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ABSTRACT

Solid lithium deposited on stainless steel (SS) was irradiated by a CO., laser at

10.6 ^im, and by a dye laser tuned to 666.4 nm and to the first resonance line of

lithium, 670.8 nm. Type 316 SS surfaces were irradiated by a dye laser at 670. S nm.

Power densities ranged from < 0.1-9.4 MW/cm". Optical information from the lithium

plasma produced was evaluated using Stark broadening analysis to determine the

plasma density, which varied from ~ 2 x 10
1 /cm to over 10

1 /cm . Lithium and SS

surfaces were observed by an SEM before and after irradiation, and evidence of

unipolar arcing was found on both surface types.
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I. INTRODUCTION

The achievement of controlled thermonuclear fusion in the laboratory has been

the goal of many scientists since the 1950's. Foremost in the reasons for this is the

practically endless supply of energy, based on the abundance of deuterium fuel in

ordinary water, and to the ability to mass produce tritium fuel. The DT (deuterium-

tritium) fuel will undergo fusion and release large amounts of energy if held under

extreme temperature and pressure for a sufficient amount of time. The primary

methods of meeting the above criteria fall under the two major categories of magnetic

confinement of a DT plasma, and inertial confinement of solid DT. One promising

type of ICF (inertial confinement fusion) is the indirect implosion of a DT target by

high velocity light ions in the Particle Beam Fusion Accelerator II (PBFA II), a light-

ion accelerator presently undergoing testing at Sandia National Laboratory (SNLA).

Presently, singly ionized lithium ions are the best choice, since they have a sufficiently

small charge to mass ratio. This means that they can be effectively focused on the

target and achieve sufficient kinetic energy for effective coupling to cause the desired

target implosion [Ref. 1: p. 834].

Two of the potential ion sources that are likely to be tested first include a liquid

lithium source which is electrohydrodynamically driven [Ref. 2], and a lithium-silver

alloy that is rapidly heated to produce a lithium vapor, which is subsequently ionized

by a laser [Ref. 3]. The latter process is quite complicated due to the multilayered

construction of the anode that is required for the rapid ohmic heating of the lithium to

a vapor [Ref. 1: p. 834J. However, it provides the ability to produce the desired lithium

plasma in the laboratory instead of inside the accelerator environment, which is

advantageous since this allows the relatively unhindered characterization of the plasma.

Other methods which have been tested on prototype particle beam accelerators do not

meet the established ion source requirements, ion density (n.) > IO
17

per cubic

centimeter (cc), and an ion layer of ~ 1 millimeter (mm), for PBFA II [Ref. 4: pp.

1718-1721], and thus are not presently considered major contenders for future ion

source studies.

This thesis will discuss the experimental results of a method to produce a

sufficiently dense, thin lithium plasma which may satisfy the ion source requirements of



PBFA II. In order to efficiently accelerate lithium ions toward the DT target, the

plasma is required to be present at the onset of a 30 Megavolt (MV) potential across

an ion diode. In the experiments described here, a plasma was produced directly from

solid lithium metal by a dye laser tuned to the first resonance line of lithium, at 670.8

nanometers (nm). It is theorized that two phenomona were combined in the

production of this plasma; unipolar arcing, and laser ionization based on resonant

saturation (LIBORS).

Unipolar arcing occurs when a laser-produced plasma is in direct contact with a

conducting surface, and has been shown to be the predominant damage mechanism to

that surface [Ref. 5: p. 10]. The damage occurs when an electric arc is established

between the plasma and the surface, causing large numbers of particles to be ejected

from the surface such that microscopic craters develop. Many neutral atoms are

ionized in the laser heated plasma, resulting in an increasing plasma density which

leads to more arcs, enhanced crater formation, and thus more material removed from

the surface. The process continues as long as a sufficient laser power density is

available. Considerable work, has been accomplished to date on the study of unipolar

arcing in various materials, such as on uncoated stainless steel (SS) and stainless steel

coated with TiC (titanium carbide) [Ref. 6], and on semiconductor materials and

metallic glasses [Ref. 7]. However, previous research on unipolar arcing was done in an

attempt to prevent it from occuring due to the damage it caused on internal surfaces of

magnetic confinement fusion devices [Ref. 8].

Once neutral lithium atoms are released from the surface, it is theorized in the

present experiments that the LIBORS process occurs. An absorbed photon at the first

resonant frequency of lithium excites the neutral atom. Subsequent collisions with hot

electrons result in an ionization probability that is several orders of magnitude more

[Ref. 9: p. 372] than that of a neutral atom irradiated and photoionized, after multiple

photon-atom interactions, by a non-resonance laser. The result is a lithium plasma

that is almost fully ionized at laser powers lower than those required for non-resonant

laser plasma formation. The objective of this thesis was to determine the threshold

energy density required for the onset of lithium plasma production, and to determine

whether the added LIBORS process is able to produce a higher lithium plasma density

from solid lithium than a non-resonant laser ionization process such as that caused

during unipolar arcing. It will also determine whether unipolar arcing can be detected

by detailed surface analysis under a scanning electron microscope.

10



This thesis will provide information under the following major headings:

Background and Theory; Experimental Setup; Experimental Results; and Summary.

The background and theory will describe the unipolar arc and LIBORS models as they

apply to lithium. Equipment used and procedures followed for conducting the

experiments are discussed. The results obtained and their comparison to theory are

explained, and finally, recommendations for future experiments regarding equipment

and target preparation are provided.

11



II. BACKGROUND AND THEORY

A. INTRODUCTION

Laser produced plasmas interact with surfaces in a variety of ways. The major

contributors to damage, however, are classified by three processes; ion sputtering,

thermal evaporation, and unipolar arcing. This chapter will outline the most recent

extension of the unipolar arc model as presented by Olson [Ref. 10: pp. 14-32]. Olson's

thesis includes a detailed treatment of the ion sputtering and thermal evaporation

models, plus the historical development and detailed explanation of the currently

accepted unipolar arc model.

The LIBORS process is then described, and the combination of the LIBORS

process and unipolar arcing :: produce a lithium plasma is discussed. I: is assumed

that the reader has a basic knowledge of plasma rk; sics and iaser-surface interactions.

or has access to such material as the above referenced thesis for a more complete

description and definition of terms used in this section.

B. OUTLINE OF UNIPOLAR ARCING MODEL
As a laser beam hits a surface, the energy which is not reflected heats the surface,

causing desorption of the lighter surface contaminants, primarily gases and neutral

atoms. If the photons have enough energy, for example 1.85 electron Volt (eV)

photons from a dye laser tuned to a wavelength (X) of 670.8 nm, some electrons may

also be ejected from the surface. This is more likely, using the above example and

assuming multiphoton interactions with the surface, if the surface is lithium, whose

work function is 2.3 eV, than with iron, whose work function is 3.9 eV. If the surface

is a conductor, such as lithium or SS, the tangential electric field from the laser

electromagnetic wave at the surface is zero. Thus, an intensity maxima is established

at a distance X/4 from the surface, due to the superposition o[ the incident and

reflected waves. Any electrons in the vicinity of X/4, which is at 167.7 nm for the

above wavelength, from the surface will oscillate with and gain energy from the electric

field. Upon multiple collisions with neutral particles, many electrons will gain more

thermal energy, establishing an electron temperature (T ), such that subsequent

collisions will ionize neutral atoms, and thus a weak plasma begins to form. At this

point, if the laser is tuned to the first resonance line of lithium, the LIBORS process

12



can also occur and theoretically cause neutral lithium atoms to be ionized more readily,

which is discussed in detail later.

Assuming a Maxwellian distribution of electron velocities, those electrons in the

high energy tail of the distribution can quickly leave the vicinity of the much heavier

ions, and many will reach the surface. This establishes what is referred to as a floating

potential (V
f
), defined by equation 2.1 as [Ref. 11: p. 3]:

V
f
= (kT

e
/2e) In (M^TCrrig) (eqn 2.1)

between the plasma and the surface, with the surface being more negative, where

k = Boltzmann's Constant

T
e
= Electron Temperature

e = Electron Charge

M: = Positive Ion Mass

and m = Electron Mass.

A plasma sheath has now been formed near the surface which electrostatically repels

lower energy electrons back into the plasma, thereby maintaining quasi-neutrality in

the plasma. The potential, V~ causes an electric field (E ) to be established across the

plasma sheath, which can be approximated by E
s
~ V^Xq where Xq is the Debye

Length [Ref. 12: p. 780]. Because of E , ions can now be accelerated through the

plasma sheath in equal numbers to the exiting high energy electrons and strike the

surface, causing ion sputtering. This, combined with the continued laser desorption

and, as the surface temperature increases, evaporation of more particles, leads to an

increased density of neutrals being released into the plasma.

