
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1986

A language capable of describing computer architecture.

Machado, Luis Manuel da Cunha de Sousa.

http://hdl.handle.net/10945/21954

DUDLEY k;.gx library
NAVAL PC.?;-G?.ADUAT-: SCHOOL
MONTEKSY. CALIFORNIA 93943

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
A LANGUAGE CAPABLE OF

DESCRIBING COMPUTER ARCHITECTURE

by

Luis Manuel da Cunha de Sousa Machado

March 1986

Th esis Advisor: Hariett B. Rigas

Approved for public release; distribution is unlimited

T226633

jRirv CLASSIFICATION OP THIS PAGE

REPORT DOCUMENTATION PAGE

REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

SECURITY CLASSIFICATION AUTHORITY

DECLASSIFICATION / DOWNGRADING SCHEDULE

3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
distribution is unlimited.

>£RFORMlNG ORGANIZATION REPORT NUMB£R(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

NAME OF PERFORMING ORGANIZATION

val Postgraduate School

6b OFFICE SYMBOL
(If applicable)

Code 6 2

7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School
ADDRESS (C/fy, Sfdfe, and ZIP Code)

nterey, California 93943-5000

7b ADDRESS (Ofy, State, and ZIP Code)

Monterey, California 93943-5000

NAME OF FUNDING/SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ADDRESS (Ofy, State, and ZIP Code) 10 SOURCE OF Funding numbers

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

TITLE (Include Security Classification)

LANGUAGE CAPABLE OF DESCRIBING COMPUTER ARCHITECTURE

PERSONAL AUTHOR(S)

chado, Luis Manuel da Cunha de Sousa
TYPE OF REPORT

ineer's thesis
13b TIME COVERED
FROM TO

14 DATE OF REPORT {Year, Month, Day)

1986 March
15 PAGE \W

SUPPLEMENTARY NOTATION

COSATI CODES

FIELD GROUP SUB-GROUP

18 SUBJECT TERMS {Continue on reverse if necessary and identify by block number)

computer-aided design tools,
top-down design,
computer architecture

ABSTRACT {Continue on reverse if necessary and identify by block number)

A fully automated and effective aid for computer system design is of

eat interest in increasing designers efficiency and reduce costs . Such

system, which requires unified and compatible tools for designing and

lalyzing computer architectures is still missing. Inserted in a research

ogram by Professor Rigas to develop a complete automated design system,

lis work focuses on designing a formal language capable of describing

le data flow of a computer. The language is capable of describing the

iterconnections between the major data flow components and the control

DISTRIBUTION /AVAILABILITY OF ABSTRACT

[1 UNCLASSIFIED/UNLIMITED D SAME AS RPT Q OTIC USERS
NAME OF RESPONSIBLE INDIVIDUAL
iriett B. Rigas

21 ABSTRACT SECURITY CLASSIFICATION

Unclassified
22b TELEPHONE (/nc/ude Area Code)
(408) 646-2082

22c OFFICE SYMBOL
Code 6 2

FORM 1473, 84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

1

SECURITY CLASSIFICATION OF THIS PAGE

SECURITY CLASSIFICATION O^ THIS PAGE (Whtt Data Bnlmr»4)

19. ABSTRACT (cont'd)

of the flow of information. Using this language, several de-

compositions of the intended system can be specified and

studied to find the optimal one.

--• :' -1- .-cci

Approved for public release; distribution is unlimited.

A Language Capable of
Describing Computer Architecture

by

Luis Manuel da Cunha de Sousa Machado
Lieutenant, Portuguese Navy
B.S., Escola Naval, 1978

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

and

ELECTRICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL
March 1986

c •

ABSTRACT

A fully automated and effective aid for computer system

design is of great interest in increasing designers effi-

ciency and reduce costs. Such a system, which requires

unified and compatible tools for designing and analyzing

computer architectures is still missing. Inserted in a

research program by Professor Rigas to develop a complete

automated design system, this work focuses on designing a

formal language capable of describing the data flow of a

computer. The language is capable of describing the inter-

connections between the major data flow components and the

control of the flow of information. Using this language,

several decompositions of the intended system can be speci-

fied and studied to find the optimal one.

TABLE OF CONTENTS

I. INTRODUCTION 11

A. THE DIGITAL SYSTEM DESIGN PROCESS 11

B. THE ROLE OF DESIGN AUTOMATION 11

C. A PROPOSED COMPLETE AUTOMATED DESIGN
SYSTEM 13

II. BACKGROUND 15

A. BINARY VECTORS 16

B. BUSES 17

C. FUNCTIONAL UNIT 19

D. MEMORY DEVICES 23

1. ROM's and PLA's 24

2. Registers and RAM's 25

3. Registers 28

4. RAM's 28

E. THE CONTROL UNIT 29

F. SOME NOTATION 32

1. Simple Transfers 33

2. Functional Transfers 35

G. TIMING CONSIDERATIONS 35

III. THE DATA FLOW COMPONENTS 40

A. BUSES 41

B. MEMORY DEVICES 45

1. Registers 45

2. LIFO's 46

3. FIFO's 48

4. RAM's 50

5. ROM's 51

C. FUNCTIONAL UNITS 51

IV. THE DATA FLOW 56

A. THE DATA FLOW 56

B. UNITS 59

C. EXAMPLES 61

1. The PIC 1650 Microcomputer 61

2. The INTEL 8085A Micropocessor 65

V. DATA TRANSFERS 69

A. SIMPLE TRANSFERS 69

B. FUNCTIONAL TRANSFERS 73

C. DATA TRANSFERS USING UNITS 75

D. DATA TRANSFERS INVOLVING MEMORY DEVICES
OTHER THAN REGISTERS 76

E. PARALLEL TRANSFERS .79
1. Simple Transfers 79

2. Functional Transfers 80

F. AN EXAMPLE 80

G. SKETCH OF A POSSIBLE WAY TO STORE THE
INFORMATION CONTAINED IN THE LANGUAGE 84

VI. CONCLUSION 89

APPENDIX A: SYNTAX FLOW DIAGRAMS 91

APPENDIX B: PIC 1650 DESCRIPTION 101

APPENDIX C: INTEL 8085A DESCRIPTION 104

LIST OF REFERENCES 107

INITIAL DISTRIBUTION LIST 108

6

LIST OF TABLES

I FLIP-FLOP CLASSIFICATION 25

II SOME COMMON FLAGS 54

III COMMON FUNCTIONAL UNIT OPERATIONS 55

IV THE PIC 1650 ALU OPERATIONS 64

V THE 8085A ALU OPERATIONS 66

VI CONTROL SIGNALS FOR ALL TYPES OF MEMORY
DEVICES -78

LIST OF FIGURES

1.1 A Complete Automated Design System 13

2c

1

Block Diagram for a Digital System 15

2.2 The DATA FLOW and CONTROL FLOW Components 16

2.3 A Bus System 18

2.4 The Use of a Decoder to Save Control Lines 20

2.5 The Functional Unit Block Diagram 21

2.6 Timing Diagrams for a Simple Inverter 22

2.7 A Cascade of Inverters 23

2.8 The Data Latch 26

2.9 The Edge-Triggered Flip-Flop 27

2.10 A Register as an Array of Flip-Flops 28

2.11 The Read- and- Write Memory 30

2.12 The Control Unit Block Diagram 31

2.1,3 A Hardwired Control Unit Block Diagram 31

2.14 A Microprogrammed Control Unit Block Diagram ... 33

2.15 Part of a Data Flow 36

2.16 Timing Diagram for a Simple Transfer 37

2.17 Timing Diagram for a Functional Transfer 38

2.18 Two-phase Clock Timing Diagram 39

3.1 Example of Bus Attachments 42

3.2 The Barrel Shifter 43

3.3 The Syntax for Bus 44

3.4 The Syntax for Register 46

3.5 The LIFO Memory 47

3.6 The Syntax for the LIFO Memory 48

3.7 The FIFO Memory 49

3.8 The Syntax for the FIFO Memory 49

3.9 The Syntax for the Read- and-write Memory 50

3.10 The Syntax for the Read-only Memory 51

8

3.11 The Syntax for the Functional Unit 53

4.1 The SMI Data Flow 58

4.2 Example of a Fetch Cycle State Diagram 61

4.3 The Syntax for Data Flow 62

4.4 The PIC 1650 Data Flow 63

4.5 The 8085A Data Flow Diagram 65

4.6 The 8085 Descriptive Model 67

5.1 Direct Interconnection between Registers 70

5.2 EXPLl Descriptive Model 72

5.3 Output Gating for a Functional Unit 73

5.4 Data Paths Including Functional Units 74

5.5 Simplified Block Diagram for a Microprogramed
Control Unit ... 7 77

5.6 EXAMP Data Flow 85

5.7 Storage of Examp 86

5.8 An Alternative Way to Store EXAMP 87

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to Professor

Rigas for her guidance and assistance during the pursuit of

this study.

To my wife and my son for the encouragement, patience

and understanding I am deeply grateful and it is to them

that I dedicate this work.

10

I. INTRODUCTION

A. THE DIGITAL SYSTEM DESIGN PROCESS

The major factor influencing digital system design has

been the rapid evolution of semiconductor technology.

Whereas in the recent past, digital systems employed vacuum

tube circuitry, today digital systems are built from IC

chips containing ten thousand or more gates, and the number

of gates per chip will grow in the near future. Digital

systems are complex structures of many gates. To deal with

such complexity, digital architects decompose these struc-

tures into functional blocks aggregating a number of gates

performing a well defined task. Two or more of these blocks

may form, in turn, a single but higher abstract block. For

the architect, each of these blocks is characterized by the

function it performs, the interface with other blocks, and

the time taken to perform its function. This means that a

digital system can be described at several levels of

abstraction.

The use of these abstract layers, allows a hierarchical

approach to the design process. Starting from a set of

specifications and applying a series of successive expan-

sions, the architect steps through the different levels of

abstraction in a top down fashion until the physical design

can be implemented using available technology.

In summary, design of large digital systems is a

complex, costly, and time consuming process. Therefore, the

development of automatic design aids to overcome these draw-

backs is of great interest.

B. THE ROLE OF DESIGN AUTOMATION

Design automation can be defined as the application of

today's computers to the design of tomorrow's computers. The

11

major functions of design automation can be summarized as

follows:

Replace the designer in tasks that are well understood
and where no decisions are to be made.

Assist the designer in making decisions by evaluating
the merits of various design alternatives.

Assist the designer in verifying the correctness of his
design.

It is not apparent that in the near future humans will

be fully replaced by machines in the design process.

Therefore, future systems will be the result of joint work

of humans and computers. A CAD system should then make use

of the best attributes of the computers (record keeping,

searching and massive computational capabilities) and the

best attributes of the user (pattern recognition and

rational thought).

Recently, a great deal of effort has been directed to

the development of techniques and tools for allowing

computers to perform the tasks described above.

Unfortunatly , the design aids were developed independently

as the need for them arose, causing the following problems:

lack of compatibility among the various design automa-
tion tools.

lack of extensibility to firmware and software.

usage complexity.

poor interaction with the designer/user.

lack of unified database to provide consistency
checking through-out the design process.

Consequently, an efficient automated design system is

still missing.

12

C. A PROPOSED COMPLETE AUTOMATED DESIGN SYSTEM

Figure 1.1 shows a model for a complete automated design

process proposed by Professor Rigas . [Ref. 1]

user input

at conceptual level

NZ

algorithmic specification

of system

iz

gate level specification

of system

Figure 1.1 A Complete Automated Design System.

The upper portion of Figure 1.1 concentrates on gener-

ating a high-level hardware/ software description of the

system from a description of the problem to be solved.

The middle portion focuses on generating a design

language suitable for describing the flow diagram of a

system. Using this language, several decompositions of the

intended system can be specified and studied to find the

optimal decomposition.

The lower part concentrates on the gate implementation

of the system. A hardware description language and an event

driven-driven simulator capable of analyzing hardware

performance at the gate-leval have been developed and

tested. [Ref. 2]

13

This work focuses on the middle portion of Figure 1.1

Its goal is to design a formal language capable of

describing the data flow of a computer system.

14

II. BACKGROUND

A digital system is any interconnection of digital hard-

ware modules assembled to process digital information.

Digital information simply means that information is repre-

sented by signals that take on a discrete number of values

and is processed internally by components that normally

function only in a limited number of discrete states. State

refers to "the property of a machine which relates the

inputs to the outputs in such a way that knowledge of the

input time function f(t) for t> tQ and the state at t = tQ

completely determines the output for all t>tQ " [Ref. 3:p.

292]. For reliability purposes, digital systems use compo-

nents that take two discrete states, meaning that the infor-

mation processed by them is binary information.

The major components of a computer system are the

Central Processing Unit (CPU), the Memory Unit and the

Input/output devices, as shown in Figure 2.1.

c>

I

n
P
u
t

Memory

A
iz

Central
Processing

Unit

O
u
t

P
u

O

Figure 2.1 Block Diagram for a Digital System,

15

To accomplish its task, a computer must be supplied with

information to be processed (the DATA), and with information

to guide it in performing its work (the CONTROL). The

Central Processing Unit of Figure 2.1 can be conceptually

broken into two parts as shown in Figure 2.2.

control vector

CONTROL
FLOW

DATA
FLOW

L>^

instruction vector

and status vector

Figure 2.2 The DATA FLOW and CONTROL FLOW Components.

