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ABSTRACT

We consider the problem of detection of known signals in noise using quantized,

discrete sensor observations. Optimal design of the quantizers at the sensor sites as well

as the global fusion of the quantized observations is presented. Also the equivalence

between a team of two sensors and their fusion centre and another team of a primary

decision maker and a second opinion is shown. Since the fusion of information is a

main pillar of the thesis, an early chapter is devoted to the optimum fusion policy.

Extension of the results to the case of vector sensor observations is also considered.

We next consider the problem of minimum mean square estimation of a far away

sensor observation from its quantized version and another sensor's observation. It is

shown that the optimum quantizer for the sensor signal -is the classical Lloyd-Max

quantizer.

Examples are given to illustrate the trade off between performance and

communications between the sensors. Our results match that of centralized processing

at one extreme and that of decentralized processing at the other. The way is graded

between extreme ends. Finally a faster algorithm is given to solve the system of

nonlinear equations for the optimum system parameters.
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I. INTRODUCTION

This thesis deals with detection and estimation using spatially separated sensors.

A typical practical situation is a surveillance system [1] in which a large number of

sensors monitor some region of space, earth or sea and report their findings to a global

processor. The sensors themselves may use thermal, acoustic or infrared effects to form

their observations. The global processor performs some processing on the data to come

with a decision or for taking actions. Because of many considerations such as

bandwidth communication limitations, time delay or because the amount of

information is too massive to be processed by a single processor, the processing is

carried out on many levels. As an example consider the case of distributed detection.

Detection is performed at the sensor level and at the fusion center.

Due to the loss of information in the local processing, the overall performance

degrades. However a great communication bandwidth reduction results. If the

communication channels can support more information flow, then it is wise to perform

"softer" processing at the local level, to send more information to the fusion center, and

to use the information available there effectively.

The purpose of this chapter is to define the Distributed Signal Processing (DSP)

problem in general and to show some reasons and situations in which it replaces

Centralized Signal Processing (CSP) techniques. We then will review the status of the

research on Decentralized Detection (DD) problem, one of the basic problems of DSP.

Finally the contributions and organization of this thesis are described.

A. OVERVIEW

Classical (Centralized) Signal Processing (CSP) assumes complete availability of

all information (signals) at one central processor for processing (decision making,

computing, detection, estimation, etc.). While this situation is realistic in some cases,

many real world systems are too large for the classical processing to be practically

applied. Power systems, detection networks, large manufacturing systems and military

organizations are among those systems in which total centralized signal processing is

hard to apply. Some of the reasons and considerations for the limations of CSP are

[2,3]:
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1. In large systems, each processor has partial information of some credibility.

While total information is distributed in the whole system, total centeralization

of the information at one processor is impractical, inconvenient or expensive

due to limitations in the system's communication channels, memory or

computation and information capabilities.

2. In some cases, processing speed is a bottleneck. Increasing local processing of

the data at each processor and sending processed data to the next level of

processors will help relieve the problem.

3. When reliability of the system is of major concern, distributed processing may
better tolerate various kinds of equipment failures. Less complex centralized

processing is more easily shifted to a new location.

4. In cases when security is a major problem, increasing local processing will

decrease the information handled between the processors, so limit any other

system's access to the process.

5. As the cost of computation has decreased dramatically relative to the cost of

communication, it is advantageous to trade off increased computation for

reduced communication. So in Distributed Sensor Networks (DSN) involving

geographically distributed sensors that collect data, it may be more economical

to locally process the data and send condensed summaries to other processors.

Distributed Signal Processing (DSP), in contrast to CSP, has several processors

that cooperate together to best achieve a global task according to some criterion. A

basic problem in DSP, which has attracted much attention recently, is the

Decentralized Detection (DD) problem (hypothesis testing). The DD problem will be

a major concern in this thesis. A summary of its status is given in the following section.

B. MOTIVATION

There has been an increased interest in the DD problem since Tenney and

Sandell introduced it in 1981 [5]. They extended the classical Bayesian formulation of

the detection problem to distributed environments. Because their work was the

pioneering one in DD and because we will refer to it often in this thesis , let us

consider it now in some detail together with the Centralized Detection (CD) problem.

Also, because detection is dealt with throughout a large portion of this thesis, we will

make some remarks about the phenomena to be detected and about detection criterion.

The Phenomena

Consider observing a phenomena H of M possible states in order to determine

which of them is true. For M = 2, the state Hq is called the null hypothesis and H^

the alternative hypothesis. Their probabilities of occurrence

P(Ho)=Pq, P(H^)=P^ (1.1)

16



are assumed to be known.

The Sensor Observations

The phenomena H is observed by N sensors SpS2,—,S>^ . The sensor

observations are 7^72,....,
yJ^4

• The sensor observations have known conditional

distributions

p(yi.y2'-'yN/"o)' p(yi.y2'-'yN/"i )• ^^-^^

Detection Criterion

The function of the detection process is to make a decision, U^, about which

state of the phenomena is true. The optimality criterion is a function

J:U^xH-*^, (1.3)

that assigns to the event of deciding u- when H: is true a real number C., i,j = 0,l,

called the detection cost, so

J{U^ =Ui,H =Hj)= Cj. (1.4)

The objective of the decision rule will be to minimize the expected decision cost

minE{J(u,H)}. (1.5)

An important ratio in our analysis is the constant given by

C= -foi£m£noL.
(1.6)

Van Trees [6] showed that the average decision cost is given by,

R =Coo Pq +C,, P, +Po (Cq^ -C^^ ) ?,-?! (Cqi -C^^ )P, (1.7)

17



where P^ and P^ are the probability of false alarm^ and probability of detection^

respectively. At this point we will make the assumptions that

Cqi > Cji ,
(L8)

and

Cio > Cqo, (1.9)

These assumptions implies that it is more costly to err than to make a correct decision.

Equation (1.7) can then be written in the form:

R= r£ofLVt£oiIi ^.
Pq (^10 -Coo ) p p"[ p ^r .c,, ). (1.10)

Ignoring positive constants that will not affect our analysis, the average decision cost

R is given by

R = 1 + C Pj.-Pj . (1.11)

1. The Centralized Detection (CD) Problem

The problem of centralized binarv' hypothesis testing can be posed in its most

general form as follows. For the structure of Figure 1.1 it is assumed that all sensor

observations can be sent to one (central) location for processing. The function of the

processor is to map the vector Y= [y^ y^ ... y^j f into the decision space U&subo(0,l)

UJI-^(0,1) (1.12)

as follows;

0, Hg is declared to have been detected^ r 0, Hg
U = ^

^
(1-13)

I 1, H, is declared to have been detected.

^Probability of deciding U^ =0 while Hj is true

^Probability of deciding U^ = 1 while H^ is true

18
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Figure 1.1 Centralized Detection.
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Solution of the CD Problem

The solution to the CD problem is [6]

a) deterministic, so that the decision rule is a function of the observations

Y : Yj xY^ x...xYj^ - (0,1), (1.14)

b) a likelihood ratio test.

UJypy^, y^){;:
i^A(yj,y2..,yj^) ^ t

ifA(yj,y2,...,y^j) < t

(1.15)

where

(1.16)

c) and the threshold t is given by

t = C (1.17)

2. The Decentralized Detection (DD) Problem with Fusion

Consider the structure of Figure 1.2 with H and Y being as before; the

decisions L'^ Xj '••• '^^^
^'n

^^^ sent to a fusion center. The activity of the fusion

center is to make the global decision U^ according to some preset fusion rule.

U^:U^xU2..xU^-(0,l). (1.18)

In the DD problem with fusion it is required to design local decision rules UpU2,--

and Uj^, and a global fusion rule (1.18) so as to minimize the expected cost E(J(Uq ,H))

incurred by deciding U^ = i when H. is true.

Choosing an AND fusion rule apriori, Teimey and Sandell solved tliis problem

for N=2. They set the decision rule as U^ = U^ Vj and optimized the local decision

rules.

20
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Solution of DD Problem >vith Fusion

The solution to the DD problem with fusion is

1. deterministic

Yi:Yj-(0,l) (1.19)

and

Y2:Y2-*(0,1) (1.20)

2. a likelihood ratio test for each detector

( 0, if A. (V;x> t-

1.1, ifA.(y..<ti

where

flv. ,'H, )

A.(y.)= '^' \ . (1.22)

3. with coupled thresholds t. and t^ given by

Pr(F, /v, )

t = C ' '- '^
'

(1.23)
^ Pr(D2 /Vi )

and

Pr(F^ >% )

Pr(Di /y^ )

t2 = C ^^^; (1.24)

where Pr(F. /y. ) and Pr(Dj /y. ) are respectively the conditional probability of

false alarm and the conditional probabiUty of detection of the i^ detector given

the j^ detector's observation.

22



Equations (1.23 ) and (1.24 ) are two coupled functional equations in t^ and tj . For

general distributions, a functional expression for each of them in terms of its own

observation and the other detector's decision is impossible. We shall consider the

complexity of these decision rules later. A special case of the DD problem is the case

of conditionally independent sensor observations, i.e.

f(yj/y2.H)=fl:yi/H) (1.25)

and

fly2/yi.H) = fi:y2/H). (1.26)

In this case, the conditional probabilities in (1.23 ) and (1.24) reduce to

t, = C ^ (1.27)
1 p

and

t, = C-^ (1.28)^2

Equations (1.27) and (1.28) are two coupled algebraic equations in the form of

tj =gi(t2) and t2 =g2(ti) (1.29)

since P^.^ and P^j depend on t. . This coupling represents cooperation between the two

sensors. The threshold equations are necessary conditions for optimality. There may

be several local minima; each must be checked to assure the global minima. The

threshold equations are strongly coupled for general cost assumptions.

Tenney and Sandell came to the following conclusions:

1. Increasing the signal-to-noise ratio improves the performance of the system.

However a centralized system makes more efficient use of the increased

information.

23



2. As the imbalance between the two detectors increases the performance

improves. If the signal-to-noise ratio of one of the detectors goes to zero then

the system decision is that of the other detector. This is equivalent to the

performance of a CD system of the same signal-to-noise ratio.

The case of conditionally independent observations has been considered by

many authors. Sarma and Rao [7] extended Tenney and Sandell's results to the case of

three sensors. They assumed a majority logic fusion rule and evaluated the threshold

settings for some specific cases. Chair and Varshney [8] considered the problem of

optimal fusion of N local decisions from prespecified local decision rules. Their

optimum fusion structure is a weighted sum of local decisions according to their

reliabilities. Reibman and Nolte [9] optimize both local decision rules and the fusion

rule under the assumption of identical local decision rules. The global decision is then k

out of N. They optimize the local decision rule for each k ,k= 1,2,...,N, then pick the

value of k corresponding to the minimum decision cost.

A sub-class of the DD problem with fusion, that will be referrd to as the

"Second Opinion" problem, is the fusion of one's observation with another's decisions.

An example of this is the second opinion in a medical examination, or even asking for

legal advise. Ekchian [10] and Ekchian and Tenney [11] consider some specific

topologies of this problem. Each decision maker has to make his decision based on his

own observation and a predecessor's decisions. All the decision rules are likelihood

ratio tests using the actual data. The thresholds are determined by incoming

communication messages. The number of thresholds at each decision maker grows

exponentially with the number of message inputs. Their results suggest putting the

noisy sensor "up stream" in the detection network.

Papastavrou and Athans [12] also consider the second opinion problem.They

examine the structure of a primarv' decision maker, PDM, and a secondary decision

maker, SDM ( a consultant ). The PDM makes his decision based on his own

observation if it is of good quality. If his observation is noisy, the PDM asks, at a

communication cost, the opinion of the SDM. Being activated by the request of the

PDM, the SDM sends his decision to the PDM or ignores the request if his

observation is noisy. In either case the PDM has to make a fmal decision. Again the

thresholds are coupled. The threshold of the PDM is determined by the message of the

SDM.

This thesis is motivated mainly by three of the above works namely;

1. Bayesian formulation of the DD problem by Tenney and Sandell [5].
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2. Extension of the DD problem to the Distributed Detection Networks by

Ekchian. [10]

3. Extention of the DD problem to the case of correlated sensor observations by

^ Lauer and Sandell [4].

C. THE COMPLEXITY OF THE DD PROBLEM

We saw that the DD problem can be solved optimally for conditionally

independent sensor observations. If this condition does not hold local decisions are not

likelihood ratio tests with constant thresholds. Tenney and Sandell show that for

conditionally dependent observations, local decision rules are likelihood ratio tests but

with data dependent thresholds (see e.g. (1.23 ) and (1.24 )). These two equations are

coupled. This means that the observation of one sensor is necessary for the other

sensor's decision, which contradicts the principle of decentralization. In terms of the

terminology of the Theory of Combinatorial Complexity [13], Tsitisiklis and Athans

[14] show that

1. The DD problem with independent observations is a polynomial time problem.

2. The DD problem with dependent sensor observations in its simplest form is a

nondeterministic polynomial NP-complete. This means that exhaustive

enumeration is necessary to find the optimum local decision rules. Optimality

may be an illusive goal. So, suboptimal solutions must be sought.

A suboptimal solution to the problem for the case ofAND fusion was considered

by Lauer and Sandell [4]. They considered the case of known signals in correlated

noise. They took as a suboptimal solution local decision rules which are likelihood

tests but having constant, not data dependent, thresholds satisfying the necessary

condition of optimality. These thresholds are given by the implicit equations:

Pr(F. /T, )A (T, )= C ' ' (1.30)
^ ^ Pr(D2 /T^ )

and

Pr(F, /T^ )
A^ (T^ )= C——^^—2_L

. (1.31)
^ ^' Pr(Di/T2) ^ ^
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D. CONTRIBUTIONS OF THIS THESIS

We have reviewed the complexity of the DD problem and its current status. The

research reported here has significantly advanced this status in several important ways.

Specifically the contributions of this thesis have been to :

1. Answer the question of the optimum fusion rule at the fusion center for the

case of two sensors.

2o Specify the exact relation between the performance of the optimum fusion rule

and the correlation coefficient between sensor observations.

3. Solve the the second opinion decision problem.

4. Solve the multi-level DD problem with fusion; i.e. detection with quantized

sensor data for the known signal in noise case.

5. Introduce the minimum risk quantizer.

6. Grade the road between DD detection and CD detection.

7. Optimally design quantizers for minimum mean square estimation.

8. Present an efficient procedure to calculate parameters of a large variety of

quantizers.

E. ORGANIZATION OF THE THESIS

The thesis is organized as follows. In Chapter II we consider the problem of

fusion in DD. Optimum detection with quantized sensor data is considered in Chapter

III, where the Quantized Detection algorithm, QD, is introduced. Numerical e.xamples

to illustrate the algorithm are given in Chapter IV. Generalization to the case of vector

observations is presented in Chapter V. Optimum regeneration of sensor observations

from their quantized versions and another sensor observation is considered in Chapter

VI. A summar}' of the thesis, conclusions and suggestions for future research are given

in Chapter VII. Proofs to some equations and FORTRAN programs to calculate

parameters of the minimum risk and the minimum distortion quantizers are given in

the appendices.
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II. OPTIMUM FUSION OF LOCAL DECISIONS

In this chapter the important question of the optimum fusion rule will be

answered. The relationship of the optimum fusion policy to the ratio of costs and the

correlation coefficient between observations is determined.

A. INTRODUCTION

Distributed Detection with fusion is a two level optimization problem. The

problem can be formulated in the following three ways:

1. Local Decision Optimization

The fu-st way is to select the fusion rule apriori and optimize the local decision

rules accordingly. Setting the activity of the fusion center as AND fusion, Tenney and

Sandell [5] derived optimum local decision rules for a pair of spatially separated

detectors with conditionally independent observations. They prove that local decision

rules are simple likelihood ratio tests with constant thresholds. The thresholds are the

solution of a pair of coupled algebraic equations that correspond to the global

minimum of the detection cost function. They also show that for the case of correlated

observations local decision rules are likelihood ratio tests but with data dependent

thresholds. Functional solution of the threshold equations in the later case violates the

principle of decentralization. Realizing the difficulty of the problem in the case of

correlated observations, Lauer and Sandell [4] designed suboptimal local decisions for

AND fusion. Their local decision rules are likelihood ratio tests with constant

thresholds satisfying the necessary conditions of optimality. Kovatana [15] considered

AND fusion for two detectors. Fefjar [16] compared AND to OR fusion for two

detectors. He claimed that OR is better than AND. Stearns [17] contradicts Fefjar's

results. He showed by an example that OR combining is better for higher cost of

missing the target while AND combining is better for higher cost of false alarms.

2. Fusion Rule Optimization

In the second formulation of the problem, local decision rules are set apriori.

Optimization is carried out with respect to the fusion rules. An example of this

situation could be factory built sensors that cannot be adjusted. Assuming local

threshold settings Chair and Varshney [8] prove that for the case of conditionally

independent sensor observations, the optimum fusion rule is a likelihood ratio test that

sums local decisions weighted according to their reliability.
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3. Global optimization of the Local decisions and the Fusion Rule

The third formulation involves optimization at botli levels. Here local

decisions are optimized for every possible fusion rule. The optimum fusion rule is the

one that minimizes cost.

The main issue of this chapter is the global optimization of the DD system for

general correlated observations. First we will state the main results for the case of N
conditionally independent and identically distributed sensor observations. Then, the

problem of fusing two local decisions of sensors with correlated observations is

considered.

