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ABSTRACT

A representation of nonstationary narrowband random processes in terms of

nonstationary quadrature components is proposed in a form analogous to that used

to represent wide sense stationary naxrowband random processes. The represen-

tation is then applied to a specific case in which the nonstationary narrowband

random process is generated by the product of white noise and a deterministic

periodic signal and then is processed by a narrowband filter. This representation

is used in the modeling of a bi-level pulsed noise jammer which is assumed to

be present in a communication channel. The effect of such a jammer on a direct

sequence, binary phase shift keyed (DS-BPSK) spread spectrum communication re-

ceiver is evaluated and characterized in terms of the error rate performance of the

receiver. Families of performance curves are plotted to demonstrate the effect of

various parameters, namely signal-to-noise ratio, jammer power to signal power ra-

tio, and processing gain, on the error rate of the complete spread spectrum receiver.

The analysis carried out differentiates between two cases, namely fast jam.mers and

slow jammers. However, the analytical tools developed make it possible to consider

either one of the two cases without resorting to quasi-stationary arguments as has

been done in the past.
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I. INTRODUCTION

Electronic Counter Measure (ECM) techniques have gained increasing atten-

tion in military communications. It is often necessary and important to be able to

analyze and predict the performance of communication receivers, especially when

operating under hostile electronic interference. In order to improve the survivabil-

ity of tactical communication systems operating in jamming enviomments, spread

spectrum modulation techniques have been introduced, analyzed and implemented

in many systems in order to mitigate the effects of intentional electronic inter-

ference. In many of the analyses carried out to date, the jammer interference

is typically cissumed to be a stationary (or wide sense stationary) random process

with well-specified statistical characterizations [Ref l], and the natural interference

introduced in the communication channel is generally modeled as additive white

Gaussian noise (AWGN). However, in practice, there are many communication en-

vironments which do not fit the model just described. Consider, for example, a

communication system which is being januned by a continuous wave (CW) tone

near the transmitter operating center frequency, or by a distorted retransmission

of the transmitter's own signal. The interference cannot be accurately modeled

as a stationary random process in either case. Another typical jamming scenario

involves a jamming signal that may be pulsed between various power levels at a

rapid rate and is therefore not stationary [Ref 2].

The effects of nonstationary interference on the performance of a spread spec-

trum communication system is not known in general. It is however possible in

many cases to characterize nonstationary interferers and determine their effect on

specific communication systems. In fact, if the statistics of the nonstationary
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process are periodic, such a process is said to be cyclostationary [Ref. 3]. The

statistics and power spectrum of a cyclostationary process are normally computed

by using phzise randomization or time averaging techniques [Ref. 3].

In view of the importance of the use of nonconventional forms of generating

channel interference, the aim of this thesis is to analyze the effects of nonstationary

narrowband interference on the performance of a spread spectrum communication

receiver. More specifically, the results of the analysis are applied to the special Cctse

of a narrowband bi-level pulsed noise jammer, since it is an effective form of ECM

[Ref 3]. Although certain results concerning the same type of jammer considered

here can be obtained by other methods [Reference 1 and 2] the results derived are

based on the application of quasi-stationaxy assumptions which oftentimes are not

realistic and cannot always be justified in practice.

In Chapter II of the thesis, methods analogous to those used in the repre-

sentation of narrowband random processes are used to characterize a stationary

narrowband nonstationary random process. Such a random process is shown to

be specified in terms of its nonstationary quadrature components. The expression

of the autocorrelation function of the nonstationary narrowband random process

is then established, and, all the results are used to specify the characterization

of a bi-level, narrowband pulsed noise jammer which can be obtained by ampli-

tude modulation of white Gaussian noise which is filtered by a narrowband filter

centered at some high frequency /o

.

In Chapter III, analysis was carried out in order to characterize the output

of the spread spectrum receiver consisting of a despreader, a bandpass filter and

a correlation detector, when a nonstationary narrowband process is applied at the

input of such a receiver. This characterization is obtained in terms of the mean
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and variance of the Gaussian random variable at the output of the receiver's deci-

sion circuitry.

Chapter IV provides a detailed analysis of the performance of a spread spec-

trum receiver. The binary phase shift keyed (BPSK) modulation scheme was se-

lected as the method by which digital information is transmitted and the method

of spreading the signal bandwidth was chosen to be a direct sequence spread spec-

trum modulation approach. Noise and janmiing were assimied to be sources of

channel interference, using the models developed in Chapter 3 for their character-

ization. The receiver performance specification was accomplished by deriving the

error probability or the bit error rate. The error performance was plotted versus

various factors that take into account signal power, interference power and band-

width spreading. The effect of the various parameters on the receiver's performance

was analyzed and discussed.

From the general representation of the narrowband nonstationary random pro-

cess, other forms of nonstationary interference can be proposed and their effect on

communication receivers can be derived by similar approaches. Although the de-

rived performance of the spread spectrm receiver was developed for BPSK signal

modulation with direct sequence bandwidth spreading, the general results can be

modified and extended to obtain performance evaluations of receivers in which

other modulation schemes are employed.

10



II. NONSTATIONARY RANDOM PROCESSES

A. NONSTATIONARY NARROWBAND RANDOM PROCESSES

A random process is said to be narrowband if its power spectral density is zero

except for a narrow frequency region (W Hz) around a high carrier frequency (/o),

that is,

W« 27r/o and 27r/„ >> 1

If X{t) is a sample function of such a real random process with zero mean, it may

be expressed as: [Ref. 4]

X{t) = X, [t] cos 27rfJ - X, (i) sin 27rfJ (2.1)

where the power spectral density of the random processes Xc [t] and X, [t) is zero

except for a narrow frequency region (W Hz) around / = 0. The random processes

Xc{t) and X,{t) are referred to as the quadrature components of X{t).

Random processes can be generally classified into stationary and nonstation-

ajy processes. If the joint probability density function (p.d.f.) of a process X{t)

taken at arbitrary times ti,t2 ...tn is invariant to arbitrary time shifts for any

integer n, such a stochastic process is said to be stationary [Ref. 5]. A random

process is nonstationary if it does not have the above properties. A weaker form

of stationarity is the so-called wide sense stationarity (W.S.S.) involving first and

second order moments of a random process [Ref. 6]. The representation of Eq. 2.1

normally implies a W.S.S. random process X{t).

We propose here to represent a nonstationary narrowband random process in

a form analogous to that of Eq. 2.1 and to study the statistics of the associated

quadrature components. This is accomplished by analyzing the output of a

11



narrowband filter when the input is an arbitrary nonstationary process. Before

attempting this, a convenient method of specifying a narrowband filter is developed

first.

1. Lowpeiss Equivalent of a Narrowband Filter

Any bandpass filter can be specified in terms of low-pass filter equivalents.

Let h^ {t) be the impulse response of a low-pass filter and H^ (/) be the Fourier

Transform of h^ [t), that is,

hUt) <^ HUf) = A{f)e^'^'^ (2.2)

where H^ (/) is not necessarily symmetric about / = so that Hl {t) is not neces-

sarily real. Then the Fourier Transform Hb (/) of a bandpass filter having impulse

response kg [t] can be specified as follows: [Ref. 7]

hs (t) <U Hs if) = H^(f- Jo) + H^ (-(/ + fo)) (2.3)

As shown in Figure 2.1, Hb (/) is realized by summing the frequency up shifted

(by fo) and the frequency reversed and down shifted (by fo) Fourier Transform

of the low-pass filter. The negative sign in the term Hi, (— (/ + /©)) is due to the

frequency reversion of H^ (/) described above.

We can remark that in general /i^, [i) is a complex quantity. However, since

the focus is on generating real narrowband random processes, we will require that'

Hb [t) is a real function of t. By inverse Fourier Transformation of Eq. 2.3 and by

expressing hi, [i) in the following complex form,

hiit) = hi^rit) -^ jhi,(t) (2.4)

12



Figure 2.1 Graphic Representation of Hi,(f) and Hb(0
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where both /iLr(0 a-nd /iLt(0 ^^^ ^^^^ functions of t, we can obtain the impulse

response hs {t) of a narrowband filter as [see Appendix A]

hB{t)=2Re{hL{t)e'^''^<''} (2.5)

where Re{{-)} represents the real part of the function in brackets. It is demon-

strated in Appendix A that /ix,r(0 must be an even function and ^Li(0 raust be

an odd function if /ib [t) is to be real.

2. Output of a Narrowband Filter

In the case of a stationary random process input, the statistics of the

output of a narrowband filter is well-known [Ref. 4]. We will investigate the more

general case where the input random process to a narrowband filter is real but

nonstationary. Let Y[t) be the output due to a real input signal X{t) applied to

a narrowband filter having transfer function Hb (/) as described in Section 1 [Fig.