The DATA FLOW (or DATA PATH) component is the one that

manipulates the data. The DATA FLOW is capable of accepting,

processing and delivering data. The building blocks

comprising the DATA FLOW are called DATA FLOW components.

They are the Memory Block and the Functional Unit intercon-

nected by buses.

The CONTROL FLOW (CONTROL PATH, CONTROL UNIT or simply

CONTROLLER) provides the control signals which guide the

data in the DATA FLOW.

The DATA FLOW and CONTROL UNIT components are physically

built from digital logic blocks, elements or gates. Digital

logic gate-level blocks are the primitive or basic decision

elements such as AND and OR gates, and primitive 1-bit

memory elements called flip-flops.

A. BINARY VECTORS

Binary information in digital systems is stored in

memory devices. A memory device consists of a number of

storage cells, each of which can store a binary digit, or

16

bit. Since one bit represents only a very small amount of

information (it can only have the value or 1), bits are

seldom handled individually; instead they are handled in

vectors. A vector of n-bits, which together convey an item

of information, is called a word, and n is called the word

length.

The information in a word is obtained by assigning

specific weights to the bit positions. The bit with the

least weight is the Least Significant Bit (LSB) and the bit

with the most weight is the Most Significant Bit (MSB). The

bits within the word are depicted from the left to right,

bit through bit n-1 if the MSB numbering convention is

adopted or from right to left if the LSB scheme is in

used. The latter is the one adopted throughout this work.

Thus, the binary vector V<3:7> has length five, its least

significant bit is bit 3 and its most significant bit is bit

7, as shown below:

V = (V7,V6,V3,V4,V3)

Words may be used to stand for data or control. Control

information is a string of bits used to specify the sequence

of command signals needed for manipulation of the data in

the Data Flow. Data are binary numbers and other binary-

coded information that are operated on by the Data Flow

components

.

B. BUSES

To reduce the number of wires necessary to comprehen-

sively interconnect system devices, buses are used. A BUS is

a parallel group of wires, grouped together because of simi-

larity of function, which connect two or more devices. The

devices that have their outputs connected to the bus are the

SOURCES of the bus, and devices that have their inputs

attached to the bus are the SINKS. In Figure 2.3 a), S is a

source for the TBUS and A,B,C and D are the sinks. The

17

number of wires grouped together determines the WIDTH of the

bus, e.g., the maximum length of the binary vector that can

flow through it. These signal wires are used to transfer

data from a source to one or more destinations.

B D

load A load B load C

a) Unidirectional Bus

load A —

read A >^

load B

read B

B

load D

a

y^ read C

— load C

H read D

*—

r

load D

b) Bidirectional Bus

Figure 2.3 A Bus System,

Buses may be of two kinds:

• Unidirectional buses.

• Bidirectional buses.

18

An unidirectional bus is a bus that have only one

source. A bidirectional bus is a bus that can have more than

one source, but not more than one source can be active at

the same time. This being the case, coordination logic at

each possible source is necessary, in order to avoid more

than one device driving the bus at the same time.

The techniques used to accomplish this are:

• Using multiplexers. [Ref. 4]

• Open-collector. [Refs. 5,6]

• Tri-state drivers. [Refs. 5,6]

• The transmission gate. [Refs. 7,8]

The transfer of information from a bus into one of many

possible destinations is accomplished by connecting the bus

lines to the inputs of all destination devices and enabling

the particular device selected by activating its load

control signal. Figure 2.3 shows an unidirectional bus with

four destinations and a bidirectional bus connecting four

devices

.

To reduce the number of control lines, the LOAD and READ

are generally encoded, as illustrated in Figure 2.4.

The inputs to the decoder represent the address of the

device for which the READ or LOAD signal is to operate on.

C. FUNCTIONAL UNIT

A FUNCTIONAL UNIT is a combinational logic device which

accepts one or two n-bit input vectors and generates an

output function S = Sj^_
-j^,

. . . , Sq which is related to the

inputs by boolean logic.

Because an arithmetic binary operation assigns a binary

vector for all possible combinations of the input vectors,

it can be described by a truth table. A truth table is way

for describing the behavior of a combinational circuit. As a

result, arithmetic binary operations can be physically

19

U
E
C
o
n
E
R

load

address

L-^ A >—1| B '—* C L D J
'—::—

'

)H3

» J

'

3

.

b

^

3

1

D
E
C

D
E
R

i n

address
^

"n

'

n

,

Figure 2.4 The Use of a Decoder to Save Control Lines.

realized by combinational circuits. This means that the

Functional Unit output vector may represent the result of

either a logic or an arithmetic operation on its inputs.

An operation-selection vector determines what specific

function is to be generated. Additionally, the functional

unit may provide a status vector containing information

about the output (overflow, zero, carry out, parity, etc.).

Figure 2.5 shows the block diagram for a functional unit.

Each of the operations performed by the functional unit

corresponds to a functional path between the inputs and the

output. By activating the proper bits in the operation-

selection vector, it is possible to select a particular

path, thus choosing a particular operation to be performed.

The Functional Unit is combinational logic because its

output does not depend on the past history of the device,

but rather is strictly a function of its inputs. The

Functional Unit has no memory. Its operation is not invoked

20

A input vector B input vector

function-

selection :

vector

V
FUNCTIONAL

UNIT

V
S output vector

^ status vector

Figure 2.5 The Functional Unit Block Diagram.

by a clock. The only timing consideration is that the output

validity is subject to propagation delays.

When the inputs of a logic gate change, the output of

the logic gate output does not respond instantaneously to

the change. A propagation delay must be paid before the

output stabilizes to the new value as is illustrated in

Figure 2.6 for an inverter element.

The fall and rise delays are not equal nor fixed. The

fall and rise delays depend on such factors as temperature

and fan-out. Because of these variations, logic designers

use Worst-case Propagation Delays (the maximum possible

propagation delays), Best-case Propagation delays (the

minimum possible propagation delay) and Average Delays. The

period of time between the worst-case delay and the best-

case delay is called the Ambiguity Region, sometimes refered

to as Propagation Skew.

21

IN c» OUT

a) Block Diagram

^ t' '^

iryl

~—

1

DUT kyx
J «rr U-

^f/.
- best-case propagation delay (rise)

iff - worst-case propagation delay (rise)

b) Rise Delay

K %i -f-

IN _

DUT XX
<H i^

^(- best-case propagation delay (fall)

tft . worst-case propagation delay (fall)

c) Fall Delay

Figure 2.6 Timing Diagrams for a Simple Inverter.

It is not uncommon to estimate the propagation delay of

a cascade of logic gates as the sum of the individual gate

delays as shown in Figure 2.7.

Each Functional Path is a cascade of logic gates.

Therefore, each one has a propagation delay. For the system

point of view, the Functional Unit propagation delay is the

22

IM -^:5
"° [^ ^P

1

«j [?-^ L>^

IN_

BD_

U7

a) Block Diagram

x>:]
•

xy>^x
•

• x"x:x]

Vi*^
; V):

•^c*) - propagation delay for A

i^iz) - propagation delay for B

i^Lc) - propagation delay for C

^ ^0^5) - propagation delay for the cascade

b) Timing Diagram

Figure 2.7 A Cascade of Inverters.

maximum of the propagation delays of its paths, e.g., it is

the time necessary for a change in its inputs to propagate

to the output through the slowest path.

D. MEMORY DEVICES

Memory devices are devices capable of storing informa-

tion. With a variety of such devices, such as magnetic

disks, tapes, bubble memories, RAM's, ROM's and registers,

this work only contemplates those made from semiconductor

devices, which are the memory devices found in the Data Flow

of a system. Two major categories, based on construction.

23

of devices exist. The following subsection will discuss

memory devices built from combinational logic. The memory

devices that are sequential circuits will be analyzed in

subsection 2. The information in the system is as binary

vectors or words each of which is stored in some location

that can be referenced through an identification number

called the ADDRESS.

1. ROM's and PLA's

A read-only memory (ROM) is a memory device from

which it is possible to read but into which it is not

possible to write. The contents of the memory are fixed and

unalterable. Because a ROM is a combinational circuit, the

only time constraint is the propagation delay, in this case

called the Access Time. When a K-bit address is presented to

a ROM, a stable m-bit output vector is delivered following

the access time. The memory contains 2 words, called

p-terms, one used for each possible combination of the

address lines. The word length is m bits and a distinct

physical word is permanently stored for each of the 2

distinct p-terms of the ROM. A ROM of size m x n is a ROM

storing n binary vectors of length m.

Like a ROM, a PLA has k address lines and m output

lines. However, a PLA does not use all possible combinations

of its address lines, in other words, it has fewer p-terms

than a ROM with the same number of address and output lines.

As a result, an important specification for a PLA is the

number of p-terms it has; this number represents the number

of AND gates available. The outputs of each of these gates

can drive or not drive each of m OR gates. The AND gate

section of the PLA is called the AND-array and the OR gate

section the OR-array. The PLA, then, is a direct way to

realize a two level combinational circuit of the AND-OR

type. PLA's can be used on Control Units as memory or in

the Data Flow as realizations of systematic operations on

24

data words such as addition, multiplication or sign

extension.

2. Registers and RAM*s

Registers and RAM's are sequential circuits devices.

Sequential circuits are circuits, which involve feedback,

and exhibit the feature that the outputs depend not only on

present inputs but also, to some extend, on the past history

of the inputs. This means that a sequential circuit has

memory. What is remembered is stored in a flip-flop, the

simplest sequential circuit.

a. Flip-flops

Flip-flops can be classified according to the

way they are clocked and to the way they are controlled.

Table I shows the categories of flip-flops.

TABLE I

FLIP-FLOP CLASSIFICATION

a) According to the way they are clocked:

1) level-sensitive (data latch)

2) edge- triggered

b) According to the way they are controlled

1) set and clear

2) D type

3) J-K flip-flop (only edge- triggered)

Presently the most widely used flip-flops are of

the level-sensitive and edge-triggered types. Figure 2.8

shows the block and timing diagrams for a Data latch.

25

ama in-

I>flTR OUT

r
EM

a) Block Diagram

^* i'rto "-Po

*P« - propagation delay for G input

tp^ - propagation delay for D input (fall)

tpo - propagation delay for D input (rise)

b) Timing Diagram

Figure 2.8 The Data Latch.

Note the two different sources of propagation

delay: the propagation delay associated with the D input and

the propagation delay associated with the G input. Also

important is the concept of setup time and hold time. Setup

time is the minimum time that input D must be stable prior

to the deactivation of G, to guarantee that a known value is

latched. The hold time is the time during which data will

be steady and valid after control point G has been

deactivated.

A block and timing diagrams for a D edge-

triggered flip-flop is shown in Figure 2.9. The sampling

26

interval is the time during which the D input must remain

stable to guarantee a correct value at the output and is

equal to the sum of the setup time and the hold time. The

output hold time is equal to the best-case propagation

delay.

URTR IN-

-DHTR OUT

a) Block Diagram

'. t.nt *«
:

» XXI I>"TH 5TH3LE [XXXXX^^

9 DLD VHLUE
[XXXI '^^'^ VHLUt

*p i

^iu - setup time

^H - hold time

^on - output hold time (= best case-

propagation delay)

^ - propagation delay (= worst case-

propagation delay)

d - ambiguity region

b) Timing Diagram

Figure 2.9 The Edge-Triggered Flip-Flop.

27

3. Registers

Registers are composed of individual flip-flops,

usually edge-triggered or data latch, with common control

and clocking signals as illustrated in Figure 2.10.

*
1

* t'
^,]f \'

rv 1 %

9 9 Q —

LIsL f

C

Figure 2.10 A Register as an Array of Flip-Flops.

The number of flip-flops in a register dictates the

maximum binary vector that can be stored in it, e.g., the

length of the register. For locality purposes each register

is identified through a unique name (address).

4. RAM's

A RAM can be thought as an array of registers built

from data latches. Each of these registers is refered to by

an address which differentiates them within the array. The

Ram is two-dimensional, because the length of the individual

registers defines the word length while their number

dictates the number of words that can be stored in the RAM.

The notation "2048 x 4" means that RAM contains 2^ 4-bit

words and is refered as the size of the RAM.

In general a RAM cannot perform a READ and a WRITE

operation simultaneously and therefore only one control

signal is necessary. While the WE (write enable) control

signal is not active the contents of the register whose

28

address is in the address input, is present at the RAM

output. By activating WE the value of the data input is

loaded into the register. In fact memory chips have an addi-

tional control signal, the Chip Select which when activated,

enables the RAM to behave as described. Figure 2.11 shows

the block and timing diagrams for a RAM.

Note that WE can be thought as the G input for the

latch of Figure 2.8.

An important measure of the speed of a RAM, besides

the memory access time, is the memory cycle time, e.g., the

minimum time delay required between the initiation of two

independent memory operations.

E. THE CONTROL UNIT

The behavior of a digital system is characterized by

transfers of binary vectors between memory devices through

data paths in the DATA FLOW.

The CONTROL UNIT is a finite- state machine whose func-

tion is to control these transfers. The Control Unit uses

inputs from the system clock to derive timing and control

signals which regulate the data transfers associated with

each instruction (this is only true for synchronous machines

which are the ones considered in this work). The Control

Unit also accepts as an input vector the contents of the

instruction register and the status vector, and generates an

output vector of control signals.

