-4.0 AND V1(I)>3.5 THEN X3( I )

=

IF V 1 ( I .'•
'•'. = 4 . 5 AND VI ( I )>4.3 THEN XS( I

)="

IF V!(IX=5.3 AND V)(I)>4.5 THEN X$< I )-

IF VKIK-5.5 AND VKI)>5.0 THEN X 5 ( I >
=

'

! ( T >:-q . q TrlFM '<

VI ( I K = .2 THEN XS( I ) = "0"

VKIX=.5 AND VHI)>.2 THEN X3i I>« H !"

VU I X- 1 . AND V 1 •: I >> . 5 THEM X3< I )»"2

"

.3 THEN X3( I )="3

b THEN X3( I /
=

THEM X5( I )
=

5 THEN X$< I )»

THEN X5( I
)='

4
U

5

"

S

"

3"

3

"

d

b"

nt! v
i X*i :/= cIF V!( I ;

NEXT I

SINIT
PLOTTER IS 705,"HFGL"

i PLOTTER IS CRT, "INTERNAL"
GRAPHICS ON
CSIZE 2 .5 , . 55

MOVE 35 , i 4

LABEL "EMBEDDED VORTEX 10 M/S WITH FILM COOLING, M=0.98"
MOVE 35 , 1

1

LABEL "X* 1.48ft tf, UNHEATED PLATE .VORTEX GEN

;FS ,Runno

AT 7R nm"

LABEL USING "SA,*,SD.4D
CSIZE 4.5,.S5
MOVE 40,35
LABEL "TEMPERATURE PROFILES"
CSIZE 3.5

:
.G5

MOVE 57,17
LABEL "2 (CM) "

DEG

LDIR 90
MOVE 21 ,45

LABEL "Y (CM) "

LDIR
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533 VIEWPORT 30, MS, 25, S3
540 WINDOW -IS ,S,3 ,12

553 FRAME
563 AXES . 5 , .5 ,0 .3 ,2 ,2

573 AXES . 5 , . 5 ,-1 S , 1 2 ,2 ,2

560 AXE5 .5, .5, 5, 12, 2,2
533 CSIZE 2.0,. 65

600 MOVE -15.2 ,1 i . 13

613 LABEL "TEMP. DIFF. RANGES"
623 A=13.S5
S30 FOR K=0 TO 12

640 B=A-K*.35
553 MOVE -14.3,5
563 IF K<2 THEN
670 Z2':a>=-':2 •

'
"

633 Z !
' 3 )= . 2

333 • Z2( 1 )= . 2

733 ZK.l /= . 5

713 ELSE
723 Z2 ( K >?2 H K - ! >

730 Zi ( K >=Z2\K )+.S

743 END Lr

750 IF K>3 THEN GOTG 733
753 LABEL USING "D ,2X ,D0.0 ,X ,O0.D" iK ,Z2(K

)

,1 1 < K

)

773 GOTO 320
! a *> l>9 \ 1 <a ) - a

730 CS( i i )="b

"

333 C* C 12

)

=
"

c

313 LABEL USING "A ,2X ,DD.D ,X .OD.Q
1

' ;C?< K > ,Z2( K ) ,Z 1 •; K )

323 NEXT K

333 CSIZE 1 .3,. 72
343 FOR 1=1 TO 303
350 nOVE Z3( I i ,Yi '. I )

363 IF YHI»S.0 AND Z0CIK-I8. THEN SOTO 333
370 LABEL USING "A";XS<I)
330 NEXT I

350 CLIP OFF
333 CSI ZE 2.3,. 65
313 FOR I =-.2 TO 1 1 .3 STEP 2

323 MOVE -17. F,

I

333 I1-I+.2
S43 LABEL USING "*,0D.D"iI1
350 NEXT I

363 FOR J— 17.0 TO 5.0 STEP 2

373 HOVE J ,-.?

333 Jt-J+1 .3

333 LABEL USING " » ,MDD .

D
" ; J 1

1303 NEXT J

1310 MASS STORAGE IS ": INTERNAL
,

4''

1323 END
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10 (PROGRAM PT3TAV

20 ITHIS PROGRAM READS A DATA FILE AND PLOTS AVERAGE STANTON NUMBERS

30 I VERSUS REYNOLDS NUMBERS.
40 I

50 DIM Rey(S) ,XKS) ,StJ (B ) ,C3CS] ,St<BJ

60 MASS STORAGE IS ": INTERNAL ,4 ,

1

"