B. GLOBAL OPTIMIZATION OF DISTRIBUTED DETECTION

In CD all sensor observations are available at one central processor for detection.

The decision rule in CD is a likelihood ratio test in the observations
yi,y2,---,yjs4-

It

declares H^ is true if the likelihood ratio

A
(yi,y2,...,y^.

) ^ C, (2.1)

otherwise it will declare Hq to be true.

In DD only local decisions are sent to the central processor ( fusion center). The

objective of the fusion center is to mix ( fuse ) the local decisions into a single global

decision with minimum decision cost. So given the local decisions the observation

space of the fusion center consists of 2"^ discrete points. The activity of the fusion

center is to divide this space into two decision regions Zq and Zj. The decision rule of

the fusion center is a likelihood ratio test [S.] The fusion center declares H^ is true if

A {u^,u,,...,u^ ) > C. (2.2)

otherwise it will declare that Hg is true. In the special case of conditionally

independent and identically distributed observations, the fusion rule is a k out of N
rule. Reibman and Nolte [9] considered this problem. Assuming the same decision rule

for every detector they optimize local decisions for every k, k= 1,2,...,N then pick the k

with the minimum decision cost.

If sensor observations are not conditionally independent, there is no guarantee

that local decisions are simple likelihood ratio tests. The problem turns out to be NP-
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complete which needs exhaustive enumerations to find the optimum decision rules [14.]

Moreover if sensor observations are not identically distributed, there are as many as

2 possible fusion rules for the N sensor decisions. Any algorithm that goes through

the entire fusion list optimizing local decisions will be impractical for N ^ 6.

Our approach to avoid this exhaustive enumeration is the following:

1. We assume that local decisions are likelihood ratio tests with constant

thresholds. Again we emphasize that this assumption is valid only for

conditionally independent observations, there is no guarantee that it is correct

for correlated observations [5]. So the constant threshold likelihood ratio test is

optimum for conditionally independent observations and perhaps suboptimum

for correlated observations. However the solution tends to the optimum
solution as the correlation coefficient tends to zero [4].

2. Those fusion rules which agree with the CD solution will be tested. The rest of

the fusion rules will be disregarded. The meaning of this will be made clear in

the following example.

Let us consider the case of two sensors {N = 2 ) in detail. To be explicit,

consider detection of known signals in gaussian noise. The sensor observations are

given by:

Hq: y;
= a, i=l,2 . (2.3)

and

Hj : y., = a. + a, i= 1,2. (2.4)

The a.'s are positive constants and N = [n^ n2]' is vector of zero mean with

covariance

=[;;] (2.5)

where p is given by

P = E { n^ n^ ). (2.6)

A computer that spends 1 n second in every optimization process, will spend

40000 years to determine the optimum fusion rule, for N = 6.
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The threshold equation of the CD problem is given by [6],

(aj -p a^
)yi

+(a2 - P a^ )y2 ={a^^ +a^^ -2p a^ ^i^yi + d-p^ )log(C) (2.7)

which is a straight line in the y, y, plane. Figure 2.1 shows decision rules based only

on Dp only on D2, both decision rules together, and the decision rule of CD.

The global optimization requires optimizing local decision rules for every fusion

rule then picking the fusion rule with minimum average cost. The observation space of

the fusion center consists of four discrete points (0,0), (0,1), (1,0), (1,1). Any fusion

rule divides this space into two decision regions Z^ and Zq. There are 2"* = 16 methods

to subdivide four points into two groups. Table 1 contains a list of those fusion rules.

Some special cases for the detection problem are as follows.

1. If CjQ -» CO, i.e. the cost of missing the target is extremely high, the CD
solution assigns all the observation space to Zq. The fusion center can perform

the same. This is fusion rule one.

2. Similarly if Cq^ - go, the fusion center will always decide H^ this is fusion rule

two.

3. If a2 = p a^ the CD will decide based only on Vj. So will the fusion center.

This is fusion rule three. This can only happen when a^ ^ ^2-

4. If aj = p a.,, the CD will decide based on y2. This is fusion rule four. This can

only happen when a^ ^ a^

The first two situations represent extreme conditions of C. The next two conditions

deal with specific values of p. We also distinguish the following two cases.

Case a

-1 ^ p :^ min( a^ ,a2 )/max( a^ ,a2 ).

In this case the y^ and y2 intersections of the threshold equation (2.7 ) are of the same

sign.

Case b

min( a^ ,a2 )/max( a^ ,a2 ) < p ^ 1.

In this case the y^ and y2 intersections of the threshold equation are of diiTerent signs.

We shall consider these intervals of p when we study the effect of correlation between

sensor observations.

The CD threshold in the y^ y2 plane suggests assigning the decision point (0,0) to

Zq and (1,1) to Zj. The fusion rules from 5 to 14 do not do this. They either assign

(0,0) to Zj or assign (1,1) to Zq or assign (0,0) and (1,1) to the same decision region.
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Figure 2.1 Decision Rules.
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TABLE 1

EXHAUSTIVE FUSION LIST OF TWO DECISIONS

Rule? Zo z. Comments

1 <t> (0.0).(0,I).(l,0).(!.l) Co, - =°
.

2 (0.0),(1.0).(0.1).(1,1) o Cjo-=°

3 (O.O).(l.O) (0.1).(1.1) ^0-^2

4 (0,0).(0.1) (l.O).(l.I) Uo-L^I

5 (f).n (0.0).(I.0).(1.1)

6 (1.0) (o.(,)).(0.l),(l.i;

7 (1.1) (0.0).(1.0).(0.1)

(O.D.d.O) (O.(i).(l.l)

9
1

(o.i).(i.n (i>.(i).(i.o)

10 (l.Ol.(l.l) (0.01.(0,1)

11 (O.O).(l.l) (O.n.(i.o)

12 (t).n.(i.i)).(i.i) (o.u)

1

13 (().i').(U.I).(l.l) (1.0)

14 (n.i)).(l.(.)).(|.l) (i).l)

,5
1

(o,i>).(().n4i.ii) (1,1)

1

.AND

ir, (0.1)) 1 (O.I).(l.(i).(l.l) OR
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We will not consider these ten fusion rules further. The remaining two decision rules

are the AND fusion and the OR fusion. Let us now consider optimizing each of

them.

1. ' AND ' Fusion

In AND fusion u is given by:
o

u^ = Uj u^. (2.8)

The individual rules are given by assigning yj to Z^ if

yj ^ Tj ,i=l,2. (2.9)

Otherwise thev assien it to Zr,.u

The probability of detection Pj(AND) and probability of false alarm P^AND)

of the fusion center are given by:

P^ (AND)= J^ J^ fTy^.y^ l^i ) dy^ dy^ (2.10)

and

Pf.(AND) = J^ J^ ^yry2/Ho)dyidy2 (2.11)

It has been shown in Chapter I that, to within positive multiplicative and

additive constants, the average decision cost is given by

R = 1 + C Pj.-Pj. (2.12)

Substituting for P^ and Pj. in (2.12) from (2.10) and (2.11) expresses R(AND) as a

function of T^ and T2. The necessary conditions for opiimality are

d Rid T^ = and d R!d T^ =
, (2.13)

which can be written in the forms:
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.00 CO

^2

C ij ^'^vyi /"o) ^^2 =
Jj-

^Tjj^ /Hi ) dy^ (2.14)

and

.00
'

00
C L flYpT^ /Hq) dy^ = r flVpT^ /H^ ) dy^. (2.15)

Applying Bayes rule and rearranging terms, one can write (2.14) and (2.15) as follows:

J-r
fly2/Ti .Hq) dy.

\ (T^ ) = C -:} (2.16)
00

2
J

-I-

flyi/Ti ,Hj) dy^

and

A2(T2)= C-—J
. (2.17)

^ ^ CO

M

C ^yi''T2 'Hi) ^yi

To insure minima the Hessian matrix of R with respect to T^ and T2

(2.18)

must be positive definite. Optimum threshold settings T. and T2 are the solution of

(2.16) and (2.17) that corresponds to the global minima, so all possible solutions of

(2.16) and (2.17) must be tried. The coupling between (2.16) and (2.17) to determine

the thresholds represents the cooperation that can occur between the two local

detectors to minimize the overall decision cost.
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2. 'OR' Fusion

The decision of the OR fusion is given by

Uq = u^ + u^ - u^ u^. (2.20)

The probability of detection P^ (OR) and probability of false alarm P^ (OR) are given

by

P, (OR)= 1 - f 1 f2
^y^^y^ /H, ) dy, dy^ (2.21)

,00 •'.00

and

Pf (0R)= 1 - J^l Jl flvj.y, IH, ) dy, dy, (2.22)
.00 •'.oo

while the necessary conditions for optimality are

L fl:y2.'T, ,Ho) dy.
too

A (T^ ) = C — (2.23)

U ^y2/Ti,H,)dy2

and

f^yi''T2 .Ho) dy,

A(T2)= C— . (2.24)

U «yi/T2 .H,) dy,
ioo

Again the Hessian matrix must be positive defmite.

3. Solution of the Nonlinear Tlireshold Equations

The pair of coupled equations (2.16), (2.17) for the AND fusion and (2.23)

and (2.24) for the OR fusion can be solved using Max's technique [18]. The technique
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is summarized as follow: pick a value of T^ and calculate T^ from (2.16) or (2.23 ). If

the calculated value of Tj does not agree with that value calculated from (2.17) or

(2.24) then Tj must be chosen again. This approach is time consuming. Another

approach is the method of successive substitution [19]. We first put the two equations

in the form

T, = G(T, ,T, ) , T, = F(T, ,T, ) (2.25)
^k+1 V H ^k+l lk+1 ^k

^

then start with a reasonable guess for (T^ )q and (T2 )q. A suitable initial guess is the

locally optimum solutions, i.e. the thresholds that would optimize the detection if each

sensor works alone. These will be denoted by T.j^ and T2JQ. For known signals in

gaussian noise these are

(Tj)o =ai/2 +log(C)/a.. (2.26)

4. Numerical Results

We have solved the threshold equations for both fusion rules for a^ =1.7 and

a, = 2.3 for several values of p and C.

To compare AND and OR fusion, define K as the ratio of the AND cost to

the OR cost.

1 + C P. (AND)- P. (AND)
K = ^- ^ (2.27)

1 + CPr(OR)- p. (OR)

r
^ ' a ^

CPf(OR)-P^(OR)

We have also computed the Receiver Operating Characteristic"* (ROC) curves of

classical communication theor>' [20] for each fusion rule.

Figure 2.2 shows the ratio K as a function of C for p = 0, 0.2 , 0.4. The

figure shows that AND fusion is optimum for C ^ 1 and OR fusion is optimum for

lower values of C. The same is clear from Figure 2.3; ROC curves ofAND fusion are

above those of OR fusion for C ^ 1 and lower otherwise. The performance difference

becomes smaller as the correlation coefficient increases. Also the figures show that the

performance degrades for both fusion rules as p tends to one. This is in sharp contrast

to CD which has perfect detection for p= I.

'^P^ as a function of P^
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Figure 2.3 ROC Curves ofAND and OR Fusion Rules

a^ = 1.7,a2 =2.3.
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The same effects can be concluded from Figure 2.4 and Figure 2.5. Figure 2.4

shows the ratio K as a function of C for a^ = 1 and aj = 2 and for p = 0, 0.25, 0.5.

Figure 2.5 shows the ROC curves for both fusion rules for the same case. The figure

shows that AND fusion is optimum for C ^ 1 and OR fusion is optimum for lower

values of C.

C. THE EFFECT OF CORRELATION BETWEEN SENSOR OBSERVATIONS

So far we have answered the question of the optimum fusion rule. For C ^ 1

AND fusion is optimum. Let us now examine the effect of the correlation coefficient p

on the performance of AND fusion for C ^ 1 (its range of superiority). We assume

without loss of generality that a2 is greater than a^. The two necessary conditions for

optimality of AND fusion are (2.16) and (2.17). For the problem of known signal in

gaussian noise these can be written as:

Ai (Tj ) = C X r-r TT" ^2.28)

I v(iy) /

and

Is/(1-P-) /

X V d-p') /

erfc

A2 (T2 ) = C > : ^
'

;
_^ TTT- • (2.29)

Notice that C appears only as a multiplicative constant in the two equations. The role

of p is not that obvious. Examining the two equations leads to the following insights

about the role of p:

1. T^ =-co and T2 =T2Jq is a solution. This corresponds to the decision rule of

D,.

2. T-, =-co and T^ ~T|]o is a solution. This corresponds to the decision rule of

D-.

3. If a2 is greater than a^ we expect the performance of D2 alone to be better than

that of Dj alone and that of the selfish decision rule in which each detector tries

to minimize its own detection cost, not the system decision cost, by using T^j^,

"^210-
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Figure 2.4 Ratio of Costs ofAND and OR Fusion Rules

a^ =1, a^ =2.
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We now prove three lemmas concerning these equations.

1. Lemma 1.

For p ^ a^ /aj,

and

T < T

T < T^2 - 4lo

where T.^^ is the optimum threshold of the ith detector operating alone.

Proof:

Since the argument of the complement of the error function in each

denominator is less than the argument in the corresponding numerator, the

fraction is always less than one. This implies that

Aj(T) < C,i=U2.

Lemma 2

For p = a^ /a^, the only possible solution of (2.28) and (2.29) is:

T =T
and

T, =.=0.

Proof:

For p = aj 1^2 equation (2.29) becomes

A2(T2)=C =A2(T.,J. (2.30)

The corresponding value of T, is T, =-oo.

3. Lemma 3

For p > a^ /a-> the optimum solution for Tj and T^ is:

and

Tj =-so

T = T

This means that the decision of the optimum AND fusion is that of D2.

Proof:

Recall that the CD threshold line divides the observation space into two

decision regions. For positive signals the following inequality is satisfied in the

resion to the right of the CD line:

Cf(yi,y2/Ho)< f(y^ .y^ /H^ ) . (2.31)
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The converse of this inequality is true in the left region. The decision region Z^

of any other decision rule contains areas from the right and from the left of the

CD line. Areas to the right will have a negative contribution to the decision

cost while areas to the left will have positive contributions. Now assume that T^

and Jj , where both are finite, satisfy the necessary condition (2.28) and (2.29).

We shall prove that they cannot correspond to the optimum solution. The

finite point ( T, ^"2 ) either lies to the left or to the right of the CD threshold

line as shown in Figure 2.6 a and b respectively. In Figure 2.6 a the intersection

of the CD line with the line y^ = Tj is a better solution since it excludes an

area in which C f^y^ .yj /Hg ) is greater than f{y^
, y^, /^i )• ^ better solution

than this has the same T2 but with T, = -co since the added area has negative

contribution to the cost. In Figure 2.6 b, T^ =-co and Y^ is a better solution

than Tj and l^, since the added area has a negative contribution to the cost.

In both cases T^ = -00 is the optimum solution and the corresponding optimum
value of T2 is T,j^.

As a result of the above three lemmas it is clear that

1. Any solution of the necessar>' conditions must satisfy

T < T^2 - 4lo

2. The performance of the AND fusion saturates to that of D, alone for p ^
aj/a2. We might recall that the threshold line of the CD system changes slope

at that value of p. We will refer to this value of p by p^^.. This result is in

contradiction with Lauer and Sandell's results [4] which shows performance

continuing to degrade with increasing p for

P ^ Per-

Limiting behavior for = p-l.

For p =-1 the joint probability density function n[y^ ,y2 /Hq ) has values only on the

line y^ = -y^. So any threshold values T^ and T^ such that Tj = -T2 will produce

AND fusion with zero probability of false alarm. This can be visualized from Figure

2.7 . Consequently, P^ will be given by

Pj = 0.5 erfc < T, -a
\ "^2 -H \ -^-^ ^^^^ f "^2 "^^1 V (2-^2)

Maximizing P^ with respect to T^ yields

T2 =(a2-a^)/2. (2.33)

For the special case of equal SNR sensors, T-, = 0.
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D. NUMERICAL RESULTS

The average decision costs vs p for a, = 32= 2, and C= 1 are shown in Figure 2.8.

Threshold values Tj and T2 vs p for the same case are shown in Figure 2.9. Figures

2.10 and 2.11 show the same for C= 10.

These four figures for the case of equal signal-to-noise ratio show that the two

detectors cooperate with each other using the same decision rule ( equal thresholds ).

Their threshold is an increasing function of p. The limit of this threshold as p -> -1 is

zero. This behavior agrees with (2.33). The limit of the threshold as p - 1 is Tj^. This

is because for p -^ 1 the two systems have identical observations.

The detection cost curves show that the cost is an increasing function of p. The

curve of the AND fusion has the same shape as the curve of the CD system. Both

systems attain their best performance at p = -l. They have the same worst performance

for p= 1.

Figures 2.12 and 2.13 represent the case of unequal SNR sensors for C=l.

Figures 2.14 and 2.15 show the same for C= 10.
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Figure 2.10 Average Decision Costs for Equal SNRs,C= 10.
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Figure 2. 1 1 Threshold Value for Equal SNRs,C = 10.
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Figure 2.13 Threshold Value for Unequal SNRs,C= 1.
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Figure 2.15 Tlireshold Value for Unequal SNRs,C= 10.
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These four figures for the case of unbalanced sensors show that, the two

detectors cooperate using different thresholds. The threshold of the higher signal-to-

noise detector is an increasing function of p while the other threshold is a decreasing

function of p.