The Control Unit cyclically steps through a finite

number of states, the CONTROL STATES. Based on the present

state and the value of the input vector, the Control Unit

changes to a new state in synchrony with the system clock.

Typically, the Control Unit must stay in a control state

for a period of time long enough to allow the slowest data

transfer in the Data Flow can take place. The cycle of the

Control Unit is called the MACHINE CYCLE and it may comprise

one or more control states depending upon the architecture

29

data out

WE - write enable

CS - chip select

WE CS

a) Block Diagram

1

•

C5
1

«

•

>C^:X RDDA^SS 5Tq&LE y><X;y^

>CxXKX nOTR STRQLt x^xxxxx
NE

<4

—

tuHik —•:

^W6C5- write setup time for chip select

'C^M^A " ^'ritP setup time for address

twid - write setup time for data

CwhJ - write hold time for data

HjH^ - write hold time for address

"tuHcs- write hold time for chip select

b) Timing Diagram

Figure 2.11 The Read- and- Write Memory.

of the system (specially the address modes implemented) and

the particular instruction to be executed.

30

I

I

R
r*^ CONTROL

UNIT
N^ <^"tpnt

T
—^——' \ »

\y V^ vector

A
status

vector

Figure 2.12 The Control Unit Block Diagram.

The Control Unit may be hardwired or it can be imple-

mented using a technique, first presented in 1951 by M. V

Wilkes, called microprogramming.

:lock
CONTROL STEP

COUNTER

IR hC>

S
DECODER/
ENCODER

T
(Mtrol

vector

<^:statusector

Figure 2.13 A Hardwired Control Unit Block Diagram.

Figure 2.13 shows the hardwired implementation. The

decoder-encoder block is simply a combinational circuit that

generates the required control vectores, depending upon:

31

• the contents of the control register.

• the OP code part of the instruction register.

• the value of the status vector.

By OP code is meant "the part of an instruction that

specifies the operation to be performed during the next

cycle". [Ref. 9:p. 609]

A microprogrammed control unit, whose block diagram is

depicted in Figure 2.14 is a control unit having the control

vectors stored in a memory (the Control Memory). Each

control vector in memory is called a microinstruction and a

sequence of microinstructions is called a microprogram.

Since alterations of the microprogram are seldom needed, the

memory is typically a read-only memory (ROM). A set of

microinstructions, specifying a routine, corresponds to each

user instruction or macroinstruction. Combinational logic

maps the macroinstruction to the ROM address where the

corresponding routine is stored. From there, the next

microinstruction address, depending upon the value of the

status vector and the load control selection bits specified

in the present microinstruction, is obtained by:

• incrementing the CMAR register.

• loading the CMAR register with the address specified in
the branch address field of present microinstruction.

The hardwired implementation has the advantage of speed

and consequently is used in fast, large-scale machines. The

latter leads to more versatile controllers because it is

usually easier to change a microprogram (software) than to

change hardwired logic.

F. SOME NOTATION

As was already stated, much of the activity of a digital

system consists of operating on data and transfering vectors

32

IR
MAPPING
LOGIC

i

CONTROL
MEMORY

CMAR

increment

load routine

load brach addr

1

aranch

iififiress

1

}

load control
NEXT

ADDRESS
GENERATORr

selection bits

]r

COI

ve<

itrc

:lor

>1

t
status

vector

Figure 2.14 A Microprogrammed Control Unit Block Diagram.

among memory devices. While the information is being trans-

fered, it may or may not change. The former case is called a

FUNCTIONAL TRANSFER (because some function, logic or arith-

metic, of the contents of a source is placed into a destina-

tion) and the second case is called a SIMPLE TRANSFER (after

this kind of transfer is completed, the destination holds a

copy of the source contents). This being the case, a major

part of the functional description of a computer will

consist of a schedule, or listing, of allowable data trans-

fers under different conditions. It is then convenient to

have a symbolic notation to describe these transfers. This

section will introduce such a notation.

1. Simple Transfers

Registers are designated by capital letters (some-

times followed by numerals) usually chosen so as to denote

the function of the register. Each bit of n-bit register

are numbered in sequence from to n-1. Subscripts denote

33

individual bits of a register. Thus IR3 means the third bit

of the Instruction Register. Portions of a register are

refered by specifying, within brackets, the first and last

bit. The notation MBR<0:3> refers to the first four bits of

the Memory Buffer Register.

Memory words are designated by the name of the RAM

followed by the name of the register containing the address

within brackets. M[MAR] refers to the contents of memory

cell of RAM M whose address is the contents of register MAR.

Buses are also designated by capital letters with

the last three always being BUS. The notation to represent

the individual lines of a bus is identical to the notation

introduced in the last paragraph for registers. Thus

INTBUS<3:5> denotes the 3th, 4th and 5th lines of Internal

Bus, e.g, bits 3, 4 and 5 of the binary vector carried by

the bus

.

Functional Units are refered to by their names in

capital letters having the prefix FU.

A simple transfer is denoted by an arrow pointing

from the source to the sink as shown below:

Rl ^ ABUS

and parallel transfers, e.g., transfers that are executed in

the same control state are separated by commas. For example,

CBUS *- MAR, IR *. Rl

specifies two transfers that occurs simultaneously.

Constants are treated as contents of special registers whose

name is the value of the constant. Thus,

RB ^

denotes the CLEAR operation of register RB.

34

2. Functional Transfers

The function performed during the transfer is speci-

fied within parentheses at the back of the transfer arrow.

In the case of a binary operation, the sources are separated

by commas. For example:

ABUS *. (+)R1,R2

denotes the transfer of the arithmetic sum of the contents

of registers Rl and R2 to bus A.

G. TIMING CONSIDERATIONS

In the previous sections, the timing for the individual

Data Flow components was presented. When two or more of

those devices are interconnected, the timing for the struc-

ture necessarily reflects their individuals time

constraints

.

In the section concerning the Control Unit, it was said

that the controllers must stay in a control state the time

sufficient for the slowest data transfer to take place. This

interval of time is called the DATA CYCLE TIME. The estima-

tion of the data cycle time is the key for determining the

system timing.

Consider Figure 2.15, which shows part of the block

diagram of an accumulator-based processor, e.g., a processor

that has one register, called the accumulator, as the only

sink for all functional transfers.

Suppose that the following instruction is intended:

ADD Rl

This means that the contents of register Rl is to be

added with the contents of the accumulator and the result

placed in the accumulator.

To carry out this instruction the following data trans-

fers are necessary:

35

Rl

i h
ACC TEMP

\ ALU /

1

Figure 2.15 Part of a Data Flow.

1) TEMP ^ Rl

2) ACC ^ (+)TEMP,ACC

The timing diagram for the first transfer is shown in Figure

2.16.

The time to process this simple transfer is:

smin ~ setup * p(max)

Figure 2.17 shows the timing diagram for the second

transfer.

The time necessary for this functional transfer is:

fmin ~ p(add) * setup(acc) * pmax(acc)

The transfer time t£jj^j_j^ is greater than tj^^^^^, which it is

not surprising since in a functional transfer the Functional

Unit propagation time must be paid. Because propagations

delays are not fixed, it is a safe rule to use worst-case

delays. In this example if the addition takes the slowest

path within the Functional Unit, then t£j^^j^ is the data

cycle time for this processor.

36

RIDUT^ T^^
ioM ^Tfnf)

TtMP ^^^
-iptT^p)-

*«»»)

lirf*«^> TEMP setup lime

i*(^tiTf^ TEMP hold tiLime

foMt'Tnf)- TEMP output hold time

t^(T<n»)- TEMP maximum propagation delay

^,^^ - minimum lime for transfer

Figure 2.16 Timing Diagram for a Simple Transfer.

37

• • CDNTROl- STRTC

TEMP^
"-XKyxx >c^;yxr

1

* 1

CLK •

HCC xxxx

Xp (Mu)- propagaiion delay for ALU

Uu (-^c). setup time for ACC

U rf^ccv hold time for ACC

koH t'*'^)- output hold time for ACC

tp (*cc)- worst-case propagation for ACC

Figure 2.17 Timing Diagram for a Functional Transfer.

38

Suppose now that TEMP is the source of a bidirectional

bus ABUS which have the ALU as one of its sinks. In this

case, the propagation delay for the TEMP output gating must

also be considered when computing tmin, as shown below:

= tmin ^tpg(TEMP) ^ ^p(add)+ t. + t + t.setup(ACC) ^p(ACC)

The maximum frequency for the clock to drive the Data

Flow is:

f < 1/tmm
and the time to carry out this instruction is equal to

2xtmm in a single-phased scheme. This instruction time can

be reduced using a two-phased clock, e.g., driving ACC and

Rl with one phase of the clock and TEMP with the other

phase. The timing diagram for this case is as shown in

Figure 2.18.

Rl

TEMP

FILU

CLK 1

•
t

1
NRDL 5TRTE 1

*

1

LDHD TEMP^ LORD HLC
1

X^ xx>^xxxx:xx)0<xx
1

1

1

1

*

» XXXG
1

1
: fXXX x:xvx

1 , 1

1

1
1 ,

1

1 : XXX
iyiMu.) :

Figure 2.18 Two-phase Clock Timing Diagram.

39

III. THE DATA FlOV COWPOITEyrS

A digital system is corrrposed of twc distinct structures:

ihe LaTA 71CW and the C^-«r?.ll 713W.

A DaTa 713W IS cc-pcsed of two main blocks: the -e~or%'

block and the functional unit. These bloc>.s are intercon-

nected by buses.

The behavior of the systoB is characterized by transfers

of binar;.- information between -e-.or-/ devices. Typically each

of these transfers is enabled by che controller.

Essentially two >inds of infor-.ation transfer exist:

• fro« two sources to one sin>.

.

• f ror. one source to one s inyi

.

In the first class, the data is operated on by a binar;.'

operator and m che second case by an unar;.- operator.

«ni e cne inro rrr.ation is cemg transiereo, ii. c an o e

changed. This r.eans char the nenor;.' device chat receives the

information 'the sin>. of the transfer; is going to store

soae trans f'.r-.at ion of the source. This V.ind of trantfer is

called a functional transfer and the path througn vr.ith it

took olaie is called a funit_'-r. al oath. A transfer vnere no

change of inf creation takes place is a si~ple transfer anc

the path is a smple path. These transformations occur m
response to control signals and they are perfor-r.ed by a

subset of the combinational logic grouped m the funtti-nal

unit

.

A computer perforrr.s its task by means of parallel or

successive data transfers betveen memor;/ devices. The

controller selects the paths under user pro£r=m tontrol. It

decodes the user command and sends the appropriate control

signals to establish the appropriate paths for c-mpleti-n of

c. -— — c-^^c.^ r >- ^"^

40

This means that it is necessary to choose the paths and

the data to be operated upon, or in other words it is neces-

sary to choose which devices can deposit data onto the buses

and which can accept the data. To perform this data selec-

tion the controller needs to know the topography of the

system, which includes a definition of buses and what is

attached to them.

A. BUSES

Buses are devices that are used to interconnect the

different devices in a digital system. They do not alter

data nor remember it; they are essentially wires.

The information in the system is as binary vector and

this fact determines one of the characteristics of the

buses: the width of the bus, e.g., the maximum length of

the binary vector that can flow in it.

Buses serve as interconnections between the devices of

the system and therefore the knowledge of which devices are

connected by the bus is important: which devices can

deposit information in the bus, the SOURCES of the bus, and

which can retrieve information from it, the SINKS.

Knowing the bus width, the sinks and the sources is not

enough to characterize a particular bus. The way the device

is attached to the bus is also important. As mentioned, the

data are binary vectors and each of the elements of the

vector is a bit. The bits are specified in the vector

according to their position and each position has a

different weight. Therefore, changing the order of the bits

implies changing the information. For a simple transfer,

bit of the device should be attached to bit of the bus,

bit 1 to bit 1, and so forth.

Figure 3.1 shows two 4-bit registers connected to a

bidirectional bus. The data path from Rl to R2 corresponds

to a simple transfer because the data flowing through it

does not change, in other words, after the transfer R2 holds

41

j:
.CofU Rl .(o^ Rl

40 •

J
;R2:^

r<«iR2M
-(-

-*—

r

' I ! ' >

r«aiRii .

Coa«tR(.

R^'

TBUS

r«*<lR3-*:

a
-«'R3'

3: :

UQ^A.fl2

Figure 3.1 Example of Bus Attachments.

a copy of the content of Rl. The same is not true for the

data path from R2 to Rl. This path is a functional one which

means that after a tranfer through it, Rl will hold, not a

copy of the content of R2 but a transformation of it, in

this case the result of rotating its content one bit to the

right.

Sometimes, functional transfers are performed by special

attachments; this is the case of the barrel shifter

presented in Figure 3.2.

As can be seen, with this device the attachments of the

buses are not fixed but rather they are changed according to

external control signals. This necessitates additional

information on the control signals to determine the trans-

fers to/from the bus.

42

Figure 3.2 The Barrel Shifter,

In summary, a bus is described by:

name of the bus.

the sources.

the sinks.

how the sinks and sources are attached to it.

the control signals that allow the transfer to/from the
bus

.

The syntax to represent this information is shown in

Figure 3.3.