2.2]. Then Y{t) can be expressed as the convolution of X{t) and h^ (t) namely

/oo •

he {t - a)X{a)da (2.6)
oo

It is demonstrated in Appendix B that Y{t) can be further expressed as

Y{t) = 2X,{t) cos2'KfJ - 2X,{t) sm2nfj (2.7)

where

/oo

[h^rit - a) cos27r/„a + h^iit - a) sin27r/„al X{a)da (2.8)
• oo

/oo

[hLi{t - a)cos27r/„a - h^rit - a)sm27rfoa] X(a)da (2.9)
oo

14



Figure 2.2 Narrowband Filtering of Real Input X(t)
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There is a certain degree of similarity in the mathematical form of Eq. 2.7 and

Eq. 2.1. However, the properties of Xc{t) and X„{t) given by Eq. 2.8 and Eq. 2.9

respectively must now be established.

3. Output Correlation Function for Nonstationarv Input

By definition, the autocorrelation function i2y (^1,^2) of any random pro-

cess Y{t) is the expected value of the product of Y{ti] and ^ (^2) for arbitrary time

instants ti and ^2 [Ref. 5], that is

Ry{ti,t^) = E{y{t,)y{t^)} (2.10)

In order to obtain Ry{ti,t2) for the output Y{t) of the filter described in Section

2, it will be necessary to evaluate the following quantities (since Y{t) is the linear

combination of Xc{t) and X, {t))

R^{t,,t,)^E{X^{t,)X^{t,)} (2.11)

R,(t,,t2)=E{X.(t,)X.{t2)} (2.12)

Ro.it„t,)^E{X,it,)X,{t,)} (2.13)

R,c{ti,t:,)^E{X.{t,)X,(t2)} (2.14)

The four quantities above are complicated functions of ^i and ^2 [See App. B]. It can

be observed that in general Rdtifi^) / -R. (^1,^2) and i2c» (*i,*2) ¥" — -^.0(^1,^2);

unlike the case of stationary narrowband process, both the quadrature compo-

nents have identical autocorrelation function and the two cross-correlation func-

tions are null if both Xc{t) and X, [t) are real [Ref. 4]. The autocorrelation function

-^7(^15^2) of the nonstationary narrowband process Y{t) can be formulated as fol-

lows
[
See App. B]:

Ry{ti,t2) = 4 Re [t I, t2) 005 2^/^1 COS 21^fot2 + i2, (ii , ^2 ) sin 27r/oi sin tt/o^s

(2.15)

- i2c. (i 1,^2) cos 27r/ofi sm2'Kfj2 - R,c {t i, t2) sm2nfJ cos 2nfJ^^

16



It is clear that i2y (*i,t2) is alsoalinearcombinationof i2c(ii,t2) j-^* (^15*2)5 -Rc« (^15^2)

and R>c{ti,t2)'

B. A MODEL FOR THE NONSTATIONARY INPUT

The results of the previous sections will be applied now to a specific general

class of nonstationary random processes which are generated by a system to be

described now. This is done in order to continue the development for a class of

nonstationary random processes of interest and to be able to apply the results

to some practical problems involving jamming of spread spectrum communication

systems. Let the nonstationary input X{t) described previously be the result of

mixing a stationary random process W{t] with a deterministic signal q{t) as shown

in Fig. 2.3. We further assume that the autocorrelation function R^ [t^ ,^2) of the

stationary random process W[t) is

R^{t,,t,)=ElW(t,)W{t^)\ = 6(t^-t,) (2.16)

That is, W{t) is assumed to be a white process with unit power spectral density

(PSD) level. Therefore

RAti,t2) = E[X{t,)X{t^)]

= ElW(t,)q{t,)W(t,)q{t,)\

(2.17)

= q(tMt,)E[W{t,)W{t,)]

= q^(t,)6(U -h)=q^(t^)8(U -U)

17



Figure 2.3 Nonstationary Input X(t)
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since R^ [ti , ^2) is zero unless ij = *i • We can now apply the results from Appendix

B in order to characterize the output of a narrowband filter when its input is a

nonstationaxy random process of the type being described in this section. It is

demonstrated in Appendix C that the autocorrelation terms of Equations 2.11 -

2.14 simplify significantly when X{t) = q{t)W{t), namely

Rc{t,,h) = R,{h,t:,) (2.18)

and

i2o,(<i,<2) = i2.c(*i,*2)=0 (2.19)

Finally, the autocorrelation function Ry{ti,t2) for the nonstationary process Y{t),

namely the output of the narrowband filter, has the following form: [see App. C]

Ry{ti,t2) = 2cos27r/o(«2 -ti) hL(ti -a)/iL(*2 -a)q,{a)da (2.20)
J — 00

where

9.(0=9^(0 (2.21)

Observe that Ry{ti,t2) is not a function of the time diff"erence (^2 — ti), so that

Y{t) is [as expected) a nonstationary random process.

C. A SPECIFIC EXAMPLE

In the previous sections, we have established a representation in general form

for a narrowband nonstationary random process generated by applying the mixture

process q{t)W[t) at the input of a narrowband filter. As a specific example, it is now

desired to use these results to model and characterize a pulsed noise jammer that

is processed by a narrowband filter. Assuming that we have a bi-level pulsed noise

jammer, we can model the jamming signal X{t) as the result of mixing white noise

19



W{t) of unit PSD level with a bi-level deterministic periodic signal q{t). Such

a jamming signal present in the communication channel would cause a typical

receiver to produce a jamming component at the output of the receiving front end

narrowband filter. This component is denoted Y{t) as shown in Figure 2.4.

The autocorrelation function Rx [ti , ^2) of the input process to the narrowband

filter is given by Eq. 2.17 while the corresponding output autocorrelation Ry {ti , ^2)

is given by Eq. 2.20. Tq is the period of the periodic signal q{t) which remains at

the level A for the time interval [o, pTg] and at the low level C for the time interval

[pTg,Tg],0 < p < 1. [Fig. 2.5] The narrowband filter Hb {t) is based on a low-pass

equivalent which is assumed to have impulse response hi {t) = B • e~^*U{t) where

U{t) is the unit step function, and B specifies the 3db point of the filter. The

details of the derivation are presented in Appendix D, where it is demonstrated

that for the special case under consideration, Eq. 2.20 becomes

i2y(*i,<2)=2cos27r/4i2-<i)(— e-^(*^ + *''e^^^'°'*-*''-

2

+

2BMin(t,.t,)Q^]_[^]
J2.22)

g2BT, .g2Br,[.l _g2Bpr, .g2BT,[rl

l_e-2Br,

where [z] is the largest integer less than or equal to z

1

and

r = -p+—Min(<i,i2), (2.23)
-'«

s = -l+—Um(ty,t^) (2.24)
'1

Mm{ti,t2] = minimum of ti and i^

20
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Although equation 2.22 is not a simple mathematical form, it is possible to

derive the average power of the random process Y{t)^ by time averaging Ry[t,t).

The details are again presented in Appendix D, where it is demonstrated that

Ry(t,t) =B[A''p + c''(l-p)] (2.25)

This result can be easily verified from the eissumptions made at the beginning of

this paragraph. Furthermore, it can be seen that for the special case under con-

sideration, Ry[t,t) represents the jammer power at the output of the narrowband

filter ^b(/).

It has thus been shown that a nonstationary narrowband process can be rep-

resented by the nonstationary quadrature components in a form analogous to that

for the representation of wide sense stationary narrowband processes. A general

expression of the correlation function for a filtered nonstationary input is obtained.

The results are applied to a special cajse in order to model a bi-level pulsed noise

jammer. The effects on a spread spectrum communication receiver due to such a

pulsed noise jamming signal will be investigated in the next chapter.
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III. EFFECT OF SPREAD SPECTRUM SYSTEM

ON NONSTATIONARY NOISE

A. MODEL FOR THE SPREAD SPECTRUM RECEIVER

In spread spectrum modulation, digital information is transmitted by employ-

ing a trasmission bandwidth which is much larger than the minimum bandwidth

required to transmit the digital information via conventional means. In the spread

spectrum receiver, the demodulation must be accomplished, in part, by correlation,

of the received signal with a replica of the "spreading" signal used in the transmit-

ter in order to recover the digital information signal. If the bandwidth is spread by

direct modulation of a data-modulated carrier with a wideband spreading signal

or code, the technique is referred to as direct sequence (abbreviated DS) spread

spectrum modulation.

The simplest form of DS spread spectrum modulation is DS-BPSK spread

spectrum transmission where a binary phase shift keyed (BPSK) modulated car-

rier is spread by a wideband "code signal." [Ref. 2]. The spreading operation can

be mathematically represented as a multiplication of the carrier by a function c{t]

which takes on the values ±1 at a digital rate R^ periodically. (Fig. 3.1) The trans-

mitted spread spectrum signal is received together with some type of interference

and/or Gaussian noise. Demodulation is accomplished in part by remodulating

with the spreading code c{t). The process is commonly referred to as despreading

and is a critical function in all spread spectrum systems.