The cost curves show that the fusion rule has its best performance at p =-1.

Both DD and CD have their worst performance at p= p^. For p > p^ the

performance of the optimum fusion rule is the same as the detector of the higher

signal-to-noise ratio. Recall that CD system has perfect detection for p = 1 when the

SNR's are unequal. As C increases the average cost of each system increases. This can

be explained from the expression for R in which the probability of false alarm is

weighted by C.

E. DISCUSSION AND CONCLUSIONS

We have shown that the optimum fusion rule is determined by the ratio of costs

and the apriori probabilities. For equal error costs AND and OR fusion rules are

equivalent. This is not surprising since each system turns out to be the minimum

probability of error detector; thresholds are adjusted such that 1 -Pj= Pp It might also

be noted that the optimality of the fusion rule is independent of the correlation

coefficient and the signal-to-noise ratio in tliis case. We also note that the detection

cost of the optimum fusion rule has its minimum value at p = -l. It has its maximum

value at p = aj/a2. The performance saturates at the cost of decision of the detector of

higher SNR. In the interval (p e [3.^/3.2,1]), the optimum fusion rule ignores the

decision of the detector of lower SNR. As a good dynamical example that agrees with

this result is the switched diversity combiner [21] in fading environments and its

centralized counterpart, the maximum ratio diversity combiner [22]. Recall that for

unequal SNRs the performance of the CD system improves in this interval and has

perfect detection for p =1. Also it is important to note that the optimum thresholds

of the individual observers are not the same as if they were operating independently,

but must be determined by simultaneous solution of two coupled nonlinear equations.

This represents the cooperation between the two detectors to work as a team. Lastly

the performance difference between CD and DD is due to the information loss in local

data processing. However DD has fewer requirements on the communication channel

in contrast to CD which requires infinite bandwidth. A compromise between these two

extremes is to allow more information than just decisions to be sent to the fusion

55



center. This is the concept behind the Quantized Detection algorithm considered in the

following two chapters.
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III. DETECTION USING QUANTIZED SENSOR OBSERVATIONS

A. INTRODUCTION

So far detection with sensor observations has been described using two methods.

In the first metliod all sensor observations are sent to some central processor which

makes a decision based on a likelihood ratio test. In the second method only local

decisions are sent to the central processor which fuses these decisions into a global

decision. While the first method is very easy to design it requires in principle infinite

bandwidth communication channels. The second method requires only one information

bit per detection. Detection with quantized sensor observations will be introduced in

this chapter. The main goal of the chapter is to grade the road from the DD problem

to the CD problem. It will be referred to by Quantized Detection, QD. The

performance improvement of the DD problem will be traced as the amount of

information delivered to the fusion center increases.

First let us consider the problem of the Primary Decision Maker (PDM) and its

quantized second opinion (consultant). We will prove thi-ee theorems concerning the

decision rule of the PDM. Then fusion of two quantized observations of an arbitrary

number of levels will be considered. As a special case, fusion of two sensor

observations, one quantized to N levels and the other to N +' 1 levels, will be proven

equivalent to the PDM and an N-level quantizer. Comparison between different

configurations will follow.

B. TEAM DECISION OF A PRIMARY DECISION MAKER AND A SECOND
OPINION QUANTIZER.

1. Formulation of the PDM Problem

Consider the structure of Figure 3.1 in which yj is quantized into y, by the

quantization rule a of N levels.

a:Y^-Y^q. (3.1)

The primary decision maker will make his decision u , about the phenomena H based

on its own observation y^ and the quantized observation y. .
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Figure 3.1 Configuration A, The Primary Decision

Maker and its Quantized Consultant.
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The problem of the PDiM is

1. to design the quantization rule a i.e. to specify the set ofN points

-00 = Xj < X2 ^ ... < Xj^ < 00

that defines the quantizer intervals, and

2. to design the decision rule Yj

in order to minimize the decision cost.

2. Problem Analysis

Our approach is as follows. We first design the optimum Bayes decision rule

given a set of quantizer parameters. Next, the average cost is expressed as a function of

these parameters. We then minimize the average cost with respect to them.

a. The Optimum PDM Given Some Quantization Rule a

We have shown in Chapter I that, to within an additive and a

multiplicative positive constant the average cost is given by [6]

R = CPf-P^ (3.3)

where C is the ratio of error costs and Pj. and P^ are the probability of false alarm and

probability of detection respectively. The PDM receives a quantized level y^ = Q- •

He will make his decision on the basis of his own observation v. and v, , The"2 ' Iq

performance of the the primary decision maker, given some quantization rule a, is

given by the following lemma.

Lemma 3.1

The probability of detection and probability of false alarm of the Primary Decision

Maker are given by:

and
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Pf = i jj^
' L ^ pv^i /Ho ) dyi dy2 (3.5)

where Zy is the decision region Z^ given that y^e[X.,X.^ j].

Proof:

The proof is given in Appendix (A).

The decision rule of the Primary Decision Maker is given by Theorem 3.1.

Theorem 3.

1

Given y^ and y^ the decision rule of the Primary Decision Maker of Figure 3.1 is

1. deterministic

^2 •

^iq X Y2 -* ( , 1 ) (3.6)

2. a likelihood ratio test

r 1 ifA{y, ) ^ 0;(y,

)

u^ = J
'^

J
^2^

,j=1.2 N (3.7)
^ \ ifA(yO < 0.(y,)

whereA(y2) = fIy2/Hj)/fi:y2/Ho)

3. the threshold function 0. {y^ ) is given by

J^^^^yi/y2'Ho)d>'i

0j (y2 ) = C^ ,j= 1.2,...N. (3.8)

J^^^^yi/y2'Hi)ciyi

Proof

We first insert (3.4) and (3.5) into (3.3). Each term of the detection cost (3.3) is then

given by

R] = L ^ I V ^
^ ^ ^yi 'yi /Ho ) ^yi '^i /"i ) ] ^yi ^^i (^.9)

To make R. in (3.9 ) negative an optimum decision rule assigns y^ to Z^ if
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C I^^'"^yi '^2 /"o ) ^^1 i^^^ ^yi '^2 /"i ) dyi ^ ,i= 1,2,...N (3.10)
•X. X.

otherwise it will assign ^^ to Zq .

Applying Bayes rule and rearranging terms, decision rule (3.10) can be

written as

jJ^Wy2'Ho)dyi
A (y^ ) > C^ , i= 1,2,...N (3.11)

which completes the proof.

h. Optimum Quantization of Y ,

According to Tlieorem 3.1, the decision rule of the PDM is a likelihood

ratio test with data dependent threshold. The threshold depends on the choice of X.'s.

To find an optimum solution for the X. 's is not any easier than that of the DD
problem. Recall that for the DD problem optimum solutions are possible only for the

case of conditionally independent observations. Only suboptimal solutions are possible

for the case of correlated observations. We wUl not expect more for the QD problem.

Let us consider each case separately.

3. Conditionally Independent Observations

Under the assumption of conditionally independent observations, i.e.

fryi;y2,H) = f{y^/ H ) (3.12)

the decision rule of the Primary Decision Maker can be simplified. This decision rule is

given by the following corollary of Theorem 3.1.

Corollary 1

Assuming conditionally independent sensor observations, and given y^ and Vj, the

decision rule of the Primarv' Decision Maker of Figure 3.1 is

1. deterministic

Y2 = '^lq^Y2-*(0,l) (3.13)
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2. a likelihood ratio test

r 1 ifA(y, ) ^ 0-
u = ^

^
^ ,j=l,2,...,N (3.14)

^ \ ifA(y2)< 0. '^ " '

whereA(y2) = fIy2/Hi)/fIy2/Ho)

3. the threshold 0. is given by

jJ'"VHo)dy,
0j = C ^

'

,j=l,2,...N. (3.15)

Proof

By applying condition (3.12) in the threshold equation (3.8 ) one obtains (3.15) which

completes the proof.

Let us denote the conditional probability of detection and the conditional

probability of false alarm of the PDM given that the j^ quantization level of y^ is

received by P^. and P^-. Let T. be the set of all points y2 for which

• A2(y2)^0j (3.16)

Then P ,. and P^ can be written as
dj fj

Pdi = I ,p
fi>2 ''Hi )

<iy2 (3-17)

J

and

J

Equations (3.4) and (3.5) are now given by
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and

Pf =;!, ^'*ftyi /Hq ) dy, I^«y2 /Hq )% • (3.20)

Substituting (3.19) and (3.20) in (3.3), then differentiating R with respect to X.

,{j
= 2,3,...N} will yield necessary conditions for optimality of the set ofN equations.

c [J™«\ ^2 /Ho )<iy2 -L ((\ .y2 -'Ho )dy2 1-

k k-1

[Jxp^^k'y2/"l)^y2-.^ fTX^,y2/Hi)dy2] = ,k = 2,3 N. (3.21)

Applying Bayes rule and rearranging terms, (3.21 ) can be written in the following way.

i^, Ryj'Ho) dy2 - 1 ,p Ryj'Ho) <iy2

A{X^) = C-r-!^ -.—^ ,k=2,3 N (3.22)'
J.,, Ry2'H,)dy,-| lbVH,)<ly2
*k ^k-1

The set of N-1 necessary conditions (3.22) are general for any statistics of y^ . For the

special case when A (y^ ) is monotonic in y2 , let T. be the value of y^ for which

e. =A2(Tp ,j=l,2,...,N. (3.23)

So T. is given bv
J

^

A (T. )= C -^ ,]•= 1,2,...N (3.24)

J^i + VH,)dy^
j

63



For this case ofmonotonic A (yj ) the set of necessary conditions for optimality (3.22)

can be written as

A (X. )= C ^ ^ ,k= 2,3,..«,N (3.25)''•00 CO

J_ fl:y2/Hi) dy^ - L r{y,lU,)dy,

Equivalently we can write (3.25) in the form

J/''fiy2''Ho)dy2

A (Xj^ ) = C -:^ ,k= 2,3,...,N . (3.26)

J-J'-ifIy,/H^)dy,

^k

P^ and Pj. in this case are given by

Pd =_t L'^yi 'Hi ) dy^ L f(y2 /Hi ) dy^ (3.27)
1 ^^i A.- 1 •

and

Pf = 1, if'^' ^yi 'Ho ) dy, Lfly. /Hg ) dy^ (3.28)
l-l A. i.

Equations (3.24) and (3.26) are only necessary conditions for optimality for

monotonic likelihood ratio. They correspond to minima if the Hessian matrix

[.d^RldX.dX.] is positive definite. All solutions must be checked for the global minima.

4. Solution of the Primary Decision Maker Problem with Independent Sensor

Observations and Monotonic Likelihood Ratio

The following theorem summarizes the above solution of the PDM with

independent sensor observations and monotonic likeliliood ratio.
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Theorem 3.2

The decision rule of the Primary Decision Maker with a Quantized Consultant (for

independent sensor observations and monotonic likelihood ratio) is;

1. deterministic

Y2 • Yiq X Yj -» ( , 1 ) (3.29)

2. a likelihood ratio test

r 1 if A(y, ) > 0.
u = { ^ J ,j=l,2,...,N (3.30)
« \ ifA(y2) < a ' " '

whereA(y2)=fly2/Hj)/fIy2/Ho)

3. the threshold function (y2 ) is given by

Oj = C ^-i ,j=l,2,...N. (3.31)

'
J

The optimum set of quantizer interval end points must satisfy the set (3.26 ), where

Tj^'s are given by (3.24). All possible solutions must be checked for the global

minimum cost.

5. The Case of Correlated Observations

We now move to a more realistic situation by removing the condition of

independent sensor observations. In many radar and sonar problems noise in nearby

sensors is likely to be correlated. As we mentioned before the decision rules (3.11) are

likelihood ratio tests with data dependent thresholds. It is impossible to come with

their optimum functional expressions [4.] A suboptimal solution for the case of

correlated observations is to use likelihood ratio tests with constant thresholds as local

decision rules. These constant thresholds for y2 are the values of y2 for which the

inequality (3.11 ) is an equality, i.e.;
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A (T. ) = C 4r X= 1.2,...,N . (3.32)

In terms of these thresholds Tj^ 's and the quantizer points Xj^ 's one can write

expressions for the probability of detection and the probability of false alarm in the

form of (3.4) and (3.5). Substituting for P^ and P^ in (3.3) and differentiating R with

respect to Xj^ for k=2,3,...N yields the following set of necessary conditions for the

case of monotonic A2 (72 )
'

A (X, ) = C -^ ,k= 2,3,...,N. (3.33)
T,,

J^''-'«>VX,,Hi) dy^

The set of equations in (3.32) and (3.33) constitute 2N-1 equations that specify the

quantizer interval end points (Xj^ } for yj and the thresholds (Tj^} for y-> .

C. TEAM DECISION OF TWO QUANTIZERS AND A FUSION CENTER

In this section we will consider the problem of making a global decision based on

two quantized observations.

1. Formulation of the QD problem

For the structure of Figure 3.2, y^ is quantized into N levels by the

quantization rule a,

a^ : Y^ -^ Yj^ (3.34)

and y2 is quantized into M levels by the quantization rule 02

«2 = Y2->Y2q. (3.35)

The quantized values y^ and y^ are sent to the fusion center which must decide which

state of the phenomena is true. It is required to design the quantization rules a^ and

a2 and the decision rule y
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Y • Yiq X Y2q -* (0,1) (3.36)

to minimize the global cost.

2. Problem Analysis and the QD Algorithm

The observation space of the fusion center contains NM points to be divided

into two decision regions. Since there are as many as 2"^^ fusion methods, checking all

of them will consume a very long time even for small values ofN and M. A suboptimal

solution is to approximate the threshold equation of the corresponding CD problem by

a piecewise curve in the y^ y2 plane. This is illustrated in Figure 3.3.

The figure shows a schematic diagram of a CD threshold curve and its

staircase approximation. The approximate curve consists of segments of straight lines

connected together. The coordinates of the connecting points will play the role of the

interval end points of the quantizers. Let us first write an expression for P^ and P^. in

terms of these point coordinates. If this expression of the cost is minimized with

respect to each coordinate there will be as many equations as the number of

coordinates. Solving these equations simultaneously yields the quantizer parameters.

This is the core of the QD algorithm which is summarized as follows:

1. Derive the threshold equation of the CD system.

A(yi,yO=C (3.37)

2. Approximate the threshold equation by a stepwise curve satisfying the N and M
constraints.

3. Write an expression for the cost in terms of the curve parameters.

4. Minimize the average cost with respect to the curve parameters.

Let us illustrate how the algorithm works for the case of detection of a known

signal in gaussian noise.

3. An Example: The Known Signal in Gaussian Noise

Consider Figure 3.2 when y^ and y2 are given by

Hq : y. = nj

Hj :yj = aj + n. ,i=l,2 (3.38)
,
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Figure 3.2 Configuration B, The Team of Two
Quantizers and a Fusion Center.
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CD Curve

QD Approximation

Figure 3.3 Quantized Threshold Curve.
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where the a/s are positive constants and N = [n^ nj f is a gaussian random vector of

zero vector mean with covariance matrix:

K= ; (3.39)

[; :]

It is required to design the N-level and the M-level quantizers Q^ and Qj

and the decision rule y where

Y = YjqXY2q-*(0,l) (3.40)

to minimize the average decision cost.

Procedure folloiving the QD algorithm

The threshold equation of the CD problem has been shown in Chapter II to have the

form:

(a^ -p a^ )y^ +(a2 +p a^ )y^ =(aj2 +^^2 .p ^^ ^^ )/2 + (l-p- )log(C). (3.41)

1. The CD curve is a straight line in the y^ y^ plane.

2. Possible stepwise approximations for the threshold equation are shown in

Figure 3.4 . We notice that in Figure 3.4 a and c the two quantizers have the

same number of quantizer levels. While in Figure 3.4 b and d one quantizer has

one more level than the other. From Chapter II, we can expect that the

constant C will decide the superiority of a or c and of b or d. We shall

consider optimum parameters of Figure 3.4 a and b. Similar treatment can be

considered for Figure 3.4 c and d. In Figure 3.4 a the point Xj =-oo while T^

is finite. In Figure 3.4 b X^ = -co and T^ = ^o
,

3. The probabihty of detection of the decision rule of Figure 3.4 a is given by

i i

and Pj. is given by

^' X. , , 00

Pf =
Ii l^;'''i^^yvy2i^o)<^yi<^y2' (^.43)

^
i i
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For the detection rule of Figure 3.4 b P^ is given by :

(3.44)

and P^ is given by

.X.,,, .00

^f^ilzk 'r.'^^i'^2/Ho)<Jyidy2 (3.45)

4. Necessary conditions for optimality of parameters of the curve in Figure 3.4 a

are:

A(T.)= C

jJ^^yi/T,Ho)dy,
_2j

jJ^¥(y,/T.,H,)dy^

,i=l,2,...,N (3.46)

and

A(Xj) = C^ .i=2,3,...,N

J^|-if(y,/X.,H,)dy,

(3.47)

For Figure 3.4 b ,the optimality conditions are

A (Tj ) = C
jJ^^y^/T.,Ho)dyi

jJ^^y,/T.,H,)dy,

.i=2,3,...,N (3.48)

and
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\l
J/'fl:y2/Xi,H„)dyj

A (Xj ) = C—i ,i= 2,3 N . (3.49)

J/'fl;y2/Xi,Hi)dyj

The last two equations are exactly the same as the necessary conditions for

optimizing detection using a Primary Decision Maker and its quantized second opinion

for the same signals in gaussian noise. Recall that the information available at the

PDM is more complete than that available at the fusion center of two quantized

observations. Yet the two problems have the same solution. This is a proof of the

following lemma.