The boxes represent fields that are further defined, the

circles show the separating characters and the ovoids repre-

sent words. To be consistent with the notation introduced

in the last chapter, memory devices are designated by

capital letters or numerals, the buses are also designated

43

-wjIFT)—^(Ty - name <Rrs>

r-G>J

<J>
sink ati&ch o

widih

source allach

Figure 3.3 The Syntax for Bus.

by capital letters or numerals with the last three being

always BUS and the functional units follow the same rule but

with the first two letters being always FU. All devices

that are sources for the bus are listed in the source

attachment field, separated by commas. The sink attachment

field lists the bus sinks and has the same syntax as source

attachment. Appendix A shows the syntax for each of the

boxes of Figure 3.3. Each sink or source attachment begins

by specifying the actual portion of the device that is

connected, followed by a list of the sources/sinks that are

connected to that specific portion. Each of these lists

specifies in turn which bits take part in the attachment and

the explicit control signals that determine the transfers

to/from the device.

In order to simplify the language, default values are

introduced by omitting the respective field. If no control

is specified, then the "read" signal is implied for sources

and the "load" signal is implied for sinks. Implicit and

explicit signals will be discussed in detail in Chapter 5.

The absence of a subvector means the whole vector flows

through the connection; if DBUS has width 8, then DBUS<0:7>

can be described just as DBUS.

44

For example, the bus in Figure 3.1 is described as

follows

:

BUS: TBUS<0:7>{[<0:3>(Rl<3:0>*(rotrRl),Rl,R2),

(R3,R4)],[<0:3>(R1,R2),(R3)]>

B. MEMORY DEVICES

The memory devices are semiconductors devices capable of

storing information. Each memory device must be identified

through an unique address and has a specific length (the

length of the binary vector it can remember) . The syntax for

each name, follows the rules introduced in the last chapter.

Memory can be represented as a two dimensional array.

One dimensional arrays corresponds to registers and the two

dimensional arrays corresponds to RAMs , ROMs and similarly

organized devices.

This differentiation is not sufficient because two

dimensional memory can be the LIFO (last in first out

memory), the FIFO (first in first out memory), the random-

access memory (RAM) and the read-only memory (ROM). Other

type of memories such as Content Addressable Memories may

also occur in some applications.

1. Registers

Registers can be viewed as boxes capable of storing

one binary vector and having one input data vector, one

output data vector and three control signals: the clock,

the LOAD signal and the READ signal. Registers are specified

by:

The name of the register.

The length of the word it can hold.

The phase of the clock driving it.

The type of register, e.g., falling-edge or rising-edge
triggered.

The sources.

The sinks.

45

It is assumed that the input data vector is stored

by the edge of the clock when the LOAD signal is activated

and that the register contents can be sensed by the "outside

world" while the READ signal is active.

The syntax to describe a register is shown in Figure

3.4. The "clock" field specifies the phase of the clock

driving the register and which edge of the clock triggers

it, as illustrated in Appendix A; an "r" in the subfield

"edge" denotes a rising-edge triggered register and an "f"

stands for falling-edge. If a single-phase scheme is in use

all registers receive the same phase of the clock. This

phase is designated by the digit 0.

—•^ r? rr' ^ . * t ^ name »>

length » clock

c
1

'

)

1>- sink attach ^^7W• -x

Figure 3.4 The Syntax for Register.

As an example, Rl in Figure 3.1 is described as

below (suppose that Rl is rising-edge triggered by phase 1

of the clock)

:

REG: Rl<0:3>(l,r){[<3:0>(TBUS<0:3>«(rotrRl),TBUS<0:3>)]

,

[(TBUS<0:3>)] }

2. LIFO^s

The LIFO memory, also called stack memory, is an

array of registers where the information flows in two direc-

tions, under the control of two signals, the PUSH and the

POP signals, as illustrated in Figure 3.5.

46

Figure 3.5 The LIFO Memory.

Input data is written into and read from the same

register. Additionnaly the structure may provide a status

flag signalling that the stack is full or not full. This

structure is identified by a unique name, the address where

to route its control signals. The LIFO is specified by:

the address of the stack.

length of the word it can hold.

length of the stack (number of words it can store).

the phase of the clock driving it.

the type of registers, e.g., rising-edge or falling-
edge triggered.

the sources.

the sinks.

if status flag is provided.

47

The syntax that describes the LIFO memory is

depicted in Figure 3.6.

-^LIFO) <?> # name

Q

f size clock

*f
}
\- sink attach -K> source attach

Figure 3.6 The Syntax for the LIFO Memory.

3. FIFO's

The FIFO memory, also called queue memory is an

array of registers where the information flows in one direc-

tion only under the control of two signals, the LOAD and

READ signals as shown in Figure 3.7.

As the stack, it may supply a status information, e.g.,

queue full or not full. Each queue also have a unique name.

They are specified by:

the address of the queue.

length of the word it can hold.

the length of the queue (number of words it can store).

the phase of the clock driving it.

the type of registers used, e.g., rising-edge or
falling-edge triggered.

the sources.

the sinks.

status information supplied.

3.8

The syntax to describe a FIFO is shown in Figure

Because a stack is a two dimensional memory device, it

48

Figure 3.7 The FIFO Memory.

is necessary to specify its size, in other words the number

of words it is capable of storing and the length of the

words

.

-<fIfo)—»0—x-^ name size clock

Q
*f }j sink attach ^o source attach

Figure 3.8 The Syntax for the FIFO Memory

49

4. EAMlS

RAM's can be thought as boxes capable of remembering

several binary vectors and having an input data vector, an

output data vector, an address vector and two control

signals, the Chip Select and the the Write Enable. RAm's are

specified by:

the name of the RAM,

the size.

the sources.

the sinks.

the address sources,

What is assumed is that the input data vector is

stored in the cell whose address is present at the address

bus when both the control signals are active and that the

contents of the cell specified by the vector in the address

bus can be sensed by the "outside world" when the chip

select is activated and the write enable is inactive.

The syntax to describe the RAM is in Figure 3.9.

-W^lf \ M^ '- te "^i name — size -<D-- source attach «.

4

k •-

3 -

i>- address attach -<y~ sink attach —oJ
Figure 3.9 The Syntax for the Read-and-write Memory.

The address field lists the devices that are attached to the

RAM address input and its syntax is in Appendix A.

50

5. ROM's

A ROM can be viewed as a RAM with no input facility

therefore its syntax is similar to the one introduced in

Subsection 4 with no source field as shown in Figure 3.10.

->(HOnO ^ K ¥

<X"

name size

address attach o

<ih

sink attach

Figure 3.10 The Syntax for the Read-only Memory.

C. FUNCTIONAL UNITS

The functional unit is a combinational logic device that

performs logic or/and arithmetic operations on the data

flowing through it

.

It can be viewed as a box, receiving three input binary

vectors and supplying two output binary vectors. The input

vectors are:

• two input data vectors.

• one input control vector.

and the output vectors are:

• one output data vector.

• one status vector.

All registers transfers that imply change of information

other than those performed by special bus attachament as

51

described in Section 1, necessarily pass through this unit.

Internally, it can be viewed as several possible paths, for

the data to move from input A and input B to output S. Each

of the paths available corresponds to a different operation

and it is chosen by the controller by issuing an appropriate

control vector.

In summary the functional unit is a box containing

several functional paths between buses A and B and bus S.

From the point of view of the controller, the only informa-

tion it needs to know about the functional unit is:

• operations available on the unit.

• length of the data vectors.

• what status information is furnished.

What is implied is that each operation takes the

contents of buses A and B and deposits the result on bus S.

Because many operations only effect a single input, and

binary operations may be non- commutative , it is not suffi-

cient to list the operations on the unit. It is also neces-

sary to specify which are the arguments for the operations.

In order to make things easy, it is assumed that non-

commutative operations have input B as operand and input A

as operator. For unary operations, it is necessary to list

which operate on input A and the unary operations that

operate on input B.

The status vector need not to be changed by every opera-

tion. In some digital systems, only a set of the functional

unit operations affect the status vector. In this case, the

status information must explicitly specify how the status

vector is effected.

The syntax that describes the functional unit is shown

in Figure 3.11. The "binop", the "unopA" and the "unopB"

fields list the binary operations, the unary operations on

52

Fl"

-o-
-0*~ SI atus

name •»(Fr) »(T) binof o

4 ^7j4

—

unopB unopA

Figure 3.11 The Syntax for the Functional Unit.

input A and the unary operations on input B respectively.

The status field shows the information on the functional

unit output vector together with the operations that affect

it. For example, a functional unit called ALU, performing

the arithmetic addition, the AND and the complement opera-

tion on both inputs and providing information on zero output

for all them and the information on overflow for the addi-

tion is described in the following way:

FU: ALU{[(+,A),()],[Z,0(+)]}

Note that if no operation is specified with a flag it is

assumed that this is effected by all the operations

performed by the unit. Sometimes a Functional Unit only

performs one type of operations or sometimes it does not

provide any status information. Square brackets surrounding

a blank specify the absence of a field. For example, the

following statement;

FU: INC{[(),(-1), ()],[]}

specifies a Functional Unit, called INC, that performs just

one unary operation on input A and that provides no status

information.

53

Table II lists some of status information commonly found

in real-world systems with a possible symbolism for each.

Table III does the same for the operations.

TABLE II

SOME COMMON FLAGS

Name Syntax

Zero Z

Overflow

Carry out c

Auxiliary carry A

Sign S

Parity P

54

TABLE III

COMMON FUNCTIONAL UNIT OPERATIONS

Name Syntax

Addition +

Addition with carry + c

Subtraction -

Subtraction with borrow -b

Multiplication X

Increment + 1

Decrement -1

Division •

•

Decimal adjust

inclusive OR V
exclusive OR ©
AND A
clear

Complement <^>

Shift right -
Shift left *
Shift right with carry- -ft-C

Shift left with carry c^
Arithmetic shift right ^
Arithmetic shift left ^
Swap halfs K

55

IV. THE DATA FLOW

The Data Flow is one of the two conceptual modules that

constitutes a digital system. It is composed of memory

devices and functional units interconnected by buses. The

last chapter introduced a way to describe each of these

components. This chapter will try to show how to describe

the structure in which these components are embedded.

A. THE DATA FLOW

A digital system is characterized by a particular archi-

tecture. Each architecture is a function of two variables:

the Data Flow and the Control Flow. In fact, the Operating

System, e.g., "those program modules, within a computer

system that govern the control of equipment resources" [Ref.

10 :p. 1], also charcterize the system architecture, but at

a higher level than the one treated in the present approach.

Thus, a computer system architecture can be changed by

changing the Data Flow or the Control Unit or both.

Therefore any particular Data Flow is always linked to

specific architecture.

Being an interconnection of memory devices and func-

tional units, a Data flow is changed either by changing one

or more of its components or by changing the way they are

interconnected. Every change of a particular Data Flow gives

rise to a new Data Flow. This means that a Data Flow has

individuality. The Data Flow name manifests its individu-

ality. A Data Flow is designated by capital letters (some-

times followed by numerals) usually chosen so as to denote

the architecture it belongs to.

A Data Flow is characterize by a particular structure of

its components. The structure is described by listing all

the the components and the way they are interconnected.

56

Because the Functional Unit is the heart of the system, it

was chosen to be the first element of the list, following

the Functional Unit come the memory devices in the following

order: registers, stacks, queues, RAM's and ROM's. Finally

the list of the buses gives the description of the

interconnections

.

Each of the statements of the list was described in the

last chapter. Therefore, the characteristics of each compo-

nent, which are also important in the characterization of

the Data Flow, appear in the Data Flow description.

In summary a Data Flow is specified by:

a) the name of the Data Flow.

b) the Data Flow functional unit.

c) the Data Flow registers.

d) the Data Flow stacks.

e) the Data Flow queues.

f) the Data Flow memory.

g) the Data Flow buses.

under the following rules:

1) Each data flow component always receives data from a
bus and delivers its content to a bus.

2) Each Functional Unit has associated with it a bus ABUS
for input A, a bus BBUS for input B and SBUS as the
output bus. If the Functional Unit only performs unary
operations it is assumed that its input is input A.

3) If a memory device can deliver its content to more
than one destination (bus, memory device or functional
unit) then it has associated with it an unidirectional
bus as the output bus

.

4) If a memory device receives data from two or more
arguments (bus, memory device or functional unit) then
the memory device has associated with it a bidirec-
tional bus for which it is the only sink.

The following example, illustrates the way in which one

might begin to describe a simple computer.

57

Suppose a simple 12-bit, single-address, single-phased

computer named SMI whose Data Flow is shown in Figure 4.1

Data is written to or from memory via register MD. It has a

3-bit opcode. The ALU performs the following binary

operations

:

• addition

• subtraction

• logical AND

Figure 4.1 The SMI Data Flow,

the following unary operations on input A:

• complement

• shift right

• shift left

• increment

58

and the increment operation on input B. It provides three

status bits as shown below:

• (arithmetic overflow) for both arithmetic operations.

• C (carry out of MSB) for both arithmetic operations.

• Z (output zero) for all binary operations and the
complement operation.