70 ASSIGN §Path2 TO "STAV1"

80 FOR I»l TO S

90 ENTER @Path2-,X1(I),Rey(I),StKI)
100 NEXT I

MO PRINTER IS 1

120 PRINT "ENTER RUN NUMBER TO WHICH THIS DATA CORRESPOND < MMDDV Y . HHMM

>

130 INPUT Runno
140 F3="DATE "
150 SINIT
1S0 PLOTTER IS 705,"HPGL : '

170 i PLOTTER IS CRT ," INTERNAL"
ISO GRAPHICS ON

ISO CSI2E 2. 5, .65

200 MOVE 42 ,14

213 LABEL "FREESTREAM IS M/S , NO FILM COOLING"
220 CSI2E 4. 5, .55

230 MOVE 40,35
240 LABEL "AVERAGED STANTON NUMBERS"
250 CSIZE 2 .5 T .S5

260 MOVE 75,53
270 LABEL USING "BA ,* f SD.4D" ,-F$ ,Runno
230 CSIZE 3.4, .65

290 MOVE 62 ,17

300 LABEL "REx * 10 "6"

310 DEG
320 LDIR 90
330 MOVE 22 ,33

340 LABEL "STANTON Mo *10"-3"

350 LDIR
350 VIEWPORT 30,MS,2S,S3
370 WINDOW 0,5 ,0,5

380 FRAME
330 AXES .5 ,.5,0 ,0 ,2 ,1

403 AXES .5, .5,5,6 ,2 ,1

410 CLIP OFF
420 CSIZE 2.0, .65

430 LORG 2

440 FOR 1=0 TO 6 STEP .5

450 MOVE -.32 ,1

460 LABEL USING "#,D.DD U

;I

470 NEXT I

430 LORG 4

490 FOR J=0. TO 5.0 STEP .5

500 MOVE J ,-.22

510 LABEL USING "*,DD.D H
;J

520 NEXT J
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530 i ENTER UALUES FOR ANALYTICAL FORMULA
54-0 Zi-1.1 'METERS
550 Pr=.71 IPRANOTL No FOR AIR

550/ FOR 1=1 TO 5

570 S"t< I .)»( ( .030*(Rey( I ) >* ( - . 2 ) >*< 1 . -< Z l /X 1 ( I ) )
"

. 9 >"
( - . 1 It ) )/Pr* . 4

5S0 S.t( I )=5t( D*\ .3E+3
5-30 Rsy<I)=Rey< I >*l .0E-6

500 PLOT Rey( I >,St(I )

S.10 NEXT I

520 CSIZE I .3, .72

530 FOR 1=1 TO S

540 C$CI!="x"
S50 StKI)-StHI)*'t.BE+3
550 MO'JE Rey( I), St HI )

570 LA5EL USING "A" jCSC I

]

530 PENUP
530 NEXT I

700. MASS STORAGE IS ": INTERNAL ,4

"

710 ENO
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10 ! PROGRAM PTSTLC

20 i THIS PROGRAM READS A DATA FILE AND PLOTS SPANWISE VARIATIONS

30 i OF HEAT TRANS FER COEFFICIENTS

40 !

50 DIM H<200> ,St<230),Rey(S ) ,Z< 200 ) ,X 1 ( 6 ) ,X2( 200 > ,B( I 26 ) ,CS< S >[ 8 ]

B0 MASS STORAGE IS ": INTERNAL ,4 ,

I

"

70 ASSIGN ©Path! TO M H0AT2"

80 FOR 1=1 TO 12B

90 ENTER SPathi ;H< I ) ,St( I ) ,X2< I ) ,Z( I

)

100 NEXT I

1 10 FS="DATE «"

120 INPUT "ENTER RUN NUMBER ( MMCDYV . HHMM )
" ,Runno

133 5INIT
140 PLOTTER IS 705

>
"HPGL"

150 i PLOTTER IS CRT ," INTERNAL

"

150 GRAPHICS ON

170 CSIZE 2.5 ,.65

130 MOVE 42 ,14

190 LABEL "FREE STREAM 10 M/S, NO FILM COOLING"

2O0 CSIZE 4.5
r
.S5

210 MGVE 22 ,85

220 LAEEL "SPANUISE HEAT TRANSFER COEFFICIENT"
230 CSIZE 2.5...S5

240 MOVE 75 ,33

250 LABEL USING "6A ,# ,60 .40" ; F$ .Runno

2S0 CSIZE 3. 5, .65

270 MOVE 55,17
280 LABEL "Z ( CM >

'

290 MOVE 22 ,35

300 OEG

310 LDIP 90

320 LABEL "H W/M"2 DEG C"

330 LDIP.

340 VIEWPORT 30,1 15 ,25,83

350 WINOCU -15.24,15.24,0,130
350 FRAME
370 AXES 1 .27,13,-15.21,0,2,2
383 AXES 1.27,10,15.24,100,2,2
390 CSIZE 2.0, .65

400 MOVE -13 ,23

410 LABEL "X <M)"
420 A=22
430 FOR K-1 TO 6

440 D=A-K*3
450 C$( 1 )='«X=1 .

15"

4S0 C$<2 )«"=X»1 .25"

470 C£(3>="=X~1 .40"

430 C$(4)="=X=1 .60"

490 CS(5)="=X=1 .80"

500 C*(S-)-*-X*2.0B"
510 MOVE -14,0
520 LABEL USING g

D ,8A" ;K ,CS( K >[ 1 ;8

3

530 PENUP
540 NEXT K
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550 CSIZE 1 .3,. 72

550 F3R J»l TO S

570 M=J*21-20
5S0 FOR I=M TO J*21

530 B( I )-J

500 MOVE Z<I). rH(I>
S10 LABEL .USING- "0";e( I )

S20 FENUP •-.