A simplified model of the DS-BPSK receiver is illustrated in Fig. 3.2. The

figure shows the received signal r[t) first processed through a front-end bandpass
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filter centered at the carrier frequency /o and having a bandwidth wide enough

for the spreading signal (contaminated by thermal noise and perhaps a jammer)

to be allowed through with negligible distortion. The output of the front-end

bandpass filter is then mixed with a local synchronized replica of the code spreading

signal c{t) in order to despread the signal. The despreading operation produces a

contaminated BPSK signal from which the digital information can be recovered by

conventional techniques using a filter and a correlator cls shown in Fig. 3.2.

It is well-known that in the absence of any jamming, the perfomance of the

receiver in Fig. 3.2 in terms of the bit error probability (P^) is given by: [Ref. 2]

n =
Q(^/f^) (3.1)

' o

where Rb is the bit energy of the received signal, No is the one-sided power spec-

tral density level of the AWGN interference and Q{-) is ihe complementary error

function defined by

QW = ;^y ^-"^dt (3.2)

B. EFFECT OF NONSTATIONARY NOISE ON THE DESPREADER
AND BIT DETECTOR ON NONSTATIONARY NOISE

The jamming signal produced by the bi-level pulsed noise jammer may not

necessarily be narrowband. However, after the filtering operation performed by

the receiver's front-end bandpass filter the jamming signal can be considered to

be narrowband. We therefore investigate here the eff'ect of the despreader and the

bit detector system on the input nonstationary narrowband random signal which

models the jammer.

The receiver of Figure 3.2 is now assumed to have a narrowband nonstationary

zero mean input y{t) as illustrated in Figure 3.3. The output of the bandpass filter
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is denoted by z{t) while the bandpeiss filter impulse response is denoted hx{t) and

can be specified in terms of a low-pass filter equivalents denoted hj [t]. The output

of the receiver due to the input y{t) is denoted Yy. It can be seen that

/oo
hi(t-T)y{T)c(T)dT (3.3)

oo

and

Yj = z{t) cos 2nfotdt
Jo

which can also be expressed as

yj= f \ f hj{t-T)y(T)c{T)di
Jo iJ-oo

dt (3.4)

The jamming of the transmitted signal is always being considered as an action

of adding a nonstationary Gaussian randomi process to the signal. As will be seen

in the analysis to be carried out in Chapter IV, part B, the effect of the jammer on

the receiver's performance is completely accounted for by evaluating the variance of

the output of the bit detector. That is, only the variance of Yj will be established

and the other statistical properties of Yj which have no direct influence on the

systems bit-error probability will be neglected.

The variance a"] can be shown to be given by an infinite sum of terms, namely

o', Y, C„ /" H,(f)H,(nR,-f)P,(-!)P,(f-nR,)
•/— OO

/oo
H:^ (u)Hr^ (nR, - u) [5,(/ + /o - «) + 5,(/ - /« - u)\ dudf (3.5)

- oo

where iE, is the period of the nonstationary jamming signal and C„ is given by:

WKp
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It can be seen from Eq. 3.5 that a^ is a function of the duration T^ of the

information bit, the duration Tc of the spreading code, chips, and T, , the jammer

pulsing period. However, practical spread spectrum systems utilize spreading codes

for which the chip duration is very much smaller than the information data bit

duration [Ref. 8]. That is

Tc « Tb or R, » Rf,

where R^ is just T~ ^
, the chip rate, and Ri, is T~ ^

, the bit rate. It is therefore

possible to define here two classes of janmiers, namely fast jammers for which the

pulse repetition period T, is of the same order of magnitude as T,,, so that the

jammer pulsing rate is much larger than the data rate, and slow jammers for which

Tc is of the same order of magnitude as T^. The effect of the jammer pulsing rate

on the variance o^ will be examined separately for both cases.

1. Variance <7j for the Fast Jammer

Consider first the Fourier Transform Pc{f) of the function Pc{f) defined

in Eq. E-2, namely

Pc{f)=
I

\os27rfote-^'''^Ut = G{f - fo) + G{f + fo) (3.6)

where

G{f) = ^ sine (/r,)e-^"'^*

We can see that Pc{f) is significant for / = ±/o over a restricted frequency band.

Similarly, Pc{{f — nR^) is significant for / = ±(/o +nRg) over a similarly restricted

frequency band. The functions Pdf) and Pc{f — nRg) are diagramed in Figure 3.4

from which it is possible to observe that if

fo-nR^+R^ « fo-Rb
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or equivalently, if

2Rb « nRq (3.7)

essentially no spectral overlap of the frequency functions occur. This condition

except for n = is satisfied for what has been defined as a fast jammer since

Rq >> Rb under fast jamming.

It is possible to conclude therefore that in the case of a fast pulsed jamming

environment, the only contribution due to the infinite sum of terms that make up

the variance o"^ is the term n = (See Eq. 3.5). Therefore

"'j

/oo

H,(f)H:{-f)P^{-f)

(3.8)

Hr. {u)Hr. (-u) [5,(/ + /o - u) + 5,(/ - /o - u)] dudfI

— oo

oo

and substituting in Eq. 3.8 the corresponding mathematical description of the

functions Hi{-),Hl(-),P^(-) and S^{-) as given in Eqs. E.3, G.6, G.8 and G.17,

results in

a^ -"-f{'-{B^r^)^'--'"^-
l + e-^^'

+ (26-"^'" - l)

b

^bTb(B^ -62) bTbT,(B^ -b^Y
(3.9)

Be-^'^'e-^'^' Be-^'^^e^'^'
+

2hTbT,(B + hY 2hTbT,(B-hY\]

The details of the derivation of this result are presented in Appendix G.

2. Variance o"] for the Slow Jammer

In the case of a slow pulsed jamming environment, the condition R^ »
Rb is not satisfied, therefore a certain degree of overlapping between the spectral

factors that make up the expression for a^j will occur. While the infinite sum of
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Eq. 3.5 can be approximated accurately by a finite sum, the number rio, of terms

needed in the approximation will be such that

noi2, >> 2Rt,

or equivalently

Mo » —

^

(3.10)
it.

In this CcLse, the result for a"] becomes

^? = E C, r Hj{f)H:{kR,-f)P^(-f)P^(f-kR,)
. J — oo
fc= — no

/ Hr^ [u)H^ (kR, - u) [5, (/ + /o - u) + 5, (/ - /o"
- u)] dudf

J — oo

(3.11)

It is also clear that as k increases, \Ck \
decreases so that the sum involved

can perhaps be further truncated. The computation of cry in this case becomes

quite complicated, however using numerical integration, cr^ can be obtained quite

accurately.
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IV. PERFORMANCE OF THE SPREAD SPECTRUM

COMMUNICATION SYSTEM

A. GENERAL OUTLINE

In Chapter III, a complete derivation for a"^, the variance of the Gaussian

random variable that quantifies the power contribution of a bi-level, nonstationary

narrowband jamming signal at the output of a DS-BPSK Spread Spectrum Mod-

ulation receiver, has been undertaken. A diagram of the spread spectrum receiver

is shown in Fig. 3.1. The receiver structure is optimized based on principles of

Maximum A Posteriori (MAP) detection for binary modulation schemes. The re-

ceived signal and noise is first processed by the front-end bandpass filter which has

a bandwidth just wide enough to pass the spread signal and the in-band noise. The

narrowband signal is then processed by the despreader which consists of a multi-

plier mixing the received signal with a synchronozed local replica of the spreading

code signal. A second bandpass filter having a bandwidth proportional to the in-

formation bandwidth follows the despreader, so as to further eliminate the noise

power being presented to the remainder of the receiver. The data signal is then

demodulated by a correlator and finally, a decision is produced every T^ seconds

which is translated into or 1 data bits. This generates a MAP estimate of the

digital data at the output of the receiver.

The performance of such a receiver is usually characterized by the probability

of error, which is, in essence, the probability of an incorrect decision made at the

receiver. The probability of error can be further categorized into symbol error and

bit error probability. However, for the case of Binary Phase Shift Keyed (BPSK)
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modulation, the two error probabilities are equivalent and provide the bcisis for

specifying the receiver's performance.

In the next section, we investigate the performance for the ccise in which a

BPSK modulated signal is spread by direct sequence methods, and the signal is

received in AWGN interference as well as the bi-level pulsed noise jammer described

and analyzed in previous chapters.

B. RECEIVER PERFORMANCE FOR BPSK MODULATION

The structure of a spread spectrum correlation reciever is shown once again

in Fig. 4.1. In BPSK modulation, the two transmitted signals are [Ref. 4]

Si (t) = J -=^ COS 2;r/„« < « < T^ and

^7— (4.1)

S2{t) = -J-^cos27rfJ 0<t<T,

where Ef, is the energy of each signal and Tf, is the duration of each signal. Since

each signal represents a single information bit, Ef, is the energy per bit and T~ ^ is

the bit rate.

