
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1987

An expert system for the diagnosis of vehicle malfunctions.

Selek, Can.

http://hdl.handle.net/10945/22260

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
A2 1 EXPERT

V
SYSTEM FOR THE
EH I CLE MALFUNCT:

by

Can Selek

December 1987

DIAGN
[oris

OS IS OF

The sis Ad'<"- sor Neil c. Rowe

Approved for public release; distribution is unlimited.

T239232

f a=;< f CAT ON D : "- S ; AGE

REPORT DOCUMENTATION PAGE

REPO*T SECvjR iTV CwASS'F'CA T ON

_T. abaj iec

o RESTRICTIVE MARKINGS

SEC.^ ~* C.ASS.F CATION AUTHORITY

;.ASS F CATION DOWNGRADING SCi-iEDu^E

PERrORMlNG ORGAN ZA'ON REPORT NUMBERS

NAVE OF PERFORMING ORGANIZATION

".'aval Postgraduate School

60 OFF CE S v MBO.
(tf applicable)

52

c ADDRESS [City. Srare. and ZIP Code)

>fonterey California 9394 3-5000

id NAVE Or FbNDtNG SPONSORING
ORGAN. ZA* ON

3 DISTRIBUTION /AVAILABILITY OF REPOR'

Approved for public release;
distribution is unlimited.

i
MONITORING ORGANIZATION REPORT" NUMBER(S)

?a NAME OF MONITORING ORGAN1ZAT1ON

Naval Postgraduate School

7d ADDRESS (Oty. State, and ZIP Code)

r^onterey California 93943-5000

8o Of? CE S V M3G.
(if applicable)

It ADDRESS (Ofy. Srare ana ZiPCode)

9 PROCUREMENT .NSTRUMENT OENT '.CATiON NUMBER

'0 SOURCE 0= CUND.\G v vg-: :

PROGRAM
element no

projec
NO

TAS^
NO

AO"«. UNiT
ACCESSION NO

I
~ -z (include Security Classification)

An Expert System for the Diagnosis of vehicle Malfunctions

'2 PERSONAL A^'wOR'S/

Can Selek

13a TYPE = RE=OR*

Master's Thesis
3d 'V
-ROM

DATE OF RE DORT [Year Monrr, Day)

December 1987
5 PAGE COUNT

u
^ps.EVENTAR' NO T ATiON

COSA T CODES

l-l-G^O-?

> Continue on reverse if necessary ana identity by biocx number)

Expert System
Diagnosis, Prolog

'9 A5S" = ACT (Continue on reverse if necessary and identify ov biocx number)

We examine the feasibility cf an expert system to assist in the

diagnosis of vehicle malfunctions. A passive expert planner is proposed

sented.

20 D S* 3 BuTiON AVA.lABiLITY OF ABSTRAC

3 .".CASS- ED LiNL Vi'ED D SAME AS »° T D3'C uSE^S

2<.a NAVE O* RESPONSIBLE 'NDiviDuAl

Neil C.Powe

ABSTRACT SECURITY ClASS^ CATiON

Unci assi fied

223 TELEPHONE (Include Area Coae'i
|

22c OF^iCE SYMBOl

fUQR^ fiU fi 9UR7 ' ^p S?PP

DO FORM 1473,94 '/as 53 aps ea t o -1 -na, oe -.sec until exnaustea

a , otne' eaitions are ooso'ete

SEC 3 " ' C-ASS C 'CAT.QN Q c TUI ^ g AG-

O U.S. Government Printin* 0»lC« I986-60& 2*3

Approved for public release; distribution is unlimited

An Expert System
for the Diagnosis of Vehicle Malfunctions

by

Muf it Can Selek
Lieutenant Junior Grade, Turkish Navy

B.S., Turkish Naval Academy, 1981

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1987

ABSTRACT

We examine the feasibility of an expert system to

assist in the diagnosis of vehicle malfunctions. A passive

expert planner is proposed that utilizes multiple domain-

dependent knowledge bases. The system is implemented on a

personal computer, and is based on general-purpose car

repair manuals. An effort is made to quantify the amount of

information processing necessary to adequately define the

problem. The knowledge base and inference procedures for

such a system are also presented.

TABLE OF CONTENTS

I . INTRODUCTION 6

A

.

BACKGROUND 6

B

.

OVERVIEW 7

II . BACKGROUND 10

A

.

EXPERT SYSTEM CONCEPTS 10

B. SUMMARY OF CURRENT KNOWLEDGE IN DIAGNOSIS 15

III. DESIGN AND IMPLEMENTATION 22

A. PROGRAMMING LANGUAGE 22

B

.

APPROACH 23

C

.

KNOWLEDGE BASE 27

D. INFERENCE PROCEDURE 28

E

.

USER INTERFACE 29

F

.

MODULES 30

IV. CONCLUSIONS AND RECOMMENDATIONS 32

A

.

CONCLUSIONS 32

B. RECOMMENDATIONS 32

APPENDIX A: SOURCE CODE 33

APPENDIX B: SAMPLE USER SESSIONS 63

LIST OF REFERENCES 73

BIBLIOGRAPHY 74

INITIAL DISTRIBUTION LIST 75

I

NA 3 300S
]

LIST OF FIGURES

2.1 Sample IF ...THEN ...INFERENCE RULE 12

2.2 Model-System Difference 17

2 . 3 Index to Problems 19

2 . 4 Sample Section 20

I. INTRODUCTION

A. BACKGROUND

The goal of artificial intelligence (AI) is to develop

computer programs that could in some sense think; that is,

solve problems in a way that would be considered intelligent

if done by a human.

Artificial intelligence imitates both the basic problem

solving and learning process of human beings. "In the

sixties, AI scientists tried to simulate the complicated

process of thinking by finding general methods for solving

broad classes of problems; they used these methods in

general-purpose programs. However, despite some interesting

progress, this strategy produced no breakthroughs.

Developing general-purpose programs was too difficult and

ultimately fruitless." [Ref. 1]

"It wasn't until the late 1970s that AI scientists,

began to realize something quite important: the problem-

solving power of a program comes from knowledge it

possesses, not just from the formalisms and inference

schemes it employs." [Ref. 1] This realization led to the

development of special-purpose computer programs, systems

that were expert in some narrow problem area. These

programs were called expert systems. This knowledge can

often be accessed much faster and with greater accuracy in a

computer than from the human expert.

Within the last few years, research in the field of

artificial intelligence has grown significantly. Early

pioneers of expert systems, such as MYCIN [Ref . 2] in the

area of medical diagnosis, have proven successful enough to

motivate the investigation of similar expert systems in

others fields of study. One such product related to vehicle

diagnosis, besides equipment maintenance expert systems in

commercial and industrial environments, has recently been

put into service by ANALYTICS; it is called AIJPA

(Artificial Intelligence Job Performance Aid).

B. OVERVIEW

While vehicle repairs can be made by many people,

accurate troubleshooting is a rare skill for the amateur and

the professional alike. For that reason, a shortage of

technical experts could have a drastic effect on the

efficiency of equipment malfunction diagnosis. The

personnel performing this task must possess both a good

technical background and a great deal of training and

experience on the particular equipment being repaired.

Therefore, an expert system applied to vehicle diagnosis

could improve job performance, with less maintenance cost.

It will also help solve the lack of well-trained

professionals

.

Thus, the purpose of this thesis is to assess the

feasibility of augmenting the mechanic with a computer in

the maintenance of vehicle. Based on current diagnostic

expert systems such as MYCIN [Ref. 2], our expert diagnosis

system will contain a knowledge base obtained from technical

manuals and expert mechanics. It should be possible for

less-qualified mechanics to quickly and accurately assess

vehicle malfunctions through interaction with the expert

system.

The particular objectives are as follows:

1. Quantify, through the implementation, the amount of

information processing necessary to sufficiently diagnose

the vehicle malfunctions.

2. Evaluate the problems encountered in implementation

when a rule-based expert system is chosen as a basis.

3. As far as the effectiveness of programming languages

is concerned, evaluate the efficiency and ease of use of

PROLOG throughout the implementation.

The implementation of a small-scale expert diagnosis

system demonstrates the feasibility of a larger-scale

system. This implementation involves several sections of

the engine system of the vehicle. The design is implemented

in Arity Prolog [Ref. 3] on an IBM XT computer.

Three assumptions have been made to simplify the

implementation

.

1. There is no partial certainty assigned to the

existence of any individual malfunctions.

2. All indications presented to the mechanic by test

equipment are correct.

3. There exists at least one malfunction.

II. BACKGROUND

A. EXPERT SYSTEM CONCEPTS

An expert system is an extensive body of knowledge

about a specific problem domain. Characteristically, this

knowledge incorporates facts and rules from human experts

and written documentation, and is made available to users,

applying some inference mechanism which governs those rules,

to provide solutions to the problems brought by its users.

1

.

Features of Expert Systems

As Forsyth [Ref . 4] lists some of the distinctive

features of expert systems:

a. An expert system is limited to a specific domain

of expertise.

b. It can reason with uncertain data.

c. It can explain its reasoning path in a

comprehensive way.

d. The facts and inference mechanism are clearly

separated. (Knowledge is not encapsulated into

the deductive procedures.)

e. It is designed to grow incrementally.

f. It is typically rule-based.

2

.

Building an Expert System

"The main players in the expert system environment

are the expert system, the domain expert, the knowledge

10

engineer, the expert-system-building tool, and the end user

[Ref. 1]. Their basic roles and their relationship to each

other are summarized below.

a. The Domain Expert : A person who, through years

of training and experience, has become extremely

proficient at problem solving in a particular

domain

.

b. The Knowledge Engineer : A person who, with a

background in computer science, knows how to

build expert systems. The knowledge engineer

interviews the domain expert, organizes the

knowledge, and decides how it should be represen-

ted in the expert system.

c. The Expert-System-Building Tool : Both the pro-

gramming language and support environment used by

the knowledge engineer or programmers to build

the expert system.

d. End User : The person for whom the expert system

was developed.

3 . Expert System Architecture

a . Knowledge Organization

Expert systems need to be organized in an orderly

manner to avoid confussion. In general, the

knowledge is divided into three categories.

[Ref. 4]

11

1. Factual Knowledge: This knowledge represents

a particular case and is usually gathered

through a dialogue with the user.

2. Procedural Rule Knowledge: This knowledge is

usually collected in advance from the domain

specialist and forms the core of a knowledge

base. This also forms the reasoning part of

the system to infer conclusions.

3. Control Knowledge: The system needs to have

a variety of control strategies available to

it so that alternatives can be tried out at

run time.

b . Procedural Knowledge

The procedural knowledge most commonly used in

current expert systems is a rule-based knowledge

representation in the form of IF <condition> THEN

<action> statements, as shown in Figure 2.1.

IF

1. STARTER TURNS BUT NOT THE ENGINE, and

2. NO HIGH RESISTANCE TO MOVING ENGINE

THEN

CONCLUDE THAT THERE IS A MALFUNCTION IN

STARTER UNIT

Figure 2.1 Sample IF ...THEN ... INFERENCE RULE

12

When the current problem situation satisfies or

matches the IF part of a rule, the action specified by the

THEN part of the rule is performed. This matching of rule

IF portions to the facts can produce what are called rule

firings or inference chains.

c . Control Knowledge

The inference engine reasons and makes inferences

based upon the application of rules and facts

contained in the knowledge base. It

accomplishes this through a control structure.

There are many control structures implemented in

current rule-based expert systems.

One is known as backward chaining or

goal-directed reasoning. This structure begins

with the selection of a specific goal and then

searches the rules to find those whose concequent

actions can achieve that goal. Backward chaining

is often a good control structure when there are

more facts than final conclusions (goals). [Ref

.

5]

Often, rule-based systems work from just a few

facts but are capable of reaching many possible

conclusions [Ref. 5]. For that reason, it makes

more sense to match the rules to the state or

the condition of facts and continually apply

those rules to new states until the desired goal

13

is attained. This control structure is known as

forward chaining or data-directed computation

Different control structure ideas can be combined

in hybrid control structures. "Hybrids of

forward and backward chaining, compromising on

the advantages and disadvantages of both, are

often used. The most common is the rule-cycle-

hybrid control structure because it is easy to

implement. With rule-cycle-hybrid, rules are

tried in order as with backward chaining, but

each rule is used in a forward-chaining way to

assert new facts." [Ref. 5]

d

.

Factual Knowledge

A knowledge base contains facts, assertions, and

rules. Some of the facts are short-term informa-

tion that can change rapidly during the course of

a consultation. Facts in a data base are normal-

ly passive; they are either there or not there.