Electrons continue to gain energy in the X 4 region from the surface and from

further collisions with neutrals, so T increases which means Vf
oc T also increases.

e f e

From continued ionizations electron density (n ) increases, causing Xq ^ n ' to

decrease. The above combined effects lead to a much increased value for E . Thus,
s

with ion density (n) also increasing, more ions are accelerated to the surface to cause

additional ion sputtering. Another factor leading to the increased release of neutrals is

the heating of the surface from multiple ion-electron recombinations.

13



Even if plasma density reaches the critical density (n ), which is about

2.5 x 10 /cm for the above wavelength, and laser energy is cut off from the surface,

the free electrons in the plasma continue to gain energy as long as a sufficient laser

power density is available to overcome losses. T
e
thus continues to increase until the

energy gain rate from the laser is matched by an energy loss rate due to ionizations and

inelastic collisions. Therefore, V
f
eventually reaches a maximum value in the plasma,

which is about four volts per eV of the lithium plasma electron temperature, T .

As >.q becomes < < X 4, or on the order of 2 x 10 cm for the above X. E.

approaches 10 volts; cm. Since the surface is not perfectly flat but contains many

microscopic imperfections, those that protrude from the surface, called whiskers, serve

to preferentially concentrate the electric field lines toward themselves. According to

Halbritter [Ref. 13] this concentration of field lines can lead to an enhancement in E

by a factor of 10-1000. This enhanced E "focuses" the ions to bombard the whisker,

so that neutral particle density rapidly increases above the whisker, causing an

increased n. and n from ionizations, and thus Xn will continue to decrease. In the
i e U

region above the whisker, E
s
quickly reaches E

arc
~ V Xq < VJXr-j, where V is

called a cathode fall potential and refers to the potential that exists where an arc has

been initiated. Thus the arc is initiated, probably by a phenomena known as enhanced

field emission [Ref. 14].

Once the arc, which initially is comprised of electrons exiting the tip of the

whisker and ions from the plasma bombarding the whisker, has begun, plasma density

rapidly increases directly above the whisker. Therefore Xq decreases more and E
arc

continues to increase. Thus, the arc is a self-feeding mechanism as long as neutrals

continue to be made available for ionization and collisions and electrons continue to

gain the energy required for ionization of the neutrals. The continuation of the arc

eventually leads to the formation of a crater where the whisker was. Due to the greatly

increased plasma density above the arc crater, a radial electric field (E ) is established

from the resulting plasma pressure gradient. This provides for a reduced potential ring

around the high density region [Ref. 15: pp. 10-11], which is depicted in the unipolar

arc model shown in Figure 2.1 [Ref. 15: p. 11]. It is through this reduced potential

area that electrons can return to the surface and complete the current loop. Since the

surface acts as both cathode and anode, this entire process has been called unipolar

arcine.

14



Eventually the plasma density increases enough that electrons begin to lose

enersv due to excessive inelastic collisions, so T and thus E besin to decrease in the—

'

., e arc

localized arc area. Also, as the plasma conforms to the surface of the crater and

extends into it, the probability of high energy electrons reaching the increasing

numbers of neutrals being ejected from the surface begins to decrease, and the

subsequent decreased ionization rate further decreases E . The combined result leads

to the cessation of the arc, and the event is complete. The rim of the newly created arc

crater may now protrude sufficiently to act as a new whisker, and if the necessary

plasma conditions exist a new arc could be initiated.

SHEATH
POTENTIAL

PLASMA /
/

OUTER CRATER
Rim

ELECTRONS

0_ SURFACE

CATHOOE SPOT

^^ NEUTRAL ATOM

Figure 2.1 Unipolar Arc Model.

C. LIBORS MODEL
The direct photoionization of lithium is an inefficient process because the cross

section for absorption is extremely low, at best about 2 x 10" 18
, cm2

for photon energies

slightly above the ionization potential [Ref. 16]. In 1970, Measures [Ref. 17] suggested

that the saturation of an atomic resonance transition of vapor by a laser should result

in an efficient coupling of laser energy with the vapor. This would, he predicted,

15



substantially enhance the ionization of the vapor into a plasma. This was

demonstrated on a lithium vapor in 1977 by Mcllrath and Lucatorto [Ref. IS] using a

1 MW dye laser tuned to the first resonance line of lithium, at 670.8 nm. The

experimental setup included a 15-cm-long lithium heat-pipe oven, and the vapor

density was ~ 6 x 10 /cm . Based on densitometer traces taken at 200 ns intervals, it

was reported that considerable ionization had taken place by 400 ns after laser

initiation, and by 600 ns ionization was almost complete. Comparing similar work

done with sodium (Na) vapor and by the process of elimination o^ various processes

which lead to ionization, the paper narrowed the probable reasons for such an efficient

and rapid ionization to one candidate, involving superelastically heated electrons.

Measures [Ref. 19: p. 2673], providing a detailed explanation of the above

process, reasoned that because of an overpopulated resonance level caused by laser

saturation of the resonance transition, any free electrons which interact by deexcitation

or superelastic collisions with those sxcited atom; '

; ..„ experience a rapid increase in

energy. He further proposed that, ;;nce a lar: ;

; excess population was being

maintained in the resonance or excited state solely due to laser radiation, that there

existed a pseudo-ground-state which effectively resulted in a much reduced ionization

energy. Thus the rate of ionization should be enhanced greatly due to, in the former

case, a much elevated electron temperature (T ), and in the latter case due to excited

atoms which would require less energy to become fully ionized.

The initiation of the Laser Ionization Based On Resonant Saturation (LIBORS)

process requires some free electrons, which Measures proposed most likely come from

three-photon ionization. Using the example of lithium and a laser wavelength of 670.8

nm, three photons at 1.S5 eV each would provide 0.16 eV more than that required for

lithium ionization. The newly freed electrons can undergo superelastic collisions with

laser excited lithium atoms and quickly gain energy.

In a more detailed treatment, the four stages of the LIBORS process was

proposed [Ref. 20: pp. S05-S07] and is presented in Figure 2.2 [Ref. 20: p. 806]. As

shown, the four stages are: laser saturation; seed electron creation period; intermediate

ionization period; and ionization burnout. Laser saturation occurs within < 1 ns, with

the result being that the ratio of the resonance state to ground state degeneracies is

now the same ratio as resonance to ground state population densities. Thus, almost

3/4 of the original atoms in the ground state are now in the resonant or excited state.

[Ref. 20: pp. 805-S06]

16



FOUR STAGES OF LIBORS

{continuum}

STAGE i

LASER
SATURATION

JO t t ft ! II (

STAGE 2 STAGE 3 STAGE 4

rRESONANCE-i
1 LEVEL J

rGROUNO \
1 LEVEL J

!2>-

li>-

fRa«R,8
N e K

2 ,

Figure 2.2 Four Stages of LIBORS.

The second stage, the creation of seed electrons, occurs primarily by three

methods. The first is the two-photon ionization of the resonance level atom, which has

already utilized one photon in order to be in the excited state. The product is an ion

plus a free electron. The second method, called laser induced Penning ionization,

occurs when two excited atoms interact together and with a photon to produce an ion,

an electron, and a ground state atom. Thirdly, by associative ionization, two excited

atoms interact to form a singly ionized dimer (molecule) plus an electron. In all three

cases, the resulting particles have kinetic energy. The new free electrons quickly gain

energy through "superelastic collision quenching of the laser sustained resonance-state

population." as previously described. Thus, in the third stage, these energetic electrons

can ionize resonance level atoms by direct collisions. At the same time, since many

atoms experience "collisionally populated intermediate levels," which means that they

are further excited to above the first resonance level, they can now be single photon

ionized. The net result is an electron density which grows exponentially. [Ref. 20: p.

806]

Once a critical n
e

is reached, the intermediate levels undergo unimpeded

collisional ionizations, and a nearly complete ionization is reached in the excited

17



atomic species. This phenomena is referred to as ionization burnout. A graph of the

increase in n vs time, for lithium vaDor and a laser flux of 1CP W/cnr, is shown in
e r

Figure 2.3 [Ref. 20: p. 810], where stages two through four of the LIBORS model are

depicted. It can be seen from the figure that the entire ionization process of a dense

(~ 10
i6/cm3

) lithium vapor occurs in an extremely short amount of time using

LIBORS. Using the LIBORS process is much more efficient because the resonant

absorption cross section is several orders of magnitude larger at about 10 /cm

[Ref. 21] when compared to the value for ordinary photoionization.
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Figure 2.3 Electron Density versus Time for Lithium.