At the output of the second bandpass filter, the signal y{t) can be regarded as

the sunmiation of the transmitted signal Si{t), narrowband noise Nth{t), and the

jamming signal yj {t) convolved with the impulse response hj [t) of the bandpass

filter. That is.

y{t) = ^i{t) + N,^(t)+yj(t)c{t) h,{t)

(4.2)

I = 1 or 2

Hence,

Y = y(t) cos 27rfotdt
Jo

= Si(t) * hi (t) COS 2%fjdt+ Nth{t)C(t)* hi {t) cos 2TTfJdt (4.3)
Jo Jo

+ / yj {t)c{t) * hi (t) cos 27rfjdt
Jo
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or simply,

Y = S,+N,H+ Yj (4.4)

where S'j, Nth and Yj represents the three integrals in Equation 4.3 respectively.

It is clear that Y is in fact a random variable whose statistics can be evaluated

once certain properties of Si,Nth and Yj are established.

We first assume that the noise contribution at the front end of the receiver is

zero mean, white Gaussian noise with ^ as its two sided power spectral density

level [Fig. 4.2]. The autocorrelation function for the noise, ednoted Rj^ (^5^) is

RN(t.T) = ^6{t-T) (4.5)

where S{t) is the Dirac Delta function. Based on these assumptions it is shown in

Appendix H that Nth is also a zero mean, Gaussian random variable with variance

^th specifisd in the sequel. Due to the fact that the receiver is linear, the noise

contribution at the output retains its Gaussian statistics. The expression for crf^

is from App. H given by (Eq. H.18).

where

A: = 0.903

and

^ -Re A
Gc = — = processmg gam.

Rb

It is shown that S^ and ^2 are given by [Ref. 2]

S, =J^ and S, = ,/^ (4.7)
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Furthermore, Yj is the quantity related to the jammer and its variance o"] is given

by (see Eq. H.4)

^5 = ^J(G,)

where J[Gc) is defined by Eq. 4.6. To further simplify the notation, let X =

Nth +Yj, so that

ai = a^, + a? (4.7)

since the noise and jamming are zero mean uncorrelated processes, and

Y = Si-\-X (4.8)

then X is zero mean Gaussian random variable with pdf given by [Ref. 2]

f^(X) = -l==e~^
.

(4.9)-
y/2'Kal.

For the BPSK modulation scheme that is being considered here, the decision

regions of the signal space diagram can be illustrated as shown in Fig. 4.3 [Ref 4|:

From equations 4.8 and 4.9, it can be seen that the probability of receiving the

signal Y given that a signal 5^ was actually transmitted is:

Pr{r = Y/Si {t) was transmitted} = /,/., {Y/Si) = f^{Y - Si) (4.10)

The probability of bit error rate is then given by: [Ref. 2]

or

n = Qiw§

"-"^'^/^(^fT^)
("^'
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where Q{') is the complementary error function defined earlier in Chapter III.

Substituting o^^^ and a^ from Equations H.4 and H.18 results in

P. = Q' '

^'^'

dL + c^ji^G,)

or

IT 4

C. ANALYSIS OF ERROR PERFORMANCE

As derived in the previous section, Eq. 4.16 yields the probability of bit error

Pb for a DS-BPSK spread spectrum receiver under AWGN noise interference and

narrowband bi-level fcist pulsed noise jamming. Clearly P5 is a function of the

power spectral density level No of the AWGN, the average power of the jammer

given by BCo and also, the processing gain Gc. It is clear from Eq. 4.11 that

the receiver bit error probability will increase if the noise and/or jammer power

increases as the Q(-) function is monotonically decreasing.

In order to analyze the quantity P5 in more detail, we define the signal to noise

ratio (SNR) to be the ratio of Ef, to No and the jammer power to signal power ratio

(JSR) to be the ratio of average jammer power Pj to the average signal power P

[Ref. 4]. Hence,

SNR^^ ,JSR^?^ (4.17)

where

Pj =BCo=27rR,Co (4.18)

P = E,R, (4.19)
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so that Eq. 4.16 can be reexpressed as

^' = « (\ 0...S
,

1f.^l(.»-7i )
(4-20)

^ V «• ' SnGc

Based on Eq. 4.20, families of curves of Pb versiis SNR for fixed JSR values can be

plotted and analyzed. However, first plots of P^ versus JSR for different values of

Gc under various SNR conditions are shown. Logarithm scales are used for P^ due

to the large variation in this parameter. From Figure 4.4a to d, one can observe

that in general, under intense jamming (i.e., JSR large), the receiver probability of

error is also large, thus implying that a significant number of delivered data bits

are in error. Under a fijced JSR and fixed Gc values, it can be seen that if the SNR

is large, P^, can be made significantly small. For example in Fig. 4.4b, it is shown

that when JSR = 15dB and G^ =100;

P5(at SNR = 4)
«10-2-'

and

Pt,{a.t SNR = 20) « 10-20

However, when the jamming is very strong (for JSR > 30 dB) Pf, tends to a limit of

approximately 10" ^ regardless of the value of all other factors. It can be observed

from Eq. 4.16 that if JSR increases indefinitely, the limit of P^ equal to 0.5 is

reached.

From Fig. 4.4a to d, we can also conclude that for any fixed values of JSR

and SNR, an increasing processing gain Gc implies a decreasing value of P^. The

phenomenon is more prominent in a high SNR environment than in a low SNR

environment. There is no significant improvement in P5 for SNR in the range from

dB to 8 dB however a large improvement in Pj, is obtained when SNR exceeds
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12 dB. The immediate conclusion that we can draw from this is that by increzising

the chip rate [Re) of the spreading code, resulting in a higher processing gain,

the perfromance of the receiver can be improved under the jamming environment

analyzed, however this counter mecisure loses effectiveness when powerful jamming

is present.

To better illustrate the effect of G^ on P5, another family of curves is plotted.

In Fig. 4.5a to d the variation of P5 eis a function of JSR is shown for different

values of Gc and SNR. It is clearly shown that all the curves converge toward Pi,

equal to 0.5 as JSR increases. From Fig. 4.5a we can see that Pf, (at JSR = 20

dB) reduces from approximately 10"°-^ to 10" ^-^ when Gc increases from 2 to 400

under weak signal (SNR = 4 dB) conditions, while Pb reduces from approximately

10-°-^ to 10"^^ under the same conditions when SNR = 20 dB (see Fig. 4.5d).

At JSR > 35 dB, no significant gain can be obtained regardless of signal strength.

As a result of this, we can conclude that by increasing the chip rate to counter the

narrowband bi-level fast pulsed noise jammer is not effective under strong jamming

conditions, however, a high chip rate can reduce the probability of bit error of the

jamming is not too severe.

It is also possible to represent the error performance curves by plotting log^o Pb

versus SJR, the signal power to jammer power ratio under various SNR conditions.

Fig. 4.6 a to d show how Pf, varies with SJR. The curves can be interpreted

in essentially the same way as the previously mentioned graphs. By comparing

Fig. 4.6 a to d with the results obtained in Reference 2, we observe that the

performance of the DS-BPSK spreak spectrum reciever degrades under a jamming

environment in a manner similar to the case of barrage noise jamming or partial

band noise jamming environment presented in the reference. Furthermore, the

receiver performance is well below the boundary of the performance for the
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worst case pulsed noise jamming derived in Reference 2 based on a quasi-stationary

analysis method. Except for the v/eak signal condition case, the receiver perfor-

mance approaches the above mentioned boundary. In general, by increasing the

processing gain, the performance of the receiver improves significantly.
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V. CONCLUSIONS

In this thesis it has been demonstrated that any nonstationary random process

that is bandpass filtered can be represented in a mathematical form analogous to

that used to represent narrowband wide sense stationary random processes. The

quadrature components of the narrowband nonstationary process are themselves

nonstationary low pass random processes. In general, the autocorrelation function

of the two quadrature components are not identical and the cross-correlation func-

tion of the quadrature components is not necessarily an odd function. However,

when the input nonstationary random process is real, the correlation functions of

the quadrature components of the narrowband output process have properties sim-

ilar to those associated with narrowband wide sense stationary random processes

The general representation of the nonstationary narrowband random process

has been applied as a model for a specific class of electronic counter measure

signals. Specifically a bi-level pulsed noise jammer, in which the power of the

jammer periodically pulses between two levels is modeled using the previously

mentioned nonstationary narrowband random process representation and its effect

on a DS-BPSK receiver analyzed. This type of jammer was analyzed because it is

quite effective in the sense that it produces significant performance degradations

on the receiver. In practical cases, the jammer pulses between two levels at a rate

faster than that of the data bit rate. The quasi-stationary analysis method for

receiver performance is not valid. Therefore, a methodology has been developed

that allows rather precise evaluation of receiver performance in terms of signal,

noise, and jamming powers as well as spread spectrum processing gain.
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The effect of the pulsed noise jammer on the spread spectrum binary phase

shift keyed receiver was examined in detail and it is shown that a strong transmitted

signal is more effective at mitigating the effect of the jammer than increasing the

chip rate of the spreading code. The pulsed noise jamming can be shown to be

quite effective under various signal power and processing gain values, as rather

large bit error rates result when powerful jamming is present.