A knowledge base, on the other hand, actively

tries to fill in the missing information

[Ref. 4].

e. User Interface

Whatever the style of expert systems, they

assume that information is provided manually

through a question asking/answering dialogue, or

automatically by means of sensors or other

14

devices. The interface is that part of the

expert system which controls communication with

the user.

B. SUMMARY OF CURRENT KNOWLEDGE IN DIAGNOSIS

1 . Theory of Diagnosis

"In the theory and design of diagnostic reasoning

systems, there appear to be two quite different approaches

in the literature. In the first approach, often referred to

as diagnosis from first principles, one begins with a

description of some system with an observation of the

system's behavior. If this observation conflicts with the

way the system is meant to behave, one is confronted with a

diagnostic problem, namely, to determine those system

components which, when assumed to be functioning abnormally,

will explain the discrepancy between the observed and

set system behavior. For solving this diagnostic

problem from first principles, the only available

information is the system description, i.e., its design or

structure, together with the observation of the system

behavior. In particular, no heuristic information about

system failures is available, for example, of the kind when

the system exhibits such and such aberrant behavior, then in

90 percent of these cases, such and such components have

failed." [Ref. 6] An example is electronic equipment

troubleshooting.

15

"Under the second approach to diagnostic reasoning,

which might be described as the experiential approach,

heuristic information plays a dominant role. The

corresponding diagnostic reasoning systems attempt to codify

the rules of thumb, statistical intuitions, and past

experience of human diagnosticians considered experts in

some particular task domain. The structure or design of the

corresponding real-world system being diagnosed is only

weakly represented, if at all. Successful diagnosis stem

from the codified experience of the human expert being

modeled, rather than from what is often referred to as deep

knowledge of the system being diagnosed." [Ref. 6] A

notable example is the MYCIN system.

2 . The Behavior of the Diagnostic Reasoning Task

"Engineers and scientists constantly strive to

understand the differences between physical systems and

their models. Engineers troubleshoot mechanical systems or

electrical circuits to find broken parts. Many everyday

common-sense reasoning tasks involve finding the difference

between models and reality." [Ref. 7]

Diagnostic reasoning requires a means of assigning

credit or blame to parts of the model based on observed

behavioral discrepancies. If the task is troubleshooting

then the model is presumed to be correct and all model

system differences indicate part malfunctions, as shown in

Figure 2.2. [Ref. 7]

16

MODEL

PREDICTED
BEHAVIOR

STRUCTURAL
DISCREPANCY

BEHAVIORAL
> DISCREPANCY

SYSTEM

OBSERVED
> BEHAVIOR

Figure 2.2 Model -System Difference

Usually, the initial evidence does not imply a

unique explanation. Then the diagnosis requires two phases.

The first, mentioned above, identifies the set of possible

model-system differences. The second proposes evidence-

gathering tests to refine the set of possible model-sytem

differences until they accurately reflect the actual

differences. [Ref. 7]

"When these theoretical principles are applied in

practice, it is important to note that experts seldom solve

problems using a rigorous theoretical analysis; rather,

their understanding has a more ad hoc character. Some

excellent troubleshooting technicians, for instance, use

very little theory. Yet, by using their own simpler

conceptual models, they can troubleshoot a faulty device

quite efficiently." [Ref. 8]

The thought process of a typical human expert for an

engine under diagnosis is:

17

a. Observe the behavioral discrepancies.

b. Identify the subsections of the engine system

which may explain the behavioral discrepancies,

using the structural definitions of system

model

.

c. Starting from the most problem-related

subsection, search a known fault data base within

that subsection, to figure out the relevant

faults using heuristic information.

d. Find a method supported by procedural information

to test and prune the possible faults.

3 . Concept of the Diagnosis of Vehicle Malfunctions

The familiar example of a car engine system is

chosen as a model for the implementation of a small-scale

system which will diagnose vehicle malfunctions.

To gather information pertaining to procedural

knowledge from sources and convert them into facts and rules

format, it is essential to study car repair guides which are

a good source of information for how knowledge should be

represented. An engine system is composed of five major

subsections [Refs. 9, 10]:

1. Battery section.

2. Cranking/Starter section.

3. Ignition section.

4

.

Fuel section.

5. Compression section.

18

And engine malfunctions can be separated into two

general groups:

1. Engine will not start.

2. Engine performs poorly.

A common approach in the troubleshooting sections of

car repair guides is to use charts of the most common

symptoms of engine malfunctions. For each symptom, relevant

subsystems of the engine system are indexed as in Figure

2.3.

PROBLEM: SYMPTOM

Engine Will Not Start

Starter does not turn
Starter turns, engine
doesn'

t

Starter turns engine
very slowly
Engine fires
intermittently

Engine Performs Poorly

Hard Starting
Rough idle
Backfire through the
carburetor
Backfire through the
exhaust
Blue exhaust gases
Black exhaust gases

BEGIN AT SPECIFIC SUBSYSTEM

Battery, Starter
Starter

Battery, Starter

Ignition

Ignition, Fuel
Ignition, Fuel
Fuel, Ignition,
Compression
Fuel, Ignition,
Compression
Compression
Fuel

Figure 2.3 Index to Problems

The user is expected to proceed to an indexed

subsystem. Sections are arranged so that following each

19

test, instructions are given to proceed to another, until a

problem is diagnosed. For instance, in the sample for

ignition section shown in Figure 2.4:

TEST AND
PROCEDURE

4 . 1 Check for spark
Hold each spark
plug wire approx-
imately 1/4" from
ground with gloves
or a heavy, dry
rag. Crank the
engine and observe
the spark. .

RESULTS AND
INDICATIONS

> If no spark is evident
> If spark is good in

some cases
> If spark is good all

PROCEED
TO

4.2
4.3

4.6

Figure 2.4 Sample Section

This type of approach shows a decision lattice

representation, a strictly procedural nature. However,

decision lattices are better for troubleshooting manuals

than for computers. Despite some of the benefits of

decision lattices in terms of ease of implementation and the

minimal numbers of questions necessary to establish

conclusions, they shouldn't be considered as general

structure for an expert system due to some of the following

disadvantages as stated by Rowe [Ref . 5];

1. They can't always reason efficiently.

2. They are difficult to modify.

3. They may be difficult to design, since at each

point we have to determine the best question to

ask.

20

Also, a human expert searching a known fault set for

that subsystem uses heuristic information, and then tests

and prunes until some is found, not a procedural method.

21

III. DESIGN AND IMPLEMENTATION

This chapter describes what techniques were used to

construct the expert system and why this particular

implementation was chosen.

A. PROGRAMMING LANGUAGE

The computer programming language Prolog is quickly

gaining popularity throughout the world, in artificial

intelligence applications. Prolog is like logic in that it

can infer solutions to problems. Prolog's ability to infer

solutions to problems changes the way in which programmers

work.

"Prolog has three positive features that give it key

advantages over conventional programming languages. First,

Prolog in syntax and semantics is so close to formal logic

that programs are better understood and better maintained.

Second, Prolog provides automatic backtracking, a feature

that simplifies searching alternatives. Third, Prolog

allows a procedure definition to be used for many different

kinds of reasoning." [Ref. 5]

The availability of a Prolog programming tool for the

IBM XT was a very important factor in this implementation.

The design was implemented with the Arity/Prolog interpreter

22

which is a product of Arity Corporation, designed to be a

powerful, highly optimized, and extended version of Prolog.

B . APPROACH

What is expected from an expert system is to follow the

thought process of a typical human expert. As expressed

earlier, the design guidelines could be based on either

moving from the first principles or applying the

experiential approach. Moving from the first principles

which would require cumbersome techniques to simulate the

complex nature of engine system, and so is unapplicable

.

Since both a wide variety of general-purpose car

repair/diagnosis books and the past technical experience of

the designer in engine maintenance field are available, the

experiential approach was chosen.

We next evaluated the quality of information available

in repair books and converted it into the more-convenient

rules and facts format. The design stages were decomposed

in the order of thought processes of a typical human expert.

The first thing to do was to introduce into the computer the

observed behavioral discrepancies in some way. A

troubleshooting chart which collected the most common

symptoms under two general fault cases was mapped to

computer so that when the program is executed, it gives a

menu asking for the case, gets symptoms from the user, and

caches them.

23

Once the symptoms are gathered interactively, the

diagnostic reasoning process should start. For instance,

suppose that a car engine will not start. There are

numerous reasons that an engine will no f start, from an

electrical failure to a faulty fuel system. For that

reason, the second step as followed by both a typical human

expert and the troubleshooting charts is to identify the

subsystems which may explain the behavior and sort them in a

reasonable order. This was carried out by defining an

embedded table of pairs, each illustrating subsystems for

each symptom.

For the third stage of the system-developing phase,

following the procedural nature of troubleshooting charts

was not appropriate as discussed in Chapter II. It was at

this point that a human expert and troubleshooting charts

differ from each other. Starting from the most problem-

related subsystem, we needed to search a known fault

database for that subsystem to find out faults which could

account for the same behavioral discrepancies. At this

point we needed a partitioned control structure. Technical

and heuristic information of the engine system was divided

into separate files containing rules and facts so that each

group would have minimal interactions with other groups.

One more partition was needed to hold the global data and

general control structures.

24

Some subsections showed different implementation

problems than others. For instance, due to the serializable

nature of defects in the battery section, each would show

the same symptoms; an exhaustive search mechanism was used

to test them in a reasonable order. On the other hand, a

rule-cycle-hybrid control structure was used for the

ignition system to test hypotheses.

Since faults within each subsystem were unique to it,

fault lists were used, as for instance:

list_of_expected_diagnosis (battery, [case_cracked,

case_intact, discharged_battery])

.

1 i st_of_expected_diagnos i s (battery_cable_connections

,

[open_circuit, bad_cable_connections])

.

Testing a hypothetical or actual defect is the same.

The human expert must find a method which will reveal

whether it exists or not. For that reason, we have a list

of some recommended methods gathered from repair books, for

each defect under consideration, as in the following:

recommended ([visual_inspection, high_beam, voltmeter],

battery, discharged_battery)

.

recommended([visual_inspection, voltmeter]

,

battery_cable_connections, open_circuit) .

Since we do not assign partial certainly to how precise a

method is, our expert system attempts each method in turn.

There are a couple of comments that we would like to

emphasize. As could be noticed in the above format, the

25

same equipment can be used to verify more than one defect,

but this is rare. That suggests unique definition and

treatment for each operator. And each operator under

consideration passes through the three unique steps:

1. Satisfy Operator Preconditions : For each operator,

a precondition list is formed, such that an

operator would be applied only after achieving

each member of precondition list. This means:

- To check if an operator is available.

- If an operator is available, to check

if the user is capable of using this

operator.

- So as to avoid wrong conclusions, to

check what other system components

should be okay before applying the

operator, taking into consideration the

way the operator will be applied and the

expected measurement.

- And finally, to give precedence to

system components which are

preconditions of other components, to

avoid unnecessary user dialogue.

Some example preconditions:

26

preconditions (visual_inspecton,battery_cable_

connections, open_circuit, []).

preconditions (voltmeter, battery_cable_

connections, bad_cable_connections, [not

(defective (battery)), not(electrical_circuit_

problem), not (unable_to_use (voltmeter))]).

2. Procedure Test : Once the preconditions

for an operator in use are accomplished,

the specific procedure or method is

diplayed

.

3. Verify Diagnosis : A specific

measurement is gathered from the user, a

measurement that should be consistent

with the data previously displayed.

In testing and pruning the possible defects, the

diagnostic reasoning process will come to an end if some are

found. Then the program displays verified diagnostic

results, ordered by the number of methods used to prove

them.

C. KNOWLEDGE BASE

As stated earlier, the knowledge base of our expert

system is composed of partitions, each similar in structure.

This enables us to maintain, update and debug easily only

the necessary partitions.

27

Procedural knowledge and heuristic knowledge are the

two types of information forming the knowledge base. As

discussed before, there was an inadequate amount of

heuristic information in the repair book in the BATTERY and

STARTING sections, so the partitions of those subsystems

were only procedural knowledge, whereas the IGNITION system

is composed of both types of information.

D. INFERENCE PROCEDURE

Two different inference engines were applied in

implementation. The procedure designated as inference-

engine 1 in the GLOBAL file does an exhaustive search to

test each defect in currently active knowledge base.

For those partitions which are going to be driven by

the exhaustive search mechanism, ordering the faults to be

tested is important, for two reasons:

1

.

It is a good idea to assign high priority to

testing defects which are thought to be most

likely.

2. It is good to test preconditions of an operator

before testing this operator. Otherwise, the

expert system will be unfocussed among components

to be verified.

The second procedure is designated as inference-engine

2 in the GLOBAL file. The rule-cycle-hybrid control

28

structure written, in Prolog, by Rowe [Ref. 5] is variant

version of this procedure. Once hypotheses are gathered,

inference-engine 2 activates a procedure which will test

each hypothesis systematically.