Lemma 3.2

Optimum detection of known signal in gaussian noise using two quantized observations

of N and N+1 levels is equivalent to optimum detection using the first quantized

observation and the second continuous observation.

Lemma 3.2 is applicable to any case with a monotonic likelihood ratio. This can be

easily proved by writing the necessary conditions of optimality for the two

configurations. A special case of Lemma 3.2 is that of N = 2. It corresponds to the

tandem configuration of two detectors in a Distributed Detection Network (DDN) [10].

The "downstream" detector (decision maker) makes its decision based on its own

observation and the "upstream" detector's decision.

D. NUMERICAL SOLUTION FOR THE SYSTEM PARAMETERS

It is of interest to compare the four sets of equations {(3.24 ),(3.26)},

{(3.32),(3.33)), {(3.46 ),(3.47)} and {(3.48).(3.49)} with that of Lloyd and Max [18,23] for

minimum distortion quantizer parameters.

Max's trial and error algorithm to solve this set of nonlinear equations can be

used. However Max's algorithm is very time consuming [24]. We have used instead

the method of successive substitutions with an initial guess satisfying

X2 ^ X3 < ....^ Xj^ (3.50)

and put the equations in the form

Z = G(Z) (3.51)
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Figure 3.4 Possible Approximations of tiie Threshold Equation.

73



The kth iteration is then given by

Zk = G ( Z^.l ) (3.52)

We will devote the next chapter to solving some numerical examples using this method.

E. SUMMARY
In this chapter the method of detection using quantized sensor observations has

been introduced. This method, referred to by QD, can have significant performance

improvement compared to the distributed detection algorithm (DD) with only

marginally more demand on the communication channels. The QD algorithm involves

approximating the CD threshold hyperplane by a stepwise hyperplane that can be

spanned with the quantized data and that minimizes the detection cost.

Also the equivalence between two detection configurations, one with tandem

connection and the other with hierarchical structure, has been shown.
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IV. NUMERICAL RESULTS

In this Chapter some examples are solved numerically using the QD algorithm.

First the detection of known signals in gaussian noise is considered. Next detection of

signals with exponential distribution is considered. Finally, the algorithm will be

applied to differentiating between gaussian signals with different variances.

A. KNOWN SIGNAL IN GAUSSIAN NOISE

Again consider Figure 3.2 when y^ and y^ are given by

Ho : Vj = nj

Hi:yj = X + nj,i=l,2 (4.1)

with a^ = 4 and ^2 = 2. The noise vector

N=[n^n2f (4.2)

is of zero vector mean and with covariance matrix given by:

K = r^ ,n (4-3)

[; :]

where p is given by

p = E { n^ n^ ] . (4.4)

It is required to:

1. Design the primary decision maker PDM and its N-level Quantizer to minimize

the average decision cost. We have designated this structure configuration A.

2. Design the N-level quantizers Q. and Q2 and the decision rule u^ to minimize

the average decision cost. We have designated this structure configuration B.

3. Compare the performance of the two configurations and that of the completely

centralized system.

Following the algorithm we have:

1. The threshold equation for the CD problem given by,
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==/o 2 . . 2
(a^ -p a^

)yi
+(a2 -p a^ )y^ =(a/ +a/ -2p a^ a2)/2 + (l-p^ )log(C) (4.5)

a straight line in the y^ y^ plane.

2. Figures 3.4 a and 3.4 b show the decision regions for configuration A and

configuration B respectively.

3. Probability of detection P^j and probability of false alarm P^ of PDM are

given by:

and

Also P^2 '^^"^ Pq of configuration B are given by:

Pd2
=

and

: ^ r^i^l ' exp(-y,^'2) erfc f^ ' '; ' " 1^'
'"' ^ \ dv, (4.8)

Pc
=iS(xr'7i"p^->'-''> "H^^)}'"'' ''''

4. For configuration A equations of the quantizer interval end points and

corresponding PDM's thresholds for the gaussian case are given by

„fJVrP ?^. -)
. „JT, -p X,

A(x,) = c
1^<'-P^)i \jiy-r)^ ,^^^3^^

(

\ v(i-p') J \ v(iy) /

and

76



IV(i-P^) / IV(iy)/

\ V(i-P^) J \ V(i-P^) j

A (T ) = C V ,^ ..
'

^; r. •''= 'A N. (411)

For configuration B the quantizer end point intervals X's and T's are given by:

V(i-P^)/ i VdWA (Xj^ ) = C X \-:,, ,!: \l^ -TTT—n .^= 2,3, N
erfc

and

1 V(i-P-) / I V(i-P-)J

,..( f^k- 1 -^•P<TK-a,n
,..fJX, - a, - p (T, -a, ) -,

1 v(i-P^) ; \ vd-P^) /

erfc

A(T, ) = C ^7-^-^-^—=^= .," ^
'"•/'

,k=2,3, N

We have solved the system of equations of the two configurations using the

method of successive substitution for N = 2, 3, 4, 5 and 6 . Figure 4.1 shows the

receiver operating characteristics ROC for the two configurations for p = 0, for different

values of N. The ROC for the CD system is also shown. The effect of p is illustrated

in Figure 4.2. The figure shows ROC curves for Configuration A for different values of

N and for p = and 0.25. Figure 4.3 shows the average cost of Configuration B and

CD vs. C, for different values of N. The relation between the cost of detection for

Configuration B vs. the number of quantization levels is shown in Figure 4.4 . The

figure shows the exponential decay of the detection cost as the amount of information

available at the fusion center increases.

The following results are noted from the curves.

1. Configuration A has better ROC curves than Configuration B. The
performance difference is large for N = 2 but gets smaller as N increases.

2. Both performances converge to that of the CD in a uniform manner.

3. As the correlation coefficient increases the performance difference decreases.
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Figure 4.2 ROC Curves for Configuration A for p =0 and 0.25.
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Figure 4.3 Average Detection Cost for Configuration B and CD.
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4. As N increases the average detection cost gets smaller and tends to that of the

CD. Since the number N reflects the mutual information between the input and

the output of the quantizers, the relation between the performance degradation

and information delivered to the fusion center is strong.

B. SIGNALS WITH EXPONENTIAL DISTRIBUTIONS

Consider again Figure 3.2 . Let y^ and yj have the following distributions:

. Hq: flyj) = 5.0 exp(. Xg yj

)

(4.14)

and

H^: f(yj) = XjexpC-X^Vj ).i=l,2 (4.15)

and assume that X^ is less than Xq . It is required to design the quantizers and fusion

rule that minimize the average decision cost.

Following the QD algorithm we have:

1. The CD threshold equation is given by

Yl + y2 = Cj (4.16)

where C^ is given by

C^ = ^'^ C . (4.17)

The CD threshold equation is a straight line in the first quadrant.

2. Figure 4.5 shows possible approximations of the threshold equation. For N = 2 ,

the symmetry suggests equal detector thresholds. For N ^ 3 let us fix X^ and

T^- to zero.

3. The probability of detection and probability of false alarm P^ and P^. are given

by

Pd =ij [ exp(-X^ X. )- exp(-X^ X.^^ ) ] Qxp{-X^ T ) (4.18)

and
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NIN

V
= I [ exp(-Xo Xj )- exp(-Xo Xj^ ^ ) ] txpi-X^ Tj

)

(4. 19)

i=l

4. Writing an expression of the average cost in P^ and P^ as before and minimizing

with respect to Xj^ ,k=2,3,..N and Tj^ , k=l,2,.. N-1 one obtains the set of

equations

Xn exp(-Xn X. )-exp(-Xn X ,

, )

exp{(Xn -X, )T. } = -2- C ^ ° ^ "^ ° ^^
,k= 1,2,... N-1 (4.20)

° ^^ Xj exp(-XiXj^).exp(-X^X^^l)
'

and

Xn exp(-Xn T. )-exp(-Xn T. ,

, )

exp{(Xo-X^)Xj^}=-^ C ^\ ° .^'^ ^; ', !i^'\ .k = 2.3,...N. (4.21)
" ^ ^ Xj exp(-Xj Tj^ )-exp(- Xq \+j )

This set of equations Have been solved by the method of successive

substitutions for Xq = 2, X^ =1, and for N= 2,3,4,5 and 6. A FORTRAN

program to calculate the quantizer parameters is given in Appendix D.

Figure 4.6 shows ROC curves for the quantized as well as the CD systems. The

average detection cost is shown in Figure 4.7.

We note the following:

1. The largest performance improvement occurs when we switch from N = 2 to N
= 3 ( i.e. only less than one more information bit per detection).

2. The performance curves { ROC(N) } and ( R(N) } converge uniformally to the

performance of CD

C. GAUSSIAN SIGNALS WITH DIFFERENT VARIANCE

Consider again the structure of Figure 3.2 . Let sensor observations y^ and y2 be

independent, identically distributed gaussian random variables of zero mean. However,

under Hq, Var(yj) = (yQ^

and

under Hp Var(yj ) = <t^^ ,i= 1,2. For specificity, let

<Tq = 1 and (T^ = V 2 .

Quantized sensor observations are sent to the fusion center to decide which of the

hypothesis is true. It is required to design the quantizers Q, and Q^ as well as the

fusion rule to minimize the average decision cost.
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Figure 4.5 Approximation of the Threshold equation for

DiiTerent Values of N, for Exponential Signals.
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Figure 4.6 ROC curves for Exponential Signals.
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Figure 4.7 Average Detection Cost for Different

Values of N for Exponential Signals.
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Following the QD algorithm we have:

1. The CD system decision rule is a likelihood ratio test. The CD detector declares

Hj is true if

Yl^ +72^ < (l/2)log[<Ti2 /(ffg^ c)]/(aQ-2 .(y^-2 )-l
(422)

otherwise it will declare Hq is true. The threshold equation is the circle

where Rg^ is the right hand side of inequality (4.22 ).

2. Possible approximations of the CD threshold equation are shown in Figure 4.8 .

3. Figure 4.8 a corresponds to 3-level quantizers. The corresponding probability of

detection and probability of false alarm are given by;

P^(3)=[erf(:-X/<Ti)p (4.24)

and

Pf(3) = [erf(-X/(Jo)]2 (4.25)

where y^ and ^^^ are subdivided by the points X and -X. For the 5-level

quantization approximation of Figure 4.8 b, the probability of detection and

probability of false alarm are given by

Pj (5) = erfi:X3 l<5^ ) {2erf(:X2 l<5^ )- zx^X^ /<7^ )

}

(4.26)

and

Pj. (5) = erf(X3 /(Tg ) {2erfIX2 /(Tq ) -erf^Xj /(Tg ) } (4.27)

where X2 , X^ ,-X.j and -X2 define the the quantization intervals of both y^
and y2 .

4. Inserting P^. (3) and P^ (3) into R in (3.3 ) and minimizing R with respect to X
gives
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(I, erflX /(Tf, )A (X ) = C i- — Q
(4.28)

(Tg erfIX /(Tj )

Also inserting P^j(5) and P^5) into (3.3 ) and minimizing R with respect to Xj

and Xj gives;

(T, erf(X, /<Tn )A (X^ ) = C -L ;^^ Q . (4.29)
^

ffg erf(X3 /(Xj )

<T, erf(X, /(In ) - erf(X, /(!« )A (X, ) = C —^
Q^

^ "^
. (4.30)

' ^
'

Gq erflX^ IG^ ) - erf(X3 /c^ )

Solution of these implicit equations in the quantizer parameters can be carried

out by the method of successive substitution. The FORTRAN program to calculate

them for any value of Cq and <J^ is given in Appendix F.

Figure 4.9 shows the average detection cost vs. C for 3-level and 5-level

quantizer systems. Detection cost of CD is also shown. The figure shows that the

detection cost decreases dramatically using 5-level quantizers m comparison to 3-level

quantizers. The cost of the CD system is only slightly lower than that of the 5-level

quantizers.

Similar procedures can be carried out for the case of correlated observations. The CD
curve in this case is an ellipse with principle axes passing through the origin. It can be

approximated in a similar way as the circle.

D. CONCLUSION

The above examples show the uniform convergence of the Quantized Detection

Algorithm to the Centralized Detection Algorithm. The Distributed Detection

Algorithm is a special case of QD. It follows that Quantized Detection is an efficient

utilization of bandlimited communication channels.
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V. THE CASE OF VECTOR OBSERVATIONS

A. INTRODUCTION

In the previous two chapters the QD problem for the case of scalar sensor

observations was solved. It is now time to extend the QD algorithm to the case where

each local observation is a vector Yj . The QD algorithm can be applied as long as the

corresponding sufficient statistic for the centralized detection problem can be divided

into local statistics to be quantized. Let us consider the gaussian case and put it in the

previous framework.

B. QUANTIZED DETECTION WITH VECTOR OBSERVATIONS

For the structure of Figure 5.1 the observations at locations 1 and 2 are given by

and

iV.

= Aj + N. ,i= 1,2. (5.1)

Let us denote the observation vector by Y

y =
h

li

(5.2)

The noise vector N
,
given by

N =
^l

^2

(5.3)

is multivariate gaussian with zero vector mean and co variance

R =
5i ^12

^21 ^2

(5.4)
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Figure 5.1 Vector Observations.
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R^ , ^2 ^^^ ^12 ^^^ ^^^ covariance matrices of the noises at locations 1 and 2 and their

common covariance matrix. The signal vector A is given by

Ai

^2

The CD system decides that 7 belongs to Z^ if [6]

(5.5)

rl -1
exp { (-1/2) [ (7 -A)'^-' (7 -A) -7 'R-' 7

] } ^ C (5.6)

The CD threshold equation can be written in the form

A'^-l 7 = log(C) -(1/2) A'^-^ A. (5.7)

Using the block matrix inversion lemma [25], (5.7 ) can be written in the form

a II +P I2 = log(C)-(l/2)A'5-^ A (5.8)

In (5.8 ) a and (J are given by

a ~ Al ^-1 '-12 -2 -21 ^

A'2 (^2 '-21 -1 -21 ^ -21 -1 (5.9)

and

P =-A\{R^.R^2R^-^R,^y^R^^R^-^

+ A'2 {^2 -^21 ^1"' ^12
y^ (5.10)

Denoting

li = a Ii (5.11)

and
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^2= P X: (5.12)

(5.8 ) becomes

Ij + I2 = log(C)-(l/2)A'5-^ A (5.13)

where 1^ and 1^ are bivariate gaussian with zero vector mean under hypothesis Hg

Under hypothesis H, their vector mean is

{" }
a Aj

PA,

(5.14)

Covariance of 1^ and I2 is given by

Cov(l^ ,l2 )
=

a' R^ a

P'5, P

(5.15)

In (5.15 ) p is given by

= a ^12 P V ["(« ^1 a r^ (P E2 P )"M (5.16)

The distributed signal processing is to form local linear combinations 1^ and 1^ , then

quantize them as before. This processing is also shown in Figure 5.1.

C. SUMMARY
In this Chapter it is shown that the QD algorithm can be extended to the case of

sensor vector observations. An application is the case of high quality local area

communication and lower quality long distance communications. In this case sensor

observations in local areas are gathered at a local processor to form the local sufficient

statistics. Quantized local statistics are then sent to the global far away processor for

fusion.
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VI. OPTIMUM ESTIMATION USING QUANTIZED SENSOR
OBSERVATIONS

A. INTRODUCTION

In the previous part of this thesis there are situations in which a group of

observers make local decisions that, taken in combination determine the overall

performance of a system. The observers may or may not be interconnected. However,

even when they are, for a variety of considerations such as limitations on

communications bandwidth, transmitter power,security, or perhaps the verv" nature of

the observers themselves, only decisions may be interchanged between them and not all

the observations upon which their decisions are based [1,5,26-33].

Another case of interest concerns the encoding of high resolution measurements

for transmission between observers using a small number of bits. Here a remote

observer must decide which of N possible discrete values best represents his

observation. A second observer is to combine his local observations with the discrete

data from the first in an optimum manner. In this chapter we consider the problem of

regeneration of a remote sensor observation using its quantized representation and a

local observation. The design of the quantizer at the remote sensor location and the

optimum linear estimator to combine the quantized data with the local observation to

minimize the expected mean square estimation error will be considered. Generalization

of the results to the vector case is also shown.

B. THE LINEAR MINIMUM MEAN-SQUARE ESTIMATE OF Y
^

Consider the structure of Figure 6,1 in which the observation y^ is quantized

into y, by a quantization rule y

7:yi-*yiq- (6.1)

The quantized data y, is sent to sensor S2 site.

The linear minimum mean square estimate of the observation y^ from y^ and '^^ is

shown in (Appendix F) to be

y^ = (1- p2 )^ y^^ + p -A. (i^ .p2 )y^ /(^ .J42
p2

^ (^ 2)
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where we have assumed that y. and ^^ ^^^ random variables with zero mean and

variances

E{yV =
<y^i

,i=l,2 (6.3)

and correlation

P =E(yiy2}/(Ti(T2 (6.4)

The scalar quantities \\ and ^ are parameters of the quantizer and are given by

and

i-'C.S^QkCkVV- (6.6)

N is the number of quantization levels and Cj^ and Pj^ are given by

Ck-d^'^S f(yi )
dy, )/Pk (6-7)

^v.

and

Pk= l^^^^^O^-^l ' (6.8)

Qj^ is the k^ quantization value and Qj^e[.Xj.,Xj^^j]. In (6.7) and (6.8), Xj^

,k= 1,2,. ...N, are the quantization interval end points, with

X^ =-co and Xj^^j = oo
.