530 NEXT I

-S4.0 NEXT J"

S50 CLIP OFF

SS3 CSIZE 2.3, .55

670 LORG 2

580 FOR 1=0 TO 180 5TEP 10

5.90 MOVE -17.75,1
703 LABEL USING " tf ,000 .

D"
; I

7.10 NEXT I

723 LORG S

•733 FOR J=- 15.24 TO IS. 24 Z~EP 5.

740 HOVE J ,-2.0

750 LABEL USING "t.DDD.DO" ; J

7S3 NEXT J

773 .MASS STORAGE IS ": INTERNAL ,4"

780 END
'

186



10 ipRCGRni-1 PL3TRTIQ
23 I THIS PROGRAM READS A DATA FILE AND PLOTS THE RATIO OF STANTON NUMBERS
30 IDWER BASE LINE STANTON NUMBERS UER9U3 REYNOLDS NUMBERS.
40 !

53 DIM Rey(S>,X1 (6>,Stt(B>,StZ<S>,Re1<6>.C${B>[n,P*«6>[ H ,GS(6)E1 ]

B3 DIM St3(B),Re3(B),St4(S) ,Re4..'S ) ,Strl (S ) ,Str2< S ) ,Str3< 6 )

70 ASSIGN @Path1 TO "STAv"'

30 FOR 1-1 TO S

S3 ENTER SPathl ;XH I >,Fey( I J ,Si!( I )

100 NEXT I

113 ASSIGN gPathZ TO "STAUFO"
120 FOR 1=1 TO S

130 ENTER ePath2iReKI> f St2CIl
140 5trKI>«St2<I)/StKI>
ISO NEXT I

ISO ASSIGN §Fsth3 TO "STrWF! "

1/0 r OR i= i tub
130 ENTER SPatn3;Re3< I ,St3< I >

1S2 Str2<I)-St3(I //Stl(I)

<;00 NcxT i

2!0 ASSIGN i?Path4 TO "STAUF2"
220 FOR 1=1 TO S

230 ENTER 9?ath4»Re4< I
> ,SU< I

>

240 Str3U >-St4(I )/Stl(I )

230 NEXT I

2S0 PRINTER IS 1

272 PRINT "ENTER TODAY'S GATE (HMDDYY.HHMM >"

233 INPUT Rurrno

£30 r 2= on : c =

3SQ PRINT "ENTER IN ORDER CORRESPONDING BLOWING RATIOS.. Ml ,MZ , AND M3"

310 FOP. 1=1 to 3

320 INPUT M( I 5

330 'ECHO PRINT M

340 PRINT "M-" sM<I)
3S0 GINIT
3d 3 ! PLOTTER IS 70S,"HPGL''

370 PLOTTER IS CRT , " INTERNAL

"

3S0 GRAPHICS ON-

390 X_gdu_^a^=r00*MAXvl
?
RATIO)

403 Y_gdu_rcax=1 G0+MAXI 1
, ! /RATIO i

413 CSIZE 4. 5 ,.63
423 LORG S

430 MOVE X_gdu_na>;/2 , . 9*Y_gdu_r"i«s*

440 LABEL "FILM CQGLING H

453 DEG
4S0 LOIR 33 .

470 CSIZE 3.5
433 MOVE .!*X_gdu_na>i,Y_gdu_r»akx/2
493 LABEL "St/Stc"
533 LOIR
510 LORG 4

520 MOVE X_gdu_nax/Z,.20«Y_gdu_na>
533 LABEL "REYNOLDS No*10"S"
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54-3 CSIZE 2.5
353 LGRG 3

5S3 MOVE .3*X_gdu^nax , . SS*Y_QcTa_insx

572 LABEL USING "Sri ,4 ,50, 40° ;F3 ,Runno

533 VIEWPORT .2*X_gdu_max ,. 9*X_3du_Aax , . 30*Y_gdu_nax , .30*V_gctu_,rn3:v

593 FRAME
530 WINDOW .5,1. 5, .3,1.0

510 AXES . 1 ,. 1 ..5,. 3,1 ,1

523 AXES .1 ,.! ,1,5,1.0,1 ,1

S3B CSIZE 2.5
540 MOVE 1.3,.

5

553 LABEL "BLOWING RATIOS"

S3

a

A= . 55

570 FOR K»J TO 3

553 D=ft-K*.2

530 33 1 1 j»"*=qM-"

.- jo

74-0

750

7SS
770
.' aw
"30

300
313

330
343
S50
353
370
330
350
900
313

320
330
340
S50

350
370
333
330

33< 3 >*"+«M*"

MOVE i .23 ,0

LABEL USING "4A ,#,0.00" »B«< I
)
,M( I

NEXT K

CLIP OFF

CSIZE 2.0... S3

LOR 5 2

FOR I-.3 TO 1 .0 3TE? .1

MOVE .54,1

LABEL USING "t ,0.0" * I

NEXT I

i /^ p. ^ i-*

FOR J=.G TO K.7 STEP . t

MOVE J ...27

LABEL USING "*,D.O"?J
NEXT J

CSIZE 1 .3 ,.72

FOR r-l TO 5

CSCI ) = :'*"