A sample rule written in a format recognizable by the

rule-cycle-hybrid (from IGNITION knowledge base) is:

hr: - not (hypothesis (incorrect (distributor_f iring_

sequence)))

,

fact (hard_starting)

,

f act (backf ire_through_the_carburetor)

,

askif (recent_operator_job)

,

asserta (hypothesis (incorrect (distributor_f iring

_sequence))) .

The rule order for rules governed by the rule-cycle-

hybrid is important. A rule is given precedence in database

order over the rules whose right sides mention a predicate

to be asserted by it.

E. USER INTERFACE

Three modules are required to support our user

interface. The first procedure ask-which in the GLOBAL file

was written originally by Rowe [Ref. 5] but was adapted.

The procedure ask-which gathers symptoms, behavioral

discrepancies observed by user. When it is invoked, it

gives a menu, four questions at a time, and asks which

questions should be answered yes. After getting the

29

answers, the invoking procedure checks for contradictory

answers, consulting a table of contradictory sets. If there

is some contradiction, the user is warned. When all done

with input, the symptoms gathered are added to current

database by the asserta built-in predicate.

The second predicate askif of one argument was written

originally by Rowe [Ref . 5] but, was adapted again with some

minor modifications. This procedure gets virtual facts

(facts demanded only when needed). The user is prompted by

some question and is expected to answer either affirmatively

or negatively. Otherwise it complains and asks for a

reasonable answer. Also the answer is cached, so as to not

ask the same question again.

The third procedure is code-interpreter. This

procedure displays the text of information related to a

method to be followed by user to achieve a measurement. If

the user is not satisfied with the information supplied, it

gives the user further explanation, if available.

F . MODULES

Our expert system is made up of partitioned knowledge

bases. While the knowledge bases for BATTERY, STARTER and

IGNITION sections are fully implemented, each under the same

filename as their section names, the knowledge bases for

FUEL and COMPRESSION sections were not implemented due to

time constraints. But to show the features and capability

30

of a vehicle diagnosis expert system, those unimplemented

knowledge bases are suggested in the ENGINE partition for

one particular fault case.

The partitioned knowledge bases are necessary not only

for ease of maintenance and debugging, but also to support

different control structures for each. For that reason,

rather than using the consult built-in predicate, a

reconsult predicate (which replaces the predicates currently

in database with new ones) is always used.

One interesting and powerful feature of our expert

system occurs when the rules belonging to current partition

need to access momentarily some other partition for specific

information about some component. Then the current process

state is saved by the save built-in predicate, and the

information referring to the current process state is pushed

onto a process stack, and the new partition is brought in by

the reconsult predicate. When all done, the original

process state is resumed by the restore built-in predicate.

31

IV. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

Arity/Prolog appears suitable for this implementation,

and the rich built-in predicates available were helpful.

However, the deficiency of error-checking mechanisms against

minor misspellings leads to bizarre unintended effects.

The reasoning process in repair manuals which is not

suitable for computers was effectively converted into a

rule-based model so that the thought process of a typical

human expert was efficiently simulated. So a fully

implemented diagnostic expert system could be used in place

of a human expert.

B. RECOMMENDATIONS

As is clear from this thesis, a full implementation of

our system is quite possible. A better diagnostic expert

system could support a user by graphic enhancements. The

location of a component, the necessary steps to access the

component, and some specific procedures to make a

measurement could be displayed to an unexperienced mechanic

graphically

.

An expert system should be able to explain its

reasoning path for teaching and debugging purposes. We

could enhance our expert system with that feature.

32

APPENDIX A

SOURCE COPE

This appendix contains a listing of the main program (held in the

GLOBAL, BATTERY, STARTER, IGNITION, and ENGINE section files

which contain the knowledge base of the expert system).

This expert system implementation was written in the version of

the PROLOG language known as ARI1Y-PROLOG (which is a product of

Arity Corporation) and runs under the MS-DOS operating system on

IBM PC/XT clones. This version of PROLOG is closely based on

standards as described in Clocksin and Mellish [Ref. i_«J.

Having entered the PROLOG, the program comes up with a short

message about start-up and then the user starts the consultation with

the query of "diagnosis." The lines that are limited with "/*" are

comment lines. They should not be confused with actual PROLOG

code.

%THE FOLLOWING CONTAINS THE CONTENTS OF GLOBAL FILE.

/••••MAIN PROGRAM****

:- cls.nl.nl.nl.

write($ VEHICLE DIAGNOSIS EXPERT SYSTEM IMPLEMENTATION &).

nl,

write($ Please enter "diagnosis" to start the consultation. &).

nl.nl.nl.

/*

/*

The predicate "DIAGNOSIS" is the top level predicate to start the expert system.

diagnosis :- procedurejist (LIST). run_diagnosis(LIST),
findall (X.proved(diagnosis(X.Y)).L).

diagnosis_likelihood_list(L,LM.LL),
write($ MOST LIKELY DIAGNOSIS LIST : $).nl.nl.

write_llst(LM),write($ LESS LIKELY DIAGNOSIS LIST :$).

nl.nl.writeJist(LL).

r
Having been supplied by the symptoms, by means of early dialogue with consultor,
the problem state is identified and relevant subsections of the engine system of the
vehicle to be considered are held within a list, which is the argument of predicate

"PROCEDURE-LIST in a reasonable order. At this point, the general expert
approach is to search those sections one by one in the order they were thought to be
reasonable, until some specific diagnostics are found.

r
run_diagnosis(LIST) :- proved(diagnosis(Diagnosis,Equipment)).
run_diagnosis((]).

run_diangosis((Section I Sections]) :
-

file_table(Section.Section_File).
write($*** $).write(Section_File).

write($ SECTION ***$).nl.nl

reconsult(Section_File),
restore_database(Section_File)
section_engine_table(Section,Inference_Engine).
call_engine(Inference_Engine)

,

run_diagnosis(Sections)

.

run_diagnosis([Section:Sections]) :-

not(file_table(Section.Section_File)).

write($*** $).write(Sectlon).

write(has not been implemented yet. ***$),

nl,run_diagnosis(Sections).

call_engine(Inference_Engine) :- call(Inference_Engine).

call_engine(Inference_Engine)

.

I*

r

The predicate "PROCEDURE-LIST" initiates the communication with consultor.

using menu-driven interaction method, at the very early program stage, to obtain

the symptoms to create existing facts and assess subsections of engine system to be

considered related to problem state.

I

procedure_list(LIST) :- start_up_menu(Answer_List),
create_facts(Answer_List)

,

list_flnder(Answer_List.L),sort(L,Li:
!,list_converter(L 1 .LIST)

.

start_up_menu(Answer_List) :- repeat,

[!ask_which((engine_wont_start,
engine_runs_poorly],Llst!l,
not(contradiction(List))

.

create_facts(List) . !

,

sub_menu(List.Answer_List)

.

sub_menu(List.Answer_List) :- member(engine_wont_start.List),repeat,
[!ask_which([starter_doesnt_turn_at_all,
starter_turns_but_not_the_engine.
slow_cranking,normal_cranking,quick_cranking,
engine_fires_lntermittently,
engine_fires_consistentlyl,Answer_List)!],
not(contradiction(Answer_Llst))

.

sub_menu(List.Answer_List) :-member(engine_runs_poorly, List),repeat,!!

ask_which([hard_starting,rough_ldle. stalling.

engine_dies_at_high_speed,
hesitation_on_acceleration,
poor_pick_up,lack_of_power,
backfire_through_the_carburator,
backfire_through_the_exhaust.
blue_exhaust_gases,black_exhause_gases,
running_on,susceptible_to_moisture,
misfire_under_load,engine_miss_at_high_rpm,
misfire_at_idle_speed)

.

Answer_List)!].not(contradiction(Answer_List)).

ask_which([A,B.C.DIL].List) :-

screen_ask_which([A.B.C.D].(A,B.C,D],Lst),
ask_which(L.Intlist).append(Lst.Intlist,List).

ask_which([].[]).

ask_which(L.List) :- length(L.N).N<4.N>0,
screen_ask_which(L,L,List).

screen_ask_whlch((XIL).L2.Lst) :- length(L.N),length(L2,N2),

N3 is N2-N.write(N3),write(':
,

).quesUoncode(X.Q),write(Q).
wrlte('?'),nl,screen_ask_which(L,L2,Lst).

screen_ask_whlch([],L2.Lst) :-

wrlte($ Give numbers of questions whose answer is yes.$).

read(AL) . nl.create_list(AL.L2 .Lst)

.

create_llst([].L2.[]).

create_Ust([NIL].L2.[IIL31) :- item(N.L2.I).

create_list(L.L2.L3).

create_list([N I LJ.L2.L3) :- not(item(N.L2.I)).

create_Ust(L.L2.L3).

item(l,IXIL].X).

item(N,[XI L].I) :- N>1.N2 is N- Litem (N2.L.I).

contradiction(List) :- length(List.N),N>l,

contradictory_list(X,L)

.

[!member(X.List)!l,not(list_done([X],List,L)),

message.

list_done(A.B.(]).

list_done(A,B.(C I D]) :- union(A,{C],E),!,not(subset(E.B)).

list_done(A.B,D).

create_facts([]) :- !.

create_facts(Fact I Answer_List]) :
-

asserta(fact(Fact)) ,crate_facts(Answer_List)

.

list_finder([XILl).L) :- check_llst(X,List),list_finder(Ll,L2),

unlon(List.L2.L).

list_finder([].[]).

list_converter([],(]).

list_converter([XILl,[YILll) :- convert(X.Y).

list_converter(L,L 1)

.

/*

The complicated nature and peculiarities of subsections of the engine system
necessitate more than one Inference-engine to process the defined subsections.
INFERENCE-ENGINE 1 simulates the role of "exhaustive-search-mechanism" for

the section it was allowed to process.
/*

inference_engine 1 :- not(all_done).

all_done :-

list_of_expected_diagnosis(Part,Expected_Diagnosis_List).
attempt_to_verify_all(Part,Expected_Diagnosis_List),fail.

attempt_to_verlfy_all(Part, (!)

.

attempt_to_verify_all(Part,
[First_Diagnosls I Expected_Diagnosis_List]) :-

verify_diagnosis(Part.First_Diagnosis).
attempt_to_verlfy_all(Part.Expected_Diagnosis_List).

verlfy_diagnosis(Part.First_Dlagnosis) :-

recommended(Equipment_List,Part,Flrst_Diagnosis),
verify_using_all(Equipment_List,Part,First_Diagnosis).

verify_using_all([l,Part,First_Diagnosis).
verify_using_all([First_Equipment:Equlpment_List].Part,

First_Diagnosis) :

apply_equipment(First_Equipment,Part.First_Diagnosis),
verlfy_using_all(Equipraent_List.Part,First_Diagnosis).

apply_equipment(First_Equipment,Part.First_Diagnosis) :-

preconditlons(First-Equipment.Part,First_Diagnosis,
Preconditlon_List)

,

satlsfied_preconditions(Precondition_List) .find(Part)

,

get_ready_equipment(First_Equipment.Part,First_Diagnosis).
prove_diagnosis(First_Equipment,Part,Flrst_Dlagnosis).

apply_equipment(First_Equipment.Part.First_Diagnosis) :-

preconditions(First_Equipment,Part,First_Diagnosis,
Precondition_List)

,

not(satisfied_preconditions(Precondition_List)).
satisfied_preconditions((]).

satisfied_preconditions((First_Precondition:Precondition_List])
:
- call_precondition(First_Precondition)

,

satisfied_preconditions(Precondition_List).
prove_diagnosis(First_Equipment.Part,Flrst_Diagnosls) :-

proved_diagnosis(First_Equipment,Part.First_Dlagnosis),
update_diagnosls_database(First_Equipraent.First_Diagnosis),

prove_diagnosis(First_Equipment.Part,First_Diagnosis) :-

not(proved_diagnosis(First_Equipment,Part,First_Diagnosis)).
update_diagnosis_database(First_Equipment,First_Diagnosis) :-

not(proved(diagnosis(Flrst_Diagnosis.First_Equipment))),
asserta(proved(diagnosls(Flrst_Diagnosis.Flrst_Equipment))).

update_diagnosis_database(First_Equipment,Flrst_Diagnosis) :-

proved(diagnosis(Flrst_Diagnosis,First_Equipment)).

r
The predicate "DIAGNOSIS" of one argument searches for the malfunction in

particular, provided that the name of the malfunction is supplied as its argument.

r

diagnosis(Diagnosis) :- proved(diagnosis(Diagnosis,X)).

diagnosis(Daignosis) :- list_of_expected_diagnosis(Part,

Expected_Diagnosis_List)

,

membeiiDiagnosis,Expected_Diagnosis_List).
verify_diagnosis(Part.Diagnosis).!.

proved(diagnosis(Diagnosis,X))

.

r
INFERENCE-ENGINE2 simulates the role of "rule-cycle-hybrid control

mechanism* for the section it was allowed to process.

r

inference_engine2 :- hybrid. !,doall_until.

done :- hypothesis(Diagnosls).

hybrid :- done.
hybrid :- not(one_cycle).flag.abolish(flag/0).hybrid.

one_cycle :-hr,asserta(flag),fail.

doall_untll :- doall,not(hypothesis(Diagnosis)).

doall :- not(alltried).

alltried : -call(test_hypothesis) .fail.

test_hypothesis :-hypothesis(Diagnosis),

(!retract(hypothesis(Diagnosis))!].

diagnosis(Diagnosis)

.