It is required to design a quantizer that minimizes the mean square estimation error.
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The expected mean square error is given by [34]

where 7 isthe vector

I = [yiqy2f. (6.10)

Equation (6.9 ) can be written in the form (Appendix D)

E(e2 } = (yj2 (i.p2 >,(i.^ ),(i.p2 (^ ^) (6 11)

where co is given by:

(0=^-/n. (6.12)

A plot of E{e2};(Tj" vs. (O is shown in Figure 6.2 for p^ = 0, 0.25, 0.5, 0.75. The figure

shows that the mean square error is decreasing with co. Recall that the criterion is to

minimize the mean square error.

Equivalently the problem now is to maximize (O over all quantization rules where

1
(|l,PkQ.c,)'

CO 2
^^ • («-13)

Appling the Cauchy Inequality [35] to the numerator yields

( |L ,Pr Qk Ck )' ^^(|, \ <i^ \^, P. C,2 ) (6.14)

with equality if and only if

Qk = q- (6.15)
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Figure 6.2 Relative Mean Square Estimation Error vs. (O.
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Therefore

(Tj K^ 1 ^ "

gives an upper bound of (o. Equation (6.15) says we maximize co , and thus minimize

E{e^} by making the quantization level Q^ equal to the conditional mean of y^ given

that y^ lies in the kth quantization interval. This is one of the conditions

characterizing the classical Lloyd-Max quantizer [18,23.] There remains the problem of

how to pick Xj^ ,k=l,2,...N, so that the upper bound of (O in (6.16) is maximum.

Notice that the upper bound of is x\. Therefore, the optimum quantizer will be a

Lloyd-Max quantizer if we prove that maximizing r\ over all choices of the set of

points (Xj^), k= 1,2,...N, is equivalent to minimizing the distortion E[{y^-y^ y}. Since

E{(yi-yiq)-} = c^^-2(j^\ + <j^^r\ (6.17)

= (T^'(l-Tl)

then maximizing r\ will minimize the distortion E((yj-y. )^) and vice versa. Since the

Lloyd-Max quantizer is the optimum quantizer for minimum distortion it follows that

it is also optimum for our problem. Accordingly choose Xj^ 's such that [23,18], (see

also Appendix G)

V = ^k _^^k-l
,k=l,2,...N. (6.18)

Equations (6.15) and (6.18) along with (6.7) completely design the quantizer [23,18].

Parameters of the Lloyd-Max quantizer can be calculated efficiently using the method

of successive substitution (Appendix G). Values of E{e^ }/C7^^ vs. N are listed in Table

2 for p =0, 0.25, 0.5, 0.75. The table shows the exponential decay of the MMSE as the

number of quantization levels increases.

Table 3 shows a comparison between the average number of bits per sample used in

this system and another method in which the Maximum Output Entropy (MOE)

Quantizer [36] is used. Huffman coding [37] is assumed for both quantizers.
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TABLE 2

MINIMUM MEAN SQUARE ERROR VS. THE
NUMBER OF QUANTIZATION LEVELS

N p 0.25 0.5 0.75

2 0.3634 0.3548 0.3241 0.2477

4 0.1175 0.1166 0.1131 0.1021

S 0.0345 0.0345 0.0342 0.0330

16 0.0095 0.0095 0.0095 0.0094

32 0.0025 0.0025 0.0025 0.0025

64 0.0006 0.0006 0.0006 0.0006

128 0.00016 0.00016 0.00016 0.00016

TABLE 3

COMPARISON OF THE AVERAGE NUMBER OF BITS IN
THE MMSE AND THE MOE SYSTExMS

N 2 4 6 8

Optimum
System I 1.989 2.4768 2.8842

MOE 1 2 2.667 3
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C. CONCLUSION

The trade off between performance and communication is clear from Table 2.

For p =0.5 the relative MMSE is 0.75 without communication. This corresponds to

substituting co = in (6.11 ). The relative MMSE decreases to 0.32 using one

information bit per sample. The relative MMSE is 0.11 using two bits/sample. It is

only 0.03 using 3 information bits/sample (N=8) and is 0.00016 using 7 bits/sample.

We also notice that for high number of quantization levels the estimation error is

approximately equal to the the quantization error. This means that the estimator

depends mainly on y^ for fme quantization. For coarser quantization the estimator

depends heavily on y2 to reduce the MMSE. Table 3 shows that the designed system

has considerable reduction in the number of bits per sample compared to the MOE
quantizer system.

D. GENERALIZATION TO THE VECTOR CASE

In this section we will consider regeneration of a random vector 7j from its

quantized version Y^ and a correlated continuous scalar y2 . As an application

consider a sensor S, monitoring the activities of N stations. Due to some

considerations, perhaps of safety nature, only simple sensors can be placed near the

stations. Because of other considerations, such as limited bandwidth communication

channels, only quantized sensor measurements can be sent to the monitor. Specific

examples can be the case of monitoring the states of a target in a far field or the

positions of N targets in a multitracking problem [38,39]. Another example is to

monitor the radiation levels outside of N nuclear reactors. A third example is

monitoring the activities ofN enemy transmitters.

Let us design the quantizers at the N sensor sites and the estimation rule at the

monitor site so as to minimize the mean square error of each component of J . Let Y^

,the sensor observation vector be given by;

£i=[yuyi2->-iNi'- («'9)

where y^. is the j^ sensor observation ,j= 1,2,. ..,N. We will assume that components of

7 are independent, i.e.

flYli /Yij ,72)= ^^i '% )
'i ^ i' ^'J= ^'2 >^- (6-20)

Under the above conditions, also y^j and yj. are conditionally independent for i ^ j, so
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flYli /Ilq .72 )= flYii /Yiiq .y2 ) .i= 1'2,...,N
liq

(6.21)

The MMS estimate of 7^ given 7. is given by

Ii=E{Zi/Zi,.y2} (6.22)

Or

h =

ifefe^:?dl

LE(yiN /^INq '^2 L

(6.23)

Let us denote the error vector by E , so

ff = [ e^ e^ ...e^ f (6.24)

where e. is the error in estimating y ,i== 1,2,. ..,N. The MMS error covariance matrix is

E{ir} =E((7^-7|')(7j-7^)M. (6.25)

The trace of the error covariance matrix is eiven by

trace(E(Fff^)) =Z E^V }
1= 1

(6.26)

where

e. =v. -Efv,. /v.. ,y, }.
1 ^i >^' h ' ^ hq ''2 •'

(6.27)

Minirhizing the trace of the covariance matrix in (6.26 ) is accomplished by minimizing

each summand alone since every summand is nonnegative. Now assuming Linear

Minimum Mean Square Estimation, the problem of minimizing E {e.^ } implies using

the Lloyd-Max Quantizer to quantize y^j as was shown previously.
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In conclusion the Linear iMinimum Mean Square Estimate of the observation

vector y implies using the Lloyd-Max quantizers at the sensor sites and the same linear

combining considered in the scaler case at the central processor.
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VII. SUMMARY, RESULTS, CONCLUSIONS AND SUGGESTIONS FOR
FUTURE RESEARCHS

A. SUMMARY
This Thesis begins by listing some reasons why Distributed Signal Processing is

more practical than Centralized Signal Processing. The status of Distributed Detection,

an important case of Distributed Signal Processing, and its complexity are reviewed in

Chapter I.

Chapter II deals with the problem of optimum fusion of local decisions into a

global decision. The relationship between the optimum fusion rule and the ratio of

error cost is shown. The dependance of the performance of the optimum fusion rule on

the correlation coefficients between sensor observations is throughly analyzed. For

higher values of the correlation coefficients the Distributed Detection system is shown

to reduce to the detector of the highest signal-to-noise ratio.

A compromise technique between Centralized Detection and Distributed

Detection, Quantized Detection, is suggested in Chapter III. The main issue of that

chapter is to control the degree of centralization according to the communications

channel constraints. The Quantized Detection technique replaces local detectors by

quantizers and sets a global fusion rule that approximates the centralized decision rule.

The algorithm matches the other techniques at extreme limits.

Chapter IV contains some specific applications of the Quantized Detection

Algorithm for detection problems. A significant performance improvement is attained

by replacing Distributed Detection with Quantized Detection with three quantization

levels (one and half information bits per sample vice one information bit per sample).

Chapter V considers applicability of the Quantized Detection Algorithm to the

case of vector observations. In this case local sufficient statistics are quantized in the

same way as before.

Chapter VI deals with the regeneration of sensor observations from their

quantized versions and another correlated observation. The local quantizers and the

optimum linear data fusion are designed. We arrive at the following results and

conclusions.
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B. RESULTS

1. Detection with Distributed Sensors

a. Optimum Fusion Rules in Distributed Detection

The optimum fusion rule depends on the ratio of costs of different types of

detection errors. For high cost of false alarm relative to the cost of missing the target

the AND fusion rule is better than the OR fusion rule, and vice versa.

The performance of the optimum fusion rule depends on the degree of

correlation between sensors. The performance degrades as the correlation coefficient

increases. The worst performance of the optimum fusion rule is at and above a critical

value of the correlation coefficient p^ . In that region of correlation the best system

employs only the detector of higher signal-to-noise ratio, ignoring the lower signal-to-

noise ratio sensor entirely. The performance of the Distributed Detection system

improves as the signal-to-noise ratio imbalance between sensors increases. However

there is a large performance difference between the Centralized Detection and the

Distributed Detection for values of the correlation coefficient above p .

Below p^^ the performance of the Distributed Detection system improves as

the correlation coefficient gets smaller. The best performance (lowest detection cost) of

the Distributed Detection system is achieved at p = -l. Recall that the Centralized

Detection system has perfect detection at p =-1. This is due to the efficient use of the

information contained in two observations of positive signals and anticorrelated noise

samples.

The large performance difference between Centralized Detection and

Distributed Detection systems is due to the loss of information in the local detection

processes. As a remedy to the performance degradation in Distributed Detection we

have introduced the Quantized Detection Algorithm.

b. Quantized Detection

There is a great improvement in the system performance using Quantized

Detection with three quantization levels in comparison to Distributed Detection. This

performance difference between Quantized Detection and Distributed Detection

decreases as the correlation between sensors increases.

The Quantized Detection algorithm is applicable to the case of vector

observations and waveform observations. In those cases, the local sufficient statistics

are to be quantized at the local processor and transmitted to the central site for fusion.
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The Quantized Detection algorithm is implemented by the quantizers as

local processors and a fusion rule, suggested by the Centralized Detection decision rule,

at the central site. The quantizers used in the Quantized Detection algorithm are

designed to minimize the detection cost.

2. Minimum Mean Square Estimation in Distributed Sensor Systems

Minimum mean square estimation in Distributed Sensor Systems involves the

classical Lloyd-Max minimum distortion quantizers at the local levels and linear

processing at the global central level. A faster iterative algorithm to calculate the

Lloyd-Max quantizer parameters is the method of successive substitution. It also has

more accurate results than previously reported techniques.

C. CONCLUSIONS

We conclude the following:

1. Global optimization of the Distributed Detection implies picking the fusion rule

and corresponding local decisions that minimizes the detection cost.

2. The optimum fusion rule in Decentralized Detection depends on the correlation

coefficient , the a priori probabilities and the ratio of costs.

3. For optimum fusion of two local unbalanced decisions there is a particular

value of p that decides the optimum fusion rule.

4. For p ^ p OR fusion is better for higher cost of missing target while AND
fusion is better for higher costs of false alarm.

5. For p >
p^j. the optimum fusion rule is to ignore the sensor of lower signal-to-

noise ratio and optimize the decision of the higher signal-to-noise ratio sensor.

6. The poor performance of Distributed Detection compared to Centralized

Detection is due to the loss of information at the local levels.

7. The Quantized Detection system matches the Distributed Detection system and

the Centralized Detection system for the two extreme conditions of

quantization. As the number of quantization levels increases the Quantized

Detection converges to Centralized Detection.

8. The Quantized Detection algorithm has a tremendous improvement in

performance over Distributed Detection even with only 3 quantization levels.

9. The performance difference between Quantized Detection and Distributed

Detection increases as the correlation of the observations gets smaller.

10. In case of linear Centralized Detection threshold equations in the observation

space, Distributed Detection and Centralized Detection are special cases of

Quantized Detection.

11. The Quantized Detection algorithm can get the maximum allowable

performance in the presence of communication constraints.
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12. The Quantized Detection algorithm can be applied to arbitrary distributions for

the observations.

13. The method of successive substitution is applicable to the design of many types

of quantizers. It has a simple programming procedure and very accurate results.

D. SUGGESTIONS FOR FUTURE RESEARCH

The following are some areas the Quantized Detection algorithm can extend to:

1. Optimum detection using quantized sensor observations for the case of

unknown signal in noise.

2. Detection of M-ary phenomena using quantized sensor data.

3. Utilizing the Quantized Detection algorithm over noisy channels.

4. Illustration of the relation between the complexity in some suitable units and

the amount of information delivered to the fusion center.

5. Utilizing the Quantized Detection algorithm to meet the Neyman-Pearson

criterion.

6. Extension of Distributed Detection and Quantized Detection to more than two

sensors with correlated observations and unequal SNR's.

7. Development of general principles for parsing fusion rules given a Centralized

Detection surface in N-dimensional space.

8. Application of the Quantized Detection method to target detection,classification

and tracking using distributed sensors.
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APPENDIX A
PROBABILITY OF DETECTION AND PROBABILITY OF FALSE

ALARM OF THE PRIMARY DECISION MAKER

Given that the Primary Decision Maker (PDM) receives Q. (the j^ quantization

level of the Consultant observation y^), and that its own observation is y2, its

observation space is divided into two decision subspaces Zy and Zg.. Let us denote the

conditional probability of detection and probability of false alarm given Q. by P^. and

P^ respectively. P^. and P^ are given by:

Pjj = Pr(Declare H^ /y^^
= Q. M^ is true) (A.l)

and

Pf^
= Pr(Declare H^ /y^^

= Q. .Hg is true). (A.2)

These can be expressed as:

di=| ^z «y, />•!,= Qj,Hi)dyj (A.3)

and

or equivalently as
,

Pdi =i ^ z J ^ ffyi .^2 ''>-i,
=
Qi ."i )''yi

dy2 (a-5)

and

^^ ^i E Z ^ V^^l '^2 /yiq =Qi 'Ho )dyi ^72 (A.6)
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But n:yj ,72 /Qj .Hj ) is given by [40]

^ ^ J
' (^0 otherwise

where Pr(Q. /R ) is the probability of the
j^j^

quantization level of yj under hypothesis

Hj . It is given by:

Pr(Q./Hi) = J ^^^^yi/Hj) dy^ ,j= 1,2,...N .1 = 0,1 (A.8)

The probability of detection and probability of false alarm are now

and

Pf=S^j Pr(Qj'Ho)P^ (A. 10)

Inserting (A.5 and (A. 6 ) into (A.9 ) and (A. 10 ) yields

\X i;;"i,ez,^^^'^-"^^'^^'^^
^'-'^

and

N X. , CO

Pf = 1 U*'i^ , pvyi '"o )
dy, Jyj (3-5)

M '2 Ij

where Zj. is the decision region Z^ given that y^ e [ X. ,X.^j ] .
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APPENDIX B

PROGRAM LISTING TO CALCULATE PARAMETERS OF THE N AND
THE (N + 1)-LEVEL QUANTIZERS

In this appendix we give a program listing to calculate the parameters of the N
and the (N+ l)-level quantizers in configuration A

C THIS PROGRAM CALCULATES THE OPTIMUM N-LEVEL AND (N+1) -level
C QUANTIZER PARAMETERS
C FOR A SYSTEM OF TWO QUANTIZERS AND THEIR FUSION CENTER.
C THE RATIO OF COSTS C RANGES FROM 0.1 AND 10 .

C THE VALUE OF N =2,3,4,5 AND 6.
C THE PROGRAM USES THE MODIFIED METHOD OF SUCCESSIVE SUBSTITUTIONS .