The thesis develops a methodology that can be used to evaluate the effect of

a nonstationary narrowband random process interference on communication chan-

nels. There are two benefits from this study. First, in terms of ECM performance

it miakes it possible to evaluate the effectiveness of such jam.mers, and second, in

terms of electronic counter counter measures (ECCM), the performance of jam re-

sistant receivers can be evaluated more accurately. Although the example chosen

in the study involves BPSK modulation spread by direct sequence methods, results

for other forms of nonstationary jammings on different types of spread spectrum

receivers can also be obtained from the above results with appropriate modification.
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APPENDIX A

REPRESENTATION OF NARROWBAND FILTERS

Let

hr.{t) ^^ HUf) = A{f)e^'^'^ {A.l)

be the specification of a low-pass filter (LPF), and let

hs W -^ Hs if) = H,(f- fo) + Hr^ (-(/ + fo)) (A.2)

where /<, is ZLSsumed to be much higher than the cutoff frequency of the LPF.

Thus, Hb (/) is the transfer function of a narrowband filter centered a,t f = -iifo-

By inverse Fourier Transformation, we have:

hB(t)= r Hs(f)e^''''df
J — oo

J — oo J — oo

If we express

since h^ {t) may be complex, then

he [t) = [hLr (t) + hLr (-01 cos 27rfJ + [h^i {-t) - h^i (t)\ sin27r/,t+

3 {[^Li (t) + hr^i (-01 cos 27r/«i + [/i^r ("0 " ^x-r (-01 sin 27r/„0 [AA)

Since h^ [t] will be assumed to be real, the imaginary part in Eq. A.4 must vanish,

so that

hLi[t) = —hL%{—t) => h^i is an odd function. (-^-5)
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and

hLr{t) = hLr{—t) =^ k^r IS ail cveii functioii. (-^-6)

Observe also that

/iL (-t) = h^r i-t) + jh^i i-t) = hi^r [t] - jh^i [t] = hi [t) (A.7)

Therefore

and finally

/ib(0 = 2hLr{t)cos27rfot - 2hLi{t)s'm27rfot

(A.8)

he (0 = 2Re {h^ (t)e^'''-^°*

}

(^.9)
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APPENDIX B

OUTPUT OF A NARROWBAND FILTER

The output y{t) of a narrowband filter due to an input x{t) is

y{t) = /13 (t — a.)x{a.)da
J — 00

= / [2hLr {t - a) cos 27r/<, [t - a) - ^hn [t - a) sin 27r/, [t - a)] x{a)da
J — 00

(B.l)

where the representation derived in App. A has been used to obtain Eq. B.l. By

expanding cos27r/o(t — a) and sin27r/o(t — a) it is possible to obtain

y{t) = 2X,(t)cos2TrfJ- 2X,{t)sm27rf

J

(J3.2)

where

/oo

[hLrit - a)cos2'jrf^a + hLi{t - a) sin 27?/^ a] X{a)da [B.Z]
00

and

/oo

[hLiit - a) cos27r/oa - h^rit - oc) sin27r/„a] X(a)da [BA)
00

so that a standard narrowband-type representation is possible for the output y{t).

If X{t) is a random process that is not necessarily stationary, Xc {t) and X, {t) are

themselves random processes with autocorrelation functions

R^{t,,t,)^E{X^{t,)X^{t,)}

/oo /-oo 1

= \P j^ Re{/il(^-a)/ia^2-/?)e^''^'"'"^^'}i2x(«,/?)^«^^+
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i r P Re[hl(t„a)h:^(t^ - (3)6^'''''^'-''^] RUa,fi)dadp {B.5)

and

A

'' J — oo •/ — oo

(B.6)

The cross correlation functions are given by

= \r r Im{^hr.{h-a)hj^{t^-P)e''''^''^''-^^'^R,{a,p]dad(3+

IF r ^"^{^Liti - ^)hL{t2 - 0)6-'''''^"^'^} RAa,p)dad(3 (B.I)

and

R.c(t^,t^) = E{X.(t,)X^(t^)}

= \r /~ Im[hl[U - (x)hr^(U - P)e-^^''^''^''-'^]R,(a,(5)dadp+

-\r r Im[hl(t,-a)h^{t,-0)e^'"'^^''^'^]R,(a,P)dadp
J — oo J — OO

{B.8)

Observe that in general Xc (0 ^'^^ ^» (0 normally labeled the quadrature compo-

nents of the narrowband process y(t) are not stationary in general. Nevertheless,

the derived autocorrelations and cross correlations can be used to obtain the au-

tocorrelation of the random process of y(i), namely
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Ry{t,,t^)=E{y(t,)y{t^)}

= El2[X,(t,)cos2irfJ, - X,{t,)sm27rfJ,]

• 2[X,(t2)cos27rfoU - X,(t2)sm2nfj2] \

= 4 Rc{ti,t2) cos2ir foil cos2Trfj2 +Rs{ti,t2)s'm27rfJis'm27rfj2 +

- Re »
{t 1, t^) cos 27rfoil sin27r/oi2

- R.c {ti , t2 ) sin 27rfJ, cos 27rfj^ (B.9)
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APPENDIX C

NARROWBAND PROCESS AUTOCORRELATION FUNCTION EXAMPLE

The autocorrelation functions determined in Appendix B are now used to

treat a specific case, namely when the input process X{t) to the narrowband filter

is generated by the system of Fig. 2.3. The resulting output y{t) is a narrowband

process bearing quadrature components whose autocorrelation function is given by

(see Eq. 2.17)

,
.00°° (C.l)

- / Re {hi [ti - a)hL (*2 - oc)} q, [a)da

Given that h^ (•) represents a low-pass system and q, [a) would normally vary much

more slowly than the frequency 2/o, it can be seen that integrals involving a 2/o

frequency are negligible resulting in further simplifications. Thus

Rc(ti,t^) =
\j^

Re{hl{t, - a)hr,{t^ - a)} q,{a)da (C.2)

and similarly

^2,(^1,^2) = \f Re{hl{t, - a)hr^(t^ - a)} q,(a)da = K{t,,t^) (C.3)

The crosscorrelations are given by

1 f°°
Rc.{ti,t2) = -

/ Im{hL{t, - a)hL{t2 - a)}q,{a)da = R,,{t,,t2). (CA)
^ J-00
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For the special case where /i^, (t) is real, i2c«(*i>*2) and i2,c(*i»^2) a-re both equal

to zero, so that from Eq. B.9 and Eqs. C.2 and C.3, Ry{ti,t2) becomes

Ry{iiii2) = 4i2c(<i,<2) [cos27r/oii cos2nfot2 +sin27r/oii sin27r/o<2l

(C.5)

= 4Rc {ti , ^2 ) cos 27r/o (^3 - ti )

and finally

Ry{ti,t2) =2cos27r/„(i2 -^i) / /il(«i -cc)hL(t2 -ct)q,{a)da (C.6)
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APPENDIX D

AUTOCORRELATION FUNCTION AND AVERAGE POWER AT THE OUT-

PUT OF A NARROWBAND FILTER DUE TO A BI-LEVEL PULSED JAMMER

When q{t) is a bi-level signal as shown in Fig. 2.5, it is clear that

q.{t] =A'-Ua'- c') J2 M^ - ^^. - PT.) - U{t - kT, - r,)l| (D.l)

where U{t) is the unit step function. Let

/oo

oo

This integral must be determined in order to evaluate Ry[ti,t2) as given by Eq.