/*

The predicate "DIAGNOSIS-LIKELIHOOD-LIST" sorts the malfunctions whose
existence has been proved by the expert system, and assigns them likelihoods

according to the number of methods used to locate them.
/*

diagnosis_likelihood-list(l]. [],(]).

diagnosis_likelihood_list([XI . [] . (X])

.

diagnosis_likelihood_list([X I L].[XI L21.L3) :-

member(X.L).delete(X,L.Ll).
diagnosis_likelihood_list(Ll.L2.L3).

diagnosis_likelihood_Ust([XI L].L1.[XI L21) :-

not(member(X,L)).
diagnosis_likelihood_list(L.Ll.L2).

r
The predicate "ASKTF" of one input argument performs the interaction between
expert system and consultor. It will have only one argument, the question, and it

will succeed if that question is answered affirmatively and fail if the question is

answered negatively. If an answer is unclear, it will complain and ask for another
answer.

r

askif(A) :-

ask(A,B).

positlve_answer(B)

.

askifnot(A) :-

not askiflA).

ask(A.B) :-

asked(A.B).
ask(A,B) :-

not asked(A,B),
(questioncode(A,C);global_questioncode(A.C),
write(C).

wrlte($? (yes/no) => $).

read(D),

ill,

[! answerfD.B)

!).

not unexpected_answerfB).
asserta(asked(A,B)).

asklAB) :-

not asked(A.B).

not questioncode(A,C),not global_questloncode(A,C),
wrlte(A).

write($? (yes/no) => $),

read(D).

nl.

[! answenD.B)
!].

not unexpected_answer(B),
asserta(asked(AB)).

answeitAB) :-

not unexpected answer(A),
B=A

answertAB) :-

not unexpected_answer(A)

,

repeat.

write($ Please answer yes or no ==> $),

read(B),

nl.

not unexpected_answer(B).

unexpected_answertA) :-

not affirmatlve(A),

not negative (A).

positive_answer(A) :-

affirmative (A).

r
The predicate "CODE-INTERPRETER" provides the consultor with the domain-
dependent information.

r

code_interpreter(A) :-

expressed(A).

code_lnterpretertA) :-

not expressed(A),

codeCAB.C).
write(B).

nl.

asserta(expressed(A))

.

further_explain(C)

.

further_explaln($No more$) :- !.

further_explain (A) :-

askif{need_explaln)

.

retract(asked(need_explain.B)).
write (A).

nl.

further_explain(A) :-

askifnot(need_explain)

.

retract(asked(need_explain.B))

.

delete(X,(],[]).

delete(X.[XIL].M) :- delete(X.L.M).

delete(X.[YIL].[YIM]) :- delete(X,L.M).

append((],L,L).

append([XILl],L2,pCIL3)) :- append(Ll,L2,L3).

subset([],A).

subset(tAIBl.C) :- member(A,C),subset(B.C).

member(X.[XILl).
member(X,[YILl) :- member(X,L).

union([],X,X).

union([XIRl,Y.Z) :- member (X,Y),!,union(R,Y.Z).

union ([XIR],Y,[XIZ]) :- union(RY.Z).

write_llst([]) :- !.

wrlte_list([XIY]) :- write (X),nl.write_list(Y).

first([XIL],X).

second(pCYILl.Y).

r
The fact "CHECK- LIST" holds the list of subsections of engine system, determined
hypothetically, concerning each specific symptom.

r

check_list(starter_doesnt_turn_at_all,[10,201).

check_list(starter_turns_but_not-the_engine,(201).
check_list(slow_cranking,[10,20)).

check_list(normal_cranking, [301) •

check_list(quick_cranking, [501)

.

check_list(engine_fires_intermittently.[301).
check_list(engme_fires_consistently,[40.501).
check_list(hard_startmg, [30.40])

.

check_list(rough_idle . [30. 401)

.

check_list(stalUng, [30.40]).
check_list(engine_dies_at_high_speed. [30,401).

check_list(hesitation_on_acceleration.[30.40]).
check_list(poor_pick_up, [30,401).

check_lsit(lack_of_power, [30.401).

check_list(backfire_through_the_carburator,[30,701).
check_list(backfire_through_the_exhaust,[30.701).
check_list(blue-exhaust_gases. [50,601).

check_list(black-exhaust_gases.[40]).
check_list(running_on,[30]).
check_list(susceptible_to_moisture.[301).

check_llst(misfire_under_load. [30.60.701).

check_list(engine_miss_at_high_rpm,[30]).
check_list(misfire_at_idle_speed. [30.40.60]).

r
The fact "CONTRADICTORY- LIST holds the list of symptoms for each symptom, to
establish that a symptom in question is a member of the set of possible symptoms.

r

contradictory_list(engine_wont_start.[engine_runs_poorly]).
contradictory_list(starter_doesnt_turn_at_all,

[starter_turns_but_not-the_engine.slow_cranking.
normal_cranking.quick_cranking,
engine_fires_intermittently.
engine_fires_consistentlyl)

.

contradictoryJist(starter_turns_but_not_tne_engine.
[slow_cranklng.normal_cranking,quick_cranking,
engnie_fires_intermittently.
engine_fires_consisstently))

.

contradictory_list(slow_cranking,[normal_cranking,quick_cranking]).
contradictory_list(normal_cranking,[quick_crankingl).

contradictory_list(engine_fires_intermittently,
[engine_flres_consistently])

.

contradictory_Ust(blue_exhaust_gases.[black_exhaust_gasesl).

convert(1 0.battery)

.

convert(20.starting_system)

.

convert(30.ignition_system)

.

convert(40,fuel system),
convert! 50. engine_compression).
convert(60 .englne_vacuum)

.

convert(70,valve-train).

find(sub_dlagnosis)

.

find(complete_system).
flnd(ignition_switch).
fmd(Part) :- askif{where(Part),!.

find(Part) :- code_interpreter(Part),retract(asked(where(Part).

X)) .assert(asked(where(Part) .yes))

.

unable_to_use(X) :- askifnot(has(X)).

unable_to_use(X) :- asklfnot(how_to_use(X.known)).

affirmative (yes).
affirmativey(y).

affirmative(rlght).

affirmative (okay).

negative (no),

negative (n).

negative(not).

negative(never).

negative(impossible)

.

global_questioncode(need_explain,
$Do you need further explanation$).

global_questioncode(hear(X),X) :-

wrlte($Did you hear a sound like a $).

global_questloncode(has(X).X) :-

write($ Do you have a $).

global_questloncode(how_to_use(X,Y),X) :-

wrlte($ Do you know how to use a $).

global_questioncode(where(Part),$$) :-

write($Do you know where the $).write(Part),write($ is$).

questloncode(engine_wont_start,$ Does the engine start at all$).

questioncode(engine_runs_poorly,$ Does the engine run poorly$).

questioncode(starter_doesnt_turn_at_all,
$ Does starter turn at all$).

questioncode(starter_turns_but_not_the_engine,
$ Does starter turn, but not the engine$).

questioncode(slow_cranking,
$ Does starter turn engine very slowr/$).

questioncode(normal_cranking,$ Does starter turn engine normally$).
questioncode(quick_cranklng,$ Does starter turn engine very quickly$).

questioncode(engine_fires_intermittently,
$ Does engine fire intermittently$).

questioncode(engine_fires_consistently,
$ Does engine fire consistently$).

questioncode(hard_starting.$ Do you have hard starting problem$).
questioncode(rough_idle,$ Do you have a rough idle$).

questiocode(stalling,$ Do you have stalling$).

questioncode(engine_dies_at_high_speed,
$ Does engine die at high speed$).

questioncode(hesitation_on_acceleration,
$ Do you have hesitation (on accelaration
from standing stop)$).

questloncode(poor_pick_up,$ Do you have poor pickup$).
questioncode(lack_of_power,$ Do you have lack of power$).
questioncode(backfire_through_the_carburator,

$ Do you have backfire through the carburator$).

questioncode(backfire_through_the exhaust,
$ Do you have backfire through the exhaust$).

questioncode(blue_exhaust_gases,$ Do you have blue exhaust gases$).

questloncode(black_exhause_gases,$ Do you have black exhaust gases$).

questioncode(runnlng_on,$ Do you have running on (after the ignition

is shut off)$).

questioncode(susceptlble_to_moisture.$ Is it susceptible to moisture$).

questincode(misfire_under_load,$ Does the engine misfire under load$).

questloncode(englne_mlss_at_high_rpm.
$ Does the engine misfire at speed$).

questioncode(mlsfire_at_idle_speed.
$ Does the engine misfire at idle speed$).

4:

message :- write($I found a contradlction!$),nl,

wrlte($ Check and repeat your answer. $).

nl.

r
Since rule and fact partitioning were chosen to be design guidelines for the
knowledge base of the expert system, the table "FILE-TABLE" holds the file name of
each partition to be accessed by "RECONSULT system predicate of one argument.

I*

file_table(battery .battery)

.

file_table(starting_system. starter).
file_table(ignition_system, ignition).
file_table(engine_compression, engine).

r
The table "SECTION-ENGINE-TABLE" holds the name of specific inference-engine
to process the partition in question.

/•

section_engine_table(battery.inference_englnel).
section_engine_table(starting_system,inference_enginel).
section_englne_table(ignition_system,inference_engine2).
section_engine_table(englne_compression,inference_enginel).

r
"PREDICATE-FILE-INTERFACE" designates the location of intermediate-predicate
to be interfaced among the partitions.

r

predicate_file_interface(defectivefbattery), battery),

predicateJu,

e_interface(electrlcal_circuit_problem,battery).
predicate_file_interface(high_resistance_in_engine, engine).

r
In order to be able to access temporarily the partition holding the intermediate-
predicate neatly for some specific information, when the intermediate-predicate to

be queried is not residing In current process state, the current process state has to be
pushed onto a process stack and the holding partition should be brought. When all

done, we should come back to the original process state by popping off the stack,

carrying all cached facts and conclusions.

We should also ensure mutual-exclusion condition, since the same procedure
possessing that logic could be consulted several times at different process states,

possibly attempting to modify the state information which is supposed to be global

throughout the program, inevitably. The top-level predicate "CALL-
PRECONDITION" of one argument which stands for the intermediate-predicate itself

carries that logic out successfully even for some piling up process states.
/*

call_preconditlon(not(F_P)) :- clause(F_P).true).!.fail.

call_preconditlon(not(F_P)) :- call_precondition2(F_P).!,fail.

call_preconditlon(not(F_P)) :- call_precondition3(F_P),!.

call-precondition(not(F_P)) :- !.not(call(F_P)).!.

call-precondition(F_P) :- clause(F_P.true).!.

call-precondition(F_P) :- call_precondition2(F_P),!.

call_precondition(F_P) :- call_precondition3(F_P),!,fail.

call-precondltion(F_P) :- !.call(F_P),!.

call_precondition2(First_Precondition) :-

asserta(ticket),

not(clause(fact(First_Precondition,JJJ) .true))

,

predicate_file_interface(First_Precondition,Sectlon_File).
process_stack(LIST).(!not(flrst(LIST,[Section_Flle.X,Y])),

retract(ticket) ,first(LIST. [File_Name.XX,File_Attributel)

,

flnd_world_name(File_Name.File_Attribute,World_Name).
save(World_Name),world_snap_shot(SNl).
asserta(cache(World_Name .SN 1)) .asserta(ticket)

.

write($*** LOADING $),

write(Section_FUe).write($ SECTION *•*$),nl,nl,reconsult(Section_File),
retract(waitlngjprocess_number(Nl)),N2 Is Nl + 1,

asserta(waiting_process_number(N2)),
retract(process_stack(LIST),append(([Section_File.fail,N2]].
LIST,FINAL_LIST).asserta(process_stack(FINAL_LIST))!],
call(First_Preconditlon) ,world_snap_shot(SN2)

,

write($*** EXITING $),wrtte(Section_File).

write($ SECTION ***$).nl,nl,create(TEMP,'temp.ari'),

advance_world(TEMP,SNl.SN2),
restore(World_Name), [temp).deleteCtemp. art'),

asserta(fact(First_Precondltion.yes)),

!.

call_precondition3(First_Precondition) :
-

[!retract(ticket)!],not(ticket).

not(clause(fact(Flrst_Precondltion.JJJ) .true))

,

predicate_file_lnterface(Flrst_Precondition,Section_File),
waiting_process_number(N 1)

,

Process_stack(LIST).first(LIST,[Sectlon_File,fall,NlI),

wrtte($*** UNLOADING $),wrtte(Section_File),

wrtte($ SECTION •••$).nl.nl,

second(LIST.lFile_Name.XXX.File-Attrtbutel).
find_world_name(File_Name,File_Attrtbute,
World_Name) ,retract(cache(World_Name,SN 1))

.

world_snap_shot(SN2),create(TEMP.'temp. art").

advance_world(TEMP,SNl ,SN2),

restore!World_Name). (tempi,
asserta(fact(First_Precondition,no)), deleteCtemp. art'),!.