The program counter PC is incremented by the ALU. All

registers are rising-edge triggered. The SM-1 Data Flow is

described as follows:

DF: SMI;

FU: FUALU{ [(+,-, A), (, - , ^ , + 1) , (+ 1)] ,

[C(+,-),OV(+,-),Z(+,-,A,)]}

REG: ACC<0:ll>(0,r){[(SBUS)]
,
[(ABUS)]},

MD<0:ll>(0,r){[(MDIBUS)]
, [(MDOBUS)] }

,

PC<0:ll>(0,r){[(SBUS)] ,[(BBUS)]>,

MA<0:ll>(0,r){[(SBUS)]
,
[(MAOBUS)]},

IR<0:2>(0,r){ [<0 : 2> (MMOBUS)] , [] };

MEM: MM<0: 11, 0:4096>{ [(MDOBUS)]
,
[(MMOBUS)]

,

[(MAOBUS)]};

BUS: ABUS<0:11>{[(ACC)]
,
[(ALU)] }

,

BBUS<0:11>{[(MDOBUS, MAOBUS, PC)]
,
[(ALU)]},

SBUS<0:11>{ [(ALU)]
, [(MA,PC,MDIBUS , ACC)] }

,

MDIBUS<0:11>{ [(SBUS , MMOBUS)] ,
[(MD)]},

MDOBUS<0:11>{ [(MD)]
,
[(MM,BBUS)] }

,

MA0BUS<0:11>{[(MA)]
,
[(MM,BBUS)]}

,

MMOBUS<0:11>{ [(MM)]
,
[(MDIBUS) , <0 : 2> (IRIBUS)] }

;

B. UNITS

The Data FLow of a digital system can be very complex.

The register level description can be more detailed than

necessary, sometimes obscuring the intended use of the

model. To make things more useful for the designer, another

59

block is introduced at a higher level of abstraction, the

UNIT.

The Unit components are memory devices and functional

units interconnected by buses, in an system architecture

that can be grouped to form an individual block capable of

being operated in parallel (under certain conditions) with

other system blocks under the control of the system

controller.

The Unit is in turn a Data Flow component as are memory

devices and functional units. This means that the Data Flow

may include more than one level of abstraction in its

description, giving rise to the term MULTI-LEVEL LOGIC.

Functional register is a term by which some authors

refer to registers with special features, such as increment

and reset capabilities. Typically the program counter (PC)

in a digital system falls under this type of registers. In

the present discussion a PC register with the mentioned

capabilities can be made an UNIT, because it has memory (the

register itself) and a functional unit (the combinational

logic that performs the reset and increment operations)

interconnected by buses. Additionally it can be operated in

parallel with other system blocks.

Consider a single-phased computer in which the main

memory invariably deposits the content of memory address

given by MAR (memory address register) into a register MD

(memory data) . It has a PC (program counter) capable of

being incremented. The fetch cycle of this computer is given

by the state diagram of Figure 4.2.

As can be seen, four data transfers take place but only

three control states are needed. This example shows that, if

an Unit during a particular control state is isolated from

the rest of the system, e.g, it is not being used as a

source or a sink in a system data transfer, then it can be

operated in parallel.

60

Pt -* MHR

(t) rnCMRfi] - MD . Pt+l->PL

3) MD -» QPfl.

Figure 4.2 Example of a Fetch Cycle State Diagram.

In order to describe a Unit, the following rules need to

be formulated:

4) The data always enter the Unit through an INBUS

.

5) The data always exit the Unit through an OUTBUS.

These buses need not exist physically: they are used

only as abstractions. The following chapter will show how to

handle this oddity such that the system description will

match the reality.

Because the Unit components are memory devices and func-

tional units interconnected by buses, all the rules and

syntax introduced so far apply in the Unit description. The

syntax that describes the Data Flow is shown in Figure 4.3.

C . EXAMPLES

The following examples will try to show how to describe

real-world systems using the syntax presented so far.

1. The PIC 1650 Microcomputer

The PIC 1650 (Programmable Intelligent Controller)

[Ref. 11] is an MOS/LSI microcomputer developed by General

61

Figure 4.3 The Syntax for Data Flow.

Instrument. It is thought as a good example because its

data flow, that is shown in Figure 4.4 , has registers, a

read-only memory, a lifo memory and two functional registers

as described below:

a. The Program ROM is a 512xl2-bit ROM. It is addressed
by the Program Counter (F2) and its output vector goes
to the Instruction Register (IR)

.

b. Fl is an 8-bit register with increment and reset capa-
bilities that can be loaded and read under program
control

.

c. F2 is the Program Counter. It is an 9-bit register
with increment capabilities but only the low-order 8
bits can be written to or read from by the program.

d. F3 is the status register. It is an 3-bit register
whose bits are modified according to Table IV

e. F4 is an 5-bit register used to generate effective
file register addresses under program control.

f. F5-F8 are 8-bit registers used as I/O ports.

g. F9-F31 are 8-bit general purpose registers.

h. W is an 8-bit accumulator.

i. RETST is a LIFO capable of holding two 9-bit words. It
is used to store the return addresses.

j. IR is an 12-bit register used as instruction register.

k. The ALU operations are listed in Table IV.

62

It
F5

RRaos Raaufi

I.NTaUE

^'^H/-^

^R£G__J

HLU

T
1 >

F3

RTCC

1

RETST

^

F3
—B

—

.3

jk

FA

IR

-'.a

PRG.M

F7

|«—• FS

RCBUr

"U-i

Rnaus

Figure 4.4 The PIC 1650 Data Flow,

63

TABLE IV

THE PIC 1650 ALU OPERATIONS

Name Syntax Status

Addition ¥ C ,A,Z

Subtraction (W subtract or) - C ,A,Z

inclusive OR V Z

exclusive OR © z

AND A z

complement (b input) *^i» z

clear (both inputs) z

decrement (b input) -1 z

increment (b input) + 1 z

shift right (b input) -* c

shift left (b input) ^ c

swap halfs (b input) K c

64

It uses a two-phase, non- overlapping clocking

scheme. The PC increments on the rising- edge of every phase

1 of the clock while all other registers operate on the

rising-edge of phase 2 of the clock. The PIC 1650 data flow

description is shown in Appendix C.

2. The INTEL 8085A Micropocessor

The 8085A [Ref. 12] is an 8-bit micropocessor devel-

oped by the Intel Corporation to suit a wide range of appli-

cations. Its data flow diagram is shown in Figure 4.5 and

its components have the following characteristics:

1 lUTC
* »

HCĈ ^ i

_S"^

i
m ac

Off

HL
SP
PC

11

I
Hnau?

IT

int

RcaaL'?

Li
QHauT

TT

Figure 4.5 The 8085A Data Flow Diagram.

a. PC, SP, WZ, BC, DE and HL are 16-bit registers that
can only be loaded 8-bit at a time, and can be increr
mented by the functional unit INCR.

b. ACC, TEMP and IR are 8-bit registers.

c. STA is the status register. It is an 8-bit register
whose bits are modified according to Table V Bits 1, 3
and 5 are not utilized.

d. THe ADBUF is an 8-bit register whose input receives
the higher eight bits of the address vector.

65

e. The DABUF is an 8-bit register whose input receives
the lower eight bits of the address vector or the data
vector from the INT bus.

f. THe INTC is an 8-bit register holding the interrupt
status word.

g. The ALU performs the operations depicted in Table V.

TABLE V

THE 808 5A ALU OPERATIONS

Name Syntax Status

Addition + all

Addition with carry + c all

Subtraction (from ACC) - all

Subt with borrow (from ACC) -b all

inclusive OR V all

exclusive OR © all

AND A all

decimal adjust (a input) all

decrement (a input) -1 Z,S,P,A

increment (a input) + 1 Z,S,P,A

complement (a input) ^f none

shift right (a input) - C

shift left (a input) -«- C

rot r with carry (a input) -c c

rot 1 with carry (a input) c^ c

All registers are of the falling-edge triggered type

and are operated by phase 1 of a two-phase clock scheme, but

register TEMP, which receives phase 2 of the clock (see

Chapter 5, section F) . The description of the 8085A is

shown in Appendix B. This description translates into the

diagram shown in Figure 4.6.

66

.

mTC 1

* J. INTQUS

^ i k

1' f

RnLiN3u?;i
1 > 4 I < k

1 FCC 1 1 TEMP I
5T3 IR

4 f RFIL

RflU? , ' . aau' R HLDUTBU!^ X

I I
\ \/ /

r

UWfcilQU^^r 1m

]

\ R^u / i
V..,

,
/
/ KOaUP 1 DRBUF

i saus
^^^^" C

1

SHHUrnHL."'

a) The Data

RODQLtS

Flow
RFILINRUS

1 1

^ ' ' f ' f . <

\ /
,^^ '

n/
1 >r ,

i i
'

'

t ' % 1'

B D \
/< H X E

1
^ 1

«' / \ */ \ 1'

\ • 1 y /
1

I

\ J J ^
• > '

ROUS

V '

FUlNCa ^

^ f
saus

A < A J

RFILDUT&US T
1_ T

k

1 MT"
! 1 1 X T

ft

r*

< K * t. J^

1

c PCH PCL 5TH 5TL

xT . J.
i^ -5

»

d «

J : >
;

d » < V ;. i

t
'

t
1

b) The RFIL Unit

Figure 4.6 The 8085 Descriptive Model

67

In Figure 4.6, note the connection between H and D,

and L and E. This is not shown in Figure 4.5 but it is

necessary because of instruction XCHG (exchange HL with DE)

which is accomplished in four control states. Since the

fetch cycle comprise three of these, this instruction to be

executed in one control state needs the connections

mentioned.

68

V. DATA TRANSFERS

A major part of the description of a digital system

consists of a schedule or listing of data transfers. A data

transfer is an operation performed in one clock cycle by

which the contents of a memory device is taken across a data

path and stored in the same or any other memory device in

the Data Flow. These transfers consists of a number of

transfer steps. One or more control signals corresponds to

each of the transfer steps.

The purpose of this chapter is to introduce a way to

obtain, from a data flow description, the necessary data

transfers, transfer steps and consequently the control

signals needed to carried out a particular instruction.

A data transfer is described by a list of transfer steps

where:

The first transfer step of a particular data transfer
has always a memory device as a source.

The last transfer step has always a memory device as a
sink.

All transfer steps of a particular data transfer, but
the first and the last ones, do not mention any memory
device.

For the sake of simplicity, sections 1 and 2 will

consider only inter-register transfers and section 3 will

generalize the concepts introduced in these sections for

other types of memory devices.

A. SIMPLE TRANSFERS

A simple data transfer is carried out through a data

path that does not include any functional unit. To move the

contents of Rl to R2 in the block diagram shown in Figure

5.1, the descriptive model gives the following transfer

steps:

69

A3 A5

^ t

Ai

r
"

' <

1 »

R3. AU

a) Block Diagram

RI «
1

,;
.. SBU5

1

«' ^^ Taua 1-

V, ORUI i

WL

fKl4

b) Descriptive Model

Figure 5.1 Direct Interconnection between Registers.

OBUS ^ Rl

R2 ^ OBUS

Because buses do not have any control inputs, the first

transfer step implies the control signal "read Rl" and the

second one the control signal "load R2". The following rules

express this:

(3) Any transfer step between a memory device A and a
bus, the device being the source, implies the control
signal

read A

(4) A transfer step between a register B and a bus, the
register being the sink, implies the control signal

load B

The information about control signals may be incorpo-

rated in the symbolic notation introduced in Chapter 2, as

shown below:

OBUS ^ Rl

R2 -.- OBUS

: read Rl

: load R2

70

The portion of the transfer step statement to the right

of the colon is called the control field.

The way registers are connected in Figure 5.1, to move

the contents of Rl to R2 needs just one control signal,

which is "load R2". The discrepancy between the real imple-

mentation and the model is a consequence of rule 1 in

Chapter 4. To overcome this disagreement, the following rule

is needed:

(2) In a particular data transfer, two transfer steps
involving a unidirectional bus B are merged in one
single transfer step having as a source the source of
B and as a sink the sink of B. The control signals
for the resultant transfer step obeys to the
following: if the sink is a register then the control
signal that is implicit is "load" and if it is a bus
then the control signal is "read".

Applying this rule to the example above leads to:

R2 -.- Rl : load R2

In the same figure, the transfer steps necessary to move

the content of R3 to R4 are:

SBUS - R3

TBUS -.- SBUS

R4 ^ TBUS

which simplify to:

TBUS ^ R3

R4 ^ TBUS

Consider now the following data flow description:

DF: EXPLl;

REG: Rl<0:3>(0,r){[(R3OBUS<0:3>)]
, [(RIOBUS)] }

,

R2<0:3>(0,r){[(R3OBUS<4:7>)]
, [(TBUS<0 : 3>)] }

,

R3<0:7>(0,r){[(R3IBUS)]
,
[(R30BUS)]},

R4<0:3>(0,r){ [(RIOBUS)]
. [(R3IBUS<0 : 3>)] }

,

R5<0:3>(0,r){[R3OBUS<0:3>)]
, [(TBUS<0

:

3>« (rdR5N0P)

,

71

TBUS<4: ?>• (rdR5SWP))] }

;

BUS: R10BUS<0:3>{[(R1)] , [(R4 ,TBUS<0 : 3>)] }

,

TBUS<0:7>{[<0:3>(R10BUS,R5-(rdR5NOP)),

<4:7>(R5»(rdR5SWP))]
, [(R3IBUS)] }

,

R3IBUS<0:7>[(TBUS),<0:3>(R4)] ,[(R3)]},

R3OBUS<0:7>{[(R3)]
,
[<4 : 7> (Rl) , <0 : 3> (R5 ,R2)])

;

END;

The model that corresponds to this description is

depicted in Figure 5.2.