MOVE Rey. I ) .StrHI)
LABEL USING "A* jC3( I \

S3 ( I 5 = " o
"

MOVE Reys I ) ,Str2< I

>

LABEL USING "A";G3(I>
PS(I >-"-*"

MOVE Rey< I ) ,Str3( I

)

PENUP
NEXT I

END
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10 (PROGRAM PLSTRVOR

20 "THIS PROGRAM READS A OATA FILE AND PLOTS SPANWISE VARIATIONS
30 'OF STANTON NUMBERS RATIOS BY ROUS

40 !

50 DIM Str(Z00) ,Rey(6) ,Z(230) ,X1(S ) ,X2< 200 > ,CS< 6 >C3 ] ,9< 125)

60 MASS STORAGE IS "
: INTERNAL ,4 ,!

"

70 ASSIGN BPathl TO "STRDT2"

80 FOR 1=1 TO 126

90 ENTER ©Pathl sStr(I) ,X2( I )
,Z( I

)

100 NEXT I

1 13 F$="DATE ="

120 PRINTER IS 1

130 PRINT "ENTER RUM NUMBER TO WHICH THIS PLOT CORRESPOND ( MMDDYY . HHMM )

140 INPUT Runno
150 GINIT
ISO PLOTTER IS 735,"HFSL"
170 ! PLOTTER IS CRT ," INTERNAL"
1 30 GRAPHICS ON

192 CSI2E 2. 5,. 55
200 MOUE 42,14
210 LABEL "FREE STREAM 13 M/S , NO FILM COOLING "

220 CSIZE 4. 5,. 65
230 MOUE 20,35
240 LABEL "STANTON NUMBER RATIOS, VORTEX GEN *2"

250 CSIZE 2. 5, .65

260 MOUE 70 ,33

270 LABEL USING "SA ,* ,60. 40" <F$ , Runno
280 CSIZE 3. 5, .65

290 MOUE 55,17
300 LABEL "Z (CM) H

310 MGUE 22 ,45

320 DEG
330 LOIR 90
340 LABEL "St/Sto"
350 LDIR 3

3S0 VIEWPORT 30,1 16 ,25,83
370 WINDOW 23,-20 , .4,1 .4

380 FRAME
390 AXES 5..1 ,20, .43,1 ,1

400 AXES 5,. 1 ,-20,1 .4,1,1

410 CSIZE 2.0,. 55
420 MOVE 13. 5,. 35

430 LABEL "X <M>"
440 A=.S0
450 FOR K=l TO 6

460 D=A-K*.04
470 C$v 1 )="=X=1 .

15"

480 C3<2 )="=X =
1
.25"

490 C$<3 ) = "=X=1 .43"

500 C9<4.)-"«X«1 .60"

510 C3(.5 ) = "=X=l .80"

523 C$(6 ;="=X=2.00"
530 MOUE 14,0
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540 LABEL USING "D ,3A" ; K ,C$< K

)

550 PENUP
560 NEXT K

570 CSIZE 1 .3,-72
580 FOR J- J TO S

590 M=J+21-20
600 FOR I-M TO J*21

610 B(I)=J
520 MOVE Z( I ) ,Str< I )

630 LABEL USING "Q";B( I )

640 PENUP
650 NEXT I

660 NEXT J

670 CLIP OFF

680 CSIZE 2.0,. 55

650 LCR6 2

700 FOR I-.4 TO i .4 STEP . !

710 MOVE 21.7,1
723 LABEL USING "f ,D.D";I

730 NEXT I

740 LGRG 5

750 FOR J=-20 TO 20 STEP 5

760 MOVE J ,.37

770 LABEL USING " t ,DDD.DD° ;

J

780 NEXT J

793 MASS STORAGE IS ': INTERNAL ,4

300 END
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10 I PROGRAM PL3TRVV6

20 'THIS PROGRAM REnOS A DATA FILE ANO PLOTS SPANUISE VARIATIONS
30 !OF STANTON NUMEER5 RATIOS BY ROWS FOR FILM COOLING CATA AND

40 'FOR VORTEX OATA

50 !

50 DIM StrU 12S>,Str2< !2S > ,Z< 125 ) ,X2< ?2S),X3( 12S),C$( 12B>t'l 3 ,8S< 1 2S )l ! I

70 DIM St* ( 125 ) ,21(126)

80 !