/*

The predicate "ADVANCE-WORLD" serves to advance the database of the previous

state with the facts asserted and conclusions reached, while still keeping the

database consistent.

r

advance_world(TEMP.LISTl.LIST2) :-

write_cache_list(TEMP.LISTl,LIST2).!.

write_cache_list(TEMP.LISTl.LIST2) :
. member (X.LIST2).

not(member(X,LISTl)).wrlte(TEMP.X).
write(TEMP..).nl(TEMP).fail.

write_cache_list(TEMP.LISTl.UST2) :- nl(TEMP).close(TEMP).

r
The predicate "RESTORE-DATABASE" of one argument accepts the current partition

name residing as its argument and initializes process-state parameters for that
partition.

r

restore_database(Section_File :-

abolish(process_stack/ 1).

abolish(waiting_process_number/l),
asserta(process_stack([[Section_file.true.O]])),

asserta(waiting_process_number(0))

.

r
The predicate "CACHE-PREDICATE-LIST" keeps the list of facts, to be carried
among the process states, once they were cache advanced.

r

cache_predicate_list([asked(A,B),proved(diagnosis(C,D)).
expressed(E) ,cracked_battery,
electrlcal_circuit_problem,light_problem,
defective (battery)

,

rest_of_okay(starting_system)

.

high_resistance_in_engine))

.

r
The purpose of the predicate "FIND-WORLD-NAME" is to code and decode either

current or previous process state to a unique file name to be saved or restored.

r

flnd_world_name(File_Name.File_Attribute.World_Name) :-

atom_strlng(File_Name . String 1)

.

substrlng(String 1 ,0.3.String2)

.

lnt_text(File_Attribute.String3),
concat(String2,Strlng3,Strlng4).

atom_strlng(World_Name,String4).

r
The predicate "WORLD-SNAP-SHOT" gets the list of whole asserted facts within the
process state for which it was called.

r

world_snap_shot(LIST) :- cache_predicate_list(Ll).

run_snap_shot(Ll .LIST).

run_snap_shot([X].LIST) :- local_snap_shot((].X.LIST).

run_snap_shot([X I LIST].LIST2) :-

local_snap_shot([l.X.LISTl).
run_snap-shot(LIST.LIST3)

.

append(LISTl,LIST3,LIST2).

local_snap_shot(A,B,C) :-

asserta(sublist(A)),

clause(B,true),(!subllst(E).append([B],E,F).

retract(sublist(E)),asserta(sublist(F))!),fail.

local_snap_shot(A.B.C) :- sublist(D),retract(sublist(D)),C=D,!.

4K

%THE FOLLOWING CONTAINS THE CONTENTS OF BATTERY FILE .

list_of_expected_diagnosis(battery,(case_cracked.case_intact,
discharged_battery])

.

list_of_expected_diagnosis(battery_cable_connections.
[bad_cable_connections.open_circuit]).

recommended([visual_inspectionl,battery,case_cracked).
recommended([visual_inspection].battery.case_intact).
recommended([high_beam, hydrometer],battery,

discharged_battery)

.

recomrnended([visual_lnspection.high_beam.voltmeter],
battery_cable_connections.bad_cable_connections).

recommended! [visuaMnspection.voltmeter],
battery_cable_connections.open_circuit).

preconditions!vlsual_lnspection.battery,case_cracked.(]).
preconditions(visual_inspection.battery,case_intact, [])

.

preconditions(high_beam.battery, discharged_battery,
[not(cracked_battery),not(light_problem)]).

preconditions(hydrometer,battery,discharged_battery.
[not(unable_to_use(hydrometer)}]).

predonditions(visual_inspection,battery_cable_connections.
bad_cable_connections.[]).

preconditions(high_beam.battery_cable_connections,
bad_cable-connections.[not(cracked_battery),

not(light_problem) ,not(electrical_circuit_problem)])

.

preconditions(voltmeter.battery_cable_connections.
bad_cable_connections.[not(defective(battery)),

not(electical_circuit_problem)

.

not(unable_to_use(volmeter))]).
preconditions(visual_inspection.battery_cable_connections.

open_circuit.[]).

preconditions(voltmeter.battery_cable_connections.open_circuit,
[not(defective(battery)),

not(unable_to_use(voltmeter))]).

cracked_battery :- diagnosis(case_cracked).asserta(cracked_battery).
electrical_curcuit_problem :- dlagnosis(open_circuit).asserta

(electrical_circuit_problem)

.

light_problem :- asklfnot(llght_on),asserta(light_problem).

defective(battery) :- cracked_battery.asserta(defectlve(battery)).

defective(battery) :- diagnosis(discharged_battery),asserta(defective(battery)).

questioncode(light_on,
$Did the light come out when the knob turned on$).

questioncode(dim,$Did the lights dim considerably or go out$).

questioncode(low_charge,$Does it indicate less than 1.140 @$).
questioncode(cracked.$Is the battery case cracked$).
questioncode(exceeded.$Did voltage drop exceed 0.4 volts$).

questioncode(intact.$Is the battery case intact$).

questioncode(bad.$Did you notice bad cable or connections$)

.

questioncode(open_circult.$Did you notice an open connections).
questioncode(same,$Is the reading same as the battery reading$).

code(10.$Turn lights on high,

try starter and note action of lights.$,$No more$).
code(20,$Test the state of charge of

battery using the hydrometer.$.$No more$).
code(30,$Inspect the battery case. $,

$For cracks, corrosion and water level. $).

code(40,$Connect prods of voltmeter on 3-volt scale to

grounded battery post and starter moter housing.
Close the starter switch and not the voltmeter
reading.$,$No more$).

code(50,$Inspect the battery cables.$,

$For loose, broken open cables and connections: $).

code(battery,$Battery located under the engine hood.
most probably on right front of the vehicle, $,
$No more$).

code(battery cable connections.
$Located between battery and starter unit.$,$No more$).

get_ready_equipment(visual_inspection,Part,case_cracked) :-

code_interpreter(30)

.

get_ready_equipment(visual_inspection.Part.case-intact) :-

code_interpreter(30)

.

get_ready_equipment(high_beam.Part,discharged_battery) :-

code_interpreter(1 0)

.

get_ready_equipment(hydrometer.Part.discharged_battery) :-

code_interpreter(20)

.

get_ready_equipment(visual_inspection.Part.bad_cable_connections)
:- code_interpreter(50).

get_ready_equipment(high_beam.Part,bad_cable_connections) :
-

code_interpreter(10).

get_ready_equipment(voltmeter,Part,bad_cable_connections) :-

code_interpreter(40)

.

get_ready_equipment(visual_inspection.P,open_circuit) :-

code_interpreter(50)

.

get_ready_equipment(voltmeter,Part.open_circuit) :-

code_interpreter(40)

.

proved_diagnosis(visual_inspection,Part.case_cracked) :-

askif(cracked).

proved_diagnosis(visual_inspection.Part,case_intact) :-

askiflintact).

proved_diagnosis(high_beam,Part.discharged_battery) :-

askif(dim).askif(hear(clattering)).

proved_diagn0sis(hydrometer.Part,discharged_battery) :-

askif(low_charge).

proved_diagnosis(vlsual_inspection.Part,bad_cable_connections) :-

asklflbad).

proved_diagnosls(high_beam.Part.bad_cable_connections) :-

askif(dim).

proved_diagnosis(voltmeter,Part.bad_cable_connections) :

-

asklf(exceeded).

proved_diagnosls(visual_inspection.Part.open_circuit) :-

askiflopen circuit).

proved_diagnosis(voltmeter.Part.open_circuit) :-

asklf(same).

%THE FOLLOWING CONTAINS THE CONTENTS OF STARTER FILE .

list_of_expected_diagnosis(ignition_switch,
[broken_ignition_switch_connections]).

list_of_expected_diagnosis(magnetlc_switch,
[improperly_functioning_magnetic_switch]).

list_of_expected_diagnosis(starter_solenoid,
[malfunction_in_starter_solenoid]).

list_of_expected_diagnosis(starter_unit.
[malfunctlon_ln_starter_unit])

.

recommended((electrlcal_testl.electrical_test21,ignition_switch,
broken_ignition_switch_connections).

recommended([electrical_testl,magnetic_switch,
improperly_functioning_magnetic_switch).

recommended((electrical_testl,starter_solenoid,
malfunction_in_starter_solenoid).

recoinmended((symptom(slow_cranklng),symptom(starter_spins_free),
symptom(early) ,deductive_reasoning) ,starter_unit,

malfunctlon_in_starter_unit)

.

preconditions(electrical_test 1 ,ignition_switch,

broken_ignltion_switch_connections,
[fact(starter_doesnt_turn_at_all) ,not(defective(battery))

.

(askif(has(test_lamp_12V));not(unable_to_use(voltmeter)))]).
preconditions(electrlcal_test2,ignition_switch,

broken_ignition_swlth_connections,
(fact(starter_doesnt_turn_at_all) ,not(defective(battery))

,

(askli"(has(test_lampl2V));not(unable_to_use(voltmeter)))]).
preconditions(electrlcal_test,magnetic_switch,

lmproperly_functioning_magnetic _switch,
[fact(starter_doesnt_turn_at_all),
not(diagnosls(broken_ignltlon_switch_connctions)),
asklf(has()umper))]).

preconditions(electrlcal_test.starter_solenoid,
malfunction_in_starter_solenoid,

[fact(starter_doesnt_turn_at_all) ,not(defective(battery))

.

not(electrical circuit problem), askif(has(jumper))]).
preconditions(symptom(slow-cranking). starter-unit,

malfunction_in_starter_unit.
(fact(slow_cranking,not(defective(battery)).

not(high_resistance_in_engine)]).
preconditions(symptom(starter_spins_free),starter_unit.

malfunction_in_starter_unit.
[fact(starter_turns_but_not_the_engine).askif(starter_spins_free)]).

preconditions(symptom(early),starter_unit,
[fact(starter_turns_but_not_the_engine).not(high_resistance_in_engine)]).

preconditions(deductive_reasoning.starter_unit,
malfunction_in_starter_unit,
|fact(starter_doesnt_turn_at_all),not(defective(battery)).

not(electrlcal_circuit_problem),
rest_of_okay(starting_system)]).

rest_of_okay(starting_system) :-

not(diagnosis(broken_ignition_swltch_connections)).
not(diagnosis(improperly_functioning_magnetic_switch)).
not(diagnosis(malfunction_in_starter_solenoid)).

asserta(rest_of_okay(starting_system)

questioncode(lamp_lights.$Did the lamp light or meter needle
move, when the switch is tumed$).

questioncode(lamp_flickers.$Dld the lamp flicker or meter needle
move.when the key JiggledS).

questioncode(starter_spins_free,$Is that your problem;
starter spins free but won't engageS).

questloncode(starter_operates.$Did the starter operate$).

questioncode(response_recorded,$Did the starter turn the engine
either normally or slowly or buzzS).

code(magnetic_switch,$An electrically operated switch whose only function
is to make contact for the starter.May be located on
the starter.on the engine side of firewall, or on the
fender apron.$.$No more$).

code(starter_solenoid,$An electrically operated whose function is to make
electrical contact the the starter,and in addition

shift the starter clutch into mesh with the flywheel.