., . 1 f w

TbUS

^'

Rl Hi RS

. RID e»us

f < f
.

^

R31BUS i

,.. ^ r

i
1

>'

Rjaaus

Ri« as

> [_
'

Figure 5.2 EXPLl Descriptive Model.

To move the content of Rl to R3 the below transfer steps are

needed:

RIOBUS ^ Rl

TBUS<0:3> ^ RIOBUS

R3IBUS -^ TBUS<0:3>

which after simplification become:

TBUS<0:3> ^ Rl : readRl

R3 *. TBUS<0:3> : loadR3

Suppose now that the contents of R5 is desired to go to

the upper part of R3 . The following transfer steps are

necessary (no simplifications are possible in this case):

72

TBUS<4:7> ^ R5

R3 *. TBUS

:readR5SWP

:load R3

Note that instead of "readRS", the first transfer step

has the control signal "readR5SWP". The reason for this

comes from the fact that control signals explicitly speci-

fied in the data flow description superpose the implicit

ones given by Rules 3, 4 and 5.

B. FUNCTIONAL TRANSFERS

A functional transfer is a data transfer through a data

path that includes a functional unit. If the functional unit

is a source of a bidirectional bus then it is necessary to

provide it with output gating as mentioned in Chapter 2,

Section B. This means that the functional unit FU output is

available only when the signal "readFU" is active. Because

the FU output is of interest only when a specific FU func-

tion is chosen, the "readFU" signal is the logical OR of all

function-selection signals and therefore it is not a FU

external control signal. Figure 5.3 illustrates the above

statements

.

CDMEINHTIQNRi.
LDGIC K—

function-

; selection

^-' vector

Figure 5.3 Output Gating for a Functional Unit

73

In summary the output vector of a functional unit is avail-

able only when one of its function-selection signals is

active.

Figure 5.4 shows a model with a functional unit called

ALU. Suppose that the content of Rl is to be incremented

and stored back in Rl. This data transfer is accomplished

with the following transfer steps:

\ >

ne>us

^ r

Rl w.
1

(U

i »
i BBUi

w
\

I L
\ RLU /

1

Rk J- 5BUS
3

^ IWT&US

Figure 5.4 Data Paths Including Functional Units.

ABUS ^ Rl

SBUS ^ (+ 1)ABUS

INTBUS ^ SBUS

Rl *. INTBUS

Rule 2 applies on SBUS, simplifying the above transfer

steps into:

ABUS ^ Rl

INTBUS ^ (+1)ABUS

Rl . INTBUS

: readRl

: increment

: loadRl

Suppose now that a binary operation is wanted, for

example, add the content of R2 with the content of R3 and

store the result in R4. The transfer steps needed to

carried out the intended functional transfer are:

74

ABUS ^ R2

BBUS ^ R3

SBUS ^ (+)ABUS,BBUS

INTBUS *. SBUS

R4 ^ INTBUS

Applying Rule 2, the above set of transfer steps reduces

to:

ABUS *. R2 :readR2

INTBUS -•- (+)ABUS,R3 : add

R4 ^ INTBUS :loadR4

Note that, when dealing with a functional transfer

performing a binary operation, the transfer step involving

the functional unit, called the functional transfer step,

has two sources and is treated as two different transfer

steps in one. In the above example. Rule 2 was applied

having this in mind as illustrated below:

ABUS -.- R2 BBUS ^ R3

SBUS ^ (+)ABUS,x SBUS ^ (+)x,BBUS

SBUS ^ (+)x,R3

ABUS . R2

SBUS ^ (+)ABUS,R3

C. DATA TRANSFERS USING UNITS

When Units were introduced in the last chapter, the

following two rules were presented:

• The data always enters the Unit through an INBUS

.

• The data always exits the Unit through an OUTBUS.

75

It was also stated at that time that these buses may not

have physical existence, but they are used only as abstrac-

tions. This means that the first thing to do in the process

of transfer steps simplification, is to eliminate the

transfer steps containing these buses. This is done applying

the following rule:

(1) In any data transfer, two transfer steps involving a
INBUS or an OUTBUS are merged into a single transfer
by eliminating the bus and keeping, the source of the
first transfer step and the sink or the second one.

Note that this rule must be the first one to apply when

simplifying transfer steps. This is the reason why it is

numbered one although it was the fourth one to be intro-

duced. As an example, the transfer steps:

RFILOUTBUS ^ RFIL

ADDR ^ RFILOUTBUS

INTBUS *. ACC

RFILINBUS ^ INTBUS

RFIL ^ RFILINBUS

after Rule 1 being applied reduce to

ADDR ^ RFIL

INTBUS ^ ACC

RFIL ^ INTBUS

If the INBUS or OUTBUS in question, have explicit

control signals, the ones necessary to the transfer in ques-

tion will be displayed in the control field of the resultant

transfer step.

D. DATA TRANSFERS INVOLVING MEMORY DEVICES OTHER THAN
REGISTERS

Until now only inter-register transfers were analyzed.

At the level of abstraction where the present discussion is

carried out, the differences between the several types of

76

RdUS

1

*

F
u
i

N
c

c

I

1

£&U5
1

e- e

—

caart
CHRRnhiB CMHRlbUS ;

^ 1

,crian£ie>u5

> r
' '

MTCL CflNiaau

Figure 5.5 Simplified Block Diagram for

a Microprogramed Control Unit.

memory devices occur in the timing constrains and the neces-

sary control signals to operate each kind of device. Thus,

the rules introduced in the last sections apply to all types

of memory devices with the control signals given by Table

VI.

As an example consider Figure 5.5 which shows a very

simplified block diagram of the data flow of a micropro-

grammed control unit. The Control Memory Address Register

CMAR serves as a microprogram counter. It can be incremented

or loaded with the address of a microprogram subroutine,

depending on the value of bits 16 and 17 of the Control ROM

output vector. Its description is the following:

DF: MPCU;

FU: FUINC{[(),(+1), ()],[]};

REG: CMAR<0:15>{[(CMARIBUS)]
, [(CMAROBUS)] }

,

MTCL<0:32>{[(ROMOBUS<18:50>)]
, [] }

;

ROM: CROM<0:15,0:50>{[(CROMOBUS)]
,
[(CMAROBUS)]};

BUS: ABUS<0: 15>{ [(CMAR)]
,
[(FUINC)] }

,

SBUS<0:15>{[(FUINC)]
, [(CMARIBUS- (inc))] }

,

77

TABLE VI

CONTROL SIGNALS FOR ALL TYPES
OF MEMORY DEVICES

Memory Device Control Signals

to read to write

Registers read load

Stacks push pop

Queues read load

RAM's chip select chip select

ROM's chip select
write

CROMOBUS<0:50>{ [(CROM)]
,
[<18 : 50> (MTCL)

,

<0:15>(CMARIBUS» (branch))] }

,

CMARIBUS<0:15>{ [(SBUS^ (inc)

,

ROMOBUS<0:15>» (branch))]
,
[(CMAR)]},

CMAR0BUS<0:15>{[(CMAR)]
, [(CROM,ABUS)] }

;

END;

Suppose that bit 16 is one in present ROM output vector.

Then the transfer steps necessary to produce a new output

vector are the following:

MTCL ^ CROMOBUS<18:50>

ABUS -.- CMAR

SBUS ^ (+ 1)ABUS

CMARIBUS *. SBUS

CMAR ^ CMARIBUS

CROMOBUS *. CROM [CMAR]

Applying Rule 2, the above transfer steps simplify to:

MTCL *. CROMOBUS<18:50>

CMARIBUS ^ (+1)CMAR

: loadMCTL

: inc

78

CMAR ^ CMARIBUS : loadCMAR

CROMOBUS ^ CROM[CMAR]

E. PARALLEL TRANSFERS

The determination of which data transfers can be

performed in parallel is important since parallel operation

reduces the instruction time. It is therefore useful to have

an easy way to determine the data transfers passive of being

carried out at same time.

1. Simple Transfers

If the candidates for parallel operation are simple

transfers, two cases may occur depending on the existence of

just one source or more than one source for the transfers in

question. For the first case the following rule applies:

(5) Simple data transfers having the same source can
always be performed in parallel.

and for the latter one the rule to use is:

(6) Simple data transfers havine different sources can be
performed in parallel ±l their data paths are
disjoint, e.g., if any bus is not used simultaneously
by two or more transfers.

Note that when looking for parallel operation,

different parts of the same device are considered to be

distinct sources, sinks, or buses. For example, in the

following transfers:

INTBUS ^ A<0:7>

B ^ INTBUS

C ^ A<8:15>

have different sources, and the following transfers:

TOBUS<8:7> - A

C ^ TOBUS<0:7>

79

T0BUS<8:15> ^ B

D ^ T0BUS<0:15>

are two data transfers that can be performed in parallel

because their paths are disjoint.

2. Functional Transfers

Because functional transfers use functional units

that can not perform two operations at same time, the rules

that apply in this type of data transfers are the following:

(7) Different functional transfers using a single func-
tional unit can never be performed in parallel.

(8) Different functional transfers using distinct func-
tional units, can be performed in parallel if the
data paths succeeding tnem are disjoint, e.g., a bus
can not appear simultaneously in more than one data
transfer after the functional transfer step.

F. AN EXAMPLE

In order to exemplify the use of the rules introduced in

this chapter, three instructions from the 8085A

Microprocessor Instruction Set will be analyzed. The 8085A

was presented in last chapter and its data flow description

is depicted in Appendix C. Consider the instruction:

MOV rl, r2

which means that the content of register r2 is to be moved

to register rl, where rl and r2 can be any of the six

general-purpose registers or the accumulator. Suppose that

r2 is register B and rl is the ACC. In order to carry out

this instruction, the following simple data transfers are

necessary

:

RFILOUTBUS *- RFIL

INTBUS *. RFILOUTBUS<0:7>

ACC ,- INTBUS

80

Expanding the RFIL unit, they become:

BOBUS ^ B

RFILOUTBUS<8:15> * BOBUS

INTBUS - RFIL0UTBUS<8:15>

ACC *. INTBUS

Applying Rule 1 this set becomes:

BOBUS - B

INTBUS -.- BOBUS :readB

ACC ^ INTBUS

which can be reduced by Rule 2 to:

INTBUS ..- B

ACC ^ INTBUS

and finally Rule 3 gives:

INTBUS ^ B :readB

ACC <*- INTBUS tloadACC

This means that the execution cycle for "MOV rl,r2"

instruction needs one data transfer, e.g., it needs one

clock cycle. Because in the 8085A a control state corre-

sponds to each clock cycle, and because the fetch cycle

takes three control states, the total number of states

necessary to carried out this instruction are four control

states

.

Consider now the instruction:

XCHG

that exchanges the content of register pair HL with the

content of register pair DE, in other words the content of H

goes to D and the content of L goes to E. This instruction

is performed with the following data transfers within the

RFIL unit

:

81

HOBUS ^ H

DIBUS ^ HOBUS

D *. DIBUS

LOBUS ^ L

EIBUS ^ LOBUS

E ^ EIBUS

After Rule 2 is applied the transfers simplify to:

DIBUS ^ H :readH

D ^ DIBUS :loadD

EIBUS ^ L :readL

E - EIBUS :loadE

This' instruction needs two simple data transfers and by

Rule 6 the transfers can be performed in parallel. Thus the

'XCHG" instruction also takes four control states to

execute. Consider now the instruction:

ADD r

which adds the content of register r (r being any of the

general- purpose registers) with the content of ACC and

places the result in ACC. Suppose that r is the register C.

The transfer steps necessary to carry out this instruction

are the following:

COBUS *- C

RFILOUTBUS<0:7> ^ COBUS

INTBUS *. RFILOUTBUS<0:7>

TEMP ^ INTBUS

BBUS ^ TEMP

ACCOBUS - ACC

ABUS ^ ACCOBUS

SBUS ^ (+)ABUS,BBUS

INTBUS ^ SBUS

ACC -.- INTBUS

which after Rule 1 becomes:

82

INTBUS <*- COBUS : readC

TEMP ^ INTBUS

BBUS ^ TEMP

ACCOBUS ^ ACC

ABUS ^ ACCOBUS

SBUS ^ (+)ABUS,BBUS

INTBUS *. SBUS

ACC ^ INTBUS

and after Rule 2 being applied, the transfers simplify to:

INTBUS ^ C :readC

TEMP ^ INTBUS

BBUS *- TEMP

ABUS ^ ACC

SBUS *. (+)ABUS,BBUS

INTBUS -.- SBUS

ACC *. INTBUS

Applying Rule 2 again the above transfer steps become:

INTBUS ^ C :readC

TEMP ^ INTBUS

SBUS ^ (+)ACC,TEMP

INTBUS ^ SBUS

ACC -.- INTBUS

The above set of transfer steps is not yet totally

simplified Rule 2 can be applied once more, giving:

INTBUS ^ C :readC

TEMP ^ INTBUS

INTBUS *. (+)ACC,TEMP : add

ACC *. INTBUS

and finally Rules 3 and 4 activate the control signals

necessary to carry out the "ADD r" instruction as shown

below:

83

INTBUS ^ C ireadC

TEMP ^ INTBUS : loadTEMP

INTBUS ^ (+)ACC,TEMP : add

ACC -.- INTBUS rloadACC

As can be seen, this instruction needs one simple

transfer and one functional transfer. These transfers can

not be done in parallel because they both share register

TEMP, which means that five control states must be paid to

execute this instruction if a single-phase scheme is

utilized. If a two-phase clock is used, then TEMP can be

driven with one phase and ACC and C with the other phase,

thereby reducing the control states necessary to perform the

instruction. The Instruction Set requires only four control

states for this instruction and due to the fact that the

instruction is present in IR only after the third control

state, the latter case must apply to the 8085A. This may be

the reason why TEMP can never be operated directly by any

instruction and why some 8085A block diagrams not even show

it.