D. LIBORS AND UNIPOLAR ARCING COMBINED

Since the LIBORS process requires a vapor source, when a solid surface such as

lithium is used the neutral atoms must be produced by direct vaporization from the

application of heat, or by a process such as the unipolar arcing mechanism. The arcing

process, although determined to be a destructive, non-uniform surface phenomena, will

cause a rapid layer of neutral atoms and ions to be formed above the surface. Because

of pressure and density gradients, the combined plasma and vapor should self-adjust to

become more or less uniform over the surface, and the result should be a relatively

18



•uniform density plasma layer, on a macroscopic scale, over the surface. A uniform

plasma is a mandatory requirement for a suitable ion source in an ion diode.

Once a source of neutral lithium atoms is established, the LIBORS process can

occur in the four staged sequence described above. Although the seed electrons will

quickly gain energy from supereiastic collisions, an additional energy source is available

to those electrons at a distance of X.4 from the surface due to the above described laser

intensity maxima established at that point. Thus, the unipolar arcing and LIBORS

processes should be complimentary in nature and provide a rapidly formed, dense

lithium plasma. A limitation would possibly occur due to the rate at which neutral

atoms could be released from the surface of the metal, and another limitation could

occur when neutrals closer to the surface become shielded from the laser energy due to

plasma cutoff.

The purpose of this thesis was to compare Li plasma densities produced by laser

irradiation .: both on- and off-resonance wavelengths, to test whether the LIBORS

process combined with unipolar arcing ' ild result in a higher density at lower power

levels than with unipolar arcing alone. Another main objective was to determine the

threshold laser power density required to produce a dense layer (~ 10 /cm ) of

lithium ions suitable for accelerator ion source requirements. It was with this in mind,

and that the combined processes could provide a sufficiently dense plasma source of

lithium ions for subsequent use in an ion accelerator, that the experiments in this thesis

were conducted.

19



III. EXPERIMENT DESIGN

A. EQUIPMENT DESCRIPTION AND SETUP

The apparatus used for this experiment included a tuned dye laser, several laser

diagnostics, an evacuated target chamber, and an optical multichannel analyzer (OMA)

to gather plasma spectral information. A scanning electron microscope (SEM) was

utilized for pre- and post-target irradiation surface study, to determine the undamaged

and damaged characteristics of the lithium surface. The targets were type 316 stainless

steel (SS) disks, onto which solid lithium had been deposited by various methods.

Figure 3.1 depicts the laser and target chamber setup. The OMA equipment schematic

is shown by Figure 3.2. Photographs were taken of the profile of target surfaces to

:=:ca:a .'isual evidence )f plasma format! :: and its extent.

'. Laser

A Canada SLL-625 Dye Laser System was used to provide the energy on

target for plasma production. The majority of the data were gathered while the laser

was tuned to an output wavelength of 670.8 nanometers (nm), which coincides with the

first resonance line of lithium. Several shots were also taken at an oiT-resonance

wavelength for comparison. Using sulforhodamine 640 dye, the laser had an effective

tuneable wavelength range from 615 nm to 678 nm with peak efficiency centered at 640

nm, and in order to reach a suitable power level of a few megawatts (MW) per square

cm at 670.8 nm, oxazine 720 dye was added and mixed with the sulforhodamine 640.

The laser beam diameter was approximately 16 millimeters (mm).

The power supply to the laser flashlamp was charged to 25 kilo volts (kV).

Although the laser output energy could be altered by changing the flashlamp voltage

input, neutral density filters were used so the laser could be operated under known

conditions. More detailed information on the laser system can be found in the

instruction and installation manual [Ref. 22]. A helium-neon (Fle-Ne) laser was used

for alignment and calibration.

It was discovered that the actual laser parameters, wavelength, power output,

pulse width and pulse intensity varied from shot to shot. The factors that caused these

variations were dye pump speed, the number of shots taken on and the age of the dye,

dye temperature, time between successive shots, flashlamp output, and optical
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alignment variations due to temperature. The predominant factor for shot to shot

variations was found to be time between successive shots, which affected the stability

of the dye temperature. The predominant factor for long term power output

degradation was the number of shots taken on a given dye mixture. A factor o[ three

to five drop in power was experienced from the time a new dye mix was used until the

approximate end of life of the dye. This was determined by low power output, poor

beam quality, wide linewidth in nm, and a short pulse width. Therefore, the below

described equipment setup was required to monitor the important shot to shot beam

parameters. Additionally, pulse width was found to remain fairly constant for day to

day operation and was monitored only before or after a sequence of shots used for

data. The pulse width was detected by an ITT F-401S type S-20 photodiode via a

beam splitter, and displayed on an oscilloscope for analysis or recording by a camera.

During the life cycle of the dye, the full width half maximum (FWHM) pulse width was

found to vary from 900 ns for new dye to < 500 ns for old dye.
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2. Laser Output Diagnostics

a. Wavelength and Pulse Shape

Shot to shot wavelength data were provided by a Candela LS-1 Laser

Spectrometer (wave meter), which used a He-Ne laser for reference. The wave meter

was triggered by a Hewlett Packard (HP) model 214A pulse generator. The laser pulse

reflected off a beam splitter was incident upon an array of photodiodes whose

dimensions and distance apart were known. The reference and dye laser pulse shapes

were displayed on an oscilloscope and were marked by two reference lines controlled

from the wave meter. The difference, read directly from the wave meter, was used to

calculate the actual wavelength to ± 0.01 nm.

b. Energy

Two Gentec Joulemeter ED-200 energy meters were used. Meter 'A'

obtained energy from a beam splitter downstream of the wave meter beam splitter, and

was used for shot to shot measurements. .Meter B' was placed inside the opened target

chamber with ::he i rgets remo 1
...:, in ^rder to record actual energy on target. Sever:::

shots were taken and ratios were obtained between the two meters to account for

losses due to the focusing lens, an additional beam splitter, the chamber window, and

numerous neutral density filters used to reduce power on target. The meters were

calibrated to an accuracy of 10 percent (%).

c. Spot size

Focused laser power was incident upon a Candela Model RSX-1 reticon

array via a beam splitter and several neutral density filters for protection. The distance

from the 50 centimeter (cm) focal length lens to the array was the same as the distance

to the targets, and spot size information was found by displaying the pulse on an

oscilloscope. Reference markers were provided by a Candela RD-2 Reticon Digitizer

which, after manual adjustment upon each shot, gave a direct readout of the number of

reticon elements illuminated at the FWHM spot size. The distance between each

element was 25 um, and thus the number of elements illuminated was multiplied times

25 x 10"4 to obtain the spot diameter in cm.

3. Target Chamber

The target chamber was a 15.2 cm cube of SS, with a glass window on the

optical axis and a lucite window at 90° off axis. The laser energy was incident normal

upon the vertical aluminum target holder, which was 7.5 cm in diameter and contained

six targets, each 12.7 mm in diameter. The laser spot was centered on the targets,

23



which were sequentially moved into position by the externally manipulated 6.35 mm
shaft onto which the target holder was fitted. A Sargent-Welch Model 1402 roughing

pump was used both alone to maintain a 4 to 5/ 10"4 torr vacuum for storage and

protection of the lithium samples, and in series with a Varian Model VHS-4 diffusion

pump to maintain vacuum at 1 to 4 x 10" 6 torr for experimental target shots. For

additional target protection, a compressed-argon filled gas bottle was connected to the

vacuum chamber for backfill into the chamber before and during all times that the

lithium targets were transferred into or out of the chamber. The vacuum system table

provided a convenient surface upon which was attached a 50 cm focal-length lens, a

beam splitter, a filter holder and reticon array unit, as well as a 6.5 cm focal-length lens

and a fiber optic cable and holder for plasma light transmission.