Always located on the starter.$.$No more$).
code(starter_unit.$Always located either on right or left side of engine very

close to the bottom. $.No more$).
code(100.$Check the ignition switch for loose connections,

cracked insulation, or broken wires. $.
SConnect a 12V test lamp or voltmeter between the

starter post of solenoid and ground. Turn the Ignition

switch to the "start" position and Jiggle the key.$).

code(200.$Determlne whether the magnetic switch is functioning
properly. $.
SBy connecting a Jumper across the switch and
turning the ignition switch to start. $).

code(300.$Test the starter solenoid.$.
SConnect a Jumper from the battery post of

solenoid to the starter post of solenoid. $).

get_ready_equipment(Test.ignition_switch,
broken_ignitlon_swltch_connections) :- code_interpreterUOO).

get_ready_equipment(electrlcal_test,magnetic_switch.
improperly_functioning_magnetic_switch) :- code_interpreter(200).
get_ready_equipment(electrlcal_test.starter_solenoid.
malfunction_in_starter_solenold) :- code interpreter{300).

get_ready_equlpment(Symptom.starter_unit.
malfunction_ln_starter_unit)

.

proved_diagnosis(electiical_test 1 .ignition_switch,

broken_ignitlon_swltch_connections) :- asklfnot(lamp_llghts).

proved_diagnosis(electrlcal_test2.ignition_switch.
broken_ignition_switch_connections) :- askif(lamp_flickers).

proved_diagnosis(electrical_test,magnetic_switch.

improperly_functioning_magnetic_switch) :
-

askif(starter_operates)

.

proved_diagnosis(electrical_test.starter_solenoid,
malfunction_in_starter_solenoid) :-

asklfnot(response_recorded)

.

proved_diagnosis(System,starter_unit,
malfunction_in_starter_unit)

.

%THE FOLLOWING CONTAINS THE CONTENTS OF IGNITION FILE .

llst_of_expected_diagnosis(sub_diagnosis,
[defective(ignition_system).defective(prlmary_circuit_coil_side),

defective(primary_circuit_distributor_side)l).
list_of_expected_diagnosis(ignition_points,

[burned_or_damaged(ignitIon_points),
out_of_adjustment(ignition_points)]).

llst_of_expected_diagnosls(condenser,(defective(condenser)]).
list_of_expected_diagnosis(ballast._resistor,

(defective(ballast_resistor)]).

list_of_expected_diagnosis(ignition_swltch,
(defective(ignition_switch)])

.

list_of_expected_diagnosis(ignition_coil.
[defective(coil_primary_resistance),

defectlve(coil secondary_resistance) 1)

.

list_of_expected_diagnosis(plugs,(defective(spark plugs)l)

Ust_of_expected_diagnosis(distrlbutor.[poor (distxibutor_ground).
defectlve(distributor_rotor) ,moisture_on(distrlbutor_cap)

,

cracked_or_tracked(dlstributor_cap).
defective(distrlbutor_wires_or_ignition_plugs))).

llst_of_expected_diagnosis(complete system,
[lnductlon_firlng_of_cycllnders

lncorrect(distrlbutor_firlng_sequence).
incorrect(ignltion_timing))).

recommended((spark_test],sub_diagnosis.defectlve(ignition_system)).
recommended([voltmeter_test 1 fvoltmeter_test2] ,sub_diagnosis,

defective(primary_clrcuit_coil_slde)).
recommended([voltmeter].sub_dlagnosis,

defective(primary_clrcuit_distrlbutor_slde)).
recommended! [visual_lnspection],lgnition_points,

burned_or_damaged(ignition_points)).
recommended! (vlsual_lnspection,dwell_meter],lgnition_points,

out_of_adJ ustment(ignition_points))

,

recommended! [voltmeter],ballast_resistor,

defective(ballast_resistor))

.

recommended((voltmeter}.condenser,defective(condenser)).
recommended([electrical_testl,ignltion_switch,

defectlve(ignition_switch))

.

recommended([voltmeter],ignltion_coil,
defective(coll_prlmary_reslstance)).

recommended([voltmeter).ignltion_coil.
defective(coil_secondary_resistance)).

recommended! [vlsual_inspection],plugs,defectlve(spark_plugs)).

recommended((]umper],dlstrlbutor.poor(distrlbutor_ground)).
recommended([vlsual_lnspectionl, distributor.

defectlve(dlstrlbutor_rotor))

.

recommended! [hypothesls(molsture_on(distrlbutor_cap))],
dlstrlbutor,molsture_on(distrlbutor_cap)).

recommended(vlsual_lnspection),distributor.
cracked_or_tracked(dlstrlbutor_cap)).

recommended([vlsual_lnspection], distributor,
defectlve(dlstrlbutor_wires_or_lgnltion_plugs)).

recommended(try_to_check],complete system,
induction_firing_of_cyclinders).

recommended ([try_to_checkl ,complete_system,
incorrect(distrlbutor_firlng_sequence)).

recommended! [test_light], complete_system,
incorrect(ignition_timing))

.

preconditions(spark_test,sub_diagnosis,
defective(ignition_system) . [])

.

preconditions(voltmeter_test 1 ,sub_diagnosis,
defective(prlmary_circuit_coil_side),

(not(diagnosis(defective(ignition_switch))),askif(has(jumper)),

not(unable_to_use(voltmeter))l).
preconditions(voltmeter_test2,sub_diagnosis,

defective(prlmary_circuit_coil_side)
not(diagnosis(defective ignition_switch))),askif(has(jumper)),

not(unable_to_use(voltmeter))]).
preconditlons(voltmeter.sub_diagnosis,

defective(primary_circuit_distrlbutor_side),
[not(diagnosis(defective(ignition_switch))),

not(diagnosis(burned_or_damaged(ignition_points))),
not(unable_to_use(voltmeter))]).

preconditions(visual_lnspection,ignition_points
burned_or_damaged(ignition_polnts) , [])

.

precondltlons(vlsual_lnspection,ignition_points,
out_of_adjustment(ignition_points),(]).

precondltions(dwell_meter,ignition_points,
out_of_adjustment(ignition_polnts),(not(fact(engine_wont_start)),

not(unable_to_use(dwell_meter))]).
preconditions(voltmeter,ballast_resistor,
defective(ballast_resistor),[not(unable_to_use_(voltmeter))]).

preconditions(voltmeter,condenser,defective(condenser),
(not(unable_to_use(voltmeter))l).

preconditions(electrlcal_test,ignltion_switch,
defectivedgnltion switch), ((asklf(has(test_tamp_ 12V));

not(unable_to_use(voltmeter)))]).
preconditions(voltmeter.ignition_coil,

defective(coil_primary_resistance).
[not(unable_to_use(voltmeter))]).

preconditions(ohmmeter,ignition_coil,
defective(coil_secondary_resistance).

[not(unable_to_use(ohmmeter))]).
preconditions(visual_inspection,plugs,defective(spark_plugs),[l).
preconditions(jumper,distributor,poor(distrlbutor_ground),

[askif(has(]umper))]).

preconditions (visuaMnspection.distributor,
defective(distributor_rotor).[]).

preconditions(hypothesis(moisture_on(distributor_cap)).
distrlbutor,moisture_on(distributor_cap),

[hypothesis(moisture_on(distributor_cap)))).
preconditions(vlsual_lnspection.distributor,

cracked_or_tracked(distributor_cap),(l).

preconditions(vlsual_lnspection.distributor,

defective(distrlbutor_wires_or_ignition_plugs) . [))

.

preconditions(try_to_check.complete_system.
induction_fiiing_of_cylinders,[]).

preconditions(try_to_check.complete_system.
incorrectTdistrlbutor_flring_sequence) , [])

.

preconditions(test_light,complete_system,
incorrect(ignition_timing)

.

[not(dlagnosis(out_of_adjustment(ignition_points))),
not(unable_to_use(test_light))]).

hr :- not(hypothesis(defective(spark_plugs))).fact(hard_startlng).
fact(mlsfire_under_load),asserta(hypothesis(defective(spark_plugs))).
hr :- not(hypothesis(defective(spark_plugs))).fact(hard_starting),

fact(poor_pick_up).asserta(hypothesis(defective(spark_plugs))).
hr :- not(hypothesis(defective(spark_plugs))),

askif(hear(detonation))

,

asserta(hypothesis(defective(spark_plugs))).

hr:-
not(hypothesis(defective(distributor_wires_or_ignition_plugs))).
fact(hard_starting),fact(poor_pick_up).

asserta(hypothesis(defective(distrlbutor_wires_or_ignltion_plugs))).
hr :- not(hypothesis(defectlve(condenser))),

diagnosis(burned_or_damaged(lgnition_points)),
asserta(hypothesls(defective(condenser))).

hr :- not(hypothesis(induction_firlng_of_cylinders)),
(fact(backfire_through_the_exhaust);fact(backfire_through_the_carburetor)),
fact(rough_idle).asklflhear(detonation)),
asserta(hypothesis(induction_firlng_of_cylinders)).

hr :- not(hypothesis(incorrect(distrlbutor_flring_sequence))).
fact(hard_starting).fact(backfire_through_the_carburetor).
asklf(recent_operatorJ ob)

.

asserta(hypothesis(incorrect(dlstrlbutor_firlng_sequence))).
hr :- not(hypothesis(poortdistrlbutor_ground))).
fact(hard_starting)

,

(fact(misflre_under_load);fact(englne_miss_at_high_rpm)).
asserta(hypothesis(poorfdistrlbutor_ground))).

hr :- not(hypothesls(lncorrect(lgnltion_timing))).

askiflhearfdetonation))

.

asserta(hypothesls(incorrect(lgnition_timing))).

hr :- not(hypothesls(defective(coil_secondary_resistance))),

fact(hard_starting) ,(fact(misfire_under_load)

;

fact(englne_miss_at_high_rpm))

.

asserta(hypothesis(defectlve(coll_secondary_resistance))).

hr :- not(hypothesis(molsture_on(distributor_cap))),
(fact(engine_wont_start);fact(hard_startlng)),

(askif(high_level_of_molsture_in_atmosphere);
asklf(wash_recently)) t

asserta(hypothesis(moisture_on(distributor_cap))).

hr :- not(hypothesis(cracked_or_tracked(dlstrlbutor_cap))),
fact(hard_starting),fact(susceptible_to_moisture).

asserta(hypothesis(cracked_or_tracked(distributor_cap))).

hr :- not(defective(ignition_system)),fact(englne_wont_start),

diagnosis(defective(ignition_system)),
retract_sub_diagnosis(defective(ignition_system)),
asserta(defective(ignitlon_system)).

hr :- not(hypothesis(defective(coil_secondary_resistance))).
defective(ignition_system)

,

asserta(hypothesis(defective(coil_secondary_resistance))).
hr :- not(defective(primary_clrcuit_coil_side)),

defective(ignition_system)

,

diagnosis(defective(primary_circuit_coil_side)),
retract_sub_diagnosis(defective(prlmary_clrcuit_coll_side)).
assert_hypothesis(defective(ballast_resistor)),
assert_hypothesis(defective(coil_prlinary_resistance)),
asserta(defective(primary_circuit_coil_side)).

hr : -not(defective(prlmary_clrcuit_distributor_slde))

.

defective (ignition_system)

,

diagnosis(defective(primary_circuit_distributor_side)).
retract_sub_diagnosis(defective(primary_circuit_distributor_side)),
assert_hypothesis(defectlve(condenser)),
assert_hypothesis(out_of_adJ ustment(ignition_points))

.

assertJiypothesis(defective(distrlbutor_rotor)),
asserta(defective(prlmary_circuit_distributor_side)).

assert_hypothesis(Hypothesis) :- hypothesis(Hypothesis).
assert_hypothesis((Hypothesis) :- not(hypothesis(Hypothesis)),

asserta(hypothesis(Hypothesis))

.

retract_sub_diagnos!s(Diagnosls) :- repeat,

retract(proved(diagnosis(Diagnosis,Equipment))),
not(proved(diagnosis(Diagnosis,Equip))),!.

questioncode(recent_operatorJob

.