C.6. Substituting q, [t) into I{t) and utilizing the one pole filter specification for

/i£, (i) having 3 dB cutoff B rps, we get

r r°°
"^

/ e^^''U(t,-a)U{t2-a) ^ U [ot - kT, - pT,)da
'-•'-~

fc=-oo

/oo oo

e^^''U(h-a)U(U-a) ^ U(a - kT, - T,)doc\

oo

(D.2)

fc= — oo

The remaining integrals in Eq. D.2 are:

fc=-cc "if'-o)'^^ — fc=-oo

y / e'^'^rfa=— V e'BMin(t.,t,) _g2B(fc + i)rJ

fc= — oo

if (A; + l)r, <Min(ii,i2)

= otherwise

p.3)
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and

oo ^Min(ti,t,)
1

M
J.

g2BMin(ti,t,) _g2B(fc+l)r,

*=-oo

if (A; + l)r, <Min(ii,i2)
{DA)

= otherwise

where [z] = largest integer less than or equal to z and

r = -e + —Mm(ti,t2)
'9

3 = 1 + —Min(ii,<2) (D.5)

The difference of the two integrals given by Eq. D.3 and D.4 produces

i £[g2BMin(tj,t,) _g2B(fc + p)T,
["I

A:= — oo fc= — oo

g2BMin(ti,t,) _g2B(fc+l)r,

(C.6)

since < p < 1, we have r > 5, so that

y^ g2BMin(ti,t,) _ y^ g2BMin(ti,t,) _ g2BMin(ti,t3) rr^l _ r^lj [D .1]

fc=-oo fc= — oo

Furthermore

(•I H
y^ g2B(fc+l)T, _ y^ g2B(fe+<,)T,

fc= — oo fc= — oo

g2BT, .g2Br,l»l _g2BpT, ,^2BT,[r\

(L».8)

Combining the above results yields (see Eq. C.6)

Ryih^h) = 2 cos 2%fot-I{t)

= 2cos27rfjl il_tie-^(*^ + *'^e2^^'"(*-*'^-

2

g2BMin(t,,t,) [rl_[5]

+
g2BT, g2BT,[»l _ g2B^r, g2BT,[rl

l_e-2Br, )

(D.9)
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Since X{t) represents a bi-level pulsed jammer, the power due to the jammer

at the output of the narrowband filter denoted by Pj can be obtained by letting

ti = t2 = t in the expression of Ry{ti,t2) and time averaging the result. Thus

R,{t,t) = A'B - B(A' - C=)([r] - [s\) - ^^f^Sr^
g2Br,g-2B(t-r,iH)

g2Bpr,g-2B(t-r,[rl)

(D.IQ)

which must now be time averaged in order to obtain Pj , the average jammer power.

With the aid of Diagram D.l, D.2, and D.3 we note that all the three functions

{[r] — [5]} ,
{t — r, [5]} and {t — T", [r]} are functions of i, and. their time average

values can be calculated as follows:

(M - [5]) = jim
(
j^[r, + (n - 1)(1 - p)r,i)

= lim -[p + (1- p)n\ = I-

p

n-* 00 n
(D.n)

n-00 nJ, Jq 2BTq '

g-2B(t-T,[r)) _ lim —-i—-[ r 'e-2^Vi + n/ '
e-^-^^^+^^'^rfi

~
25r,

Therefore, the final expression for Pj is

[D.IZ)

Pj =A^B- B{A^ - C')(l -p)-

= B[A'p + C'{l-p)]

1-e- 2Br„

1-e-2BT^ 1-e-2BT„

2Br„ 2BT„

[D.U]
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Figure D.3 Function (t-Tq[s])
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APPENDIX E

VARIANCE OF Yj

Since y{t) is Gaussian and zero mean random process, Yj is a Gaussian, zero

mean random variable due to the fact that linear operations only are applied to

y{t). [Ref 2] The variance of Yj, denoted by a^ caji therefore be expressed as

follows:

a^ = E< / z{t)z{v)cos2'Kfotcos27rfovdtdv>

R2 (i, v) cos 27r/o t cos 27r/o vdtdv
Jo Jo

{E.l)

where

/OO /"OO

/ hj{t- T)hr (v - ^)Ry (f
, 7)72, (r - -i)dTd-i {E.2)

- 00 •/ — 00

and i2c (r — 7) is defined as the autocorrelation function of the spreading code. For

DS-BPSK spreading modulation, Rc{d) is well known, namely

lo AS\>T,

where T~ ^ is the digital rate of the spreading code and is called the chip rate.

The power spectrum of the spreading code S^ (/) is the Fourier transform of R^ (<5),

namely [Ref. 2].

5,(/)=r,sinc^(/r,) [E.Z)

where

sinc(a:) =
SmTTX

KX
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Fl'ure E.l Autocorrelation Function and Power Spectral

Density of DS-BPSK Spreading Code
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A diagram of Rc{S) and Sc(f) is shown in Fig. E.l.

A new signal Pc {t) is defined as follows:

^ ,^, rcos27r/of ;0<t<T,
''^ ^ \0 ; otherwise

So that equation E.l can be rewritten as:

"? = r r R,{t,v)P,(t)P,{v)dtdv (EA)
J — CO J — QO

It is possible to express R^ (i, v) els the double inverse Fourier transform of Sz (/, i^),

that is

Rz{t,v)= f
I

Sz{f,u)e'^"^^'-'"'^dfdu {E.5)
J — oo J — oo

where
/oo /"OO

/ R4t,v)e-'^"^^'-'"'Utdv {E.6)
OO J — oo

Let Pc{f) be the Fourier Transform of Pc{t), so that Eq. E.2 becomes

a? =

smce

{E.7)

f f Sz(f,v) r r P,{t)e'-^''^'P,{v)e-^''"-''dtdvdfdu
J — oo J — oo J — oo J — oo

= r r Sz(f,u)p^(-f)p,(u)dfdu
J — oo J — oo

Using equation E.2 to evaluate equation E.6 results in

J — oo J — oo J — oo J — oo

hi (v - 7)
e^ ''"'"' dtdvdrd-i' [E.S)

/OO /"OO

/ R,{T,^)R^{T--f)dTdl
00 J — 00

f hj{t- T)e-^^''^'dt = Hi{f)e-'^"^' {E.9)
J — 00
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and Hi (/o) is the Fourier Transform of hi [t). Therefore

~ ;r .00 (^.10)

/ /
Ry(T,n)Rc(T - -i)e-'''''^'e''''""'dTd-idfdv

•/— 00 J — 00

The double integration involving the variables r and 7 in equation E.IO can be eval-

uated for the special case where y{i) is the nonstationary random process described

previously.

In order to evaluate <7^, the double integral D[t,^) defined as must first be

evaluated, where

D(T,-i)=
I I

Ry{T,i)R^{T,^)e-^'''^^e^'^-'''dTd-i {E.ll)

Recall from equation 2.20 that

i2„(r,7) = 2cos27r/o(r-'y)r;(r,7) (^.12)

where

/oo

hL {t - a)hr^ (7 - a)q, (a)da .
{E.13)

00

The double Fourier transform pair ^/(r, 7) and H{u,w) can hence be expressed as:

/oo /"OO

/ 77(r,7)e-^^'""e^'^'^'"cfr^7 (^.14)
• 00 J — 00

so that

/OO roo

I H{u,w)e- ''''''''
e'^'"'"' dudw {E,15)

- 00 J — CO
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Therefore,

oo J — oo L*' — oo J — oo

/oo roo roo /"oo

/ H(u,w) / 2i2,(r-7)cos27r/o(r-7)-
oo"' — 00 •'— CO"' — 00— oo>' — 00 •' — OO"' — 00

= r r i^Kt^) r [5,(/-u+/o)+5,(/-u-/o)]
J — 00 J — 00 •'—00

/oo roo

/ ir(u,w;) [5e(/ - u + /o) + 5,(/ - u - /o)] (5(/ - u + u; - i/)duciu;

• 00 J — 00

(E.16)

Carrying out the last integration with respect to w, results in

D{r,i)= r H{u,u + u-f)lS,{f-u + fo)+S,{f-u-fo]]du {E.17)
J — 00

Evaluation of H{u,w) which is defined in Equation E.14, can be accomplished

by performing a double Fourier transformation on r7(r, 7). The single Fourier trans-

form of 77 (r, 7) is

/oo /"OO roo

77(r,7)e-^=""'<i7-= / hi^{i - a) / /i^(r - aje'^^'^-'cfr^, (a)(fa (^.18)
• 00 J — 00 "Z — 00

Since

J — 00

transforming again the left hand side of equation E.18, results in

/OO /"OO /•oo

• 00 •' — 00 J — 00

I
/iz,(7-a)e^''""'^<i7c/a

J — 00

2nua

or
/oo

00
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However, being a periodic deterministic signal, q, (a) can be expressed in terms of

its exponential Fourier series expasion as follows

oo

n= — oo

SO that

/oo oo i»00

oo •/ — oon= — oo

Evaluation of the C„ coefficients for a particular case of interest is worked out in

Appendix F. Combining Equations E.19 and E.20 yields

oo

H{u,w)= ^ Cr,HL{u)HL(-w)6{nR, -u + w) {E.21)

n— — oo

From equation E-21, it is clear that

oo

H{u,u + u-f) = Hr.{u)HL(f-u-u) ^ Cr,6{nR,+u-f) {E.22)

n= — CO

Equation E.17 can hence be further simplified to yield:

D{t,i)= r J2 Cr.Hr.(u)H^(f-u-u)6[nR,+y-f)-
J — oo"^ n= — oo

[5c(/ + /o-u) + 5.(/-/o-u)]du
"