4. Optical Multichannel Analyzer System

An FG&G Princeton Applied Research OMA-2 detector system was utilized,

which consisted o'i ;e\ >ral iifferent types of equipment, described beiow, necessary to

gather and anal3/ze .plasma light from the lithium target via a 4-m-long fiber optic

cable. The equipment was manufactured by EG&.G unless otherwise noted. See

Figure 3.2. The fiber optic cable was placed in position at 90° off axis. A 5.08-cm-

diameter, 6.5-cm-focal-length lens was positioned about 13 cm from the target center

to gather as much plasma light as possible, and the fiber optic was placed at about 12

cm from the lens to obtain the most intense, focused plasma image at the optic cable

end. An equipment description is provided below, but for more detailed information

see the EG&G technical note No. 181 [Ref. 23], or the respective equipment operating

and service manuals [Refs. 24,25].

a. Spectrometer

The fiber optic outlet was connected via a centering notch to a Jarrell-Ash

"1 -meter" spectrometer, which provided a grating to restrict the actual spread of

wavelengths transmitted to the OMA to a bandwidth of 13.58 nm. The spectrometer

was adjustible to permit the peak of the desired wavelength profile to be centered on

the detector reticon array for analysis.

b. Detector

Light from the spectrometer was channeled into a model 1420 solid state

intensified diode array detector via a gate, which could be timed to open for a specific

interval or kept open for continous wavelength operation. This detector used a 730

channel proximity focused micro-channel plate intensifier, which had the capability of
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being gated open for as short as a five ns interval without signal degradation. Channel

sensitivity was factory preset at one count per photoelectron, and the built in amplifier

was capable of passing 700 channels of information. Electrical power was supplied by

a model 1218 solid state detector controller.

c. Pulse Generator

Gate control for the detector was provided by a model 1211 high voltage

pulse generator, which had the capability of triggering the OMA gate to be open for as

short as 10 ns or for as long as 999 jis. The generator could also delay the gate open

start time for 100 ns up to 999 ms in order to allow the detector to look at a distinct

time interval during the laser-target interaction-plasma production cycle. For the

experiments reported in this thesis, the delay time was set to 100 ns and the gate was

set to be open for 900 fis. Trigger release for the model 1211 came directly from the

model 1218 detector controller, which received its triggering ultimately from the HP

model 214A pulse generator, which also provided the trigger for the wave meter.

Therefore, the sequence of events that occurred when the detector

controller was put in a ready status by a computer, was that the trigger button on the

HP model 214A pulse generator was depressed, sending a signal to the model 1211

pulse generator and the wave meter at the same time. The model 1211 would then

send a signal to the laser, which would produce a pulse at the lithium target, causing a

short burst of plasma. The model 1211, preset to wait a certain amount of time, then

sent a trigger to open the model 1420 detector gate just before the plasma light had

travelled through the fiber optic and the spectrometer to reach the detector. The

detector amplified and transmitted the plasma spectral signal to the model 1218

detector controller, which passed the channel by channel digitized information to the

computer for edited numerical screen display.

d. Computer control and data storage

A Digital Equipment LSI 11 microprocessor and associated software

provided the control signal to the model 1218 detector controller, in order to enable the

model 1211 pulse generator to fire the laser and operate the detector gate mechanism.

The computer would then receive the digitized plasma information from the detector

controller, display certain parameters such as maximum and minimum relative intensity

on the screen, and await further instructions, such as to save the information to disk,

prepare for another shot, or other operations. A graphics program allowed the

information to be displayed graphically for 700 channels, plotted horizontally, versus

25



relative intensity plotted vertically. Polaroid photographs were taken of the plotted

CRT displays for subsequent plasma line broadening analysis.

5. Scanning Electron Microscope

A Hitachi S-450 scanning electron microscope (SEM) was used at Sandia

National Laboratory to characterize and photograph the lithium target surfaces before

and after irradiation with the laser. The SEM was capable of magnifications from 20X

to 200.000X with a resolution of 6.0 nm. A hair-pin tungsten filament was used, and

the system was capable of maintaining a vacuum of 5 x 10" 6
torr. The system had no

provision for any inert gas backfill, so lithium samples were exposed to air during ail

the transfer operations.

An additional SEM was used at the Naval Postgraduate School (NTS) for

target studies. It was a Cambridge Stereoscan 200, with magnification ranges of 30X

to 300.000X, a vacuum capability of 7 x 10" 7
torr. and it used a hairpin tungsten

filament. Additionally, a resolution of 7.0 nm was obtainable, and the system had a

nitrogen gas backfill capability, which allowed much better protection of the lithium

samples at ambient temperatures.

6. Lithium Handling Equipment

Lithium target preparation and handling was done in a Dry-Lab Glove Box,

which included a Dri-Train M040-1 unit that maintained a positive atmosphere of 0" to

l"(H-,0) of argon gas, and maintained very low oxygen, < 1.0 parts per million(ppm),

and water vapor, <0.5 ppm. Inside the glove box was a SYBRON/Thermolyne 1400

furnace, capable of over 1000°C, and various tools for the preparation and handling of

lithium and lithium coated SS targets, such as needle nose pliers, scissors, a knife. SS

scrapers, a ruler, alien wrenches, and more.

Anything entering the glove box had to pass through a sealed transfer

chamber, which was first evacuated to < 150 torr vacuum. For added protection, the

transfer chamber was normally kept under a vacuum to reduce the possibility of air or

water vapor getting into the glove box. The transfer chamber was then backfilled with

argon to equalize pressure with the glove box, and the equipment or parts being

transferred could then be moved into the glove box. Anything exiting the glove box

went through the same transfer chamber, but unless the chamber had been opened to

atmosphere the evacuation was not done.
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B. PROCEDURE

1. Target Preparation and Handling

Target substrates were all 12.7 mm diameter by 6.35 mm high type 316

stainless steel disks. The reason for this material selection was due to its acceptance

for suitable liquid lithium containment at temperatures up to 500°C [Ref. 26: pp.

22-24]. However, in retrospect, a better material selection may have been niobium,

tantalum, or molybdenum [Ref. 27], since the disks were kept at above 600°C and in

contact with liquid lithium for as long as one hour during the target production

process. The disks were polished on one of the flat surfaces by standard

metallographic polishing techniques. The final polish solution was a 0.5 um A10-,

slurry, which yielded a mirror-like finish on each disk. This was done to provide a

smooth, flat surface onto which a thin lithium foil of the order of several microns could

be adhered. However, a suitable medium was not available that would adhere the disk

to the thin lithium foil, maintain a flat, smooth surface, and also not react with the

lithium, which proved to be a very difficult n;e:a: vim which r o work. Instead, for

initial experiments. 5.08 cm * 381 um thick lithium foil was cut into 7.9 mm wide

strips by a pair of scissors, since lithium is softer than lead [Ref. 28].

Prior to being transferred into the argon filled glove box, the disks were

ultrasonically cleaned in methanol for > 10 minutes, after which rubber gloves were

used to handle them. The disks were placed on a 7.6 cm x 7.6 cm x 2.4 mm SS plate

for handling, and into the furnace at 500°C. After being heated for one hour, the disks

were removed from the furnace, and several attempts were made to melt the lithium

foil onto the disks with no success. After the disks had been heated to 650'3

C, the

lithium would melt onto the surface o^ the disks and immediately ball up, like mercury,

instead of wetting the entire surface. The resulting acceptible procedure was to place

the disks in the furnace which was heated to between 650° C and 700°C for a minimum

of Vx hour, before melting the lithium pieces onto the disks.

Once the lithium had melted and balled up on the surface, the disks were

placed back into the furnace for about five minutes, and then removed. At this point

the lithium had usually wet the entire polished surface with a slight meniscus, which

was mirror shiny like liquid mercury. If the entire surface was not covered, a scraper

was used to spread the lithium over the remaining surface. The foil strips were cut to

7.9 x 14.3mm; less than this would result in difficulty in covering the entire surface, and

more would result in an excessively rounded meniscus with an inadequate surface

flatness.
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Unfortunately, the shiny appearance would be replaced within a few minutes

by a dull, cloudy film over the lithium surface. Apparantly, contaminants existing in

the lithium foil, or reaction products between lithium and the SS disks, water vapor, or

nitrogen, or any combination of the above, were precipitating onto the surface. This

resulted in a noticable layer of residue on the surface and in white flakes, probably

lithium hydroxide, at the lithium-SS boundary. A stainless steel scraper was used with

limited success to scrape these contaminants off of the surface. This would usually

result in the breaking up of the remaining film into several small particles, which would

evenly disperse over the surface. As the lithium cooled down, it eventually became

tacky and the scraper would either stick to it or remove excessive amounts of lithium

metal. Thus the targets always required reheating at above 650°C for at least five to

six more minutes.

The surfaces would always come out mirror shiny, but the same phenomena of

clouding and film formation would occur, 'egardless oi~ how many times the scraping

and reheating procedure was done. In nio^t cases, two cycles of scraping and reheating

were the optimum for reducing surface contamination, with the surfaces being allowed

to cool untouched after the final reheat. In one instance, using foil from the end of the

roll, four scraping and reheating cycles still did not produce satisfactory samples. Even

in a controlled atmosphere such as the glove box, exposed lithium deteriorates due to

its extremely reactive nature. Other possible sources of contamination could be from

the handling of lithium by steel scissors, the knife, scrapers, needle nose pliers, rubber

gloves, paper napkins on which the foil was laid, the steel glove box chamber bottom.

and inadvertant contact with glass, plastic, and other materials.