REALMS X(9),T(9),XX(9),TT(9),C,S1,S2,A,B,A12,A21,R,C1(20),R1(2)
1 , AERR , RERR , ERROR , PD , PF , PDl ( 20 , 9 , 6 ) , PFl ( 20 , 9 , 6 ) , PD2
1,PF2,PDC,PFC,X2,R3(20,2,6) ,X11 ,DCADER,F1 ,F2,APD, APF,A1 , A2 ,AP
INTEGER K,N,I,P,N1,N2,M,J,MX
EXTERNAL F1,F2
COMMON X11,R
DATA CI/ 10 . ODD , 9 . ODO , 8 . GDC , 7 . GDC, 6 . ODO , 5 . GDC, 4 . ODO, 3 . ODD , 2 . ODO

,

11.50DG,
ll.GDG, .9GDG, .8GDG, .7GDG, .60D0, . 50D0, .40DG , .3GDG, .20D0 ,0 . lODO/
A1=1.GDG
A2=2.GD0
S1=1.GD0
S2=1.0D0
R1(1)=0.600D0
R1(2)=0.S000D0
AERR=G.ODO
RERR=0.00010DG

C INITIAL GUESS
XX(1)=-9.50000DG
XX(2)=-1.9000D0
XX(3)=-1.50000DG
XX(4)=-0.89000D0
XX(5)=00.50000D0
XX(6)=0.09000D0
XX(7)=0G.99000D0
XX(8)=01.50000DG
XX(9)=2.09000DG

C TT(1)=4.67000D0
C TT(2)=3.89000D0
C TT(3)=2.67000D0
C TT(4)=2.29000DG
C TT(5)=1.90000D0
C TT(6)=1.49000D0
C TT(7)=1.G9000D0
C TT(8)=00.50000D0
C TT(9)=0.19000D0

C THE FOLLOWING INITIAL VALUES OF T'S CORRESPOND TO THE CASE
C OF CORRELATION COEFFICIENT GREATER THAN A1/A2

TT(9)=4.67000D0
TT(8)=3.89000D0
TT(7)=2.67000D0
TT(6)=2.29000D0
TT(5)=1.90000D0
TT(4)=1.49000D0
TT(3)=1.G9000D0
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TT(2)=00.50000D0
TT(1)=0.19000D0
DO 500 N=2,2

WRITE(9,60)N
DO 600 1=6,9

C INPUT VALUE (S) OF THR CORRELATION COEFFICIENTS
R=0.10D0'^DFLOAT(I)
WRITE(9,61)R

C DO 200 M=l,20
M=l
C=C1(M)
WRITE(9,61)C

C INPUT MAXIMUM NUMBER OF ITERATIONS HERE
MX=250
K=0

5 K=K+1
IF (K .GT. MX) GO TO 10
IF (K .GT.l) X(N)=XX(N;
IF (K .GT.l) T(N)=TT(N
IF (K .GT. 1)X(N)=XX(N
IF (K .GT. 1)T(N)=TT(N
A=(S1*XX(2)-R'*^S2*TT(1))/(S1*S2*DSQRT((1.0D0-R**2)*2.0D0))

f/A12=(S2'^A1-R*S1'*^A2)/(S1*S2'^DSQRT((1.0D0-R**2)*2.0D0))
A21=(S1*A2-R*S2*A1)/(S1*S2'*^DSQRT((1.0D0-R*'^2)'^2.0D0))

TT(l)=(A2*A2/2.0D0+DLOG(C)+DLOG((DERFC(A)-
1 2.0D0)/(DERFC(A-A12)-2.0D0)))/A2

T(1)=TT(1)
A=(S1*TT(2)-R*S2*XX(2))/(S1*S2*DSQRT((1.0D0-R**2)*2.0D0))
B=(S2'^T(1)-R'^S1*XX(2))/(S2'*^S1'^DSQRT((1.0D0-R'^*2)^2.0D0))
XX(2) = (Al'^Al/2.0D0+DLOG(C)+DLOG((DERFC(A)-

1 DERFC(B))/(DERFC(A-A21)-DERFC(B-A21))))/A1
X(2)=XX(2)
IF (N .EQ. 2) GO TO 17
DO 15 P=2,N-1

X(P)=XX(P)
A=(S1'*^X(P)-R'^S2'^T(P))/(S1*S2*DSQRT((1.0D0-R**2)*2.0D0))
B= S2^X(P+1)-R'^S1*T(P))/(S2*S1'^DSQRT((1.0D0-R^'^2)*2.0D0))
TT(P) = (A2'^A2/2.0D0+DLOG(C)+DLOG((DERFC(A)-

1 DERFC(B))/(DERFC(A-A12)-DERFC(B-A12))))/A2
T(P)=TT(P)

A=(sm(P+l)-R'^S2*X(P+l))/(Sl'^S2*DSQRT((1.0D0-R**2)*2.0D0))
B=(S2^T(P)-R'^S1^X(P+1))/(S2*S1'^DSQRT((1.0D0-R**2)*2.0D0))
XX(P+l)=(Al*Al/2»0D0+DLOG(C)+DLOG((DERFC(A)-

1 DERFC(B))/(DERFC(A-A21)-DERFC(B-A21))))/A1
15 CONTINUE
17 CONTINUE

TT(N) = (A2'*^A2/2.0D0+DLOG(C)+DLOG(DERFC((XX(N)-R*TT(N))/
1DSQRT((1.0D0-R*^2) '^2.000))
1/DERFC((XX(N)-A1-R*(TT(N -A2))/
1DSQRT( (1.0D0-R'^*2)^2.0D0))
1))/A2

C CHECKING THE ACCURACY
C INPUT REQUIRED PRECISION HERE

AP=0.10d-07
IF((DABS(T(N)-TT(N)) .GT. AP) .OR. (DABS(X(N) -XX(N) ) .GT.

1 AP))GO TO 5

10 CONTINUE
X(1)=-10.0D0
X(N+1)=10.0D0
APD=0.0D0
APF=0.0DO
DO 81 Q=1,N

A=X(Q)
B=X(Q+1)
X11=T(Q)
APD=APD+0 . 50D0'^DCADRE ( Fl , A , B , AERR , RERR , ERROR , IREl

)
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IF (IREl .NE. 0) WRITE(6,60)IRE1
APF=APF+0.50DO*DCADRE(F2,A,B,AERR,RERR,ERROR,IRE1)
IF (IREl .NE. 0) WRITE (6, 60) IREl

81 CONTINUE
PD1(M,I,N)=APD
PF1(M,I,N)=APF
R3(M,I,N)=1.0D0+C1(M)*APF-APD

C QUANTIZER PARAMETERS
DO 120 J=1,N

WRITE(9,62) X(J),T(J)
120 CONTINUE

C WRITE(9,90)
C200 CONTINUE
C WRITE (9, 90)
C WRITE(9,90)
600 CONTINUE

C WRITE (9, 90)
C WRITE(9,90)
C WRITE(9,90)
500 CONTINUE

DO 501 J=l,2
DO 502 1=1,20

C*****A5<c*A***yc:ic**:*r*5t***^xx5>c*************A*5lt5«c***7<f************
C OUTPUT DETECTION COST

WRITE(10,61}C1(I),{ R3(I,J,N) ,N=2,6)
^***************************:*'X**rc*7T7<:******x*********:^*7r*****
C - OUTPUT PROBABILITY OF DETECTION AND PROBABILITY OF
C FALSE ALARM FOR DIFFERENT VALUES OF N

WRITE(8,61)( PD1(I,J,N),PF1(I,J,N) ,N=2,6)
502 CONTINUE
501 CONTINUE
60 F0R1^T(1X,I4,4(1X,F15.8))

C90 FORMAT (2X ,' CON A 7^*'^'^**'^'^*****************************")
61 FORMAT(1X',10(1X,F6.4))
62 F0RMAT(1X,2(1X,F15.8))

STOP
END

FUNCTION F1(X)
REAL*8 X,F1,A1,A2,R,X11,F11,F12
COMMON X11,R
A1=1.0D0
A2=2.0D0
F11=DEXP(-(X-A1)**2/2.0D0)/

IDSQRT ( 8 . ODC^DATAN ( 1 . ODD )

)

F12=DERFC( (X11-A2-(X-A1)'*^R)/
1(DSQRT(2.0DO'^(1.0DO-R**2))))
F1=F11^F12
RETURN
END
FUNCTION F2(X)
REAL*8 X,F2,R,X11,F11,F12
COMMON X11,R
F11=DEXP(-X'^*2/2.0D0)/

IDSQRT ( 8 . 0D0*DATAN ( 1 . ODO )

)

F12=DERFC((X11-X^R)/
IDSQRT ( 2. 0D0*(1.0D0-R**2)))
F2=F11*F12
RETURN
END
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APPENDIX C

PROGRAM LISTING TO CALCULATE PARAMETERS OF THE TWO
QUANTIZERS

In this appendix we give a program listing to calculate the parameters of the two

N-level quantizers in Configuration B.

C THIS PROGRAM CALCULATES THE OPTIMUM N-LEVEL QUANTIZER PARAMETERS
C FOR A SYSTEM OF TWO QUANTIZERS AND THEIR FUSION CENTER .

C THE CORRELATION COEFFICIENT IS ASSUMED TO BE LESS THAN A1/A2.
C FOR THE CORRELATION COEFFICIENT IS GREATER THAN A1/A2 THE
C THE PROGRAM NEEDS SLITE MODIFICATIONS ACCORDING TO THE QD ALGORITHM.
C THE RATIO OF COSTS C RANGES FROM 0.1 AND 10.
C THE VALUE OF N =2,3,4,5 AND 6.
C THE PROGRAM USES THE MODIFIED METHOD OF SUCCESSIVE SUBSTITUTIONS .

Q*** ^ic* :*tK*X T^r xX :*: :1c jicXX 7*1 7*:X 7CX tIc 7*: yc*XA :^ 7*:* 7*r :*: T^c 7CA :*: jlc tIc 7C :^ :^*

REALMS X(8),T(8),XX(8),TT(8),A1,A2,S1,S2,R,T12,T21,AA2,A,B
1 , AERR , RERR , ERROR , PD , PF , PDl ( 20, 9 , 6 ) , PFl ( 20 , 9 , 6 ) , PD2
1,PF2,PDC,PFC,C1(20),A21,A12,C,X2
1 , XI 1 , DCADER , Fl , F2 , APD , APF , R3 ( 20 , 2 , 6

)

INTEGER K,N,I,IER1,IER2,M,P,Q,L
EXTERNAL F1,F2
DATA CI / 10 . ODO , 9 . ODD , 8 . ODO , 7 . ODD , 6 . ODO , 5 . ODD , 4 . ODO , 3 . ODD , 2 . ODO

,

11.50D0,
11. ODO, .90D0, .80D0, .70D0, .60D0, .50D0, .40D0, .30D0, .20D0 ,0 . lODO/
COMMON Xll^R

(;****x;^xxxxxxxx7^xx:<cyc7^:ic*7<c******yf*yc****3*:*:^5ic7<c****

C INPIT SIGNALS HERE
A1=4.0D0
A2=2.0D0

C INPIT VARIANCE HERE
S1=1.0D0
S2=1.0D0

C*7lcyc*7icA7lcX*X:i^XXX*>V7lc*5!c7lt:V****5V*5lt*5«tA**5^****5<r*********5<C***

C INITIAL GUESS OF THE PARAMETERS
XX(1)=-0.50000D0
XX(2)=0.89000D0
XX(3)=01.50000DO
XX(4)=2.89000D0
XX(5)=03.5GG00D0
XX(6)=4.09000D0

C INITIAL VALUES OF T'S FOR CORRELATION COEFFICIENT GREATER THAN A1/A2
TT(1)=-0.67000D0
TT(2)=0.89000D0
TT(3)=01.67000D0
TT(4)=2.89000D0
TT(5)=03.50000D0
TT 6)=4.89000D0

C********xx:(5icyc:^r7icxx>k5^7it7icxx*:i^************************^

C INITIAL VALUES OF T ' S FOR CORRELATION COEFFICIENT LESS THAN A1/A2
C PUT TT(1) > TT(2)> >TT(N)

AERR=O.ODO
RERR=0.00010D0
DO 500 N=l,5
DO 11 1=1,2
R=DFL0AT(I-1)*0.250D0
DO 20 M=l,20
C=C1(M)
K=0

5 K=K+1
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C WRITE(6,60)K,T1,T11,T2,T22
IF (K .GT.IOO) GO TO 10
DO 25 L=1,N
T(L)=TT(L
X(L)=XX(L)

25 CONTINUE
XX(1)=(A1*A1/2.0DO+DLOG(C)+DLOG(DERFC((T(1)-R*X(1))/

1DSQRT((1.0D0-R*'^2)*2.0D0))
l/DgRFC (T(l)-A2-Rf(X(l)-Al))/
1DSQRT((1.0D0-R**2)^2.0D0))
1))/A1

IF (N .EQ. 1) GO TO 16
A21=(S1'^A2-R^S2=^A1)/(S1*S2*DSQRT((1.0D0-R**2)*2.0D0))
A12=(S2*A1-R*S1*A2)/(S1*S2*DSQRT((1.0D0-R**2)*2.0D0))
DO 15 P=1,N-1

A=(S1*X(P)-R*S2*T(P))/(S1*S2*DSQRT((1.0D0-R'^*2)*2.0D0))
B=(S2'^X(P+1)-R'^S1*T(P))/(S2'^S1*DSQRT((1.0D0-R'*^'^2)*2.0D0))

TT(P)=(A2*A2/2.0D0+DLOG(C)+DLOG((DERFC(A)-
1 DERFC(B))/{DERFC(A-A12)-DERFC(B-A12))))/A2

A= (S1*T (P+1 ) -R*S2'^X(P+1 ) ) / ( S1*S2'^DSQRT ( ( 1 . 0DO-R**2 ) *2 . ODD )

)

B=(S2'^T(P)-R'^S1*X(P+1))/(S2*S1*DSQRT((1.0D0-R**2)*2.0D0))
XX(P+1)=(A1*A1/2.0DO+DLOG(C)+DLOG((DERFC(A)-

1 DERFC(B))/(DERFC(A-A21)-DERFC(B-A21))))/A1
15 CONTINUE
16 CONTINUE

TT(N)=(A2*A2/2.0DO+DLOG(C)+DLOG(DERFC((X(N)-R*T(N))/
IDSQRT ( ( 1 . ODO-R'^'^^2 ) ^2 . ODO )

)

1/DERFC((X(N)-A1-R^(T(N)-A2))/
1DSQRT((1.0D0-R**2) '^2.000))
1))/A2
IF((DABS(T(N)-TT(N)) .GT. 0.10D-05).OR.(DABS(X(N)-XX(N)) .GT.

1 0.10D-05))GO TO 5

10 CONTINUE
X(N+1)=10.0D0
APD=O.ODO
APF=O.ODO
DO 81 Q=1,N

A=X(Q)
B=X(Q+1
X11=T(0
APD=APD+0 . 50D0*DCADRE ( F1 , a , B ,

AERR , RERR , ERROR , IREl

)

IF (IREl .NE. 0) WRITE(6,60)IRE1
APF=APF+0 . SODC'^DCADRE ( F2 , A , B , AERR , RERR , ERROR , IRE 1

)

IF (IREl .NE. 0) WRITE(6,60)IRE1
81 CONTINUE

PD1(M,I,N)=APD
PF1(M,I,N)=APF

R3 (M, I ,N)=1 . ODO+Cl (M)*PF1 (M, I ,N) -PDl (M, I ,N)

C OUTPUT SYSTEM PARAMETERS
DO 120 J=1,N

WRITE(9,62) X(J),T(J)
120 CONTINUE

C WRITE(9,61)C,T(1),T(2),APD,APF
C WRITE(8,61)APD,APF
C WRITE(6,61)C,X(1),X(2),APD,APF,PDC,PFC
20 CONTINUE
11 CONTINUE

C WRITE(9,90)
WRITE (8, 90)

500 CONTINUE

C OUTPUT AVERAGE COST
DO 501 J=l,2
DO 502 1=1,20
WRITE(10,61)C1(I),( R3(I,J,N) ,N=1,5)

C OUTPUT PROB. OF DETECTION AND PROB. OF FALSE ALARM
WRITE(8,61)( PD1(I,J,N),PF1(I,J,N) ,N=1,5)

502 CONTINUE
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WRITE(8,90)
501 CONTINUE
60 F0RMAT(1X,I2,9(1X,F6.4))
90 F0RI-IAT(2X ' CON B ****''?'<******************************'
61 FORMAT(lx!lO(lX,F6.4))
62 F0R14AT(1X,2(1X,F15.8))

STOP
END

FUNCTION F1(X)
REALMS X,F1,A1,A2,R,X11,F11,F12
COMMON X11,R
A1=4.0DG
A2=2.0D0
F11=DEXP(-(X-A1)**2/2.0D0)/

IDSORT ( 3 . ODC^DATAN ( 1 . ODO ) )

F12=DERFC({X11-A2-(X-A1)*R)/
1(DSQRT(2.0D0'^(1.0D0-R**2))))
F1=F11*F12

• RETURN
END
FUNCTION F2(X)
REAL'^S X,F2,R,X11,F11,F12
COMMON X11,R
F11=DEXP ( -X**2/2 . ODO)

/

IDSQRT ( 8 . ODO^DATAN ( 1 . ODO )

)

F12=DERFC((X11-X'^R)/
1DSQRT(2.0D0^{1 .0D0-R'^*2) )

)

F2=FII^F12
RETURN
END

116



APPENDIX D
PROGRAM LISTING TO CALCULATE PARAMETERS OF THE TWO
QUANTIZERS FOR THE CASE OF EXPONENTIAL DISTRIBUTIONS

c *************************
C THIS PROGRAM CALCULATES THE OPTIMUM N-LEVEL QUANTIZERS OF TWO SEN-
C SOR OBSERVATIONS OF EXPONENTIAL DISTRIBUTIONS
C TO MINIMIZE A GLOBAL SYSTEM RISK FOR FUSION
C SEE CHAPTER IV
Q *************************

REALMS X(3),T(8),XX(8),TT(8),PD,PF,PD1(20,9,6),PF1(20,9,6),PD2
1 , PF2 , PDC , PFC , CI ( 20 ) , C , X2 , Xll , APD , APF , R3 ( 20 , 2 , 6 ) , AL , BL ,