= Y, CJ(nR,+u-f) r HUu)H^{f-i^-uy
«/ — oon= — oo

[Scif + fo-u) + S,{f-fo- u)\du

Observing that in the integrand of equation E.23, u is the variable of integration,

we can define

/oo

Hr. (u)H^ (f-iy- u)\S^(f + /, - u) + 5, (/ - /o - u)\du (^.24)
• oo
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Substituting now D(r,7) in equation E.l, with the use of equations E.23 and E.24

yields:

a5=r r H:[f)H:(-u)P^(-f)P^(u) f^ C^6(nR, + v - f)H[(f,u)dvdf
J-oo J-oo n=-oo

{E.25)

Integrating Eq. E.25 over the variable i/, we have:

^5=/~ E C^H:{f)Hj{nR,-f)P^{-f)P^{f-nR,)Hi{fJ-nR,)df
J — oo

{E.2e)

From equation E.24, H[ (/, / — nRg) can be seen to become:

Hi{fJ-nR,)= f Hr.(u)Hr.{nR,-u)[S,{f+fo-u)+S,if-fo-u)]du [E.21)
J — OO

so that finally

'= E Cr, r Hr{f)Hj(nR,-f)P,(-f]P4f-nR,y
•' — CO

a'r =
n= — oo

/ Hr. {u)Hr. [nR, - u)[5,(/ + /o - u) + 5,(/ - /o - u)\dudf
J — oo

{E.28)
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APPENDIX F

THE EXPONENTIAL FOURIER SERIES

OF q,{t) AND AVERAGE POWER OF THE PULSED JAMMER.

Given q, (i) as defined in Chapter II, part C and re-illustrated as shown in

Figure F.l since q, (i) is a periodic signal, it is possible to expand g, [t) in terms of

an exponential Fourier series with coefficients C„ , where:

^""r:rj/o
^2gi2^nt/r,^^^

'I'^^dt (F.l)

Let t^ = t— ^^ in the first integral and let t2 = t — -—j^—^ in the second integral,

so that

1 r{^-p)Tj2

""
J-(l-

2,y2,rn(f,+ ^^^-4i^)/r,^^^
c e

q J-(i-p)Tj2

{F.2)

Using properties of even and odd functions it' is possible to simplify Eq. F.2 to

yield

*? L

1

2y42gi2jrnp/2 /

Jo

(l-p)

2^2 gj 1^ sm2mrtJT,

2n7r/r,

T

1

1

» 2n7ri2
,

cos ——

—

dt2

3nT(i+p) sin 2n7rf2 /^a
2C^ e^

5 -|^^

(i-p)y<
3

n7r/9

smuTT(i-p)

n7r(l — p)

From equation F.3, we observe that if n = 0, then

(F.Z)

Co =A^p + C^(l-p) (f.4)

73



i
^ -H*

,'*'
• E-.

C\2

•

D«
t^

-K>
- ^^"^im^

CO Q.

Cr

C4 N
o

1

*^

1

1

cr

a
o
—I

u
a

74



In the case where n 7^ 0, C„ can be reformulated as

C„ = e^""'
riTrp n7r(l — p)

,n7^0 (F.5)

However, expanding sinn7r(l — p) and taking into account that sinnTr = and

cosriTT = (—1)", the second term of equation F.5 becomes —p^C^ -, so that

we finally obtain

rntp
(F.6)

Summarizing the results above, we have

A^p + Cil-p) if n =

p2(A2 _c^)eyn.p sinn7rp
jf ^ _^ q

(F.7)

The average power of the pulsed noise jammer can be obtained directly from

the coefficients C„. Alternatively, recall the expression for Ry[tit2) from equation

C.l and let ^i = ^2 = * so that

/oo
hi^{t - a)hr^{t - ct)q,(a)da

00

or

/oo

hl(t - a)q,(a)da
00

(F.S)
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Assuming specifically that /ix,(<) = Be ^*U{t),Ry{t) can be obtained as follows,

J — oo

= 2B^ r e-^^' Y^ C„e^''""(*-"^/'''(fx where x = < - a
n= — oo

g{2B+y2n»r/r,)i

= 2B^ V C„e-'^"'*/*'

n= — oo

oo

(2B + J27rn/T,)

= 2B^ Yl C„

n= — oo

= 2B'

2B'

2B

gj2n»rt/T,

2B + J2n7r/T,

{K9)

+ E^-'^

Co

25

n=l
oo

^+2E^n^"
n=l

2B + j27rnT, i

^j2irnt/t^

2B - j2mr/T, ^ 25 + j2n7r/T,
]

Since the C„ coefficients have been shown to be of the form

C^=e''-'"'MA,C,p) {F.IO)

Equation F.9 becomes

Ry{t) = 2B' ^ + 2^ii!e|/„(AC,/))

oo

+ 2^/„(A,C,p)i2c= 25^

= 25'

Co_

25
n=l

25+y2n7r/r,
^

gj(njrp+2njrt/T,)

cos
( 2nnt + riTTp — tan"

n=l v/(25)2+(2n7r/r,)2

(i^.lO)

It is obvious that Ry [t] is periodic in t with period T, , since the average of a cosine

signal is zero, we therefore have

CoRy[t)=2B[^

or

Pj=Ry(t)=B[A'p + C^{l-p)] (F.ll)

76



APPENDIX G

VARIANCE a] FOR FAST JAMMER

In the case of fast jamining, the vaxiance (t^ of the jammer as demonstrated

in Eq. 3.18 simplifies to the following expression

5 =Co r i^,(/)ri^c(/)r r \HUuw s'M - u)dudf (G.i)
J — CO J — OfO

ol =

where

S',{x) = 5,(x + /o) + 5,(x-/o)

In order to simplify the notation, denote the Fourier Transform and the inverse

Fourier Transform operation by F{{-)} and -^~^{(-)} respectively and let * denote

the convolution operation. Define

v{t)^F-'{V{f)} (G.2)

where

V{f)= r \H^{u)\'S'M-u)du (G.3)
J — oo

so that a^j can be reformulated as follows

a] =Co r \Hr{f)nPM)mf)df
J — oo

Co r \H,{f)\'\P.if)\' r v(t)e-^'^^Utdf
J — oo J — oo

= Co r v{t) r \H:(f)\'\PM)\'e-^'^^Utdf
J — oo J — oo

= Co r v{t)F-' {\HrifW\PAfW} dt

J — oo
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Recall from Chap. Ill, Eq. 3.17 that:

i'c(/) = G(/-/o)+G(/ + /o)

G(f) = ^sinc (/rOe-^^"^^'

where for reasonable values of /o and Tf,

\Pc{fW = Po{f)Pc(-f) « \G(f - fo)? + \G(f + /o)r (G.5)

or equivalently

\Pc(f)V = (y)' sinc^(/-/om+ ^^ysinc^(/ + /o)r, (G.6)

The inverse Fourier Transform of this function can be easily obtained from tables

(see Ref. 9), namely

F-' {mf)n = jA (^) (e'""-+e-'""') (G.7)

where

^ \ ] I- hr if \t\<T,

if lil > Tf,

b
\Tb

The same considerations apply for \Hi (/)|^ since Hj (/) is the bandpass filter trans-

fer function specified in terms of shifted lowpass equivalents. Since Hj (/) is signif-

icant for / = ±/o over a restricted frequency band,

\HiifW « \HLb{f - foW + \HLb[-f - fo)? (G.8)

where the lowpass equivalent HLb{f) is given by

so that

|^"(^)|^ = ^ i^^hr) '^-'"^
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Consequently,

so that evaluation of F ^ {|fZ'/(/)|^|Pc(/)|^} can be accomplished by using the

convolution theorem [Ref. 9], that is

F-^{\EAJ)\'\F^{!)\'}=F-^{\EAJ)\-).F-^{\P^[j)\-}

=
^-J-£

e-^l-'lA(^^^cos27r/o(i-r)rfr

(G.12)

where

g{t,T) = cos27r/orcos27r/o(i — r)

= - [cos 27r/o i + cos 27r/o i cos Att/q t + sin 27r/o t sin 47r/o r]

According to the value of |i — r|, Eq. G.12 can be further expressed as follows:

. F-^{|^,(/)M^o(/)r} = /i+/2 (G.U)

where:

We can now proceed to the specification of v{t) which is obtained from

v{t) = F-'U^ \HUu)\' • S'M - u)du^

= F-'{\H,{f)\'}-F-'{S,{f)} {GA7)
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since

F-'llHUfW) = Be-^^'Uos2nfJ (G.18)

Substituting Eq. G.4 with Eq. G.14 and G.17 yields

a^j =CoB f e-^l*lA(|-jcos27r/oi(/i +/2)cii

The limit of integration can be reduced to the interval [—TcTc] since the function

A7r/ot(/i + l2)dt The limit of integration can be reduced to the interval [—TcT^]

since the function A ( —
j

is zero except for \t\ < Tc, hence

a? =BCo I
°e-^l*lA(^jcos27r/oi(7i + l2)dt (G.19)