Significantly improved targets were prepared using lithium from 20.3 x 2.5 cm

diameter bars, from which were sliced 2.4 mm thick disks of very pure lithium. The

subsequent optimum sized pieces of lithium were about 2.4 x 2.4 x 9.5 mm. Using the

bar lithium resulted in far superior surfaces with regard to low amounts of

contaminants and final appearance. After two scraping and reheating sequences of the

new targets the surface appeared much like the actual metal obtained from the

protected inner material of the bar. Other work conducted while producing lithium

coated structures at Sandia National Laboratory resulted in the same significant

improvement in the reduction of contaminants when the lithium bars were used instead

of the foil [Ref. 29].
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To complete the target production cycle, at the end of the final reheat, the

targets were removed from the furnace, taken off the hot 7.6 x 7.6 cm transfer plate

and placed on the cool (ambient) chamber bottom for rapid cooling. Before being

transferred into the glove box, the aluminum target holder assembly and brass set

screws were ultrasonically cleaned for > 10 minutes in acetone, and then were handled

only by rubber gloves or clean paper cloths. Once cold, the targets were placed in the

six slots of the target holder, and set screws were used to hold the targets securely.

When transferred from the argon glove box, an argon filled, sealed dessicator jar was

used. This provided sufficient short term protection until the targets were placed in the

SEM, during which they were exposed to air for up to two to three minutes during

evacuation of the SEM, or in the laser target chamber, when exposure to air was

reduced to several seconds.

When irradiation by laser and surface study was complete, or when the targets

were so corroded that they were no longer useful, the lithium was cleaned off the SS

disks by dropping them into a large beaker of water. Due to the rapid reaction with

water which produced hydrogen, this was done in a well ventilated hood. Within

minutes, the lithium was gone, and the disks were rinsed off by squirting them with

methanol. Then to repolish the surfaces and clean the disks more completely, each

disk was polished using a polish wheel and 1.0 Jim diamond compound. Each surface

would easily polish to a mirror luster, and thus each disk was able to be re-used several

times. As before, prior to being transferred back into the glove box, the disks were

ultrasonically cleaned for > 10 minutes in methanol. Additionally, if the target holders

became contaminated, they were also ultrasonically cleaned in acetone, as previously

described, prior to re-use.

2. Laser Plasma Production

The production of lithium plasma was done in three different types of

experiments. At first, when the OMA plasma analysis equipment was not available,

several on-resonance laser shots were conducted on samples made from lithium foil,

and also on polished type 316 SS surfaces. The samples were observed by an SEM for

evidence of unipolar arcing and melting. After the OMA equipment was set up.

samples produced both from foil strips and from pieces of pure lithium bar were

irradiated. The dye laser was tuned to 670. S nm on all targets. It was then changed to

an off-resonance wavelength of 666.4 nm for a series of shots on one of the previously

on-resonance irradiated targets, for plasma density comparison. Finally, a CO-, laser,
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with a wavelength of 10.6 Jim and a pulse width of 4.55 }is, was used at the Naval

Postgraduate School (NTS) to irradiate lithium targets produced by bar lithium. The

surfaces were observed by the NTS SEM for visual evidence of unipolar arcing.

The experimental procedure was nearly identical in all three cases. The targets

were removed from an argon filled, sealed glass jar and exposed to air for < 10 sec

while transferring to the vacuum chamber at SNLA with its argon backfill capability,

or for 10 to 30 sec while transferring to the vacuum chamber with nitrogen backfill at

NTS. The difference in exposure times was due to the ease of access and ability to

close the system up faster in the former case. After reaching a vacuum of ^4 x 10

torr, the lasers were prepared for use. Several shots were always taken on the dye laser

before target irradiation, in order to fine tune the wavelength, optimize pulse shape

uniformity, and stabilize the temperatures of the dye and the optics. In the latter case,

an interval of 20 to 25 sec between shots resulted in the best repeatability of energy

output, wavelength, and beam quality and uniformity. Unfortunately, when taking the

actual data, this interval was often exceeded, which mandated the shot to shot

monitoring of all important pulse parameters. This was unnecessary for shots taken

with the CO-, laser, where only energy output was monitored on a shot to shot basis.

Upon completion of all shots, the vacuum chamber was backfilled with its respective

gas, and the target holders were placed and sealed in glass jars, which were prefilled

with the same applicable gas. The targets could then be transferred to an SEM or

stored for future use or disposal. The different experimental procedures are detailed

below, and the results are discussed in the next chapter.

a. Experiment- Type 1

These experiments, conducted on targets made from lithium foil, were done

to determine whether unipolar arcing could be detected on the target surfaces. A

distinct, violet colored flash of light, which probably coincided with the 460.3 nm line

of lithium, was evident whenever plasma was produced. When an insufficient laser

power density was used, no light was detected. Power density on target was controlled

by moving the 50 cm focal-length lens linearly toward or away from the target, keeping

the distance to the target at a range of 40 to 50 cm away, thereby causing the

irradiated area to increase or decrease. Neutral density filters were not used, and spot

size measurements were obtained only from spots burned onto exposed polaroid paper

which was secured to a target holder in the vacuum chamber. Several shots were taken

in order to calculate an average spot size for each distance that was used on actual
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targets. Also, several power meter comparison shots were taken, as described earlier,

so that shot to shot pulse energy on target could be calculated. Finally, a pulse width

measurement was obtained in order to convert energy density to power density.

Several shots were also taken on unused, polished stainless steel disks to

obtain visual evidence of unipolar arcing, and to obtain power density information.

Visual evidence of plasma production was simply the observation of white light being

emitted from the target being irradiated.

b. Experiment- Type 2

The operation of the OMA system was described earlier in this chapter.

Three different element hollow cathode tubes, lithium (Li), zinc (Zn), and mercury

(Hg), were positioned, one at a time, to illuminate the end of the liber optic near the

target chamber. This was done to obtain information about the correction factor

required between the actual line spectrum being observed and the spectrometer digital

readout in rim. The correction requirement was introduced at the time )f the initial

alignment and calibration Df the spectrometer, and was found co rarj slightly cor the

range of interest, from 671.7 nm to 434. S nm. For example, at the Hg 546.1 nm line,

the correction was A = -51.9 nm, and thus the spectrometer was manually set to

546.1-51.9 = 494.2 nm, which caused the Hg 546.1 peak to be centered in the

oscilloscope display. However, at the Hg 435. S nm line, the correction was A = -53.4

nm. By interpolation, the desired Li 460.3 nm plasma line was calculated to be

centered at the spectrometer setting of 407.2, and this proved to be correct. The above

calculations were necessary due to the short time interval the Li 460.3 line was

available to the OMA, which was operating in the gated mode of detection. The actual

pulse was displayed on the CRT for only about 0.1 s.

To check the accuracy of the laser wave meter, the lithium hollow cathode

tube was used to record the three lines, 671.7 nm, 670.S nm, and 667.8 nm. A few laser

pulses at 670.8 nm confirmed that the wave meter and OMA detector were recording

the same wavelength. Near the Li 460.3 line, a Zn tube was used to examine the Zn

481.053 nm and 468.014 nm lines. These were recorded on the computer, and since

they were almost 700 channels apart on the computer CRT. they were used to

determine the number of nm per channel. The computer could plot any range of

channels desired, and thus the above Zn lines were expanded and looked at closely, and

the result was a ratio of 0.0194 nm/channel. At 0.0194 nm per channel, for a 700

channel plot, the CRT can display wavelength information obtained over a range of

13.65 nm.
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The nm/channel information was important for the calculation of plasma

density. A phenomena known as Stark, broadening [Ref. 30: p. 63] is a type of

broadening of spectral lines in dense plasmas. The broadening occurs due to electric

fields produced by the motion and interactions of electrons and ions in a plasma, which

for dense plasmas completely dominates any natural or Doppler broadening. Because

the ions are much heavier than the electrons and thus move much more slowly, the

acceptable broadening theory ignores ion motion, and instead relies on electron

broadening calculations that are based on an electron impact approximation

[Ref. 30: p. 72]. From table 4-5 of [Ref. 30: pp. 454-455] the calculations of electron

impact half width half maximum (HWHM) in nm, for various electron temperatures in

°K, were obtained. For the Li 460.3 nm line, assuming T was 10,000° K (or slightly

less than 1 eV) the HWHM value was 0.149 nm for an equivalent electron density of

10 'cm . The maximum error in this value was L6.8% if T ranged from 5000°K to
e

Z0.000°K, which is well in the temperature range predicted by :ne LIBORS model

[Ref. 20: p. 811

To convert to a FWHM value, the HWHM number was doubled to

become 0.298 nm. Thus, the FWHM value in nm, obtained from a computer

generated plot of the broadened Li 460.3 plasma line, was multiplied by the ratio of

10/0.298 to obtain the desired plasma density per cc. An assumption was made that

only singly ionized Li ions were produced, which was reasonable based on the fact that

the second ionization potential of Li is 75.6 eV, or more than one order of magnitude

higher than the first ionization potential at 5.4 eV [Ref. 31: p. E-68]. Therefore, it can

be assumed that the Li plasma density will be equivalent to the value obtained for

electron density calculations. However, based on data collected from plasma

production experiments, it was reported that the ratio of actual measured density to

the predicted Stark density was 0.71 for the Li 460.3 nm plasma line [Ref. 32: pp.