$Has any operator Job recently been done on ignition system$).
questioncode(high_level_of_moisture_in_atmosphere,
$Do you observe a high level of moisture in the atmosphere$).
questioncode(wash_recently,$Have you washed the car recently$).

questioncode(good_spark,$Is the spark good and consistent$).

questioncode(voltage_for_voltmeter_test 1 ,$

With ignition switch on, did the voltmeter show 5.5 to 7 volt$).

questioncode(voltage_for_voltmeter_test2,
$While cranking, did the voltmeter show around 9 volts$).

questioncode(voltmeter_reading_remains_zero,$While cranking,
did the voltmeter reading remain zero or close to it$).

questioncode(bumed_or_damaged(ignitlon_points),
$Did you observe burned or damaged ignition points$).

questioncode(out_of_adjustment(ignition_points).
$Did you note excessive open or close gap between points$).

questioncode(excessive_varlation_in_dwell,
$Do you note an excessive variation in dwell, (over3 deg)

as the speed is lncreased$).

questioncode(zero_resistance.$Is the resistance zero$).

questioncode(shows_other_than_inflnte.
SDid you note any reading other than infinite$).

questioncode(lamp_donot_flicker_but_light.$Did the lamp light$).

questioncode(read_lohm_resistance.$Did you read about 1 ohm$).
questioncode(between4and8.$Is the reading between 4K and 8K ohm$).
questioncode(burned(spark_plug_points),
SDid you note burned spark plug points$).

questioncode(change_something.$Did it change something$).
questioncode(rotor_turns_appropriately,
SDoes the rotor turn appropriately with no loosened components$).
questioncode(cracked_or_tracked(distributor_cap).
$Do you notice cracked or tracked distributor cap or components).
questioncode(defective_ignition_wires,
SDo you observe any cracked, burned, or broken insulation$).

questioncode(induction_firing,$Do you note any consecutive wires
causing induction firing$).

questioncode(missing_cylinder.$Do you identify any missing one$).

questioncode(flash_light_intermittently.$Does the light flash intermittently$).

questioncode(unfixed_at_constant_engine_speed.
$Does the pointer appear to move on the index scale$).

code(ignltion_points.
SIgnition points are located inside the distributor under the
distributor cap.$.$No more$).
code(condenser.$Condenser is located inside the distributor

under the distributor cap.$.$No more$).
code(ballast_resistor.$Ballast resistor lies between the ignition

coil and ignition switch.$.$No more$).
code(ignition_coil.

SAlways located very close to engine.$.$No more$).
code(plugs.$Spark plugs are located on the engine connected to

distributor by ignition wires.$.$No more$).
code(distributor.$Distributor is one of the major components of the
ignition system.$.$Whlch is located close to the engine. $).

code(1000.
$Check for spark at the coil high tension lead.$,

SRemove the coil high tension lead from the distributor and
position it approximately 1/4" from ground. Crank the engine
and observe the spark. $).

code(2000.$With engine at operating temperature, but stopped.

and the distributor side of the ignition coil grounded with a
jumper wire, hook up a voltmeter between the ignition coil

(switch side) and a good ground.$.$No more$).

code(3000.$With the voltmeter on the 16-20 volt scale, connect
one voltmeter lead to the distributor side of the coil. Remove
the high tension wire from the coil and ground it. Close ignition

switch and slowly bump the engine to open and close the points.$.

$No more$).
code(4000.$Visually inspect the ignition points.$.$For burned.

damaged, or out-of-adjustment points.$).

code(5000,
$Perform the dwell meter test according to manufacturer's
specifications.$.$No more$).
code(600O,
$Check the ballast resistor or resistor wire for an
open circuit, using an ohmmeter.$,$No more$).
code(7000,$Check the condenser for short.$,$Connect an ohmmeter
across the condenser body and the pigtail lead.$).

code(8000.$Check the ignition switch "on" position.$.

$Connect a Jumper wire between the distributor side of the coil

and ground, and a 12V test lamp between the switch side of the

coil and ground. Remove the high tension lead from the coil. Turn
the igntion switch on and Jiggle the key.$).

code(9000,$To check ignition coil resistance, primary side,

switch ohmmeter to low scale. Connect the ohmmeter leads across
the primary terminals of the coil and read the low ohms scale.$,

$No more$).
code(9100.$Check the ignition coil secondary side resistance^.
$Switch ohmmeter to high scale, connect one test lead to the
distributor cap end of the coil secondary cable, connect the
other test lead to the distributor terminal of the coil.$),

code(9200,$Remove the spark plugs.$.$Noting the cylinders from
which they were removed. $).

code(9300,$Connect a jumper wire between distributor body and a
good ground.$.$No more$).
code(9400.$Remove the distributor cap and check to make sure that
the rotor turns when the engine is cranked. Visually inspect the
distributor components.$,$No more$).
code(9500,$Inspect the distributor for cracked or tracked
distributor cap or components.$,$No more$).
code(9600,$Visually inspect the spark plug wires for cracking or
brittleness.$.$Spark plug wires can be checked visually by
bending them in a loop over your finger. $).

code(9700.$Ensure that no two wires are positioned so as to cause
induction firing,$,$Misfirlng can be the result of spark plug
leads to adjacent, consecutively firing cylinders running parallel

and too close together. $).

code(9800,$Locate an ignition miss,$,$With the engine running,
remove each spark wire, one at a time, until one is found that

doesnt cause the engine to roughen and slow down.$).

code(9900,$Perform the ignition timing according to

manufacturer's specification.$,$No more$).

get_ready_equipment(spark_test.sub_diagnosis.
defective(ignltion_system)) :- code_interpreter(1000).

get_ready_equlpment(Voltmeter_test,sub_diagnosis.
defective(primary_circuit_coil_side)) :- code_interpreter(2000).
get_ready_equlpment(voltmeter.sub_diagnosis,

defective(primary_circuit_distributor_side)) :
-

code_lnterpreter(30OO)

.

get_ready_equipment(visual_inspection,ignition_points,
burned_or_damaged(ignition_points)) :-

code_interpreter(4000)

.

get_ready_equipment(vlsual_inspection,Ignition_points,
out_of_adJustment(ignition_points)) :-

code_interpreter(4000).

get_ready_equipment(dwell_meter,ignition_points,
out_of_adJustment(ignition_polnts)) :-

code_interpreter(5000)

.

get_ready_equipment(voltmeter,ballast_resistor.
defective(ballast_reslstor)) :-

code_interpreter(6000)

.

get_ready_equipment(voltmeter, condenser, defective(condenser)) :-

code_interpreter(7000)

.

get_ready_equipment(electrical_test.ignition_switch,
defective(lgnition_switch)) :-

code_interpreter(80O0)

.

get_ready_equipment(voltmeter, ignition_coil,

defective(coil_primary_resistance)) :-

code_interpreter(9000)

.

get_ready_equipment(voltmeter, ignitlon_coil,

defectlve(coil_secondary_resistance)) :-

code_interpreter(9 100).

get_ready_equlpment(visual_inspection.plugs,
defectlve(spark_plugsj) :-

code_interpreter(9200)

.

get_ready_equlpment(Jumper.dlstributor,poor(dlstrlbutor_ground))
:- code_interpreter(9300).

get_ready_equipment(vlsual_inspection.distributor.
defective(distrlbutor_rotor))

code_interpreter(9400)

.

get_ready_equipment(hypothesis(moisture_on_distributor_cap)),
distrlbutor.moisture_on(distrlbutor_cap)).

get_ready_equlpment(vlsual_inspection.distributor,
cracked_or_tracked(distributor_cap)) :- code_interpreter(9500).
get_ready_equipment(vlsual_inspection.distributor.

defective(distributor_wires_or_ignition_plugs))
:- code_interpreter(9600).

get_ready_equipment(try_to_check.complete_system,
induction_firlng_of_cyllnders) :-

code_interpreter(9700)

.

get_ready_equipment(try_to_check.complete_system,
incorrect(distributor_firlng_sequence)) :-

code_interpreter(9800)

.

get_ready_equipment(test_light.complete_system,
incorrect(ignition_timing)) :-

code_interpreter(9900)

.

proved_diagnosis(spark_test,sub_diagnosis,
defectlve(ignltion_system)) :-

askifnot{good_spark)

.

proved_diagnosls(voltmeter_test 1 ,sub_diagnosis.
defective(primary_circuit_coil_side))

askifnot(voltage_for_voltmeter_test 1)

.

proved_diagnosis(voltmeter_test2,sub_diagnosls.
defective(primary_circuit_coil_side)) :

-

asklfnot(voltage_for_voltmeter_test2).
proved_diagnosis(voltmeter,sub_dlagnosis,

defective(primary_circuit_distributor_side)) :-

asklfnot(voltmeter_readlng_remalns_zero).
proved_diagnosis(visual_inspection,ignitlon_points,

burned_or_damaged(ignition_points)) :
-

askif(burned_or_damaged(ignition_points)).
proved_diagnosis(vlsual_inspection,ignition_points,

out_of_adjustment(ignition_points)) :-

assert_hypothesis(lncorrect(ignition_timing)).
proved_diagnosis(dwell_meter,ignitlon_points.

out_of_adjustment(ignition_points)) :-

asklf(excessive_varlation_in_dwell)

,

assert_hypothesis(defectlve(distributor_rotor)),
assertJiypothesis(defectlve(coil_primary.resistance)),

assert_hypothesis(defective(coil_secondary_resistance)),
assert_hypothesis(incoiTect(ignition_timing)).

proved_diagnosis(voltmeter,ballast_resistor,
defective(ballast_resistor)) :-

askif(zero_resistance)

.

proved_diagnosis(voltmeter,condenser,defective(condenser)) :-

askif(shows_other_than_infinite).
proved_diagnosis(electrlcal_test,ignitlon_switch,

defective(ignition_swltch)) :-

asklfnot(lamp_donot_flicker_but_llght).

proved_diagnosis(voltmeter,ignition_coil,
defecttve(coil_prlmaiy_resistance)) :-

askif(read_ 1 ohm_resistance)

.

proved_diagnosis(voltmeter,ignition_coil,
defective(coil_secondary_resistance)) :-

asklfnot(between4and8)

.

proved_diagnosis(visual_inspectlon,plugs,defective(spark_plugs))
:- asklf(bumed(spark_plug_polnts)),

assert_hypothesls(defective(condenser)).
proved_dlagnosis(]umper,distrlbutor,poor(distrlbutor_ground)) :-

asklf(change_something)

.

proved_diagnosis(vlsual_lnspection,distributor,
defective(distributor_rotor)) :-

asklfnot(rotor_turns_approprlately)

.

proved_dlagnosls(hypothesls(molsture_on(distrlbutor_cap)),
distrtbutor,moisture_on(distributor)cap)).

proved_diagnosis(vlsual_lnspection.distributor,
cracked_or_tracked(distrlbutor_cap)) :-

asklf(cracked_or_tracked(distrlbutor_cap)).
proved_dlagnosis(vlsual_lnspection,distributor,

defectlve(dlstributor_wlres_or_lgnitlon_plugs)) :-

asklf(defectlve_lgnltion_wires)

.

proved_dlagnosls(try_to_check,complete_system.
lnduction_firlng_of_cylinders) :-

askif(induction_firing)

.

proved_diagnosis(try_to_check.complete_system.
lncorrect(distributor_firing_sequence)) :-

askif(missing_cylinder)

.

proved_diagnosis(test_light.complete_system
incorrect(ignition_tlmingJ) :-

askifinashjightjntermittently)

.

assert_hypothesis(poor(distributor_ground)),
assert_hypothesis(cracked_or_tracked(distributor_cap)),

assert_hypothesis(defective(distributor_rotor)).
proved_diagnosis(test_light.complete_system.

incorrect(lgnition_tlming)) :-

askif(unfixed_at_constant_engine_speed),
assert_hypothesis(defective(distributor_rotor)).

%THE FOLLOWING CONTAINS THE CONTENTS OF ENGINE FILE .

list_of_expected_diagnosis(complete_system,
[high_resistance_in_engine])

.

recommended([torque_test].complete_system.
high_resistance_ln_engine)

.

preconditions(torque_test,complete_system,
high_resistance_in_engine,
(asklf(has(torque_tool))]).

get_ready_equipment(torque_test,complete_system,
high_resistance_in_engine) :-

code_lnterpreter(1 0500)

.

proved_diagnosis(torque_test,complete_system,
high_resistance_in_engine) :-

asklfnot(able_to_turn)

.

high_resistance_in_engine : - diagnosis(high_resistance_in_engine)

,

asserta(high_resistance_in_engine).

questioncode(able_to_tum,$Could you turn the engine freely$).

code(10500,$Attach the torque tool to front crank wheel of motor,
and try to turn it by power.$,$No more$).

APPENDIX B

SAMPLE USER SESSIONS

/ft**************************************/

Actual responses given regarding the vehicle

under consideration have been simulated

throughout the sample consultations.

CONSULTATION #1 :

>api
Arity/ Prolog Interpreter Version 4.0
Copyright (c) 1986 Arity Corporation
?- [global].

VEHICLE DIAGNOSIS EXPERT SYSTEM IMPLEMENTATION

Please enter "diagnosis" to start the consultation.

yes
?-diagnosis.

1: Does the engine start at all?

2: Does the engine run poorly?
Give numbers of questions whose answer is yes.[l].

1: Does starter turn at all?

2: Does starter turn, but not the engine?
3: Does starter turn the engine very slowly?
4: Does starter turn the engine normally?
Give numbers of questions whose answer is yes.[l].

1: Does starter turn the engine very quickly?

2: Does the engine fire intermittently?

3: Does the engine fire consistently?

Give numbers of questions whose answer is yes.[].

*** BATTERY SECTION ***

Do you know where the battery is? (yes /no) ==> y.

Inspect the battery case.

Do you need further explanation? (yes/no) ==> n.