According to the value of t, two cases can be considered as follows:

Case (1) Tb > i > 0,

In this CcLse, we have

7.+/. =
*^'

(G.20)

Since Eq. G.13 shows that y(t,r) is a function of cos47r/or and sin47r/or, it can be

seen that the integration of functions of the form e"*'' cos47r/or and e'"'' sin47r/or,

cLS well cLS forms te'"'' cos47r/o7- and te'^' sin47r/oi will yield terms involving the

factors (m^ + 167r^/Q ) and [m? + IGtt^/q )^ in the denominator of the result while

the numerators remain bounded. The numerators are proportional to m, which in

this case equals b or B. Since in a practical system,

f» b and /o >> B.
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the contribution of the corresponding terms are therefore not significant, so that,

Eq G.20 can be simplified as follows:

/i + /2 «
bT,

^cos27rfot\e-'" f e'^ U + ^ j
cJr+

.-bt

[-'"{'-Yy^^'C '-"{'-%)'{ (G.21)

Eq. G.21 can be evaluated by using standard mathematics tables [Ref. 10] and

therefore

wv
/i + /2 « COS 27r/o t

8

Case (2) > t > -Tt,

In this case we have

I t

h bTb b^T„ 2b^T,
(G.22)

/1+/2
bT,

(G.23)

By considerations similar to those presented in Case (l), Eq. G.23 can be approx-

imated by

/i+/2«^-^cos27r/oi[e-"|^*^ e'^ (^1+ ^^ dr + e'^ j\-'^ [l+ ^^ dr

(G.24)

so that

bTu
h + h ^ —- cos 2'Kfot

1 t

T +
6 6r. h^T. 262T

bt p-bT^

(^.25)
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We can now proceed to the evaluation of <t^ expressed by Eq. G.19 according

to the range of t. Since Tc < T^,

+

BCpbT,

8

BCpbT,

8

,Bt

.-Bt

1+ — ) cos^ 27r/o«

1
j
cos^27r/ot

1 t

6^67;

1 t

622; "^2623;

+

-bt I ^6f+ e" ]dt

bT. b^Tf. 262 Tfc

e-'^+e"

(G.26)

and using cos2 2'Kfot = ^{cosAirfot + 1) the reasoning that gave rise to the simpli-

fications in evaluating Eq. G.20 can be used here to neglect the terms involving

(m2 + 167r2/2) Qj. j^2 _,_ j^g^2y2j2 -^^ ^^^ denominator. Thus Eq. G.26 can be

further simplified as follows:

BCobT,

+

16 -T, •'-E
1 J_
6

'^
bT,

,bt ,-bT^
' +^7rT;r(e-"+e''*)

62 Tb 262 Tb
dt

c-^Mi-
t e" e

6r. 62 r. 262 r.
+ - (c-^+e'M <i£

(G.27)

and using standard mathematics tables (Ref. 10) results in

BoCobT,

8 52 r.
1-e-BT, +

6r. B^T.
1-e-BT,

-w['+'
- BT,

b^T,

e-BT,^bT,

+
^-BT,^-bT,

2(5- 6)2 Te 2(B + 6)2r,

+

+

B^ +62

£2-62 (B2-62)2r,

^-(B-b)Tc ,-{B+b)Tc

+

+

])

.-bTt

b^T,

2B 2(B2 +62)

B-^-b^ (B-^-b-^YT,

(G.28)

(6-B)2r, (5 + 6)2r,

which by regrouping terms, obtains the final form

<^j =
CoT,

1 +
B^T.Z BTr

(1-e— 1 + e
-BT,

+ (2e-''^'' -1)

BT,

B^ BjB"" +6^)

bT„{B^ - 62) bT.ZiB'^ - 62)^
(^.29)

+
5e-^^'e-''^<=

+
^g-Br,g6T.

26r,r,(5 + 6)2 2bT,Z{B-b) ]}

dt
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APPENDIX H

STATISTICS OF Yj AND Ntn

We first recall the definitions of Nth 3-nd Yj from Chapter FV as follows

Yj = y{t)c(t) * hi [t) COS 27rfjdt [H.l)
Jo

Nth= Nth(t)c{t)* hi {t)cos27rfotdt (H.2)
Jo

Observe that Yj is a zero mean random variable since the jammer and the spreading

code c{t) are assumed uncorrelated and furthermore, c{t) hcis zero mean. The

variance cr^ of Yj has been developed in Chap. 3 and can be expressed as (see Eq.

3.19)

a5 =
8

-i-(2e-''^- -1)

1 + e
-BT„

B^ B(B^+h^)

+
Be-^'^-e-'"'^

bT.iB'^ - 62) bT^ZiB'' - 62)2
(ir.3)

+
2bT,T,[B + hY 2hT,T,{B-hY

Replacing now B and 6 in Eq. H.3 by 2'kRc and 27ri2b respectively thereby setting

the 3 dB cutoff of the filters appropriately, with

defined els the processing gain, a final expression for <jy is obtained as follows

ar,
^y = o-Lb

J(G,) (HA)

where

^ ^ ^
(l-e-^-)(l-7rG,) _ 1 + e-^- ^ G^(2e-^- - 1)

2t^^G.

G^ + 1

c

-Srr

2'KGr 27r Gl - 1

+
27r(G2 - 1)2 47r

+
L(G, +1)2 (G^-iy

{H.5)
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The determination of the variance <t^^ of the rajidom variable Nth can be ac-

complished in a manner very similar to that used in the determination of a^ . Ob-

serving however that replacing in the jammer model the deterministic priodic signal

q{t) with a constant unit amplitude function, namely q{t) = 1, setting R^ (ti,t2)

equal to ^6{t2,ti) (see Eqs. 2.16 and 2.17) results in a simple AWGN noise model

having PSD level No/2. Thus all evaluations involving the jammer can now be used

with the stated modificiations in order to characterize the noise contributions to

the performance of the system. Therefore, (see Eq. E.13)

V{r,l) = h^ir - ot)hL (7 - oc)da {H.5)
J — 00

and with

-Bt
h^it) = Be-^W(t)

then
/M in( T,7

)

00

= :?e-B|r-.|

{H.6)

2

Thus, the auto correlation function Rn{t,T) of the noise Nth{t) is

Rn{t,T) = ^Be-^^^--^^ cos2nfo{T - 1) (H.I)

From the methodology of Chap. 3, Eq. E.14 becomes

H{u,w)=f
I

iV„-e-'^l"-^le-^2''^"e^'"^'"<ird7 (F.8)
J — CO J — 00

Evaluation of Eq. H.8 can be shown to yield
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Therefore, the variance <t^\ of Nth (see Eq. E.25)

<=£ [ ^H,(f)H,(-u)P,(-f]PA-u)

/oo
F(u,u + u - f)[S,(f -u + f^)+S,{f-u + fo)]dudfdu

• oo

(^.10)

where

ifKu + .-/) = iv,- {^^^:^^^} %- (u + .- /).

Letting / = ^' — /oOr/ = i/ + /ocis appropriate in the two integrals, obtain

<= r N^\Hi{f+fo)Pc{f+foWz{f)df+ r K\Hr{f-fo)p.{f-foWz(f)df
«/ — oo J — oo

(H.12)

c

where
/oo D OR

Z(/) can be evaluated further as follows

= b\ e~^* cos27rftdt- e~ ^'— cos27rftdt

The two integrals in Eq. H.14 can be evaluated separately and with BT^ = 27r, we

have

Z{f) = ^Z'{f)

where

2'(/) =
li + {fZy\'

e cos 27r/r, - 1^ ({fT^Y -l] - 2fZ sin27r/r,
j

{H.15)
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From Figure H.l, it can be observed that if i?{, << R^ then Z'{f) « 1 for / within

the interval [—RbiRb]- In fact, Z{f) is significant only for |/| << Rf,. Hence, Eq.

H.12 can be simplified zis follows:

or,\«^[y"^j iif/(/+/o)Po(/+/o)rrf/+y"^j i^/(/-/o)Pc(/-/o)r df

^ J-R,
df

(Jf.l6)

From Eq. G.6, we have

\Pc(f - fo)? « \G[f -f- 2/,)|^ + |G(/)|2

where
'

G(/)=(^^ysincV7;. {HA7)

The term \G{f — 2/o)| hcis significant components outside the integration region

[-Rk,Rb]- Furthermore from Eq. G.8

and again, the term {H^^ (/ — 2fo)\ can be dropped from further consideration due

to rccisons similar to those discussed above in the context of \G{f — 2/o)|. Thus
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Figure H.l Function Z'(f)
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and since \Hl^ (/)|^ has 3 dB cutoff at / = ±Rb, the integral itself can be approx-

imated by

1 f^"——
/ sinc^ (fTb)df « A; = 0.903

2Kb J-R,

Finally

N„T,'oJ-b

27r
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