239-240]. Thus all values of plasma density reported in this thesis and incorporated

into any figures will have been multiplied by 0.71 in order to more closely approximate

actual values.

Prior to collecting plasma data, several measurements were taken in order

to conduct laser power density calculations. Average values of power meter ratios were

obtained for unattenuated and attenuated laser pulses. Pulse width measurements were

also obtained, and the reticon array was aligned to ensure the full laser spot diameter

was being measured. Additionally, a "zero" shot was recorded on the computer by
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disabling the laser and triggering the OMA detector. Therefore, ambient light and

other noise near the fiber optic ends were recorded and subsequently subtracted from

the desired plasma data, all of which was stored in computer data files on an eight inch

floppy disk. Finally, two cleaning shots, to remove moisture and surface contaminants,

were done on each target at a distance of 40 cm from the 50 cm focal-length lens. All

data reported were taken on targets placed at a distance of 45 cm from the focusing

lens.

The procedure for data collection on a set of six Li targets began by

enabling the OMA system from the computer. Upon triggering the HP 214A pulse

generator, which triggered the laser and the OMA detector as described previously in

the equipment section, optical data from the irradiated Li target were automatically

recorded by the computer. The data had to be saved to a disk, as the next set of data

would be recorded over it. causing the old data to be lost. For each pulse, the 'A'

energy meter reading and the reticon array reading were recorded. A log was

maintained to record the above values and also the target number, the shot number on

the target, the neutral density filter used, and the file name under which the plasma

data were stored. The wave meter was checked after about every fifth shot to ensure

that wavelength was kept at the desired value. Of the six targets irradiated for this

experiment, the first three were produced from Li foil, and the second three were

produced from Li bar.

Another set of six targets was irradiated, without the use of any cleaning

shots, at a distance of 45 cm from the focusing lens. With one exception, each target

was irradiated only once and each at a different power density than the others in an

attempt to obtain visual evidence of unipolar arcing, and to establish the threshold

power density at which arcing could occur. Due to a parts problem with the Sandia

Laboratory SEM, the targets were transported to Monterey, California, to be observed

by the SEM at NPS. One target was irradiated by several on-resonance pulses, and

then by several off-resonance pulses at X = 666.4 nm, in an attempt to obtain and

compare plasma density data.

c. Experiment- Type 3

An additional set of six targets was transported to Monterey, California, a

detailed surface analysis was done using an SEM, and about two dozen photographs of

non-irradiated Li surfaces were taken. After moving them to a vacuum target

chamber, five of the targets were irradiated by a CO, laser at NPS. For details on the
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CO-, laser, optics, and vacuum chamber setup see the thesis by Olson [Ref. 10: pp.

33-38]. One target was not irradiated in order to provide a control surface to

determine which effects, if any, were caused by atmospheric exposure and which were

caused by laser irradiation. One target was irradiated six times in an attempt to obtain

plasma threshold power density information. The other four targets were each

irradiated once and at a different power density than the other three, in order to obtain

visual evidence of unipolar arcing and threshold power density information for arcing.

The targets were again observed by the SEM, and about two dozen more photographs

were obtained.
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IV. EXPERIMENTAL RESULTS

A. TYPE 1 EXPERIMENTS

1. Lithium Targets

Obtaining visual evidence of unipolar arcing proved to be very difficult. Part

of the problem was due to the rapid deterioration of the lithium surface upon exposure

to air and water vapor. This led to, within two to three minutes, a dark grey layer of

corrosion being formed over the entire surface, which was probably lithium nitride

(Li
3
N), a black nitride [Ref. 26: p. 15]. After several minutes of exposure to

atmosphere a white powder, probably lithium oxide (Li
2
0) or lithium hydroxide

(LiOH) [Ref. 31: p. B- 108]. would form on the surface. The corrosion layers greatly

affected the ability to distinguish arc craters from :
: ;.:er surface details.

Another significant or ?iem vas the SEM used it SNLA. It was discovered,

after several attempts to obtain good photographs, that the SEM had an oil

contamination problem in the sample chamber, which on at least two occasions led to

the further deterioration of the lithium target surfaces even while in the SEM under

vacuum. Additionally, it was determined that the scintillation . detector was

malfunctioning, which adversely affected the contrast available for good photographs.

This was discovered after a set of targets 'which had been looked at in the SEM at

SNLA, were removed and transported to Monterey, California, and observed in the

NTS SEM the next day. Instead of the expected further degradation due to exposure

to atmosphere, the surfaces were much easier to see and several high quality

photographs were taken.

At this point, it became apparent that non-irradiated Li surfaces had circular

nodules" which were similar in appearance to what the unipolar arc craters should

look like. Figure 4.1 was obtained from a non-irradiated target, and white rimmed

circular nodules of about 1 um diameter can be seen. A target irradiated with seven

shots at power densities which produced no noticeable plasma, and one plasma

producing shot at 5.5 MW/cm is shown in Figure 4.2. What appear to be unipolar

arc craters are visible, but they are about the same size as the. circular nodules in the

previous figure on non-irradiated Li. Photographs taken of later batches of targets

confirmed that the circular nodules were common to non-irradiated Li surfaces which

were prepared as described in the last chapter, such as the one seen in Figure 4.3.
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Figure 4.2 Irradiated Li Surface at 16KX.
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Figure 4.3 Circular Nodules on Non-Irradiated Li.

Additional comparisons between non-irradiated and irradiated surfaces are

presented in Figures 4.4 and 4.5, both of which are of comparible magnification.

Clearly visible in Figure 4.4 are numerous circular nodules, which appear to be

protruding up out of the surface. This distinguishes them from the arc craters in

Figure 4.5, whose centers appear to be "cupped" into and slightly below the surface,

although the white crater rims may rise above the surface. These comparisons between

nodules and craters, along with similar comparisons at different magnifications in

several other photographs, lead to the possibility that the existing circular nodules,

when irradiated, serve as starting points at which unipolar arcing can occur.

Figure 4.6 is of a target which had been subjected to eight plasma-producing

shots ranging in power densities from 6.1-7.7 MW/cm . Initially, it was not believed

that unipolar arc craters were present, but a series of photographs depicting similar

looking craters from type 3 experiments provided strong evidence that arc craters were

present in Figure 4.6. What apparently was happening was since Li had such a low

melting point, about IS1°C, the newly formed craters were filling back in with molten

Li prior to re-solidification. The result was a kind of cupping effect, described earlier,

as if a scoop of metal had been removed from the surface. This phenomena was not

observed on anv surfaces of non-irradiated Li.
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Figure 4.4 Circular Nodules on Non-Irradiated Li.
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Figure 4.5 Arc Craters on Irradiated Li.
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Figure 4.6 Irradiated Li Surface at 3.1KX.

Evidence of melting is shown in Figure 4.7 which was taken to the right of a

focused laser impact crater. The photograph as shown, turned CCW by 90°, reveals a

melted Li surface which traveled away from the laser impact crater and re-solidified as

it cooled. The target was irradiated by eight plasma-producing laser pulses, ranging in

power densities from 6.9-7.3 MW/cm . An example laser impact crater, taken from a

single focused shot at 9.4 MW/cm , is shown in Figure 4.8 which depicts numerous

molten droplets of Li which had been ejected from the crater. Due to problems with

the SEM and the handling of Li, the threshold laser power density required to melt Li

was not able to be determined.

2. Stainless Steel Targets

Three type 316 SS targets were irradiated by a dye laser with X = 670.8 nm and

pulse width (t)=800 ns. The first target was irradiated by a focused {[=50 cm) pulse

at a power density of 4.1 MW/cm . Bright plasma light was observed, and several

pictures of unipolar arcs were obtained. Figure 4.9 was taken to the left of the laser

impact crater, and three well-developed unipolar arc craters are clearly visible. The

largest crater was about 10 ftm in diameter, and the smallest was about 3 fim in

diameter.
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Figure 4.7 Laser Induced Meitine on Li Surface.