90 MASS STORAGE 13 ": INTERNAL A ,1

"

100 ASSIGN ©Path! TO "STRFC3"

110 ASSIGN ?Path2 TO "S7RFCVM"
120 !

•30 FOR 1 = 1 TO 1 26

140 ENTER ©Path! sStrH I ; ,X2< I ) ,Z( I >

150 ENTER SPath2:Str2(I ) ,Stf(I),X3CI > ,Zt<I )

ISO NEXT I

170 FS--DATE -"

•30 PRINTER 15 i

150 PRINT "ENTER RUN NUMBER TO WHICH THIS P_OT CORRESPOND ( MMDDYy .HHMM >"

2©£ INPUT Runno
210 6INIT
220 PL.OTTE- IS 7S5."HPSL"
230 (PLOTTER IS CRT ," INTERNAL"
240 GRAPHICS ON
250 CSIZE 2.5, .55

2S0 MOVE 20,14
270 LABEL "FREE STREAM 15 M/S , WITH FILM COOLING, VORTEX SEN. AT 4.75 en

OS'S CSIZE 4.5 ,.55

ZS0 MOVE 40 ,35

3SS LABEL "STANTON NUMBER RPTIGS"
313 CSIZE Z.5

:
.S5

3Z0 MOVE 75,33
Z32 LABEL USING "SA ,t T6D .40" ;FS .Runno

34G SEIZE 3.5
:
.55

350 MOVE 55, 17

350 LAEEL "2
( CM )

"

370 MOVE ZS ,45

380 DEG
330 LDIR 90

400 LAeEL "St/Sto"
410 LDIR
420 VIEWPORT 30, i IE, 25,S3
433 WINDOW -20 ,20 ,.3.1 .2

440 FRAME
450 AXES 5 , . 1 ,-20 ,.30 ,1 ,1

430 AXES 5 , . i ,20 ,i .2
:
1 ,!

470 CSIZE 3.0
:
.G5

4S0 MOVE -17.5,1 .0

430 LASEL "X - 2.00 M"

530 CSIZE Z.3 , .55

510 MOVE 0. , .4

SZO LAEEL "M=0.47"
533 MOVE -17.5 ,.41
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&

c

548 LABEL "o = WITHOUT UQRTEX"

553 MGUE -17,5 ,.37

563 LABEL "+ = WITH VORTEX"

570 C3IZE 1 .3, .72

583 FOR 1=106 TO 126

530 B$< I > = "o"

520 cs< r >=*+"

510 fiG'v'E fc( I ) , Sir HI )

520 LrtBEL USING "ft" :BS( I )

530 MOVE Z 1 < I > ,Str2< I )

S40 LABEL USING "A" ;C3< I )

553 PENUF
650 NEXT I

570 £|_Tp Qpp

£30 CS I Z5 Z . , . 5 3
r* n <i

w 3fc> LORG Z

720 FOR I = .Z r Q 1.2 STEP . 1

i

M Q i

vl^ - Z 1 . 3 . I

720 LABEL USING "» ,0.0" ;

I

730 NEXT I

*7 4 ra LORG 3

7C? FOR J=-ZO TO 23 STEP 3

750

300

LABEL USING "#,000.00" ;

J

NEXT J

MASS STORAGE 13 ': INTERNAL ,4'

(,..
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10

20

30
43

se

SO

70

80

33

103

I 13

;:c

i zc

!40

ISO

150

173

?°3

ISC

210

:22

410
,i ! i

443

45C
450

470
i30

hi a

520

530
540

550

550
570

5-:0

100

i PROGRAM 5URFC0NT1
I THIS PROGRAM READS A OATA PILE AND PLOTS SURFACE CONTOURS OF

!0F STANTON NUMBERS RATIOS ALONG THE PLATE SPAN.
t

i ORTIZ VERSION JULY/87
DIM Str( t25),Strf(12B) f

2i 12S.»,X2( 12E.\B< 12B>
I
2H5?,22<5)

MASS STORAGE IS *
: INTERNAL ,4,1"

ASSIGN iPathi TO "STRFCV12"
PRINTER IS 70;

FOR I=i TO 125

ENTER aPathi :Szr\ I ) ,3trf(

I

v

,X2< I )
f Z< I )

NEXT I

=RINT5R IS 1

PRINT 'ENTER RUM NUM5EF TO WHICH THIS FlO~ CORRESPOND ( MMODVV .HH.MM
v

INPUT Runnc

Stnir=.50
Llirc».5S

Strf < I KLiirs the:;

St rft I • : = i .2: an

BC I .'=0

Sir: •! I ;':[

Strf? I >>

5 1 r f { I ) >

IF Strf; I >••>; . IS him
IF Str?{ I K*J .20 AND

IF Strf < I /> i .2(2 THEN S\ I ) = «•

NEXT I

SIN IT

PLOTTER IS 705,-HRSL"
(PLOTTER IS CRT /'INTERNAL"

GRAPHICS CN

CSIZ5 Z . 5 . .55

M0U5 14,13
LABEL "FREE STREAM 10 M/S

,

CS IZE 4.=
7
.55

MOVE 40 ,82

LA5EL "SURFACE CONTOURS"
CSIZE 2 .5 , . S5
MOVE 70,90
LABEL USING "SA ,Z ,E0. 40" ?FS ,Runno

CSIZE 3.5..E5
MOVE 58 .32

\r.z\- c

THEN B-

)= 1

UITH FILM COOLING. VCRTEX 3 C.I

L.fl&nL A f1; "