Is the battery case cracked? (yes/no) ==> n.

Is the battery case intact? (yes /no) ==> n.

Did the light come on when the knob turned on? (yes /no) ==> y.

Turn lights on high, try starter, and note action of lights.

Did the lights dim considerably or go out? (yes/no) ==> n.

Do you have a hydrometer? (yes /no) ==> y.

Do you know how to use a hydrometer? (yes/no) ==> y.

Test the state of charge of the battery using the hydrometer.

Does it indicate less than 1.140 @? (yes/no) ==> n.

Do you know where the battery cable connection is? (yes /no) ==> y.

Inspect the battery cables.

Do you need further explanation? (yes /no) ==> y.

For loose, broken, open cables and connections:
Did you notice bad cables or connections? (yes/no) ==> n.

Did you notice an open connection? (yes/no) ==> n.

Do you have a voltmeter? (yes /no) ==> y.

Do you know how to use a voltmeter? (yes /no) ==> y.

Connect prods of voltmeter on 3-volt scale to grounded battery post
and starter motor housing. Close the starter switch and note the
voltmeter reading.

Is the reading the same as the battery reading? (yes/no) ==> y.

MOST LIKELY DIAGNOSIS LIST:

LESS LIKELY DIAGNOSIS LIST:

Open circuit

yes
?-

i-4

CONSULTATION #2 :

>api
Arity/ Prolog Interpreter Version 4.0
Copyright (c) 1986 Arity Corporation
?- [global].

VEHICLE DIAGNOSIS EXPERT SYSTEM IMPLEMENTATION

Please enter "diagnosis" to start the consultation.

yes
?-diagnosis.

1: Does the engine start at all?

2: Does the engine run poorly?
Give numbers of questions whose answer is yes.[l].

1: Does starter turn at all?

2: Does starter turn, but not the engine?
3: Does starter turn the engine very slowly?
4: Does starter turn the engine normally?
Give numbers of questions whose answer is yes. [3].

1: Does starter turn the engine very quickly?
2: Does the engine fire intermittently?

3: Does the engine fire consistently?
Give numbers of questions whose answer is yes.[].

*** STARTER SECTION ***

•*• LOADING BATTERY SECTION ***

Do you know where the battery is? (yes /no) ==> y.

Inspect the battery case.

Do you need further explanation? (yes/no) ==> n.

Is the battery case cracked? (yes/no) ==> n.

Is the battery case intact? (yes/no) ==> n.

Did the light come on when the knob turned on? (yes /no) ==> y.

Turn lights on high, try starter, and note action of lights.

Did the lights dim considerably or go out? (yes /no) ==> y.

Did you hear a sound like a clattering? (yes /no) ==> n.

Do you have a hydrometer? (yes /no) ==> y.

Do you know how to use a hydrometer? (yes /no) ==> y.

Test the state of charge of the battery using the hydrometer.

Does it indicate less than 1.140 @? (yes/no) ==> n.

*** UNLOADING BATTERY SECTION ***

*** LOADING ENGINE SECTION ***

Attach the torque tool to the front crank wheel of the motor, and try

to turn it by power.
Could you turn the engine freely? (yes/no) ==> y.

*** UNLOADING ENGINE SECTION ***

MOST LIKELY DIAGNOSIS LIST:

LESS LIKELY DIAGNOSIS LIST:

Malfunction_in_starter_unit

yes
?-

Krt

CONSULTATION #3 :

>api
Arity/Prolog Interpreter Version 4.0
Copyright (c) 1986 Arity Corporation
?- [global].

VEHICLE DIAGNOSIS EXPERT SYSTEM IMPLEMENTATION

Please enter "diagnosis" to start the consultation.

yes
?-diagnosis.

1: Does the engine start at all?

2: Does the engine run poorly?
Give numbers of questions whose answer is yes.[l].

1: Does starter turn at all?

2: Does starter turn, but not the engine?
3: Does starter turn the engine very slowly?
4: Does starter turn the engine normally?
Give numbers of questions whose answer is yes. [2].

1: Does starter turn the engine very quickly?
2: Does the engine fire intermittently?

3: Does the engine fire consistently?
Give numbers of questions whose answer is yes. [2].

I found a contradiction!

Check and repeat your answer.
1: Does starter turn at all?

2: Does starter turn, but not the engine?
3: Does starter turn the engine very slowly?
4: Does starter turn the engine normally?
Give numbers of questions whose answer is yes. [2].

1: Does starter turn the engine very quickly?
2: Does the engine fire intermittently?

3: Does the engine fire consistently?
Give numbers of questions whose answer is yes.[].

*** STARTER SECTION ***

Is that your problem:
Starter spins free but won't engage? (yes /no) ==> n.

*** LOADING ENGINE SECTION ***

Do you have a torque tool? (yes /no) ==> y.

Attach the torque tool to the front crank wheel of the motor, and try

to turn it by power.
Could you turn the engine freely? (yes/no) ==> n.

*** UNLOADING ENGINE SECTION ***

MOST LIKELY DIAGNOSIS LIST:

LESS LIKELY DIAGNOSIS LIST:
High-resistance-in-engine

yes
?-

CONSULTATION #4 :

>api
Arity/Prolog Interpreter Version 4.0
Copyright (c) 1986 Arity Corporation
?-[global].

VEHICLE DIAGNOSIS EXPERT SYSTEM IMPLEMENTATION

Please enter "diagnosis" to start the consultation.

yes
?-diagnosis.

1: Does the engine start at all?

2: Does the engine run poorly?
Give numbers of questions whose answer is yes.[l].

1: Does starter turn at all?

2: Does starter turn, but not the engine?
3: Does starter turn the engine very slowly?
4: Does starter turn the engine normally?
Give numbers of questions whose answer is yes. [4],

1: Does starter turn the engine very quickly?
2: Does the engine fire intermittently?

3: Does the engine fire consistently?
Give numbers of questions whose answer is yes. [2].

*** IGNITION SECTION ***

Did you hear a sound like a detonation? (yes/no) ==> n.

Do you observe a high level of moisture in the
atmosphere? (yes/no) ==> n.

Have you washed the car recently? (yes /no) ==> n.

Check for spark at the coil high tension lead.

Do you need further explanation? (yes /no) ==> y.

Remove the coil high tension lead from the distributor and position it

approximately 1/4" from the ground. Crank the engine and observe
the spark.
Is the spark good and consistent? (yes /no) ==> n.

Do you have a test-lamp-12V? (yes /no) ==> y.

Check the ignition switch "on" position.

Do you need further explanation? (yes /no) ==> y.

Connect a jumper wire between the distributor side of the coil and
ground, and a 12V test lamp between the switch side of the coil and
ground. Remove the high tension lead from the side coil. Turn the
ignition switch on and jiggle the key.

Did the lamp light? (yes/no) ==> n.

Do you have an ohmmeter? (yes /no) ==> y.

Do you know how to use an ohmmeter? (yes /no) ==> y.

Do you know where the ignition-coil is? (yes /no) ==> y.

Check the ignition coil secondary side resistance.

Do you need further explanation? (yes /no) ==> y.

Switch ohmmeter to high scale, connect one test lead to the
distributor cap end of the coil secondary cable, connect the other test

lead to the distributor terminal of the coil.

Is the reading between 4K and 8K ohm? (yes/no) ==> n.

MOST LIKELY DIAGNOSIS LIST:

LESS LIKELY DIAGNOSIS LIST:

defective(coil_secondary_resistance)
defective(ignition_switch)

yes
?.

CONSULTATION #5 :

>api
Arity/ Prolog Interpreter Version 4.0
Copyright (c) 1986 Arity Corporation
?- [global].

VEHICLE DIAGNOSIS EXPERT SYSTEM IMPLEMENTATION

Please enter "diagnosis" to start the consultation.

yes
?-diagnosis.

1: Does the engine start at all?

2: Does the engine run poorly?
Give numbers of questions whose answer is yes. [1,2].

I found a contradiction!

Check and repeat your answer
1: Does the engine start at all?

2: Does the engine run poorly?
Give numbers of questions whose answer is yes. [2].

1 : Do you have a hard starting problem?
2: Do you have a rough idle?

3: Do you have stalling?

4: Does the engine die at high speed?
Give numbers of questions whose answer is yes. [1,2, 4].

1: Do you have hesitation (on acceleration from a standing stop)?

2: Do you have poor pickup?
3: Do you have lack of power?
4: Do you have backfire through the carburetor?
Give numbers of questions whose answer is yes. [2].

1 : Do you have backfire through the exhaust?
2: Do you have blue exhaust gases?
3: Do you have black exhaust gases?
4: Do you have running on (after the ignition is shut off)?

Give numbers of questions whose answer is yes.[].

1: Is it susceptible to moisture?
2: Does the engine misfire under load?

3: Does the engine misfire at speed?
4: Does the engine misfire at idle speed?
Give numbers of questions whose answer is yes. [3].

*** IGNITION SECTION ***

Did you hear a sound like a detonation?
Do you observe a high level of moisture in the

atmosphere?
Have you washed the car recently?
Do you have a voltmeter?
Do you know how to use a voltmeter?

Check the ignition coil secondary side resistance.

Do you need further explanation?

(yes/no) ==> n.

(yes/no) ==> n.

(yes/no) ==> n.

(yes/no) ==> y.

(yes/no) ==> y.

(yes /no) ==> y.

Switch ohmmeter to high scale, connect one test lead to the
distributor cap end of the coil secondary cable, connect the other test

lead to the distributor terminal of the coil.

Is the reading between 4K and 8K ohm? (yes/no) ==> n.

MOST LIKELY DIAGNOSIS LIST:

LESS LIKELY DIAGNOSIS LIST:

defective(coil_secondary_resistance)

yes
9-

LIST OF REFERENCES

1. Waterman, D. A., A Guide to Expert Systems , Addison-
Wesley Publishing Company, Inc. , 1986.

Buchanan, B. G. , and Short 1 if fe, E. H. , Rule-Based
Expert Systems : The MYCIN Experiments of the Stanford
Heuristic Programming Project, Addison-Wesley
Publishing Company, Inc., 1934.

Arity/Prolog Version 4.0 Copyright 1986, CSA Press,
Hudson, MA.

4. Forsyth, R. , Expert Systems : Principles and case
studies, Chapman and Hall, 1984.

5. Rowe , N., Introduction to Artificial Intelligence
Through Prolog , Prentice-Hall, 1988.

6. Reiter, R. , A theory of Diagnosis from First
Principles , Artificial Intelligence, V. 32, 1987.

7. Kleer, J., and Williams, B. C, Diagnosing Multiple
Faults . Artificial Intelligence, V. 32, 1987.

8. Alexander, J. H., Freiling, M. J., Troubleshooting with
the Help of an Expert System , Technical Report No. CR-
85-05, Artificial Intelligence Dept , Computer Research
Laboratory, Tektronix, Inc., August 1984.

9. Chilton's Repair & Tune-up Guide : Chevy II and Nova
1962-79, Chilton Book Company, 1979.

10. Chilton's Auto Repair Manual 1964-1971 , Chilton Book
Company, 1971.

11. Clocksin, W. F. , Mellish, C. S. , Programming in Prolo g,

Springer-Verlag, 1984.

73

BIBLIOGRAPHY

1. Sterling, L. , Shapiro, E. , The Art of Prolog , The MIT
Press, 1986.

2. Addis, T. R. , Expert Systems : An Evolution in
Information Retrieval, International Computers Limited,
Technical Journal, May 1980.

3. Addis, T. R. , Towards an 'Expert' Diagnostic System ,

ICL Technical Journal, May 1980.

4. Davis, R. , Diagnostic Reasoning Based on Structure and
Behavior , Artificial Intelligence, V. 24, 1984.

5. Gensereth, M. R. , The Use of Design Descriptions in
Automated Diagnosis , Artificial Intelligence, V. 24,
1984.

74

INITIAL DISTRIBUTION LIST

Defence Technical Information Center
Cameron Station
Alexandria. Virginia 22304-6145

Library, Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

3. Department Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

4. Associate Professor N. C. Rowe
Code 52Rp
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

5. Professor Robert McGhee
_':de 52Mz
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

6. Professor Yuh-jeng Lee
Code 52Le
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

7. LTJG Mufit Can Selek, Turkish Navy
Sogutlu cesme, Elmali cesme sok.
Huzur apt. Dai: 6

Kadikoy - Istanbul, Turkey

3. Deniz Harp Okulu Kitapligi
Deniz Harp Okulu Komutanligi
Tuzla - Istanbul, Turkey

No. Copies

2

7 5

-

Thesis

Selek
An expert system for

the diagnosis of vehicle
malfunctions.

Thesis

S41253
c.l

Selek
An expert system for

the diagnosis of vehicle
malfunctions.