Y

1,APC(20,2),AFC(20,2),R4(20,2),AD2,AF2,RR2,AP
INTEGER K,N,I,IER1,IER2,M,P,Q,L,MX
DATA CI/ 50 . ODO , 40 . ODO , 30. ODO, 20. ODO , 15 . GDC, 10. ODD , 9 . ODO

,

18 . ODO , 7 . ODO , 6 . ODO , 5 . ODO , 4 . ODO , 3 . ODO , 2 . GDO , 1 . 50D0

,

11. ODO, .90D0, .80D0, .7QD0, .60D0/
C *************************
C INITIAL VALUES OF QUANTIZER PARAMETERS
C FIRST QUANTIZER

XX(1)=00.00000D0
XX(2)=0.89000D0
XX(3)=01.50000D0
XX(4)=1.89000D0
XX(5)=02.50000D0
XX(6)=3.09000DG

C SECOND QUANTIZER
TT(1)=3.G90GG0D0
TT(2)=2.50000D0
TT(3)=01.890G0DG
TT(4)=1.50000DG
TT(5)=G0.89000D0
TT(6)=0.0G00GD0
DO 5GG N=3,6
DO 11 1=1,2

C PARAMETERS OF THE EXP. DISTRIBUTIONS
AL=DFL0AT(I)*0.5GD0
DO 20 M=1,2G
C=C1(M)
DO 55 P=1,N

TT(P)=DLOG(2.0D0*C)*DFLOAT(N-P+l)/DFLOAT(N)/AL
XX(N-P+l)=DLOG(2.0D0'^C)*DFLOAT(N-P+l)/DFLOAT(N)/AL

55 CONTINUE
K=0

5 K=K+1
DO 89 PP=1,N

T(PP)=TT(PP;
X(PP)=XX(PP

89 CONTINUE
C*********************
C INPUT MAXIMUM NUMBER OF ITERATIONS

MX=200
IF (K .GT.MX) GO TO 10

C XX(1)=DLOG(2.0DO*C)/AL-TT(1)
XX(1)=0.GDG
TT(l) = (DLOG(DEXP(-AL'^XX(l))+DEXP(-AL*XX(2)))+DLOG(2.GD0'^C))/AL
DO 15 P=2,N-1

XX(P) = (DLOG(DEXP(-AL*TT(P))+DEXP(-AL'^TT(P-1)))+DLOG(2.GDO*C))/AL
TT(P) = (DLOG(DEXP(-AL*XX(P))+DEXP(-AL'^XX(P+l)))+DLOG(2.0D0*C))/AL

15 CONTINUE
XX(N) = (DLOG(2.GDO'^C)+DLOG(DEXP(TT(N))+DEXP(-AL*TT(N-1))))/AL

C TT(N)=DLOG(2.GDO*C)/AL-XX(N) ^ ^ ^^
^

TT(N)=0.0D0
C ACCURACY CHECKING
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C INPUT PRECESSION HERE
AP=0.10d-05
IF((DABS(XX(N)-X(N)) .GT. AP) .OR. (DABS(TT(l)-T(l) ) .GT.

1 AP))GO TO 5
10 CONTINUE

WRITE(8,60) K
BL=2,0D0'^AL
APD=O.ODO
APF=O.ODO
DO 81 Q=1,N-1
APD=APD+DEXP(-AL*TT(Q))*(DEXP(-AL*XX(Q))-DEXP(-AL*XX(Q+1)))
APF=APF+DEXP(-BL*TT(Q))*(DEXP(-BL*XX(Q))-DEXP(-BL*XX(Q+1)))

81 CONTINUE
APD=APD+DEXP(-AL'^X(N))
APF=APF+DEXP(-BL*X(N))
APC(M,I)=(1.0D0+DLOG(4.0D0*C))/(4.0D0*C)
AFC (M , I )= ( 1 • 0D0+DLOG( (4 . ODO*C) *^2) )/ (4 . 0D0*C)**2
PD1(M,I,N)=APD
PF1(M,I,N)=APF

R3(M,I,N)=1.0D0+C1(M)*PF1(M,I,N)-PD1(M,I,N)
R4(N,I)=1.0D0+C1(M)^AFC(M,I)-APC(M,I)

DO 120 J=1,N

C OUTPUT QUAInITIZER PARAMETERS
WRITE(9,62) XX(J),TT(J)

120 CONTINUE
WRITE(9,90)

20 CONTINUE
11 CONTINUE

WRITE (9, 90)
C WRITE (9, 90)

WRITE(8,90)
500 CONTINUE

DO 501 J=l,2
DO 502 1=1,20
AP2=1.0D0/(2.0D0*C1(I)) .

AF2=AP2^'^2
RR2=1.0D0+C1(I)*AF2-AP2

C OUTPUT DETECTION COST
WRITE(10,61)C1(I) ,RR2,( R3(I,J,N) ,N=3 , 6 ) ,R4(I , J)

C OUTPUT PROS. OF DETECTION AND PROB . OF FALSE ALARM
WRITE(8,61)AP2,AF2,( PDl (I , J ,N) ,PF1 (I , J,N) ,N=3 , 5) ,APC(I , J)

1,AFC(I,J)
502 CONTINUE

WRITE(8,90)
501 CONTINUE
60 F0RIli^T(lX,I6,9(lX,F6.4))
90 FORMAT (2X 'CON B ^^T^*:7^Tr-f^-f^-f^*:-^-k-k**-k-k-k-k-k-ki^-k-k-k-k-k-k-k-k:k:k-kik-k-k> \

61 FORMAT lx!lO(lX,F6. 4;

'

62 F0RMAT(1X,3(1X,F15.8;
STOP
END
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APPENDIX E

PROGRAM LISTING TO CALCULATE PARAMETERS OF THE TWO
QUANTIZERS FOR EXAMPLE 3, CHAPTER IV

I

C THIS PROGRAM CALCULATES THE OPTIMUM QUANTIZER PARAMETERS OF TWO
C N-LEVEL QUANTIZERS IN ORDER TO MINIMIZE A GLOBAL SYSTEM RISK FOR
C DETECTION OF SIGNALS WITH DIFFERENT VARIANCE. N=3 , N=5.
C SI = SIGNAL VARIANCE UNDER HI
C SO = SIGNAL VARIANCE UNDER HO
C Tl = QUANTIZATION POINT FOR N=3 ( T1,-T1 )

C XI, X2 QUANTIZATION POINTS FOR N=5 (XI ,K2 , -XI , -X2)
C C|(20) ARRAY OF RATIO OF COSTS
c K = Number of iterations.

REAL*8 T1,T11,S1,S2,R,C,X2,PD,PF,C1(15),Z31,Z21,X3,X33,X22
1,TS,SSS,TTT(10),X1,PD3,PF3,PDC,PFC,R2,R3,RC
INTEGER K,N,K1
DATA Cl/Ol.ODO, .900D0, .800D0, .700D0 ,0 .60D0 ,0. 50D0 ,0.40D0

,

10. 30D0, 0.20D0, 0. lODO, .090D0, .08GD0, .07000,0. 060D0,0.050D0/
S1=1.0D0
S0=DSQRT(2.0D0)

C INITIAL VALUES OF THE QUANTIZER PARAMETERS
T1=01.15800D0
X1=01.15800D0
X2=00.15800D0
WRITE(6,60)K,S1,S0,C
WRITE(9,60)K,S1,S0,C
WRITE(8,60)K,S1,S0,C
SSS=(1.0D0/S0'^'^2-1.0D0/S1**2)/2.0D0
DO 101 N=2,2
DO 100 1=1,15
C=C1(I)
K=0

5 K=K+1
IF (K .GT.IOO) GO TO 10
T11=T1
TS=(DL0G(S1/S0)+

1DLOG(C)+DLOG{(DERF(T1/DSORT(2.0DO)
1/SO))/(DERF(T1/DSQRT(2.0DO)/S1)))*DFLOAT(N-1))/SSS

C IF (TS .GT. O.ODO) T1=DSQRT(TS)
T1=DSQRT(DSQRT(TS))

IF((DABS(T1-T11) .GT. 0.10D-05)) GO TO 5
CONTINUE

10 TTT(N)=T11
K1=0

55 K1=K1+1
IF (Kl .GT.IOO) GO TO 15
a33=X3
X22=y2
X2=(DL0G(S1/S0)+

1DLOG(C)+DLOG((DERF(X3/DSQRT(2.0DO)
1/S0))/(DERF(X3/DSQRT(2.0D0)/S1))))/SSS

C IF (TS .GT. O.ODO) T1=DSQRT(TS)
X2=DS0RT(X2)

Z30=DERF(X3/DSQRT(2.0D0)/S0'
Z20=DERF(X2/DSQRT(2.0D0)/S0'
Z31=DERF(X3/DSQRT(2.0D0)/S1'
Z21=DERF(X2/DSQRT(2.0D0)/S1'
X3=(DLOG(S1/S0)+

1DLOG(C)+DLOG((Z30-Z20)/(Z31-Z21)))/SSS
X3=DSQRT(DABS(X3))
IF(((DABS(X2-X22 .GT. O.lOD-05)) .0R.(( DABS(X3-X33) .GT,

10.10D-05))) GO TO 55
CONTINUE

15 TTT(N)=T11
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TS=-DLOG(SO**2/S1**2/C)/SSS
PDC=1,0D0-DEXP(-TS/(2.0D0'^S1*S1))
PFC=1.0D0-DEXP(-TS/(2.0D0*S0*S0))
RC=1.0D0+C*PFC-PDC
WRITE(9,60)K,T1,T11,X2,X22,X3,X33
WRITE(6,60)K,T1,T11

PD=DERF (Tll/DSQRT ( 2 . ODO ) /SI ) **N
PF=DERF(T11/DSQRT(2.0D0)/S0)**N

R2=1.0D0+C'^PF-PD
PD3=(DERF(X22/DSQRT(2.0D0)/S1)*2.0D0-DERF(X33/DSQRT(2.0D0)/S1))

1 *DERF(X33/DSORT(2.0DO)/S1)
PF3=(DERF(X"'22/DSQRT(2.0D0)/S0)*2.0D0-DERF(X33/DSQRT(2.0D0)/S0))

1 *DERF(X33/DSQRT(2.0D0)/S0)
R3=1.0D0+C^PF3-PD3
WRITE(8,60)N,PDC,PFC,PD,PF,PD3,PF3
WRITE(10,60)N,C,R2,R3,RC

; IF ((I .EQ. 1) .OR. (l .EQ. 10 )) WRITE(10,60)N,C,R2 ,R3 ,RC
WRITE(6,60)N,C,TTT(N),PD,PF,PD3,PF3

100 CONTINUE
101 CONTINUE
60 FORMAT(1X,I3,6(1X,F10.7))

STOP
END
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APPENDIX F

LINEAR MINIMUM MEAN SQUARE ESTIMATE OF Y^

Having 7 =[ y, y2 f the LMMS estimate of y, and the corresponding mean

square error are given by [34]:

Yi
= E{yi r mi Y' ]' I (F.l)

and

E{e2 } = Ely^^ ^.^{y^
yt ]E(y t Y^ E(7 y^ ] (F.2)

where

E{yir} = [E(yiy, } E(y^ y^ } ]
(F.3)

and

E{lt] =

E(y2yiJ E(:y^2) J
(F.4)

The entries of these matrices are:

E(yiy.<,)=jS'i'iQiE{yi''yiq=Q,)

N
=y p. Q. c.

(F.5}

Ni

E(y2yiq)=lPjQjE(y2/yiq=Qj)
j
= i

(F.6)

but
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E(y2
/yiq

= Qj
) = E{{y2/ 71 }/yiq

= Qj

)

(f-7)

For the case where y^ and ^^ are jointly gaussian, we can write

E(y2yiq}=p<^i^2SPjQjS/^i' (F-8)

^^y2yiQ^=p^i *^2^* (^•^)

2 1 _•
E^V^72nPiQi2 (p-iO)

= '^1'

n

Inserting these in (F.l ) and (F.2 ) and performing matrix multiplications yields

vj = 1(1- p2 )n y^^ + p -^ (n -p^ )y2l /(n -fi^ p^

)

(6.2)

and

E(e2) =
(yf

(ly )(l-co)/(l-p2co) (6.11)

where (O is given by:

co=n2/Ti. (6.12)
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APPENDIX G
SOLUTION OF THE LLOYD-MAX QUANTIZER PARAMETERS BY

THE METHOD OF SUCCESSIVE SUBSTITUTION

1. INTRODUCTION

The minimum distortion quantizer parameters [18,23], as well as parameters

based on other criterion such as quantizers for signal detection [41], minimum risk

"quantizers and quantizers for LMMS estimation error dealt with in this thesis, can be

solved by Max's trial and error technique [18]. There are also many other

approximation methods to calculate the quantizer parameters [42], [43] and [44].

In this Appendix we apply the method of successive substitution and its

modifications [19] to solve for the Lloyd-Max quantizer parameters. It is more accurate

and computationally more efficient than the previously reported methods. It is shown

to easily generate 7 bit (128 level) optimum quantization.

2. STATEMENT OF THE PROBLEM
The Lloyd-Max minimum mean square distortion quantizer problem deals with

transforming a random variable X of difierentiable probability density function f(x)

into the N-level discrete random variable Y.

Y(X) = Y.forXe[Xj,Xj^J (G.l)

The optimum parameters minimize, the distortion D

D = ^r''"U-yj)2fi:x)dx {G.2)
1=^ X.

'

1

with

.00 =X ^ X < < X < X =00

Differentiating D with respect to x. and y. yields the following necessary conditions of

optimality :

^i=(yi +yi + l)/2 ,i=2,3,...N (G.3)
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x,+i , x=

y. =(J •+lxirx)dx)/(f '+1 f(x)dx),i=l,2,..N (G.4)

a set of simultaneous equations of propagating character. That is, if y^ is chosen

correctly then X2 can be calculated from (G.4 ), y2 from (G.3 ), x^ from (G.4 ) and so

forth [18]. In this case the value of yj^ calculated from (G.3 ) must agree with its value

calculated from (G.4 ) with Xj^^^ =00
. This was the core of Max's trial and error

algorithm; to pick, a value for y^ and calculate the parameters up to and including y,^ ,

which must agree with the value of y>^ calculated from (G.4 ), otherwise, to pick

another value of y^. Let us put the system of equations in the form

Z=G{Z) (GJ)

where Z is a 2N-1 vector given by:

z=[yiX2y2 y^r]' (G.6)

and apply the iterative substitution

Z =G{Z ,.) (G.7)—new — ^—old ^ ^ ^

with a suitable initial guess. The convergence is guaranteed if d G^ Id Z. is sufficiently

small for ever\- k,j = 1,2 2N-1 [19]. From (G.4 )

d G. !d y. = [{X. ^ ^
-y. )[{x. + ^

) + (y^ -x. )f(x. )V{2?. ) (G.8)

where P. is the probability the input of the quantizer is in the
j^^

interval.

P. =fi + l
n;x)dx. (G.9)

J x.
J

The numerator in (G.8 ) is an approximation of the integral in (G.9 ) by the

trapezoidal rule with the subdivision [x. ,y. , x. ^ ^
], so the value of the derivative is

ver>' likely less than one. Also, substituting for y and y.^^ in (G.3 ) from (G.4 ) and

differentiating with respect to x. it is easily to show that
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d a /a X. =(y. -Xj )f^Xj )/(2Pp + (Xj -Yj.i )fi:x. )/2P..j (G.IO)

which is less than {d Q. jd y.). The method can be more efficient if we use the updated

values in the same iteration. In this modification of the method the best current

values of the parameters are used. This choice may also enhance convergence. The

method also avoids the tedious calculation of the upper limit of the integral to solve for

the next x. in (G.4 ).

3. NUMERICAL RESULTS

We have solved for the quantizer parameters for a gaussian random variable of

zero mean and unit variance for several values of N up to 128. Also the mean square

error D and the output entropy (-^j^ Pj^ log2 (Pj^ )) have been calculated. The results

presented in Table 4 show that in several cases Max's results, which were only

available up to N = 36, are not accurate in the last digit.

Key to Table 4

The numbering in the table is as follows.

1. For N even, each table begins with the (N/2+ 1)^ parameters. In this case the

(N/2+ 1)^ value of x is zero.

2. For N odd, Each table begins with the (N72 + 2)^ parameters. In this case the

(N/2 + 2)|^ value ofy is zero.

Negative parameters can be calculated from the symmetry relation

^i
= X„.j^, (G.ll)

and
1

yi
=

y„.i-M-
(G-'2)

A FORTRAN program to calculate the parameters ,distortion and entropy

follows Table 4. The only input to the program is N, the number of quantization levels.
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TABLE 4

MAX'S QUANTIZER PARAMETERS FOR THE NORMAL DISTRIBUTION

N = 2 N = 7

j"'x""y J X Y

2 0.000000 0.797885 4 -0.280289 0.000000
5 0.280288 0.560577

ERROR = 0.363380 6 0.874362 1.188147
ENTROPY_= 1^000000 7 1.610758 2.033369
__ _ _

ERROR = 0. 044000

J X Y 5^I^2£I_= i^iiMll-
2 -0. 612003 0. 000000 N = 8
3 0.612003 1.224006

. — — _ — •_.-___ — — — _ — — _- — - — — — -. J X Y
ERROR = 0. 190174 *---
ENTROPY = 1.535789 5 0.000000 0.245094

========================== 6 0. 500550 0. 756005
N= 4 7 1.049957 1.343909

•-- 8 1.747927 2.151946
J" X Y — — — — — — — — — — — — — — — «-._.