£!0 MOVE 15,55
p T, GEG
533 LOIR 50
S40 LABEL "Z ( CM)"
SS0 LOIR
S50 CSIZE 2. 5. .55

570 MOVE 54 ,27

550 LABEL "St/Stf RANGES'
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(
SS0 A=24
730 FOR K=0 TO 2

710 G-A-i<*2.5

720 MOVE 34- ,5

730 Z2< )=Stmi ntK*Inc
740 Z ! ( )=S tnin+ (K+1 >*Inc

750 Z2< ! .'=.33

75 ZK1)"I .02

773 Z2C2 >=1 .02

730 7
;

' 2 ; - ! . 1

750 LABEL USING 800 ;K ,Z2(K>,Z1(K)
300 IMAdE Q ,£.a .u .3D..2X ..0.30

8 1 NEXT K

S20 F Q R r. - 3 TO i

333 G-fW K-3 >*2

,

3

S 4 G MAHC C 1
~

ci50

3BG Z? (3;'=i .23

87Q Z 2 (+:= l .20

3 3 ZK4)=! .32

c 3 id LABEL USING 380 ?K ,Z2(Ki,2KK)
300 NE •

r K

910 VIEWPORT 25
,
114,40,73

330

350

SS3
Q7C|

380

330

1 000
I 1

1020

1030

1040

1352

i 030
1070

!05J

1030

! !00

II 10

I 120

! 130

i 1 40

1 150

1 160

i 170

WINDOW 1 . 10 ,2,23 ,20. ,-20.

FRAME
4X53 . 05 ,5. , 1 . 1 20. ,4 ,

1

AXES .05,5. ,2.20,-20. ,4,1

MOVE i . 30 , 1

7

LABEL "M =0.53"
fC T 7C I "7 72

FOR E-l TO i2S

MOVIE X2(I > ,Z(I

>

LABEL USING "D" ;3( I

)

PENUr
NEXT I

bLir Urr
<* C T 7 P " ;7i ,.35

LORS 2

FOR I =-20 TO 20 STEP 5

MOVE 1-0! ,1

LABEL US I NG d
*

, ODD .

D
" 1

1

NEXT I

LORG 5

FOR i=i . 10 TO 2.30 STEP .

!

MOLE J, 2

2

LASEl US INS "a ,0.00" i

J

NEXT J

X1AS3 STORAGE IS ': INTERNAL ,4

"

END

L.
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10 ! PROGRAM FLSTRFC
20 !THI5 PROGRAM READS A DATA FILE AND PLOTS SPANWISE VARIATIONS
30 !OF STANTON NUMBERS RATIOS BY ROUS FOR FILM COOLING DATA
40 !

50 DIM Str<200),Rey(6),Z(200),X1<S) fX2(208),CS(6)C8 3,B< I2B)

G0 MASS STORAGE IS *
: INTERNAL ,4,1"

73 ASSIGN ©Path: TO "STRFG"
SO FOR I- I TO I2E

90 ENTER 8Path1iStr<I)
I
X2{I),Z(I)

100 NEXT I

1 10 FS«"DATE ="

120 PRINTER IS 1

130 FRINT "ENTER RUN NUMBER TO WHICH THIS PLOT CORRESPOND ( MMOCYY .HHMM

)

i 43 INPUT Runno
550 5INIT
ISC PLOTTER IE 705/HPGL"
170 ! PLOTTER IS CRT , "INTERNAL"
ISO GRAPHICS ON

ISO CSIZE 2.S..SS
22? MOVE .10 ,14

2!0 LHBEL "FREE STREAM • 5 M/S , WI T H FILM COOLING "

200 CSIZE 4. 5 ,.55

23C MOVE 40
:
S5

240 LnSEL "STANTON NUMBER RATIOS"

250 CSIZE 2.5, .55

ZS0 MOVE 75 ,33

273 LABEL USING "BA ,t .BD.4D" ;FS .Runno

280 CSIZE 3. 5,. 65
230 MOVE 55 ,17

330 LAEEL "2
( CM )

M

310 MGVE 25 ,45

320 DEG
330 LDIR 30
340 LABEL "St/Sto*
350 LDIR
350 VIEWPORT 30 ,115 ,25 ,S3

370 WINDOW -23 ,20 ,.3,1.2
380 FRAME
390 AXES 5,-1 ,-ZO ,.30,1 ,1

400 AXES 5,. 1 ,20,1 .2,1 ,1

410 CSIZE 2.0 , .65

420 MOVE -17.5 ,. 55
430 LABEL "X (M)"
440 ^=.52

450 FOR K-1 TO S

460 D»A-K*.04
470 CS( ! >-"-X«1 .15"

4S0 <- -i

430 CS\ 3 >«""X-1 .40"

530 OS (4 )«"»X-1 .60"

510 C$(5 >-"-X-l .SO"

523 CS(6 ;•-"='/ = 2. 03"

530 MOVE -13. ,D

540 LAEEL USING "D ,8A" |K ,CS<K )
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t

(

550
5E0
570
sso
590

S22
Eta
520
530
5-10

Q —; ^

C I ^

5 83

590
720
7:0

7Tn_U
7^10

750
750
770
730
750

300

PENUP
MEXT K

C3IZE 1 .3, .72

FOR J*! T0 5

rw*2t-20
FOR I=M TO J*21

B(I)-J
MOVE Z< I ) ,Str< I )

LABEL USING "D" ;B< I

)

PENUP
NEXT I

MEXT J

CLIP OFF

lorg :

FOR I=.3 TO i .2 STEP .