Figure 4.8 Focused Laser Pulse on Li at 9.4 MW cm2
.

40



-:'M
iii:^y&i:

Figure 4.9 Unipolar Arcs on 316 SS at 2.0KX.

Near the top of the photo, which was rotated CCW 90°, can be seen several

"cupped" out craters, similar to those observed on lithium targets. Since they are

located between the edge of the rim of the laser impact crater and the three unipolar

arc craters, it is possible that they were newly formed arc craters that were filled in with

molten steel prior to re-solidification. Why there were so many, and why they were not

found elsewhere further from nor inside the laser impact area was not known.

Unipolar arc craters were observed, in widely varying number densities (craters area),

on out to the edge of the polished target surface. The laser impact crater, shown in

Figure 4.10, was measured at about 0.87 mrn in diameter, and shows evidence of

melting throughout the impact area.

The second target was placed at 49 cm from the focusing lens and, when

irradiated at 3.6 MW/cm , did not emit visible plasma light. No arc craters were found

upon observation by an SEM. The third target, positioned 49.5 cm from the lens, was

irradiated at a power density of 3.8 MW/cm . Plasma light was observed, and thus the

threshold for plasma production was established at between 3.6 and 3.8 MW/cm" on

316 SS. The surface was observed briefly by an SEM, but neither the laser impact

crater, which was clearly visible macroscopically, nor any evidence of unipolar arc
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Figure 4.10 Laser Impact Crater Area on 316 SS at 100 X.

craters were found. This was attributed to a malfunctioning part on the SEM which

made it very difficult to observe surface detail much smaller than 1-2 Jim.

B. TYPE 2 EXPERIMENTS

Several sets of this type experiment were conducted in order to determine the

best setup with regard to the equipment required, how the equipment was to be

electrically and or mechanically connected, and the most efficient procedure for data

collection and recording. The data recorded included those necessary for power density

calculations, such as FWHM laser spot diameter and energy on target, and for plasma

density calculations. The FWHM pulse width was measured to be 840 ns, and \ was

670.8 nm for all but one set of data. The malfunctioning SEM part had not yet been

replaced, and thus during the first set of experiments no attempts to observe Li

surfaces were made.

After all laser shots were taken and the plasma data stored on disk, each data file

was plotted by the computer. Unfortunately, it was not until this point that a bad data

file would be discovered. Problems in data collection occurred when excessive plasma

light intensity would saturate the OMA detector, thereby causing the plasma data to be
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invalid for that particular shot. This happened with power densities ranging from

2.63-4.63 MW/cm on various targets, but some pulses at power densities in excess of 5

MW/cm on four of the six targets caused no saturation of the (DMA detector, and

thus the cause for periodic saturation is not known. At the low power density range

(<0.6 MW/cm), although the characteristic violet plasma light was often observed,

the recorded plasma data would often be lost in the background noise.

A set of typical photographs of plasma line broadening are presented in the order

of decreasing laser power density. The irradiated target was made from Li bar, and

upon the first pulse at 4.77 MW/cm", the detector was saturated. On the next pulse,. at

5.05 MW/cm
,
plasma data were satisfactorily recorded, and a density of about

9.8 x 10 /cm was calculated. Figure 4.11 depicts this, and it can be observed that the

broadening is not symmetric. This large degree of assymmetry was noticeable only in

the higher plasma density (>6* 10 cm ) levels and die reason for it is not known.

Ail plasma density calculations are from actual FWHM mea urements, and the

maximum errcr. ::' [he is ymmetric portion ; ;::u:a lot ~: included, is </;',. The

plasma density from Figure 4.12 was calculated to be 5.0 x 10
l6 'cm\ and the laser

power density was 2.13 MW/cm". The pulse is much narrower and more symmetric.

The lowest relative intensity (vertical axis) value where the curve becomes nearly

horizontal is where the baseline is obtained for plasma density calculations. As in the

previous figure, interpolation is required to establish where the baseline is, due to the

difference in relative intensities on the left and right hand sides of the photograph, and

because the curve still has noticeable slope at the edges of the photograph.

The next three figures, for which the laser power densities were 1.18. 0.649, and

0.495 MW/cm" respectively, reveal steadily decreasing amounts of line broadening. In

corresponding order, the plasma density in Figure 4.13 is 2.8 x 10 /cm , and the shape

is almost completely symmetric. The plasma density in Figure 4.14 is 1.3 x 10
16 env,

and the relative intensity has decreased significantly from that in Figure 4.11, such that

the background noise is becoming very noticeable. Although all photographs were

taken after the "zero" had been subtracted from the data, eventually plasma density

decreased enough to become completely lost in the noise, as shown in Figure 4.15.

Obviously, in this last figure, no value for plasma density can be obtained.
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Fisure 4.11 Plasma Broadening for Laser Power Density

of 5.05 MW cm:
.

Figure 4.12 Plasma Broadening for Power Density

of 2.13 MW cm2 .
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Figure 4.13 Plasma Broadening at 1.18 MW/cm2
.
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Figure 4.14 Plasma Broadening at 0.649 MW/cm2
.
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Figure 4.15 No Observable Plasma Broadening at 0.495 MW cm".

For the second and third Li foil targets irradiated in this experiment, the plasma

densities produced are plotted against the corresponding laser power densities in Figure

4.16. Spot size data for the first target were recorded on photographs instead of being

read from the reticon digitizer. Subsequently, the measurements were difficult and

subjective, and thus imprecise and inaccurate in comparison with like data obtained on

the other two targets. A similar graph for three Li bar targets is found in Figure 4.17.

A roughly linear relationship can be observed between power density and plasma

density for all targets.

Plasma densities for the bar targets were about 100% greater than those for the

foil targets when irradiated at the higher power densities. Also, the slope of the data

points for bar targets was steeper than that for the foil targets. Perhaps, due to more

impurities contained in the foil targets, less quantities of Li neutrals were available for

ionization. The threshold power density required for detectable (by OMA) plasma

broadening was ~- 0.5 MW cm-
for both bar and foil targets.

Data from the experiment conducted on bar Li using on- and off-resonance laser

pulses is plotted in Figure 4.18. Unfortunately, the results were inconclusive and

misleading. The plasma density values obtained during on-resonance pulses were much

less than anticipated. This was most likely due to poor laser dye performance after a
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few hundred shots had been taken on it. Laser burn spots on exposed polaroid film

paper verified that the laser pulses were weak and non-uniform. The laser was then re-

tuned to X = 666.4 nm, which was closer to the peak of the effective range of the dye

mix. Laser output energy immediately increased by about 20%. New burn patterns on

film indicated that the laser pulses were significantly improved, both in overall power

and in uniformity. Thus, the power density for off-resonance pulses was increased, and

the result was higher plasma density measurements, but only for the unattenuated

pulses. No Li 460.3 plasma information was obtained on any of the off-resonance

attenuated pulses, all of which were at power densities of <4 MW/cm . Instead, a

weak but distinct and slightly broadened plasma pulse was recorded at a wavelength of

466.4 nm for all attenuated off-resonance pulses. The source for this plasma line was

not determined. Due to time and equipment availability constraints, no additional

on, off resonance experiments were conducted.

Another disappointing aspect of this thesis concerned the second set of six Li

targets which were irradiated as previously described and transported to NPS for visual

inspection by an SEM. Despite hours of detailed observations, no visual evidence of

unipolar arcing on any target could be found, although plasma density data were

recorded by the OMA. The most plausible reason was that existing surface corrosion

or contaminants were not removed from the targets since cleaning shots were not

taken. However, cleaning shots would have altered the surface and thus would have

invalidated the desired data for arcing threshold power density measurements. Another

reason may be that inadvertant exposure to air and water vapor may have caused the

surfaces to become so obscured that no arc craters were visible. This actually

happened on the set of targets which will be reported in the type three experiment

section.