G. SKETCH OF A POSSIBLE WAY TO STORE THE INFORMATION
CONTAINED IN THE LANGUAGE

For the information contained in the language to be

useful as part of a Computer Aided Design (CAD) system, the

information in the CAD database. The language introduced was

designed with the Network Database Model [Ref. 13] in mind.

Each type of device can be a logical record type having as

fields the syntax fields of its description. For example,

the register type will have the name, length, clock, source

attachment and sink attachment fields. Because the last two

may refer to more than one device, it is thought that the

fields should be nothing more than pointers to another

record type, the attachment type, comprising five fields:

one for each subvector playing an active part in the attach-

ment, one for the control signal responsible for the

84

transfer of data through it, one pointing to the source or

sink in question and one pointing to the next attachment

record of the device.

Rl Ra

X, aau5 '

'

^ 1 l&US

-f \t

RZ RM

Figure 5.6 EXAMP Data Flow.

As an example consider Figure 5.6, which shows an

example of a data flow whose description is the following:

DF: EXAMP;

REG: R0<0:7>(l,f){[]
,
[(OBUS)]},

R2<0:7>(l,f){[],[IBUS]},

R3<0:3>(l,f){[(OBUS<l:3>-(ctA)]
, [] >

,

R4<0:7>(2,f){[IBUS],[]};

BUS: OBUS<0:3>{[(R1)]
,
[<1: 3> (R3- (ctA)) ,

(IBUS)]},

IBUS<0:7>{ [(0BUS,R2)]
,
[R4] }

;

END;

Using the scheme presented above, this data flow will be

stored as shown in Figure 5.7.

As can be seen, this scheme uses a lot of redundancy

(note that the information for each attachment is stored

twice), which reflects the redundancy already existing in

the description itself. This drawback can be avoided by

storing only one type of attachment. The reason for this

comes from the fact that if all the attachments of one type

(source or sink) are listed, then every connection in the

data flow is known. In other words, if R is a source of B

85

Rl Q:? llU•^"^
f7" a-7 j"q=^

\
1
QBLLS H

0=1 D-1 i

j/^

^
V r-U

T
an D:1 X Q-i Q'i CTR rr^ .!.

IBUS U-1
"I—

r

l°-^ I
'•> iriM

r
D-7 ZjB-^lIChI

t to aBUS

Q-3

o Q&U5

Q:7 \.r 3t_

D--1

c:
D-7

laus

ri^

v^

Llfl •

D:7 0=1

*-^t» \&US

Figure 5.7 Storage of Examp.

then B is a sink for R. If this is the case, why not omit

the source or the sink attachment field in the language

syntax? The reason is that, a data flow described as

presented in Chapters 3 and 4 is easier to be understood by

the user.

In the previous example, suppose that only the sinks are

stored. Then Figure 5.7 simplifies to the diagram depicted

in Figure 5.8.

The possible data paths for a particular data transfer,

can be obtained with a procedure that will look like:

86

4

;l

^

R\)
Oil 1 I.F

r JtL
-

0:i Q-^ 1 ' (Jl

i
—

1
aaiiSj o:?m Ki a:-> '•f It)

j^ J\^
; \

1 t Q'J i a<i CTWi5-[i: 0>7 Q-l ' 1*1 t °^' ?
I

X
I
J

s « L %r J

a3
1

a'3
1

i.r i« 1
i&US Q-?

1 f

^
-^^

1 f j
O--? 0>7 X li

S rj

1 A<« Qvl 2.f 1 •

Figure 5.8 An Alternative Way to Store EXAMP.

Procedure FIND(a,c)

until end of sink list a

pick next sink b of a

write transfer step 'b ^ a'

if b=c, go to 10

call FIND(b,c)

10 end

For a particular data transfer with source 'a' and sink

'c', procedure FIND outputs the transfer steps for all the

possible data paths for the data transfer (more than one may

be found). As an example, to move the contents of Rl to R4

in the EXAMP data flow, procedure FIND gives the following:

(1) a=Rl , c=R4, b=OBUS, OBUS ^ Rl

(2) a=OBUS, c=R4, b=R3 , R3 ^ OBUS

87

(3) a=R3 , c = R4, end of list reached, erase R3 -•- OBUS

(4) a=OBUS, c=R4, b=IBUS, IBUS ^ OBUS

(5) a=IBUS, c=R4, b=R4 , R4 ^ IBUS, end

The output is then:

OBUS *. Rl

IBUS ^ OBUS

R4 ^ IBUS

If it is wanted to move the contents of R2 to R3 , FIND

gives

:

(1) a=R2 , C=R3, b=IBUS, IBUS * R2

(2) a=IBUS , C=R3, b=R4 , R4 *. IBUS

(3) a=R4 , C=R3, end of list reached for R4

,

erase R4 ^ IBUS

(4) a=IBUS , C=R3, end of list reached for IBUS,

erase IBUS ^ R2

(5) end of list reached for R2 , end

which means that it is not possible to move the contents of

R2 to R3.

88

VI. CONCLUSION

As stated in Chapter 1, the objective of this work is to

design a formal language capable of describing the Data Flow

of a digital system. The description is for the intercon-

nections between the major data flow components and for the

control of the flow of information among them. It is

believed that this objective has been achieved. The syntax

presented in Chapters 3 and 4 is suitable to describe any

data flow in an unambiguous way. Additionally the syntax is

capable of describing the data paths for any data transfer

in a particular data flow and the sequence of control

signals to establish the data paths.

The approach taken defines the major data flow compo-

nents, by defining a data flow of a system as a set of

different data paths, each one starting and ending in a

memory device. The simpler data paths are the ones that

merely transfer the contents of one memory device to

another. Some exist, however, that operate on the data

flowing through them. The latter data paths include a compo-

nent, called the functional unit, which is responsable for

operating on the data. Interconnecting both types of data

flow components are the buses. The term 'buses' was used to

abstract wires, multiplexers, demultiplexers, and buses in

the traditional sense.

At the level of abstraction treated in this work, it was

found that memory devices can be catalogued in several

types. The differentiation between each type is based on:

• dimension of the device (one or two dimensional),

• clock requirements (is the device clocked or not).

• if it is read-write or read-only.

89

The first criterion differentiates registers from stacks

and queue memories, the second criterion distinguishes these

devices from RAM's and ROM's and finally the last criterion

differentiates RAM's from ROM's.

The functional unit was modelled as a box performing

logic or arithmetic operations on one or both inputs. The

operations are selected by issuing an appropriate vector to

the functional unit control input. This component may also

provide information about the status of the output by means

of a status vector.

The syntax to describe each of these data flow compo-

nents is presented in Chapter 3. The syntax to describe the

data flow as an interconnection of these basic components is

introduced in Chapter 4. It was found that it is sometimes

useful to aggregate part of the components of a particular

data flow in groups, called Units, with the purpose of

simplifying the model. The Units were defined in Chapter 4.

Because the unit is a data flow component as are memory

devices and functional units, the data flow description may

include more than one level of abstraction.

Chapter 6 showed how it is possible to obtain, from a

data flow description, the control signals necessary to

establish the data paths for a particular data transfer.

Chapter 6 also outlined one possible way to store the infor-

mation contained in the language introduced, and an algo-

rithm to find, from a data flow description, all the

possible data paths for a particular data transfer. These

data paths are specified by their transfer steps, and there-

fore, the control signals necessary to establish the data

paths can be obtained by applying the rules presented in

this chapter.

90

APPENDIX A

SYNTAX FLOW DIAGRAMS

Represents reserved words or syntactic entities

that are not defined further (e.g., a letter or

a digit).

(~^ Represent an operator

Represents a syntactic entity that is defined

by another flow diagram or a table

data flow

91

<rNTf) ^ ^ devnamc <D

—

^—

'

memolist

n

—<i)-^3> fuhst nl

unit

unitdescrp

name —G^ devdescrp »(EM)>#-<> \i>Ks)
H^=J)

.

name *^ pi- ^ ,.—

h

name . k
i i

' '\ • <- J fI "

r^^ rr)4(^ w

memolist fulist

92

.rrsfunct unit

1

*w ^

^

register —*G>—

>

lifo
./T^

Sr

fifo /^V
P^

ram •T^V^

rom •O
-^

^

bus —o—

'

dev descrp

93

^ name

<D- st&tus

tC FV) »(T) ^'""P o

4 (7\— unopB unopA

funct unit

status

binop, unopA and unopB

94

-Kreg)—/7V-x-^ name length clock

Q
-(!>- sink attach -K> source attach

register

name Size » clock —

1

-*C LIFO>—•(. •)
3

c

I
—

'

w

MD—D- mn U At t Ach source attach .-<T)J^ '\

lifo

-<FJF0") <?>—

1

c

r-* name ¥ size » clock

^

y>- sink attach MD^ source attach -^XH^ -x

fifo

95

-<HAM>—»(T) x-> nlame size

<i>-l address atiach

•<!>- source attach

sink attach £^

ram

—K^hom)--<i:
\ name size t/7^
) '

b.' » ^y

Y^
<D— address aitarh-^—

rom

-^. lU'S) -KD-ir-* name H^ fU's) • width --(;
P

-KD— sink atiach i—

O

source aitacli

bus

96

source attach, sink attach and address attach

'-$devname attach vector —Ir-GKL^i >k
" cntrl -<ir^

r^
viy

device list

name

1 ^

w •V)U h/
t

'

w

namef T^l T I ft

devname

97

—d^— vector -o-^ rapacity —XT>-^

Size

—KD-^ vector —^y^^

length and width

xC^ -—> number number
^\D r

capacity,

vector, subvector and attach vector

98

>^ rap letter 3" < digit y

name

^ leller j i' p(digit }

cntrl

—0— l^hasp —<7^-. edge -—<>—

clock

99

1
, n, diKii J

number and phase

r^^-i
<

I ^
_

-^ ' ^

'

"V J

edge

100

APPENDIX B

PIC 1650 DESCRIPTION

DF: PIC1650;

UNIT : PC{ [PCREG]
,
[FUINCA] >

;

Fl{ [RTCC]
,
[FUINCB] }

;

FU: FUALU{ [(+,-, V, ©, A), (0),(0,'v,^,^,X,+ 1,-1,] ,

[Z(+,-,A,V,©,0,'N', + l,-l),C(-,^,N, + ,-,),A(+ ,-)]}

REG F3<0

F4<0

F5<0

F6<0

F7<0

F8<0

F9<0

F10<0

F11<0

F12<0

F13<0

F14<0

F15<0

F16<0

F17<0

F18<0

F19<0

F20<0

F21<0

F22<0

F23<0

F24<0

F25<0

F26<0

F27<0

2>(2,r)

4>(2,r)

7>(2,r)

7>(2,r)

7>(2,r)

7>(2,r)

7>(2,r)

2,r

2,r

2,r

2,r

2,r

:7>(

:7>(

:7>(

:7>(

:7>(

:7>(

:7>(

:7>(

:7>(

:7>(

:7>(

:7>(

:7>(

:7>(

:7>(

:7>(

:7>(

:7>(

2,

2,

2,

1

2

2

2

2

2

2

2,r

2,r

2,r

INTBUS<2:2>)] , [(INTBUS<0 : 2>)] }

,

INTBUS<2:4>)]
, [(INTBUS<0 :4>)] }

,

F5IBUS)] ,[

F6IBUS)]
,

[

F7IBUS)]
,

[

F8IBUS)]
,

[

INTBUS)]
,

[

(INTBUS)

(INTBUS)

(INTBUS)

(INTBUS)

(INTBUS)

(INTBUS)

(INTBUS)

(INTBUS)

(INTBUS)

(INTBUS)

(INTBUS)

(INTBUS)

(INTBUS)

(INTBUS)

(INTBUS)

(INTBUS)

(INTBUS)

(INTBUS)

(F50BUS)

(F60BUS)

(F70BUS)

(F80BUS)

(INTBUS)

,
[(INTBUS

,
[(INTBUS

,
[(INTBUS

,
[(INTBUS

,
[(INTBUS

,
[(INTBUS

,
[(INTBUS

,
[(INTBUS

,
[(INTBUS

,
[(INTBUS

,
[(INTBUS

,
[(INTBUS

,
[(INTBUS

,
[(INTBUS

,
[(INTBUS

,
[(INTBUS

,
[(INTBUS

,
[(INTBUS

101

F28<0:7>(2,r){[(INTBUS)],[(INTBUS)]},

F29<0:7>(2,r){[(INTBUS)],[(INTBUS)]},

F30<0:7>(2,r){[(INTBUS)],[(INTBUS)]},

WREG<0:7>(2,r){[(INTBUS)] ,[(ABUS)]},

IR<0 : 11> (2 , r) { [(OROMBUS)],[]>;