I

ftQup — 2 ' . 9 I

;

..; :w5L US ING ~t ,0 . D" ; I

NEXT [

LORG 5

FOR J=-20 TO 20 STEP 5

MOVE J ,
.2"

LriSEL USING "t.DDO.OD" ; J

NEXT J

MASS STORAGE IS ".'INTERNAL ,4'

END

tife-
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APPENDIX D.

DATA FILES CATALOG

I. HEAT TRANSFER DATA DISK No. i

No. File Name Dale njec. Vortex Description

001 TDAT1 71787.1702 M N 15 m/s, baseline

002 IDATI
"

N M
"

003 STAV1
"

N N baseline Stav

004 HDAT1 N N baseline local h

005 TDAT2 72087.1315 N N 10 m/s base line

006 IDAT2
"

N N
007 STAV2

"

N N baseline Stav

008 HDAT2 N N baseline local h

009 STRDT2 72187.1524 N Y 10 m/sSt/Sto

010 STRV2
"

N Y 10 m/s (St/Sto)av

011 TDAT3
"

N Y TCI)

012 IDAT3 N Y input data

013 TDAT4 72187.1748 N Y 15 m/s T(D
014 IDAT4

"

N Y input data

015 STRDT1
"

N Y St/Sto

016 STARV1 N Y (St/Sto)av

017 TDAFC2 72387.1318 Y N
018 IDAFC2

"

Y N
019 FILDT2

"

Y N
020 STRFC2

"

Y N
021 STAVFC2

"

Y N

10 m/s. M- 0.68 Til

input data

film cooling data

St/Sto

(St/Sto )av
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022 TDAFCl 72387.1622 v
i N 15 m/s, T(I)

023 IDAFC!
"

Y NT
, input data

024 FILDTl Y N .In?, data

025 STRFC1
"

Y N . St/Sto

026 STAVFC1 Y N ,
I St/Sto i-av

027 TDAFC4 72487.1401 Y N 10 m/s. repeat

028 [DAFC4
" v

i N

029 T7 t t r\T" •:

i 1.L..L l : I . i

030 STRFCi
" t r -- r

0j i STAVFC4 Y
•

032 TDAFC3 72487 1621 Y N l^ m/s, repeat

055 ILA?C5 i . i

034 FILDT3

'

Y N

035 STRFC3
"

Y N

036 STAVFC3 Y N

037 TDAFC6 72587.1401 Y N 10 m/s. M = 1.26

038 [DAFC6
"

Y
v

039 FILDT6 Y N

040 STRFC6
"

Y N . St/Sto

04i STAVFC6
i

Y N . iSt/Stoiav

042 TDAFC5 72587.1808 Y N 15 m/s. M = 0.86

043 IDAFC5
"

Y N
044 FILDT5

"

Y N

045 STRFC5
"

Y N St/Sto

046 STAVFC5 Y N , (St/Sto )av

047 TDAFC7 72887.1206 Y N 15 m/s, M = 0.86

048 IDAFC7
"

Y N , Repeat

049 FILDT7
"

Y N
050 STRFC7

"

Y N
05

1

STAVFC7 Y N

052 TDAFC8 72887 1353 Y N 10 m/s, M = 0.68

53 IDAFC8 Y N . Repeal

054 FILDT8
"

Y N

055 STRFC8
"

Y N ,
St/Sto

056 STAVFC8 Y N ,
(St/Sto

)

av
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057 STAFC8 Y N Stf numbers.

058 TDAFC10 72887. 1742 Y Y 10 m/s, M - 0.68

059 IDAFC 10 Y Y Vortex gen. & 4.79 cm
060 FILDT10

"

Y Y

061 STRFCV10
"

Y Y St/Sto

062 STFCV 1 Y Y i,St/Sto)av

055 TBAFCli 72987. 1508 Y V
1 15 m/s. M - Q. u

064 IDAFC 11
'

Y Y Vortex gen. & 4.79 cm

065 FILDT11 Y Y

066 STRFCV11
"

Y V St/Sto

067 STAFCV11 V
i Y i St/Sto lav

068 TDAFC13 72987 1345 Y V
1 15 m/s, M •-= 0,47

069 IDAFC13
"

Y Y Vortex gen. & 3.5- cm
070 FILDT13

"
Y Y

"

071 STRFCV13
"

Y Y
'

'

072 STAFCV13 Y Y

073 TDAFC15 72987. 1415 Y Y i 5 m/s, M = 0.4"/

074 IDAFC15
"

Y Y Vortex gen. & 6.06 cm
075 FILDT15

"

Y Y

'

076 STRFCV15
"

Y Y
"