ERROR = 0. 034548
3 0.000000 0.452780 ENTROPY = 2.824865
4 0.981599 1.510418 ==========================

N = 9
ERROR = 0. 117482 "-

ENTR0PY_= 1:_511222 J X Y

"~N~= 5 5 -0.221819 0. OOOOOo'
6 0.221819 0.443639

J X Y 7 0.681217 0.918796
8 1.197594 1.476392

3 -0.382284 0.000000 9 1.865528 2,254664
4 0.382284 0.764567 ---
5 1.244357 1.724147 ERROR = 0.027853

.

EL^I52ZI_~ 2. 982695

ENTR0PY_= 2^202916 N = 10

.- -
___

0.000000 0. 199623~
.^. 7 0. 4C4740 0. 609857
4 0.000000 0.317716 g 0.833841 1.057825
5 0.658911 1.000106 9 1.324583 1.591340
6 1.446850 1.893595 10 1.968218 2.345096

ERROR =""or057978"' ERROR = 0.022937*"
ENTROPY = 2.442789 ENTROPY = 3.124584
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TABLE 4

MAX'S QUANTIZER PARAMETERS FOR THE NORMAL DISTRIBUTION (CONT'D.)

N = 11 N = 14

X X

6 -0.183729 0.000000 8 0.000000 0.145706
7 0.183729 "0.367458 9 0,293513 0.441321
8 0.559913 0.752367 10 0.595882 0.750443
9 0.965597 1.178826 11 0.918039 1.085635

10 1.435733 1.692639 12 1.276582 1.467528
11 2.059193 2.425746 13 1.703070 1.938612

14 2.281837 2.625062
ERROR = 0.019220
ENTROPY = 3.253506 ERROR = 0.012232

:========================== ENTROPY = 3.582050
N = 12 =========================:

--- - N = 15
J X Y

J X Y
7 0.000000 0.168438
8 0.340142 0.511846 8 -0.136929 0.000000
9 0.694313 0.876779 9 0.136928 0.273857

10 1.081245 1.285711 10 0.414310 0.554764
11 1.534371 1.783030 11 0.702949 0.851134
12 2.140733 2.498435 12 1.013007 1.174879

13 1.360468 1.546057
ERROR = 0.016340 14 1.776266 2.006474
ENTROPY_= 3^371666 15 2.343670 2.680866

N = 13 ERROR = 0.010737
ENTROPY = 3.676630

J X Y ==========================
N = 16

7 -0.156887 0.000000
8 0.156887 0.313773 J X Y
9 0.476012 0.638251

10 0.812600 0.986949 9 0.000000 0.128395
11 1.184106 1.381263 10 0.258222 0.388048
12 1.622890 1.864518 11 0.522404 0.656759
13 2.214522 2.564525 12 0.799550 0.942340

_ 13 1.099286 1.256231
ERROR = 0.014063 14 1.437139 1.618046
ENTROPY = 3.480744 15 1.843532 2.069017

16 2.400803 2.732590

ERROR

ENTROPY =

0. 009501

3. 765328
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TABLE 4

MAX'S QUANTIZER PARAMETERS FOR THE NORMAL DISTRIBUTION (CONT'D.)

<T>
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TABLE 4

MAX'S QUANTIZER PARAiMETERS FOR THE NORMAL DISTRIBUTION (CONT'D.)
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TABLE 4

MAX'S QUANTIZER PARAMETERS FOR THE NORMAL DISTRIBUTION (CONT'D.)

N = 25

J X Y

13 -0. 083805 0. 000000
14 0. 083805 0. 167610
lb 0.252208 0. 336806
lb 0. 423045 0. 509283
17 0. 598128 0. 686972
Id 0. 779592 0. 872212
ly 0. 970115 1. 068019
2U 1. 173279 1. 278540
21 1.394213 1. 509886
22 1. 640881 1. 771876
2J 1. 927050 2. 082224
24 2. 280667 2. 479110
2b 2. 778634 3. 078159

ERROR 0. 004041
ENTROPY = 4. 384064====:===========.

N 26

J X Y

14 0. 000000 0. 080593
15 0. 161536 0. 242480
16 0. 324498 0. 406516
17 0. 490402 0. 574288
18 0. 660961 0. 747635
19 0. 838229 0. 928823
20 1.024813 1. 120803
21 1. 224230 1. 327657
22 1. 441544 1. 555432
23 1. 684648 1. 813865
24 1. 967207 2. 120549
25 2. 316997 2. 513445
2b 2. 810502 3. 107559

ERROR = 0. 003746
ENTROPY = 4. 438843

N 27

J X Y

14 -0.077781 0. 000000
15 0.077780 0. 155561
16 0.233975 0.312389
17 0.392106 0. 471823
18 0. 553594 0. 635364
19 0. 720073 0. 804782
20 0. 893532 0.982281
21 1.076518 1. 170756
22 1.272495 1.374235
23 1. 486469 1. 598704
24 1. 726267 1. 853829
25 2. 005461 2. 157093
26 2. 351670 2. 546247
27 2. 840977 3. 135707

ERROR 0.003483
ENTROPY = 4. 491610

N 28

J X Y

15 0. 000000 0. 075012
16 0. 150307 0. 225602
17 0, 301760 0. 377919
18 0. 455569 0.533219
19 0. 613076 0. 692934
20 0. 775854 0. 858775
21 0.945836 1.032897
22 1. 125522 1. 218147
23 1. 318326 1. 418505
24 1. 529205 1. 639905
25 1. 765925 1. 891945
26 2.041975 2. 192005
27 2. 384821 2. 577637
28 2. 870169 3. 162701

ERROR 0. 003246
ENTROPY = 4. 542507
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TABLE 4

MAX'S QUANTIZER PARAMETERS FOR THE NORMAL DISTRIBUTION (CONT'D.)

N = 29 N = 31

J X y"" '
J X Y

15'"In"n79R^^ n'nnnnnn" ^^ -0.068008 0.000000
ifi n n-T^m n-?9§?§§ 17 0.068008 0.136016
17 0'9?R9ff n'^af^i? 18 0.204446 0.272876
18 nil^l^l n'lUit^ 19 0.342170 0.411464
19 oJfst^R n-tofffZ 20 0.482101 0.552739
20 n ifiq??? n'^mio 21 0.625267 0.697794
21 O^ifai^P n-QnQQ9? 22 0.772858 0.847921
22 9954^? ?-n2nq^Q 23 0.926315 1.004710
23 1 ?79n7A f§i??nQ 24 1.087456 1.170202
24 1 361940 Mini?? 25 1.258670 1.347138
25 1 siqQA? i-iiooJ} 26 1.443261 1.539385
26 1 ao?7Rft I'Qot^ii 27 1.646065 1.752745
27 2 076890 9' 9 9?!?! 28 1.874694 1.996643
28 9 diA^7? oin^ti^ 29 2.142413 2.288184
9Q 9fiqfti77 ? iqZZ?? 30 2.476285 2.664385
t: rif-I.ZZ _li??5 31 2.950981 3.237577

-L:. 30 - ---7^-
32

18 0.282019 0.353110 18 0.131971 0.198052
19 0.425412 0.497714 19 0.264715 0.331378
20 0.571795 0.645876 20 0.399039 0.466699
21 0.722402 0.798927 21 0.535816 0.604934
?? ?-^Z§Z§i ?-?§?^90 22 0.676035 0.747136
9? f§fi?§? 1-126640 23 0.820850 0.894565
24 1.216393 1.306147 24 0.971674 1.048783
?i }'i^lP.9 }• 500912 25 1: 130294 1.211804
25 1.608846 1. /16779 26 1.299072 1.386340
U ^'ftS^SJ i-?f???^ 27 i: 481284 1.576228
o§ 2.110332 2.257440 28 1.681731 1.787233
in i'ttZSiZ ?-§??fJ4 29 1.907981 2.028728
30 2.925088 3.213562 30 2.173234 2.317739—^DDno ;;';;;;;o;;;"-" 3i 2.504429 2.691120

ig?g§PY = W3W9I lL.J.-J.lltlL.J.ilt2llL
ERROR = 0. 002505
ENTROPY = 4. 729784
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TABLE 4
.

•^"

MAX'S QUANTIZER PARAMETERS FOR THE NORMAL DISTRIBUTION (CONT'D:)

N = 64

J" X
^ « »

Y
33" 0."000000'

""0!"033409"
34 0. 066844 0. 100278
35 0. 133787 0. 167297
36 0. 200932 0. 234567
37 0. 268380 0. 302193
38 0. 336238 0. 370283
39 0. 404616 0. 438950
40 0. 473632 0, 508314
41 0. 543408 0. 578503
42 0. 614079 0. 649655
43 0. 685789 0. 721922
44 0. 758595 0„ 795468
45 0. 832972 0, 870476
46 0. 908816 0. 947155
47 0. 986446 1. 025736
48 1. 066112 1. 106488
49 1. 148104 1. 189720
50 1. 232757 1. 275794
51 1. 320468 1. 365141
52 1. 411709 1. 458276
53 1. 507054 1. 555831
54 1. 607210 1. 658589
55 1. 713065 1. 767542
56 1. 825759 1. 883977
57 1. 946794 2. 009611
58 2. 078211 2. 146810
59 2. 222896 2. 298981
60 2. 385143 2. 471305
61 2. 571789 2. 672274
62 2. 794840 2. 917407
63 3. 078922 3. 240437
64 3. 492269 3. 744101

ERROR "or000644~~
ENTROPY = 5. 710078
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TABLE 4

MAX'S QUANTIZER PARAMETERS FOR THE NORMAL DISTRIBUTION (CONT'D.)

N = 128

J" X
-

11' -0. OOOOOl' 0. 016823~~
5(5 0. 033559 0. 050490
67 0.067331 0. 084172
68 0. 101029 0. 117836
69 0. 134765 0. 151644
19 0. 168552 0. 185460
71 0.202404 0. 219347
72 0.236333 0. 253318
73 0.270353 0. 237387
74 0.304477 0. 321567
75 0. 338720 0. 355874
76 0. 373C97 0. 390320
77 0. 407620 0. 424921
78 0. 442307 0. 4596°3
79 0. 477172 0. 494651
80 0. 512231 0. 529812
81 0. 547502 0. 505102
82 0. 583001 0. 600810
83 0. 618747 0. 636684
84 0. 654758 0. 672833
85 0. 691055 0. 709277
86 0. 727658 0. 746039
87 0. 764589 0. 783139
88 0. 801871 0. 820602
89 0. 839528 0. 858454
90 0.877587 0. 896719
91 0. 916074 0. 935428
92 0.955019 0. 974609
93 0. 994453 1. 014296
94 1. 034409 1. 054523
95 1. 074924 1. 095326
96 1. 116037 1. 1367J.7
97 1. 157788 1. 173823
98 1. 200223 1. 221617
99 1. 243391 1. 265165

100 1. 287346 1. 309527
lOi 1. 332146 1. 354766
102 1.377857 1. 400948
103 1. 424543 1. 448143
104 1. 472299 1. 496450
105 1. 521196 1. 545943
106 1. 571339 1. 596733
107 1. 622833 1. 648933
103 1. 675805 1. 702677
105
110

1. 730394
1. 736759

1. 753111
1. 815407

111 1.845085 1. 874762
112 1. 905583 1. 936404
113 1.966503 2. 000601
114 2.034136 2. 067671
115 2. 102332 2. 137993
116 2. 175010 2. 212077
117 2. 25118J 2. 290339
113 2. 3319S6 2. 3736.;4
119 2. 413222 2. 4f>2'51

1
120 2. 510926 2. 5590 iO
121 2. 611463 2. 663885
122 2. 721700 2. 77951

i

123 2. 844280 2. 909047
124 2.983146 3. 057246
125 3. 144589 3. 231933
126 3. 339681 3. 447430
127
128

3. 591183
3. 962315

3. 734936
4. 189694

ERROR
ENTROPY =

0. 000163
6. 699533
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4. PROGRAM LISTING TO CALCULATE THE LLOYD-MAX QUANTIZER
PARAMETERS

C THIS PROGRAM CALCULATES LLOYD-MAX QUANTIZER PARAMETERS BY THE METHOD
C OF SUCCESSIVE SUBSTITUTION FOR THE NORMAL DISTRIBUTION OF ZERO MEAN
C AND UNIT VARIANCE
C The INPUT TO THE PROGRAM IS
C (1) THE NUl-IBER OF QUANTIZATION LEVELS N
C (2) THE MAXIMUM NUMBER OF ITERATIONS M
C (2) THE ACCURACY AP

REAL*8 X(199),T(199),XX(199),TT(199),C , DELTA, AP( 199 ) ,AP
1 , ERROR , ENTROP
INTEGER K,N,I,P,N1,N2,N3,M
C=DSQRT(00.50D0/DATAN(1.0D0))

C DO 99 N=110,110

C INPUT THE NUMBER OF QUANTIZATION LEVELS
N=100
WRITE(9,65)N
WRITE(9,66)
WRITE(9,67)
WRITE (9, 66)

C INITIALIZATION OF THE QUANTIZER PARAMETERS
C

DELTA=0.0150D0*DFLOAT(N)
XX(1)=-10.50000D0
TT(1)=-5.50000D0
X(1)=XX(1'
T(1)=TT(1
DO 50 L=2,N

TT(L)=TT(L-1)-DELTA
XX(L)=(TT(I)+TT(I-1))/2.0D0
X(L)=XX(L)
T(L)=TT(L)

50 CONTINUE

C BEGINING OF THE ITERATIONS
C M = MAXIMUM NUMBER OF ITERATIONS

M = 1050
K=0

5 K=K+1
IF (K .GT. M) GO TO 10
IF (K .GT. 1)X(N)=XX(N
IF (K .GT. 1)T(N)=TT(N

TT ( 1 )=-C'^DEXP ( -XX ( 2 ) '^XX ( 2 ) /2 , ODD ) / (DERFC ( -10. ODO )
-

1DERFC(XX(2)/DSQRT(2.0D0)))
T(l)=TT(i)
IF ( N .EQ. 2 ) GO TO 17
DO 15 P=2,N-1

XX(P)=(T(P)+T(P-1))/2.0D0
X(P)=XX(P)
TT(P)=DEXP(-X(P)*X(P)/2.0D0)-DEXP(-X(P+1)*X(P+1)/2.0D0)
TT (P)=TT(P)*C/ (DERFC (X(P)/DSQRT (2. ODO)) -DERFC (X(P+1)/DSQRT (2.0

1 ODO)))
T(P)=TT(P)

15 CONTINUE
17 CONTINUE

XX(N)=(TT(N)+T(N-1))/2.0D0
TT(N)=DEXP(-XX(N)*XX(N)/2.0D0)*C/DERFC(XX(N)/DSQRT(2.0D0))
X(N)=XX(N)
T(N)=TT(N)
N2=IDINT ( DFLOAT

(
(N+2 )/2

N1=IDINT(DFL0AT( (N+l)/2'

C CHECKING THE PRECISION OF THE SOLUTION
C AP = REQUIRED ACCURACY

AP=0.10D-6
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IF((M0D(N,2) .EQ. 0) .AND
.
(DABS (X(N2) ) .GT. AP))GO TO 5

IF((M0D(N+1,2) .EQ. 0).AND. (DABS(T(N1) ) .GT. AP))GO TO 5
CONTINUE

10 CONTINUE

C OUTPUT RESULTS
IF (M0D(N,2) .EQ. 0)N3=N2
IF (M0D(N+1,2) .EQ. 0)N3=N1
WRITE(6,60) K
DO 120 J=1,N3

IF (J .EQ. 1)
1 WRITE(9,71)J, T(J)

IF (J .GT. 1)
1 WRITE(9,61)J, X(J),T(J)

120 CONTINUE
X(N+1)=10.0D0
X(1)=-10.0D0
ERROR=0.0D0
ENTROP=0.0D0
DO 222 1=1,

N

AP(I)=DERFC(X(I)/DSQRT(2.0D0))-DERFC(X(I+1)/DSQRT(2.0D0))
AP(I)=AP(I)/2.0D0
ERROR=ERROR+AP ( I ) '^T ( I ) *'^2

ENTROP=ENTROP-AP(I)'^DLOG(AP(I))/DLOG(2.0D0)
222 CONTINUE

ERROR=1.0DQ-ERR0R
WRITE(9,66)
WRITE(9,62) ERROR
WRITE(9,66)
WRITE (9, 63) ENTROP
WRITE(9,66)
WRITE(6,72) K
WRITE (9, 90)
WRITE(9,66)

C99 CONTINUE
65 FORMAT (3X, ' N = ',17)
66 F0RI1AT(3X, '

'

)

67 FORMAT (3X,' J X Y ')

60 F0RMAT(1X,I7,8(1X,F6.4))
90 FORMAT ( 2X ,

' ===========================================
'

)

61 F0RMAT(1X,I4, 2(2X,F9.6))
71 FORMAT (IX, 14, IIX, 2(2X,F9.6))
62 FORMAT (7X, 'ERROR =', 2(1X,F9.6))
72 F0RMAT(3X,'# ITERATIONS = ',17

)

63 FORMAT (7X, 'ENTROPY ='
, 2(1X,F9.6))

STOP
END
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