After a new dye change, plasma profiles were photographed. Figure 4.19 is a

profile, through the lucite window of the vacuum chamber, of the target holder. A

plasma pulse produced from an on-resonance laser pulse of about 200 milli-joules (mJ)

is presented in Figure 4.20. Unfortunately, due to time constraints, laser power density

measurements were not obtained. Also, due to repositioning the fiber optic to make

room for the camera, no plasma density information was collected. The extent of the

plasma from the target is about 3 mm.
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C. TYPE 3 EXPERIMENTS

Six Li targets surfaces were thoroughly inspected by an SEM, and five of the six

targets were irradiated by a C0 7
laser at a =10.6 Jim and r = 4.55 fisec. Positive

evidence of unipolar arcing was obtained upon post-irradiation inspection of the

surfaces. Examples of circular nodules, which were present on all six non-irradiated

targets, are shown in Figure 4.21. At about the same magnification, striking evidence

of unipolar arcing is shown in Figure 4.22, which was taken on target three, irradiated

at 0.091 VIW cm". Numerous craters are visible, which have a similarly cupped

appearance as those found previously in the type one experiments. Several other

photographs depicting multiple cratering, as in Figure 4.22, were obtained. Another

example of multiple craters, found on the same target as above, is shown in Figure

4.23, where it appears that the large crater on the left was expanding and overtaking

the smaller craters around it.

Figure 4.21 Circular Nodules on Non-Irradiated Li.

Due to a burned out filament in the NTS SEM, the irradiated Li targets had to

be removed and placed in a sealed, nitrogen fiHed jar. Upon resuming surface

observations, it was readily apparent that surface degradation had occurred in the short
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Figure 4.22 Multiple Arc Craters at

Power Density of 0.091 MW cm2
.

time the samples were exposed to air and water vapor. This made surface details very

hard to see, which required even more time to carefully look at the surface. Unipolar

arcs were still visible, although very difficult to see, on target five, which was irradiated

at 0.062 MW/cm . This was the lowest power density of any data reported in this

thesis at which visible plasma was produced and arc craters, seen in Figure 4.24, were

visible. The cupped unipolar arc craters were observed only on laser irradiated Li

surfaces, and were not found on any other Li surfaces which were not irradiated.

D. STATISTICAL AND ERROR ANALYSIS

Measurement errors can fall into three main groups--mistak.es. systematic errors,

and random errors. Mistakes, which include arithmetic and counting type errors, were

reduced to a minimum by the process of repeating all calculations which were reported

in this thesis. If a difference was obtained between the first and second calculation, it

v.

was repeated ^intil the satisfaction of a correct result was assured. Mistakes made by

the misreading of instruments or incorrectly recording data were hopefully kept to a

minimum based on the author's attention to detail and data gathering experience. The

magnitude of statistical errors depends on the accuracies of equipment used and of the
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Figure 4.24 Arc Craters at Threshold Power Density.
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values obtained from references on such data as the mass of an electron. The author is

confident of the accuracy of all equipment used based on the experience of the

personnel who operated and maintained the equipment on a periodic basis, and on

calibration data as applicable. However, the method one uses to take measurements is

always capable of introducing systematic error, and thus the experience of the author is

again relied upon as well as occasionally having an observed value confirmed by

another person.

Random errors result, for example, from the differences between an average of

many data and an individual datum. Since these errors are of a statistical nature, they

can be dealt with statistically. For example, all measurements taken to establish an

average value were compared to a range which was twice the standard deviation (or)

from below or above the average value itself. Any datum outside 2(7 from the average

was discarded. In other words, data within 2;r from the average was considered to

have a 9.5% probability of being statistically valid.

The estimation of errors in quantities that were functionally related, such .is

power density measurements, was treated in the standardly accepted manner [Ref. 33]..

Thus, the error in power density measurements, taking into account the measurement

errors for FWHM spot diameter, T, and energy meter readings as well as ratios, was

estimated to be 3%. For plasma density measurements, the estimated error was 5%,

based on calculational uncertainties only. From a review of experimental vs theoretical

predictions, the error approaches 50% [Ref. 32: p. 240].
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V. SUMMARY

A. CONCLUSIONS

1. Unipolar Arcing Studies

Several lithium targets were irradiated by a dye laser tuned to the first

resonance line of Li. at 670.8 nm, and by a CO. laser at X= 10.6 urn. Evidence of

unipolar arcing was found on targets irradiated at both wavelengths, although most of

the arc craters observed did not display the deep central crater and pronounced rim of

the model arc crater appearance. The craters observed on Li had a cupped or scooped

out appearance, which was possibly due to molten Li flowing back into and filling the

center of the arc crater. Another possibility is that, due to the softness and low

melting temperature of Li. the arc craters may have expai ied laterally .rem the .enter

instead of vertically into the metal. The reasons postulated ibove /ill 3nly be verified

upon a detailed analysis of plasma-Li surface interactions in a ciosely controlled

environment so as to prevent any external disturbance of the Li surface before, during,

and after irradiation by a laser.

The threshold power density for unipolar arcing on lithium was determined to

be, based on data obtained only from CO-, laser irradiation experiments, less than

about 0.06 MW/cm . Arc craters were not observed on any Li targets irradiated by

the dye laser with a single pulse, thus the threshold power density could not be

established for unipolar arcing caused from on-resonance wavelength pulses. The

reason for this was thought to be that, due to the extremely reactive nature of Li. any

arc craters on the surface were quickly obscured upon exposure to air and water vapor.

Although exposure was kept to a minimum at all times, the Li targets irradiated at the

on-resonance wavelength specifically for the purpose of determining the unipolar arcing

threshold had to be transported to the \PS SEM in Monterey, California for

observation. This resulted in a delay of > 24 hours and additional target transfer

operations, which required additional exposure to the atmosphere.

Unipolar arcing was clearly observed on type 316 SS targets, which were

irradiated by the dye laser at X = 670.8 nm. The threshold laser power density for

unipolar arcing was coincident for that required for plasma formation, which was ^4.1

MW/cm2
.
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2. Plasma Density Analysis

The threshold laser power density for on-resonance wavelength pulses,

required to produce a detectable plasma density (by OMA) from Li targets, was about

0.5 MW/cnr.The corresponding plasma density was <2 x 10
16/cm3

. For laser power

densities between 2.5-5.0 MW/cm , the plasma densities produced from Li bar targets,

which ranged from ^ 6 to > 10 x 10 /cm , were about twice those produced from Li

foil targets. This was possibly the result of large numbers of impurities in the Li foil

interfering with the efficient ionization of Li' neutrals. Thus, Li plasma densities that

meet ion source requirements for PBFA II were observed at the higher laser power

densities used in these experiments.

Comparisons between lithium plasma densities produced from on- and off-

resonance pulses were inconclusive due to an insufficient amount of data collected and

because the laser pulse intensity was markedly more uniform when the laser was re-

tuned to the off-resonance wavelength of 666.4 nm. This was because the lower

wavelength was cioser to the peak efficiency range for the dye mix used. Thus, the

theorized improvement in plasma production due to the proposed combination of

LIBORS and unipolar arcing could not be verified.

B. RECOMMENDATIONS
The most advantageous improvement for the experiments conducted in this thesis

would have been a strictly controlled environment for the entire Li experiment cycle,

including production of targets, pre- and post-observation in the SEM, and irradiation

by a laser while under vacuum. Other improvements would include the method of Li

target production, and equipment usage and diagnostics. Also, a strong

recommendation for possibly improving the plasma density obtained for a given laser

power density would be to irradiate Li targets at elevated temperatures below the

melting point, for example between 150°-170°C. This could result in the more rapid

release of neutrals from the solid surface with a subsequent increase in ionizations and

plasma density.

Various methods should be investigated to improve the Li target's ability to

withstand exposure to atmosphere. For example, vacuum deposited Li in thin layers

could be coated with a thin (
~ lum) layer of a non-reactive alloy of Li, or some other

suitable coating, which could withstand exposure and still protect the pure Li

underneath. A more suitable substrate, such as niobium, tantalum, or molvbdenum as
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previously recommended in this thesis, that will not adversely react with Li, as did the

SS, nor act as a catalyst and affect experimental results, should be developed and

investigated.

The OMA equipment setup should have been better optimized for improved

plasma density studies. One major improvement would have been to decrease the

detector gate open time to the specific interval required to detect only the desired Li

460.3 nm line broadening, and thus all adverse sources of noise would have been

greatly reduced. This was a lirhitation in detecting and calculating the threshold

plasma densities produced at low laser power densities. Another recommendation is to

determine the reason for occasional detector saturation, which caused plasma data to

be lost during several high laser power density pulses.

Finally, a conclusive investigation of plasma density and laser power density

studies for on- and off-resonance wavelength pulses on Li should be conducted. This

would possibly provide conclusive evidence regarding plasma production improvement

theorized by the combination of the LIBORS and unipolar arc processes. Such a study

could include using pulsed dye lasers at different wavelengths to determine time

relationships of the plasma production process as an aid to characterize both the

unipolar arc and LIBORS processes, individually and together.
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