077 STAFCV15 Y Y

078 STAFC6 72587. 1451 Y N 10 m/s, M-1,26, Stf No
079 STAFC7 72887.1206 Y N 15 m/s. M-0.86,StfNo
080 STAFC3 72487.1621 Y N 15 m/s, M-0.47, Stf No

081 TDAFC21 80187.1354 Y Y 15 m/s. M- 0.86

082 IDAFC21
"

Y Y Vortex (a 6.06 cm
083 FILDT21

"

Y Y
"

084 STRFCV21
"

Y Y St/Sto

085 STFCV 21 Y Y averaged St/Sto

086 TDAFC17 80187 1507 Y Y 15 m/s, M- 0.86

087 IDAFC17
"

Y Y Vortex @> 4.79 cm
088 FILDT17

"
Y Y

"

089 STRFCV17
••

Y Y
"

090 STFC17 Y Y
"
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OOi TDAFC19 80187.1440 Y Y 15 m/s. M- 0.86

092 IDAFC19
"

Y Y Vertex (» 3.52 cm
003 FILDT19

"

Y Y
"

<j
:^ STRFCV i Y Y

00? STFCV 1

9

Y Y

096 TDAFC12 80187.1541 Y 1 10 m/s. M = 1.26

097 ID AFC 12
"

Y Y Vortex <s> 4.70 cm
:;
n
8 FILDT12 Y Y

000 STRFCV 12 V
1

t r

i St/Sto

100 STFCV 1

2

Y i

••• M- - - -I,"' Ct '^tf

10 i TDAFC14 80^87.1321 Y Y 10 m/s, M-l.26

102 IDAFC14
"

Y Y Vortex @> 4.7 Q cm
103 FILDT14

"

Y Y
'

104 STRFCV 14
•'

Y I

"

105 STFCV 14
! 1

Y Y

1 [. HEAT TRANSFER DATA DISK »2

No. FILENAME DATE INJ. VORTEX DESCRIPTION

007

008

STAV2
HDAT2

N
N

N
N

10 m/s, Stav baseline

local h baseline.

106 TDAFC16 80 487.1412 Y M
11 10 m/s, M - 0.98

107 ID AFC 16
"

Y N no vortex, baseline

108 FILDT16
"

Y N for 9 inj. holes F.C.

109 STRFC16
"

Y N St/Sto

110 STAFC16
"

Y N Stf(I)

111 STAVFC16
H

Y N averaged St/Sto

112 TDAFC18 80487.1452 Y Y 10 m/s, M=0.98
113 IDAFC18

"

Y Y Vortex <a> 4.79 cm
1 14 FILDT18

"

Y Y
"

115 STRFCV 1

8

Y Y St/Sto

1 16 STFCV 1

8

"

Y Y averaged St/Sto
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117 TDAFC20 80487. 1529 v Y 10 m/s. M-0.98

118 IDAFC20
"

Y Y Vortex (?)3.52 cm
119 F1LDT20

•

Y V
i

"

120 STRFC20
"

Y Y
"

121 STFCV20 Y Y

122 TDAFC22 80487.1553 Y Y 10 m/s. M=0.98

123 IDAFC22
m

I Y Vortex <a 6.06 cm

124 FILDTZ:
"

i i

125 STRFCV22
"

Y Y

126 STFCV22 y Y

127 TDAFC24 80987 1943 Y Y 10 m/s. M-0.98

128 IDAFC24 Y Y Vortex <a 4.79 cm
129 FILDT24

"

Y Y Run for temp, profiles

130 STRFC24 Y Y St/Sto

II. TEMPERATURE PROFILES DATA DISK *1

Mo. FILE NAME DESCRIPTION

131

132

133

TPR01

TPR02
TPR03

10 m/s, M =0.98. heated plate. X= 1.867 m
Vortex @> 4.79 cm , X = 2.172 m

, X = 2.48 m

134

135

136

137

TPR04
TPR05

TPR06

TPR07

10 m/s, M - 0.98, unheated plate, X - 1.867 m
Vortex («> 4 79 cm, , X = 2.172 m

"
,

"
, X - 2.48 m

"
,

" ,X= 1.48 m

138 TPR08 10 m/s, M-0.98, heated plate, X=1.48 m, Vt. ® 4.79 cm

139 TPR09 lOm/s, M=.98, unheated plate, X=1.48 m, V c* 3.52 cm
140 TPRO10 ,V (5>6.06 cm

41 TPROll 10 m/s, M=1.26, unhealed pit., X= 1 .48 m. V <?> 4.79 cm

42 TPR012 10 m/s, M= 0.98, unheated plate, No vortex, X= 1 .48 m

201



IV. TEMPERATURE PROFILES DATA DISK *2

143 TPR013 10 m/s, boundary layer with fiim cooling. M= 0.98

144 TPR014 10 m/s, boundarv layer heated piate only.

145 rPROF 10 m/s. M=1.26. v c& h../*) cm. Pressure probe profile

146 CAL data, at X- 1.48 m
1
4" VELPRO velocity profiles

148 PLOTVOR vorticity profiles
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