LIFO : RETSKO : 8 , : 1> (2 , r) { [(PC)] , [(PC)] } ;

ROM : PRGM< 0:11,0:511>{[(OROMBUS)] , [(PC)] }

;

BUS: ABUS<0:7>{[(WREG)],[(ALU)]},

BBUS<0:7>{[(INTBUS)] ,[(ALU)]},

SBUS<0:7>{[(ALU)] , [(INTBUS)] }

,

INTBUS<0:7>{[(SBUS),<0:2>(F3),<0:4>(F4,F9,F10,

F11,F12,F13,F14,F15,F16,F17,F18,F19,

F20,F21,F22,F23,F24,F25,F26,F27,F28,

F29,F30,F31,F5OBUS,F6OBUS,F7OBUS,PC,

F80BUS,F1)]
,
[(BBUS),<0:2>(F3),<0:4>(F4,

WREG , F5IBUS , F6IBUS , F7IBUS , F8IBUS , F9

,

F10,F11,F12,F13,F14,F15,F16,F17,F18,

F19,F20,F21,F22,F23,F24,F25,F26,F27,

F28,F29,F30,F31,F1,PC)]},

F5IBUS<0

F50BUS<0

F6IBUS<0

F60BUS<0

F7IBUS<0

F70BUS<0

F8IBUS<0

F80BUS<0

RABUS<0:7>{

[

RBBUS<0:7>{

[

RCBUS<0:7>{

[

RDBUS<0:7>{[

PCINBUS<0:8>

7>{

7>{

7>{

7>{

7>{

7>{

7>{

7>{

[(INTBUS, RABUS)]
,
[(F5)]},

[(F5)] ,[(INTBUS,RABUS)]},

[(INTBUS, RBBUS)]
,
[(F6)] >

,

[(F6)] ,[(INTBUS, RABUS)]},

[(INTBUS, RCBUS)]
,
[(F7)] >

,

[(F7)] ,[(INTBUS, RCBUS)]},

[(INTBUS, RDBUS)]
,
[(F8)]},

[(F8)] ,[(INTBUS, RABUS)]},

(F5)],[(F5)]},

(F6)],[(F6)]},

(F7)],[(F7)]},

(F8)],[(F8)]},

{ [<0 :7>(INTBUS, RETST)] ,
[(PC)]},

PCOUTBUS<0:8>{[(PC)]
,
[<0 : 7> (INTBUS , RETST)] }

,

F1INBUS<0:7>{ [(INTBUS)]
,
[(Fl)]},

F10UTBUS<0:7>{[(F1)] ,[(INTBUS)] }

;

102

UNDES: PC;

FU: FUINCA{[(),(),()],[]};

REG: PCREG<0:8>(l,r){[(PCRIBUS)]
, [(PCROBUS)] }

,

BUS: ABUS<0:8>{[(PCROBUS)]
,
[(INCA)] },

SBUS<0:8>{[(INCA)]
, [(PCRIBUS)] }

,

PCRIBUS<0:8>{[(PCINBUS,SBUS)]
,
[(PCREG)]},

PCOBUS<0:8>{[(PCREG)]
, [(PCOUTBUS ,ABUS)] }

;

END;

UNDES: Fl;

FU: FUINCB{[(),(),()],[]};

REG: RTCC<0:7>(2,r){[(RTCCIBUS)]
, [(RTCCOBUS)] }

;

BUS: ABUS<0:7>{ [(RTCCOBUS)]
,
[(INCB)] },

SBUS<0:7>{[(INCB)]
, [(RTCCIBUS)] >

,

RTCCIBUS<0:7>{[(F1INBUS,SBUS)]
,
[(RTCC)]},

.RTCCOUTBUS<0:7>{ [(RTCC)]
, [(FIOUTBUS ,ABUS)] }

;

END;

END;

103

APPENDIX C

INTEL 8085A DESCRIPTION

DF: INT85A;

UNIT: REIL{ [BC,DE,HL,SP,PC]
,
[INCR] }

;

FU: FUALU{[(+, + c,-,-b,©,V,A),(+ l,-l,'^',0.

^,-.. ,-.-c,c-.-), ()] ,

[C(+, + c,-,-b,A,V,©,0»-^»-^>-*c>c^),

Z(+, + c,-,-b, + l,-l,A,V,©,0).

S(+, + c,-,-b, + l,-l,A,V,©,0)'

P(+,+c,-,-b, + l,-l,A,V,©,0).

A(+,+c,-,-b, + l,-l,A,V,©,0)]>

REG: ACC<0:7>(l,f){[(INTBUS)]
, [(ACCOBUS)] }

,

TEMP<0:7>(2,f){[(INTBUS)]
,
[(BBUS)]},

STA<0:7>(l,f){[(INTBUS)]
,
[(INTBUS)]},

IR<0:7>(l,f){[(INTBUS)],[]},

ADB<0:7>(l,f){[(REILOUTBUS<8:15>)]
, [(ADDBUS<8 : 15>)] }

,

DAB<0:7>(l,f){[(DABIBUS)]
,
[(DABOBUS)]}

,

INTC<0:7>(l,f){ [(INTBUS)] ,
[(INTBUS)]},

BUS: ABUS<0:7>{ [(ACCOBUS)]
,
[(ALU)]}

,

BBUS<0:7>{ [(TEMP)]
,
[(ALU)]},

SBUS<0:7>{ [(ALU)]
,
[(INTBUS)] },

ACCOBUS<0:7>{ [(ACC)]
, [(ABUS , INTBUS)] }

,

INTBUS<0:7>{ [(RFIL0UTBUS<8 : 15>* (readB , readD, readH,

readSPH,readPCH) ,RFILOUTBUS<0 : 7>* (readC, readE,

readL , readSPL , readPCL) , ACCOBUS , INTO , STA , DAB)]

,

[(ACC , TEMP , RFILINBUS , STA , IR , DABIBUS)] }

,

DABIBUS<0:7>{[(RFILOUTBUS<0:7>, INTBUS)]
,
[(DAB)]}

,

DABOBUS<0:7>{ [(DAB)]
, [(ADDBUS<0 : 7> , INT)] },

ADDBUS<0:15>{[(<0:7> (DABOBUS),<8:15>ADB)]
, []},

RFILOUTBUS<0: 15>{ [(RFIL)]
,
[<0 : 7> (INTBUS* (readC,

readE, readL, readSPL,readPCL) , DABIBUS) ,<8: 15>(ADB,

INTBUS • (readB , readD , readH , readSPH , readPCH))] }

,

104

RFILINBUS<0:7>{ [(INTBUS)]
,
[RFIL] }

;

UNDES: RFIL;

FU: FUINCR{ [],[+!, -!],[]};

B<0:7>(l,f){

C<0:7>(l,f){

D<0:7>(l,f){

E<0:7>(l,f){

H<0:7>(l,f){

L<0:7>(l,f){

PCH<0:7>(l,f

PCL<0:7>(l,f

SPH<0:7>(l,f

SPL<0:7>(l,f

REG : B<0:7>(l,f){[(BIBUS)] , [(BOBUS)]

>

(CIBUS)]
,
[(COBUS)]}

(DIBUS)] ,[(DOBUS)]>

(EIBUS)] ,[(EOBUS)]}

(HIBUS)] ,[(HOBUS)]}

(LIBUS)]
,
[(LOBUS)]}

{[(PCHIBUS)]
,
[(PCHOBUS)]},

{ [(PCLIBUS)] , [(PCLBOBUS)] }

,

{ [(SPHIBUS)] , [(SPHOBUS)] >

,

{ [(SPLIBUS)] , [(SPLOBUS)] }

;

BUS : ABUS<0 : 15>{ [<0 : 7> (COBUS , EOBUS , LOBUS , PCLOBUS

,

SPLOBUS)
, <8 : 15 > (BOBUS , DOBUS ,HOBUS

,

SPHOBUS , PCHOBUS)] , [(FUINCR)] }

,

SBUS<0:15>{ [(FUINCR)]
,
[<0 : 7> (CIBUS , EIBUS , LIBUS

,

PCLIBUS , SPLIBUS)
, <8 : 15 > (BIBUS , DIBUS

,

HIBUS , SPHIBUS , PCHIBUS)] }

,

BIBUS<0:7>{ [(RFILINBUS) , <8 : 15> (SBUS)]
,
[(B)]},

CIBUS<0:7>{[(RFILINBUS),<0:7>(SBUS)]
,
[(C)]},

DIBUS<0 : 7>{ [(RFILINBUS ,HOBUS)
, <8 : 15> (SBUS)] , [(D)] }

,

EIBUS<0:7>{ [(RFILINBUS , LOBUS)
, <0 : 7> (SBUS)] ,

[(E)] }

,

HIBUS<0 : 7>{ [(RFILINBUS , DOBUS)
, <8 : 15> (SBUS)] , [(H)] }

,

LIBUS<0:7>{[(RFILINBUS, EOBUS) , <0 : 7> (SBUS)] ,
[(L)]},

PCHIBUS<0 : 7> {[(RFILINBUS),<8:15>(SBUS)] ,
[(PCH)] },

PCLIBUS<0:7>{ [(RFILINBUS) , <0 : 7> (SBUS)] ,
[(PCL)]},

SPHIBUS<0:7>{ [(RFILINBUS) , <8 : 15> (SBUS)] ,
[(SPH)] },

SPLIBUS<0:7>{ [(RFILINBUS) , <0 : 7> (SBUS)] ,
[(SPL)] }

,

BOBUS<0:7>{[(B)]
, [(ABUS<8 : 15> ,RFIL0UTBUS<8 : 15>)] },

COBUS<0:7>{ [(C)]
, [(ABUS<0 : 7> ,RFILOUTBUS<0 : 7>)] }

,

DOBUS<0:7>{[(D)]
, [(ABUS<8 : 15> ,RFIL0UTBUS<8 : 15>

,

HIBUS)]},

EOBUS<0:7>{[(E)]
, [(ABUS<0 : 7> ,RFILOUTBUS<0 : 7>

,

LIBUS)]},

105

HOBUS<0:7>{[(H)]
, [(ABUS<8 : 15> ,RFIL0UTBUS<8 : 15>

,

DIBUS)]},

LOBUS<0:7>{[(L)]
, [(ABUS<0 : 7> ,RFILOUTBUS<0 : 7>

,

EIBUS)]},

PCHOBUS<0:7>{[(RFILINBUS),<8:15>(SBUS)]
,
[(B)]},

PCHOBUS<0:7>{ [(PCH)]
, [(ABUS<8 : 15>

,

RFIL0UTBUS<8:15>)] >,

PCHLBUS<0:7>{ [(PCL)]
,
[(ABUS<0:7>,

RFILOUTBUS<0:7>)]},

SPHOBUS<0:7>{ [(SPH)]
,
[(ABUS<0:7>,

RFILOUTBUS<8:15>)] },

SPLOBUS<0:7>{[(SPL)]
,
[(ABUS<0:7>,

RFILOUTBUS<0:7>)]};

END;

END;

106

LIST OF REFERENCES

1. Rigas, Harriett, A Complete Automated Design System
,

(unpublished)

.

2. Mahmood, Ausif, Deyelopment of a Multi- level Logic
Simulator for VLSI Systems , Washington State
University, T^5 .

3. Fletcher, I. William, An Engineering Approach to
Digital Design , Prent ice-Hall , 1980.

4. Mano , M. Morris, Computer System Architecture,
Prentice Hall, 1982.

-^

5. Langdom, Glen G. Jr., Computer Design , Computer Press,
Inc. , 1982

.

6. Taub, Herbet , Digital Circuits and Microprocessors,
McGraw Hill Book Company, 1982.

.7. Mead, Carver and Conway, Lin, Introduction to VLSI
Systems , Addison Wesley, 1980.

8. Weste, Neil and Eshraghian, Kamran, Principles of CMOS
VLSI Design , Addison Wesley, 1985.

9. Leventhal. Lance, Introduction to Microprocessors,
Prentice ftall, 19^8.

^

10. Madnick, Stuart and Donovan, John, Operating Systems,
McGraw- Hill Book Company, 1974.

11 Sieviorek, Bell and Newell, Computer Structures :

Principles and Examples , McGraw Hill book Company

,

12. Short, Kenneth L., Microprocessors and Programming
Logic , Prentice Hall, 1981.

^ ^

13. Ullman, D. Jeffrey, Principles of Database Systems ,

Computer Science Press, 1985.

107

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station

. . «„„«, ,,/e
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Dr. Harriett B. Rigas 2
Code 62
Naval Postgraduate School
Monterey, California 93943

4. Dr. Larry Abbott 1
Code 63At
Naval Postgraduate School
Monterey, California 93943

5. Dir. Serv. Instrucao e Treino 1
Edificio do Ministerio da Marinha
Rua do Arsenal
1100 Lisboa
Portugal

6. Luis Sousa Machado 4
Av. D. Rodrigo da Cunha, 12-2 Esq Sul
1700 Lisboa
Portugal

108

cu 1 ' > 1

Thesis
M1891
c.l

Thesis

M1891
c.l

Machado
A language capable

of describing computer
architecture.

21750?
Machado

A language capable

of describing computer

architecture.

"iiyuayc Ldpduie or aescribing compute

11 I

3 2768 000 65997 3
DUDLEY KNOX LIBRARY

